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Virtual push-forwards

CRISTINA MANOLACHE

Let pW F !G be a morphism of DM stacks of positive virtual relative dimension k

and let  2Ak.F / . We give sufficient conditions for p�. � ŒF �
virt/ to be a multiple

of ŒG�virt . We show an analogue of the conservation of number for virtually smooth
families. We show implications to Gromov–Witten invariants and give a new proof
of a theorem of Marian, Oprea and Pandharipande [19] which compares the virtual
classes of moduli spaces of stable maps and moduli spaces of stable quotients.

14C17; 14N35

1 Introduction

Virtual fundamental classes have been introduced by Li–Tian [16] and Behrend–
Fantechi [2] and in the past fifteen years have become a useful tool when one has to
deal with badly behaved (that is, singular, with several components of possibly different
dimensions) moduli spaces. One of the main problems when working with virtual
fundamental classes is that in certain situations they fail to behave as fundamental
classes do. One easy example is the following. Let pW F !G be a finite morphism of
DM stacks and suppose that F and G have pure dimension. Let G1; : : : ;Gs denote
the irreducible components of G . Then we have that

p�ŒF �D n1ŒG1�C � � �C ns ŒGs �

for some n1; : : : ; ns 2 Q. On the contrary, given a morphism pW F ! G of stacks
which possess virtual classes of the same virtual dimension, we have no reasons to
believe that the following relation holds

p�ŒF �
virt
D n1ŒG1�C � � �C ns ŒGs �;

where G1; : : : ;Gs are cycles on G such that ŒG�virt D ŒG1�C � � �C ŒGs �.

In this paper we find sufficient conditions for the above condition to hold. More
generally, let pW F !G be a morphism of DM stacks which possess virtual classes of
dimension k1 respectively k2 such that k WD k1� k2 � 0. We say that p satisfies the
virtual push-forward property if for any  2Ak.F /we have that

p�. � ŒF �
virt/D n1ŒG1�C � � �C ns ŒGs �
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2004 Cristina Manolache

for some ŒG1�; : : : ; ŒGs � such that ŒG�virtD ŒG1�C� � �C ŒGs � and some n1; : : : ; ns 2Q.
If moreover, the push-forward of  � ŒF �virt along p is equal to a scalar multiple of the
virtual class of G we say that p satisfies the strong virtual push-forward property. The
main result (see Theorem 3.13) of this paper is the following.

Theorem Let pW F !G be a proper morphism of Deligne–Mumford stacks which
possess perfect obstruction theories E�

F
and E�

G
. If p has a perfect relative obstruction

theory compatible with E�
F

and E�
G

and G is connected, then p satisfies the strong
virtual push-forward property in homology.

In Section 2 we list the main notions and results needed in the rest of the paper. We
review obstruction theories, normal cones and virtual pull-backs for Chow groups in
Manolache [18]. We generalize the construction of virtual pull-backs to groups of
algebraic equivalence classes. This is a key ingredient in the proof of the conservation
number principle for virtually smooth morphisms (see Definition 3.4).

In Section 3 we first show the virtual push-forward property (see Lemma 3.6). The
proof uses arguments present in Lai [14] and the functoriality property of virtual cycles
in Kim–Kresch–Pantev [10]. We prove an analogue of the conservation of number
principle (see Fulton [7]) for virtually smooth morphisms. This is achieved by passing
to groups of algebraic equivalence classes. The strong virtual push-forward property is
a consequence of the push forward property, the properties of virtual pull-backs for
algebraic equivalence classes and the conservation of number principle. The relative
version of the strong virtual push-forward property (Proposition 3.14) is a generalization
of Costello’s virtual push-forward property in [4].

In Section 4 we prove applications of the main results in Section 3. More precisely, we

� show that the virtual Euler characteristic is locally constant in virtually smooth
families; this is a consequence of the conservation of number principle for
virtually smooth morphisms;

� study the relation between virtual classes of moduli spaces of stable maps
xpW SMg;n.X; ˇ/! SMg;n.Y;p�ˇ/ where xp is the morphism induced by a smooth
fibration pW X ! Y ;

� give a new proof to a theorem of Marian, Oprea, Pandharipande [19] which
compares the virtual classes of moduli spaces of stable maps to projective spaces
and moduli spaces of stable quotients.
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Relation to other work The definition of the (strong) virtual push-forward property
was introduced by A Gathmann [8] who studied the relation between the virtual push-
forward property for the natural map between the moduli space of stable maps to the
projectivization of a split rank two bundle V ! X and the moduli space of stable
maps to X . His computation uses localization and it is rather involved. A similar
result appears in a work of B Kim [9], who compares a certain intersection product
on the moduli space of stable maps to the projectivization of a split bundle over a
variety X to the virtual class of the moduli space of stable maps to X . Kim’s proof
also uses localization. Our virtual push-forward theorem was inspired by these results,
but the nature of the proof is completely different. Our proof relies on the functoriality
property of virtual cycles of Kim, Kresch and Pantev [10] and the properties of virtual
pull-backs (see Manolache [18]). Methods similar to ours appear in [14], where H-
H Lai analyzes the map between the moduli space of stable maps to a certain blow-up
and the moduli space of stable maps to the base variety. Our Lemma 3.6 is a slight
generalization of Lai’s results. The relative version of the (strong) virtual push-forward
theorem is a generalization of Costello’s push-forward formula for virtual cycles [4].
The applications of these results generalize several previous results as follows. The
conservation of virtual characteristics for virtually smooth morphisms generalizes
results of Fantechi and Göttsche in [6]. The relation between moduli spaces of stable
maps to projective bundles on some variety X and moduli spaces of stable maps to
X have been studied by Gathmann under very restrictive hypothesis. The relation
between moduli spaces of stable quotients and moduli spaces of stable maps has been
studied by Popa [21], Marian, Oprea and Pandharipande [19] and Toda [22]. Relations
between virtual classes have been proved in [19] and [22] by localization techniques.
We give a unified approach to these results.

Notation and conventions We take the ground field to be C . An Artin stack is an
algebraic stack in the sense of Laumon and Moret-Bailly [15] of locally finite type
over the ground field. Deligne–Mumford stacks will be called in short DM-stacks.
Unless otherwise specified we will try to respect the following convention: we will
usually denote schemes by X , Y , Z , etc, Deligne–Mumford stacks by F , G , H , etc.
and Artin stacks for which we know that they are not Deligne–Mumford stacks (such
as the moduli space of genus–g prestable curves or vector bundle stacks) by gothic
letters Mg , E, F, etc. By a commutative diagram of stacks we mean a 2–commutative
diagram of stacks and by a Cartesian diagram of stacks we mean a 2–Cartesian diagram
of stacks. Chow groups for schemes are defined in the sense of Fulton [7]; this
definition has been extended to DM stacks (with Q–coefficients) by Vistoli [23] and
to algebraic stacks (with Z–coefficients) by Kresch [12]. We will consider Chow
groups (of schemes/stacks) with Q–coefficients. By homology we mean Borel–Moore
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homology (see the Appendix in Coates [3] for a definition for DM stacks). As in most
applications we will consider compact stacks this will coincide with singular homology.
For a fixed stack F we denote by DF the derived category of coherent OF modules.
For a fixed stack F we denote by LF its cotangent complex defined in Olsson [20].

Acknowledgements I owe the main statement of this paper to Barbara Fantechi and
Angelo Vistoli who had suggested to work with homology groups, rather than Chow
groups. I am very grateful to Carel Faber, Ionuţ Ciocan-Fontanine, Gavril Farkas and
Yuan-Pin Lee for several useful discussions and suggestions. I would also like to thank
Ionuţ Ciocan-Fontanine for making the manuscript of Kim [9] available to me and the
referee for many useful comments. I was supported by ENIGMA MRTN-CT-2004-5652
and SFB 647.

2 Virtual pull-backs

2.1 Preliminaries

We shortly review obstruction theories, normal cones to DM-type morphisms and
virtual pull-backs. We refer to Behrend–Fantechi [2] for a more complete treatment
of cone stacks and obstruction theories and to Manolache [18] for normal cones and
virtual pull-backs.

2.1.1 Obstruction theories

Definition 2.1 Let E� 2 D�0
F

. E� is said to be of perfect amplitude if there exists
n � 0 such that E� is locally isomorphic to ŒE�n ! � � � ! E0�, where for all
i 2 f�n; : : : ; 0g, Ei is a locally free sheaf.

Definition 2.2 Let E� 2 D�0
F

. Then a homomorphism ˆW E� ! L�
F

in D�0
F

is
called an obstruction theory if h0.ˆ/ is an isomorphism and h�1.ˆ/ is surjective. If
moreover, E� is of perfect amplitude, then E� is called a perfect obstruction theory.

Convention 2.3 Unless otherwise stated by a perfect obstruction theory we will always
mean of perfect amplitude contained in Œ�1; 0�.

2.1.2 Normal cones to DM-type morphisms

Definition 2.4 A morphism pW F!G of Artin stacks is called of Deligne–Mumford
type (or shortly of DM-type) if for any morphism V !G , with V a scheme, F �G V

is a Deligne–Mumford stack.
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Definition 2.5 Let X be a scheme and F be a coherent sheaf on X . We call C.F/ WD
SpecSym.F/ an abelian cone over X .

As described in Behrend–Fantechi [2, Section 1], every abelian cone C.F/ has a
section 0W X ! C.F/ and an A1 –action.

Definition 2.6 An A1 –invariant closed subscheme of C.F/ that contains the zero
section is called a cone over X .

Similarly, in [2, Section 1] Behrend and Fantechi define abelian cone stacks and cone
stacks. The following definition of cone-stacks is slightly different from the one in [2].

Definition 2.7 Let F be a stack and let E� be an element in D�0
F

. We call the stack
quotient h1=h0.E�_/ (in the sense of [2, Section 2]) an abelian cone stack over stack
F . If E� is of perfect amplitude contained in [-1,0], then we call the stack quotient
h1=h0.E�_/ a vector bundle stack.

A cone stack is a closed substack of an abelian cone stack invariant under the action of
A1 and containing the zero section.

Convention 2.8 From now on, unless otherwise stated, by cones we will mean cone-
stacks.

Example 2.9 (i) Let i W X ! Y be a closed embedding of schemes. If I denotes
the ideal sheaf of X in Y , then NX=Y D SpecSym I=I2 is called the normal
sheaf of X in Y and CX=Y WD Spec˚k�0 Ik=IkC1 ,! NX=Y is called the
normal cone of X in Y .

(ii) If f W F ! G is a local immersion of DM-stacks, then Vistoli defines (see
Vistoli [23, Definition 1.20]) the normal cone to f as described below. Let us
consider a commutative diagram

(1)

F G
f

//

U

F
��

U V
zf // V

G
��

with U and V schemes, the upper horizontal arrow a closed immersion and the
vertical arrows étale. Then CF=G is the cone obtained by descent from CU=V .

Note that CF=G ,!NF=G D SpecSym h�1.LF=G/.

Geometry & Topology, Volume 16 (2012)



2008 Cristina Manolache

Definition 2.10 Let pW F !G be a DM-type morphism and let LF=G 2D�0.OF /

be the cotangent complex of p . Then we denote the stack

h1=h0.L_F=G/ WD h1=h0.�Œ0;1�.L
_
F=G//

(see Behrend–Fantechi [2]) by NF=G and we call it the normal sheaf of p .

Proposition 2.11 (Behrend–Fantechi [2]) Let us consider diagram (1) with F a
Deligne–Mumford stack, the upper horizontal arrow a closed immersion, U ! F an
étale morphism and V !G a smooth morphism. Then for any U and V as above, there
exists a unique cone-stack CF=G �NF=G such that CF=G �F U D ŒCU=V = zf

�TV =G �.

Definition 2.12 We call CF=G the normal cone to p .

2.1.3 Virtual pull-backs in Chow groups In the following we recall the main results
in Manolache [18].

Condition 2.13 We say that a morphism pW F!G of Artin stacks and a vector bundle
stack E! F satisfy condition .?/ if we have fixed a closed embedding CF=G ,! E.

Convention 2.14 We say in short that the pair .p;E/ satisfies condition .?/.

Remark 2.15 Let us consider a Cartesian diagram

F G
p

//

F 0

F

f

��

F 0 G0// G0

G

g

��

If E is a vector bundle on F such that CF=G ,! E is a closed embedding, then
CF 0=G0 ,! f �E is a closed embedding.

Construction 2.16 Let F be a DM stack and E a vector bundle stack of (virtual)
rank n on F such that .p;E/ satisfies condition .?/. We construct a pull-back map
p!
EW A�.G/!A��n.F / as the composition

A�.G/
�
�!A�.CF=G/

i�
�!A�.E/

s�

�!A��n.F /;

where

(1) � is defined at the level of cycles by �
�P

ni ŒVi �
�
D
P

ni

�
CVi�GF=Vi

�
,

(2) i� is the push-forward via the closed immersion i ,
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Virtual push-forwards 2009

(3) s� is the morphism of Kresch [13, Proposition 5.3.2].

The fact that � is well defined has been checked in [18].

Definition 2.17 In the notation above, we call p!
EW A�.G/! A�.F / a virtual pull-

back. When there is no risk of confusion we will omit the index.

Remark 2.18 Let us consider a Cartesian diagram

F 0
q //

f

��

G0

g

��
F

p // G

and let E be a vector bundle stack of (virtual) rank n on F such that .p;E/ satisfies con-
dition .?/. Then, by Remark 2.15 q; f �E satisfies condition .?/. By Construction 2.16
we obtain morphism p!

EW A�.G
0/!A��n.F

0/.

Remark 2.19 Let pW F !G be a morphism of stacks and let E be a vector bundle
stack such that .p;E/ that satisfies condition .?/ for p . Suppose that ED ŒE1=E0�,
where Ei are vector bundles on F . Let 0W F ! E and 0W F ! E1 be the zero
section embeddings. Let CF=G be the normal cone of p and let C D CF=G �E E1 .
Then the closed embedding CF=G ! E induces a closed embedding C !E1 . The
commutativity of pull-backs applied to the commutative diagram

(2) F
0 //

��

E1

��
F

0 //// E

implies that
0!
EŒCF=G �D 0!

E1 ŒC �:

Proposition 2.20 (Manolache [18, Proposition 3.11]) If F
p
�! G is a DM-type

morphism and there exists a perfect relative obstruction theory E�
F=G

, then condition
.?/ is fulfilled.

Conversely, if F
p
�!G is a morphism that satisfies condition .?/, then there exists a

perfect obstruction theory E�
F=G
! LF=G such that E D h1=h0

�
E�

F=G
_
�

which is
unique up to quasi-isomorphism.
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Remark 2.21 If F
p
�! G is a DM-type morphism such that there exists a perfect

relative obstruction theory E�
F=G

and G is a stack of pure dimension, then p!
E�

F=G

.ŒG�/

is a virtual class of F in the sense of Behrend–Fantechi [2].

Remark 2.22 Let us consider a Cartesian diagram of stacks

G0 G:
i
//

F 0

G0

q

��

F 0 F// F

G:

p

��

If F , G , G0 possess virtual classes and the relative obstruction theory E�
F=G

is perfect,
then we have an induced virtual class on F 0 , namely

ŒF 0�virt
WD p!ŒG0�virt:

We list the basic properties of virtual pull-backs in [18]. The following theorems are
Theorems 4.1, 4.3, 4.4 and 4.8 respectively in [18].

Theorem 2.23 Consider a fibre diagram of Artin stacks

F G
p

//

F 0

F

g

��

F 0 G0
p0 // G0

G

f

��

and let us assume that E is a vector bundle stack of rank d such that .p;E/ satisfies
condition .?/ for p .

(i) (Push-forward) If f is a proper morphism of DM-stacks, ED ŒE1=E0�, with
Ei vector bundles on F and ˛ 2Ak.G

0/, then p!
Ef�.˛/Dg�p

!
E˛ in Ak�d .F /.

(ii) (Pull-back) If f is flat of relative dimension n and ˛ 2Ak.G/, then p!
Ef
�.˛/

D g�p!
E˛ in AkCn�d .F

0/

(iii) (Compatibility) If ˛ 2Ak.G
0/, then p!

E˛ D p0!g�E˛ in Ak�d .F
0/.

Theorem 2.24 (Commutativity) Consider a fiber diagram of Artin stacks

F G
p

//

F 0

F
��

F 0 G0// G0

G

q

��
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Virtual push-forwards 2011

such that F 0 and G0 admit stratifications by global quotients. Let us assume p and q are
morphisms of DM-type and let E and F be vector bundle stacks of rank d (respectively
e ) such that .p;E/ and .q;F/ satisfy condition .?/. Then for all ˛ 2Ak.G/,

q!
Fp!

E.˛/D p!
Eq!

F.˛/

in Ak�d�e.F
0/.

Theorem 2.25 Let F admit a stratification by global quotients, let pW F ! G be a
morphism and E! F be a rank–n vector bundle stack on F such that .p;E/ satisfies
Condition .?/. Then p!

E defines a bivariant class in An.F ! G/ in the sense of
Fulton [7, Definition 17.1].

Definition 2.26 Let F
p
�!G

q
�!M be DM-type morphisms of Artin stacks. If we

are given a distinguished triangle of relative obstruction theories which are perfect in
Œ�1; 0�

p�E�G=M
'
�!E�F=M �!E�F=G �! p�E�G=MŒ1�

with a morphism to the distinguished triangle

p�LG=M �!LF=M �!LF=G �! p�LG=MŒ1�;

then we call .E�
F=G

;E�
G=M

;E�
F=M

/ a compatible triple.

Theorem 2.27 (Functoriality) Consider DM-type morphisms of Artin stacks

F
p // G

q // M:

Let us assume p , q and qıp have perfect relative obstruction theories E�
F=G

, E�
G=M

and E�
F=M

respectively and let us denote the associated vector bundle stacks by EF=G ,
EG=M and EF=M respectively. If

�
E�

F=G
;E�

G=M
;E�

F=M

�
is a compatible triple, then

for any ˛ 2Ak.M/

.qıp/!EF=M
.˛/D p!

EF=G

�
q!
EG=M

.˛/
�
:

2.2 Virtual pull-backs and algebraic equivalences

In the following we extend the definition of virtual pull-backs to groups of algebraic
equivalence classes. Groups of algebraic equivalence classes for schemes and basic
constructions such that push-forward and pull-back between groups of algebraic equiv-
alence classes are treated in [7, Chapter 10]. We will follow the ideas and notation
in [7].
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Let T be an irreducible smooth variety of dimension m. The notation t W ftg! T will
be used to denote the inclusion of a closed point t in T . If pW F ! T is given, then
we denote by Ft the stack p�1.t/. Any .kCm/–cycle on F determines a family of
k –cycle classes ˛t 2Ak.Ft / defined by the formula

˛t WD t !˛:

If pW F ! G is a morphism of stacks over T , we denote by

pt W Ft ! Gt

the induced morphism on the fibers over t 2 T .

Definition 2.28 Let F be a DM stack. A k cycle a is algebraically equivalent to zero
if there is a nonsingular variety T and a cycle ˛ 2AkCm.F �T /, mD dim T , and
points t1; t2 2 T such that

aD ˛t1
�˛t2

in Ak.F /. Two k cycles are algebraically equivalent if their difference is algebraically
equivalent to zero. The group of algebraic equivalence classes will be denoted by
B�.F /.

Remark 2.29 We have a natural map Zk.F /! Bk.F / which associates to a cycle
Z its class ŒZ� 2 Bk.F /. Definitions of rational and algebraic equivalence imply that
the above map induces a map

clF W Ak.F /! Bk.F /:

Proposition 2.30 (i) Let pW F! G be a proper morphism of stacks over T . Then

pt�˛t D .p�˛/t

(ii) Let pW F ! G be a flat morphism of DM stacks over T . Then, we have that

p�t .˛t /D .p
�.˛//t

in A�.p
�1.˛//.

Proof This is the analogue of [7, Proposition 10.1] for DM stacks.
Corollary 2.31 (i) Let pW F !G be a proper morphism of DM stacks. Then the

following diagram commutes

B�.F / B�.G/:p�
//

A�.F /

B�.F /

clF
��

A�.F / A�.G/
p� // A�.G/

B�.G/:

clG
��
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(ii) Let pW F !G be a flat morphism of stacks of relative dimension r . Then the
following diagram commutes

B�.G/ B��r .F /:p�
//

A�.G/

B�.G/

clG
��

A�.G/ A��r .F /
p� // A��r .F /

B��r .F /:

clF
��

Proof It follows from the above Proposition.

Lemma 2.32 Let pW F ! G be a morphism of DM stacks over T . If E! F is a
vector bundle-stack which satisfies condition .?/ for p , then Et satisfies condition .?/
for pt and we have that

pt
!
Et
.˛t /D

�
p!
E.˛/

�
t

in A�.p
�1.˛//.

Proposition 2.33 Let pW F ! G be a morphism of DM stacks and let E! F is a
vector bundle-stack which satisfies condition .?/ for p . Then we have a morphism
p!
EW B�.G/! B��r .F / which makes the diagram

B�.G/ B��r .F /
p!
E

//

A�.G/

B�.G/

clG
��

A�.G/ A��r .F /
p!
E // A��r .F /

B��r .F /

clF
��

commute.

Proof This follows from the previous proposition. Let us sketch the proof. We have
to show that for any cycle ˛ 2A�.G/ such that clG˛ D 0 we have that clF p!˛ D 0.
Let ˛ 2 A�.G/ as above. By the definition of algebraic equivalence, there exists a
non-singular variety T of dimension m and .kCm/–dimensional subvarieties Vi of
T �G , flat over T and points t1; t2 2 T such that

˛ D

rX
iD1

�
.Vi/t1

�
�
�
.Vi/t2

�
:

By Lemma 2.32 we have that

p!
tj

� rX
iD1

ŒVi �tj

�
D

�
p!

rX
iD1

ŒVi �

�
tj

Geometry & Topology, Volume 16 (2012)
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for j D 1; 2. This shows that

p!˛ D

�
p!

rX
iD1

ŒVi �

�
t1

�

�
f !

rX
iD1

ŒVi �

�
t2

:

Let us now analyze the right-hand side. Let W 0i be cycles representing p!ŒVi �. As the
pull back via tj is not influenced by components of W 0i which do not map dominantly
to T we may discard them. Let us call the resulting stacks by Wi . This shows that

p!˛ D

� rX
iD1

ŒWi �

�
t1

�

� rX
iD1

ŒWi �

�
t2

and therefore p!˛ is algebraically equivalent to zero.

Remark 2.34 As H0.G/D B0.G/ the above morphism

p!
EW B�.G/! B��r .F /

induces a morphism which makes the diagram

H0.G/ H0�r .F /
p!

E

//

A0.G/

H0.G/
��

A0.G/ A0�r .F /
p!
E // A0�r .F /

H0�r .F /
��

commute.

Remark 2.35 The definition of virtual pull-backs i W X ! Y related to the Cartesian
diagram

X 0 Y 0//

X

X 0

q

��

X Y
i // Y

Y 0
��

with X 0! Y 0 a regular embedding and the obstruction bundle EX=Y WD q�NX 0=Y 0

gives rise to a pull-back in homology i !
EX=Y

W H�.Y /!H�.X / (see Fulton [7, Chap-
ter 19]). We could not construct a similar morphism

i !
EX=Y

W H�.Y /!H�.X /

in general.
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3 Virtual push-forwards

In this section we consider a proper morphism pW F!G of DM stacks which possess
perfect obstruction theories and we analyze the push-forward of the virtual class of
F along p . The main result of this section is a generalization of the straightforward
fact that given a morphism of schemes pW F ! G , with F of dimension k1 and
G irreducible of dimension k2 , we have that p�. � ŒF �/ is a scalar multiple of the
fundamental class of G for any  2 Ak1�k2.F /. The main technical tool is an
analogue of the conservation of number principle in [7] in the context of virtually
smooth morphisms (see Definition 3.4 below).

Let us first formalize this idea.

Definition 3.1 Let pW F ! G be a proper morphism of stacks possessing virtual
classes ŒF �virt 2 Ak1

.F / and ŒG�virt 2 Ak2
.G/ with k1 � k2 and let ŒG1�; : : : ; ŒGs � 2

Ak2
.G/ be irreducible cycles such that ŒG�virtD ŒG1�C� � �CŒGs �. Let  2Ak3.F /, with

k3 � k1� k2 be a cohomology class. We say that p satisfies the virtual push-forward
property for ŒF �virt and ŒG�virt if the following two conditions hold:

(i) If the dimension of the cycle  � ŒF �virt is bigger than the virtual dimension of G

then p�. � ŒF �
virt/D 0.

(ii) If the dimension of the cycle  � ŒF �virt is equal to the virtual dimension of G

then p�. � ŒF �
virt/D n1ŒG1�C � � �C ns ŒGs � for some n1; : : : ; ns 2Q.

We say the p satisfies the strong virtual push-forward property if moreover, the follow-
ing condition holds

(ii’) If the dimension of the cycle  � ŒF �virt is equal to the virtual dimension of G

then p�. � ŒF �
virt/ is a scalar multiple of ŒG�virt .

We say the p satisfies the strong virtual push-forward property in homology if for
any vector bundle E on F and  D ck3

.E/ 2 H 2k3 there exists N 2 Q such that
p�. � ŒF �

virt/DN ŒG�virt 2H2k2
.G/.

Remark 3.2 The definition of “push-forward property” appears in the work of Gath-
mann [8] with a minor difference. Gathmann says that a morphism satisfies the
push-forward property if it satisfies in our language the strong virtual push-forward
property. We prefer this terminology mainly because we would like to say that smooth
morphisms satisfy the virtual push-forward property.
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Remark 3.3 Let pW F !G be a morphism as above. If G is smooth of the expected
dimension, then p satisfies the virtual pushforward property. If G is also irreducible,
then p satisfies the strong virtual push-forward property.

Definition 3.4 Let

F G
p //F

M

�1

��

G

M

�2

��

be a commutative diagram of DM-type morphisms of algebraic stacks, with M a stack
of pure dimension and let E�

F=M
, E�

G=M
be perfect obstruction theories to �1 , �2

inducing virtual classes of dimensions k1 respectively k2 with k1 � k2 . If we have
a compatible triple

�
E�

F=G
;E�

G=M
;E�

F=M

�
, such that the relative obstruction theory

E�
F=G

is perfect and p is proper, then we call p a virtually smooth morphism.

Remark 3.5 This definition is very similar to Fantechi–Göttsche [6, Definition 3.14]
of a family of proper virtually smooth schemes. The main difference is that we do not
ask the base G to be smooth.

3.1 Virtual push-forward property

Here we find sufficient conditions for the virtual push-forward property to hold.

Lemma 3.6 Let pW F ! G be a virtually smooth morphism of DM stacks and
let EF=G be the vector bundle stack associated to the obstruction theory E�

F=G
. If

EG D ŒE1=E0� with Ei vector bundles, then p satisfies the virtual push-forward
property.

Proof The proof is a reformulation of Lai’s arguments in [14, pages 9–11]. Let

EF WD h1=h0
�
E�
_

F

�
; EG WD h1=h0

�
E�
_

G

�
and EF=G WD h1=h0

�
E�
_

F=G

�
;

and let

0F W F ! EF ; 0G W F ! p�EG ;

0F=G W F ! EF=G and .0F=G ; 0G/W F ! EF=G ˚p�EG
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be the zero-section embeddings. Then by the definition of the virtual class we have that
ŒG�virtD 0!

G
ŒCG � and ŒF �virtD 0!

F
ŒCF �. Let C0DCF=CG

. By the proof of Theorem 2.27
we have a closed embedding C0 ,! EF=G ˚p�EG

ŒF �virt
D 0!

F=G ŒCF=G �

D .0F=G ; 0G/
!ŒC0�

D 0!
Gj !

EF=G
ŒC0�

where j is the embedding j W p�EG ! EF=G ˚ p�EG and j !
F=G

is the (virtual)
pull-back induced by the vector bundle stack EF=G . Let us consider

ŒC00� WD j !
EF=G

ŒC0� 2A�.p
�EG/:

Let  2A�.F / be an arbitrary cohomology cycle. Then the above computation shows
that

(3)  � ŒF virt�D 0!
G�
� � ŒC00�

where � W p�EG ! F denotes the canonical projection. By the definition of C0 we
have a natural morphism C0 ! CG and by the definition of C00 we have a natural
morphisms C00! C0 �EF=G˚p�EG

p�EG ! C0 . Composing the two morphisms we
obtain a morphism of stacks

(4) C00! CG :

Let C 1
G
D CG �EG

E1 and C 1 D C00 �CG
C 1

G
. This implies that

C 1
' C00 �EG

E1:

Let 01
G
W G!E1 be the zero section embedding. By Remark 2.19 we have that

(5) 0!
G ŒC
00�D 01

G

!
ŒC 1�:

The morphism (4) induces a morphism C 1! C 1
G

such that the diagram

(6)

C 1
G

E1//

C 1

C 1
G

��

C 1 p�E1// p�E1

E1

r

��

commutes.
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By the commutativity of the pull-back with proper push-forward in the Cartesian
diagram

G E1

01
G

//

F

G

p

��

F p�E1// p�E1

E1

r

��

and (3) we obtain that

(7) p�. � ŒF �
virt/D 01

G

!
r��
� � ŒC 1�:

The commutativity of diagram (6) implies

(8) r��
� � ŒC 1�D

X
ni ŒC

1
G �i ;

where the sum is taken over all the irreducible components of C 1
G

. By Remark 2.19
we have that ŒG�virt D

�
01

G

�
!
P
ŒC 1

G
�i . This together with (7), (8) implies

p�. � ŒF �
virt/D

X
ni ŒG�i :

If k3<k1�k2 , then for dimensional reasons r��
� �ŒC 0�D0, and hence p�. �ŒF �

virt/D

0.

Remark 3.7 The reason why we impose EG to be a global quotient is that push-
forwards for non-projective morphisms of Artin stacks do not exist. If p is a projective
morphism then, this condition is not necessary.

3.2 Conservation of number for virtually smooth morphisms

Let us recall Fulton’s principle of conservation of number [7, Proposition 10.2 ].

Proposition 3.8 Let pW X!Y be a proper morphism of schemes, and let Y be an m–
dimensional irreducible scheme. Let i W P ! Y be a regular point in Y , XP D p�1P

and  be an m–dimensional cycle on X . Then the cycle classes P WD i ! 2A0.XP /

have the same degree.

In this section we will give a version of this principle in the situation when pW F !G

is a virtually smooth morphism.

Let us now state the conservation of number principle for virtually smooth morphisms
of DM stacks.
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Proposition 3.9 Let G be a complete connected scheme and let pW F ! G be a
proper virtually smooth morphism of DM stacks (see Definition 3.4) of virtual relative
dimension d . Let i W P !G be a regular point in G and let us consider the Cartesian
diagram

P G
i

//

FP

P

pP

��

FP F
j // F

G

p

��

where FP is the fiber of F over P and pP W FP !P is the map induced by p . Let E

be a vector bundle on F and  D cd .E/ 2H 2d .F /. Let ŒFP �
virt 2H2d .FP / be the

class defined in Remark 2.22. Then, the number

deg.j � � ŒFP �
virt/

is constant.

Proof As A0.P /'Q we have that

(9) pP�.j
� � ŒFP �

virt/D nŒP �

for some n 2Q. It is enough to show that i�pP�j
� � ŒFP �

virt does not depend on P .
For this, we see that

i�pP�.j
� � ŒFP �

virt/D p�j�.j
� � ŒFP �

virt/(10)

D p�. � j�ŒFP �
virt/(11)

in A�.G/. By commutativity of pull-backs with projective push-forwards we have that

j�p
!
P ŒP �D p!i�ŒP �

in A�.F /. By Corollary 2.31 we obtain the equation above for algebraic equivalence
groups. As G is a connected scheme we have that i�ŒP � 2H0.G/ does not depend on
the smooth point P . This shows that j�p

!
P
ŒP �2H�.F / is independent of P and since

taking homology classes commutes with push-forwards and intersection with Chern
classes (see Fulton [7, Proposition 19.1.2]) we obtain that p�. � j�ŒFP �

virt/ 2H0.G/

is independent of P . We have thus obtained that the degree of the intersection product
j � � ŒFP �

virt is equal to n for any regular P .

Remark 3.10 Taking G to be smooth we obtain the conservation of number principle
in families of virtually smooth schemes (see Fantechi–Göttsche [6, Definition 3.14])
which is [6, Corollary 3.16].
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Remark 3.11 The only point where we need to work with algebraic equivalence
classes is the last part of the proof of the above theorem. For any connected G we have
that B0.G/DQ, but this is usually no longer true for the corresponding Chow group.

The proof of Proposition 3.9 implies the following statement.

Lemma 3.12 Let pW F ! G be a proper virtually smooth morphism of DM stacks
with G a compact stack. Let E be a vector bundle on F and  D cd .E/ 2H 2d .F /

and let clG W A0.G/!H0.G/ denote the natural cycle map. Then

clG.p�. � .p!i�ŒP �/// 2H0.G/

does not depend on P .

Proof As in the proof of Proposition 3.9, we have that

clG.p�. � .p!i�ŒP �///D nclG.i�ŒP �/

in H0.G/ for some n 2 Q. Since taking homology classes commutes with push-
forwards and intersection with Chern classes we obtain that

p�. � clG.p!i�ŒP �//D nclG.i�ŒP �/

in H0.G/. By Remark 2.34 this implies that

(12) p�. � .p
!clG.i�ŒP �//D nclG.i�ŒP �/:

in H0.G/. Let us show that the left hand side of equation (12) does not depend
on the point P . Let Q be any other point of G . As G is connected we have that
ŒQ�D r ŒP � 2H0.G/ for some r 2Q� . By linearity of pull-backs and push-forwards
we obtain that

p�. � .p
!i�ŒQ�//D rp�. � .p

!i�ŒP �//

D rni�ŒP �

D ni�ŒQ�:

This completes the proof.

3.3 Strong virtual push-forward property

Here we find sufficient conditions for the strong virtual push-forward property to hold.
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Theorem 3.13 Let pW F !G be a proper virtually smooth morphism of DM stacks
and let EF=G be the vector bundle stack associated to the obstruction theory E�

F=G
. If

EF=G is isomorphic to a global quotient of vector bundles ŒE1=E0� and G is connected,
then p satisfies the strong virtual push-forward property in homology.

Proof By Lemma 3.6 we have that

(13) p�. � ŒF �
virt/D n1ŒG1�C � � �C ns ŒGs �

for some n1; : : : ; ns 2 Q and ŒG1�; : : : ; ŒGs � 2 Ak2
.G/ such that G1; : : : ;Gs are

irreducible and such that

ŒG�virt
D ŒG1�C � � �C ŒGs �:

We are left to show that all the ni ’s are equal. Let m1; : : : ;ms be the geometric
multiplicity of G1; : : : ;Gs . Then ŒG�virt D m1ŒG

r
1
�C � � � Cms ŒG

r
s �, where Gr

i is the
reduced stack associated to Gi and therefore ŒC 0� D

Ps
iD1 mi ŒC

0
i �, where C 0i WD

CF=CGi
. By equation (7) we have that p�. � ŒF �

virt/D
�
01

G

�
!r��

� �
�Ps

iD1 mi ŒC
1
i �
�
.

With this we have shown that it is enough to show the statement for G reduced.

Let us consider the Cartesian diagram

(14)

P G
i

//

FP

P

pP

��

FP F
j // F

G

p

��

where P is a general point in G and FP is the fiber of p over P . As G is reduced
we may assume that P is a smooth point and therefore i is a regular embedding. By
the commutativity of pull-backs with proper push-forwards we have that

pP�.i
!. � ŒF �virt//D i !.p�. � ŒF �

virt//:

Equation (13) implies pP�.i
!. � ŒF �virt//D i !

P
i ni ŒGi �. Without loss of generality

we may assume that P is a point of G1 . With this we obtain that

(15) pP�.j
� � i !ŒF �virt/D n1ŒP �:

On the other hand by the commutativity of pull-backs we have that

(16) i !p!ŒG�virt
D p!

P i !ŒG�virt
D p!

P ŒP �:

By the functoriality property of pull-backs we have that

(17) i !p!ŒG�virt
D i !ŒF �virt:
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Equations (15), (16) and (17) imply that

(18) pP�.j
� � .p!

P ŒP �//D n1ŒP �:

Pushing forward (18) via i and using that push-forwards commute with pull-backs we
obtain

p�. � .p
!i�ŒP �//D n1i�ŒP �

in A0.G/. Passing to homology groups and using Lemma 3.12 we obtain that n1 does
not depend on P . This completes the proof.

Proposition 3.14 Let us consider a commutative diagram

M1 M2�
//

F

M1

�

��

F G
p // G

M2

�

��

where

(1) � is a morphism of smooth stacks

(2) the vertical arrows have (relative) perfect obstruction theories E� , E�

(3) we have a morphism 'W p�E�!E� such that the diagram

p�L� L�//

p�E�

p�L�

��

p�E� E�// E�

L�
��

is commutative and the cone of ' is a perfect complex.

Then, p satisfies the virtual push-forward property. If moreover G is connected, the p

satisfies the strong virtual push-forward property in homology.

Proof The morphism obtained from the following composition

E� Œ�1�!L� Œ�1�! ��LM1

can be completed to a triangle

E� Œ�1�! ��LM1
!EF !E�;

and by [18] EF is an obstruction theory for F . Similarly we have a triangle

E� Œ�1�! ��LM2
!EG!E� :
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By the fact that we have a natural morphism ��LM2
! LM1

and the axioms of
triangulated categories we obtain a morphism p�EG !EF . We denote the cone of
this morphism by Ep and by [18] we see that Ep is an obstruction theory for p . By
the octahedron axiom we obtain that the triangle

(19) ��L�!Ep! F ! ��L�Œ1�

is distinguished (see the Stacks Project [5, Proposition 4.21] for a complete proof).
From the long exact sequence in cohomology and the fact that h�2.F /D 0 we obtain
that Ep is a perfect obstruction theory for the morphism p . This shows that we can
apply Theorem 3.13 to the composition of morphisms

F
p

!G
�

!M2:

Corollary 3.15 Let us consider a Cartesian diagram of stacks

G0 G
i

//

F 0

G0

q

��

F 0 F
j // F

G

p

��

such that p is a virtually smooth morphism of DM stacks, G is connected G0 admits
a virtual class ŒG0�virt , then q satisfies the strong virtual push-forward property in
homology for ŒF 0�virt WD p!ŒG0�virt (see Remark 2.22) and ŒG0�virt .

Proof Let E be a vector bundle on F and  D ci.E/ with i as in Theorem 3.13. By
Lemma 3.6 we have that

q�.j
� � ŒF 0�virt/D n1ŒG

0�virt
1 C � � �C ns ŒG

0�virt
s

for some n1; : : : ; ns 2Q. We have to show that all ni ’s are equal.

As in the proof of the theorem we may assume that G and G0 are reduced. Let us
consider the Cartesian diagram

P G0//

FP

P

qP

��

FP F 0
jP // F 0

G0

q

��
G

i
//

��

F
j // F

G

p

��

where P is any closed point. Then, by Theorem 3.13, we have that

p�. � ŒF �
virt/D nŒG�virt
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for some n 2Q. Also, by the proof of 3.13, we have that

qP�.j
�j �P � ŒFP �

virt/D nŒP �:

Looking now at the diagram on the left, and assuming that P is a smooth point of G0

we obtain the following by Theorem 2.23

q�.j
� � ŒF 0�virt/D qP�. � ŒFP �

virt/:

As G0 is reduced, we have that the generic point is smooth and hence the above equation
holds for a dense open subset of G0 . Combining this equation with the previous, we
obtain that q�.j

� � ŒF 0�virt/D nŒG0�virt .

4 Applications

4.1 Virtual Euler characteristics in virtually smooth families

As a consequence of the conservation of number principle we give a proof of the
fact that the virtual Euler characteristic is constant in virtually smooth families (see
Definition 3.4). This statement is a generalization of [6, Proposition 4.14] of Fantechi
and Göttsche.

Definition 4.1 Let pW F ! G be a morphism of proper stacks with a perfect ob-
struction theory EF=G which admits a global resolution of EF=G as a complex of
vector bundles ŒE1!E0� (for example, if F can be embedded as closed substack in a
separated stack which is smooth over G .) We denote by ŒE0!E1� the dual complex
and by d the expected dimension d WD rk EF=G D rk E0� rk E1 . We denote the class
ŒE0�� ŒE1� 2K0.F / by T virt

F=G
and we call it the virtual relative tangent of f .

Definition 4.2 Let F be a proper DM stack with a perfect obstruction theory. We
define the relative virtual Euler characteristic of F to be the top virtual Chern number
evirt.F / WD deg.cd .T

virt
F
/ � ŒF �virt/.

Remark 4.3 The definition is consistent with [6, Definition 4.2] by the Hopf Index
Theorem [6, Corollary 4.8].

Proposition 4.4 Let G be a connected stack of pure dimension and let pW F ! G

be a morphism of stacks with EF=G a perfect obstruction theory for p . Then, all the
fibers of p have the same virtual Euler characteristic.

Proof We use Proposition 3.9 with ˛ WD cd

�
T virt

F=G

�
.
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Remark 4.5 Taking G to be smooth we obtain that the virtual Euler characteristic
is constant in a family of virtually smooth schemes. This is a different proof of [6,
Proposition 4.14].

4.2 Virtual push-forward and Gromov–Witten invariants

We briefly recall moduli spaces of stable maps and the construction of their virtual
classes. We prove relations between virtual classes of moduli spaces of maps to X and
Y , where X ! Y is a smooth fibration.

The standard obstruction theory for the moduli space of stable maps Let us fix
notations. Let X be a smooth projective variety and ˇ 2A1.X / a homology class of a
curve in X . We denote by SMg;n.X; ˇ/ the moduli space of stable genus–g , n–pointed
maps to X of homology class ˇ and by Mg;n the Artin stack of prestable curves. Let

�X W SMg;n.X; ˇ/!Mg;n

be the morphism that forgets the map (and does not stabilize the pointed curve) and

�X W
SMg;nC1.X; ˇ/! SMg;n.X; ˇ/

the morphism that forgets the last marked point and stabilizes the result. Then it is a
well-known fact that

E�SMg;n.X ;ˇ/=Mg;n
WD .R��X � ev�X TX /

_

defines an obstruction theory for the morphism �X , where evX indicates the evaluation
map at the last marked point evX W

SMg;nC1.X; ˇ/!X (see Behrend [1]). We call

Œ SMg;n.X; ˇ/�
virt
WD .�X /

!
E SMg;n.X;ˇ/=Mg;n

ŒMg;n�

the virtual class of SMg;n.X; ˇ/.

Remark 4.6 Let pW X ! Y be a morphism of smooth algebraic varieties. Let
ˇ 2H2.X / and g; n be any natural numbers such that

� either g � 2

� or g < 2 and p�ˇ ¤ 0

� or g D 1, p�ˇ D 0 and n� 1, either g D 0, p�ˇ D 0 and n� 3.
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Then p induces a morphism of stacks

xpW SMg;n.X; ˇ/! SMg;n.Y;p�ˇ/�
zC ;x1; : : : ;xn; zf

�
7!
�
C;x1; : : : ;xn;p ı zf

�
where C is obtain by zC by contracting the unstable components of f WD p ı zf .

Convention 4.7 For simplicity, we will denote obstruction theories of a morphism
pW F !G by Ep . For example, we will write E�X instead of E�

SMg;n.X ;ˇ/=Mg;n

.

Convention 4.8 In the following, every time we write

xpW SMg;n.X; ˇ/! SMg;n.Y;p�ˇ/

we will assume that SMg;n.Y;p�ˇ/ is non-empty.

Costello’s construction In the following we use a construction of Costello [4, Sec-
tion 2]. Let us shortly present how his construction applies to our case. In [4, Section 2],
Costello introduces an Artin stack Mg;n;ˇ , where ˇ is an additional labeling of each
irreducible components of a marked curve of genus g by the elements of a semigroup.
We will take this semigroup to be H2.X /, for some smooth variety X . In [4] it is
shown that the forgetful map Mg;n;ˇ !Mg;n is étale and that the natural forgetful
map

�X W SMg;n.X; ˇ/!Mg;n

factors through �X ;ˇW SMg;n.X; ˇ/!Mg;n;ˇ . Therefore, the perfect relative obstruction
theory of SMg;n.X; ˇ/!Mg;n

.R��� ev�X TX /
_

is also a relative obstruction theory of the morphism �X ;ˇ . We thus obtain a virtual
class .Œ SMg;n.X; ˇ/�

virt/0 WD �!
X ;ˇ

ŒMg;n;ˇ �. It can be easily seen that

.Œ SMg;n.X; ˇ/�
virt/0 D Œ SMg;n.X; ˇ/�

virt:

This construction has the advantage that for a given map pW X ! Y we have a
commutative diagram

(20)

SMg;n.Y;p�ˇ/ Mg;n;p�ˇ�Y;p�ˇ

//

SMg;n.X; ˇ/

SMg;n.Y;p�ˇ/

xp

��

SMg;n.X; ˇ/ Mg;n;ˇ

�X;ˇ // Mg;n;ˇ

Mg;n;p�ˇ

 

��
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where  .C / contracts the unstable components Ci such that the label ˇi satisfies
p�ˇi D 0 and changes the label on each irreducible component by p�ˇi .

Proposition 4.9 If pW X ! Y is a smooth morphism, then p induces a morphism

xp�E�SMg;n.Y;p�ˇ/=Mg;n
�!E�SMg;n.X ;ˇ/=Mg;n

whose cone is a perfect complex concentrated in Œ�1; 0�.

Proof By the discussion in the above paragraph we have that

Œ SMg;n.X; ˇ/�
virt
D �!

X ;ˇ ŒMg;n;ˇ �

and similarly
Œ SMg;n.Y;p�ˇ/�

virt
D �!

Y;p�ˇ
ŒMg;n;p�ˇ �:

Let us consider the following exact sequence

TX=Y ! TX ! p�TY

and let us look at the induced distinguished triangle

(21) R��� ev�X TX=Y !R��� ev�X TX !R��� ev�X p�TY !R��� ev�X TX=Y Œ1�:

By cohomology and base change we have that R���ev�
X

p�TY ' p�R���ev�
Y

TY . In
the notation of the beginning of the section we can rewrite triangle (21) as

(22) p�E�Y;p�ˇ
!E�X;ˇ ! .R��� ev�X TX=Y /

_
! p�E�Y;p�ˇ

Œ1�:

Let us note that all complexes are perfect. This shows the claim.

Proposition 4.10 Let pW X ! P r be a smooth morphism. If xp has positive virtual
relative dimension, then xpW SMg;n.X; ˇ/! SMg;n.P r ;p�ˇ/ satisfies the strong push-
forward property in homology.

Proof By Kim–Pandharipande [11] SMg;n.P r ;p�ˇ/ is connected, and xp satisfies the
strong virtual push-forward property by Proposition 3.14.

Proposition 4.11 Let L1; : : : ;Ls be very ample line bundles on a smooth projective
variety X and let us consider a projective bundle pW PX .˚Li/!X . Then the induced
morphism xpW SMg;n.PX .˚Li/; ˇ/! SMg;n.X;p�ˇ/ satisfies the strong push-forward
property in homology.
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Proof Let us consider ji W X ! P ri to be the embedding of X into a projective space
induced by the line bundle Li . Then we have a Cartesian diagram

X P r1 � � � � �P rs

j1�����js

//

PX .˚Li/

X
��

PX .˚Li/ PP r1�����P rs .˚O.1//// PP r1�����P rs .˚O.1//

P r1 � � � � �P rs

��

The conclusion follows by the above proposition and Corollary 3.15.

4.3 Stable maps and stable quotients

In this section we want to analyze the push forward of the virtual class of the moduli
space of stable maps SMg;n.G.1; r/; d/ along the morphism

cW SMg;n.G.1; r/; d/! SQg;n.G.1; r/; d/

which was introduced by Marian, Oprea and Pandharipande [19]. Let us briefly recall
the basic definitions.

Stable quotients Let .�C ;p1; : : : ;pn/ be a nodal curve of genus g with n distinct
markings which are different from the nodes. A quotient on �C

0 �! �S �!O˚r�C q
�! �Q �! 0

is called quasi-stable if �Q is locally free at nodes or markings. Let k be the rank of�S . A quotient .�C ;p1; : : : ;pn; q/ is called stable if

!�C .p1C � � �Cpn/˝ .^
k�S_/�

is ample on �C for every strictly positive � 2Q.

Remark 4.12 The space of stable quotients SQg;n.G.k; r/; d/ is another compactifi-
cation of the space of genus g curves (with r markings) in the Grassmannian G.k; r/.
This can be easily seen from the universal property of the tautological sequence on the
Grassmannian: to give a curve C

i
,!G.k; r/ is equivalent to giving a quotient

0! i�S !O˚r
C
! i�Q! 0;

where
0! S !O˚r

!Q! 0

is the tautological sequence on the Grassmannian.
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4.3.1 Obstruction theory As the moduli space of stable maps, the moduli space of
stable quotients SQg;n.G.k; r/; d/ has a morphism �QW

SQg;n.G.k; r/; d/!Mg;n to
the Artin stack of nodal curves. Let �QW

�CQ !
SQg;n.G.k; r/; d/ be the universal

curve over SQg;n.G.k; r/; d/ and let

0! �SQ!O˚r�CQ

! �QQ! 0

be the universal sequence on �CQ . Then the complex

E�SQg;n.G.k;r/;d/=M
DR�Q�R Hom. �SQ; �QQ/

is a dual obstruction theory relative to �Q . We call

ŒSQg;n.G.k; r/; d/�
virt
WD .�Q/

!
ESQg;n.G.k;r /;d/=M

ŒMg;n�

the virtual class of SQg;n.G.k; r/; d/.

Moduli of bundles over prestable curves Let Bung;n.k; d/.B/ be the category
whose objects are pairs .C;S/, where

� C! B is a family of prestable curves of genus g with n sections

� S is a vector bundle of rank k and degree �d .

Isomorphisms: An isomorphism

�W .C;S/! .C0;S 0/

is an automorphism of curves
�W C! C0

such that

(1) �.pi/D p0i for all i , and

(2) ��S 0 D S .

By Lieblich [17] we have that coherent sheaves on Mg;nC1 over Mg;n form an
Artin stack CohMg;nC1=Mg;n

. It can be easily seen that Bung;n.k; d/ is a substack
of CohMg;nC1=Mg;n

. Let S denote the universal bundle on the universal curve on
Bung;n.k; d/. We will also consider moduli spaces of vector bundles on curves with
stability conditions as follows.
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Construction 4.13 Let � > 0 be fixed real number. Let Bun�g;n.k; d/ be the substack
of Bung;n.k; d/ such that the line bundle

(23) .^kS_/˝�˝!
�X

pi

�
is ample. As ampleness is an open condition, Bun�g;n.k; d/ is an open substack of
Bung;n.k; d/.

Remark 4.14 Let

�W Bung;n.k; d/!Mg;n

be the morphism which forgets the bundle. The morphism � is smooth as the relative
obstruction in a point .C;S/ is

Ext2C .S;S/D 0:

This shows that Bung;n.k; d/ is smooth of pure dimension

Ext1.S;S/�Ext0.S;S/C 3g� 3C nD k.g� 1/� deg.S ˝S_/C 3g� 3C n

D k2.g� 1/C 3g� 3C n:

Lemma 4.15 Let C be the universal curve over Bun�g;n.k; d/. Then there exists a
rational tail free curve �C and a projection pW C! �C over Bun�g;n.k; d/.

Proof Let � W C ! B;S be the tautological bundle on the tautological curve of
Bun�g;n.k; d/. On each irreducible component of the locus consisting of rational tails
the restriction of ^kS_ has positive degree a. Set

LD .^kS_/˝�˝a !
�X

pi

��a
where the tensor product runs over all the values of a. As .^kS_/˝�˝!

�P
pi

�
is

ample and there are no markings on the rational tails we have that L is trivial on the
locus consisting of rational tails and � relatively ample on the complement of this
locus. This shows that Lm is base point free for a sufficiently large m. Let

�C D Proj˚l Lml :

As Lm is � –relatively base point free it determines a morphism pW C! �C . We have
that �C! B is a family of genus g curves and as Bun�g;n.k; d/ is reduced, we obtain
that �C is flat over Bun�g;n.k; d/.
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Obstruction theories relative to moduli spaces of bundles In the following we de-
fine obstruction theories relative to Bung;n.k; d/. Let �M W CM !

SMg;n.G.k; r/; d/
be the universal curve over SMg;n.G.k; r/; d/. Let

(24) 0! SM !O˚r
!QM ! 0

on CM be the pull back of the tautological sequence on G.k; r/ under the evaluation
morphism evnC1W CM !G.k; r/. The map

�M W
SMg;n.G.k; r/; d/!Bung;n.k; d/

induces a morphism between cotangent complexes and thus we obtain a distinguished
triangle

��M LBung;n.k;d/!L SMg;n.G.k;r/;d/
!L SMg;n.G.k;r/;d/=Bung;n.k;d/

:

Tensoring (24) with S_
M

we obtain an exact sequence

0! SM ˝S_M ! .S_M /˚r
!QM ˝S_M ! 0

which induces a distinguished triangle

R��M �.S_M /˚r
!R��M �QM ˝S_M !R��M �SM ˝S_M Œ1�:

By the cohomology and base change theorem we obtain that

��M TBung;n.k;d/ DR��M �SM ˝S_M Œ1�:

This shows that we have the commutative diagram

R��M �.S_M /˚r R��M �QM˝S_M//

T SMg;n.G.k;r/;d/=Bung;n.k;d/

R��M �.S_M /˚r
��

T SMg;n.G.k;r/;d/=Bung;n.k;d/
T SMg;n.G.k;r/;d/
// T SMg;n.G.k;r/;d/

R��M �QM˝S_M
��

R��M �SM˝S_M Œ1�//
��

��
M

TBung;n.k;d/
// ��

M
TBung;n.k;d/

R��M �SM˝S_M Œ1�

and therefore R��M �

�
S_

M

�
˚r is a dual relative obstruction theory for �M .

In a completely analogous manner we obtain that R��M �

��S_
Q

�
˚r is a dual relative

obstruction theory for �Q .

4.3.2 Comparison between virtual fundamental classes

Proposition 4.16 When k D 1 there exists a map

cW SMg;n.G.1; r/; d/! SQg;n.G.1; r/; d/

extending the isomorphism on smooth curves.
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Proof This has been proved by Marian, Oprea and Pandharipande [19] and a similar
situation appears in Popa–Roth [21]. Let us shortly sketch the proof. Let .�C ; f /W C!
B �G.1; r/ be a family of stable maps to G.1; r/. By Remark 4.12, this comes with
an exact sequence

0! f �S!O˚r
C ! f �Q! 0:

Let ��C W �C ! B , be the family of curves obtained by contracting all rational trees
with no marked points and let pW C ! �C be the contracting morphism. In the
following, we will give a canonical way to associate a quasi-stable quotient to the
family ��C . Let D �Mg;nC1 be the divisor whose general point is a nodal curve
with one irreducible rational curve attached in one point to a genus g curve. Let
O SMg;nC1.G.1;r/;d/

.E/ D ��
M
OMg;nC1

.D/. The line bundle O SMg;nC1.G.1;r/;d/
.E/

has degree �1 when restricted to the general fiber of the induced map from E to
SMg;n.G.1; r/; d/ (see Popa–Roth [21]). We attach the weight ı to such an E if the

degree of S restricted to the general fiber in D is �ı . We consider the bundle

S 0 WD S˝ı O.�ıEı/

where the tensor product is taken over all possible ı and all Eı which satisfy the
condition above. Then S 0 is trivial along the rational tails and it can be showed that�S D p�S 0 is a stable quotient.

Remark 4.17 Let .C;x1; : : : ;xn; f / be a stable map to G.1; n/, �C be the curve
obtained by contracting the rational tails of C and xi the points on C where the
rational trees glue to �C . Let S1 be the restriction of S to �C . The map c associates to
a map f W C !G.1; n/, the curve �C and the exact sequence

0! S1
�
�

X
dixi

�
!On�C ! �Q! 0;

where di is the degree of f on the tree Ci .

Remark 4.18 It can be easily seen that we have a commutative diagram with the
right-down square Cartesian

(25) CM

p

&&

c00

++
�M

��

�CM

c0 //

t

��

�CQ

�Q

��
SMg;n.G.1; r/; d/

c // SQg;n.G.1; r/; d/
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with pW CM !
�CM be the morphism which contracts rational tails. The proof of

Proposition 4.16 shows that c0
� �SQ D p�SM .�ıE/ which is equivalent to c0

��S_
Q
D

p�S_M .ıE/. This shows that we have a natural morphism

�W p�.S_M /! c0
��S_Q:

Lemma 4.19 The morphism

�W p�.S_M /! c0
��S_Q

on SMg;n.G.k; r/; d/ induces a morphism

R��M �

�
S_M

�˚r
! c�R��Q�

��S_Q�˚r
:

Proof From the commutativity of diagram (25) we have that

(26) R��M �S_M 'R�.t ıp/�S_M :

Using now cohomology and base change in diagram (25) we obtain that

(27) c�R��Q�
�S_Q 'R�t�c

0��S_Q:
By (26) and (27) we see that �W p�

�
S_

M

�
! c0

��S_
Q

induces a morphism

R��M �

�
S_M

�˚r
! c�R��Q�

��S_Q�˚r
:

Lemma 4.20 Let F be the cone of the morphism

R��M �

�
S_M

�˚r
! c�R��Q�

��S_Q�˚r
:

Then, F is a perfect complex.

Proof Let us consider
f W .C;x1; : : : ;xn/!G

a stable map, pW C ! �C the morphism contracting the rational tails and let p1; : : : ;ps

be the gluing points of the rational tails with the rest of the curve. We need to show
that the morphism

H 1.C; f �S_/!H 1.�C ; �S_/
is surjective. By the definition of �S we have that

H 1.�C ; �S_/'H 1
��C ;S_j�C�X dipi

��
:

Since
H 1.C; f �S_/'H 1

��C ; f �S_j�C �
Geometry & Topology, Volume 16 (2012)
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we need to show that

H 1
��C ; f �S_j�C �!H 1

��C ; f �S_j�C�X dipi

��
is surjective. As the quotient of the morphism f �S_j�C ! f �S_j�C �P dipi

�
is

supported on the points pi , it has no higher cohomology. This shows that the above
morphism is surjective.

Proposition 4.21 We have that

c�
�
SMg;n.G.1; n/; d/

�virt
D
�
SQg;n.G.1; n/; d/

�virt
:

Proof We fix � > 2. Let us consider the following commutative diagram

(28)

Bun�g;n.1; d/ Bun�g;n.1; d/p
//

SMg;n.G.1; n/; d/

Bun�g;n.1; d/

�M

��

SMg;n.G.1; n/; d/ SQg;n.G.1; n/; d/
c // SQg;n.G.1; n/; d/

Bun�g;n.1; d/

�Q

��

where p is the map contracting the rational tails.

As c is surjective and SMg;n.G.1; r/; d/ is connected, we get that SQg;n.G.1; r/; d/ is
connected. By Proposition 3.14, Lemma 4.19 and Lemma 4.20 we obtain that there
exists N 2Q such that

c�
�
SMg;n.G.1; r/; d/

�virt
DN

�
SQg;n.G.1; r/; d/

�virt
:

As the SMg;n.G.1; r/; d/ and SMg;n.G.1; r/; d/ are isomorphic on an open set and
have compatible obstruction theories we have that N D 1.
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