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The Binet–Legendre Metric in Finsler Geometry

VLADIMIR S MATVEEV

MARC TROYANOV

For every Finsler metric F we associate a Riemannian metric gF (called the Binet–
Legendre metric). The Riemannian metric gF behaves nicely under conformal
deformation of the Finsler metric F , which makes it a powerful tool in Finsler
geometry. We illustrate that by solving a number of named Finslerian geometric
problems. We also generalize and give new and shorter proofs of a number of known
results. In particular we answer a question of M Matsumoto about local conformal
mapping between two Minkowski spaces, we describe all possible conformal self
maps and all self similarities on a Finsler manifold. We also classify all compact
conformally flat Finsler manifolds, we solve a conjecture of S Deng and Z Hou on
the Berwaldian character of locally symmetric Finsler spaces, and extend a classic
result by H C Wang about the maximal dimension of the isometry groups of Finsler
manifolds to manifolds of all dimensions.

Most proofs in this paper go along the following scheme: using the correspondence
F 7! gF we reduce the Finslerian problem to a similar problem for the Binet–
Legendre metric, which is easier and is already solved in most cases we consider. The
solution of the Riemannian problem provides us with the additional information that
helps to solve the initial Finslerian problem.

Our methods apply even in the absence of the strong convexity assumption usually
assumed in Finsler geometry. The smoothness hypothesis can also be replaced by
a weaker partial smoothness, a notion we introduce in the paper. Our results apply
therefore to a vast class of Finsler metrics not usually considered in the Finsler
literature.

53C60, 58B20; 53C35, 30C20, 53A30

1 Introduction

In the present paper, a Finsler metric on a smooth manifold M is a continuous function
F W TM ! Œ0;1/ such that for every point x 2M the restriction Fx D FjTxM on
the tangent space at x is a Minkowski norm, that is Fx is positively homogenous and
convex and it vanishes only at � D 0:
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(a) Fx.� � �/D � �Fx.�/ for any �� 0

(b) Fx.�C �/� Fx.�/CFx.�/

(c) Fx.�/D 0 ) � D 0

Observe that Fx is a norm in the usual sense if and only if it is symmetric, ie
Fx.��/D Fx.�/. The Finsler metric is said to be of class C k if the restriction of F

to the slit tangent bundle TM0
D TM n .the zero section/ is a function of class C k .

Note that it is customary in Finsler geometry to require the Finsler metric to be of
class C 2 and strongly convex, that is the Hessian of the restriction of F2 to TxM nf0g

is assumed to be positive definite for any x 2 M . However we shall avoid these
hypotheses as they exclude from the theory some interesting and important examples.

Our goal in this paper is to solve a number of open problems in Finsler geometry by
reducing them to problems in Riemannian Geometry. The method is to associate a
natural Riemannian metric gF to a given Finsler metric F on a smooth manifold M .
We use a construction which comes from classical mechanics and convex geometry:
we first define the scalar product g�

F
on the cotangent space T �x M of a given point to

be a normalized L2 scalar product of the restrictions of �; � 2 T �x M to the unit ball
�x D f� 2 TxM j F.x; �/� 1g � TxM , that is

(1) g�F .�; '/D
.nC 2/

�.�x/

Z
�x

.�.�/ �'.�// d�.�/:

where d� is an arbitrary linear volume form on TxM and �.�x/ is the volume of
�x with respect to d�. It is clear that g�

F
is a scalar product and that it is independent

of the choice of d�.

Definition 1.1 The Binet–Legendre metric associated to a Finsler metric F on a
smooth manifold M is the Riemannian metric gF dual to the scalar product defined
above:

(2) gF .�; �/D g�F .�
[; �[/

for any �; � 2 TM , where �[ 2 T �x M is defined as g�
F
.�[; �/D �.�/ for all � 2 T �x M .

The motivation for the name Binet–Legendre comes from the fact that the unit ball
of g�

F
in the cotangent space T �x M is the so called Binnet ellipsoid of the convex

body �x � TxM , while the unit ball of g�
F

in the tangent space T �x M is its Legendre
ellipsoid (up to a scaling constant; see Remark 12.2). These ellipsoids have their roots
in the 19–th century description of rigid bodies dynamics and have more recently been
a subject studied in convex geometry; see for example Milman and Pajor [36]. It seems
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that the Binet–Legendre metric has so far not attracted the attention it deserves in
Finsler geometry. It appears under the name osculating Riemannian metric in the paper
by P Centore [8] where it is proven that the Hausdorff measure on a Finsler manifold
is greater or equal to the Binet–Legendre Riemannian volume form. We did not find
any other published work on the Binet–Legendre metric in Finsler geometry, although
the idea is probably known to the experts.

The Binet–Legendre metric is one among many possible ways to construct a Riemannian
metric on a Finsler manifold; its importance lies in the fact that it satisfies the following
natural functorial properties.

Theorem 1.2 The Binet–Legendre metric gF associated to the Finsler manifold
.M;F / satisfies the following properties:

(a) If F is of class C k , then so is gF .

(b) If F is Riemannian, ie, if F.x; �/D
p

gx.�; �/ for some Riemannian metric g ,
then gF D g .

(c) If A 2 Aut.TM/ is a C k –field of automorphisms of the tangent bundle of M ,
then gA�F DA�gF .

(d) If F1.x; �/D�.x/�F2.x; �/ for some function �W M!RC , then gF1
D�2�gF2

.

(e) If 1
�
�F1 � F2 � � �F1 for some function �W M !RC , then

1

�2n
�gF1

� gF2
� �2n

�gF1
:

Proof The first property is Theorem 2.4, which is actually a stronger result, combined
with example (a) in Section 2 below. Properties (b)–(e) are essentially known facts
about the Legendre ellipsoid. For the convenience of the reader we prove them in the
Appendix; see Proposition 12.1.

This theorem immediately implies the following consequences:

� If we have that two Finsler metrics F1 and F2 are conformally equivalent, ie, if
F1.x; �/D�.x/�F2.x; �/ for some function �W M!R, then the corresponding
Riemannian metrics are also conformally equivalent with essentially the same
conformal factor: gF1

D �2 �gF2
. In particular every conformal transformation

of the Finsler metrics is conformal for the Binet–Legendre metric.

� The Binet–Legendre construction is C 0 –stable: if F1 and F2 are C 0 –close,
then so are gF1

and gF2
.

� If F1 and F2 are bilipschitzly equivalent, then so are gF1
and gF2

.
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Note that besides the Binet–Legendre metric, we could use other procedures that
associate a scalar product (or an ellipsoid) to a given convex body, such as the one
based on the John or Löwner ellipsoid, or the constructions by Lutwak, Yang, and
Zhang [30; 31], the authors, Rademacher and Zeghib [35], and Szabó [44; 43]. It is
however not completely clear whether the above properties, in particular the smoothness
or C 0 –stability, still hold for those alternative constructions.

We shall give concrete applications of the Binet–Legendre metric to the solutions of
the following seven geometric problems:

(1) A generalization of the result of Wang [47] about the possible dimensions of the
isometry groups of Finsler manifolds to manifolds of all dimensions.

(2) The description of local conformal maps between Minkowski spaces, thus an-
swering a question raised by Matsumoto in [32].

(3) The description of all Finsler spaces admitting a nontrivial self-similarity.

(4) The topological classification of conformally flat compact Finsler manifolds.

(5) The description of all conformal self maps in a Finsler manifold.

(6) A short proof of a theorem of Szabó on Berwald spaces.

(7) A positive solution to the conjecture of S Deng and Z Hou [14] stating that a
locally symmetric Finsler space is Berwald.

Most of these problems are related to conformal or isometric mappings of Finsler
metrics. Then, the Binet–Legendre metric enjoys the same geometric condition as the
given Finsler metric. In most problems we consider (the exceptions are Problem (4) and,
to a certain extent, Problem (3)), the Riemannian analog of the problem is well-studied
or can be easily described. This gives us additional information about the geometry
of the manifold that we use in the solutions of the above mentioned problems. There
is no general schematic way one can use this additional Riemannian information; in
certain cases it is straightforward and in certain cases it is tricky.

An additional result of our paper is the construction of a family of new scalar invariants
of Finsler manifolds extending the well known Minkowski functionals from convex
geometry. The invariants can be effectively calculated numerically and one can use
them to decide whether two explicitly given Finsler metrics are conformally equivalent
or isometric.

The paper is organized as follows. In Section 2 we introduce partially smooth Finsler
metrics and show the corresponding Binet–Legendre metrics are smooth. Sections 3–9
are devoted to the solutions of the aforementioned geometric problems. In Section 10
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we use the Binet–Legendre metric to produce new conformal invariants of Finsler
metrics. In the Appendix, we rapidly prove the basic properties of the Binet–Legendre
construction.

Acknowledgements This work benefited from discussions with J C Álvarez Paiva,
D Burago, S Deng, S Ivanov, A Petrunin, R Schneider, Z Shen and J Szilasi. We
also thank the Swiss National Science Foundation (200020-130107) and the Deutsche
Forschungsgemeinschaft (GK 1523) for their financial support as well EPF Lausanne
and FSU Jena for their hospitality.

2 Partially smooth Finsler metrics

There are very natural examples of Finsler metrics which are not smooth in the usual
sense. In this section we discuss a notion of smoothness that is weaker than the one
usually considered in Finsler geometry and yet is still amenable to the techniques of dif-
ferential geometry via the use of the Binet–Legendre metric. A homogeneous diffeomor-
phism of a finite-dimensional vector space V is a diffeomorphism AW V nf0g!V nf0g

such that for every � > 0 and for every v 2 V , v ¤ 0 we have A.�v/D �A.v/.

A field of homogeneous diffeomorphisms of TM is a diffeomorphism AW TM0
! TM0 ,

where TM0
D TM n .the zero section/ such the restriction Ax DAjTxM is a homoge-

neous diffeomorphism of the tangent space TxM for every x 2M .

Definition 2.1 Let .M;F / be a Finsler manifold and U �M the domain of some
coordinate system .x1; : : : ;xn/. Then F is said to be C k –partially smooth in the
coordinates xi if there exists a C k –smooth field of homogeneous diffeomorphisms
AW TU0

! TU0 such that the function x 7! F.x;Ax.�// is of class C k in U for any
fixed � 2Rn .

In this definition, we use the identification TU D U �Rn defined by the coordinate
system. The vector field � is thus “constant in the coordinate system xi ”.

Lemma 2.2 Let U be a domain in a Finsler manifold .M;F /. If F is C k –partially
smooth in some coordinate system on U , then it is partially smooth in any coordinate
system on U .

Partial smoothness in some coordinate domain is thus in fact an intrinsic notion, and
we are led to the following global definition.

Definition 2.3 A Finsler manifold is C k –partially smooth if it is C k –partially smooth
in some neighborhood of any of its point.
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Proof of Lemma 2.2 From the local nature of the concept, on may assume that M is
a domain U �Rn and that the Finsler metric F is C k –partially smooth in the usual
coordinates of Rn . We consider a field A of homogeneous diffeomorphisms as in
Definition 2.1: A is C k –smooth and the mapping x 7! F.x;Ax.�// is of class C k

in U for any constant vector field � . Let yj be another coordinate system on U ,
specifically, let �W V ! U be a diffeomorphism from some domain V onto U and
set x D �.y/. The Finsler structure F on U transforms into the Finsler structure zF
on V defined as

zF .y; �/D F.�.y/; d�y.�//:

Define now the field of homogeneous diffeomorphism zA as zAy D d��1
y ıA�.y/ . For

any fixed vector � 2Rn , the function

V 3 y 7! zF .y; zAy.�//D F.�.y/; d�y ı
zAy.�//D F.�.y/;A�.y/.�//

is the composition of the C k functions �W V ! U and x 7! F.x;Ax.�//, therefore

y 7! zF .y; zAy.�//

is of class C k for any constant vector � and we conclude that zF is partially smooth in
the coordinates yj .

Let us give some examples of partially smooth Finsler metrics.

(a) Every smooth Finsler metric is partially smooth.

(b) A Minkowski Finsler metric F.�/ on Rn is partially smooth. Indeed, we
canonically identify T Rn with Rn �Rn and look at F as a “function of 2

variables which is constant in the first variable”: F.x; �/DF.�/, ie, the field A

of the homogeneous diffeomorphisms consists of identities idx W TxM ! TxM .

(c) Let F1 and F2 be Finsler metrics on the same manifold such that F1 is partially
smooth and F2 is smooth. Let h1; h2W M ! Œ0;1/ be smooth nonnegative
functions on M such that h1.x/C h2.x/ > 0 for all x 2M . Then, the Finsler
metric

F.x; �/D h1.x/F1.x; �/C h2.x/F2.x; �/

is again a partially smooth Finsler metric.

(d) As a special case of the previous example, consider the Finsler metric on M DR2

given by

F.x1;x2; �1; �2/D .1�f .x1// � .j�1jC j�2j/Cf .x1/ �

q
�2

1
C �2

2
;

where f W R ! Œ0; 1� is a smooth function such that f .x/ D 0 for x � �1,
f .0/D 1=2 and f .x/D 1 for x � 1. The Finsler metric F is partially smooth,
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it is independent of the variable x2 and it interpolates from the L1 norm on the
plane to the Euclidean (L2 ) norm as x1 varies from �1 to 1.

Unit ball for x1 � �1 Unit ball for x1 D 0 Unit ball for x1 � 1

Figure 1: The unit balls in example (d) for different values of x1 .

(e) Let F be a partially smooth metric on M . Consider a field Ax W TxM ! TxM

of invertible endomorphisms of the tangent bundle (ie A is an invertible .1; 1/
tensor field), and the new Finsler structure defined by FA.x; �/D F.x;Ax.�//.
(Observe that any Riemannian metric on a domain in Rn can be obtained from
the Euclidean metric by this procedure.) Then, this metric is partially smooth.

(f) Consider smooth functions f1; : : : ; fnW R2! R2 such that for every x 2 R2

the points f1.x/; : : : ; fn.x/ are the vertices of a convex polygon Px such that
the point 0 lies in its interior. We identify T R2 with R2 �R2 and consider the
Finsler metric whose �x D Px at every x 2R2 . Then, this metric is partially
smooth.

The latter example was in fact one of our original motivations for introducing the notion
of partially smooth Finsler metric. This example also suggests the following remark:
Finsler geometry can be used to describe certain phenomena in natural sciences (such
as light prolongation in crystals or certain diffusion processes in organic cells), but to
use Finsler geometry in such context, one needs to accept nonsmooth metrics and the
class of partially smooth Finsler metrics seems quite appropriate. Indeed, the cells or
crystals can be viewed as a field of convex bodies at every point of R3 or of R2 and
can be described by a Finsler metric. In particular the Finsler metric in example (f)
above could be relevant in describing crystal structures.

The notion of partially smooth Finsler metrics is mainly motivated by the following
result.

Theorem 2.4 The Binet–Legendre metric of a C k –partially smooth Finsler manifold
is a Riemannian metric of class C k .

Geometry & Topology, Volume 16 (2012)
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Proof Let U �M be the domain of some coordinate system x1; : : : ;xn . We first
prove that the function x 7! Vol.�x/ is of class C k in U where �x � TxU D Rn

the Finsler unit ball and Vol.�x/ is its Euclidean volume.

By hypothesis, there is a C k field of homogeneous diffeomorphisms AW TU0
! TU0

such that x 7! F.x;Ax.�// is of class C k for any fixed � 2 Rn . Let us define
�0x DA�1

x .�x/. Writing � 0 DAx.�/, we have

�0x D f�
0
2Rn

j F.x;Ax.�
0// < 1g;

Vol.�x/D

Z
�x

d� D

Z
F.x;Ax.�0//<1

Jac.Ax/.�
0/ d� 0:

Using polar coordinates � 0 D r �u, with u 2 Sn�1 , this gives

Vol.�x/D

Z
Sn�1

�Z 1=F.x;A.u//

rD0

Jac.Ax/.r �u/r
n�1 dr

�
du;

where du stands for the spherical measure on Sn�1 and Jac.Ax/ is the Jacobian
determinant det.@�=@� 0/. Since the functions Jac.Ax/ and the bound 1=F.x;A.u//

C k – smoothly depend on x , the integral

I.x;u/D

Z 1=F.x;A.u//

rD0

Jac.Ax/.r �u/r
n�1 dr

also smoothly depends on x . Then,

Vol.�x/D

Z
Sn�1

I.x;u/ du

smoothly depends on x as we claimed.

The proof for the Binet–Legendre metric is similar. It suffices to prove that the dual
metric g�F is smooth, ie that x 7! .gF /

�
x.�; �/ is smooth in U for any fixed covector

� W Rn!R. We denote by ‚.�/ the function �.�/2 and by z‚ the function ‚ ıAx .
Arguing as above and using (1), we have

Vol.�x/
.nC2/

�gF
�
x.�; �/D

Z
�x

‚.�/ d� D

Z
F.x;Ax.�0//<1

‚.Ax.�// Jac.Ax/.�
0/ d� 0

D

Z
Sn�1

�Z 1=F.x;A.u//

rD0

z‚.r �u/ Jac.Ax/.r �u/r
n�1 dr

�
du

This is again a C k function of x 2 U , which completes the proof.
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3 On the number of Killing vector fields

By Theorem 1.2(d), the group of isometries of a partially smooth Finsler manifold
.M;F / is a subgroup of the group of isometries of .M;gF /. It is a closed subgroup and
therefore it is a Lie group and its dimension is at most 1

2
n.nC 1/; for smooth strongly

convex Finsler metrics this statement is known; see Deng and Hou [12, Theorem 3.3].

In 1947, H C Wang proved that a smooth and strongly convex n–dimensional Finsler
manifold of dimension n¤ 2; 4 is Riemannian if its group of isometries has dimension
greater than n.n�1/

2
C 1; see [47] and Yano [48]. Our next result extends Wang’s

theorem to all dimensions. Our proof is more direct and also works for partially smooth
metrics and without the strong convexity condition. This theorem gives a positive
answer to a question raised by S Deng and Z Hou in [13, page 660].

A vector field K on a Finsler manifold .M;F / is said to be a Killing vector field if it
generates a local flow �k

t of local isometries for the metric F .

Theorem 3.1 Let .M n;F / be a partially C 2 –smooth connected Finsler manifold. If
the dimension of the space of Killing vector fields of .M;F / is greater than n.n�1/

2
C1,

then F is actually a Riemannian metric.

Observe that the bound given in the theorem is sharp: The (non-Riemannian) Minkowski
space Rn with smooth and strongly convex norm

(3) F.�/D

�� nX
iD1

�2
i

�2

C �4
n

�1=4

has r D nCdim SO.n� 1/D n.n�1/
2
C1 linearly independent complete Killing vector

fields.

Proof Let r > n.n�1/
2
C1 be the dimension of the space of Killing vector fields. Take

a point x and choose r � n linearly independent Killing vector fields K1; : : : ;Kr�n

vanishing at x , this is possible because the dimension TxM is n. The point x is then
a fixed point of the corresponding local flows �K1

t , . . . , �Kr�n

t . It is obvious that any
Killing vector field for F is also a Killing vector field of gF . In particular, for every
fixed t , the differentials of �K1

t , . . . , �Kr�n

t at x are linear isometries of .TxM;gF /.
Let us denote by ˆi 2 End.TxM / the differentials ˆi D

�
d=dt

�
dx�

Ki

t

��
jtD0

. We
claim ˆ1; : : : ; ˆr�n are linearly independent. Indeed, assume

Pr�n
iD1aiˆi D 0 for

some constants ai 2R and consider the Killing field K D
Pr�n

iD1aiKi . Let us denote
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by �K
t the (local) flow generated by K ; because �K

t ı expx D expx ıdx�
K
t , we have

for y D expx.�/

Ky D
d

dt

ˇ̌̌̌
tD0

�k
t .y/D

d

dt

ˇ̌̌̌
tD0

expx.d�
K
t .�//D 0;

since
�
d=dt

�
dx�

K
t

��
jtD0
D
Pr�n

iD1aiˆi D 0. It follows that K D 0 in an open
neighborhood of the point x implying K � 0 on the whole manifold. Because Ki are
assumed to be linearly independent, we have ai D 0 for all i and ˆi are thus linearly
independent as claimed.

We now denote by G � SO.TxM;gF / the smallest closed subgroup of SO.TxM;gF /

generated by the differentials of �K1

t , . . . , �Kr�n

t at x . Its Lie algebra contains the
linearly independent elements ˆ1; : : : ; ˆr�n and we thus have dim.G/ � r � n. It
is known that for every n� 2, any .r � n/–dimensional subgroup of the orthogonal
group SO.n/Š SO.TxM;gF / acts transitively on the gF unit sphere Sn�1 � TxM

provided r > 1
2
n.n � 1/C 1. Indeed, for n ¤ 4, this immediately follows for the

classical result of Montgomery and Samelson [37]: they proved that for n¤ 4, there
exists no proper subgroup of SO.n/ of dimension greater than .n� 1/.n� 2/=2. In
dimension 4, the transitivity follows for example of Ishihara [21, Section 1], where all
Lie subgroups of SO.4/ are described.

Since the action of G on TxM preserves F and gF and G acts transitively on the
gF –sphere Sn�1 � TxM , the ratio F.�/2=g.�; �/ is constant for all � 2 TxM 0

implying that F.�/ D �.x/ �
p

gF .�; �/ for some function �W M ! RC and for all
� 2 TM . This proves that F is Riemannian, furthermore, by Theorem 1.2(b), the
coefficient �� 1 so that gF coincides with F in the sense that gF .�; �/D F2.�/ for
all � 2 TM .

Observe that hypothesis of C 2 partial smoothness of the metric was not really used
in the proof, we only used that the flows of the Killing vector fields are of class C 1 ,
which is automatically fulfilled if the metric is C 2 –partially smooth.

Remark 3.2 Smooth Riemannian manifolds with large groups of isometries have been
studied thoroughly; see eg Kobayashi and Nagano [23] for a survey of classical results.
In particular, connected Riemannian manifolds with more than 1

2
n.n� 1/C 1 Killing

vector fields are classified as follows. Let r be the dimension of the space of Killing
vector fields. Then we have:

(1) If r > n.n�1/
2
C 1 and n¤ 4, then g has constant sectional curvature (see [48]).

(2) If nD 4 and r > 1
2
n.n�1/C2D 8, then g also has constant sectional curvature

(see [21]).
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(3) If nD 4 and r > 1
2
n.n� 1/C 1D 7 then either M is Kählerian with constant

holomorphic sectional curvature (in this case, rD8), or M has constant sectional
curvature (see [21, Theorem A’, page 364]).

Note that although the cited references assume the Killing vector fields to be complete,
the proofs work without this hypothesis. Note also a Riemannian manifold with constant
sectional curvature locally has n.nC1/

2
linearly independent Killing fields.

4 The Liouville Theorem for Minkowski spaces and the solu-
tion to a problem by Matsumoto

A famous theorem by Joseph Liouville states that any conformal transformation of a
domain in R3 to another such domain is either the restriction of a similarity or the
composition of an isometry with an inversion, it is, in other words, the restriction of a
Möbius transformation. This result was announced in 1850 by Liouville in [28], and the
proof appeared as a note in the fifth edition of Monge’s book Application de l’analyse
à la géométrie [27]. It is well known that this theorem also holds in Rn for n� 3. By
contrast, in dimension 2 the Cauchy–Riemann equations imply that a transformation is
conformal if and only if it is either holomorphic or antiholomorphic.

Our next statement says that Liouville’s Theorem still holds in non-Euclidean Minkowski
spaces. We have in fact a stronger result.

Theorem 4.1 Let .V1;F1/ and .V2;F2/ be two non-Euclidean Minkowski spaces
of the same dimension n � 2. If f W U1 ! U2 is a conformal map between two
domains U1 � V1 and U2 � V2 , then .V1;F1/ and .V2;F2/ are isometric and f is
(the restriction of) a similarity, that is the composition of an isometry and a homothety
x 7! const �x .

Remark In the last sentence of the paper [32], M Matsumoto asked whether there exist
two locally Minkowski spaces which are conformal to each other. The above theorem
shows that the answer to this question is negative unless the metrics are Euclidean or
the conformal correspondence is a similarity.

Proof We will first prove the theorem for n � 3. Fix a point x 2 U1 � V1 and
let y D f .x/ 2 U2 � V2 be the image point. Because f is a conformal map, we
have df �x .F2/D �.x/F1 for some function �.x/ > 0, hence the map 1

�.x/
� dfx is an

isometry from .TxV1;F1/ to .TyV2;F2/, but since a Minkowski space is isometric to
its tangent space at any point it follows that .V1;F1/ and .V2;F2/ are isometric.
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From now on, we assume V1 D V2 D Rn and F1 D F2 D F is an arbitrary non-
Euclidean Minkowski norm. Changing coordinates if necessary, one may also assume
the Binet–Legendre scalar product gF of F is the standard scalar product h � ; � i of Rn .
It follows f is a conformal map in the usual sense between two domains U;V �Rn .

By the classical Liouville Theorem, f is the restriction of a Möbius transformation,
and such a map is known to be either a similarity or the composition of an isometry
and an inversion. We thus only need to prove the composition of an isometry and
an inversion cannot be a conformal map of some non-Euclidean Minkowski norm F

on Rn . We now prove the last assertion by contradiction. The map f is of the type

f .x/DQ

�
r2
�

x� c

jx� cj2

�
C b;

where r > 0 and Q is a linear orthogonal transformation. The differential of f at a
point x is then

dfx.�/D r2Q

�
jx� cj2 � � � 2hx� c; �i � .x� c/

jx� cj4

�
:

Observe that if xD cCr �v with jvjD 1, then dfxDQıRv where Rv is the reflection
across the hyperplane v? . In particular dfx is an isometry for the Euclidean norm.
Now since f is a conformal map and the Binet–Legendre scalar product coincides
with the standard scalar product on Rn , Proposition 12.1(c) implies that dfx is also an
isometry for F , that is F.QıRv.�//DF.�/ for every � and every unit vector v . Since
the mappings of the form � 7!Q.Rv.�//, where v 2 Sn�1 , generate the orthogonal
group, our Minkowski norm F is O.n/–invariant and is therefore Euclidean. The
theorem is proved for n� 3.

Let us now prove it for nD 2. We again consider R2 with a fixed Minkowski metric
which we denote by F , and assume that gF is the standard flat metric. Let us use
the conformal structure to construct a family of parallel lines on R2 . Take a point
x and consider the unit circle S1

x � TxR2 in the metric gF . We take a connected
component I0

max of the “maximal” set

Imax D

n
� 2 S1.x/ j F.�/D max

�2S1
x

F.�/
o
:

The set I0
max cannot coincide with the whole S1.x/ and is therefore a connected interval.

Let � 2 S1.x/ be its midpoint (with respect to the metric on S1
x induced by gF ).

The vector � is not always unique (Imax can have more than one connected component,
and every connected component has its own midpoint). We choose one of them.
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Note that the construction of the vector � is conformally invariant in the following
sense: if we multiply F at a point x by a number �, the vector � is divided by �, so
the direction of this vector field remains the same.

Now let us extend the vector to all points of R2 by parallel translations, thus obtaining
a vector field that we denote by � . Let f W U1! U2 be a conformal (ie holomorphic
or antiholomorphic) mapping. Then, it sends the vector field � to another vector field
� 0 D f�.�/ that satisfies the following properties by construction:

(1) � 0 is a smooth vector field.

(2) At every point, � 0 is the mid vector of a connected component of Imax .

Therefore the integral curves of � 0 are parallel lines in R2 . It is well known (and easy
to check) that a holomorphic or antiholomorphic map that sends a family of parallel
lines to a family of parallel lines is of the type f .z/D azC b or f .z/D axzC b with
a; b 2C , a¤ 0. Thus f is a similarity and the proof is complete.

5 Conformally flat compact Finsler Manifolds

A Finsler manifold .M;F / is conformally flat, if there is an atlas whose changes of
coordinates are conformal diffeomorphisms between open sets in some Minkowski
space. Assuming M to be non-Riemannian, it follows from Theorem 4.1, that these
changes of coordinates are Euclidean similarities. The manifold M carries therefore a
similarity structure. It turns out that compact manifolds with a similarity structure have
been topologically classified by N H Kuiper and D Fried: They are either Bieberbach
manifolds (ie Rn=� , where � is some crystallographic group of Rn ), or they are
Hopf manifolds, ie compact quotients of Rn n f0g D Sn�1 �RC by a group G which
is a semidirect product of an infinite cyclic group with a finite subgroup of O.nC 1/;
see [17; 24] and Vaisman and Reischer [45]. We thus conclude the following.

Theorem 5.1 A partially smooth connected compact conformally flat non-Riemannian
Finsler manifold is either a Bieberbach manifold or a Hopf manifold. In particular, it is
finitely covered either by a torus T n or by Sn�1 �S1 .

The structure of Riemannian conformally flat manifold is more complicated; see the
discussions by Kulkarni in [25], Matsumoto in [33] and Schoen and Yau in [41].
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6 Finsler spaces with a nontrivial self-similarity

The next theorem concerns forward complete Finsler manifolds. Recall that the distance
d.x;y/ between two points x and y on a Finsler manifold .M;F / is the infimum of
the length

LF .
 /D

Z 1

0

F.
 .t/; P
 .t// dt

of all smooth curves 
 W Œ0; 1�!M joining these two points (ie, 
 .0/D x , 
 .1/D y ).
This distance satisfies the axioms of a metric except perhaps the symmetry, ie the
condition d.x;y/D d.y;x/ is usually not satisfied. Together with the distance comes
the notion of completeness: the Finsler manifold .M;F / is said to be forward complete
if every forward Cauchy sequence converges. A sequence fxig�M is forward Cauchy
if for any " > 0, there exists an integer N such that d.xi ;xiCk/ < " for any i �N

and k � 0.

A C 1 –map f W .M;F /! .M 0;F 0/ is a similarity if there exists a constant a>0 (called
the dilation constant) such that F.f .x/; dfx.�//D a �F.x; �/ for all .x; �/ 2 TM . It
is an isometry if aD 1.

Clearly a similarity satisfies dF 0.f .x/; f .y//D a � dF .x;y/ for all x;y 2M and it
follows from the Busemann–Mayer Theorem that any C 1 –map satisfying this condition
is a similarity in the previous sense.

Theorem 6.1 Let .M;F / be a forward complete connected C 0 –Finsler manifold. If
there exists a nonisometric self-similarity f W M !M of class C 1 , then .M;F / is a
Minkowski space, that is it is isometric to any one of its tangent spaces.

The proof below is based on a blow up argument familiar in metric geometry and
requires no smoothness of the Finsler metric.

Proof We first show that the map f is a bijection. The injectivity follows from the fact
that d.f .x/; f .y//D a �d.x;y/, for any x;y and a> 0. To show that f is surjective,
we observe that f .M / �M is open since f is an immersion and f .M / �M is
closed since it is a forward complete set. Hence f .M /DM and f is thus bijective.

Replacing f by f �1 if necessary, one may assume that a< 1. We show that f has a
fixed point: pick an arbitrary point x and consider the sequence yk D f

k.x/. Then
we have

d.yi ;yiC1/D d.f i.x/; f iC1.x//D aid.x; f .x//;
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which implies that the sequence is forward Cauchy. This sequence therefore has a
unique limit x0 and by continuity of f we have

f .x0/D lim
j!1

f .yj /D lim
j!1

yjC1 D x0;

and thus found our fixed point x0 . We now consider the Binet–Legendre Riemannian
metric gF , by Theorem 1.2(d), the mapping f is a similarity also for gF . We claim
the following.

Lemma 6.2 Let .M;g/ be a C 0 Riemannian manifold. Assume that there exists a
map f W M !M such that d.f .x/; f .y//D a � d.x;y/ for some constant 0< a< 1

where d is the distance function corresponding to the Riemannian metric g . If f
has a fixed point, then .M;g/ is flat, ie, every point of M has a neighborhood that is
isometric to a domain in Rn with the standard metric.

As said before, we prove this lemma by a blow up argument1. Let x0 2M be the fixed
point of f and choose R small enough so that the closed d –ball xBR.x0/ is compact.
It suffices to show that the restriction of the metric d to this ball is flat, since for every
bounded neighborhood U �M there exists m such that f m.U /� BR.x0/.

In order to do it, we construct a sequence of flat metrics dm on BR.x0/ such that it
uniformly converges to the metric of d , in the sense that for every x;y 2 BR.x0/

we have dm.x;y/!d.x;y/ uniformly as m ! 1. Choosing a smaller radius R

if necessary, one may assume that some coordinates x1; : : : ;xn are defined in some
neighborhood of the ball BR.x0/. Assume also the point x0 has coordinates .0; : : : ; 0/
and that the metric g is given by the identity matrix at the point x0 . In this neighborhood,
we consider the flat (constant) Riemannian metric g0Ddx2

1
C� � �Cdx2

n . Both metrics g

and g0 coincide at the point x0 . The distance in the metric g is denoted by d and that
in the metric g0 will be denoted by d0 . Likewise balls in the d –metric are denoted
by Br .x/ and balls in the d0 –metric will be denoted by B0r .x/.

We take R0 such that B0
R0
.x0/ � BR.x0/. For every m 2N we define a metric dm

on B0
R0
.x0/ by

dm.x;y/D
1

am
d0.f

m.x/; f m.y//:

Let us show that the sequence of metrics dm converges to the metric d . Since the met-
ric g is continuous, and since at the point x0 the metric g coincides with the metric g0 ,

1 The proof is elementary if the metric g is C 2 : set �.x/Dmax jK.�/j where � ranges through all
2–planes in TxM and K is the sectional curvature. For a similarity f with dilation constant a we have
�.x/D a2m�.f m.x// thus, if a< 1 and ff m.x/g converges, we have �.x/D 0 .
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for every " > 0 there exists r."/ such that for every point x 2B0
3r."/

.x0/[B3r."/.x0/

and for every nonzero tangent vector � 2 TxM we have

1

1C "
�

p
g.�; �/p
g0.�; �/

� 1C ":

These inequalities immediately give the following estimates on the length of any curve

 W Œ0; 1�! B3r."/.x0/:

1

1C "
Lg.
 /�Lg0

.
 /� .1C "/Lg.
 /:

Assuming " < 1
2

, these estimates imply that the shortest path connecting two points
in Br .x0/ stays in the ball B0

3r
.x0/, and symmetrically the shortest path connecting

two points in B0r .x0/ stays in the ball B3r .x0/. We therefore have the following
inequalities for any x;y 2 B0

r."/
.x0/\Br."/.x0/:

1

1C "
d.x;y/� d0.x;y/� .1C "/d.x;y/:

Now take two arbitrary points x;y 2 BR.x0/. For sufficiently large m, the points
f m.x/ and f m.y/ lie in Br ."/.x0/. By definition, the distance between f m.x/

and f m.y/ is the length of a shortest curve. Since this curve lies in B3r."/.x0/, the
inequalities above imply that

1

1C "
d.f m.x/; f m.y//� d0.f

m.x/; f m.y//� .1C "/d.f m.x/; f m.y//:

Dividing this inequality by am and using the property d.f m.x/; f m.y//Dam �d.x;y/

together with the definition of dm we obtain

1

1C "
d.x;y/� dm.x;y/� .1C "/d.x;y/:

Since for x;y 2 BR.x0/ the function d.x;y/ is uniformly bounded by 2R, the
metrics dm uniformly converge to the metric d as m!1. Furthermore the metrics dm

are clearly flat metrics: BR.x0/ equipped with such metric is isometric to a domain in
the standard Euclidean space Rn .

Is it is well known that a uniform limit of flat metrics, is itself flat. For the sake of
completeness, we give a proof of this fact in our case. We may assume that R � 3,
otherwise we divide the metric by a large constant. We will prove that the metric d in
the ball B1.x0/ is flat.
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For any m, we choose an isometric embedding �mW . xBR.x0/; dm/! Rn such that
�m.x0/D 0. Let us set xj .m/D �

�1
m .ei/ 2 xBR.x0/ where e1; e2; : : : ; en 2Rn is the

standard orthonormal basis.

Since xBR.x0/ is compact, one can find a subsequence .x1.mi/; : : : ;xn.mi// converg-
ing to a tuple .x1; : : : ;xn/2B1.x0/�� � ��B1.x0/. We claim that the restriction of the
sequence �mi

to B1.x0/ converges to a map �W B1.x0/ !Rn which is an isometry.

Indeed, for any y 2 xBR.x0/ the point �mi
.y/ is the unique point in Rn such that

k�mi
.y/k D dmi

.x0;y/ and k�mi
.y/� ejk D dm.xj ;y/ for any j D 1; : : : ; n. Since

the sequence xj .mi/ converges to xi and dmi
converges uniformly to d , the sequence

f�mi
.y/g converges to the unique point Y 2 Rn such that kY k D d.x0;y/ and

kY � ejk D d.xj ;y/ for any j D 1; : : : ; n.

We denote by � D limi!1 �mi
the limiting map. This is an isometry since

d.y;y0/D lim
i!1

dmi
.y;y/D lim

i!1
k�mi

.y/��mi
.y0/k D k�.y/��.y0/k:

The proof of Lemma 6.2 is complete.

The lemma just proved tells us that a neighborhood of the point x0 2M equipped
with the metric gF is isometric to a domain in the standard Euclidean space. The next
lemma (which provides the second step in the proof of Theorem 6.1) says that the
metric F is isometric to a Minkowski metric in the same neighborhood.

Lemma 6.3 Let F be a Finsler metric on a domain U �Rn and let f W U �! U be
a map which is a self-similarity with dilation constant a< 1 for both the Finsler metric
F and the standard Euclidean metric g on Rn . If f has a fixed point, then F is (the
restriction of) a Minkowski metric.

Note in the lemma we neither suppose F is complete nor that it is quasireversible.

To prove this lemma, assume that U contains the origin and that 0 is the fixed point.
Then f is the restriction of a linear similarity (still denoted by f W Rn!Rn ) and has
thus the form f .x/D a �Q.x/, for some orthogonal transformation Q 2 O.n/. By
hypothesis, we have

F.f .x/; dfx.�//D f
�F.x; �/D a �F.x; �/

for any .x; �/ 2 T Rn DRn �Rn . Because dfx.�//D a �Q.�/, we have

F.f .x/; dfx.�//D F.f .x/; a �Q.�//D a �F.f .x/;Q.�//:

It follows from the two previous equalities that

F.x; �/D F.f .x/;Q.�//D anF.f n.x/;Qn.�//
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for any integer n. Fix an arbitrary point x 2Rn and choose a sequence fnj g �N such
that Qnj�! id in O.n/ as j !1, we then have

F.x; �/D lim
k!1

F.f nk .x/;Qnk .�//D F.0; �/:

This shows that F.x; �/ is independent of x , ie, it is a Minkowski metric. The second
lemma is proved.

We can now conclude the proof of Theorem 6.1. By Lemmas 6.2 and 6.3 the metric F

is a Minkowski metric in a certain neighborhood U of x0 . Since for bounded set
U 0 �M there exists m such that f m.U 0/� U , the metric F is a Minkowski metric
in some neighborhood of every point. Clearly, M is simply connected. Indeed, for
every loop 
 there exists m such that f m.
 / lies in a small neighborhood of x0 and
is therefore contractible. Because f m is a homeomorphism on its image, the loop 
 is
contractible as well. We established that the manifold .M;F / is forward complete,
simply connected and locally isometric to a Minkowski space; it is therefore globally
isometric to a Minkowski space.

In the case of smooth Finsler manifolds, Theorem 6.1 is known. A first proof was
given by Heil and Laugwitz in [19], however R L Lovas and J Szilasi found a gap in
the argument and gave a new proof in [29].

7 Conformal transformations of (partially smooth) Finsler
metrics

In this section, we classify all conformal transformations of an arbitrary Finsler mani-
fold.

Definition 7.1 A set S �Diff.M / of transformations of the Finsler manifold .M;F /

is said to be essentially conformal if any f 2 S is a conformal transformation of
.M;F /, but there is no conformal deformation � �F of F for which S is a set of
isometries. The set S of conformal transformations of M is termed inessential if it is
not essentially conformal.

Theorem 7.2 Let .M;F / be a connected C1 partially smooth Finsler manifold.
Then the following conditions are equivalent:

(a) There exists an essentially conformal diffeomorphism f of .M;F /.

(b) The group of conformal diffeomorphisms of .M;F / is essential.

(c) .M;F / is conformally equivalent to a Minkowski space .Rn;F / or to the
canonical Riemannian sphere .Sn;g0/.
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The logic of the proof is the following: Using the Binet–Legendre construction, we
reduce this theorem to the Alekseevskiı̆–Ferrand–Schoen solution to the Riemannian
Lichnerowicz–Obata conjecture; see eg Alekseevskiı̆ [1], Ferrand [15] and Schoen [40].
We then need to prove that the Finsler metric is conformally Minkowski in the non-
compact case and Riemannian in the compact case. The main ideas are similar to those
in [35], but here we do not work with conformal vector fields.

Note it is obvious that .a/) .b/, but .b/) .a/ is not a priori a trivial fact because we
could conceive of a Finsler manifold .M;F / for which every conformal diffeomorphism
would be inessential, but for which no conformal deformation � �F of the metric would
be simultaneously invariant under all conformal diffeomorphisms of .M;F /.

Proof As just observed, .a/ trivially implies .b/. It is also clear that .c/) .a/,
since any linear contraction of a Minkowski space and any nonisometric Möbius
transformation of the sphere are examples of essential conformal transformations. We
thus only need to prove .b/) .c/.

We know from Theorem 1.2(d) that f is also a conformal transformation for the
associated Binet–Legendre metric, and f W .M;gF / ! .M;gF / must be essential
otherwise f would be an inessential conformal transformation of .M;F /.

It follows that the full group of conformal transformations of .M;gF / is essential
and by the Alekseevskiı̆–Ferrand–Schoen Theorem, the manifold .M;gF / is either
conformally equivalent to the Euclidean space Rn or to the canonical Riemannian
sphere Sn . Changing the Finsler metric F and correspondingly the Binet–Legendre
metric gF within the same conformal class, we will assume that .M;gF / is in fact
isometric to Rn or Sn .

If .M;gF / is isometric to the Euclidean space .Rn;g0/, then f is a conformal
transformation of Rn and it is therefore a map of the type f .x/D a �Q.X /C b with
Q 2O.n/, a> 0 and b 2Rn . Since f is essential, we have a¤ 1 and we conclude
from Lemma 6.3 that F is a Minkowski metric. Our claim is proved in this case.

We now assume that .M;gF / is isometric to the canonical Riemannian sphere Sn and
f W Sn! Sn is a nonisometric conformal map. It is well known that such a map has
exactly either one or two fixed points.

Case 1 (f has two fixed points) Using a stereographic projection, we identify Sn

with Rn[f1g and we may assume that f .1/D1 and f .0/D 0. Thus f induces
a conformal map f W Rn!Rn which is of the type f .x/D a �Q.x/, with Q 2O.n/.
If aD 1, then f is an isometry of the spherical metric

g1 D �
2.x/ �g0; �.x/D

2

1Cjxj2
;
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where g0 D
P

dx2
i is the standard Euclidean metric. By hypothesis this metric g1

coincides with the Binet–Legendre metric gF of F , and by Theorem 1.2(d), the map f
is then also an isometry of the Finsler metric F , ie f is inessential, a case that we
excluded.

So we have a¤1. Consider the Finsler metric FCD��1 �F on Rn , its Binet–Legendre
metric is the flat metric g0 D �

�2 � g1 . The map f .x/D a �Q.x/ is a nonisometric
similarity for both the Binet–Legendre metric gFC D g0 and the Finsler metric FC

and we conclude from Lemma 6.3 that FC is a Minkowski metric.

Let '.x/ D x=jxj2 be the standard inversion in Rn [ f1g. This map exchanges
the two fixed points of f and the previous argument shows that F� D ��1 �'�F is
also a Minkowski metric. Since ' is conformal for the Binet–Legendre metrics of
FC and F� , the Liouville Theorem (Theorem 4.1) implies that FC D ��1 �F is a
Euclidean metric gC and thus F is Riemannian. Hence F.�/ D

p
gF .�; �/ is the

standard metric on Sn .

Case 2 (f has exactly one fixed point) We again identify Sn with Rn[f1g and
assume that f .1/D1. Thus f induces a conformal map f W Rn!Rn which is of
the type f .x/D a �Q.X /Cb . Since f has no fixed point in Rn , we must have b¤ 0

and aD 1. Using Lemma 7.3 below and conjugating f with a translation if necessary,
we may assume that b is an eigenvector of Q with eigenvalue C1, ie Q.b/D b .

We are thus in the following situation: our map f is f .x/ D Q.x/ C b where
Q.b/D b ¤ 0 and the composition zf D ' ı f W Rn n f0g !Rn is conformal for the
standard metric, where ' is the inversion. We have

zf .x/D
Q.x/C b

jQ.x/C bj2
;

d zfx.�/D
Q.�/

jQ.x/C bj2
� 2hQ.�/;Q.x/C bi

Q.x/C b

jQ.x/C bj4

D
1

jf .x/j2

�
Q.�/� 2

hQ.�/; f .x/i

jf .x/j2
�f .x/

�
D

1

jf .x/j2
� .Sf .x/ ıQ/.�/;

where Sf .x/ is the linear reflection across the hyperplane f .x/? . Since Q.b/D b ,
we have f n.x/DQn.x/C n � b , and the same calculation gives us

d. zfn/x.�/D
1

jf n.x/j2
� .Sf .x/n ıQn/.�/;
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for any n 2N , where zfnD ' ıf
n . The map zfn is conformal for the Finsler metric F ,

we thus have
F. zfn.x/; d. zfn/x.�//D �n.x/ �F.x; �/

for some function �n , therefore

F.x; �/D
1

�n.x/
�F. zfn.x/; d. zfn/x.�//

D �n.x/ �F. zfn.x/; .Sf .x/n ıQn/.�//;

where �n.x/D1=.jf n.x/j2�n.x//. Observe that Sf .x/n only depends on the direction
of the vector f n.x/, ie Sf .x/n D S f .x/n

jf .x/nj

, and since

lim
n!1

f .x/n

jf .x/nj
D lim

n!1

Qn.x/C n � b

jQn.x/C n � bj
D

b

jbj
;

we have
lim

n!1
Sf .x/n D Sb:

By the compactness of the group O.n/, one may find a sequence fnj g �N such that
Qnj ! I , we thus have

lim
j!1

jf n.x/j2 � d. zfn/x.�/D lim
j!1

.Sf .x/n ıQn/.�/D Sb.�/:

Now �n.x/ is a bounded sequence and we may choose the subsequence fnj g such
that �nj .x/ converges to some number �.x/. The previous considerations imply that

F.x; �/D lim
j!1

�nj .x/ �F.
zfnj .x/; .Sf .x/n ıQnj /.�//D �.x/ �F.0;Sb.�//

for any .x; �/. It follows that 1
�

F is a Minkowski metric.

Since the inversion ' is conformal for the Minkowski metric 1
�

F , the Liouville Theo-
rem (Theorem 4.1) implies F is in fact a Riemannian metric and thus F.�/D

p
gF .�; �/

is the standard metric on Sn .

Lemma 7.3 Suppose that f .x/DQ.x/Cb is a fixed point free transformation of Rn

with Q 2O.n/. Then f can be decomposed as

f D T ıf1 ıT �1;

where T is a translation and f1.x/DQ.x/Cb1 for some nonzero vector b1 such that
Q.b1/D b1 .
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Proof Let us denote by EDfv 2Rn jQ.v/D vg. The decomposition RnDE˚E?

is Q–invariant and we write bDb1Cb2 with b12E and b22E? . The transformation
f2.x/DQ.x/C b2 has a fixed point v0 2E? . Indeed, 1 is not an eigenvalue of the
restriction QjE? , therefore the equation

.Q� I/.v/D�b2; v 2E?

has a solution v0 , and we have Q.v0/C b2 D v0 . Let us denote by T the translation
T .x/D xC v0 . We then have

.T �1
ıf ıT /.x/D .Q.xC v0/C b/� v0

DQ.x/C .Q� I/.v0/C .b1C b2/

DQ.x/C b1:

It is clear that Q.b1/D b1 since b1 2E , and b1 ¤ 0, otherwise f .x/DQ.x/C b2

would have a fixed point.

8 On Berwald spaces

A C k -Berwald space is a Finsler manifold .M;F / which admits a torsion free linear
connection r which is compatible with the Finsler metric. More precisely, one says
that a linear connection r on a smooth manifold is of class C k if its Christoffel
symbols in any coordinate system are of class C k . Recall that the parallel transport
associated to a C 1 –path 
 W Œ0; 1�!M from x D 
 .0/ to y D 
 .1/ is the linear map
P
 W TxM ! TyM defined as P
 .�t /D �1 2 TyM where t ! �t is the solution to
the equation r P
.t/�t D 0 such that �0 D � 2 TxM . Observe that, since this ordinary
differential equation is linear in �t , there is a unique solution for any t 2 Œ0; 1� even
when the connection r is only of class C 0 (see Hartman [18]).

Definition 8.1 A Finsler metric F on a manifold M is said to be a C k –Berwald metric
if there exists a C k –smooth torsion free linear connection r (called an associated
connection) on M whose associated parallel transport preserves the Lagrangian F .
That is, if 
 W Œ0; 1�!M is a smooth path connecting the point x D 
 .0/ to y D 
 .1/

and P
 W TxM ! TyM is the associated r–parallel transport, then

F.y;P
 .�//D F.x; �/

for any � 2 TxM .

Observe that if an associated connection r of a Berwald metric F is of class C k , then
the metric F is C k –partially smooth.
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Note that the definition given here differs (and is more general) from that given by Bao,
Chern and Shen in [3], but both definitions are equivalent for C 2 and strongly convex
Finsler metrics; see Chern and Shen [10, Proposition 4.3.3].

In 1981, Z I Szabò proved that for a smooth and strongly convex Berwald metric,
there exists an associated connection which is the Levi-Civita connection of some
Riemannian metric on M . Later, other proofs that do not require strict convexity were
given by the first author in [34] and by Vincze in [46]. Our next result, whose proof is
very simple, extends Szabò’s theorem to the case of C 0 Finsler metrics.

Theorem 8.2 Let .M;F / be a C 0 –Berwald–Finsler manifold. If r is an associated
connection, then the parallel transport associated to the connection r preserves the
Binet–Legendre metric gF .

Proof For any smooth path 
 W Œ0; 1�!M , the parallel transport P
 W TxM ! TyM

is a linear map that sends the unit ball of F at x D 
 .0/ to the unit ball of F at
y D 
 .1/. By Proposition 12.1(b), the parallel transport preserves the Binet–Legendre
metric gF as we claim.

Remark (A) The theorem implies the following extension of Szabò’s theorem: Any
partially C 1 –Berwald metric has a unique associated linear connection r and
this connection is the Levi-Civita connection of the Binet–Legendre metric gF .

(B) One may in fact redefine a partially smooth Berwald metric as a Finsler metric
for which the Levi-Civita connection of the Binet–Legendre metric preserves F .

(C) Observe that a Finsler manifold .M;F / is flat (ie locally Minkowski) if and
only if it is Berwald and gF is a flat Riemannian metric.

(D) It is now easy to produce examples of non-Berwald metrics for which all tangent
spaces TxM are isometric as Minkowski spaces (such Finsler metrics are called
monochromatic by Bao in [2, Section 3.3]). Take a non-Euclidean Minkowski
metric F0 on Rn and let A be a smooth field of endomorphisms such that
for every point x the endomorphism Ax is an orthogonal transformation for
the Binet–Legendre metric: Ax 2 O.Rn;gF /. Let zF .x; �/D F0.Ax.�//, by
construction F and zF have the same Binet–Legendre metric. In particular g zF
is flat, and all tangent spaces are isometric to F0 , but unless Ax is an isometry
of Fx (for any point x ), the Finsler metric zF is not Berwald.

(E) One can describe all partially smooth Berwald spaces by the following construc-
tion. Choose an arbitrary smooth Riemannian metric g on M and choose an
arbitrary Minkowski norm in the tangent space at some fixed point q that is
invariant with respect to the holonomy group of g . Now extend this norm to

Geometry & Topology, Volume 16 (2012)



2158 Vladimir S Matveev and Marc Troyanov

all other tangent spaces by parallel translation with respect to the Levi-Civita
connection of g . Since the norm is invariant with respect to the holonomy group,
the extension does not depend on the choice of the curve connecting an arbitrary
point to q , and is a partially smooth Berwald–Finsler metric.

We see that if the holonomy group of gF acts transitively on the unit sphere in some
tangent space, then the Finsler metric F is actually Riemannian. When the holonomy
group is not transitive, we have the following result.

Proposition 8.3 Let F be a C 2 –partially smooth non-Riemannian Berwald metric
on a connected manifold M . Then, either there exists another Riemannian metric h

which is affinely equivalent to gF but not proportional to gF , or the metric .M;gF /

is symmetric of rank greater than or equal to 2, or both.

Recall that a Riemannian symmetric space .M;g/ is said to be of rank k if every point
belongs to a subspace Ek �M which is isometric to the Euclidean space Rk .

Remark Recall that by de Rham’s Splitting Theorem [11], the existence of h such
that it is not proportional to gF , but is affine equivalent to gF , implies that .M;gF / is
locally decomposable, in the sense that every point of it has a neighborhood U that is
isometric to the direct product of two Riemannian manifolds of positive dimensions. If
in addition .M;gF / is complete, the universal cover of .M;gF / is the direct product
of two complete Riemannian manifolds of positive dimensions.

Proof We essentially repeat the argumentation in [34; 46; 43]. Fix a point q 2M .
For every smooth loop 
 .t/, (0 � t � 1) such that 
 .0/ D 
 .1/ D q , we denote by
P
 W TqM !TqM the parallel transport along that loop with respect to the Levi-Civita
connection of g . The set

Hq D fP
 j 
 W Œ0; 1�!M smooth; 
 .0/D 
 .1/D qg

is a subgroup of the group of the orthogonal transformations of .TqM;gF /. Moreover,
it is well known (see for example, Berger [5] and Simons [42]), that at least one of the
following conditions holds:

(1) Hq acts transitively on S1 D f� 2 TqM j g.�; �/D 1g.
(2) The metric gF is symmetric of rank � 2.
(3) There exists another Riemannian metric h which is affinely equivalent but not

proportional to gF .

In the first case, the ratio F.�/=
p

gF .�; �/ is a constant function on the sphere
TqM n f0g, implying the metric F is Riemannian, which is contrary to our hypothesis.
Thus either the second or the third case holds and the proposition is proved.
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9 On locally symmetric Finsler spaces

Definition 9.1 The Finsler manifold .M;F / is called locally symmetric, if for every
point x 2M there exists r D r.x/ > 0 and an isometry zIx W Br .x/! Br .x/ (called
the reflection at x ) such that zIx.x/ D x and dx.zIx/ D � idW TxM ! TxM . The
largest r.x/ satisfying this condition is called the symmetry radius at x . The manifold
.M;F / is called globally symmetric if the reflection zIx can be extended to a global
isometry: zIx W M !M .

Theorem 9.2 Let .M;F / be a C 2 –smooth Finsler manifold. If .M;F / is locally
symmetric, then F is C1–Berwald 2.

Remark 9.3 This theorem answers positively a conjecture stated in [14], where it
has been proved for globally symmetric spaces; see also Busemann [6, Section 49],
Foulon [16] and Kim [22].

Proof We will first prove the theorem under the additional assumption that the metric F

is strongly convex. Since every local isometry for the Finsler metric F is also an
isometry for the Binet–Legendre metric gF , it follows that .M;gF / is a Riemannian
locally symmetric space.

In what follows, it will be convenient to use tilde-notation for the “Finsler” objects, and
the nontilde notation for the analogous objects for the Binet–Legendre metric gF (for
example Br .x/ will denote the r –ball in gF , and zBr .x/ the r –ball in F ; 
 .t/ will
denote gF –geodesic and z
 .t/ will denote F –geodesics). Note that a locally symmetric
space is evidently reversible, so that the distance function in F is symmetric, and if
t 7! z
 .t/ is a geodesic parameterized by arc length, the reversed curve t 7! z
 .�t/ is
also a geodesic parameterized by arc length.

It is known that a locally symmetric Riemannian manifold is locally isometric to
a globally symmetric space (see Helgason [20, theorem 5.1]) and is therefore real
analytic. Then, for sufficiently small neighborhood W �M and for every x 2W , the
gF –reflection Ix is defined globally on W .

For every x 2W , there is also the reflection zIx W
zBzr.x/.x/! zBzr.x/.x/ for the Finsler

metric. By Theorem 1.2(d), the Finsler reflection zIx coincides with the restriction of
the Riemannian reflection Ix on zBzr.x/.x/\W . We do not know3 a priori whether Ix

is an F –isometry in the whole ball B�.x/.

2According to Definition 8.1, it means that the associated connection r is C1–smooth. We can in
fact prove that the associated connection is C! ; but this does not imply that the metric F itself is C1 .

3 A different definition of locally symmetric Finsler manifolds was given by Berestovskiı̆ in [4] and
Busemann and Phadke in [7]: it was explicitly assumed that the radius of symmetry zr.x/ was locally
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Claim For every sufficiently small gF –geodesically convex open set W �M and
for every F –geodesic z
 .t/W Œ�z"; z"� ! W parameterized by arc length, we have
Iz
.0/.z
 .t//D z
 .�t/ for all t 2 Œ�z"; z"�.

Recall that W is gF –geodesically convex, if every pair of points in W can be connected
by a unique minimal gF –geodesic and that geodesic lies in W . To prove the claim, we
take a F –geodesic z
 W Œ�z"; z"�!W , set xD z
 .0/2W , consider the gF –reflection Ix

and the number

(4) r0.z
 ;x/D supfr 0 2 Œ0; z"� j Ix.z
 .t//D z
 .�t/ for all t 2 Œ�r 0; r 0�g:

Since the metric F is strongly convex, there is a unique F –geodesic with any given ini-
tial vector. Then, because Ix�

zIx in a small neighborhood of x , we have r0.z
 ;x/> 0.
We want to prove that r0.z
 ;x/ D z". Let us assume that r0.z
 ;x/ < z" and derive a
contradiction.

Indeed, set xC D z
 .r0/ and x� D z
 .�r0/ and consider (the analytical continuation
of) the gF –reflections IxC ; Ix; Ix� . Consider Ix� ı Ix ı IxC . It is again a gF –
isometry. Let us show that it coincides with Ix . In order to do this, we consider the
gF –geodesic 
 .t/ containing xC D z
 .r0/ and x� D z
 .�r0/. Reparameterizing this
geodesic affinely if necessary, we may assume without loss of generality that 
 .1/DxC
and 
 .�1/D x� . Since the neighborhood W is sufficiently small, we may assume 

is defined at least on Œ�2; 2�. Since Ix.xC/D x� 2W and Ix.x�/D xC 2W , we
have that Ix.
 / is a shortest gF –geodesic connecting xC to x� . By convexity of W ,
we must have Ix.
 /�W and Ix.
 .t//D 
 .�t/. In particular Ix.
 .0//D 
 .0/. By
uniqueness of the fixed point of Ix in a geodesically convex region, it follows that

 .0/D x . Now, we have

IxC.x/D 
 .2/; Ix.
 .2//D 
 .�2/; Ix�.
 .�2//D 
 .0/D x:

This implies Ix�ıIxıIxC.x/DxDIx.x/. We next show dx .Ix� ı Ix ı IxC/D� id.
Choose a vector � 2 TxM and extend it as parallel vector field along the geodesic 
 .
Since the reflection Ix� leaves 
 invariant and satisfies dx�.�x�/D��x� , and since an
isometry preserves parallel vector fields, we have .Ix�/�.�/D�� at every point of 
 .
The same holds for the reflections Ix and IxC , therefore .Ix� ı Ix ı IxC/� �D�� (for
arbitrary � 2 TxM ). It follows that dx .Ix� ı Ix ı IxC/D� idD dxIx and therefore
Ix� ı Ix ı IxC D Ix .

Now, for ı > 0 small enough, the mappings Ix� and IxC are F –isometries in the
F –balls zBı.x�/ and zBı.xC/, respectively; see Figure 2.

bounded below. Under this assumption, Ix coincides with zIx in the whole zBr , where r can be universally
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zBı.x�/




x

z


zBı.xC/

Figure 2: The geodesics 
 , z
 and the balls zBı.x�/ , zBı.xC/ .

Using again the uniqueness of an F –geodesic with prescribed given initial vector,
we see that the mapping Ix� ı Ix ı IxC sends the F –geodesic segment z
jŒr0;r0Cı� to
the F –geodesic segment z
jŒ�r0�ı;�r0� . Replacing the isometry Ix� ı Ix ı IxC by the
isometry IxC ıIx ıIx� in the previous argument, we obtain that IxC ıIx ıIx� sends
the F –geodesic segment z
jŒ�r0�ı;�r0� to the F –geodesic segment z
jŒr0;r0Cı� . Since
Ix� ı Ix ı IxC D Ix D IxC ı Ix ı Ix� , and since a locally symmetric Finsler metric is
reversible, the isometry Ix has the property Ix.z
 .t//D z
 .�t/ for all t 2 Œ�r0�ı; r0Cı�.
This gives us a contradiction with (4) that proves the Claim.

Let us now show that the metrics gF and F are affinely equivalent as in [10, page 74],
that is, for every arc length parameterized F –geodesic z
 there exists a nonzero con-
stant c such that z
 .c � t/ is an arc length parameterized gF –geodesic. We have
already seen that for a short F –geodesic segment, the gF –geodesic segment with
same endpoints has also the same midpoint. Let us repeat the exact argument. Fix
a sufficiently small gF –geodesically convex set W � M and take a F –geodesic
z
 W Œ�z"; z"�!W . Let 
 W Œ�"; "�!W be the unique shortest gF –geodesic such that

 .�"/D z
 .�z"/ and 
 ."/D z
 .z"/. We assume that both geodesics are parameterized
by their arc length in the metric F and gF respectively. Let x D z
 .0/ be the midpoint
of z
 and let Ix be the gF reflection centered at x . Using the previously proved claim,
we find that

Ix.
 .�"//D Ix.z
 .�z"//D z
 .z"/D 
 ."/

and likewise Ix.
 .�"//D 
 ."/. By convexity of W , we must have Ix.
 /�W and
Ix.
 .t//D 
 .�t/ for all t 2 Œ�"; "�. In particular Ix.
 .0//D 
 .0/. By uniqueness
of the fixed point of Ix , it follows that 
 .0/D x D z
 .0/. Thus, for every F –geodesic
segment z
 in W , its middle point coincides with the middle point of the unique
minimal gF –geodesic segment with the same ends.

Replacing the geodesic segment z
jŒ�z";z"� by z
jŒ�z";0� or by z
jŒ0;z"� , we also have that

 .�1

2
"/ D z
 .�1

2
z"/ and 
 .1

2
"/ D z
 .1

2
z"/. Iterating this procedure, we obtain that


 .s � "/ D z
 .s � z"/ for all s in a dense subset of Œ�1; 1�, this implies the geodesic
segments 
 and z
 coincide after the affine reparameterization t 7! .z"="/t . We obtain

chosen for all points x of a sufficiently small neighborhood W . From Corollary 9.4 it follows that every
locally symmetric space in our definition is also locally symmetric in the definitions in [4; 7].
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that F is Berwald whose associated connection is the Levi-Civita connection of gF ;
see [10, page 74]. Thus, Theorem 9.2 is proved for strongly convex Finsler metrics.

In order to complete the proof for an arbitrary Finsler metrics F , we consider the
Finsler metric F˛ given by

F˛.�/D

q
F.�/2C˛ �gF .�; �/;

where ˛ > 0 is some parameter. The metric F˛ is C 2 –smooth and strictly convex.
The reflections Ix are evidently isometries of F˛ , so that F˛ is locally symmetric.
We then just proved that F˛ is Berwald and its associated connection is the Levi-
Civita connection of gF˛ . Since the reflections Ix are evidently isometries of gF˛ ,
the metrics gF˛ is affinely equivalent to gF for any ˛ > 0. Then, for every ˛ > 0,
the function F˛ is preserved by the parallel transport of the Levi-Civita connection
of gF . It follows that F D lim˛!0 F˛ is also preserved by the parallel transport of
the Levi-Civita connection of gF implying it is Berwald as we claimed.

Corollary 9.4 Every locally symmetric C 2 –smooth Finsler manifold is locally iso-
metric to a globally symmetric Finsler space.

Proof We consider the Binet–Legendre metric gF of our locally symmetric Finsler
space .M;F /. Since .M;gF / is also locally symmetric, by the classical results
of Cartan [20, theorem 5.1], it is locally isometric to a simply connected globally
symmetric Riemannian space . SM ;g/. We identify a small open set U �M with an
open neighborhood set V � SM . This defines a Finsler metric xF on V . Now extend
the Finsler metric xF to the whole of SM using the procedure in (E) of the remark in
Section 8, with the help of parallel transport of the Levi-Civita connection of g . Since
the metric is Berwald and the manifold is simply connected, we obtain a well defined
Finsler metric on SM . This metric (we denote it by xF ) is evidently locally symmetric.
Since g and its isometries are real-analytic, the metric xF is globally symmetric as we
claimed.

Remark 9.5 Corollary 9.4 gives us a local description of locally symmetric (C 2 –
smooth) Finsler spaces (in special cases this description was obtained in [14; 16], and by
Planche in [38; 39]). Indeed, take a globally symmetric simply connected Riemannian
space .M;g/ and consider the isometry subgroup G generated by all reflections. The
group G acts transitively on M . At one point x 2M , consider a smooth Minkowski
norm Fx W TxM ! R such that it is invariant with respect to the stabilizer Gx of
the point x . Next, extend Fx to all points with the help of the action of G , ie, for
an isometry g 2 G with g.x/D y put Fy.dxg.�//D Fx.�/. By Corollary 9.4, any
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C 2 –smooth locally symmetric Finsler space is locally isometric to one constructed by
this procedure.

10 The Minkowski functionals and other conformal invari-
ants of a Finsler manifold

The Minkowski functionals are a family of .nC 1/ invariants associated to a bounded
convex set � lying in an n–dimensional Euclidean vector space .En;g/. The standard
way to define them is via the Steiner Formula

(5) Voln.�C tBn/D

nX
jD0

�
n

j

�
Wn

j .�/t
j ;

where Bn �En is the Euclidean unit ball. Since the tangent space TxM of a Finsler
manifold .M;F / is an Euclidean space (with scalar product given by the Binet–
Legendre metric gF ), the Minkowski functionals of the F –unit ball �x � TxM are
well defined. We have thus defined on the Finsler manifold .M;F / a family of nC 1

functions

wn
k W M !R; k D 0; 1; : : : ; n;

(the function wn
n is in fact a constant, it is the volume of the Euclidean unit ball). Observe

that by construction, these functions are invariant under a conformal deformation of the
Finsler metric. It is not difficult to check that if the Finsler metric F is C k –partially
smooth, then the Minkowski functionals wn

k
are C k –smooth functions on M .

Let us construct two additional conformal invariants: At every point x one sets

M.x/D max
0¤�2TxM

F.x; �/p
g.�; �/

; �.x/D min
0¤�2TxM

F.x; �/p
g.�; �/

:

It is easy to show that the functions M and � are continuous, but even if the Finsler
metric is smooth, these functions may be nonsmooth.

The invariants defined in the previous subsection can be used in addressing the following.

Equivalence problem for Finsler metrics Let F1 and F2 be Finsler metrics defined
on the discs U1 and U2 . Decide if .U1;F1/ is conformally equivalent to .U2;F2/, in
the sense that there exists a diffeomorphism f W U1! U2 that sends the metric F1 to
the metric � �F2 for a certain function � on U2 .
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One may also consider the similar isometric equivalence problem. This one has been
addressed by Chern in his 1948 paper [9], where he solved it by tensorial methods. His
method only works for smooth and strongly convex Finsler metrics.

For the conformal equivalence problem, we propose the following test, which only
gives a necessary condition, but which works without smoothness assumptions and is
quite stable and manageable from a computational viewpoint. Consider the mappings
ˆi W Ui!RnC2 , i D 1; 2, given by

ˆi.x/D .w
n
0.x/; : : : ; w

n
n�1.x/; �.x/;M.x//:

If the Finsler metrics are conformally equivalent, the images of these mappings (which
are in general n–dimensional objects in RnC2 ) coincide. Thus, if there exists at least
one point that belongs to the first image and not the second, then the metrics are not
conformally equivalent.

Note that the test may fail in some instances. In particular this test can never distinguish
between two Riemannian metrics and it is in fact quite delicate to decide whether two
Riemannian metrics g1 and g2 are locally isometric or conformally equivalent.

Appendix: Elementary properties of the Binet–Legendre met-
ric

Let V be an n–dimensional real vector space and F W V !R be a Minkowski norm
on V . One defines a scalar product g�

F
on the dual space V � by the formula

(6) g�F .�; '/D
.nC 2/

�.�/

Z
�

.�.�/ �'.�// d�.�/;

where �D f� 2 V j F.�/ < 1g is the unit sphere associated to F and � is a Lebesgue
measure on V . The Binet–Legendre metric on V is the scalar product gF on V dual
to g�

F
.

Proposition 12.1 The transformation F 7! gF satisfies the following properties:

(a) If F is Euclidean, ie F.�/D
p

g.�; �/ for some scalar product g , then gF D g .

(b) If A 2 GL.V /, then gA�F DA�gF .

(c) g�F D �
2gF for any � > 0.

(d) If 1
c
�F1 � F2 � c �F1 for some constant c > 0, then

1

c2n
�gF1

� gF2
� c2n

�gF1
:
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Proof We first prove (a). Suppose F D
p

g is Euclidean and let e1; e2; : : : ; en be
an orthonormal basis on .V;g/ and x1;x2; : : : ;xn be the corresponding coordinate
system. The convex set � coincides with the unit ball �D Bn D fx 2 V j

P
x2

i < 1g

and formula (6) gives

g�F ."i ; "i/D
.nC 2/

Vol.Bn/

Z
Bn

x2
i dx;

where "i D e[i . Now the integral on the left hand side computes asZ
Bn

x2
i dx D

1

n

Z
Bn

nX
iD1

x2
i dx D

1

n

Z
Sn�1

Z 1

0

rnC1 dr d� D
Area.Sn�1/

n.nC 2/
:

But Area.Sn�1/D n �Vol.Bn/ and we thus have

g�F ."i ; "i/D
.nC 2/

Vol.Bn/
�

Area.Sn�1/

n.nC 2/
D 1:

If j ¤ i , then

g�F ."i ; "j /D
.nC 2/

Vol.Bn/

Z
Bn

xixj dx D 0;

because the function xixj is antisymmetric with respect to the orthogonal transforma-
tion xi 7! �xi . It follows that "1; : : : ; "n is an orthonormal basis of V � for the scalar
product g�

F
. By duality, e1; : : : ; en is also an orthonormal basis of V for the scalar

product gF and therefore gF D g .

We now prove property (b). If A 2 GL.V /, then the unit ball �A associated to
A�F DA ıF is the set A�1 ��, indeed

�A D f� 2 V j F.A�/ < 1g D fA�1� 2 V j F.�/ < 1g DA�1
��:

Therefore

g�A�F .�; �/D
.nC 2/

�.A�1�/

Z
A�1�

�.�/2 d�.�/

D
.nC 2/

j det.A�1/j ��.�/

Z
A�1�

�.�/2 d�.�/:

Setting � DA�, we have from the change of variable formulaZ
A�1

.�/�.�/2 d�.�/D

Z
�

�.A�1�/2j det.A�1/j d�.�/;
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and thus

g�A�F .�; �/D
.nC 2/

�.�/

Z
�

�.A�1�/2 d�.�/D g�F .� ıA�1; � ıA�1/:

This is the relation between g�
A�F

and g�
F

. In the space V , we then have by duality

gA�F .�; �/D gF .A�;A�/:

Property (c) is the special case of property (b) corresponding to scalar matrices.

To prove (d), let F1;F2 be two Minkowski norms satisfying 1
c
� F1 � F2 � c � F1 .

Then the corresponding unit balls also satisfy

1

c
��1 ��2 � c ��1:

This implies in particular that

1

�.�2/
�

cn

�.�1/
:

We also haveZ
�2

�.�/2 d�.�/�

Z
c��1

�.�/2 d�.�/D cn
�

Z
�1

�.�/2 d�.�/

(set � D c �). Therefore

.nC 2/

�.�2/

Z
�2

�.�/2 d�.�/� c2n
�
.nC 2/

�.�1/

Z
�1

�.�/2 d�.�/;

that is,
g�F2

.�; �/� c2n
�g�F1

.�; �/:

The dual scalar product satisfies

gF1
.�; �/� c2n

�gF2
.�; �/:

Remark 12.2 Formula (6) associates an ellipsoid in V � (the unit ball of the metric
g�

F
) to an arbitrary convex body �� V . This ellipsoid is called the Binet ellipsoid of

� and appears in classical mechanics. The unit ball B � V of the metric gF is the
polar dual of the Binet ellipsoid. It is related to another classic object: the Legendre
ellipsoid L of � which is the unique ellipsoid such that

(7)
Z
L
�2.�/ d�.�/D

Z
�

�2.�/ d�.�/
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for any � 2 V � . The Legendre ellipsoid L is related to the gF –unit ball B by the
relation

LD
�
�.�/

�.B/

� 1
nC2

�B;

which can be proved from (2) and Proposition 12.1(a).

The integral (7) is called the moment of inertia of � in the codirection � . Thus the
Legendre ellipsoid is the unique ellipsoid having the same moment of inertia as � in
all possible codirections and it has the following mechanical interpretation: The motion
of a homogenous rigid body � which freely moves in 3–space around the point 0 and
is subjected to no external force is dynamically equivalent to a similar motion of its
Legendre ellipsoid; see Legendre [26].
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