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Virtual push-forwards

CRISTINA MANOLACHE

Let p: F — G be a morphism of DM stacks of positive virtual relative dimension k
and let y € A%(F). We give sufficient conditions for p4(y - [F]'™) to be a multiple
of [G]'". We show an analogue of the conservation of number for virtually smooth
families. We show implications to Gromov—Witten invariants and give a new proof
of a theorem of Marian, Oprea and Pandharipande [19] which compares the virtual
classes of moduli spaces of stable maps and moduli spaces of stable quotients.

14C17; 14N35

1 Introduction

Virtual fundamental classes have been introduced by Li—Tian [16] and Behrend—
Fantechi [2] and in the past fifteen years have become a useful tool when one has to
deal with badly behaved (that is, singular, with several components of possibly different
dimensions) moduli spaces. One of the main problems when working with virtual
fundamental classes is that in certain situations they fail to behave as fundamental
classes do. One easy example is the following. Let p: F — G be a finite morphism of
DM stacks and suppose that F' and G have pure dimension. Let Gy, ..., Gy denote
the irreducible components of G'. Then we have that

px[F]=n1[G1]+ -+ ns[Gs]

for some ny,...,ns € Q. On the contrary, given a morphism p: F — G of stacks
which possess virtual classes of the same virtual dimension, we have no reasons to
believe that the following relation holds

P*[F]Vm =m[G1]+ -+ ns[Gs),
where G, ..., Gy are cycles on G such that [G]Y™ =[G ]+ - + [Gs].

In this paper we find sufficient conditions for the above condition to hold. More
generally, let p: F'— G be a morphism of DM stacks which possess virtual classes of
dimension k; respectively k, such that k := k; —k, > 0. We say that p satisfies the
virtual push-forward property if for any y € A* (F)we have that

Py - [FI"™) = mi[G1] + -+~ 4 n[Gy]
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2004 Cristina Manolache

for some [G4],....[Gs] such that [G]Y'" = [G]+---+[Gy] and some 71, ... ,ns € Q.
If moreover, the push-forward of y -[F]¥'" along p is equal to a scalar multiple of the
virtual class of G we say that p satisfies the strong virtual push-forward property. The
main result (see Theorem 3.13) of this paper is the following.

Theorem Let p: F — G be a proper morphism of Deligne—Mumford stacks which
possess perfect obstruction theories E, and Eg,. If p has a perfect relative obstruction
theory compatible with E%, and E¢, and G is connected, then p satisfies the strong
virtual push-forward property in homology.

In Section 2 we list the main notions and results needed in the rest of the paper. We
review obstruction theories, normal cones and virtual pull-backs for Chow groups in
Manolache [18]. We generalize the construction of virtual pull-backs to groups of
algebraic equivalence classes. This is a key ingredient in the proof of the conservation
number principle for virtually smooth morphisms (see Definition 3.4).

In Section 3 we first show the virtual push-forward property (see Lemma 3.6). The
proof uses arguments present in Lai [14] and the functoriality property of virtual cycles
in Kim—Kresch—Pantev [10]. We prove an analogue of the conservation of number
principle (see Fulton [7]) for virtually smooth morphisms. This is achieved by passing
to groups of algebraic equivalence classes. The strong virtual push-forward property is
a consequence of the push forward property, the properties of virtual pull-backs for
algebraic equivalence classes and the conservation of number principle. The relative
version of the strong virtual push-forward property (Proposition 3.14) is a generalization
of Costello’s virtual push-forward property in [4].

In Section 4 we prove applications of the main results in Section 3. More precisely, we

¢ show that the virtual Euler characteristic is locally constant in virtually smooth
families; this is a consequence of the conservation of number principle for
virtually smooth morphisms;

* study the relation between virtual classes of moduli spaces of stable maps
D: Mg u(X,B)— Mg (Y, psB) where p is the morphism induced by a smooth
fibration p: X — Y;

e give a new proof to a theorem of Marian, Oprea, Pandharipande [19] which
compares the virtual classes of moduli spaces of stable maps to projective spaces
and moduli spaces of stable quotients.
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Virtual push-forwards 2005

Relation to other work The definition of the (strong) virtual push-forward property
was introduced by A Gathmann [8] who studied the relation between the virtual push-
forward property for the natural map between the moduli space of stable maps to the
projectivization of a split rank two bundle V' — X and the moduli space of stable
maps to X . His computation uses localization and it is rather involved. A similar
result appears in a work of B Kim [9], who compares a certain intersection product
on the moduli space of stable maps to the projectivization of a split bundle over a
variety X to the virtual class of the moduli space of stable maps to X. Kim’s proof
also uses localization. Our virtual push-forward theorem was inspired by these results,
but the nature of the proof is completely different. Our proof relies on the functoriality
property of virtual cycles of Kim, Kresch and Pantev [10] and the properties of virtual
pull-backs (see Manolache [18]). Methods similar to ours appear in [14], where H-
H Lai analyzes the map between the moduli space of stable maps to a certain blow-up
and the moduli space of stable maps to the base variety. Our Lemma 3.6 is a slight
generalization of Lai’s results. The relative version of the (strong) virtual push-forward
theorem is a generalization of Costello’s push-forward formula for virtual cycles [4].
The applications of these results generalize several previous results as follows. The
conservation of virtual characteristics for virtually smooth morphisms generalizes
results of Fantechi and Géttsche in [6]. The relation between moduli spaces of stable
maps to projective bundles on some variety X and moduli spaces of stable maps to
X have been studied by Gathmann under very restrictive hypothesis. The relation
between moduli spaces of stable quotients and moduli spaces of stable maps has been
studied by Popa [21], Marian, Oprea and Pandharipande [19] and Toda [22]. Relations
between virtual classes have been proved in [19] and [22] by localization techniques.
We give a unified approach to these results.

Notation and conventions We take the ground field to be C. An Artin stack is an
algebraic stack in the sense of Laumon and Moret-Bailly [15] of locally finite type
over the ground field. Deligne-Mumford stacks will be called in short DM-stacks.
Unless otherwise specified we will try to respect the following convention: we will
usually denote schemes by X, Y, Z, etc, Deligne—Mumford stacks by F, G, H, etc.
and Artin stacks for which we know that they are not Deligne-Mumford stacks (such
as the moduli space of genus—g prestable curves or vector bundle stacks) by gothic
letters M, €, §, etc. By a commutative diagram of stacks we mean a 2—-commutative
diagram of stacks and by a Cartesian diagram of stacks we mean a 2—Cartesian diagram
of stacks. Chow groups for schemes are defined in the sense of Fulton [7]; this
definition has been extended to DM stacks (with Q—coefficients) by Vistoli [23] and
to algebraic stacks (with Z—coefficients) by Kresch [12]. We will consider Chow
groups (of schemes/stacks) with @Q—coefficients. By homology we mean Borel-Moore
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2006 Cristina Manolache

homology (see the Appendix in Coates [3] for a definition for DM stacks). As in most
applications we will consider compact stacks this will coincide with singular homology.
For a fixed stack F' we denote by D the derived category of coherent O modules.
For a fixed stack F we denote by L its cotangent complex defined in Olsson [20].

Acknowledgements 1 owe the main statement of this paper to Barbara Fantechi and
Angelo Vistoli who had suggested to work with homology groups, rather than Chow
groups. I am very grateful to Carel Faber, Ionut Ciocan-Fontanine, Gavril Farkas and
Yuan-Pin Lee for several useful discussions and suggestions. I would also like to thank
Ionut Ciocan-Fontanine for making the manuscript of Kim [9] available to me and the
referee for many useful comments. I was supported by ENIGMA MRTN-CT-2004-5652
and SFB 647.

2 Virtual pull-backs

2.1 Preliminaries

We shortly review obstruction theories, normal cones to DM-type morphisms and
virtual pull-backs. We refer to Behrend—Fantechi [2] for a more complete treatment
of cone stacks and obstruction theories and to Manolache [18] for normal cones and
virtual pull-backs.

2.1.1 Obstruction theories

Definition 2.1 Let E°® € DIS:O. E* is said to be of perfect amplitude if there exists
n > 0 such that E*® is locally isomorphic to [E™" — --- — E°], where for all
i €e{—n,..., 0}, Elisa locally free sheaf.

Definition 2.2 Let E® € D;o. Then a homomorphism ®: E®* — L% in D;o is
called an obstruction theory if #°(®) is an isomorphism and 4~!(®) is surjective. If
moreover, E* is of perfect amplitude, then E*® is called a perfect obstruction theory.

Convention 2.3 Unless otherwise stated by a perfect obstruction theory we will always
mean of perfect amplitude contained in [—1, 0].

2.1.2 Normal cones to DM-type morphisms

Definition 2.4 A morphism p: F — G of Artin stacks is called of Deligne—Mumford
type (or shortly of DM-type) if for any morphism V — G, with V' a scheme, F xg V
is a Deligne-Mumford stack.
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Virtual push-forwards 2007

Definition 2.5 Let X be a scheme and F be a coherent sheaf on X. We call C(F) :=
SpecSym(F) an abelian cone over X .

As described in Behrend-Fantechi [2, Section 1], every abelian cone C(F) has a
section 0: X — C(F) and an A!-action.

Definition 2.6 An A!—invariant closed subscheme of C(F) that contains the zero
section is called a cone over X .

Similarly, in [2, Section 1] Behrend and Fantechi define abelian cone stacks and cone
stacks. The following definition of cone-stacks is slightly different from the one in [2].

Definition 2.7 Let F be a stack and let £° be an element in D;O. We call the stack
quotient 2!/ h°(E*"") (in the sense of [2, Section 2]) an abelian cone stack over stack
F.1If E*® is of perfect amplitude contained in [-1,0], then we call the stack quotient
h'/h°(E*Y) a vector bundle stack.

A cone stack is a closed substack of an abelian cone stack invariant under the action of
A and containing the zero section.

Convention 2.8 From now on, unless otherwise stated, by cones we will mean cone-
stacks.

Example 2.9 (i) Leti: X — Y be a closed embedding of schemes. If Z denotes
the ideal sheaf of X in Y, then Ny,y = SpecSym 7 /Z? is called the normal
sheaf of X in Y and Cy,y := Spec ®x>o I"‘/Zk‘"1 < Ny/y is called the
normal cone of X in Y.

(i) If f: F — G is a local immersion of DM-stacks, then Vistoli defines (see
Vistoli [23, Definition 1.20]) the normal cone to f as described below. Let us
consider a commutative diagram

U / |4
T
F——G

f

with U and V schemes, the upper horizontal arrow a closed immersion and the
vertical arrows étale. Then Cg/¢ is the cone obtained by descent from Cy,yp .

Note that Cg/g <> Np/g = SpecSym h™ ' (LF/g).
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2008 Cristina Manolache

Definition 2.10 Let p: F' — G be a DM-type morphism and let Lr,g € D=%(OF)
be the cotangent complex of p. Then we denote the stack

W hO(LY6) = h' ) (o, (LY )
(see Behrend-Fantechi [2]) by D1/ and we call it the normal sheaf of p.
Proposition 2.11 (Behrend—Fantechi [2]) Let us consider diagram (1) with F a
Deligne—Mumford stack, the upper horizontal arrow a closed immersion, U — F an

étale morphism and V' — G a smooth morphism. Then for any U and V' as above, there
exists a unique cone-stack €g;g C Np/g suchthat €, xp U = [Cy v/ f* Ty gl

Definition 2.12 We call €/ the normal cone to p.

2.1.3 Virtual pull-backs in Chow groups In the following we recall the main results
in Manolache [18].

Condition 2.13 We say that a morphism p: F — G of Artin stacks and a vector bundle
stack & — F satisfy condition (x) if we have fixed a closed embedding €f/G <~ €.

Convention 2.14 We say in short that the pair (p, &) satisfies condition ().

Remark 2.15 Let us consider a Cartesian diagram

F’ G’
F G

If € is a vector bundle on F such that €r/g < € is a closed embedding, then
Cr/e — [T € is a closed embedding.

Construction 2.16 Let F be a DM stack and & a vector bundle stack of (virtual)
rank n on F such that (p, €) satisfies condition (x). We construct a pull-back map
p!@: A« (G) = Ax—p(F) as the composition

A44(G) 5> Au(€p)g) —> Au(€) = Au_n(F),
where

(1) o is defined at the level of cycles by o (Y ni[Vi]) = X ni[€y,xeF/v; ]

(2) iy is the push-forward via the closed immersion i,

Geometry & Topology, Volume 16 (2012)



Virtual push-forwards 2009

(3) s* is the morphism of Kresch [13, Proposition 5.3.2].
The fact that o is well defined has been checked in [18].

Definition 2.17 In the notation above, we call p!@: A« (G) —> A« (F) avirtual pull-
back. When there is no risk of confusion we will omit the index.

Remark 2.18 Let us consider a Cartesian diagram

Fl_q>G/

o,k

F——G

and let € be a vector bundle stack of (virtual) rank # on F such that (p, €) satisfies con-
dition (). Then, by Remark 2.15 ¢, f*€ satisfies condition (). By Construction 2.16
we obtain morphism p!@: A(G') = Aypy(F').

Remark 2.19 Let p: F — G be a morphism of stacks and let € be a vector bundle
stack such that (p, &) that satisfies condition (%) for p. Suppose that & = [E!/E?],
where E! are vector bundles on F. Let 0: F — ¢ and 0: F — E' be the zero
section embeddings. Let €f/ be the normal cone of p and let C = €f/g X¢ E L
Then the closed embedding €r/c — € induces a closed embedding C — E 1. The
commutativity of pull-backs applied to the commutative diagram

0

ﬁ.El

i

_—

2

<"

implies that
0e[Cr/6] = 0 [C]

Proposition 2.20 (Manolache [18, Proposition 3.11]) If F L Gisa DM-type
morphism and there exists a perfect relative obstruction theory Ef, /G then condition
() is fulfilled.

Conversely, if F 2. Gisa morphism that satisfies condition (x), then there exists a
perfect obstruction theory E;:/G — LF/g such that ¢ = hl/hO(E;,/GV) which is
unique up to quasi-isomorphism.
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2010 Cristina Manolache

Remark 221 If F 25 G is a DM- -type morphism such that there exists a perfect
relative obstruction theory E, F/G and G is a stack of pure dimension, then p' E3, ([G])
is a virtual class of F in the sense of Behrend—Fantechi [2].

Remark 2.22 Let us consider a Cartesian diagram of stacks
F’ F

G,—1>G

If F, G, G’ possess virtual classes and the relative obstruction theory EY, F/G is perfect,
then we have an induced virtual class on F’, namely

[F/]Virt = p![Gl]Virt-
We list the basic properties of virtual pull-backs in [18]. The following theorems are

Theorems 4.1, 4.3, 4.4 and 4.8 respectively in [18].

Theorem 2.23 Consider a fibre diagram of Artin stacks

/

F’ G’
F G

and let us assume that & is a vector bundle stack of rank d such that (p, €) satisfies
condition (x) for p.
(i) (Push-forward) If f is a proper morphism of DM-stacks, € = [E'/E°], with
E' vector bundles on F and a € Ay (G"), then p!@f* ()= g*péa in Aj_g(F).
(ii) (Pull-back) If f is flat of relative dimension n and o € Ay (G), then p!e f*(a)
= g*pea in Agyn—da(F')
(ili) (Compatibility) If o € Ax(G'), then plor = pg* c0 in Ag_q(F').

Theorem 2.24 (Commutativity) Consider a fiber diagram of Artin stacks

F/ Gl
N
F G

Geometry & Topology, Volume 16 (2012)



Virtual push-forwards 2011

such that F’ and G’ admit stratifications by global quotients. Let us assume p and q are
morphisms of DM-type and let € and § be vector bundle stacks of rank d (respectively
e) such that (p, €) and (q, §) satisty condition (x). Then for all « € A;(G),

g5 Pe(@) = plegi(a)
in Ag_g_o(F').

Theorem 2.25 Let F admit a stratification by global quotients, let p: F — G be a
morphism and € — F be a rank—n vector bundle stack on F such that (p, €) satisfies
Condition (x). Then p!@ defines a bivariant class in A"(F — G) in the sense of
Fulton [7, Definition 17.1].

Definition 2.26 Let F —> G —> 01 be DM-type morphisms of Artin stacks. If we
are given a distinguished triangle of relative obstruction theories which are perfect in
[_ 1 s 0]
[ ] 4 [ ] L L]
p*EG/zm — EF/‘.);)T — EF/G — p*EG/m[l]

with a morphism to the distinguished triangle

P*Lgim — Lrom — Lr/g — p*Lg/mll],

then we call (E, /G Eg, e E% /9:71) a compatible triple.

Theorem 2.27 (Functoriality) Consider DM-type morphisms of Artin stacks
F—2-6—"1-m.

Let us assume p, q and qop have perfect relative obstruction theories ES, /G Eg, o
and EY, o respectively and let us denote the associated vector bundle stacks by €r/¢,
€g/m and € oy respectively. If (E;;/G, E&/im’ E}/m) is a compatible triple, then

for any o € A (9N)

(@°P) e on (@) = Pty (@i g (@)

2.2 Virtual pull-backs and algebraic equivalences

In the following we extend the definition of virtual pull-backs to groups of algebraic
equivalence classes. Groups of algebraic equivalence classes for schemes and basic
constructions such that push-forward and pull-back between groups of algebraic equiv-
alence classes are treated in [7, Chapter 10]. We will follow the ideas and notation
in [7].
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Let T be an irreducible smooth variety of dimension 7. The notation ¢: {¢t} — T will
be used to denote the inclusion of a closed point ¢ in T'. If p: F — T is given, then
we denote by F; the stack p~!(¢). Any (k 4+ m)—cycle on F determines a family of
k—cycle classes oy € Ay (F;) defined by the formula

!
o =t

If p: F — G is a morphism of stacks over T', we denote by
pe: Fr —> Gy
the induced morphism on the fibers over € T.

Definition 2.28 Let F be a DM stack. A k cycle a is algebraically equivalent to zero
if there is a nonsingular variety 7" and a cycle « € Ay, (F xT), m =dim T, and
points #;, tp € T such that

a =0 —0,

in A;(F). Two k cycles are algebraically equivalent if their difference is algebraically
equivalent to zero. The group of algebraic equivalence classes will be denoted by
By (F).

Remark 2.29 We have a natural map Z (F) — B (F) which associates to a cycle
Z its class [Z] € By (F). Definitions of rational and algebraic equivalence imply that
the above map induces a map

Clpi Ak(F) — Bk(F).
Proposition 2.30 (i) Let p: F — G be a proper morphism of stacks over T . Then

Pyt = (Px0t);
(i) Let p: F — G be a flat morphism of DM stacks over T'. Then, we have that
pia) = (p*(@)
in A(p~" (@)

Proof This is the analogue of [7, Proposition 10.1] for DM stacks. O
Corollary 2.31 (i) Let p: F — G be a proper morphism of DM stacks. Then the
following diagram commutes

Ax(F) 2> 4,(G)

clF L jClG

Bu(F) ——~ B«(G).
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Virtual push-forwards 2013

(ii) Let p: F — G be a flat morphism of stacks of relative dimension r. Then the
following diagram commutes

A4x(G) — = Ay, (F)

CIGL LCIF

B.(G) By, (F).

Dx
Proof It follows from the above Proposition. a

Lemma 2.32 Let p: F — G be a morphism of DM stacks over T. If € — F is a
vector bundle-stack which satisfies condition (x) for p, then &; satisfies condition (x)
for p; and we have that

pre, (@) = (pe@),

in A (p~!(@)).

Proposition 2.33 Let p: F — G be a morphism of DM stacks and let € — F is a
vector bundle-stack which satisfies condition (x) for p. Then we have a morphism
p!@: B« (G) — B«—,(F) which makes the diagram

Pe

A+(G) As—r(F)

clg l lclp

Bu(G) —— Buy(F)
D¢

comimute.

Proof This follows from the previous proposition. Let us sketch the proof. We have
to show that for any cycle a € A4(G) such that c/ga = 0 we have that clppla=0.
Let ¢ € A«(G) as above. By the definition of algebraic equivalence, there exists a
non-singular variety 7' of dimension m and (k+m)—dimensional subvarieties V; of
T x G, flat over T and points #{, t, € T such that
r
o= Z [V ] — [V
i=1

By Lemma 2.32 we have that

r r

Py, (Z[v,-]tj) = (p’ Z[v,-l)

i=1 i=1 L
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for j =1, 2. This shows that
r r
! ! S|
Pa= (p- Z[vi]) - (f‘ Z[vi])
i=1 I i=1 5]

Let us now analyze the right-hand side. Let WV} be cycles representing P'[Vi]. As the
pull back via #; is not influenced by components of W, which do not map dominantly
to 7" we may discard them. Let us call the resulting stacks by W;. This shows that

pla= (i[Wi])

i=1

- (i[Wi])

15} i=1 Iz

and therefore p'a is algebraically equivalent to zero. O

Remark 2.34 As Hy(G) = By(G) the above morphism
phi Bu(G) — Bu_y(F)

induces a morphism which makes the diagram

A0(G) — 25+ Ay, (F)

|

Hy(G) Ho_,(F)

1

PE

commute.

Remark 2.35 The definition of virtual pull-backs i: X — Y related to the Cartesian
diagram

X ! Y
X’ Y’

with X’ — Y’ a regular embedding and the obstruction bundle Ey /Y ‘= q* Ny /Y’
gives rise to a pull-back in homology i!EX/Y: H.(Y) > H«(X) (see Fulton [7, Chap-
ter 19]). We could not construct a similar morphism

i’EX/Y: Hy(Y) > Hy(X)

in general.

Geometry & Topology, Volume 16 (2012)



Virtual push-forwards 2015

3 Virtual push-forwards

In this section we consider a proper morphism p: F'— G of DM stacks which possess
perfect obstruction theories and we analyze the push-forward of the virtual class of
F along p. The main result of this section is a generalization of the straightforward
fact that given a morphism of schemes p: F — G, with F of dimension k; and
G irreducible of dimension k,, we have that p.(y -[F]) is a scalar multiple of the
fundamental class of G for any y € A¥1=%2(F). The main technical tool is an
analogue of the conservation of number principle in [7] in the context of virtually
smooth morphisms (see Definition 3.4 below).

Let us first formalize this idea.

Definition 3.1 Let p: FF — G be a proper morphism of stacks possessing virtual
classes [F]''" € Ay, (F) and [G]™ € Akz(G) with k1 > k, and let [G4],...,[Gs] €
Ak, (G) be irreducible cycles such that [G]""™ =[G]+---+[Gs]. Let y € A3 (F), with
k3 < ki —k, be a cohomology class. We say that p satisfies the virtual push-forward
property for [F]"'" and [G]"'™ if the following two conditions hold:

(i) If the dimension of the cycle y -[F]"'" is bigger than the virtual dimension of G
then p«(y -[F]'™) = 0.

(ii) If the dimension of the cycle y - [F]'' is equal to the virtual dimension of G
then p«(y - [FI'™) = n[G1] + - - + ng[Gy] for some ny,...,ns € Q.

We say the p satisfies the strong virtual push-forward property if moreover, the follow-
ing condition holds

(ii’) If the dimension of the cycle y - [F ]Virt is equal to the virtual dimension of G
then px(y -[F]"") is a scalar multiple of [G]I".

We say the p satisfies the strong virtual push-forward property in homology if for
any vector bundle £ on F and y = ¢, (E) € H 2k3 there exists N € Q such that
px(y - [FT") = N[G]™" € Hy, (G).

Remark 3.2 The definition of “push-forward property” appears in the work of Gath-
mann [8] with a minor difference. Gathmann says that a morphism satisfies the
push-forward property if it satisfies in our language the strong virtual push-forward
property. We prefer this terminology mainly because we would like to say that smooth
morphisms satisfy the virtual push-forward property.
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Remark 3.3 Let p: F — G be a morphism as above. If G is smooth of the expected
dimension, then p satisfies the virtual pushforward property. If G is also irreducible,
then p satisfies the strong virtual push-forward property.

Definition 3.4 Let

be a commutative diagram of DM-type morphisms of algebraic stacks, with 91 a stack

of pure dimension and let Ef, o Eg o be perfect obstruction theories to €1, €3

inducing virtual classes of dimensions k| respectively k, with ky > k,. If we have
a compatible triple (E ¥ /G Eg I E% /sm)’ such that the relative obstruction theory
EY /G is perfect and p is proper, then we call p a virtually smooth morphism.

Remark 3.5 This definition is very similar to Fantechi—Géttsche [6, Definition 3.14]
of a family of proper virtually smooth schemes. The main difference is that we do not
ask the base G to be smooth.

3.1 Virtual push-forward property

Here we find sufficient conditions for the virtual push-forward property to hold.

Lemma 3.6 Let p: F — G be a virtually smooth morphism of DM stacks and
let €g;G be the vector bundle stack associated to the obstruction theory EY, /G If
¢c = [E'/E°®] with E' vector bundles, then p satisfies the virtual push-forward

property.

Proof The proof is a reformulation of Lai’s arguments in [14, pages 9-11]. Let
¢p:=h'/h°(E*L)., €g:=h'/h°(E°G) and €p/g:=h"'/h°(E*F)c).
and let

Op: F—> €p, 0g: F — p*¢g,
OF/Gi F— GF/G and (OF/G,O(;): F— @F/G EBp*GG
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be the zero-section embeddings. Then by the definition of the virtual class we have that
[G]Vit = OYG[Cd and [F]Vt = 0!1:[¢F]- Let ¢’ = €f/¢,, . By the proof of Theorem 2.27
we have a closed embedding ¢’ — €g/ & p* &g

[FI"" = 0%, 6[€F/6]
= (0F/G.06)'[¢]
= 0gJer,c €]

where j is the embedding j: p*€g — €p/g ® p* &g and jI!V/G is the (virtual)
pull-back induced by the vector bundle stack €. Let us consider

[€]:= jép, 6[€] € Ax(p*Eq).

Let y € A*(F) be an arbitrary cohomology cycle. Then the above computation shows
that

3) y-[FM = 0gn*y - [¢]

where m: p*€g — F denotes the canonical projection. By the definition of ¢’ we
have a natural morphism ¢’ — €5 and by the definition of ¢” we have a natural
morphisms € — €' x¢,, c@p e P*Ec — €. Composing the two morphisms we
obtain a morphism of stacks

(@3] ¢ > ¢g.

Let Cé =€ Xge E and C! = € x¢,, Cé. This implies that
C' ~¢" x¢, E".

Let OIG: G — E! be the zero section embedding. By Remark 2.19 we have that
Vgt 11

5) OG[¢ ]: OG [C ]

The morphism (4) induces a morphism C! — Cé such that the diagram

Cl p*El
T
Cé E!

commutes.
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By the commutativity of the pull-back with proper push-forward in the Cartesian
diagram

F p*E!
G E!
0
and (3) we obtain that
: !

@) pay - [FI"™) = 0g ran™y - [C'].
The commutativity of diagram (6) implies
(®) re*y - [C1] =) milCgli,

where the sum is taken over all the irreducible components of Cé. By Remark 2.19
we have that [G]'"™ = (0%)' Y_[C/]i. This together with (7), (8) implies

pe(y - [FI'™) = nilG)i.
If k3 <ky—k,, then for dimensional reasons 7 *y-[C']=0, and hence p«(y-[F]''™") =

0. O

Remark 3.7 The reason why we impose Eg to be a global quotient is that push-
forwards for non-projective morphisms of Artin stacks do not exist. If p is a projective
morphism then, this condition is not necessary.

3.2 Conservation of number for virtually smooth morphisms

Let us recall Fulton’s principle of conservation of number [7, Proposition 10.2 ].

Proposition 3.8 Let p: X — Y be a proper morphism of schemes, and let Y be an m —
dimensional irreducible scheme. Let i: P — Y be a regular pointin Y, Xp = p~' P
and y be an m—dimensional cycle on X . Then the cycle classes yp :=i'y € Ao(Xp)
have the same degree.

In this section we will give a version of this principle in the situation when p: F — G
is a virtually smooth morphism.

Let us now state the conservation of number principle for virtually smooth morphisms
of DM stacks.
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Proposition 3.9 Let G be a complete connected scheme and let p: F — G be a
proper virtually smooth morphism of DM stacks (see Definition 3.4) of virtual relative
dimension d. Let i: P — G be a regular point in G and let us consider the Cartesian
diagram

Fp F
‘N
P G

where Fp is the fiber of F over P and pp: Fp — P is the map induced by p. Let E
be a vector bundle on F and y = c4(E) € H*A(F). Let [Fp]"™ € H,,(Fp) be the
class defined in Remark 2.22. Then, the number

deg(j*y - [Fp]™™)

1S constant.

Proof As Ay(P) ~ Q we have that

) pps(G*y - [Fp]™) = n[P]

for some 7 € Q. It is enough to show that i, pp, j*y -[Fp]"™ does not depend on P.
For this, we see that

(10) ix PP« (" - [FPI"™) = puju(G "y - [FpP]"™)
(11) — p*(y_j*[FP]virt)

in A«(G). By commutativity of pull-backs with projective push-forwards we have that

JuPplP]= plis[P]

in A«(F). By Corollary 2.31 we obtain the equation above for algebraic equivalence
groups. As G is a connected scheme we have that i4[P] € Hy(G) does not depend on
the smooth point P. This shows that j, pi,,[P] € H.(F) is independent of P and since
taking homology classes commutes with push-forwards and intersection with Chern
classes (see Fulton [7, Proposition 19.1.2]) we obtain that p«(y - j«[Fp]'™) € Hy(G)
is independent of P. We have thus obtained that the degree of the intersection product
j*y -[Fp]'" is equal to n for any regular P. |
Remark 3.10 Taking G to be smooth we obtain the conservation of number principle
in families of virtually smooth schemes (see Fantechi—-Géttsche [6, Definition 3.14])
which is [6, Corollary 3.16].
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Remark 3.11 The only point where we need to work with algebraic equivalence
classes is the last part of the proof of the above theorem. For any connected G we have
that Bo(G) = Q, but this is usually no longer true for the corresponding Chow group.

The proof of Proposition 3.9 implies the following statement.

Lemma 3.12 Let p: F — G be a proper virtually smooth morphism of DM stacks
with G a compact stack. Let E be a vector bundle on F and y = c4(E) € H*(F)
and let clg: Ao(G) — Hy(G) denote the natural cycle map. Then

clg (p«(y - (p'ix[P)))) € Ho(G)

does not depend on P.

Proof As in the proof of Proposition 3.9, we have that

clg (p«(y - (p'ix[P))) = nclg(ix[ P))

in Hy(G) for some n € Q. Since taking homology classes commutes with push-
forwards and intersection with Chern classes we obtain that

P(y -l (p'ix[PD) = nelg (ix[ P)
in Hy(G). By Remark 2.34 this implies that
(12) P+(y - (p'clG (s P)) = nelg (i+[P)).

in Hy(G). Let us show that the left hand side of equation (12) does not depend
on the point P. Let Q be any other point of G. As G is connected we have that
[Q] = r[P] € Hy(G) for some r € Q*. By linearity of pull-backs and push-forwards
we obtain that

Py - (Pis[OD) = rp«(y - (p'is[P])
= rnix[P]

= nix[Q].

This completes the proof. O

3.3 Strong virtual push-forward property

Here we find sufficient conditions for the strong virtual push-forward property to hold.
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Theorem 3.13 Let p: F — G be a proper virtually smooth morphism of DM stacks
and let €/ be the vector bundle stack associated to the obstruction theory E /G If
€F /¢ is isomorphic to a global quotient of vector bundles [E 1/E®] and G is connected,
then p satisfies the strong virtual push-forward property in homology.

Proof By Lemma 3.6 we have that
(13) Py IFI"™) = m[Gil + -+ ns[Gs]
for some ny,...,ng € Q and [Gy],...,[Gs] € Ak,(G) such that Gy,..., Gy are
irreducible and such that
[G]"™ =[G1]+ -+ +[Gs].

We are left to show that all the n;’s are equal. Let my,...,mg be the geometric
multiplicity of Gy, ..., Gs. Then [G]V" = mi[G|]+ -+ ms[G(], where Gj is the
reduced stack associated to G; and therefore [C'] = Y";_; m;[C/], where C! :=
CF/cg, - By equation (7) we have that py(y - [FI) = (0L ) rer*y - (3252, milCH)).
With this we have shown that it is enough to show the statement for G reduced.

Let us consider the Cartesian diagram

Fp— ) . F
(14) ppt lp
P G

i
where P is a general point in G and Fp is the fiber of p over P. As G is reduced

we may assume that P is a smooth point and therefore 7 is a regular embedding. By
the commutativity of pull-backs with proper push-forwards we have that

Ppa(y -[FI") = ' (pa(y - [FI™)).
Equation (13) implies pp,(i'(y - [F]'")) = i' > ; ni[Gi]. Without loss of generality
we may assume that P is a point of G{. With this we obtain that
(15) ppa(i*y i [FI™) = ny[P).
On the other hand by the commutativity of pull-backs we have that
(16) i''IGI™ = ppi'[G]™ = pplP).

By the functoriality property of pull-backs we have that

!

(17) l'p'[G]Vlrt — i.[F]Virt.
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Equations (15), (16) and (17) imply that

(18) pp (v - (pp[P)) = ni[P].

Pushing forward (18) via i and using that push-forwards commute with pull-backs we
obtain

P+(y - (P'ix[P)) = myis[ P]
in Ag(G). Passing to homology groups and using Lemma 3.12 we obtain that n; does
not depend on P. This completes the proof. O

Proposition 3.14 Let us consider a commutative diagram
p
F G

My —F— M

where
(1) p is a morphism of smooth stacks
(2) the vertical arrows have (relative) perfect obstruction theories E¢, E,

(3) we have a morphism ¢: p* E, — E. such that the diagram

P*Ey E.
P*Lv L,

is commutative and the cone of ¢ is a perfect complex.

Then, p satistfies the virtual push-forward property. If moreover G is connected, the p
satisfies the strong virtual push-forward property in homology.

Proof The morphism obtained from the following composition
E—1]— L[—1]— €* Loy,
can be completed to a triangle
EJ-1]—€*Loyn, > Ep — E.,
and by [18] EF is an obstruction theory for F'. Similarly we have a triangle

E,[-1]—>v*Loy, > Eg — E,.
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By the fact that we have a natural morphism p* Loy, — Loy, and the axioms of
triangulated categories we obtain a morphism p* Eg — Er. We denote the cone of
this morphism by £, and by [18] we see that E}, is an obstruction theory for p. By
the octahedron axiom we obtain that the triangle

(19) €Ly — Ep,—> F—e*L,[1]

is distinguished (see the Stacks Project [5, Proposition 4.21] for a complete proof).
From the long exact sequence in cohomology and the fact that 2#=2(F) = 0 we obtain
that E), is a perfect obstruction theory for the morphism p. This shows that we can
apply Theorem 3.13 to the composition of morphisms

P v
F—-G—MM,. O

Corollary 3.15 Let us consider a Cartesian diagram of stacks

J

F’ F
G’ G

1

such that p is a virtually smooth morphism of DM stacks, G is connected G’ admits
a virtual class [G']"'™, then q satisfies the strong virtual push-forward property in
homology for [F']" := p'[G']"' (see Remark 2.22) and [G']"™.

Proof Let E be a vector bundle on F and y = ¢;(E) with i as in Theorem 3.13. By
Lemma 3.6 we have that

s (]*V X [F/]virt) — nl[G/]\I/irt 4ot nS[G/];/irt
for some ny,...,ns € Q. We have to show that all »;’s are equal.

As in the proof of the theorem we may assume that G and G’ are reduced. Let us
consider the Cartesian diagram

jp

Fp F' F
QP\ QL P‘
P G’ G

i
where P is any closed point. Then, by Theorem 3.13, we have that
pi(y - [FI"™) = n[G]"™
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for some n € Q. Also, by the proof of 3.13, we have that
qaps(j*jpy -[Fp]"™) = n[P].

Looking now at the diagram on the left, and assuming that P is a smooth point of G’
we obtain the following by Theorem 2.23

4= ¥y -[F'T") = qp (v - [FpI'™).

As G’ is reduced, we have that the generic point is smooth and hence the above equation
holds for a dense open subset of G’. Combining this equation with the previous, we
obtain that ¢« (j*y -[F']') = n[G']"™. O

4 Applications

4.1 Virtual Euler characteristics in virtually smooth families

As a consequence of the conservation of number principle we give a proof of the
fact that the virtual Euler characteristic is constant in virtually smooth families (see
Definition 3.4). This statement is a generalization of [6, Proposition 4.14] of Fantechi
and Géttsche.

Definition 4.1 Let p: FF — G be a morphism of proper stacks with a perfect ob-
struction theory Eg; which admits a global resolution of Er/g as a complex of
vector bundles [E' — E°] (for example, if F can be embedded as closed substack in a
separated stack which is smooth over G'.) We denote by [Eg — E] the dual complex
and by d the expected dimension d :=1k Efp/g =1k E O _rk E'. We denote the class
[Eo]—[E1]e K°(F) by T IY"I;TG and we call it the virtual relative tangent of f.
Definition 4.2 Let F' be a proper DM stack with a perfect obstruction theory. We
define the relative virtual Euler characteristic of F' to be the top virtual Chern number
evirt(F) = deg(cd(TI‘;m) . [F]Virt) .

Remark 4.3 The definition is consistent with [6, Definition 4.2] by the Hopf Index
Theorem [6, Corollary 4.8].

Proposition 4.4 Let G be a connected stack of pure dimension and let p: F — G
be a morphism of stacks with E g/ a perfect obstruction theory for p. Then, all the

fibers of p have the same virtual Euler characteristic.

Proof We use Proposition 3.9 with o := cd(TI?i;‘(;). ]
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Remark 4.5 Taking G to be smooth we obtain that the virtual Euler characteristic
is constant in a family of virtually smooth schemes. This is a different proof of [6,
Proposition 4.14].

4.2 Virtual push-forward and Gromov-Witten invariants

We briefly recall moduli spaces of stable maps and the construction of their virtual
classes. We prove relations between virtual classes of moduli spaces of maps to X and
Y, where X — Y is a smooth fibration.

The standard obstruction theory for the moduli space of stable maps Let us fix
notations. Let X be a smooth projective variety and 8 € A{(X) a homology class of a
curve in X . We denote by M. «,n(X, B) the moduli space of stable genus—g, n—pointed
maps to X of homology class B and by 9, ,, the Artin stack of prestable curves. Let

be the morphism that forgets the map (and does not stabilize the pointed curve) and

T Mg,n—i—l (X.B) — Mg,n(X, B)

the morphism that forgets the last marked point and stabilizes the result. Then it is a
well-known fact that

E = (R*nx,evy Tx)"

Mg n(X,B)/Mg.n

defines an obstruction theory for the morphism €y, where evy indicates the evaluation
map at the last marked point evy: M ,41(X, ) — X (see Behrend [1]). We call

[Mg,n (X, ﬂ)]vm = (EX)!@Mg’ [Sﬁg,n]

n(X.B8)/Mg.n

the virtual class of ]Wg,,, (X, B).

Remark 4.6 Let p: X — Y be a morphism of smooth algebraic varieties. Let
B € Hy(X) and g, n be any natural numbers such that

e cither g > 2
e org<2and p«sf#0

e org=1, psf=0and n>1,either g =0, p«f =0 and n> 3.
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Then p induces a morphism of stacks

7t Mg n(X, B) —> Mg (Y, p«f)
(é,xl,...,xn,f)|—> (C,xl,...,xn,pof)

where C is obtain by C by contracting the unstable components of f := po f .

Convention 4.7 For simplicity, we will denote obstruction theories of a morphism
p: F— G by E,. For example, we will write E¢, instead of EJ.VIg,n(X,ﬂ)/Dﬁg,n'

Convention 4.8 In the following, every time we write

p: Mg,n(Xa B) — Mg,n(Y» P«B)

we will assume that M ¢.n(Y, p«B) is non-empty.

Costello’s construction In the following we use a construction of Costello [4, Sec-
tion 2]. Let us shortly present how his construction applies to our case. In [4, Section 2],
Costello introduces an Artin stack 9, ,, g, where B is an additional labeling of each
irreducible components of a marked curve of genus g by the elements of a semigroup.
We will take this semigroup to be H,(X), for some smooth variety X . In [4] it is
shown that the forgetful map My , g — My , is €tale and that the natural forgetful
map
ex: Mgn(X,B) — Mgn

factors through ey g: M, ¢.n(X, B)— M, , . Therefore, the perfect relative obstruction
theory of Mg,n (X, B) = Mg

(R*myxevy Tx)"

is also a relative obstruction theory of the morphism €y g. We thus obtain a virtual
class ([Z\Zg,n (X, By = 1", ﬁ[zmg,,,,,g]. It can be easily seen that

([Mg,n (X, IB)]ViIT)/ — [Mg,n (X, ﬂ)]Virt~

This construction has the advantage that for a given map p: X — Y we have a
commutative diagram

€X.8

Mgn(X,B)
(20) El qu

Mg (Y, p«B) “erois Men,p.B

Mg n,p
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where 1/ (C) contracts the unstable components C; such that the label §; satisfies
pxPBi = 0 and changes the label on each irreducible component by p. ;.
Proposition 4.9 If p: X — Y is a smooth morphism, then p induces a morphism
—X L] °
P pe e B /e

whose cone is a perfect complex concentrated in [—1, 0].

Proof By the discussion in the above paragraph we have that

[Mgn(X. B = €y 4[Mg n.p]

and similarly
[Mg,n (Ya p* 13)]\/11‘t = E!Y,p*ﬂ[ngan,p* ﬂ]

Let us consider the following exact sequence
Tx)y = Tx — p*Ty
and let us look at the induced distinguished triangle
1) R°meevy Txyy — Remsevy Ty — Remsevy p*Ty — Rmyevy Tx,y[l].

By cohomology and base change we have that R*mxevy p*Ty >~ p*R*mxevy Ty . In
the notation of the beginning of the section we can rewrite triangle (21) as

(22) P Ecy s = Eex s = (R°aevy Ty y)” — p*Eey . 5011
Let us note that all complexes are perfect. This shows the claim. a
Proposition 4.10 Let p: X — P" be a smooth morphism. If p has positive virtual

relative dimension, then p: Mg,n (X,B8) —> Mg,n (P”, p«B) satisfies the strong push-
forward property in homology.

Proof By Kim-Pandharipande [11] M on(P7, p«B) is connected, and p satisfies the
strong virtual push-forward property by Proposition 3.14. a

Proposition 4.11 Let L1,..., Ly be very ample line bundles on a smooth projective
variety X and let us consider a projective bundle p: Px (& L;) — X . Then the induced
morphism p: Mg,,, (Px (L), B) — Mg,n (X, p«PB) satisties the strong push-forward
property in homology.
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Proof Let us consider j;: X — P’i to be the embedding of X into a projective space
induced by the line bundle L;. Then we have a Cartesian diagram

Py (®L;) Pprix...xprs (©O(1))

|

P71 .. x P7s

X

J1XeX js

The conclusion follows by the above proposition and Corollary 3.15. |

4.3 Stable maps and stable quotients

In this section we want to analyze the push forward of the virtual class of the moduli
space of stable maps Mg ,(G(1,7),d) along the morphism

C: Mg,n(G(l, r)v d) - Qg,n(G(l’ r)? d)
which was introduced by Marian, Oprea and Pandharipande [19]. Let us briefly recall

the basic definitions.

Stable quotients Let (6 , P1»---, Pn) be a nodal curve of genus g with n distinct
markings which are different from the nodes. A quotient on C

0— S —> Ogr BN 0—0
is called quasi-stable if Q is locally free at nodes or markings. Let k be the rank of
S. A quotient (C, py,..., pn,q) is called stable if

wa(p1+ -+ pn) ® (N SV)E
is ample on C for every strictly positive € € Q.
Remark 4.12 The space of stable quotients O en(G(k,r),d) is another compactifi-
cation of the space of genus g curves (with » markings) in the Grassmannian G (k,r).

This can be easily seen from the unjversal property of the tautological sequence on the
Grassmannian: to give a curve C—G (k, r) is equivalent to giving a quotient

0—>i*S—>(’)eC9r—>i*Q—>0,

where
0->S—>0% 50-0

is the tautological sequence on the Grassmannian.
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4.3.1 Obstruction theory As the moduli space of stable maps, the moduli space of
stable quotients Qg 2(G(k,r),d) has a morphism €g: Qg n(G(k,r),d) — Mgy to
the Artin stack of nodal curves. Let mg: CQ — Qg n(G(k,r),d) be the universal
curve over Qg,n(G(k r),d) and let

~ P ~
0—>SQ—>(95;—>QQ—>O
be the universal sequence on é\Q. Then the complex

ES, Gry.dym = RToR Hom(Sg. Qp)

is a dual obstruction theory relative to €g. We call

[Qg n(Gk,r), d)"™ = (EQ)@an((nu( . d)/zm[gﬁg’n]

the virtual class of Qg,,, (G(k,r),d).

Moduli of bundles over prestable curves Let Bung ,(k,d)(B) be the category
whose objects are pairs (C,S), where

e (C — B is a family of prestable curves of genus g with n sections

e S is a vector bundle of rank £ and degree —d .

Isomorphisms: An isomorphism
¢: (C.8) — (C,S)
is an automorphism of curves
¢:C—C

such that

(1) ¢(pi) = p; forall i, and
2) ¢*8'=S

By Lieblich [17] we have that coherent sheaves on I, ,, 11 over Mg, form an
Artin stack Cohgy,, .\ /m, - It can be easily seen that Bung ,(k,d) is a substack
of Cohgy, . /m,,- Let S denote the universal bundle on the universal curve on
Bung ,(k,d). We will also consider moduli spaces of vector bundles on curves with
stability conditions as follows.
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Construction 4.13 Let € > 0 be fixed real number. Let %unz,’ .k, d) be the substack
of Bung ,(k,d) such that the line bundle

23) (s @o( Y m)

is ample. As ampleness is an open condition, ’Bunz,,n (k,d) is an open substack of
Bung ,(k,d).

Remark 4.14 Let
¢: Bung (k,d) — Mg p

be the morphism which forgets the bundle. The morphism ¢ is smooth as the relative
obstruction in a point (C, S) is

Ext:(S,S) = 0.
This shows that Bung ,(k, d) is smooth of pure dimension
Ext!(S,S)—Ext’(S,S)+3g—3+n=k(g—1)—deg(S®SY)+3g—3+n
=k*(g—1)+3g—3+n.

Lemma 4.15 Let C be the universal curve over ‘Bung a(k.,d). Then there exists a
rational tail free curve C and a projection p: C — C over ‘Bung 2k, d).

Proof Let 7: C — B,S be the tautological bundle on the tautological curve of
Bun, ¢ »(k,d). On each irreducible component of the locus consisting of rational tails
the restriction of AKSY has positive degree a. Set

L=k @a0( Y )"

where the tensor product runs over all the values of a. As (AKSV)®€ @ w (Y pi) is
ample and there are no markings on the rational tails we have that £ is trivial on the
locus consisting of rational tails and 7 relatively ample on the complement of this
locus. This shows that £ is base point free for a sufficiently large m. Let

C = Proj @, £™.

As £m is m-relatively base point free it determines a morphism p: C — C. We have
that C — B is a family of genus g curves and as iBun n(k,d) is reduced, we obtain
that C is flat over iBung’n(k, d). |

Geometry & Topology, Volume 16 (2012)



Virtual push-forwards 2031

Obstruction theories relative to moduli spaces of bundles In the following we de-
fine obstruction theories relative to Bung ,(k,d). Let mpr: Cpr — Mg n(G(k, 1), d)
be the universal curve over Mg ,(G(k,r),d). Let

(24) 0> Sy — 0% > Q) —0

on Cps be the pull back of the tautological sequence on G (k, r) under the evaluation
morphism ev,41: Cpr — G(k,r). The map

var: Mg n(G(k,r),d) — Bung »(k, d)

induces a morphism between cotangent complexes and thus we obtain a distinguished
triangle

Vi Lsung ned) = L iz, @ kr).d) = L by (@ (Kor).d) [Bung hd)
Tensoring (24) with 81\\//1 we obtain an exact sequence
0—> Sy RSy — (Sy)® - o @Sy, —0
which induces a distinguished triangle
R*7pr 4 (Sy))®" — R*7pr,Qur ® Sy — R*mar Sy @ Sygll]-
By the cohomology and base change theorem we obtain that
Vs Tsung o (k.d) = R* M Sm ® Spy[1]-
This shows that we have the commutative diagram

P

T3, o(G (k1)) Bung.n eod) My (G esr).d) o

J |

Rmar+(Syp)®" R*mpr 4+ Qum ®Syy

R7pr « S @Sy 1]
and therefore R®mpys, (S]\Q)@’ is a dual relative obstruction theory for vy .
SY

In a completely analogous manner we obtain that R®w M*( Q)®’ is a dual relative

obstruction theory for vg.
4.3.2 Comparison between virtual fundamental classes

Proposition 4.16 When k =1 there exists a map
C: Mg,n(G(la r)’ d) - Qg,n(G(L r)’ d)

extending the isomorphism on smooth curves.
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Proof This has been proved by Marian, Oprea and Pandharipande [19] and a similar
situation appears in Popa—Roth [21]. Let us shortly sketch the proof. Let (7¢, f): C —
B x G(1,r) be a family of stable maps to G(1,r). By Remark 4.12, this comes with
an exact sequence

0= f*S— 0% — f*9—o.

Let 7z C — B, be the family of curves gbtained by contracting all rational trees
with no marked points and let p: C — C be the contracting morphism. In the
following, we will give a canonical way to associate a quasi-stable quotient to the
family 7z. Let D C Mg 541 be the divisor whose general point is a nodal curve
with one irreducible rational curve attached in one point to a genus g curve. Let
OIVIg,nH(G(l,r),d)(E) = €3,00m, .4, (D). The line bundle Oﬂg,Hl(G(l,r),d)(E)
has degree —1 when restricted to the general fiber of the induced map from E to
Mg,n (G(1,r),d) (see Popa—Roth [21]). We attach the weight § to such an E if the
degree of S restricted to the general fiber in D is —§. We consider the bundle

S =S ®s O(—8Es)

where the tensor product is taken over all possible § and all Eg which satisfy the
condition above. Then &’ is trivial along the rational tails and it can be showed that
S = pxS’ is a stable quotient. O

Remark 4.17 Let (C,Xx1,...,xy, f) be a stable map to G(1,n), C be the curve
obtained by contracting the rational tails of C and x; the points on C where the
rational trees glue to C. Let S! be the restriction of S to C. The map ¢ associates to
amap f: C — G(1,n), the curve C and the exact sequence

0—>S1(—Zd,~xi)—>(9’é—>/Q\—>0,

where d; is the degree of f on the tree C;.

Remark 4.18 It can be easily seen that we have a commutative diagram with the
right-down square Cartesian

(25

Lno

Mgn(G(L,1r).d) — Qgun(G(1,1),d)
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with p: Cpr — 5M be the morphism which contracts rational tails. The proof of
Proposition 4.16 shows that ¢'*Sg = p«Sy(—8E) which is equivalent to ¢’*S8), =
P«Sy;(8E). This shows that we have a natural morphism

p: p*(S]\(,I) — c/*é\é.
Lemma 4.19 The morphism
pr px(Syp) = "8
on Mg,n (G(k,r),d) induces a morphism
Rmar(Syp)® — " R°mo, (S3) "
Proof From the commutativity of diagram (25) we have that
(26) R°7pr4Syy = R*(1 0 p)«Syy-
Using now cohomology and base change in diagram (25) we obtain that
27) c*R°70, S} ~ R*tuc* S,
By (26) and (27) we see that p: p«(Sy;) — ¢’ *gé induces a morphism
Rmar(Syp)® = " R°mg, (S3) " O
Lemma 4.20 Let F be the cone of the morphism
R'JTM*(S]\(,I)EW — c*R'nQ*(S\é)@r.
Then, F is a perfect complex.

Proof Let us consider
f(Cox1,...,xn) > G

a stable map, p: C — C the morphism contracting the rational tails and let pq, ..., ps
be the gluing points of the rational tails with the rest of the curve. We need to show
that the morphism

H'(C, f*SY)y— H'(C.5Y)
is surjective. By the definition of S we have that

HY(C,5Y) ~ H1(6,5V|5(Zdip,~)).

Since
H'(C., f*SY)~ H'(C. f*SY|z)
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we need to show that
H'(C, /*S|5) —>H1(6, f*SV|5(Zd,~p,~))

is surjective. As the quotient of the morphism f*SV|s — f*SV|a(X_dipi) is
supported on the points p;, it has no higher cohomology. This shows that the above
morphism is surjective. |

Proposition 4.21 We have that
k[ Mg n(@G(1,0), d)]"™ = [Qgn(G(1,n),d)]"™.
Proof We fix € > 2. Let us consider the following commutative diagram
Mg n(G(1,n),d) —— Q¢ n(G(1,n),d)

28) VMl lvg
Bung ,(1,d) Bung ,(1,d)

where p is the map contracting the rational tails.

As c is surjective and Mg,n (G(1,r),d) is connected, we get that Qg,n(G(l, r),d) is
connected. By Proposition 3.14, Lemma 4.19 and Lemma 4.20 we obtain that there
exists N € Q such that

C*[Mg,n(G(l,r),d)]Virt — N[Qg’n((@(l,r)’d)]virt.

As the ]Wg,n(G(l, r),d) and Z\Yg,n(G(l, r),d) are isomorphic on an open set and
have compatible obstruction theories we have that N = 1. a
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