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Rigidity of certain solvable actions on the sphere

MASAYUKI ASAOKA

An analog of the Baumslag—Solitar group BS(1, k) naturally acts on the sphere by
conformal transformations. The action is not locally rigid in higher dimensions, but
exhibits a weak form of local rigidity. More precisely, any perturbation preserves a
smooth conformal structure.
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1 Introduction

Over the last two decades, it has been found that many smooth actions of discrete
groups exhibit local rigidity. Most known examples are classified into two classes:

(1) Anosov or partially hyperbolic Z”"—actions and homogeneous actions of cocom-
pact lattices related to Anosov or partially hyperbolic R”—actions with n > 2
(see Damjanovi¢ and Katok [4], Katok and Lewis [12], Katok and Spatzier [13]
and Niticd and Torok [16]).

(2) Isometric or quasiaffine actions of lattices or groups with Property (T) (see
Benveniste [1], Fisher and Margulis [7; 8] and Zimmer [19]).

See Fisher’s survey [6] for more related results.

One of the exceptions is an action of the Baumslag—Solitar group BS(1, k) on the circle.
For k > 2, the Baumslag—Solitar group BS(1, k) is a finitely presented solvable group
defined by BS(1,k) = (a,b | aba™" = bk). It is isomorphic to a group generated by
two affine transformations of the real line: f(x) = kx and g(x) = x 4+ ¢ with ¢ # 0.
The natural extensions of f and g to S! =R U {oo} define a real analytic action p,
of BS(1,k) on S'. Note p. is conjugate to p; by a diffeomorphism A(x) = ¢! x.

Theorem 1.1 (Burslem and Wilkinson [2]) Any real analytic action of BS(1, k) on
the circle is locally rigid. In particular, the action p. is locally rigid.
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In the same paper, Burslem and Wilkinson also gave a smooth classification of
C” actions of BS(1,k) on S' by using Navas’ complete topological classification of
C? solvable actions on one-dimensional manifolds [15]. Guelman and Liousse [10]
extended the classification by Burslem and Wilkinson to C'! actions by using Cantwell
and Conlon’s work [3] on C! actions of BS(1, k) on the circle or a closed interval and
Rivas” work [17] on C© action of BS(1, k) on the real line.

Recently, some people have studied actions of Baumslag—Solitar like groups on higher
dimensional manifolds. McCarthy [14] proved the rigidity of trivial actions of a large
class of abelian-by-cyclic groups on an arbitrary dimensional closed manifold. Guelman
and Liousse [9] studied actions of BS(1, k) on surfaces and gave a C*° faithful action
on the 2—torus which is not locally rigid even in a topological sense.

In this paper, we study a natural higher dimensional analog of the standard BS(1, k)—
action pc. For n > 1 and k > 2, we define a finitely generated solvable group I'x , by

Tpx = (a,by,... by |abja™" = b¥, bibj = bjb; forany i, j =1,...,n).

The group I', x admits a natural action on the n—dimensional sphere S”. We iden-
tify S” with R” U{oco} by the stereographic projection. For any basis B = (v, ..., vy)
of R", define a I, x —action pg on S™ by

e pg(x)=kx and pB{’i (x) = x +v; for x € R" = S™\{o0},

o pg(00) = phi(o0) = oo.

The action pp preserves the standard conformal structure on S” and we call it the
standard action associated to B. For n =1 and v = ¢ # 0, the group I'y ; is
the Baumslag—Solitar group BS(1, k) and the action pgp is the standard action p..
Therefore, pg is locally rigid by Theorem 1.1 if # = 1. On the other hand, pp is not
locally rigid for any basis B if n > 2 (see Proposition 3.1). Hence, a direct analog of
Theorem 1.1 does not hold.

The aim of this paper is to show that the action pp exhibits a weak form of local rigidity
for n > 2.

To state the main theorem, we recall basic concepts on rigidity of group actions. Let I"
be a discrete group and G a topological group. By Hom(I', G), we denote the set of
homomorphisms from I" to G. For p € Hom(T", G) and y € I, we put p¥ = p(y).
The set Hom(I", G) is naturally identified with a subset of the power set G . The
product topology on G induces a topology on Hom(T', G). When G is Hausdorff, a
sequence (0m)m>1 in Hom(I", G) converges to p if and only if p}, converges to p”
forany y € T".
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Let M be a smooth closed manifold. Below, all smooth maps and diffeomorphisms
are of class C*°. By Diff(M), we denote the group of diffeomorphisms of M. It
naturally becomes a topological group by the C°°—topology. For a discrete group I',
a smooth left I'—action on M is just a homomorphism from I" to Diff(M ). Hence,
Hom(T", Diff(M)) is identified with the space of (smooth left) I'—actions on M . We
say that two actions p; € Hom(T", Diff(M)) and p, € Hom(I", Diff(M>)) are smoothly
conjugate if there exists a diffeomorphism 4: M;— M, such that ,og oh=ho pi’ for
any y € I'. We also say that an action pg € Hom(I", Diff(M)) is locally rigid if there
exists a neighborhood U of pg in Hom(T", Diff(M)) such that any action p in U is
smoothly conjugate to pg.

Now, we are ready to state the main theorem of this paper.

Main Theorem Suppose n,k > 2. Let pg be the standard T, j —action on S" associ-
ated to a basis B of R". Then, there exists a neighborhood U C Hom(T', , Diff(S"))
of pg such that any p € U is smoothly conjugate to ps’ for some basis B’ = B’(p)
of R”. In particular, any action in U preserves a C* conformal structure of S".

The proof is divided into three steps: First, we show a local version of the main theorem,
ie, rigidity of pp as a local action at oo. This is the main step of the proof. Second,
we prove that any perturbation of pp admits a global fixed point near co. Finally, we
extend the local conjugacy obtained in the first step to a global one.

The strategy for the first step is close to Burslem and Wilkinson’s one in [2]. However,
there is an essential difference from their case; the action pz admits nontrivial deforma-
tion. The difficulty is that there seems no direct way to find a basis B’ = B’(p) such
that p is conjugate to ps’ for a given perturbation p of pgz. To overcome it, we follow
Weil’s idea in [18], where he controlled deformation of lattices of Lie groups by the
first cohomology of a deformation complex. Note that Benveniste [1] and Fisher [5]
proved local rigidity of isometric actions by applying Weil’s idea to Hom(T", Diff(M)).
In their cases, the deformation complex is infinite dimensional, and hence, they needed
Hamilton’s Implicit Function Theorem for tame maps between Fréchet spaces. In
our case, we reduce the deformation complex to a finite dimensional one and Weil’s
Implicit Function Theorem is sufficient.

In [2], Burslem and Wilkinson gave another proof of the first step above for BS(1, k)—
actions on S'!. They showed the existence of an invariant projective structure on a
neighborhood of the global fixed point by using the Schwarzian derivative. The author
does not know whether there is an analogous proof for higher dimensional case. Finding
it seems an interesting problem.
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2 Proof of Main Theorem

2.1 Local version of the main theorem

Let M, (R) be the set of real square matrices of size n and GL,(R) be the group of
invertible matrices in M, (R). We identify each element of M, (R) with an n—tuple
of column vectors in R”. Under this identification, GL,(IR) is the set of bases of R”.
By || - ||, we denote the Euclidean norm of R”. Let S" (R”) be the set of symmetric
r—multilinear maps from (R”)” to R”. We define a norm || - | on S” (R") by

IF|C) = sup{|| F(&1, ... &)l | &1v- .. & € R™,||&]| < 1 for any i}.

Note || F(§1..... &) < | FIl- €1l -+ €]l forany &,....& € R" and [|A[|) s the
operator norm of 4 € M,(R) = S'(R").

Let D(R",0) be the group of germs of local diffeomorphisms of R” at the origin.
For F € D(R",0), we denote the r—th derivative of F at the origin by D(()’ VF. 1t
is an element of S"(R"). For r > 2, define the C] —topology on D(R",0) by a

pseudodistance d¢r (F,G) = Sy ||D(()i)F — D(()i)G||(i). Notice that d¢y_ is not a
distance, and hence, the C|/ —topology is not Hausdorff.

For a discrete group I', the |/ —topology on Hom(I", D(R", 0)) is naturally introduced
as before. We say two local actions Py, P, e Hom(T", D(R", 0)) are smoothly conjugate

if there exists H € D(R",0) such that sz oH=Ho P}/ forany y e T.

Let ¢ be a diffeomorphism from S”\{0} to R” given by

P(x) = - - x

[lx 112

For B € M,(R), we define a local action Pz € Hom(I',, 5, D(R",0)) by
Pl =Fopyod .

In this subsection, we prove the following local version of the main theorem.

Theorem 2.1 For B € GL,(R), there exists a C1<2>c —neighborhood U of Py such that
any local action P € U is smoothly conjugate to Py for some B’ = B'(P) € GL,(R).
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The proof is divided into several steps. First, we show the stability of the linear part
of Pbi . Let F be the element of D(R”,0) given by

F(x)=k"!
Notice that P¢ = F and D(()l)Pgi =] forany Be My,(R)andi =1,...,n

Lemma 2.2 Letm be a positive integer and P* alocal action in Hom(I',, ., D(R™,0)).
Suppose that D(I)P" = k=!I and D(I)P =1 forany i = 1,...,n. Then, there
exists a C1 —nezghborhood U of P* in Hom(Fn &> D(R™,0)) such that D(I)Pb’ =1
for any P GL{ andi =1,.

Proof Put ¢x; = k!/(j!(k— j)!). There exists § > 0 such that

k
. 1
§-| k+k? ST 2(1+k8) ) < -
(+ +§jck, 1+ ))_2

j=2

Take a Cl(l)c —neighborhood U of Py such that ||D(1)PV D(I)Py|| <6 forany P eld
and y=a,by,....by.Fix Peandi=1,...,n.Let A= D(I)P“ D(I)P“ and let
D(I)Pb D(I)P . We need to show that B =0. By the equahtles D(I)P“ =

k ', D(I)P — [ and P90 Pbi = P¥ o P9 we have (k~'T + A)(I + B) =

(I + B)k(k '] + A4). Hence,

k (0

(k—1D)|B|D = HkAB—szA—chij(I +kA)

j=2

k
< (k8 +E28+ ) o8 TN A+ ké))) 3
j=2

1
=5 1B,
Since k > 2, we obtain that B = 0. O

Second, we show the stability of the linear part of P?. Let (-,-) be the Euclidean
inner product of R”. For v € R”, we define Q, € S?(R") by

(D Qv m) = (&m-v—=(§v)-n=(nv)-&

By a direct calculation, we can check that
D(()z)szi = 2Qvi
forany B = (vy,...,vy) €« My(R) and i =1,...,n

Geometry € Topology, Volume 16 (2012)
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Lemma 2.3 For any given B € GL,(R), there exists a CO2 —neighborhood U of Pg
in Hom(I', ¢, D(R", 0)) such that D(()I)P“ =k~'I forany P el{.
Proof For any F, G € D(R",0) with D(()l)G =1, it is easy to see that
DP(FoG)=DPF+ DVFoDPG,
DP(G* o F)=DP F+k-DP G o (DVF, DSV F).
Put B=(vy,...,vy). Since B=(vy,..., V) is a basis of R”, there is a constant € > 0
such that max;—1__,{]|A"vi||} > €]|A"||(V for any A’ € M, (R). By Lemma 2.2, there

exists a C,! —neighborhood {; of P such that D(()I)be =] forany P el;. LetU

loc
be a le)c —open neighborhood of Py consisting of P € U; such that

.....

Fix P €U, and put
A=k-DVPo—1,
B; = DY b — pP pY = D P —29,,.
Cl == AO Qvi _2Qvi O(A,I).
We will show that 4 = 0. Since P%o Pbi = sz{( o P%, we have
kNI + A) 0 (2Qy, + Bi) =k - (2Qu; + Bi) o (k™' (I + A), k(I + 4)).
It implies that
2G| ® = || Ao B; —2B; o (A. 1) — (20, + Bj) o (4. 4)||¥
<41V GIBi P + 41V - | DP PP @)
<ella|™
forany i = 1,...,n. The definition of Q, also implies C;(v;,v;) = ||vi||*- Av;, and
hence, ||C;||® > || Av;|. Therefore, we obtain

2¢) 4|V <2 max |Av|| <e]|4a|D.
i=1

geeey

It implies that 4 = 0, and hence, D{V P* =k~ -1. O
Let M’ be the subset of Hom(I',, x, D(R", 0)) consisting of local actions P such

that P4 = F and D(()I)Pbi =1 forany i = 1,...,n. Notice that Py is an element
of My’ for any B € GL,(R).
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Proposition 2.4 Let B be an element of GL,(R). For any Clgc —neighborhood U,
of Pg in Hom(I',, s, D(R", 0)), there exists another Cl(z)C —neighborhood U of Py such
that any P € U is smoothly conjugate to a local action in Uy N M.

Proof By Lemmas 2.2 and 2.3, there exists a Clgc—neighborhood U; of Py in

Hom(T,, ., D(R",0)) such that DSV P? = k= - T and D{V P% =TI forany P e,
andi =1,...,n. Fix P el;. Itis known that if a local diffeomorphism F € D(R",0)
satisfies D(()I)F = ol for some 0 < o < 1, then it is smoothly linearizable (see
[11, Theorem 6.6.6]). Hence, there exists H € D(R”,0) such that D(()I)H =17
and F = Ho P?0 H™!. We define a local action PH ¢ Hom(I,, ., D(R",0)) by
(PHY = HoPYoH™!. Since D{V(PH)bi = p{V) Pbi = [, the local action PH is
contained in M;’. From the equation D(()z)(H o F) = D(()z)(P“ o H), we obtain
(k— l)D(()Z)H = kzD(()z)P“. Hence, there exists a small C1(2) .—neighborhood U C U,
of Pg such that P efy forany P eUf. O

Following Weil’s idea, we reduce Theorem 2.1 to exactness of a linear complex. Put
Mo = GLy(R) x GL,(R),
M = {(Gi)1=i=n € DR™,0)" | DSVG; = I, Fo G; = GF o F for any i},
Mz = {(Cipizi<j=n | Cij € S (RM)} = (S ®R")" D2,
Define maps ®: My—My and ¥: M{—M; by
P4, B) = (40 Py 0 A 1<izn.

1
V(Gi)1sizn) = (Z(D(S”(Gi ©Gj) = D§?(Gj o G,-)))

1<i<j=<n.
By O, , we denote the zero element of M, = S3(R")"(=1)/2 Then,
\IJOCI)(A,B)ZOMZ, lIJ(Pbl,,})bn)ZO_/\/[z

for any (4, B) € Mo and P € M. Moreover, if ®(4, B) = (PP1, ..., Pbn) then P
is smoothly conjugate to Py by the linear map A.

The following is a direct corollary of Proposition 2.4.

Corollary 2.5 To prove Theorem 2.1, it is sufficient to show the existence of a Cl(z)C —
neighborhood Vy of (Pgi)lsisn in M such that

U1 Or,) NV =ImP NV,

for any given B € GL,(R). |

Geometry € Topology, Volume 16 (2012)



1842 Masayuki Asaoka

Let us recall Weil’s Implicit Function Theorem.

Theorem 2.6 (Weil [18]) Let ®y: Mog— M, and ®,: M;— M, be smooth maps
between manifolds My, M, and M,. Suppose that ®; o ® is a constant map with
value x5 € M. If Ker(D®1)x, =Im(D®g)y, for xo € My and x; = Pg(xo) € My,
then there exists a neighborhood U of x| such that Im®yNU = CI>1_1 (x)NU.

The space M admits a natural smooth structure as an open subset of a finite di-
mensional vector space M, (R)2. The space M, = (S3(R"))""=D/2 als0 does
as a finite dimensional vector space. If the maps & and W are smooth with re-
spect to some smooth structure on M compatible to the Clgc —topology and satisfy
Ker D\If(pg1,,,,,p§n) = Im D®(; By, then Theorem 2.1 follows from Corollary 2.5
and Weil’s theorem. To introduce a smooth structure on M, we define a map
0: M;—>SZ(R")" by

1
O(Gy,...,Gp) = 5(Dg”c;l, ..., D Gy).

Lemma 2.7 The map © is a homeomorphism with respect to the Ckz)c —topology
on Mj.

Proof Since D(()I)Gi = [ for any (Gq,...,Gy) € M; and any i, the map O is
continuous by the definition of the Clgc —topology.

Next, we show that ® is surjective. Put (eq,...,e,) = I and take Q € S?(R"). Let
G’Q € D(R", 0) be the time-¢# map of the local flow generated by the quadratic vector
field X¢(x) = Q(x, x). Then, G4 (0) =0, D{VGY =1, and FoGly = G§' o F for
any ¢ € R. Since

d a 0?

—[D{PGYlei.e)) G (x)
dt v t=t, K] ax,ax, (,2)=(0,10)
92 9
= —G(x)
8)(71'3)(7]' ot (x,6)=(0,z0)
02

= N Q(Gm(x) Gto(x))

Xj x=0
=20(D§VGS(ei). DS G5 (e))
=20(ei, ¢j)

forany i, j =1,...,n and 79 € R, we have D(()Z)GtQ = 2¢tQ for any ¢. Therefore,
O(G! 1,...,GIQn) =(01....,0y) forany (Q1,...,0n) € S2R")".
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Finally, we show © is injective. Note that the bijectivity of ® implies that it is an
open map. Take G, G, € D(RY,0) such that D(()I)G,- =1 and FoG; = le oF
fori =1,2, and D(()Z)Gl = D(()Z)Gz. We will show G; = G,. For R > 0, we put
B, ={zeR" ||z < R}. Fix representatives G; of G; for i =1,2. Since G;(0) =0
and D(()I)G,- =1, thereexists Rp>0and 1 <c < Yk such that

. 62” Oéi"/ is well-defined on Bg, forany m,m’' =1,... k,

e FoGi =é{‘017 on B, fori=1,2,

o ma{[|[GT ) G20 G ()} <clz]l, and [|GF(2) = GF ()| < ¢l|z—=| for

any z,z' € Bgyand m=1,... k.

For 0 < R < Ry, we put

1G1(z) = G2 (2)|
=113

A(R) = sup

z€EB,

Since D(()Z)Gl = D(()Z)Gz, then we have that 51 — 52 is of at least third order at
the origin. Hence, A(R) is finite. For any z € Bg, and m = 1,...,k, we have
max{[|G" (k™' 2)|, |Gz 0 G (k~'2)||} < (¢/k)||z]| < Ro, and hence,
IG1(z) = Ga(2)|| =k - | FoG1(z) — F o G (2) |
=k |GF (k™ 2) - G5 (k')
k
<k Y NGF oG (kT D) — G o GE T (K )|

m=1

k
<ke Y NGF™ k1) = GaoGE (k).

m=1
Since ||6{‘_m (k7 12)|| < (e/ k)| 2|l < Ry, it implies that
1G1(2) = G2 (@)l < KPe- A(Ro) - [(c/ k) - 12111 = (¢*/ k) - A(Ro) - 1211

Therefore, A(Rg) < (¢*/k)A(Ry). Since ¢ < vk, we have A(Rg) = 0, and hence,
G; =G, on BRO‘ O

Since

DP (Ao PlioAd™y=A0DP Pl o(4™ A7) =2400,,0(47", 47"
for A € GL,(R) and B = (vy,...,v,) € GL,(R), the map ® o ® satisfies
2 (©0®)(4, B) = (40 Qy 0(47", A7) 1<i<n.
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Hence, ® o ® is smooth. For Q, Q' € S?(R"), we define [Q, Q'] € S*(R") by

(0. 0'1(6.10.0) ={Q(.Q'(n.0)) + 0(n. 0'(6.6)) + Q6. Q'(5. )}
—{0'¢. 0(n.0) + Q'(n. 0(6.6) + Q'(6, (5. )}
It can be checked that

3) [D§G 1, D) Go] = DV (G1 0 Ga) — DFP (G20 Gy)
for any G, G, € D(RY,0) with D(()l)Gl = D(()I)Gz = I . Therefore,
“4) (Po® )Q1,...,0n) =(0i, OjD1<i<j<n

Since the bracket is bilinear, the map W o ®~! is a smooth map.
For B = (vy,...,v,) € GL,(R), we put
Ly = D(©°®)(,p).

.....

We identify the tangent spaces of Mg and S%(R”)” of each point with M, (R")? and
S2(R™)", respectively. Then, (2) and (4) imply that
LE(A",B') = (A0 Qu, — Qv o (A" 1) = Qv o (1. A) + Qo) 1i=n.
L%’(qh s qn) = (lgi, ij]_ [Qj’ Qv;])1§i<j§n

for any (A’, B') € M,(R)? with B’ = (w;,...,w,) and any (q1,...,qn) € SZ(R™)".
The following proposition can be shown by a formal computation and we postpone the
proof until Section 2.3.

Proposition 2.8 Ker L%’ =Im L%’ .

Theorem 2.1 follows from Corollary 2.5, Theorem 2.6, and the proposition since H is
a homeomorphism between M; and S%(R")".

2.2 From local to global

In this subsection, we prove the main theorem. For a discrete group I" and a I"—action p
on a manifold M , we say a point p € M is a global fixed point if p¥ (p) = p for any
y € I'. Note the point oo is the unique global fixed point of pp for any B € GL,(R).

In this subsection, we assume that n > 2 since the case n = 1 was already shown
by Burslem and Wilkinson. First, we show that any local conjugacy to the standard
I',, x —action extends to a global one.
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Proposition 2.9 Suppose that an action p € Hom(I',, , Diff(M)) admits a global
fixed point pso and there exists a smooth coordinate ¢ of S" at poo and B € GL,(R)
such that ¢ (peo) =0 and ¢pop? o¢p~! = P} as elements of D(R",0) forany y € Lok
Then, p is smoothly conjugate to pg.

Proof Recall ¢: S"—R” is the local coordinate at co given by o(x) = (1/[x]?)-x
and the local action Pj is defined by P} = ¢ op} o¢p. We put U, = S™\[-r, r]"
for r > 0 and Ap = {blil, e ,bnil}. By assumption, there exists R > 0 and a

neighborhood U’ of poo such that
por? 0p ) = Fopy od!

on q_S(UR) for any y € {aT'} U Ap. Since pé’in (x) converges to co as n goes to
infinity for any x € §”, we can take m, > 0 such that pé’ 1" (x) is contained in U R
Define a map h: $”"—S" by

h(x)=p"1"" o (g o) o pl (x).

First, we see /1(x) does not depend on the choice of n1, . Suppose pé’T (x) is contained

in U,. Since p} is a translation for any y € Ap and S"\U, = [-R, R]" is a
convex subset of R", there exists a sequence (y;)i<;<; of elements of Ap so that
b=y ---ylb;”" and ,og’f"'ylbilnx (x) is contained in U, forany j =1,...,/.! Then,

PP o (¢ 0g) o pl b (x) = (§7 o) o it (),

This implies that
PP o (¢ o) o pT (x) = pP1" o (97 0 ) o T 0 b1 (x)
= pbl_m o pw"-yl o (¢_1 o (i_5) o ,Obqnx (x)

=pP1" o (¢ op) o pP (x)
= h(x).

Therefore, /1(x) does not depend on the choice of my .

For any given xg € S”, there is a choice of (mx)xesn Which is constant on a small
neighborhood of xg. This implies that / is a locally diffeomorphic at x¢, and hence, /
is a covering map. Since S” is simply connected, / is diffeomorphism.

1'We need n > 2 here.
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Itis easy to see hop} = p¥ oh forany y € Ap. For any given x € S”, there is m > 1
L (x) is contained in U, . Then,

such that ,oé’ll
hopd(x)=ph1"" o (¢ 0 g) o pti" 0 p(x)
= pb*" o (p™ o) o pg 0 T (x)
= pbi*™ o pto (¢ 0 )0 plT (x)
= p“opb™o (¢ 0g)oplT (x)
= p%oh(x).

Therefore, / is a smooth conjugacy between p, and p. |
Next, we give a criterion for the persistence of a global fixed point of a I';, x —action.

Lemma 2.10 Let M be a manifold and p be an action in Hom(I',, x, Diff(M')). Sup-
pose that po has a global fixed point po such that (Dpf)p, = k=!I and (D,oobi )po =1
forany i = 1,...,n. Then, there exists a neighborhood U C Hom(T', s, Diff(M))
of po and a continuous map p: U—M such that p(py) = po and p(p) is a global
fixed point of p forany p e U.

Proof Take k! <X <1 and § > 0 so that A + k& < 1. Fix an open neighborhood U
of po and alocal coordinate ¢p: U —R". There exist convex neighborhoods V' and V;
of ¢(po) and a neighborhood Uy of py which satisfy the following conditions for any
peEUyandi =1,...,n.

o $op@b" o~ is well-defined on V forany / = 0,1 and m =0,...,k

o popliop (V) CV

e |D(popodp™),| <A and |[D(pop? op~1),—1I| <6 forany z€ V and

m=1,...,k

By the persistence of attracting fixed point, there exists a neighborhood U C Uy of pg
and a continuous map p: U—¢~1(V; N V) such that p(pg) = po and p(p) is an
attracting fixed point of p? for any p € U. Since ,oob i(po) = po, by replacing U with a
smaller neighborhood of pg, we may assume p% (5(p)) € p~1(Vy N V) forany p €U
andi =1,...,n.

Fixi=1,...,nand pel. Put z4 = (p(p)), F =pop?o¢p~ !, and G =gpopliop=!.
We will show G(zx) = z«. Since z4« and G(zx) are contained in V,

[FoG(z4) = F(ze) | = MG (24) — z«ll,
(G (z26) = G(24)) = (G™ (z4) — )| < 8]1G(z) — 2,
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form=0,...,k—1. Since FoG =Gko F and F(z4) = z«, the former implies

1G¥ (z4) = 24| MG (z4) — 2]

Hence,
k—1
k- llze — Gzl < 1GF (z4) — 24|l + Z IG™ ! (z4) — G™(z4) — G (z4) + z4 |
m=0

Since A + ké < 1, we have G(z«) = zx. Thus, p(p) is a global fixed point of p. O
Now, we prove the main theorem.

Proof of Main Theorem Take open neighborhoods U C S” of oo and V C R” of 0
and a family (¢p)pey of diffeomorphisms from U to V' such that ¢oo = b, op(p)=0
forany p € U and the map (p, g) — ¢p(q) is smooth. Fix B € GL,(R). The action pg
satisfies the assumption of Lemma 2.10. Hence, there exists a neighborhood U, of pg
and a continuous map p: U;—U such that p(p) is a global fixed point of p for any
p €U; . We define a local action P, € Hom(I', x, D(R", 0)) by P} = dp(pyor” o¢§(lp) .
Then, the map p+— P, isa Clgc—continuous map from U; to Hom(I', ¢, D(R",0)).
By Theorem 2.1, there exists a neighborhood U/ C U; of pg such that P, is smoothly
conjugate to Py for some B’ = B’(p) € GL,(R) for any p € . By Proposition 2.9, p
is smoothly conjugate to pp’. a

2.3 Proof of Proposition 2.8

In this subsection, we give a proof of the following proposition, which we have not
shown in Section 2.1.

Proposition 2.8 Ker Ly =Im L}.

Our proof is formal and lengthy computation. It may be interesting to find a more
geometric proof.

Fix B = (v1,...,vs) € GL,(R). Recall the linear maps LS: M,(R")2—>S2(R")"
and Ly: S?(R")"—S3(R")""=1D/2 are given by

LA B = (A" 0Qu — Qv 0(A 1) = 0y 0 (I, A') + Qo) 1zi<n
LyGis--qn) = (g1, Qv 1= 97, Ov;Di<i<j=n

Geometry € Topology, Volume 16 (2012)



1848 Masayuki Asaoka

for any (A4’, B') € M,(R)? with B’ = (w;,...,wy,) and any (¢, ....,qn) € S2(R")",
where

(5) Ov(& ) =& n-v—(&v)-n—(n,v)-§,
[0, 0'1(6,1.0) ={Q(£. Q' (n.0)) + Q(n, 0'(6,§)) + Q. Q' (,. )}
—{Q'(£,0(n.0) + O0'(n. 0(0.£)) + Q' (6, O (&, n)}.

First, we reduce the problem to the case B = 1.
Lemma2.11 For B, B'€GL,(R), Ker Ly =Im L% ifand only if Ker Ly, =Im L,.

Proof Put B = (v;,...,v,) and B’ = (wy,...,wy). Take 4 = (a;;) € GL,(R) such
that B’ = BA. Since the map v > Q, is linear, we have

(le"“’an):(Qvly"-van)'A-

It implies that Im LS, = Im LqB’ -A. For (¢1,...,qn) € Ker Lg we have
n n n
[(Z akiQk)v ij]_[(zaljch)v Qw,-] = > agiarj(gr. Qul-lg1. Qv ) =0.

Hence, Ker Lg - A is a subspace of Ker Lg,. Similarly, Ker Lg, - A7 is a subspace
of Ker L%’. Thus, Ker Lg, = Ker Lg -A. a

By the lemma, it is sufficient to show Proposition 2.8 for B =1. Put I = (ey,...,ep).
It is easy to check the following properties of Q.

Lemma 2.12 For v € R" and mutually disjoint i, j, k =1,...,n,

Qe, (€i,v) = Qg; (v, €i) = —v,
Qei(ej’ej) =éei,
Qe (ej,ex) =0. O

Let W be the subspace of SZ(R™)" consisting of (g1, ...,gn) such that

(6) gj(ej,ej) =0,

(7 {ei.qj(ei.ei)) + (ej.qi(ej.ej)) =0,
€)) {e1.q1(ej.€j)) =0,
forany i, j=1,...,n.
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Lemma 2.13 IfKer L} N W = {0}, then Ker L} =Im LY.

Proof We show S?(R")" = W +Im L‘II’. Then the assumption Ker L}I’ NW = {0}
implies Ker L}I’ =Im L}b since Im L? C Ker L}I’.

For A, B € M,(R), let qf’B be the j—th component of L?(A, B). Fix (q1,....4qn)
in S?2(R™)" and we will find 4, B € M, (R) such that

©) 61}4’B(€j,€j) =qj(ej.ej),
(10)  (ei,q"Pler en) + (ej. 4" P (ej. ) = (e, qj(ei ) + (ej. qilej ¢)),
(11) (e1.q7"B(ej.e)) = (er.q1(ej. €))).

These equations imply that (g1, ...,qn) — L;I’ (A4, B) is an element of W.
Take 4 = (a;j), B = (bij) € Mp(R). A direct computation with Lemma 2.12 implies
g j(ej.e)) = A0 Qe; (). ¢)) —2Qe; (Aej. ¢)) + e, (¢ ¢))
n
= Aej + Z bij Qe (ej,ej)
k=1

(12) = (ajj —bjj)ej + Y _(aij + bij)ex.
k#]

A,B
q; 7 (ej,ej) = Ao Qe(ej,ej) =20 (Aej, ej) + Qpe; (€, €j)
n n
=Ae; =2 aijOc;(er- )+ Y i Qe (e €))

= (aii —2ajj + bi)e; + (aji + 2aij —bji)ej + Y (agi + bri)ek.

k#i,j
for any mutually distinct 7, j = 1,...,n. The latter equation implies that
(13) (ei,q;l’B(ei,ei)) + (ej,in’B(ej’ ej)) = 3(a;ij +aji) — (bij + bji)
for any mutually distinct 7, j = 1,...,n and
(14) (er.q7"P (ej ) = any —2aj; + by

forany j =2,...,n.

Put s5;; = (ei,qj(ej,ej)), tij = (ej.qi(ej,ej)) and u; = (e1,q1(ej,ej)) for i, j =
1,...,n. Notice that 511 =11 =uy. Put a;y =s11/2, b11 = —s11/2,

ajj=—uj/2, bjj=—=sjj—(u;j/2)
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for j =2,...,n,and
1 1
aij = 5 (sij +1ij). bij = sij —aij = 7 Gsij —tij),
for any mutually distinct i, j = 1,...,n. By (12), (13), and (14), A = (a;;) and
B = (b;j) satisty (9), (10), and (11). O
Fix (¢1,....qn) € KerL}I’ N W . By the lemma, the goal is to show ¢; =---=¢, =0.

Lemma 2.14 gj(e;,ej) =qgj(ej.e;j) =0 foranyi,j=1,...,n.

Proof When i = j, it is just shown by (6) in the definition of W . Take mutually
distinct i, j = 1,...,n. Then,
0= 541 01~ 147, Qe Dies )
={qi(ej, Qe; (¢j, €j)) — Qe; (e, gi(ej, €))}
—1{qj(ej. Qe; (ej.€j)) — Qe; (ej. qj(ej. €j))}
=qi(ej. —¢j) +qilej.ej)} —igj(ej. er) = Qe; (¢, 0)}
=—qj(ej.ei).

Since g; is symmetric, we also obtain that g;(e;,e;) = 0. O

Lemma 2.15 Foranyi,j=1,...,n,

15) (ei.qilej,ej)) + (ej.qj(ei,e)) = 0.
Foranyi,j,k=1,...,n withi # k,
16) (ek.qi(ej.ej)) = 0.

Proof When i = j, Lemma 2.15 follows from the definition of W. Suppose i # ;.
Since g;(e;,ej) =qj(e;i,ej) =qj(ej,ej) =0 by Lemma 2.14 and (6) in the definition
of W, we have
[9i, Oe;1(ei ej.ej) = {qi(ei, Qe; (ej.ej)) + 2qi(ej, Oe; (€1, €j))}
—{Qe¢;(ei.qilej.ej)) +2Q¢;(ej.qilei e;))}
= {qi(ei,—ej) + 2qi(ej, —ei)}
—{{ei.qilej,ej))-ej —(ej.qi(ej,ej)) -ei +2Qe; (), 0)}

=(ej.qilej.ej))-ei —(ei.qi(ej. ¢j)) - ej,
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[4j. Qc;leiej.ej) ={qj(ei. Qc;(ej.ej)) +2qj(ej, Qe (e ef))}

—{Qe; (ei.qj(ej.ej) +20¢,(ej.qj(ei,ef))}
={qj(ei.ei) +2qj(ej.—ej)} —{ Qe (€i,0) +20¢; (ej,0)}
=qj(ei, ).

Since [gi, Qe;1—[qj. Qe;1 =0,
qj(ei,ei) = (ej,qi(ej.ej)) -ei —(ei, qi(ej. €j)) - e;.

By taking the inner product with e;, we obtain (g;(e;,ej),ex) =0 for k #1i, j. By
taking the inner product with ¢; and e;, we also have

(ei,qj(ei,ei)) —(ej, qi(ej,ej)) =0,
(ej.qj(ei,ei)) + (ei.qi(ej,ej)) = 0.

The latter is (15). Equation (16) follows from the former and (7) in the definition
of W. o

Equations (8) and (15) imply that
(17) {e1.q1(ej. ej)) = (ej.qj(er,e1)) =0
forany j =1,...,n. Now, we prove Proposition 2.8 for n = 2.

Proposition 2.16 If n =2, then Ker L}I’ =Im L;I’.

Proof For (q1,q») € KerL‘IIJ NW, (ei,qj(ex.e;)) =0 forany i, j, k,/ =1,2 by
Lemma 2.14, Lemma 2.15 and (17). Therefore, ¢; = ¢, = 0. Lemma 2.13 implies
that Ker L}I’ =Im L;D. Proposition 2.8 for n = 2 follows from Lemma 2.11. |

We continue the proof for n > 3.

Lemma 2.17 g;(ej,ex) = qj(ek.ei) = qi(ei,ej) for mutually distinct i, j, k =
1,...,n.

Proof Since i, j, k are mutually distinct, Lemma 2.15 implies

1
3 [9i. Qe l(ek. k. ex) = qilek. Qe; (ek. ex)) — Qe; (ex. qi ek, ex))

= qi(ex,ej) —{{ek.qilex, ex)) -ej — (ej, qilek, ex)) - ex}
=qi(ek.ej).
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Similarly, we have (1/3)-[q;, Oe;](ex, ek, ex) = qj(ek.e;). Hence,

1
qi(er,ej) —qj(ex,ei) = 3 (19i- Qe;1—14) Qe D(ek. ek, ex) = 0.

It implies g;(ej, ex) = gi(ek.ej) = qj(ek.e;). By permutations of indices (i, j, k),
we obtain that g; (ex, e;) = qx(ei, ej). |

Lemma 2.18 Fori,j,k=1,...,n,

(18) qgi(ej.ej) =0,
(19) (ei qi(ej.ex)) = (ej.qilej, ex)) = (ek.qi(ej,ex)) =0.
Proof For mutually distinct i, j,k =1,...,n, we have

[9i. Qe;l(ej. ek ex) =1{qi(ej, Qe; (ex.ex)) + 2qi(er. Oe; (e, ex))}
—1{Qe; (ej, qilex, er)) +20¢; (er, qilej, ex))}
=1{qi(ej.ej) +2qi(er. —ex)}
—{—qi(ek.ex) + 2 ({ex. qi(ej. ex)) -ej — {ej. qilej ex)) - ex)}
=qi(ej,ej) —qilek, ex)
—2er.qilej.ex)) -ej +2{ej. qi(ej. ex)) - ek,
[9), Oe;)(ejs e, er) =1qj(ej, Qe (ek,ex)) +2qj(ex, Qe; (€, ex))}
—{0Qe¢; (¢j.qj (k. ek)) + 20, (ek.qj(ej, ex))}
=1{qj(ej.ei) +2qj(ex. 0)}
—{(ej.qj(ex.ex)) -ei —(ei.qj(ex. ex)) - ej +20¢; (ex, 0)}
=—(ej.qj(ex. ex)) - ei.
Since [qi, Qe;]1—1[qj, Qe;] = 0, we obtain that
qi(ej.ej) —qi(ek. ex)
= —(qj(ek. ex). ¢j) - ei +2{qi(ej. e), ex) - ej — 2(qi(ej, ex). €j) - k.
By taking the inner product of the with ¢; and ¢;,
(ei qilej,ej)) —(ei,qilek, ex)) = —(ej.qj(ek. ex)),
(20) (ej.qi(ej,ej)) —(ej. qi(ex, ex)) = 2(ex. qi(ej, ex))-

The former equation for i = 1 implies (e, gj(ex,ex)) = 0 for any mutually distinct
j.k=2,...,n. By (17), the same equation holds for j = 1 or k = 1. Combined
with (16), we obtain (18).
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Equations (16) and (20) imply (ex, g;(ej, ex)) = 0. By permutations of indices (7, j, k)
and Lemma 2.17, we obtain (19) for mutually distinct 7, j, k. Equation (19) for other
cases follows from Lemma 2.14 and (18). O

Proposition 2.8 for n = 3 follows from Lemma 2.18.
Proposition 2.19 If n = 3, then Ker L}I’ =Im L}I’.

Proof For (q1,42,q3) € Ker L}I’ NW, (19)in Lemma 2.18 implies g; =g =q3 =0
if n = 3. By Lemma 2.13, we have Ker L‘II’ = Im L;I’. Proposition 2.8 for n = 3
follows from Lemma 2.11. |

The following lemma completes the proof for n > 4.

Lemma 2.20 ¢;(ej,ex) =0 foranyi,j, k=1,...,n.

Proof By Lemmas 2.14 and 2.18, it is enough to show (e;, gj (ex, 7)) =0 for mutually
distinct 7, j,k,I = 1,...,n. Take mutually disjoint 7, j,k,/ =1,...,n. Then,

[9i, Qe;1(ex €1, €1)
= {qi(ek, Qe; (€1, ¢1)) +2qi(er, Oe; (ex, 1))}

—{0e¢; (ex.qiler. e1)) +20e; (e1. qilex. e1))}
=1qi(ex,ej)+2qi(es, 0)} —{Qe; (e, 0) +2({e;, gi(ex, 1)) -ej —(ej. qi(ex, er)) -er)}
= qi(ej,er) —2{ej, qilek.ep)) -e;.

Similarly, we obtain that
(4, Qe;lex.er,er) = qj(ei,er) —2{ei. qj(ek. er)) - e;.
Since [qi’ er] - [qj’ er] = 0’
qi(ej.ex) —qjlei.ex) = {{ej.qi(er.e)) — (ei qj(ex.er)} - e
By Lemma 2.17, g;(ej, ex) = qj(ex, e;) and g;(ex.e;) = qx(e;, e;). Hence, we have
(ej.qk (e, ei)) = (ei, qj(ex.er)).

By take permutations of indices (i, j, k, /),

(21) (er.qilej,er)) = (ei,qj(er,er)) = (ej, qi(er, ei)) = (qi(ei, ej), ex).
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On the other hand, we have

[9i, Qe;l(ej, ek, er)
={qi(ej, Qe; (e, €1)) +qilex, Qe (€1, €j)) +qiler, Qe; (€, €x))}
—1{0¢; (¢, qilek,e1)) + Qe; (k. qiler, €j)) + Oe; (€1, qilej, ex))}
={qi(ej.0) +qi(ex, —er) +qi(er, —ex)}
—{—gilex.er) + (ex.qier.ej)) -ej + (er.qi(ej. ex)) - ¢j}
= —qi(er.er) —2(ej, qi(ex. 1)) - ¢j,
). Oe;)(ej. ek er)
=1qj(ej, Oc; (er.e1) +qjlex, Oc; (e, ;) +qjler. Qe; (e, ex))}
—{Qe;(¢j.qj(ek. 1) + Qe; (ek.qj(er. €j)) + Qe; (er.qj(ej, ex))}
={qj(ej.0) +qgj(ex.0) +qj(es.0)}
—{—(ei.qgj(ex.er)-ej + Qe;(ex. 0) + Qe; (e1. 0)}
= (ej. qiex.er)) ).
Since [gi, Qe;]1—gj. Qe;] =0,
qi(ek,er) +3-(ej,qi(ex,e))-ej =0.

By taking the inner product with e;, we have (e¢;,g;(ex,e;)) = 0. Hence,

(ei.qj(ex.e) =0
by permuting indices (i, j, k,/). m|

Now, we prove Proposition 2.8 for n > 4. The last lemma implies that ¢; =---=¢g, =0
for any (g1, ...,qn) € Ker L}I’ NW . By Lemma 2.13, we obtain that Ker L}I’ =Im L;I) .
Proposition 2.8 follows from Lemma 2.11.

3 C(lassification of the standard actions

In this section, we classify the standard I’ x—actions up to smooth conjugacy. Let
O(n) be the orthogonal group of R”.

Proposition 3.1 For B, B’ € GL,(R), pp and pp are smoothly conjugate if and only
if there exists T € O(n) and ¢ > 0 such that B’ = (¢T)B.

Note that all standard I',, x —actions are topologically conjugate to each other, ie there
exists a homeomorphism h of S" such that p oh = hop) forany y € ', x. In
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fact, if B’ = AB for some A € GL,(R), then the linear map x — Ax on R” extends
to a homeomorphism hgq on S™. It is easy to check that p) ohy = hy o p) for
any ¥y = a,bq,...,b,. When A = ¢T with ¢ > 0 and T € O(n), then hy is a
diffeomorphism. Hence, pp and pp are smoothly conjugate in this case.

To prove the “only if” part of Proposition 3.1, we need a technical lemma. Recall that
0, € S2(R") is defined by

(22) Ové )= n)-v—(&v) n—(nv)-&

Lemma 3.2 Suppose that Ao Qy = Qo (A4, A) for v,w € R"\{0} and A € GL,(R).
Then, A =cT forsome c >0 and T € O(n).

Proof By a direct computation, we have

Qu(AE, AE) = | AE|* - w —2(4E, w) - AE,

A0 0y(5.8) = |IE]?- Av—2(&, v) - 4&.
Hence,
(23) 1AEN? - w — €)1 - Av = 2 ((4&, w) — (£, v)) - 4§
for any £ e R”. Put A = (2(Av, w)— ||v||2) /|lAv||?. Then, the equation for £ = v
implies w = AAv. By substituting it to (23), we have

(MIAEN? — 1E1%) Av = 2 (M(AE, Av) — (€. v)) - 4&.

Since A is invertible, it implies that |A&| = A71||€| for any £ € R”\Rv. Since
R™\Ruv is a dense subset of R”, the same holds for any £ € R”. Hence, there exists
T € O(n) such that A = A7 T. |

Proof of Proposition 3.1 It is enough to show the “only if”” part. Suppose pz and pp’
are smoothly conjugate. Take a diffeomorphism / of S” such that p) oh =hop}
for any y € I'; ;. Since oo is the unique global fixed point of pz and pp’, the
diffeomorphism / fixes co. Recall Pz and Py are the local I', x—actions defined
by PY =¢opYop~' and P} = poplop!, where ¢(x) = (1/[x||?) - x. Put
H=¢oho¢~! and A= D{VH. Then, P} o H= Ho P}, and hence,

24) DSV PYoDP H+ DY PYo (4, A)
=AoDP P} + DP Ho(DSVPY, DV PY).

Since PZ(x) = P%(x) = k~'x, Equation (24) for y = a implies k_lD(()z)H =
k‘zD(()z)H. Therefore, D(()Z)H =0.Put B= (vq,...,vy) and B’ = (wy,...,wy).
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Since D{? Pl =20, and DP PLi =2Q,,, (24) for y = b; implies
Qqu(A’A)zzAﬁ)Qvi

forany i = 1,...,n. By Lemma 3.2, there exists ¢ > 0 and 7 € O(n) such that
A =cT. Since T preserves the inner product,

(cT)o Qv (§.1) = Qu; ((cT)E, (cT)n)
= {TE TE) -w; —(T& wi)-Ty— (T, wi) - TE}
= (cT)o{(&.n) - (T~ wi = (& T Hwi)-n—(n, T Hw;) -
= (T)oQer—14, (€. 1)

for any &,n € R". It implies that v; = cTYw; for any i = 1,...,n. Therefore,
B = (c"'T)B. m|
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