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Prym varieties of spectral covers

TAMÁS HAUSEL

CHRISTIAN PAULY

Given a possibly reducible and non-reduced spectral cover � WX ! C over a smooth
projective complex curve C we determine the group of connected components of
the Prym variety Prym.X=C / . As an immediate application we show that the finite
group of n–torsion points of the Jacobian of C acts trivially on the cohomology
of the twisted SLn –Higgs moduli space up to the degree which is predicted by
topological mirror symmetry. In particular this yields a new proof of a result of
Harder–Narasimhan, showing that this finite group acts trivially on the cohomology
of the twisted SLn stable bundle moduli space.

14K30; 14H60, 14H40

1 Introduction

Recently there has been renewed interest in the topology of the Hitchin fibration. The
Hitchin fibration is an integrable system associated to a complex reductive group G
and a smooth complex projective curve C . It was introduced by Hitchin [18] in 1987,
originating in his study of a 2–dimensional reduction of the Yang-Mills equations. In
2006, Kapustin and Witten [20] highlighted the importance of the Hitchin fibration for
S –duality and the Geometric Langlands program. While the work of Ngô [28] in 2008
showed that the topology of the Hitchin fibration is responsible for the fundamental
lemma in the Langlands program. In Ngô’s work and later in the work of Frenkel and
Witten [9] a certain symmetry of the Hitchin fibration plays an important role.

In this paper we focus on the Hitchin fibration for the group GD SLn and for a line
bundle M over C , that is, the morphism

(1) hWM �!A0
n D

nM
jD2

H 0.C;M j /:

Here M denotes the quasi-projective moduli space of semi-stable Higgs bundles
.E; �/ over C of rank n, fixed determinant � and with trace-free Higgs field � 2
H 0.C;End0.E/˝M /. In the case of SLn the above mentioned symmetry group
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1610 Tamás Hausel and Christian Pauly

of the Hitchin fibration is the Prym variety of a spectral cover. For the topological
applications the determination of its group of components is the first step. Ngô works
with integral, that is irreducible and reduced, spectral curves; but it is interesting to
extend his results to non-integral curves. For reducible but reduced spectral curves it
was achieved by Chaudouard and Laumon [5], who proved the weighted fundamental
lemma by generalizing Ngô’s results to reduced spectral curves. In this paper we
determine the group of connected components of the Prym variety for non-reduced
spectral curves as well.

In order to state the main theorem we need to introduce some notation. We associate
to any spectral cover � W X ! C a finite group K as follows: let X D

S
i2I Xi be its

decomposition into irreducible components Xi , let X red
i be the underlying reduced

curve of Xi , mi the multiplicity of X red
i in Xi and zX red

i the normalization of Xi . We
denote by z�i W

zX red
i ! C the projection onto C and introduce the finite subgroups

Ki D ker
�
z��i W Pic0.C / �! Pic0

�
zX red

i

��
� Pic0.C /;

as well as the subgroups .Ki/mi
D Œmi �

�1.Ki/, where Œmi � denotes multiplication
by mi in the Picard variety Pic0.C / parameterizing degree 0 line bundles over C .
Finally, we put

(2) K D
\
i2I

.Ki/mi
� Pic0.C /:

We denote by Cn the multiple curve with trivial nilpotent structure of order n having
underlying reduced curve C .

We consider the norm map NmX=C W Pic0.X / ! Pic0.C / between the connected
components of the identity elements of the Picard schemes of the curves X and C and
define the Prym variety

Prym.X=C / WD ker.NmX=C /:

Our main result is the following

Theorem 1.1 Let � W X ! C be a spectral cover of degree n� 2. With the notation
above we have the following results:

(1) The group of connected components �0.Prym.X=C // of the Prym variety
Prym.X=C / equals

�0.Prym.X=C //D yK;

where yK D Hom.K;C�/ is the group of characters of K .
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(2) The natural homomorphism from the group of n–torsion line bundles Pic0.C /Œn�

to �0.Prym.X=C // given by

ˆW Pic0.C /Œn� �! �0.Prym.X=C //;  7! Œ�� �;

where Œ�� � denotes the class of �� 2 Pic0.X / in �0.Prym.X=C // is surjec-
tive. In particular, we obtain an upper bound for the order

j�0.Prym.X=C //j � n2g;

where g is the genus of the curve C .

(3) The map ˆ is an isomorphism if and only if X equals the non-reduced curve
Cn with trivial nilpotent structure of order n.

Similar descriptions of �0.Prym.X=C // were given by Ngô in [27] in the case of
integral spectral curves and by Chaudouard and Laumon [5] in the case of reducible
but reduced spectral curves. Also de Cataldo, Hausel and Migliorini [6] use special
cases for SL2 .

For a characteristic a 2 A0
n we denote by � W Xa! C the associated spectral cover

of degree n (see Section 2.2) and by Ka the subgroup of Pic0.C / defined in (2) and
corresponding to the cover Xa . Let � � Pic0.C /Œn� be a cyclic subgroup of order d of
the finite group Pic0.C /Œn� of n–torsion line bundles over C and let A0

�
�A0

n denote
the endoscopic sublocus of characteristics a such that the associated degree n spectral
cover � W Xa!C comes from a degree n

d
spectral cover over the étale Galois cover of

C with Galois group � (for the precise definition see Section 5.1). With this notation
we have the following

Theorem 1.2 We have an equivalence

� �Ka () a 2A0
� :

This gives a description of the locus of characteristics a 2 A0
n such that the Prym

variety Prym.Xa=C / is non-connected, because clearly A0
�2
�A0

�1
if �1 � �2 .

Corollary 1.3 The sublocus of characteristics a 2 A0
n such that the Prym variety

Prym.Xa=C / is not connected equals the union

(3) Aendo WD
[

A0
� ;

where � varies over all cyclic subgroups of prime order of Pic0.C /Œn�.
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Calculating the dimensions of the endoscopic loci A0
�

will lead to an immediate
topological application. Recall that Pic0.C /Œn� acts on M by tensorization, and this
will induce an action on the rational cohomology H�.MIQ/. We then have

Theorem 1.4 Let n > 1 and pn be the smallest prime divisor of n. Assume that
M DKC , the canonical bundle of C , and that .n; deg.�//D 1. Then the action of
Pic0.C /Œn� on H k.MIQ/ is trivial, provided that

k � 2n2.1� 1=pn/.g� 1/:

In fact this result should be sharp, as the topological mirror symmetry conjecture of
Hausel and Thaddeus [17, Conjecture 5.1] predicts that the smallest degree where
Pic0.C /Œn� acts non-trivially is

k D n2.1� 1=pn/.2g� 2/C 1:

This results hints at the close connection between Ngô’s strategy in [27; 28] for studying
the symmetries of the Hitchin fibration and the topological mirror symmetry conjectures
in [17]. More discussion on this connection can be found in Hausel [15].

Finally let N denote the moduli space of stable vector bundles of rank n and fixed
determinant � over C . Again the finite group Pic0.C /Œn� acts on N by tensoriza-
tion and thus on H�.N IQ/. As the cohomology H�.N IQ/ is a summand in the
cohomology of H�.MIQ/ we can deduce

Corollary 1.5 The finite group Pic0.C /Œn� acts trivially on H�.N IQ/.

This was the main application of Harder–Narasimhan in [13, Theorem 1]. Our proof
here can be considered as an example of both the abelianization philosophy of Atiyah–
Hitchin [1, Section 6.3] and Ngô’s strategy [27; 28] of studying the symmetries of the
Hitchin fibration.

The paper is organized as follows. In sections 2 and 3 we recall basic results on spectral
covers and on the norm map NmX=C . In sections 4 and 5 we prove the two main
theorems. In section 6 we describe the action of the Prym variety Prym.Xa=C / on
the fiber over a 2A0

n of the SLn –Hitchin fibration. Finally in section 7 we apply the
results in this paper to prove Theorem 1.4 and its Corollary 1.5.

Notation Given a sheaf F over a scheme X and a subset U � X we denote by
F.U / or by �.U;F/ the space of sections of F over U .
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2 Preliminaries

2.1 Two lemmas on abelian varieties

Given an abelian variety A and a positive integer n we denote by Œn�W A! A the
multiplication by n, by AŒn�D kerŒn� its subgroup of n–torsion points and by yAD
Pic0.A/ its dual abelian variety. We consider

f W A �! B

a homomorphism between abelian varieties with kernel K D ker.f / which we assume
to be finite. We let yf W yB! yA denote the dual map induced by f . We introduce the
quotient abelian variety A0 DA=K , so that we can write the homomorphism f as a
composite map

f D j ı�W A
�
�! A0

j
�! B;

where � is an isogeny with kernel K and j is injective.

Lemma 2.1 The group of connected components of the abelian subvariety ker. yf /� yB
equals

�0.ker. yf //D yK;

where yK D Hom.K;C�/ is the group of characters of K .

Proof We consider the dual map

yf W yB
yj
�! yA0

y�
�! yA;

and observe that y�W yA0! yA is an isogeny with kernel yK (see, for example, Birkenhake
and Lange [4, Proposition 2.4.3]) and yj has connected fibers (see, for example, [4,
Proposition 2.4.2]). The lemma then follows.

We also suppose that A and B are principally polarized abelian varieties, that is, the
polarizations induce isomorphisms AŠ yA and B Š yB .

Geometry & Topology, Volume 16 (2012)
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Lemma 2.2 We assume that there exists a homomorphism gW B ! A such that
g ıf D Œn� for some integer n. Then the dual of the canonical inclusion i W K ,!AŒn�

is a surjective map
yi W AŒn�D yAŒn� �! yK;

which coincides with the restriction to AŒn� of the composite map yj ı ygW A!B! yA0 .

Proof It suffices to observe that the isogeny yf ı yg D bŒn� D Œn� factorizes as

Œn�W A
yjıyg
�! yA0

y�
�! A;

that yK D ker.y�/, and that yj ı yg is surjective. Hence a canonical surjection AŒn�! yK ,
which is dual to the inclusion i W K ,!AŒn�, since bŒn� D Œn�.
2.2 Spectral covers

In this section we review some elementary facts on spectral covers.

Let C be a complex smooth projective curve and let M be a line bundle over C with
deg M > 0. We denote by jM j the total space of M and by

� W jM j �! C

the projection onto C . There is a canonical coordinate t 2 H 0.jM j; ��M / on the
total space jM j. The direct image decomposes as follows

��OjM j D Sym�.M�1/D

1M
iD0

M�i :

Definition 2.3 A spectral cover X of degree n over the curve C and associated to the
line bundle M is the zero divisor in jM j of a non-zero section s 2H 0.jM j; ��M n/.

Since a spectral cover X is a subscheme of jM j, it is naturally equipped with a
projection onto C , which we also denote by � . The decomposition of the section s

according to the direct sum

H 0.jM j; ��M n/DH 0

�
C;M n

˝

1M
iD0

M�i

�
(projection formula)

DH 0.C;M n/˚ � � �˚H 0.C;M /˚H 0.C;OC /

gives an expression s D s0C ts1C � � � C tn�1sn�1C tnsn with sj 2H 0.C;M n�j /.
Here we also denote by sj its pull-back to jM j. We note that there is an isomorphism
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��W Pic.C /
�
�!Pic.jM j/, hence any line bundle over jM j is of the form ��L for

some line bundle L 2 Pic.C /. More generally, we have a decomposition

H 0.jM j; ��L/DH 0.C;L/˚H 0.C;LM�1/˚ � � �˚H 0.C;LM�d /

for some integer d and any section s 2H 0.jM j; ��L/ can be written in the form

(4) s D s0C ts1C � � �C td�1sd�1C tdsd ; sj 2H 0.C;LM�j /:

Lemma 2.4 Let � W X !C be a spectral cover. Then the underlying reduced curve of
each irreducible component of X is again a spectral cover associated to the line bundle
M .

Proof It suffices to show that if the section s 2 H 0.jM j; ��M n/ decomposes as
s D s.1/ � s.2/ with s.i/ 2 H 0.jM j; ��Li/ for i D 1; 2 and L1L2 D M n , then
Li DM ni and n1C n2 D n. By (4) the section s.i/ can be written as

(5) s.i/ D s
.i/
0
C ts

.i/
1
C � � �C tni s.i/ni

;

with s
.i/
j 2H 0.C;LiM

�j / and s
.i/
ni
6D 0. Moreover ni D deg.X .i/=C / with X .i/ D

Zeros.s.i//. By considering the highest order terms of (5) we obtain the relations
n1Cn2D n and s

.1/
n1
�s
.2/
n2
D sn 2H 0.C;OC /. Since sn is a non-zero constant section,

we conclude that Li DM ni .

We introduce the SLn – and GLn –Hitchin space for the line bundle M over the curve
C

A0
n.C;M /D

nM
jD2

H 0.C;M j / and An.C;M /D

nM
jD1

H 0.C;M j /:

If no confusion arises, we simply denote these vector spaces by A0
n and An . Note that

A0
n �An . Given an element aD .a1; : : : ; an/ 2An with aj 2H 0.C;M j /, called a

characteristic, we associate to a a spectral cover of degree n

�aW Xa �! C; Xa D Zeros.sa/� jM j;

with

(6) sa D tn
C a1tn�1

C � � �C an�1t C an 2H 0.jM j; ��M n/:

Remark 2.5 Given a 2An we observe that the pull-back of the spectral cover Xa �

jM j by the automorphism of jM j given by translation with the section �a1

n
, that is,

.x;y/ 7! .x;y� 1
n
a1.x//, equals the spectral cover Xa0 for some a0 2A0

n ; equivalently
do the change of variables t 7! t� a1

n
. Hence XaŠXa0 . It therefore suffices to restrict

our study to spectral covers Xa for a 2A0
n .
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2.3 Non-reduced curves

Let X be an irreducible curve contained in a smooth surface and let X red denote its
underlying reduced curve. Then there exists a global section s of a line bundle such
that X red D Zeros.s/ and an integer k such that X D Zeros.sk/. We introduce the
subschemes Xi D Zeros.si/ for i D 1; : : : ; k , so that we have a filtration of X by
closed subschemes

X red
DX1 �X2 � � � � �Xk DX:

In that case we say that X has a nilpotent structure of order k . For any integer i

we denote by OXi
the structure sheaf of the subscheme Xi � X . Note that OXi

is
naturally a OX –module.

We need to recall a result on the local structure of coherent sheaves on non-reduced
curves.

Theorem 2.6 (Drézet [8, Théorème 3.4.1]) Let X be a curve with nilpotent structure
of order k and let E be a coherent sheaf over X . Then there exists an open subset
V �X depending on E and integers mi such that

EjV
�
�!

kM
iD1

O˚mi

Xi jV
:

The sheaf on the right is called a quasi-free sheaf.

3 The norm map

In this section we recall the definition of the norm map and prove some of its properties.
The standard references are Grothendieck [11, Section 6.5] and [12, Section 21.5].

3.1 Definition

Let C be a smooth projective curve and let

� W X �! C

be any finite degree n covering of C . The OC –algebra ��OC will be denoted B and
the group of invertible elements in B by B� . Note that B is a locally free sheaf of
rank n. Let U � C be an open subset and let s 2 �.U;B/D �.��1.U /;OX / be a
local section. One defines (see [11, Section 6.5.1])

NX=C .s/ WD det.�s/ 2 �.U;OC /

Geometry & Topology, Volume 16 (2012)
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where �sW BjU !BjU is the multiplication with the section s . Moreover s is invertible
in �.U;B/ if and only if NX=C .s/ is invertible in �.U;OX /. We have the following
obvious relations

(7) NX=C .s � s
0/DNX=C .s/ �NX=C .s

0/; NX=C .�s/D �nNX=C .s/

for any local sections s and s0 of B and any local section � of OC .

Let L be an invertible B–module. We can choose a covering fU�g�2ƒ of C by open
subsets and trivializations ��W LjU�

�
�! BjU� . Then .!�;�/�;�2ƒ with

!�;� D �� ı �
�1
�jU�\U�

2 �.U�\U�;B/

is a 1–cocycle with values in B� and .NX=C .!�;�//�;�2ƒ is a 1–cocycle with values
in O�

C
, the sheaf of invertible elements of OC . This 1–cocycle determines an invertible

sheaf over C , which we denote by NmX=C .L/. The following properties easily follow
from (7)

(8)
NmX=C .L˝L0/D NmX=C .L/˝NmX=C .L0/;

NmX=C .�
�M/DM˝n;

for any two invertible sheaves L and L0 over X and for any invertible sheaf M over
C . We therefore obtain a group homomorphism between the Picard groups of the
curves X and C called the norm map

NmX=C W Pic.X / �! Pic.C /; L 7! NmX=C .L/:

3.2 Properties

In the case X is smooth, the norm map NmX=C has a more explicit description in
terms of divisors associated to line bundles.

Proposition 3.1 (Grothendieck [12, Section 21.5]) Assume that X is a smooth curve.
The norm map, as defined above, coincides with the map

LDOX

�X
i2I

nipi

�
7! NmX=C .L/DOC

�X
i2I

ni�.pi/

�
;

where ni 2Z and pi 2X . Note that this map is well-defined, that is, NmX=C .L/ only
depends on the linear equivalence class of the divisor

P
i2I nipi .

From now on the curve X is again an arbitrary cover of C .

Geometry & Topology, Volume 16 (2012)
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Lemma 3.2 Let 0! E ! F ! T ! 0 be an exact sequence of OX –modules. We
assume that E and F are torsion-free and that T is a torsion sheaf. Let '� be a local
morphism over ��1.U / for some open subset U � C between exact sequences

(9)

0 E//

0

0

0 E// E

E

'E
��

F//
��

F// F

F

'F
��

T//
��

T// T

T

'T
��

0//
��

0// 0

0

We consider the OC –linear maps induced by 'E and 'F in the direct image sheaves
��E and ��F . Then we have the equality

det.'E/D det.'F / 2 �.U;OU /:

Proof It is enough to show that the two local sections det.'E/ and det.'F / coincide
in the local rings OC;p for every point p 2 U . We put ADOC;p and K D Fr.A/

and denote by E , F and T the corresponding A–modules of sheaves E , F and T .
Then E and F are free A–modules, hence we have injections E ,! E˝A K and
F ,! F ˝A K . Since T is a torsion module, we have T ˝A K D 0. Then after
localizing (9) at p 2 C and taking tensor product with K , we obtain the commutative
diagram

E˝A K F ˝A K;
Š
//

E˝A K

E˝A K

'E˝id V

��

E˝A K F ˝A K
Š // F ˝A K

F ˝A K;

'F˝id
��

where the horizontal maps are isomorphisms. So 'E˝ id and 'F ˝ id are conjugate,
hence det.'E ˝ id/ D det.'F ˝ id/ 2 K . On the other hand det.'E ˝ id/ and
det.'F ˝ id/ are elements in A�K , hence we obtain the desired equality.

In the sequel we will use the following properties of the norm map:

Corollary 3.3 Let E and F be two torsion-free OX –modules such that

0 �! E �! F �! T �! 0;

where T is a torsion OX –module. Let s 2 �.U;B/ D �.��1.U /;OX / be a local
section of B over the open subset U �C . We consider the maps induced by the multipli-
cation with the section s in the direct image sheaves ��E and ��F , which we denote
by �E

s 2 HomOC .U /.��E.U /; ��E.U // and �F
s 2 HomOC .U /.��F.U /; ��F.U //.

Then we have the equality

det.�E
s /D det.�F

s / 2 �.U;OC /:

Geometry & Topology, Volume 16 (2012)
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Lemma 3.4 Let pW zX ! X be a covering such that the cokernel of the canonical
inclusion OX ,! p�O zX is a torsion OX –module. Then, for any invertible sheaf L
over X we have

Nm zX =C
.p�L/D NmX=C .L/:

Proof We consider the exact sequence

(10) 0 �!OX �! p�O zX �! T �! 0;

where T is a torsion OX –module. Note that the direct image p�O zX is torsion-free.
We denote the OC –algebra ��p�O zX by zB . Note that zB is a B–module. Let L
be an invertible OX –module, ��W LjU�

�
�! BjU� be a set of trivializations of L as

B–module, and .!�;�/�;�2ƒ be the corresponding 1–cocycle with values in B� .
Then the pull-back p�L corresponds to a 1–cocycle .p�!�;�/�;�2ƒ with values
in zB� obtained from .!�;�/�;�2ƒ under the canonical inclusion B ,! zB . We now
apply Corollary 3.3 to the exact sequence (10) and conclude that N zX =C

.p�!�;�/D

NX=C .!�;�/ 2 �.U�\U�;OC /. This proves the lemma.

Lemma 3.5 Let X D
Sr

iD1 Xi be the decomposition of X into irreducible compo-
nents Xi . For an invertible sheaf L, we denote by Li D L˝OX

OXi
its restriction to

Xi . Then, we have the equality

NmX=C .L/D
rO

iD1

NmXi=C .Li/:

Proof We apply the previous lemma to the covering pW zX D
Fr

iD1 Xi ! X given
by the disjoint union of the curves Xi .

Lemma 3.6 Let X be an irreducible curve and let j W X red ,! X be its underlying
reduced curve. Let m be the multiplicity of X red in X . Then, for any invertible sheaf
L over X we have

NmX=C .L/D NmX red=C .j
�L/˝m:

Proof The OC –algebra B D ��OX comes equipped with a nilpotent ideal sheaf
J � B such that Bred D B=J D ��OX red . We choose a covering fU�g�2ƒ of C by
open subsets which trivialize the invertible sheaf L, that is, there exists isomorphisms
��W LjU�

�
�! BjU� and such that JjU� is generated by an element t 2 BjU� . Then

multiplication with the invertible element !�;�D ��ı��1
�jU�\U�

preserves the filtration
tm�1BjU� � � � � � tBjU� � BjU� and acts on the quotients as multiplication with
!red
�;�
2 Bred
jU�\U�

. It follows that NX=C .!�;�/DNX red=C

�
!red
�;�

�m , which proves the
lemma.
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3.3 The Prym variety Prym.X=C /

Given a spectral cover � W X ! C we denote by Pic0.X / the connected component of
the identity element of the Picard group of X (see, for example, Kleiman [22]). We
then define the Prym variety Prym.X=C / to be the kernel of the Norm map NmX=C

Prym.X=C / WD ker
�
NmX=C W Pic0.X / �! Pic0.C /

�
:

We recall that n denotes the degree of the cover � W X ! C . We choose an ample line
bundle OC .1/ over C and denote by OX .1/D �

�OC .1/ its pull-back to X and by
ı D degOC .1/.

Definition 3.7 Let E be a coherent OX –module. The rank and degree of E with re-
spect to the polarization OX .1/ are the rational numbers rk.E/ and deg.E/ determined
by the Hilbert polynomial

�.X; E ˝OX .l//D nılrk.E/C deg.E/C rk.E/�.OX /:

The slope of E is defined by �.E/D deg.E/
rk.E/ . The sheaf E is stable (resp. semi-stable) if

E is torsion-free and for any proper subsheaf E 0�E we have the equality �.E 0/<�.E/
(resp. �).

Remark 3.8 The definitions of rank and degree of a coherent sheaf E over X above
coincide with the classical ones when the curve X is integral. The (semi-)stability con-
dition above coincides with the (semi-)stability condition introduced by Simpson [31].

Remark 3.9 Using the equality �.X; E ˝OX .l//D �.C; ��E ˝OC .l// we obtain
the following formulae

(11)
nrk.E/D rk.��E/

and deg.E/C rk.E/�.OX /D deg.��E/C rk.��E/�.OC /:

Proposition 3.10 Let E be a torsion-free OX –module of integral rank r D rk.E/ and
let L be an invertible OX –module. Then we have the relation

det.��.E ˝L//D det.��E/˝NmX=C .L/˝r :

Proof We shall use the notation of Section 3.1. Since E is torsion-free, the direct
image ��E is a locally free OC –module. We choose a covering fU�g�2ƒ of C for
which both L and ��E are trivialized, that is, such that there exists local isomorphisms

˛�W ��EjU�
�
�!O˚rn

U�
and ��W LjU�

�
�! BU� :
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Since L is trivial on U� we have an isomorphism

idE ˝��W E ˝LjU� �! E ˝BjU� ;

which we can consider as an isomorphism between OC –modules

idE ˝��W ��.E ˝L/jU� �! ��EjU� :

We compose with ˛� to obtain a trivialization of ��.E ˝L/jU�

ˇ�W ��.E ˝L/jU�
idE ˝��
�! ��EjU�

˛�
�!O˚rn

U�
:

Given �;� 2 ƒ we can now write the transition functions f�;� D ˇ� ı ˇ�1
� of the

vector bundle ��.E ˝L/ as

f�;�W O˚rn
U�

˛�1
�

�! .��E/jU�;�
idE ˝!�;�
�! .��E/jU�;�

˛�
�!O˚rn

U�
;

where we denote by !�;� D �� ı ��1
� the B�–valued transition functions of the line

bundle L. We deduce from this expression the relation

det.f�;�/D det.g�;�/ � det.idE ˝!�;�/;

where g�;� D ˛� ı ˛
�1
� denotes the transition functions of the vector bundle ��E .

Hence the proposition follows if we show the relation det.idE ˝!�;�/D det.!�;�/r ,
which is proved in the next Lemma.

Lemma 3.11 Let E be a torsion-free OX –module and let

s 2 �.U;B/D �.��1.U /;OX /

be a local section of B over the open subset U � C . We denote by

�E
s 2 HomOC .U /.��E.U /; ��E.U //

the map induced by multiplication with the section s . Then we have an equality

det.�E
s /D det.�s/

r
2 �.U;OC /:

Proof By Theorem 2.6 there exists an open subset j W V ,! X such that j �E is
isomorphic to j �Q where Q is a quasi-free sheaf of the form

Lk
iD1 O

˚mi

Xi
. We then

apply Corollary 3.3 to the two exact sequences

0 �! E �! j�j
�E �! T1 �! 0 and 0 �!Q �! j�j

�Q �! T2 �! 0;
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where Ti are torsion sheaves. This leads to the equality det.�E
s / D det.�Q

s /. It
therefore suffices to compute det.�Q

s / in terms of det.�s/. We put n D k � l with
l D deg.X red=C /. Then we have

r D rk.E/D rk.Q/D
1

n

kX
iD1

mirk.��OXi
/D

1

n

kX
iD1

mii l D
1

k

kX
iD1

mii:

Let ADOC;p denote the local ring at the point p 2C and let B denote the localization
of ��OX at the point p 2 C . Thus B is a projective A–module of rank n equipped
with a filtration

tk�1B � � � � � tB � B; t 2 B with tk
D 0:

We put B1 D B=tB , the localization of ��OX red at the point p 2 C . Since B is
projective we can choose a splitting

B D B1˚ tB1˚ � � �˚ tk�1B1:

Using this decomposition we can write a section s 2B as sD s0Cts1C� � �Ctk�1sk�1

with sj 2 B1 . Moreover, the localization of ��OXi
at the point p 2 C is given by

Bi WD B1 ˚ tB1 ˚ � � � ˚ t i�1B1 and the matrix of the multiplication with s in Bi

is with respect to this decomposition lower block-triangular and has determinant
det

�
�

Bi
s

�
D det

�
�

B1
s0

�i . Therefore

det.�Q
s /D

kY
iD1

det.�Bi
s /mi D det.�B1

s0
/
Pk

iD1 imi :

On the other hand det.�s/ D det
�
�
OX
s

�
D det

�
�

Bk
s

�
D det

�
�

B1
s0

�k , which leads to
the desired equality.

Taking the trivial sheaf E DOX in Proposition 3.10 we obtain the following description
of the norm map:

Corollary 3.12 For any invertible OX –module, we have

NmX=C .L/D det.��L/˝ det.��OX /
�1:

4 The group of connected components of Prym.X=C /

In this section we give the proof of Theorem 1.1.
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4.1 Proof of Theorem 1.1 (1)

Given a spectral cover X we will associate a covering

pW zX �!X

as follows: let X D
Sr

iD1 Xi be its decomposition into irreducible components Xi ,
let X red

i be the underlying reduced curve of Xi , let mi be the multiplicity of X red
i in

Xi and let zX red
i be the normalization of X red

i . Since X red
i is embedded in the smooth

surface jM j, there exists a sequence of blowing-ups blW ejM j ! jM j of the surface
jM j at reduced points (depending on the curve X red

i ) such that the proper transform
of X red

i equals its normalization zX red
i . We then define zXi �

ejM j to be the proper
transform of the non-reduced curve Xi � jM j, and take

zX D

rG
iD1

zXi

to be the disjoint union of the curves zXi together with the natural map p onto X . Note
that the multiplicity of zX red

i in zXi also equals mi .

Lemma 4.1 The covering pW zX !X constructed above has the following properties:

(1) the cokernel of the canonical inclusion OX ,! p�O zX is a torsion OX –module,

(2) the underlying reduced curve zX red of zX is smooth.

(3) the map induced by pull-back under p

Pic0.X /
p�

�! Pic0. zX /

is surjective and has connected kernel.

(4) we have an equality

�0.Prym.X=C //D �0.Prym. zX=C //:

Proof

(1) This is clear since pW zX !X is an isomorphism outside a finite set of points.

(2) We clearly have zX red D
Fr

iD1
zX red

i and the curves zX red
i are smooth by con-

struction.

Geometry & Topology, Volume 16 (2012)



1624 Tamás Hausel and Christian Pauly

(3) We consider the two exact sequences obtained by restricting invertible sheaves
to the underlying reduced curve

0 U2
//

0

0

0 U1
// U1

U2

˛

��
Pic. zX ///

��

Pic.X /// Pic.X /

Pic. zX /

p�

��

Pic. zX red///
��

Pic.X red/// Pic.X red/

Pic. zX red/

p�red
��

0//
��

0// 0

0

which are surjective with unipotent kernels U1 and U2 by Liu [23, Lemma 7.5.11].
Then by the snake lemma the kernel ker.p�/ fits into the exact sequence

0 �! ker.˛/ �! ker.p�/ �! ker.p�red/ �! coker.˛/ �! 0:

Note that ker.˛/ and coker.˛/ are unipotent groups. We shall denote by V the
kernel of the last map. By [23, Lemma 7.5.13] the kernel ker.p�red/ is an extension
of a toric group by an unipotent group. The same holds for V , since there are no
non-zero maps from a toric group to an unipotent group. Hence V and ker.˛/
are connected, so ker.p�/ is connected. Hence ker.p�/ is contained in the
connected component Pic0.X / and we obtain that p�W Pic0.X /! Pic0. zX / is
surjective.

(4) Because of Lemma 3.4 we have an exact sequence

0 �! ker.p�/ �! Prym.X=C /
p�

�! Prym. zX=C / �! 0:

The equality between the groups of connected components now follows since
ker.p�/ is connected.

The previous lemma implies that it is enough to show the equality �0.Prym. zX=C //D
yK . By Lemma 3.5 and Lemma 3.6 the Norm map Nm zX =C

factorizes as follows:

Nm zX=C W Pic0
�
zX
� j�

�! Pic0
�
zX red�
D

rY
iD1

Pic0
�
zX red

i

�QŒmi �
�!

rY
iD1

Pic0
�
zX red

i

�QNm
�! Pic0.C /

Moreover j � is surjective and ker.j �/ is connected (see, for example, Liu [23,
Lemma 7.5.11]). It suffices therefore to compute �0.ker.h//, where hW Pic0

�
zX red

�
!

Pic0.C / denotes the composite of the last two maps. We also consider the composite
homomorphism

f W Pic0.C /
�
�! Pic0.C /r

Q
Œmi �
�! Pic0.C /r

Q
z��

i
�!

rY
iD1

Pic0. zX red
i /D Pic0. zX red/;
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where �.L/D .L; : : : ;L/ is the diagonal map. We note that the duals yz��i and bŒmi �

coincide with Nm zX red
i
=C

and Œmi � under the identifications

2Pic0.C / Š Pic0.C / and 4Pic0. zX red
i / Š Pic0. zX red

i /

given by the principal polarizations on the Jacobians (see Birkenhake and Lange [4,
Section 11.4]), and that the dual y� of � is the multiplication map on Pic0.C / (see, for
example, [4, Exercise 2.6(12)]). Hence we obtain that yf Dh. Thus �0

�
Prym

�
zX=C

��
D

�0

�
ker

�
yf
��

. Now we apply Lemma 2.1 to f and we obtain the desired result since
ker.f /D

Tr
iD1.Ki/mi

.

4.2 Proof of Theorem 1.1 (2)

We consider the morphism f W Pic0.C /!Pic0. zX red/ introduced in the previous section.
Moreover the morphism gW Pic0. zX red/! Pic0.C / defined by

g.L1; : : : ;Lr /D

rO
iD1

Nm zX red
i
=C
.Li/

satisfies the relation g ı f D Œn�. We are therefore in a position to apply Lemma 2.2
to the morphism f . This proves part (2) for the Prym variety Prym. zX=C /. Since
by Lemma 4.1 the natural map p�W Pic0.X / ! Pic0. zX / induces an isomorphism
�0.Prym.X=C //D �0.Prym. zX=C //, we are done.

4.3 Proof of Theorem 1.1 (3)

The if part follows immediately from the formula proved in part (1). Suppose now
that K D Pic0.C /Œn�. With the notation above we have nD

Pr
iD1 mi deg.X red

i =C /

and K D
Tr

iD1.Ki/mi
, from which we deduce that r D 1. On the other hand K D

.K1/m1
D Pic0.C /Œn� implies that K1 D Pic0.C /Œd1� with d1 D deg.X red

1
=C /. But

this can only happen if d1 D 1. Hence m1 D n and we are done.

5 Endoscopic subloci of An

5.1 Cyclic Galois covers

We consider a smooth projective curve C and a line bundle M 2 Pic.C /. Let � be a
cyclic subgroup of order d of the group of n–torsion line bundles Pic0.C /Œn� and let

'W D �! C
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be the étale Galois covering of C associated to � � Pic0.C /Œn�. By definition D D

Spec.E�/ where E� D
L

L2� L is the direct sum of all line bundles L in � with the
natural OC –algebra structure. Note that the Galois group of the covering 'W D! C

equals � Š Aut.D=C /. We introduce the line bundle N D '�M . Then the line
bundle N has a canonical � –linearization, hence we obtain a canonical action of �
on the total space jN j. We notice that the canonical coordinate t 2H 0.jN j; ��N / is
invariant under this � –action.

We consider a spectral cover of degree m over D with associated line bundle N given
by a global section s 2H 0.jN j; ��N m/. We can apply a Galois automorphism � 2 �

to s and denote its image by s� . We introduce

ys D
Y
�2�

s� 2H 0.jN j; ��N n/; with nD d �m:

We observe that ys is � –invariant, hence ys descends to a section over jM j, which we
also denote by ys . Hence we obtain a map

ˆ� W Am.D;N / �!An WDAn.C;M /; b 7!ˆ�.b/:

with aDˆ�.b/ defined by the relation ysb D sa , where sb 2H 0.jN j; ��N m/ is the
global section sb D tmCb1tm�1Cb2tm�2C� � �Cbm associated to bD .b1; : : : ; bm/

with bj 2 H 0.D;N j /. Since the zero divisor of the section ys has a finite number
of irreducible components, we immediately see that the fiber ˆ�1

�
.ys/ is finite, hence

dim imˆ� D dimAm.D;N /. We also introduce the subspace

A�m.D;N /DH 0.D;N /var ˚

mM
jD2

H 0.D;N j /�Am.D;N /;

where H 0.D;N /var denotes the � –variant subspace of H 0.D;N /, that is, the direct
sum of the character spaces H 0.D;N /� for non-trivial characters � of the group � .

Lemma 5.1 We have the inclusion

ˆ�.A�m.D;N //�A0
n:

Proof It suffices to compute the coefficient of tn�1 in ysb , which equals
P
�2� �

�b1 .
We immediately see that the relation

P
�2� �

�b1D 0 is equivalent to b
.0/
1
D 0, where

b
.0/
1

denotes the � –invariant component of b1 .

We denote the images of ˆ� by

A0
� �A0

n and A� �An:
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The subvariety A� admits the following characterization: for a 2An we denote by

Ya DXa �C D

the fiber product of Xa and D over C . Then Ya is a spectral cover over D of degree
n associated to the line bundle N . The following lemma follows immediately from
the definition of A� .

Lemma 5.2 The characteristic a lies in A� if ond only if the fiber product Ya decom-
poses as

Ya D

[
�2�

Z� ;

where Z is a spectral cover of degree mD n
d

over D and Z� is its image under the
Galois automorphism � 2 � .

We also need to introduce some natural subvarieties of the Hitchin spaces A0
n and An ,

which will be used in the proof of Theorem 1.2.

For any divisor l 6D 1 of n, with nD k � l , we consider the natural k th power map

ˆk W Al �!An;

where ˆk.b/D a is defined by the relation

sa D .t
l
C b1t l�1

C � � �C bl/
k
2H 0.jM j; ��M n/; for b D .b1; : : : ; bl/ 2Al :

We shall abuse notation and will also denote by Al its image ˆk.Al/�An . Note that
ˆk.A0

l
/�A0

n and we also denote this image by A0
l

.

Given two positive integers n1; n2 such that n1C n2 D n, we introduce the map

ˆn1;n2
W An1

�An2
�!An;

with aDˆn1;n2
.b; c/ defined by the relation saD sb �sc , where sb D tn1Cb1tn1�1C

� � � C bn1
and sc D tn2 C c1tn2�1 C � � � C cn2

for b D .b1; : : : ; bn1
/ 2 An1

and
c D .c1; : : : ; cn2

/ 2 An2
. We define .An1

�An2
/0 � An1

�An2
to be the subset of

pairs .b; c/ satisfying the relation b1C c1 D 0. We shall denote by An1;n2
�An the

image of ˆn1;n2
and by A0

n1;n2
the subset An1;n2

\A0
n Dˆn1;n2

Œ.An1
�An2

/0�.

5.2 Proof of Theorem 1.2

We show here the analogue of Theorem 1.2 for the GL.n/–Hitchin space An . Note that
both statements are equivalent by Remark 2.5. Given a spectral cover � W Xa!C with
a2An , we denote the subgroup of Pic0.C / defined in (2) by Ka . Let � � Pic0.C /Œn�

be a cyclic subgroup of order d .
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Theorem 5.3 We have an equivalence

� �Ka () a 2A� :

Proof We first show the equivalence in the case the spectral cover Xa is integral. In
that case we can consider its normalization zXa , which comes with a natural projection

z�aW
zXa �! C:

By Birkenhake and Lange [4, Proposition 11.4.3] we have � �Ka if and only if z�a

factors through the map ' , that is, there exists a map uW zXa!D such that z�aD ' ıu.
By the universal property of the fiber product there exists a map ıW zXa! Ya into the
fiber product Ya of Xa with D over C . We denote by Z D im.ı/� Ya the image of
the smooth irreducible curve zXa . Then Z is irreducible too. Moreover, since Xa is
reduced and ' is étale, the curve Ya is also reduced, hence Z is integral. The group
� acts on Ya , hence permutes its irreducible components. Since � acts transitively
on the fibers of Ya! Xa , all irreducible components are of the form Z� for some
� 2 � . We therefore obtain a factorization zXa!Z!Xa . Since this composite map
is birational, we deduce that deg.Z=Xa/ D 1. Hence, since deg.Ya=Xa/ D d , we
conclude that

Ya D

[
�2�

Z� and Z�
6DZ� 0 if � 6D � 0:

By Lemma 2.4 the curve Z is a spectral cover of degree m over D and by Lemma 5.2
we obtain that a 2A� .

Conversely, for a 2A� the map Z! Xa given by Lemma 5.2 is birational. Hence
the normalization of Z equals zXa and we obtain a factorization zXa!Z!D! C ,
which implies that � �Ka by [4, Proposition 11.4.3].

Now we will prove the equivalence for more general characteristics a 2 An . We
start with a 2An such that the spectral cover Xa is irreducible, but not reduced. Let
X red

a be the underlying reduced curve of Xa and let k be the multiplicity of X red
a in

Xa . We put nD k � l . By Lemma 2.4 we have X red
a D Xared for some characteristic

ared 2Al �An and aDˆk.ared/ — see Section 2.2. Then by formula (2) we have
Ka D Œk�

�1.Kared/. We introduce �red D Œk�.�/ � Pic0.C /Œl �. Then �red is a cyclic
subgroup of order dred D

d
gcd.k;d/ . With this notation we easily obtain the equivalence

� �Ka () �red �Kared :

We combine this equivalence with the statement of the Theorem written for the integral
characteristic ared , which was proved above:

�red �Kared () ared 2A�red :
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Therefore it remains to show the following equivalence

ared 2A�red () aDˆk.ared/ 2A� :

In order to show this equivalence we introduce the subgroup S D ker.�! �red/. By
Galois theory there exists an intermediate cover D! xD! C with Aut. xD=C /D �red

and Aut.D= xD/D S .

Consider a characteristic ared 2A�red . By Lemma 5.2 applied to ared 2A�red we obtain
that the fiber product Yared D Xared�C

xD decomposes as
S
�2�red

W � , where W is
a spectral cover of degree l

dred
over xD . Now, observing that Ya D k

�
Yared� xDD

�
as

divisors in jN j, we can write

Ya D k
[
�2�red

.W � xD D/� D
[
�2�

Z� ;

where we have put Z D k
gcd.k;d/

�
W � xD D

�
� jN j. Note that Z� DZ for � 2 S and

that Z is a spectral cover of degree n
d

. This proves that aDˆk.ared/ 2A� .

Conversely, we consider a characteristic ared 2Al with ˆk.ared/ 2A� . We assume
that the spectral cover Xared is integral. This assumption implies that the fiber product
Xared �C D is reduced. Let I denote an irreducible component of Xared �C D , let
Stab.I/ denote its stabilizer, that is,

Stab.I/D f� 2 � j I� D Ig;

and let ıDjStab.I/j be the order. Since � acts transitively on the fibers of Xared�C D!

Xared we obtain the decomposition into irreducible components

Xared �C D D
[

�2�=Stab.I/

I� :

Let us denote by s the global section over jN j with Zeros.s/D I . Then the spectral
cover Ya D k.Xared �C D/ is the zero set of the sectionY

�2�=Stab.I/

.s� /k ;

which has k d
ı

irreducible factors of the same degree. The assumption ˆk.ared/ 2A�
implies that this product can be written as a product of d factors of the same degree,
hence k d

ı
is divisible by d , that is, ı divides k , so ı divides gcd.k; d/. Since

ıD jStab.I/j and gcd.k; d/D jS j, we conclude that Stab.I/� S . We then introduce
the section

t D
Y

�2S=Stab.I/

s� :
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Since t is S –invariant, its zero divisor descends as a spectral cover W over xDDD=S .
Moreover we have the equalityY

�2�=Stab.I/

s� D
Y

�2�redD�=S

t� ;

which proves that Yared DXared �C
xD splits into dred spectral covers W � for � 2 �red ,

and we conclude by Lemma 5.2 that ared 2A�red .

Finally, we will show the equivalence for a characteristic a 2 An1;n2
� An , that is,

the spectral cover Xa equals the union Xa1
[Xa2

for two spectral covers Xai
with

ai 2Ani
, which we assume to be irreducible. Then by (2) we have

� �Ka () � �Ka1
and � �Ka2

:

On the other hand since the curves Xai
are irreducible, we can apply what we have

proved above, that is, for i D 1; 2

� �Kai
() ai 2Ani

�
:

Note that � � Pic0.C /Œni � for i D 1; 2. Here Ani

�
denotes the corresponding subspace

of Ani
. Hence it remains to show that

a1 2An1

�
and a2 2An2

�
() aDˆn1;n2

.a1; a2/ 2A� :

The implication ) is trivial. In order to show the implication ( we note that
Lemma 5.2 gives the decomposition Ya D

S
�2� Z� for some spectral cover Z . We

then put Zi DZ \Yai
, which gives the desired decomposition for the fiber product

Yai
.

Now the statement follows for arbitrary characteristic a 2 An by induction on the
number of irreducible components of Xa .

6 Moduli space of semi-stable Higgs bundles

In this section we describe how the Prym variety Prym.Xa=C / acts on the fiber h�1.a/

of the SLn –Hitchin fibration. First we recall the semi-stability condition Definition 3.7
for coherent sheaves over the spectral cover Xa . The following result generalizes
Beauville, Narasimhan and Ramanan [3, Proposition 3.6] to any spectral cover Xa .

Proposition 6.1 Let a 2 A0
n be any characteristic. The fiber h�1.a/ of the SLn –

Hitchin fibration (1) equals the moduli space of semi-stable sheaves E over the spectral
curve Xa of rank 1 and with fixed determinant det.��E/D�.
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Proof In the case Xa integral this is exactly [3, Proposition 3.6] except for the
assertion that the bijective correspondence between Higgs bundles .E; �/ over C

with given characteristic a and torsion free rank-1 sheaves E over Xa is compatible
with both semi-stability conditions. But this compatibility is shown by Simpson [32,
Corollary 6.9] — note that Simpson works in the special case when M is the canonical
bundle of C but his proof remains valid for an arbitrary line bundle M .

In order to show the statement for an arbitrary spectral cover Xa we observe that
the constructions and arguments of Beauville, Narasimhan and Ramanan [3] and
Simpson [32] remain valid for an arbitrary characteristic a. However the next statement
needs a new proof.

Lemma 6.2 Let E be a torsion-free sheaf over Xa . Then the characteristic of its
associated Higgs bundle .E; �/ equals a.

Proof If Xa is integral, this is shown in [3, Proposition 3.6] using the irreducibility
of the polynomial sa defined in (6). In the general case we first show the statement
when Xa is irreducible but non-reduced and secondly when Xa is reducible. Given a
sheaf E over Xa we denote by Char.E/ the characteristic polynomial of its associated
Higgs field.

Suppose first that Xa is irreducible and that its underlying reduced curve X red
a has

multiplicity m. Denote by E red the restriction of E to X red
a . Then one shows exactly

along the lines of Lemma 3.5 that Char.E/D Char.E red/m .

Suppose now that Xa has several irreducible components Xi and denote by Ei the
restriction of E to Xi . Then one shows exactly along the lines of Lemma 3.6 that
Char.E/D

Q
i Char.Ei/.

Finally decomposing Xa into irreducible components and taking the underlying reduced
curves, one reduces the statement to the integral case, which is already shown.

This completes the proof of the proposition.

Considering h�1.a/ as the moduli space of semi-stable sheaves over Xa we let
Prym.Xa=C / act through tensor product. By Proposition 3.10 it is clear that the
determinant is invariant under this action, and since deg.E ˝ L/ D deg.E/ for any
L 2 Prym.Xa=C / we see that semi-stability is preserved.

Remark 6.3 In a forthcoming paper we will describe in detail the case aD 0, that is,
the action of the Prym variety Prym.X0=C /, which equals in this case n2g copies of
a vector space (see, for example, Drézet [7, Section 3.3]), on the nilpotent cone of the
Higgs moduli space.
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Remark 6.4 We note that the description of the fiber h�1.a/ above was already stated
by Schaub [30, Proposition 2.1]. Unfortunately the proof of [30, Proposition 2.1]
contains an inaccuracy, which is a consequence of the author’s different definition of a
torsion-free sheaf of rank 1 over an arbitrary spectral cover.

7 Application to Topological Mirror Symmetry

In this final section we assume that our line bundle M equals the canonical bundle
KC and that .n; deg.�// D 1. These assumptions imply that M is a non-singular
quasi-projective variety of dimension

dim.M/D .n2
� 1/.2g� 2/:

The dimension of the affine space A0
n is

dim.A0
n/D .n

2
� 1/.g� 1/

and consequently the Hitchin map h is of relative dimension .n2� 1/.g� 1/.

Let � � Pic0.C /Œn� be a cyclic subgroup of order d which must divide n. Then we
have the following:

Lemma 7.1 dim.A0
�
/D .n2=d � 1/.g� 1/

Proof In Section 5.1 we associated an étale Galois cover �W D!C to � with Galois
group � . Thus the pull back N D ��.KC /DKD . There we also constructed A0

�
as

the image of A�m by the finite map ˆ� . Thus we have

dim.A0
�/D dim.A�m/

D dim.Am/� dim
�
H 0.D;KD/

�
�

D dim.Am/� dim
�
H 0.C;KC /

�
D

n2

d2
.dg� d/C 1�g

D .n2=d � 1/.g� 1/:

as required.

Now we can prove Theorem 1.4:
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Proof of Theorem 1.4 With the notation (3) we introduce

A0
ne WDA0

n nAendo

the locus of those characteristics for which Prym.Xa=C / is connected. Further denote

Mne WD h�1.A0
ne/:

First we argue that Pic0.C /Œn� acts trivially on H�.Mne/. Let a 2A0
ne . Since by (8)

we have ��Pic0.C /Œn��Prym.Xa=C / and since by assumption on the characteristic a

the Prym variety Prym.Xa=C / is connected, the finite group Pic0.C /Œn� acts trivially
on the cohomology of every fiber h�1

ne .a/ of

hne WD hjMne
WMne!A0

ne:

Therefore by Lemma 7.2 below it follows that it acts trivially on H�.MneIQ/ as well.

Lemma 7.2 Let f W X ! Y be a proper map between locally compact Hausdorff
topological spaces. Let the finite group G act on X along the fibers of f . Assume G
acts trivially on H�.XaIQ/ for every a 2 Y , where Xa D f

�1.a/. Then the action of
G on H�.X IQ/ is trivial.

Proof Let QX be the constant sheaf on X . Let � W X !X=G be the quotient map,
QX=G the constant sheaf on X=G and gW X=G!Y defined by the property gı�Df .
Then we have a morphism of sheaves

mW QX=G! ��QX :

This induces a morphism of sheaves

RkmW Rkg�QX=G!Rkg���QX :

As � is finite Rkg���QX ŠRkf�QX . Thus we get a morphism of sheaves

RkmW Rkg�QX=G!Rkf�QX :

Firs we understand the induced map on any stalk. By proper base change (see
Iversen [19, Theorem 6.2]) the stalks are just the k th cohomology groups of the
fibres. Thus our morphism becomes

RkmsW H
k.Xs=GIQ/!H k.XsIQ/:

We have the isomorphism

H k.Xs=GIQ/ŠH k.XsIQ/
G
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of Macdonald [24, (1.2)] and by assumption

H k.XsIQ/
G
ŠH k.XsIQ/:

Thus Rkms is an isomorphism for all s 2Y so Hartshorne [14, Proposition 1.1] implies
that Rkm is an isomorphism of sheaves. By [24, (1.2)] the theorem follows.

Thus we have that Pic0.C /Œn� acts trivially on H�.MneIQ/. Note that by Lemma 7.1
and by the observation that A0

�2
�A0

�1
if �1��2 , the codimension of the endoscopic

locus Aendo is given by

cn WD .n
2
� 1/.g� 1/� .n2=pn� 1/.g� 1/D n2.1� 1=pn/.g� 1/;

where pn is the smallest prime divisor of n. By studying the cohomology long exact
sequence of the pair .M;Mne/ we see that the restriction map

H k.MIQ/!H k.MneIQ/

is an isomorphism for k � 2cn� 2 and is an injection for k D 2cn� 1.Thus we could
immediately deduce that Pic0.C /Œn� acts trivially on H k.MIQ/ for

k < 2cn:(12)

Further, we note that any generic .cn� 1/–dimensional subvariety ƒcn�1 of A0 will
be disjoint from

S
A0
�

thus a cohomology class �2H�.MIQ/ which is not invariant
under Pic0.C /Œn� (we call such classes variant) must satisfy

�jh�1.ƒcn�1/ D 0

and so by de Cataldo, Hausel and Migliorini [6, Theorem 1.4.8] a variant class of
degree i must have perversity at most i � cn . By [6, Theorem 1.4.12] this already
implies i � 2cn (which as we noted above in (12) also follows from the cohomology
long exact sequence of .M;Mne/). Finally a variant class

� 2H 2cn
cn

.MIQ/

by Relative Hard Lefschetz -with the ample Pic0.C /Œn�–invariant class ˛ 2H 2.MIQ/
gives a variant class

˛dim.M/=2�cn� 2H dim.M/.MIQ/

which contradicts García-Prada, Heinloth and Schmitt [10, Theorem 1], which proves
that there are no variant classes in the middle cohomology H dim.M/.MIQ/. Here we
used the fact ˛ 2H 2.MIQ/ is always Pic0.C /Œn�–invariant, for example because of
(12) and 2< 2cn when g > 1.
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Thus the smallest possible degree a variant class may have is 2cn C 1, proving
Theorem 1.4.

Remark 7.3 Theorem 1.4 is a consequence of the topological mirror symmetry
conjecture (see Hausel and Thaddeus [17, Conjecture 5.1]). It can be deduced by
calculating all possible fermionic shifts F. / for  2 Pic0.C /Œn� on the RHS of [17,
Conjecture 5.1] and noting that due to the presence of the gerbe yBd the degree 0

part of the cohomology of the twisted sector M=Pic0.C /Œn� does not contribute to
the stringy cohomology of M=Pic0.C /Œn�. In fact, the inequality in Theorem 1.4 is
sharp, when n is a prime, because [17, Proposition 10.1] implies that there is variant
cohomology in degree 2cnC 1. The close connection between the topological mirror
symmetry conjecture [17, Conjecture 5.1] and the group of connected components of
Prym varieties of spectral covers unravelled in this section is an indication of the deep
analogies between S-duality considerations in physics as in Kapustin and Witten’s [20]
and Ngô’s [27; 28] geometric approach to the fundamental lemma. For more discussion
on this see Hausel [15].

Finally we can prove Corollary 1.5:

Proof of Corollary 1.5 As the Hitchin map hWM!A0
n is proper by Nitsure [29],

and the C�–action on M covers a C� action on A0
n with positive weights, and so with

a unique fixed point 02A0 . It follows that for every z 2M the limit lim�!0 �z exists
in the compact fixed point set MC� . Using the compactification xM as defined in such
a situation in Simpson [33, Section 11] and Hausel [16] we can apply the following
cohomological techniques. They were studied in the compact case by Kirwan in [21],
(who commented on the non-compact case in [21, Section 9]) and in the non-compact
case by Nakajima in [25, Section 5.1].

For a connected component F˛ of the fixed point set

MC�
D

G
˛2I

F˛

we can then define

U˛ WD fz 2Mj lim
�!0

�z 2 F˛g

giving the Bialinicki-Birula decomposition

MD
G
˛2I

U˛:
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One can now define a partial ordering on the index set I , by ˛�ˇ when Uˇ\ xU˛¤∅.
By induction on this ordering one can prove

H�.MIQ/Š
M
˛2I

H��codim.U˛/.U˛IQ/:(13)

If 0 denotes the minimal element in I , then we can see that U0D T �N contains those
Higgs bundles where the underlying bundle is stable. It follows from (13) (or rather
via the perfectness of the Bialinicki-Birula stratification used to prove (13)) that the
restriction map

H�.MIQ/!H�.U0IQ/ŠH�.N IQ/
is surjective.

Thus in particular Theorem 1.4 implies that Pic0.C /Œn� acts trivially on the cohomology
H k.N IQ/ for k�2cnD2n2.1�1=pn/.g�1/, where pn is the smallest prime divisor
of n. But

2cn > .n
2
� 1/.g� 1/

thus the cohomology H�.N IQ/ is Pic0.C /Œn�–invariant up to and including the middle
degree and by Poincaré duality everywhere. The result follows.

As 2cn � 1 � .n2 � 1/.g � 1/ (with possible equality when g D 2 and pn D 2) we
note that the more elementary estimate (12) already implies the result.

Remark 7.4 When nD 2 Corollary 1.5 follows from Newstead [26, Theorem 1] and
for general n it appeared as [13, Theorem 1] of Harder–Narasimhan. In [13] it was
proved by an arithmetic study of N . Later it was reproved with the gauge theoretical
approach of Atiyah–Bott in [2, Proposition 9.7]. Our proof above is by identifying the
characteristics for which the Prym variety is connected, which excludes the nilpotent
cone, where N is located, and yields Corollary 1.5 without focusing on H�.N IQ/.
This approach thus can be considered as an example of the abelianization philosophy
of Atiyah–Hitchin [1, Section 6.3], by studying the abelian problem of Prym varieties
of spectral curves we deduced results on the moduli space N of vector bundles of rank
n> 1.

References
[1] M Atiyah, The geometry and physics of knots, Lezioni Lincee., Cambridge Univ. Press

(1990) MR1078014

[2] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans.
Roy. Soc. London Ser. A 308 (1983) 523–615 MR702806

Geometry & Topology, Volume 16 (2012)



Prym varieties of spectral covers 1637

[3] A Beauville, M S Narasimhan, S Ramanan, Spectral curves and the generalised theta
divisor, J. Reine Angew. Math. 398 (1989) 169–179 MR998478

[4] C Birkenhake, H Lange, Complex abelian varieties, second edition, Grundl. Math.
Wissen. 302, Springer, Berlin (2004) MR2062673

[5] P-H Chaudouard, G Laumon, Le lemme fondamental pondéré II: Énoncés coho-
mologiques arXiv:0912.4512

[6] M A de Cataldo, T Hausel, L Migliorini, Topology of Hitchin systems and Hodge
theory of character varieties: the case A1 , Ann. of Math. 175 (2012) 1329–1407

[7] J-M Drézet, Faisceaux cohérents sur les courbes multiples, Collect. Math. 57 (2006)
121–171 MR2223850

[8] J-M Drézet, Faisceaux sans torsion et faisceaux quasi localement libres sur les courbes
multiples primitives, Math. Nachr. 282 (2009) 919–952 MR2541242

[9] E Frenkel, E Witten, Geometric endoscopy and mirror symmetry, Commun. Number
Theory Phys. 2 (2008) 113–283 MR2417848

[10] O García-Prada, J Heinloth, A Schmitt, On the motives of moduli of chains and
Higgs bundles arXiv:1104.5558

[11] A Grothendieck, Éléments de géométrie algébrique II: Étude globale élémentaire de
quelques classes de morphismes, Publ. Math. Inst. Hautes Etudes Sci. 8 (1961) 5–205

[12] A Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas
et des morphismes de schémas, Publ. Math. Inst. Hautes Etudes Sci. (1967) 5–333
MR0238860

[13] G Harder, M S Narasimhan, On the cohomology groups of moduli spaces of vector
bundles on curves, Math. Ann. 212 (1974/75) 215–248 MR0364254

[14] R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New
York (1977) MR0463157

[15] T Hausel, Global topology of the Hitchin system arXiv:1102.1717

[16] T Hausel, Compactification of moduli of Higgs bundles, J. Reine Angew. Math. 503
(1998) 169–192 MR1650276

[17] T Hausel, M Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system,
Invent. Math. 153 (2003) 197–229 MR1990670

[18] N Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91–114
MR885778

[19] B Iversen, Cohomology of sheaves, Universitext, Springer, Berlin (1986) MR842190

[20] A Kapustin, E Witten, Electric-magnetic duality and the geometric Langlands pro-
gram, Commun. Number Theory Phys. 1 (2007) 1–236 MR2306566

[21] F C Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathe-
matical Notes 31, Princeton Univ. Press (1984) MR766741

Geometry & Topology, Volume 16 (2012)



1638 Tamás Hausel and Christian Pauly

[22] S L Kleiman, The Picard scheme, from: “Fundamental algebraic geometry”, Math.
Surveys Monogr. 123, Amer. Math. Soc., Providence, RI (2005) 235–321 MR2223410

[23] Q Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathe-
matics 6, Oxford University Press (2002) MR1917232 Translated from the French by
Reinie Erné, Oxford Science Publications

[24] I G Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319–343
MR0151460

[25] H Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture
Series 18, American Mathematical Society (1999) MR1711344

[26] P E Newstead, Characteristic classes of stable bundles of rank 2 over an algebraic
curve, Trans. Amer. Math. Soc. 169 (1972) 337–345 MR0316452

[27] B C Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006) 399–453
MR2218781

[28] B C Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes
Études Sci. (2010) 1–169 MR2653248

[29] N Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 62
(1991) 275–300 MR1085642

[30] D Schaub, Courbes spectrales et compactifications de jacobiennes, Math. Z. 227 (1998)
295–312 MR1609069

[31] C T Simpson, Moduli of representations of the fundamental group of a smooth projec-
tive variety I, Inst. Hautes Études Sci. Publ. Math. (1994) 47–129 MR1307297

[32] C T Simpson, Moduli of representations of the fundamental group of a smooth projec-
tive variety II, Inst. Hautes Études Sci. Publ. Math. (1994) 5–79 MR1320603

[33] C Simpson, The Hodge filtration on nonabelian cohomology, from: “Algebraic
geometry—Santa Cruz 1995”, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., Provi-
dence, RI (1997) 217–281 MR1492538

Section de Mathématiques, École Polytechnique Fédéral de Lausanne
Section 8, CH-1015 Lausanne, Switzerland

Laboratoire de Mathématiques J.A. Dieudonné, UMR no 7351 CNRS UNSA
Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France

tamas.hausel@epfl.ch, pauly@unice.fr

http://geom.epfl.ch/Hausel, http://math.unice.fr/~pauly/

Proposed: Frances Kirwan Received: 29 June 2011
Seconded: Jim Bryan, Richard Thomas Accepted: 8 June 2012

Geometry & Topology, Volume 16 (2012)


