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One-relator Kähler groups

INDRANIL BISWAS

MAHAN MJ

We prove that a one-relator group G is Kähler if and only if either G is finite cyclic
or G is isomorphic to the fundamental group of a compact orbifold Riemann surface
of genus g > 0 with at most one cone point of order n:�

a1; b1; : : : ; ag; bg

ˇ̌̌̌ � gY
iD1

Œai ; bi �

�n�
:

32Q15, 57M05, 57M50; 14F35, 32J15

1 Introduction

Fundamental groups of compact Kähler manifolds, or Kähler groups for short, have
attracted much attention (see Amorós, Burger, Corlette, Kotschick and Toledo [2] for
a survey of results and techniques). From a very different point of view, one-relator
groups have been studied for a long time in combinatorial group theory (see Lyndon
and Schupp [22, Chapter 2]). (A one-relator group is the quotient of a free group with
finitely many generators by one relation.) It is natural to ask which groups occur in
the intersection of these two classes. In fact one-relator groups have appeared as test
cases for various restrictions developed for Kähler groups. Specific examples have
been ruled out by Arapura [3, Section 7J]. Restrictions have been obtained from the
point of view of rational homotopy theory (see Amorós [1, Sections 3 and 4] and [2,
page 39, Examples 3.26 and 3.27]). Further restrictions follow from works of Gromov
[18] and Green and Lazarsfeld [16].

In [3, page 12, Section J], Arapura asks which one-relator groups are Kähler. This
question was also raised by Amorós. Our aim here is to give a complete answer to
Arapura’s question. We prove the following (see Theorem 5.5 and Section 5.3):

Theorem 1.1 Let G be an infinite one-relator group. Then G is Kähler if and only if
it is isomorphic to �

a1; b1; : : : ; ag; bg

ˇ̌̌̌ � gY
iD1

Œai ; bi �

�n�
;

where g and n are some positive integers.
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We show that each of the groups�
a1; b1; : : : ; ag; bg

ˇ̌̌̌ � gY
iD1

Œai ; bi �

�n�
; g; n> 0;

can in fact be realized as the fundamental group of a smooth complex projective variety.

It is known that every finite group is the fundamental group of some smooth complex
projective variety (see [2, page 6, Example 1.11]) and so all finite groups are Kähler.
Since the only finite one-relator groups are finite cyclic groups, it follows that finite
one-relator Kähler groups are precisely the finite cyclic groups.

Therefore, Theorem 1.1 has the following corollary:

Corollary 1.2 Any torsion-free one-relator Kähler group is the fundamental group of
some closed orientable surface.

We also prove the following closely related result (see Corollary 4.7):

Theorem 1.3 Let G be a Kähler group such that

� it is a coherent group of rational cohomological dimension two, and

� the virtual first Betti number of G is positive.

Then G is virtually a surface group.

We give an overview of the basic strategy of the proof:

It follows from the structure theory of one-relator groups that they are described as
iterated HNN extensions. The Kähler group G we are interested in therefore acts on
the Bass–Serre tree T associated to the HNN splitting. If T is not quasi-isometric to
the real line, it must be nonamenable and have infinitely many ends. It follows from a
refinement (Proposition 2.5) of the theory of stable cuts of Delzant–Gromov [11] using
further structure of one-relator groups that G is virtually a surface group in this case.

In case T is quasi-isometric to the real line, then G must be the mapping torus of
a free group. These groups are known to be coherent [12]. A simple cohomological
dimension argument along with the structure of finitely presented normal subgroups of
cohomological dimension 2 groups completes the proof in this case.

The torsion in G is finally handled by further structure theory of one-relator groups.
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2 Preliminaries

The reader is referred to Chapter VIII.10 of [7] for generalities on duality and Poincaré
duality groups.

Definition 2.1 A group G is a Poincaré duality group of dimension n if G is of type
FP , and

H i.G;ZG/D

�
0 for i ¤ n;

Z for i D n:

A group G is a duality group of dimension n if G is of type FP ,

H i.G;ZG/D 0 for i ¤ n;

and H n.G;ZG/ is a nonzero torsion-free abelian group.

Two facts about such groups that we will need are given below; cohomological dimen-
sion is denoted by cd.

Theorem 2.2 [5, Theorem 3.5] Let 1!N !G!Q! 1 be an exact sequence of
duality groups. Then cd.G/D cd.Q/C cd.N /.

We shall occasionally refer to a group of cohomological dimension n as an n–dimen-
sional group.

Theorem 2.3 [4, Theorem B] Let G be a two-dimensional group, and let H �G be
a finitely presented normal subgroup of infinite index. Then H is free.

The reader is referred to [11] for the notion of cuts, particularly stable cuts, in Kähler
groups.

Definition 2.4 Let Q be a group and R a subgroup of it with the following property:
If M is a Riemannian manifold with fundamental group Q and M 0 is the cover of
M corresponding to R, then M 0 has at least three ends and is a nonamenable metric
space. We then say that R is a cut subgroup of Q.

A group G is said to be virtually a surface group if some finite index subgroup of G

is the fundamental group of a closed surface of positive first Betti number.

We shall need the following:
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Proposition 2.5 [6] Let G be a Kähler group fitting in a short exact sequence

1 �!N �!G �!Q �! 1;

where N is finitely generated, and one of the following holds:

� Q admits a discrete faithful nonelementary minimal action on a simplicial tree
with more than two ends.

� Q admits a (strong-stable) cut R such that the intersection of all conjugates of
R is trivial.

Then G is virtually a surface group.

3 One-relator groups

All one-relator groups will be assumed to be infinite and the generating set will be
assumed to be finite of cardinality greater than one. Our starting point is the following
lemma due to Arapura.

Lemma 3.1 [3, Section 7J] Suppose that G D hx1;x2; : : : ;xn j w.x1; : : : ;xn/i is a
one-relator Kähler group with n� 2. Then the following statements hold:

(1) n is even.

(2) Each xi occurs at least once in the word w , and the number of occurrences of
xi and x�1

i coincide.

(3) G surjects onto �g with g D n=2, where �g is the fundamental group of a
closed Riemann surface of genus g .

Remark 3.2 Arapura proves Lemma 3.1 under the assumption that n is strictly greater
than two. However, if nD 2, then it follows that the first Betti number of G satisfies
1� b1.G/� 2 and b1.G/D 2 if and only if the number of occurrences of xi and x�1

i

in w coincide for i D 1; 2. Since G is Kähler, we know that b1.G/ is even, and hence
b1.G/D 2. Further, G cannot split as a nontrivial free product [18]. Hence each xi

occurs at least once in the word w for i D 1; 2. Also, since b1.G/D 2, the group G

surjects onto �1 .

We shall now recall some basic structure theory of one-relator groups due to Magnus
and Moldavansky. A subgroup K of a one-relator group G is called a Magnus subgroup
if it is freely generated by a subset of the generating set of G that omits one of the
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generators present in the defining relator of G . If G is an HNN extension of H , and t

is the free letter conjugating subgroup A�H to subgroup B �H so that

G D hH; t jAt
D Bi;

then A and B are called the associated subgroups of the HNN extension.

Theorem 3.3 [24, page 250; 25] Let G D hx1; : : : ;xn j wi be a one-relator group,
where the exponent sum of x1 in w is zero. Then the following hold:

(1) There exists a finitely generated one-relator group H whose defining relator has
shorter length than w .

(2) G is an HNN extension G DH�F , where F is a nontrivial free group.

(3) The associated subgroups are Magnus subgroups of H .

Finally we shall need two results due to Collins describing intersections of Magnus
subgroups.

Theorem 3.4 [10, Theorem 1] Let G D hx1; : : : ;xn j wi be a one-relator group,
where w is cyclically reduced. Let M D F.S/ and N D F.T / be Magnus subgroups
of G , where S and T are subsets of the generating set, allowing M DN . If M \N

is distinct from F.S\T /, then M \N is the free product of F.S\T / and an infinite
cyclic group.

Theorem 3.5 [10, Theorem 2] Let G , M and N be as in Theorem 3.4. For any
g 2G , either gMg�1\N is cyclic (possibly trivial) or g 2NM .

Corollary 3.6 Let G , S , M and N be as in Theorem 3.4. If S has more than one
element, and G ¤NM , then there exist

g1;g2;g3 2G

such that g1Mg�1
1
\g2Mg�1

2
\N \g3Ng�1

3
is trivial.

Proof By Theorem 3.5, there exists g D g1 2 G such that g1Mg�1
1
\N � N is

cyclic. Let g1Mg�1
1
\N D hhi. Since S has more than one element, it follows

that T also has more than one element. Hence N is a free group on more than one
generator. In particular, there exists g3 2 N such that g3hhig

�1
3
\ hhi D f1g. The

proof is completed by setting g2 D g3g1 .

A subgroup H of a group G is said to have height at most n�1 if for any n elements
g1; : : : ;gn satisfying Hgi ¤Hgj whenever i ¤ j , the intersection

Tn
iD1 giHg�1

i

is trivial.
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Proposition 3.7 Let G D hx1; : : : ;xn j wi be a one-relator group, where w is cycli-
cally reduced. Let M D F.S/ and N D F.T / be Magnus subgroups of G , where
M ¤N . Then there exist elements fgig

k
iD1

; fhig
k
iD1
2Gk , for some k > 1, such that

.
Tk

iD1 giMg�1
i /\ .

Tk
iD1 hiN h�1

i / is trivial.

Proof By Theorem 3.4, the intersection M \N is a finitely generated subgroup of
both M and N . As M ¤N , we may assume without loss of generality that M \N is
an infinite index subgroup of M . Since any finitely generated infinite index subgroup
of a free group has finite height [15], the proposition follows.

Proposition 3.8 Let G , M and N be as in Corollary 3.6. Assume that the intersection
of all conjugates of M together with all conjugates of N is nontrivial. Then either
M DN DG , or M DN is an infinite cyclic normal subgroup of G .

Proof By Proposition 3.7, we have M DN . Assume that G ¤M . Then M DN

is infinite cyclic by Corollary 3.6. If M is not normal, then there exists g 2G such
that gMg�1\M is a proper subgroup of M . Hence

T1
iD0 giMg�i must be trivial.

This completes the proof of the proposition.

We shall need the following theorem due to Karrass and Solitar in the proof of
Theorem 3.10 below.

Theorem 3.9 [19, page 219] Let G be a one-relator group having a (nontrivial)
finitely presented normal subgroup H of infinite index. Then G is torsion-free and
has two generators. Further, G is an infinite cyclic or infinite dihedral extension of a
finitely generated free group N.�G/ satisfying the following:

� H �N if H is not cyclic.

� H \N is trivial if H is cyclic.

In either case, there is a finite index subgroup G1 of G and a finitely generated free
group F fitting in an exact sequence

1 �! F �!G1 �! Z �! 1:

Theorem 3.10 Let G D hx1; : : : ;xn j wi be a one-relator Kähler group. Then either
G is virtually a surface group, or there is a finite index subgroup G1 of G and a finitely
generated free group F fitting in an exact sequence

1 �! F �!G1 �! Z �! 1:
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Proof By Lemma 3.1, the exponent sum of x1 in w is zero. Hence from Theorem 3.3
it follows that there exists a finitely generated one-relator group H such that G is an
HNN extension G DH�F , where F is a nontrivial free group. Also, the associated
subgroups M1 and M2 are Magnus subgroups of H .

Let T be the Bass–Serre tree of the splitting of G over H . If T is quasi-isometric to
R, then there is a finite index subgroup G1 of G and a finitely generated free group F

fitting in an exact sequence

1 �! F �!G1 �! Z �! 1;

where F is of finite index in both M1 and M2 ; therefore H is free.

Assume that T is not quasi-isometric to R. Then H is a stable cut subgroup in the sense
of [11]. This is because T must have infinitely many ends and hence be nonamenable.
Hence by [11] (or by Proposition 2.5), there is a surjective homomorphism from G

to a surface group �g of genus g > 0 with kernel N �H . If N is finite, then G is
virtually a surface group.

Assume that N is infinite. Let t be the stable letter of the HNN extension G DH�F .
Hence N �H \ tH t�1 �M1\M2 . Since N is nontrivial, from Proposition 3.8 we
conclude that either

(a) M1 DM2 DH , or

(b) M1 DM2 is an infinite cyclic normal subgroup of H .

In case (a), the group G fits in 1! F !G!Z! 1, where F DM1 DM2 DH is
free.

In case (b), the subgroup N �M1\M2 must be infinite cyclic, in particular, G admits
an infinite cyclic normal subgroup. Hence by Theorem 3.9, there is a finite index
subgroup G1 of G and a finitely generated free group F fitting in an exact sequence
1! F !G1! Z! 1. This proves the theorem.

In the next section we shall rule out the second possibility in Theorem 3.10.

4 Coherent groups

4.1 Torsion-free one-relator Kähler groups

A finitely presented group G is said to be coherent if every finitely generated subgroup
of G is finitely presented. We shall be requiring the following deep theorem due to
Feighn and Handel:
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Theorem 4.1 [12] Let G be a finitely presented group admitting a description

1 �! F �!G �! Z �! 1;

where F is finitely generated free. Then G is coherent.

A group is said to be curve-dominating if it possesses a surjective homomorphism onto
the fundamental group �g of a closed Riemann surface of genus g > 1.

Theorem 4.2 [3, Sections 7J and K] Let G be a curve-dominating Kähler group.
Then

dim H1.G
0;Q/D1;

where G0 denotes the commutator subgroup of G . Conversely, if dim H1.G
0;Q/D1,

then G contains a curve-dominating subgroup of finite index.

Proposition 4.3 Let G be a finitely presented group admitting a description

1 �! F �!G �! Z �! 1;

where F is finitely generated free. If G is Kähler, then G D Z˚Z.

Proof Suppose that G 6D Z˚Z. Then F has rank greater than one; the only other
case is that of the fundamental group of a Klein bottle, which has first Betti number
one and hence it cannot be Kähler. As G=F is abelian, it follows that G0 � F (as
before, G0 is the commutator subgroup of G ). Hence G0 is a normal subgroup of F .
Further, since G is nonabelian (as F has rank greater than one), we have G0 ¤ f1g.
As subgroups of free groups are free, it follows that G0 is a free group.

Since b1.G/ is even and b1.G/� 1, it follows that G0 � F must be of infinite index
in F . Hence dim H1.G

0;Q/D1. So G contains a curve-dominating subgroup of
finite index by Theorem 4.2.

By the Siu–Beauville theorem [2, page 2, Theorem 1.5], there exists a holomorphic
map

�W X �! S;

from a compact Kähler manifold to a closed Riemann surface S of genus g > 1, with
connected fibers.

It now follows (see [9, page 283, Lemma 3])1 that there exists a finite-sheeted cover X1

of X and a closed Riemann surface S1 (possibly different from S ) of genus greater

1We are grateful to Dieter Kotschick for informing us that we need this refinement to get rid of multiple
fibers and for our argument to work.
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than one such that � lifts to a holomorphic map

�1W X1 �! S1;

from X1 to S1 , with connected fibers and no multiple fibers.

As the fibers of � are connected and compact and there are no multiple fibers, it follows
that the kernel N of �1� is finitely generated. By Theorem 4.1, this group N is
finitely presented. Since N �G1 has infinite index, it must be finitely generated free
by Theorem 2.3. Thus G1 fits in an exact sequence

1 �! F �!G1 �! �1.S1/ �! 1;

where F is finitely generated free and hence a one dimensional duality group. From
Theorem 2.2 it follows that G1 has cohomological dimension 1C 2D 3. Hence (by
Serre’s theorem on finite index subgroups) G has cohomological dimension 3.

Again, since G fits in an exact sequence

1 �! F �!G �! Z �! 1;

where F is finitely generated free, it follows from Theorem 2.2 again that G has
cohomological dimension 1 C 1 D 2. This is in contradiction with the previous
calculation.

Hence F has rank one, and G D Z˚Z.

Combining Theorem 3.10 and Proposition 4.3 we have:

Theorem 4.4 Let G D hx1; : : : ;xn j wi be a one-relator Kähler group. Then G is
virtually a surface group. Further, if G is torsion-free, then it is isomorphic to a surface
group.

Proof The first statement in the theorem is a direct consequence of Theorem 3.10 and
Proposition 4.3 because Z˚Z is a surface group. The last statement follows from
the fact that a torsion-free group that is virtually a surface group is actually a surface
group.

The case where G has torsion will be dealt in Section 5.1.

The proof of Proposition 4.3 actually gives the following:
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Corollary 4.5 Let G0 be a coherent Kähler group of rational cohomological dimension
two such that a finite index subgroup G of G0 admits a surjective homomorphism

��W G �! �1.S/;

where S is a closed oriented 2–dimensional surface of genus g > 1. Then G0 is
virtually a (real two-dimensional) surface group.

Proof As in the proof of Proposition 4.3, there exists a holomorphic map  W X ! T

from a compact Kähler manifold to a closed Riemann surface T of genus g > 1 with
connected fibers inducing a surjection  � of G onto �1.T /; we note that T need
not be the same as S but will, in general, be a finite-sheeted cover of S . Again, the
kernel N of  � is finitely presented. If N is infinite, then the rational cohomological
dimension must be 3 by Theorem 2.2, contradicting the hypothesis. Hence N must be
finite, and the result follows.

The virtual first Betti number of a manifold M is defined to be

vb1.M / WD sup fb1.N / j N is a finite-sheeted cover of M g:

Similarly, for a group G , define the virtual first Betti number vb1.G/ to be

vb1.G/ WD sup fb1.H / j H is a finite-index subgroup of G g:

To generalize Proposition 4.3 further, we shall require certain properties of the Albanese
map. The following lemma will be used to strengthen Proposition 4.3 to Corollary 4.7
below. This is a special case of a theorem of Catanese, [2, page 23, Proposition 2.4],
and a simple self-contained proof may be found in [21, Section 2] by taking M (in the
statement of Lemma 4.6 below) to be a cover with positive b1 .

Lemma 4.6 Let M0 be a compact Kähler manifold, with �1.M0/DG , such that the
real cohomological dimension cdR.G/ < 4, and vb1.M0/ > 0. Then there exists a
finite-sheeted cover M of M0 such that the image of the Albanese map F for M is a
smooth algebraic curve S of genus greater than zero.

Combining Lemma 4.6 with the proof of Proposition 4.3 we get the following.

Corollary 4.7 Let G be a coherent Kähler group of rational cohomological dimension
two and vb1.G/ > 0. Then G is virtually a (real two-dimensional) surface group.
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Proof By Lemma 4.6, we obtain a holomorphic map F W M ! S onto a Riemann
surface S of genus greater than zero, where �1.M / is a finite index subgroup of G . By
the Stein factorization theorem, we can assume (by passing to a further finite-sheeted
cover if necessary) that the fibers of F are connected. As in the proof of Proposition 4.3,
we can further assume that F has no multiple fibers. Hence we have an exact sequence

1 �!N �! �1.M / �! �1.S/ �! 1

with N finitely generated, forcing N to be finitely generated free as in Proposition 4.3.
This forces the rational cohomological dimension of �1.M / to be three, contradicting
the hypothesis.

5 Orbifold groups

5.1 One-relator groups with torsion

Throughout this subsection, G D hx1; : : : ;xk j w
ni will be a one-relator group, where

k > 1, n� 1, and w is cyclically reduced and not a proper power.

If nD1, then it is known that G is torsion-free [23, page 266, Theorem 4.12]. Therefore,
in view of Theorem 4.4, we are allowed to assume that n> 1.

Fischer, Karrass and Solitar prove the following:

Proposition 5.1 [13, Theorem 1] Let G D hx1; : : : ;xk j w
ni be a one-relator group

with n> 1. Then the following statements hold:

(1) Every torsion element in G is conjugate to a power of w .

(2) The subgroup generated by torsion elements in G is the free product of the
conjugates of w .

Murasugi has described in detail the centers of one-relator groups.

Theorem 5.2 [26, Theorems 1 and 2] Let G D hx1; : : : ;xk j w
ni be a one-relator

group with n� 1. If k � 3, then the center Z.G/ of G is trivial. If G is nonabelian,
k D 2 and Z.G/ is nontrivial, then Z.G/ is infinite cyclic.

Proposition 5.3 Let
G D hx1; : : : ;xk j w

n
i; n> 1;

be a one-relator Kähler group that contains a finite index subgroup isomorphic to the
fundamental group of a closed orientable surface † of genus greater than one. Then G
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is isomorphic to the fundamental group of a hyperbolic (real) two-dimensional compact
orbifold V with exactly one cone-point. Further, the underlying manifold of V is
orientable.

Proof The group G is clearly a (Gromov) hyperbolic with boundary homeomorphic
to the circle S1 [17]. The group G acts naturally on the boundary S1 . Let N be the
kernel of the action, meaning

N D fz 2G j z.x/D x 8x 2 S1
g:

Then G is isomorphic to N � .G=N /, where G=N acts effectively on S1 as a
convergence group. By a deep theorem of Casson–Jungreis [8], and (independently)
Gabai [14], it follows that G=N is the fundamental group of a compact hyperbolic
orbifold V of dimension two.

By Proposition 5.1, the kernel N must be cyclic. Hence N is contained in the center
of G . Therefore, by Theorem 5.2, the group N is trivial. Finally, since all torsion
elements of G are conjugate, the orbifold V must have a unique cone point. In fact,
by the explicit description of presentations of orbifold groups given in [27], either

(a) G D ha1; b1; : : : ; ag; bg j w
ni, where w D

Qg
iD1

Œai ; bi �, and the underlying
manifold is orientable, or

(b) G D ha1; : : : ; ag j w
ni, where w D

Qg
iD1

a2
i , and the underlying manifold is

nonorientable.

Case (b) is ruled out by Lemma 3.1. This completes the proof of the proposition.

Proposition 5.4 Let G D hx1; : : : ;xk j w
ni be a one-relator Kähler group such that

G contains a finite index subgroup isomorphic to Z˚Z. Then G is isomorphic to
Z˚Z.

Proof By Lemma 3.1, the integer k is even and G admits a surjection onto the
fundamental group of a closed orientable surface S of genus k=2. Since G contains a
finite index subgroup isomorphic to Z˚Z, it follows that Z˚Z admits a surjection
onto the fundamental group of a finite sheeted cover of S . Hence kD 2. Consequently,
G admits a right-split exact sequence

1 �!N �!G �!Q .D Z˚Z/ �! 1:

Let H �G be a subgroup mapping isomorphically onto Q.

As in the proof of Proposition 5.3, the group N must be finite cyclic by Proposition 5.1.
It follows that there exists a positive integer n such that hn is in the center of G for
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each h 2H . In particular, the center of G contains Z˚Z. By Theorem 5.2, the group
G must be abelian.

By Lemma 3.1 again, the abelianization of G is exactly Z˚Z. Since G is itself
abelian, the proposition follows.

5.2 The main theorem

Combining Theorem 4.4, Proposition 5.3 and Proposition 5.4, we have:

Theorem 5.5 Let G D hx1; : : : ;xk jwi be an infinite one-relator Kähler group. Then

G D

�
a1; b1; : : : ; ag; bg

ˇ̌̌̌ � gY
iD1

Œai ; bi �

�n�
for some g � 1 and n� 1.

5.3 Examples

Take positive integers g and n. We will show that the group

G WD

�
a1; b1; : : : ; ag; bg

ˇ̌̌̌ � gY
iD1

Œai ; bi �

�n�
is the fundamental group of a smooth complex projective variety. We assume that
n> 1, because G for nD 1 is a surface group.

Let f W X ! S be a smooth projective elliptic surface satisfying the following condi-
tions:

� The genus of the Riemann surface S is g .

� There is a point x0 2 S such that the gcd of the multiplicities of the irreducible
components of the fiber over x0 is n.

� The reduced fiber over some point (it can be x0 ) is singular.

� For each point x 2 S n fx0g, the gcd of the multiplicities of the irreducible
components of the fiber over x is 1.

The fundamental group of X is the group G defined above. To see this, consider
the short exact sequence in the bottom half of [28, page 600]. The group Hf in this
exact sequence coincides with G [28, page 601, Lemma 2]. The group Vf in the
exact sequence vanishes [28, page 614, Theorem 4]. Therefore, from this short exact
sequence we conclude that �1.X /DG .
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