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Homomorphisms between
mapping class groups

JAVIER ARAMAYONA
JUAN SouTo

Suppose that X and Y are surfaces of finite topological type, where X has genus
g > 6 and Y has genus at most 2g — 1; in addition, suppose that Y is not closed if
it has genus 2g — 1. Our main result asserts that every nontrivial homomorphism
Map(X) — Map(Y) is induced by an embedding, ie a combination of forgetting
punctures, deleting boundary components and subsurface embeddings. In particular,
if X has no boundary then every nontrivial endomorphism Map(X) — Map(X) is
in fact an isomorphism.

20F34; 57M07, 20F65

1 Introduction

Throughout this article we will restrict our attention to connected orientable surfaces
of finite topological type, meaning of finite genus and with finitely many boundary
components and/or cusps; we will feel free to think about cusps as marked points,
punctures or topological ends. The mapping class group Map(XX') of such surface X
is the group of isotopy classes of orientation preserving homeomorphisms of X which
fix pointwise the union of the boundary and the set of punctures. In the terminology of
Farb and Margalit [13], Map(X) is the pure mapping class group.

Mapping class groups are often compared with arithmetic lattices in higher-rank
semisimple algebraic groups. This analogy, albeit limited (see Andersen [1], Bestvina
and Fujiwara [7] and Ivanov [23]), has motivated many, possibly most, advances in
the understanding of mapping class groups. For example, Grossman [15] proved that
Map(X) is residually finite; Birman, Lubotzky and McCarthy [9] proved that the Tits
alternative holds for subgroups of Map(X); the Thurston classification [44] of elements
in Map(X') mimics the classification of elements in an algebraic group; Harvey [18]
introduced the curve complex in analogy with the rational Tits building; Harer’s [17]
computation of the virtual cohomological dimension of Map(X') follows the outline of
Borel and Serre’s argument [10] for arithmetic groups, etc. ..
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In this spirit, it is natural to ask to what extent there is an analog of Margulis’s
superrigidity in the context of mapping class groups. This question, in various guises,
has been addressed by a number of authors. For instance, Farb and Masur [14] proved
that every homomorphism from an irreducible lattice in a higher-rank Lie group to a
mapping class group has finite image. On the other hand, mapping class groups admit
nontrivial homomorphisms into higher-rank lattices; see Looijenga [32].

There has also been work on what is perhaps a more natural analog of superrigidity,
namely understanding homomorphisms between mapping class groups; see Aramayona,
Leininger and Souto [2], Bell and Margalit [4], Berrick and Matthey [5], Castel [12],
Harvey and Korkmaz [19], Ivanov [22], Ivanov and McCarthy [26], Korkmaz [28] and
McCarthy [38]. Quoting Maryam Mirzakhani, the ultimate goal would be to prove
that every homomorphism between mapping class groups of sufficiently high genus has
either finite image or is induced by some manipulation of surfaces. The aim of this
paper is to prove that this is indeed the case as long as the involved surfaces satisfy
suitable genus bounds.

Before stating our main result we need a definition:

Definition Let X and Y be surfaces of finite topological type, and consider their
cusps to be marked points. Denote by | X| and |Y'| the compact surfaces obtained from
X and Y by forgetting all their marked points. By an embedding

X —->Y

we will understand a continuous injective map ¢: |X| — |Y| with the property that
whenever y € (| X|) C |Y| is a marked point of Y in the image of ¢, then (~!(y) is
also a marked point of X .

Every embedding ¢: X — Y induces a homomorphism Map(X) — Map(Y); see
Section 3. Our main result asserts that, as long as the genus of Y is less than twice
that of X', the converse is also true:

Theorem 1.1 Suppose that X and Y are surfaces of finite topological type, of genus
g >6 and g’ <2g—1 respectively; if Y has genus 2g — 1, suppose also that it is not
closed. Then every nontrivial homomorphism

¢: Map(X) — Map(Y)

is induced by an embedding X — Y .
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Remark As we will prove below, the conclusion of Theorem 1.1 also applies to
homomorphisms ¢: Map(X') — Map(Y) when both X and Y have the same genus

ge{4,5}.

Before going any further we give some examples that highlight the necessity for the
genus bounds in Theorem 1.1.

Example 1 Let X be a surface of genus g < 1; if g = 0 then assume that X
has at least four marked points or boundary components. The mapping class group
Map(X) surjects onto PSL, Z ~ (Z/27) * (Z/3Z). In particular, any two elements
o, B € Map(Y) with orders two and three, respectively, determine a homomorphism
Map(X) — Map(Y); notice that such elements exist if Y is closed, for example.
Choosing « and B appropriately, one can in fact obtain infinitely many conjugacy
classes of homomorphisms Map(X) — Map(Y) with infinite image and with the
property that every element in the image is either pseudo-Anosov or has finite order.

Example 1 shows that some lower bound on the genus of X is necessary in the
statement of Theorem 1.1. Furthermore, since Map(X') has nontrivial abelianization if
X has genus 2, there exist homomorphisms from Map(X') into mapping class groups
of arbitrary closed surfaces Y that are not induced by embeddings. Other examples
demonstrating the failure of Theorem 1.1 for surfaces X of genus 2 may be constructed
using that the mapping class group of such a surface contains a finite index subgroup
which surjects onto the free group F,. On the other hand, we expect Theorem 1.1 to
be true for surfaces of genus g € {3, 4, 5}.

Remark Recall that the mapping class group of a punctured disk is a finite index
subgroup of the appropriate braid group (this subgroup is commonly known as the pure
braid group). In particular, Example 1 should be compared with the rigidity results
for homomorphisms between braid groups, and from braid groups into mapping class
groups, due to Bell and Margalit [4] and Castel [12].

Next, an upper bound on the genus of the target surface is also necessary in the
statement of Theorem 1.1 since, for instance, the mapping class group of every closed
surface injects into the mapping class group of some nontrivial connected cover; see
Aramayona, Leininger and Souto [2]. Moreover, the following example shows that the
bound in Theorem 1.1 is in fact optimal:

Example 2 Suppose that X has nonempty connected boundary and let Y be the
double of X. Let X1, X, be the two copies of X inside Y, and for x € X denote
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by x; the corresponding point in X;. Given a homeomorphism f: X — X fixing
pointwise the boundary and the cusps define

1Y =Y. Je)= (S0 Yxie X,
The map f — f induces a homomorphism
Map(X) — Map(Y)

which is not induced by any embedding.

In the body of the paper we will construct other examples of homomorphisms with
more or less undesirable properties. It goes without saying that all these examples arise
from manipulations of surfaces.

Applications After having established that in Theorem 1.1 a lower bound for the
genus of X is necessary and that the upper bound for the genus of Y is optimal, we
discuss some consequences of our main result.

By Proposition 3.1 below, every embedding is a combination of forgetting punctures,
deleting boundary components, and subsurface embeddings. In particular, if X is
closed then any embedding (: X — Y is a homeomorphism. Hence we obtain:

Corollary 1.2 Suppose that X and Y satisfy the hypotheses of Theorem 1.1 and that
X is closed. Then every nontrivial homomorphism ¢: Map(X) — Map(Y') is induced
by a homeomorphism X — Y ; in particular ¢ is an isomorphism. |

Corollary 1.2 above settles Berrick—Matthey [5, Conjecture 4.5] in the affirmative. We
remark that Castel [12] had previously obtained Corollary 1.2 in the special case when
Y is a closed surface of genus g’ = g + 1. Observe also that if there are no restrictions
on the genus of Y then Corollary 1.2 is far from true. Indeed, Aramayona, Leininger
and Souto [2, Theorem 1] show that for every closed surface X there exist a closed
surface Y # X and an injective homomorphism Map(X) — Map(Y).

Moving away from the closed case, if X is allowed to have marked points and/or
boundary then there are numerous nontrivial embeddings of X into other surfaces. That
said, if X has no boundary then any embedding X — Y which induces an injective
homomorphism at the level of mapping class groups is actually a homeomorphism.
Thus we get:

Corollary 1.3 Suppose that X and Y satisfy the hypotheses of Theorem 1.1 and that

X has empty boundary. Then any injective homomorphism ¢: Map(X) — Map(Y) is
induced by a homeomorphism X — Y ; in particular ¢ is an isomorphism. |
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Again, if there are no restrictions on the genus of Y then Corollary 1.3 is not true; see
Aramayona, Leininger and Souto [2] and Ivanov and McCarthy [26].

Still assuming dX = &, note that any embedding ¢: X — X is a homeomorphism.
Since Theorem 1.1 applies for homomorphisms between surfaces of the same genus
g > 4 (see the remark following the statement of the theorem) we deduce:

Corollary 1.4 Let X be a surface of finite topological type, of genus g > 4 and
with empty boundary. Then any nontrivial endomorphism ¢: Map(X) — Map(X) is
induced by a homeomorphism X — X ; in particular ¢ is an isomorphism. a

The analogous statement of Corollary 1.4 for injective endomorphisms was known to
be true by the work of Ivanov [24], McCarthy [38] and Ivanov—McCarthy [26]. Castel
[12] has obtained Corollary 1.4 independently for X closed.

Corollary 1.4 may fail if X has boundary. However, any embedding ¢: X — X such
that the induced homomorphism Map(X) — Map(X) is injective is isotopic to a
homeomorphism. We hence recover the following result due to Ivanov and McCarthy
[26] (see Ivanov [22] and McCarthy [38] for related earlier results):

Corollary 1.5 (Ivanov—McCarthy) Let X be a surface of finite topological type, of
genus g > 4. Then any injective homomorphism ¢: Map(X) — Map(X) is induced
by a homeomorphism X — X ; in particular ¢ is an isomorphism. |

The corollaries above are group-theoretic consequences of Theorem 1.1. However, in
a separate paper [3] we use the main result of this paper to classify all nonconstant
holomorphic maps M(X) - M(Y) between moduli spaces of Riemann surfaces X
and Y of finite type satisfying the same genus bounds as in Theorem 1.1.

Strategy of the proof of Theorem 1.1 Suppose that X', Y and ¢ are as in the
statement of the theorem. The bulk of the proof of Theorem 1.1 is to show that ¢ maps
Dehn twists along nonseparating curves to Dehn twists along nonseparating curves.
Denoting by §,, the Dehn twist about a nonseparating curve y C X, we obtain a map
¢s from the set of nonseparating curves on X to the set of nonseparating curves in
Y which satisfies ¢(dy) = 84, (). We will prove that ¢« preserves disjointness and
intersection number 1. In particular, ¢4 maps chains in X to chains in Y. In the
closed case, it follows easily that there is a unique embedding X — Y which induces
the same map on curves as ¢ ; this is the embedding provided by Theorem 1.1. In the
presence of boundary and/or cusps the argument is more involved, essentially because
one needs to determine which cusps and boundary components are to be filled in.
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Hoping that the reader is now convinced that Theorem 1.1 follows after a moderate
amount of work once we know that ¢ maps Dehn twists along nonseparating curves
to Dehn twists along nonseparating curves, we sketch the proof of this fact. The
starting point is a result of Bridson [11], which asserts that ¢ maps Dehn twists to
roots of multitwists. We prove that, under our assumptions, ¢(8,,) has infinite order for
y C X nonseparating. We can thus associate to y the multicurve ¢«(y) supporting
the multitwist powers of ¢(J,). In principle, and also in practice if ¥ has sufficiently
large genus, ¢ (6, ) could permute the components of ¢ ()). However, under the genus
bounds in Theorem 1.1, we deduce from a result of Paris [41] that this is not the case.
Once we know that ¢(J,,) preserves each component of ¢«(y), a simple counting
argument yields that ¢« (y) is actually a single curve. This implies that ¢ (d,,) is a root
of some power of the Dehn twist along ¢« (y). We then deduce that ¢ (d,) is a power
of a Dehn twist from a simple computation using the Riemann—Hurwitz formula and
an extension — independently due to Castel [12] — of a theorem of Harvey—Korkmaz
[19] asserting that if the genus of X is larger than the genus of Y then there are no
nontrivial homomorphisms Map(X') — Map(Y'). Once we know that ¢ (J,) is a power
of a Dehn twist, it follows from the braid relation that this power has to be +1, as we
needed to prove. This finishes the sketch of the proof of Theorem 1.1.

Tournant dangereux The reader would be justified to think that, from the point of
view of lattice superrigidity, it would be more natural to investigate all homomorphisms
between finite index subgroups of mapping class groups instead of insisting on the
homomorphisms to be defined on the whole group. We agree. However, it should be
noticed that, so long as it is unknown whether finite index subgroups I' C Map(X)
have finite abelianization (see Ivanov [25]), a classification of all homomorphisms
I' - Map(Y) is beyond reach.

Similarly, the reader could be unconvinced by the reason given above to justify the
need for an upper bound on the genus of Y . Possibly we would agree: we just asserted
that the given bound is optimal for the theorem to hold as stated, but Breuillard and
Mangahas [34] proved that if ' C Map(X) has finite index and ¢: ' - Map(Y)
isa homomorphlsm where dY # @, then there is a surface Y containing Y and a
homomorphism ¢ Map(X) — Map(Y) extending ¢. This implies that in the absence
of upper bounds for the genus there is no real difference between studying homo-
morphisms defined on the whole mapping class group and on finite index subgroups.
We again face the possibility that there is I' C Map(X) of finite index with infinite
abelianization.

This possibility is the enemy from the beginning to the end of this paper. Recall for
example that at some point we have to show that under the assumptions of Theorem 1.1
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the image under ¢ of a Dehn twist along a nonseparating curve is infinite. That this
is actually one of the key points of the proof of our main theorem might come as a
surprise to the reader. However, if there is I' C Map(X) of finite index with infinite
abelianization then there is a surface ¥ and a homomorphism Map(X) — Map(Y)
with infinite image such that the image of every Dehn twist has finite order; see the
remark at the end of Section 5.
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2 Generalities

In this section we discuss a few well-known facts on mapping class groups. See
Farb—Margalit [13] or Ivanov [24] for details.

Throughout this article, all surfaces under consideration are orientable and have finite
topological type, meaning that they have finite genus, finitely many boundary compo-
nents and finitely many punctures. We will feel free to consider cusps as marked points,
punctures, or ends homeomorphic to S! xR. For instance, if X is a surface with, say,
10 boundary components and no cusps, by deleting every boundary component we
obtain a surface X’ with 10 cusps and no boundary components.

A simple closed curve on a surface is said to be essential if it does not bound a disk
containing at most one puncture; we stress that we consider boundary-parallel curves to
be essential. From now on, by a curve we will mean an essential simple closed curve.
Also, we will often abuse terminology and not distinguish between curves and their
isotopy classes.

We now introduce some notation that will be used throughout the paper. Let X be a
surface and let y be an essential curve not parallel to the boundary of X. We will
denote by X, the complement in X of the interior of a closed regular neighborhood of
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v ; we will refer to the two boundary components of X, which appear in the boundary
of the regular neighborhood of y as the new boundary components of X,,. We will
denote by X’ )/, the surface obtained from X), by deleting the new boundary components
of Xy ; equivalently, X}, = X'\ y.

A multicurve is the union of a, necessarily finite, collection of pairwise disjoint, non-
parallel curves. Given two multicurves y, Y’ we denote their geometric intersection
number by i(y,y’).

A cut system is a multicurve whose complement is a connected surface of genus 0. Two
cut systems are said to be related by an elementary move if they share all curves but
one, and the remaining two curves intersect exactly once. The cut system complex of a
surface X is the simplicial graph whose vertices are cut systems on X and where two
cut systems are adjacent if the corresponding cut systems are related by an elementary
move.

2.1 Mapping class group

The mapping class group Map(X') of a surface X is the group of isotopy classes of
orientation preserving homeomorphisms X — X which fix the boundary pointwise
and map every cusp to itself; here, we also require that the isotopies fix the boundary
pointwise. We will also denote by Map*(X) the group of isotopy classes of all
orientation preserving homeomorphisms of X . Observe that Map(X) is a subgroup of
Map™* (X) only in the absence of boundary; in this case Map(X) has finite index in
Map*(X).

While every element of the mapping class group is an isotopy class of homeomor-
phisms, it is well-known that the mapping class group cannot be realized by a group of
diffeomorphisms [39], or even homeomorphisms [37]. In spite of this, in order to keep
notation under control we will usually make no distinction between mapping classes
and their representatives.

2.2 Dehn twists

Given a curve y on X', we denote by 4, the (right) Dehn twist along y . It is important
to remember that 4, is solely determined by the curve y and the orientation of X . In
other words, it is independent of any chosen orientation of y .

The following well-known result will play an important role in our arguments:

Theorem 2.1 (Dehn-Lickorish) If X has genus at least 2, then Map(X') is generated
by Dehn twists along nonseparating curves.
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There are a number of concrete sets of Dehn twists that generate the mapping class
group; see [13] for a description of several such sets. We will consider the generating
set depicted in Figure 1; we remark that, in the case of closed surfaces, these generators
are the ones first identified by Humphries [21].

aq b] as bz as b3 bg Tk

c ri ry

Figure 1: Dehn twists along the curves a;, b;, ¢ and r; generate Map(X)

Algebraic relations among Dehn twists are often given by particular configurations
of curves. We now discuss several of these relations; see Farb and Margalit [13],
Hamidi-Tehrani [16], Margalit [35] and the references therein for proofs and details.

Conjugate Dehn twists For any curve y C X and any f € Map(X) we have
Spy =18y S

Hence, Dehn twists along any two nonseparating curves are conjugate in Map(X).
Conversely, if the Dehn twist along y is conjugate in Map(X') to a Dehn twist along a
nonseparating curve, then y is nonseparating. Observe that Theorem 2.1 and the fact
that Dehn twists along any two nonseparating curves are conjugate immediately imply
the following useful fact:

Lemma 2.2 Let X be a surface of genus at least 3 and let ¢: Map(X) — G be a
homomorphism of groups. If §,, € Ker(¢) for some y C X nonseparating, then ¢ is
trivial.

Disjoint curves Suppose y,y’ are disjoint curves, meaning i (y,y’) = 0. Then §,
and 8,/ commute.

Curves intersecting once Suppose that i (y,y’) = 1. Then
8y5y’8y - 8)//8)/8}//.

This is the so-called braid relation; we say that §,, and 68,/ braid.
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It is known [16] that if y and y’ are two curves in X and k € Z is such that
|k -i(y,y")| > 2, then 5]; and 8];, generate a free group [F, of rank 2. In particular we
have:

Lemma 2.3 Suppose that k € Z \ {0} and that y and y' are curves such that 8’; and
S)If, satisfy the braid relation. Then either y =y’ ork = +1 and i(y,y’) = 1.

Chains Recall that a chain in X is a finite sequence of curves y1, ..., ¥k such that
i(yi,yj)=1if [i—j|=1and i(y;,y;) = 0 otherwise. Let y;,..., yx be a chain in
X and suppose first that & is even. Then the boundary dZ of a regular neighborhood
Z of | Jy; is connected and we have

By 8yy ... 8y ) K2 =685

If & is odd then 0Z consists of two components d;Z and d,Z and the appropriate
relation is
Byiby, -8 ! = 802,802, = 692,802,

These two relations are said to be the chain relations.

Lanterns A lantern is a configuration in of seven curves a,b,c,d,x,y and z in X
as represented in Figure 2.

Figure 2: A lantern

If seven curves a,b,c,d, x, y and z in X form a lantern then the corresponding Dehn
twists satisfy the so-called lantern relation:

8a8b863d - 5_}(5})52.
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Conversely, it is due to Hamidi-Tehrani [16] and Margalit [35] that, under mild hy-
potheses, any seven curves whose associated Dehn twists satisfy the lantern relation
form a lantern. More concretely:

Theorem 2.4 (Hamidi-Tehrani, Margalit) Let a,b,c,d, x, y,z be essential curves
whose associated Dehn twists satisfy the lantern relation

5a8b808d - 8x8y82.

If the curves a, b, ¢, d, x are pairwise distinct and pairwise disjoint, then a, b, c,d, x, y
and z form a lantern.

In the course of this paper we will continuously discriminate against separating curves.
By a nonseparating lantern we understand a lantern with the property that all the
involved curves are nonseparating. We remark that X contains a nonseparating lantern
if X has genus at least 3; in particular we deduce that, as long as X has genus g > 3,
every nonseparating curve belongs to a nonseparating lantern.

2.3 Centralizers of Dehn twists

Observe that the relation f§, f~! = 3@y, for f € Map(X) and y C X a curve,
implies that

Z(8y) ={f eMap(X) | f(y) =V},
where Z(J,) denotes the centralizer of §,, in Map(X). Notice that Z(d,) is also
equal to the normalizer N ({8, )) of the subgroup of Map(X) generated by &, .

An element in Map(X) which preserves y may either switch the sides of y or may
preserve them. We denote by Z( (6, ) the group of those elements which preserve sides;
observe that Z( (8, ) has index at most 2 in Z(§,).

The group Z(J,) is closely related to two different mapping class groups. First, let
X, be the surface obtained by removing the interior of a closed regular neighborhood
y x[0, 1] of y from X . Every homeomorphism of X, fixing pointwise the boundary
and the punctures extends to a homeomorphism X — X which is the identity on
X\ X, . This induces a homomorphism Map(X, ) — Map(X). The sequence

2-1) 0 — Z — Map(X,) — Zo(8,) — 1

is exact unless X is a torus without boundary and/or marked points. Here, the group
Z is generated by the difference 4y, 5;21 of the Dehn twists along 7, and 1, the new
boundary curves of X, .
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Instead of deleting a regular neighborhood of y we could also delete y from X.
Equivalently, let X’ )’, be the surface obtained from X, by deleting the new boundary
curves of X, . Every homeomorphism of X fixing y induces a homeomorphism of
X J/, This yields a second exact sequence

(2-2) 0— (8y) = Zop(6y) = Map(XJ’,) — 1.

2.4 Multitwists

To a multicurve n C X we associate the group
Ty = ({8y. ¥ Cn}) C Map(X)

generated by the Dehn twists along the components of 1. We refer to the elements
in T, as multitwists along n. Observe that T, is abelian; more concretely, T is
isomorphic to the free abelian group with rank equal to the number of components of
n (see Farb—Margalit [13, Lemma 3.17] for a detailed proof of the latter fact).

Let n C X be a multicurve. An element f* € T, which does not belong to any T/, for
some 1’ properly contained in 7, is said to be a generic multitwist along 1. Conversely,
if f € Map(X) is a multitwist, then the support of f is the smallest multicurve 7
such that f is a generic multitwist along 7.

Much of what we just said about Dehn twists extends easily to multitwists. For instance,
if n C X is a multicurve, then we have

Ty = fTyf ™"

for all /"€ Map(X). In particular, the normalizer N (T;) of T, in Map(X) is equal
to

N(Ty) ={f € Map(X) | f(n) =n}.
On the other hand, the centralizer Z(T,) of T} is the intersection of the centralizers
of its generators; hence

Z(Ty) =1{f € Map(X) | f(y) =y for every component y C n}.

Notice that N'(T5)/Z(T,) acts by permutations on the set of components of 7. For later
use we remark that if the multicurve 7 happens to be a cut system, then N (T,)/Z(T,)
is in fact isomorphic to the group of permutations of the components of 7.

Denote by Z,(T) the subgroup of Z(T,) fixing not only the components but also
the sides of each component. Notice that Z(Ty)/Z¢(T;) is a subgroup of (Z/ 27,) !
and hence is abelian.
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Observe that it follows from the definition of the mapping class group and from the
relation 87,y = 6, f ~! that every Dehn twist along a boundary component of X
is central in Map(X). In fact, as long as X has at least genus 3, such Dehn twists
generate the center of Map(X):

Theorem 2.5 If X has genus at least 3 then the group Tyx generated by Dehn twists
along the boundary components of X is the center of Map(X ). Moreover, we have

1 — Tyx — Map(X) — Map(X') — 1,

where X' is the surface obtained from X by deleting the boundary.

If X is a surface of genus g € {1, 2}, with empty boundary and no marked points, then
the center of Map(X) is generated by the hyperelliptic involution.

2.5 Roots

It is a rather surprising, and annoying, fact that such simple elements in Map(X') as
Dehn twists have nontrivial roots [36]. Recall that a root of f € Map(X) is an element
g € Map(X) for which there is k € Z with f = gk . Being forced to live with roots,
we state the following simple but important observation:

Lemma 2.6 Suppose that §, € Map(X) is a Dehn twist along an essential curve 1.
For f € Zy(8y) the following are equivalent:

e f isaroot of a power of §y.

e The image of f in Map(X, ,;) under the third arrow in (2-2) has finite order.

Moreover, [ is itself a power of §; if and only if the image of f in Map(Xy) is trivial.

2.6 Torsion

The key to understanding torsion in mapping class groups is the resolution by Kerckhoff
[27] of the Nielsen realization problem: the study of finite subgroups of the mapping
class group reduces to the study of groups of automorphisms of Riemann surfaces. For
instance, it follows from the classical Hurwitz theorem that the order of such a group
is bounded from above solely in terms of the genus of the underlying surface. Below
we will need the following bound, due to Maclachlan [33] and Nakajima [40], for the
order of finite abelian subgroups of Map(X).

Theorem 2.7 Suppose that X has genus g > 2. Then Map(X) does not contain finite
abelian groups with more than 4g + 4 elements.
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We remark that if g < 5 then all finite subgroups, abelian or not, of Map(X') have
been listed; see Kuribayashi and Kuribayashi [30; 31]. In the sequel we will make use
of this list in the case that g = 3, 4.

Finally, a finite order diffeomorphism which is isotopic to the identity is in fact the
identity. This implies, for instance, that if X is obtained from X by filling in punctures,
and 7: X — X is a finite order diffeomorphism representing a nontrivial element in
Map(X), then the induced mapping class of X is nontrivial as well.

2.7 Centralizers of finite order elements

By (2-1) and (2-2), centralizers of Dehn twists are closely related to other mapping
class groups. Essentially the same is true for centralizers of other mapping classes. We
now discuss the case of torsion elements. The following result follows directly from
the work of Birman—Hilden [8]:

Theorem 2.8 (Birman-Hilden) Suppose that [t] € Map(X) is an element of finite
order and let t: X — X be a finite order diffeomorphism representing [t]. Consider
the orbifold O = X /(t) and let O* be the surface obtained from O by removing the
singular points. Then we have an exact sequence

I = ([z]) = Z([z]) > Map™(O"),
where Map™ (O*) is the group of isotopy classes of all homeomorphisms O* — O*.

Hidden in Theorem 2.8 we have the following useful fact: If X has negative Euler
characteristic, then two finite order diffeomorphisms t,t': X — X which are isotopic
are actually conjugate as diffeomorphisms (see the remark in [6, page 10]). Hence, it
follows that the surface O* in Theorem 2.8 depends only on the mapping class [z].
Abusing notation, in the sequel we will speak about the fixed-point set of a finite order
element in Map(X).

3 Homomorphisms induced by embeddings

In this section we define what is meant by an embedding ¢: X — Y between sur-
faces. As we will observe, any embedding induces a homomorphism between the
corresponding mapping class groups. We will discuss several standard examples of
such homomorphisms, notably the so-called Birman exact sequences. We will conclude
the section with a few observations that will be needed later on. Besides the possible
differences of terminology, all the facts that we will state are either well known or
simple observations in 2—dimensional topology. A reader who is reasonably acquainted
with Farb—Margalit [13] or Ivanov [24] will have no difficulty filling in the details.
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3.1 Embeddings

Let X and Y be surfaces of finite topological type, and consider their cusps to be
marked points. Denote by | X'| and |Y'| the compact surfaces obtained from X and Y,
respectively, by forgetting all the marked points, and let Py C | X| and Py C |Y| be
the sets of marked points of X and Y.

We now recall the definition of embedding; note that the definition below is equivalent
to the one given in the introduction.

Definition An embedding 1: X — Y is a continuous injective map ¢: |X| — |Y'| such
that :=!(Py) C Py . An embedding is said to be a homeomorphism if it has an inverse
which is also an embedding.

We will say that two embeddings ¢, (’: X — Y are equivalent or isotopic if there is a
continuous map

[0. 1] x| X| = [Y].  (z.x) = fi(x),
with fo =, fi = and such that f; is an embedding for all ¢.

Given an embedding ¢: X — Y and a homeomorphism f: X — X which pointwise
fixes the boundary and the marked points of X, we consider the homeomorphism

(f)Y->Y

given by 1(f)(x) = (to f o1 1)(x) if x € 1(X) and ¢(f)(x) = x otherwise. Clearly,
t(f) is a homeomorphism which pointwise fixes the boundary and the marked points
of Y. In particular ¢( f) represents an element t4( /) in Map(Y). We thus obtain a
well-defined group homomorphism

t#: Map(X) — Map(Y)

characterized by the following property: for any curve y C X we have t4(dy) = §,(;)-
Notice that this characterization immediately implies that if ¢ and ¢/ are isotopic, then

= Ly
3.2 Birman exact sequences

As we mentioned above, notable examples of homomorphisms induced by embeddings
are the so-called Birman exact sequences, which we now describe.

Let X and Y be surfaces of finite topological type. We will say that Y is obtained
from X by filling in a puncture if there is an embedding ¢: X — Y and a marked
point p € Py, such that the underlying map ¢: | X | — |Y| is a homeomorphism, and
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"1 (Py) = Px \ {p}. If Y is obtained from X by filling in a puncture we have the
following exact sequence:

(3-1) 1 — (Y] \ Py, (p)) — Map(X) — Map(Y) —> 1

The second arrow in (3-1) can be described concretely. For instance, if y is a simple
loop in |Y|\ Py based at ¢(p), then the image of the element [y] € 7 (|Y |\ Py, t(p))
in Map(X) is the difference of the two Dehn twists along the curves forming the
boundary of a regular neighborhood of :=!(y).

Similarly, we will say that Y is obtained from X by filling in a boundary component if
there is an embedding 1: X — Y, with (! (Py) = Py, and such that the complement
in |Y'| of the image of the underlying map | X| — |Y'| is a disk which does not contain
any marked point of Y. If Y is obtained from X by filling in a boundary component
then we have the following exact sequence:

(3-2) 1 — 2 (T'(|Y|\ Py)) — Map(X) —> Map(Y) —> 1
Here T!(|Y|\ Py) is the unit-tangent bundle of the surface |Y|\ Py .

We refer to the sequences (3-1) and (3-2) as the Birman exact sequences. It follows
from the work of Ivanov—McCarthy [26] that the Birman exact sequences do not split
if the involved surfaces have genus at least 2.

3.3 Other building blocks

Continuing with the same notation as above, we will say that Y is obtained from X by
deleting a boundary component if there is an embedding ¢: X — Y with ((Py) C Py
and such that the complement of the image of the underlying map | X | — |Y| is a disk
containing exactly one point in Py .

If X is not homeomorphic to a closed disk and Y is obtained from X by deleting a
boundary component then we have

(3-3) 1 — Z —> Map(X) — Map(Y) — 1,

where 7 is the group generated by the Dehn twist along the forgotten boundary
component.

Finally, we will say that «: X — Y is a subsurface embedding if 1(Px) C Py and if
no component of the complement of the image of the underlying map |X| — |Y| is
a disk containing at most one marked point. If 1: X' — Y is a subsurface embedding
then the homomorphism

t4: Map(X) — Map(Y)
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is injective if and only if ¢ is anannular, ie if no component of the complement of the
image of the underlying map | X| — |Y| is an annulus without marked points; compare
with (2-1) above. We refer the reader to Farb—Margalit [13] or Paris—Rolfsen [42] for a
proof of this fact.

3.4 General embeddings

Clearly, the composition of two embeddings is an embedding. For instance, filling in a
boundary component is isotopic to first forgetting it and then filling in a puncture. The
following proposition, whose proof we leave to the reader, asserts that every embedding
is isotopic to a suitable composition of the elementary building blocks we have just
discussed.

Proposition 3.1 Every embedding ;. X — Y is isotopic to a composition of the
following three types of embedding: filling punctures, deleting boundary components,
and subsurface embeddings. In particular, the homomorphism t4: Map(X) — Map(Y)
is injective if and only if ¢ is an anannular subsurface embedding. |

We conclude this section with an observation that will be needed below. Suppose that
t: X = Y is an embedding and let n C X be a multicurve. The image ¢(n) of 1 in
Y is an embedded 1-manifold, but it need not be a multicurve. For instance, some
component of ¢(1) may not be essential in Y ; also two components of ¢() may be
parallel in Y . If this is not the case, that is, if ¢() is a multicurve in Y, then 14 maps
the subgroup T of multitwists supported on 7 isomorphically onto T, ). We record
this observation in the following lemma:

Lemma 3.2 Leti: X — Y be an embedding and let n C X be a multicurve. If t(n)
is a multicurve in Y, then the homomorphism 4 maps T, C Map(X') isomorphically
to T,;; C Map(Y'). Moreover, the image of a generic multitwist in Ty is generic in
r]TL(W) . O

Notation In order to avoid notation as convoluted as 7' (|Y|\ Py), most of the time
we will drop any reference to the underlying surface |Y'| or to the set of marked point
Py ; notice that this is consistent with taking the liberty to consider punctures as marked
points or as ends. For instance, the Birman exact sequences now read

1 — m1(Y) — Map(X) — Map(Y) — 1
if Y is obtained from X by filling in a puncture, and
1 — m(T'Y) — Map(X) — Map(Y) — 1

if it is obtained by filling in a boundary component.
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4 Triviality theorems

In this section we remind the reader of two triviality theorems for homomorphisms
from mapping class groups to abelian groups and permutation groups; these results are
widely used throughout this paper. The first of these results is a direct consequence of
Powell’s theorem [43] on the vanishing of the integer homology of the mapping class
group of surfaces of genus at least 3:

Theorem 4.1 (Powell) If X is a surface of genus g > 3 and A is an abelian group,
then every homomorphism Map(X) — A is trivial.

We refer the reader to Korkmaz [29] for a discussion of Powell’s theorem and other
homological properties of mapping class groups.

As a first consequence of Theorem 4.1 we derive the following useful observation:

Lemma4.2 Let X,Y and Y be surfaces of finite topological type, and let 1: Y — Y
be an embedding. Suppose that X has genus at least 3 and that ¢: Map(X) — Map(Y")
is a homomorphism such that the composition

¢7= t#0¢: Map(X) — Map(?)

is trivial. Then ¢ is trivial as well.

Proof By Proposition 3.1 the embedding ¢: ¥ — Y is isotopic to a suitable composition
of filling in punctures, deleting boundary components and subsurface embeddings. In
particular, we may argue by induction and assume that ¢ is of one of these three types.
For the sake of concreteness suppose : ¥ — Y is the embedding associated to filling
in a puncture; the other cases are actually a bit easier and are left to the reader. We
have the following diagram:

Map(X)

| X

¢

| — my(¥) —= Map(¥) ——> Map(¥) — |

The assumption that ¢ is trivial amounts to supposing that the image of ¢ is contained
in 71 (Y). Since every nontrivial subgroup of the surface group 7;(Y) has nontrivial

homology, we deduce from Theorem 4.1 that ¢ is trivial, as it was to be shown. O

Before stating another consequence of Theorem 4.1 we need a definition:
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Definition A homomorphism ¢: Map(X') — Map(Y) is said to be irreducible if its
image does not preserve any essential curve in Y ; otherwise we say it is reducible.

Remark Recall that we consider boundary parallel curves to be essential. In particular,
every homomorphism Map(X) — Map(Y) is reducible if ¥ has nonempty boundary.

Let ¢: Map(X) — Map(Y') be a reducible homomorphism, where X has genus at least
3, and let n C Y be a multicurve which is componentwise invariant under ¢ (Map(X));
in other words, ¢ (Map(X)) C Z(Ty).

Moreover, Theorem 4.1 implies that ¢ (Map(X)) C Zo(T), where Z,(Ty) is the sub-
group of Z(T;) consisting of those elements that preserve the sides of each component
of 7.

Now let Y)ﬁ = Y \ n be the surface obtained by deleting n from Y. Composing (2-2)
as often as necessary, we obtain an exact sequence as follows:

4-1) 1 — Ty — Zo(Ty) — Map(¥,) — 1

The same argument of the proof of Lemma 4.2 shows that ¢ is trivial if the composition
of ¢ and the third homomorphism in (4-1) is trivial. Hence we have:

Lemma 4.3 Let X,Y be surfaces of finite topological type, with X of genus at least
3. Suppose ¢: Map(X) — Map(Y') is a nontrivial reducible homomorphism preserving
the multicurve n C Y . Then ¢(Map(X)) C Z¢(T,) and the composition of ¢ with the
homomorphism (4-1) is not trivial. |

The second triviality theorem, due to Paris [41], asserts that the mapping class group of
a surface of genus g > 3 does not have subgroups of index less than or equal to 4g +4;
equivalently, any homomorphism from the mapping class group into a symmetric group
Sy is trivial if k <4g 4+ 4:

Theorem 4.4 (Paris) If X has genus g > 3 and k <4g+4, then there is no nontrivial
homomorphism Map(X') — Sj where the latter group is the group of permutations of
the set with k elements.

Before going any further we should mention that in [41], Theorem 4.4 is only stated
for closed surfaces; however, the proof works as it is also for surfaces with boundary
and or punctures.

As a first consequence of Theorem 4.1 and Theorem 4.4 we prove:
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Proposition 4.5 If X has genus at least 3 and Y has genus at most 2, then every
homomorphism ¢: Map(X') — Map(Y) is trivial.

Proof Assume for concreteness that Y has genus 2; the cases of genus 0 and genus
1 are in fact easier and are left to the reader.

Notice that by Lemma 4.2, we may assume without losing generality that ¥ has empty
boundary and no marked points. Recall that Map(Y') has a central element t of order
2, namely the hyperelliptic involution. As we discussed above, we identify the finite
order mapping class t with one of its finite order representatives, which we again
denote by 7. The surface underlying the orbifold Y /{t) is the 6—punctured sphere
So,6. By Theorem 2.8 we have the following exact sequence:

1 — (t) —> Map(Y) —> Map™*(So.¢).

where Map™*(Sy,¢) is the group of isotopy classes of all orientation preserving homeo-
morphisms of S ¢. Therefore, any homomorphism ¢: Map(X') — Map(Y') induces a
homomorphism
¢': Map(X) — Map* (So.6).

By Paris’s theorem, the homomorphism obtained by composing ¢’ with the obvious
homomorphism Map*(S¢,¢) — Se. the group of permutations of the punctures, is
trivial. In other words, ¢’ takes values in Map(Sg ¢). Since the mapping class group
of the standard sphere S? is trivial, Lemma 4.2 implies that ¢’ is trivial. Therefore, the
image of ¢ is contained in the abelian subgroup () C Map(Y'). Finally, Theorem 4.1
implies that ¢ is trivial, as we had to show. |

5 Getting rid of the torsion

We begin this section by asking the following question:

Question 1 Suppose that ¢: Map(X) — Map(Y) is a homomorphism between map-
ping class groups of surfaces of genus at least 3, with the property that the image of
every Dehn twist along a nonseparating curve has finite order. Is the image of ¢ finite?

In this section we will give a positive answer to Question 1 in the case where the genus
of Y is exponentially bounded by the genus of X'. Namely, we will prove:

Proposition 5.1 Suppose that X and Y are surfaces of finite topological type with
genus g and g’ respectively. Suppose that g > 4 and that either g’ < 2572 — 1 or
g’ = 3, 4. Then any homomorphism ¢: Map(X) — Map(Y') which maps a Dehn twist
along a nonseparating curve to a finite order element is trivial.
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Under the assumption that Y is not closed, we obtain in fact a complete answer to
Question 1:

Theorem 5.2 Suppose that X and Y are surfaces of finite topological type, that X
has genus at least 3, and that Y is not closed. Then any homomorphism ¢: Map(X) —
Map(Y') which maps a Dehn twist along a nonseparating curve to a finite order element
is trivial.

Since the mapping class group of a surface with nonempty boundary is torsion-free,
we deduce from Lemma 2.2 that it suffices to consider the case that Y = @. From
now on, we assume that we are in this situation.

The proofs of Proposition 5.1 and Theorem 5.2 are based on Theorem 4.1, the connec-

tivity of the cut system complex, and the following algebraic observation:

Lemma 5.3 Forn € N, n> 2, consider Z" endowed with the standard action of the
symmetric group S,, by permutations of the basis elements e1, ..., e,. If V is a finite
abelian group equipped with an S, —action, then for any S,,—equivariant epimorphism
¢: Z" — V one of the following is true:

(1) The restriction of ¢ to Z"~! x {0} is surjective.
(2) V has order at least 2" and cannot be generated by tewer than n elements.

Moreover, if (1) does not hold and V # (Z./27)" then V has at least 2" ™! elements.

Proof Let d be the order of ¢p(e1) in V and observe that, by S,—equivariance, all
the elements ¢ (e;) have order d also. It follows that (dZ)" C Ker(¢) and hence that
¢ descends to an epimorphism

¢’ (Z)dT)" — V.

We first treat the case d = p?, where p is a prime and a > 1; we argue by induction
on a. Let a = 1. The kernel of the epimorphism

9" (Z/pL)" >V

is an Sp—invariant subspace. We need the following well-known observation:

Fact Suppose that p is prime. The only S, —invariant subgroups W of (Z/pZ)" are
the following:

e The trivial subgroup {0}.
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(Z.] pZ)" itself.
E={(@a,a,...,a)e (Z/pZ)" |a=0,...,p—1}.
F={(ay,...,an) € (Z/pZ)" |ay + -+ an = 0}.

Now, either ¢’ is injective and thus V' contains p” > 2" elements, or its kernel is one
of the spaces E or F provided by the claim. Since the union of either one of them with
(Z/pZ)*~! x {0} spans (Z/pZ)", it follows that the restriction of ¢ to Z"~1 x {0}
surjects onto V. This concludes the proof for a = 1.

Suppose now that we have proved the result for « — 1. We can then consider the
following diagram:

00— (Z/p* ' 2)y" —— (2/p*L)" ——— (Z/pZ)" ——=0

| ‘ |

0——=¢'((Z/p*~'2)") 4 V/$'(Z/p*~'L)") —0

Observe that if one of the groups to the left and right of V' on the bottom row has at least
2™ elements, then so does V. So, if this is not the case we may assume by induction
that the restriction of the left and right vertical arrows to (Z/p?~1Z)"~! x {0} and
(Z/pZ)*~! x {0} are epimorphisms; in particular the restriction of the morphism ¢’
to (Z/p®Z)"~1 x {0} is also an epimorphism. Thus, either V' has at least 2" elements
or the restriction of ¢ to Z"~! x {0} is surjective, as desired.

We now explain how to restrict to the case that d is not a power of a prime. Consider
the prime decomposition d = ]_[j p}l’ of d, where p; # pj and a; € N. By the
Chinese remainder theorem we have

7/dZ = ]_[ 7/ pi' 7).

Hence, there is an Sy, —equivariant isomorphism
z/dz)" =] [(Z/p{2)").
J
Consider the projection
"—(z/p]2)",

noting that if the restriction to Z"~1 x {0} of ¢’ o surjects onto ¢’ ((Z/ p;7Z)") for
all j, then ¢(Z"~! x {0}) = V. If that is not the case, then o((Z/p Z)”) C V has
order at least 2", by the above.
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Both the equality case and the claim on the minimal number of elements needed to
generate V are left to the reader. |

We are now ready to prove:

Lemma 5.4 Given n > 4, suppose that g > 0 is such that 2"~2 — 1> g or g € {3, 4}.

If'Y is surface of genus g > 3, V C Map(Y) is a finite abelian group endowed with
an action of S, and ¢: Z" — V is an S,—equivariant epimomorphism, then the
restriction of ¢ to Z"~! x {0} is surjective.

Proof Suppose, for contradiction, that the restriction of ¢ to Z"~! x {0} is not
surjective. Recall that by the resolution of the Nielsen realization problem [27] there is a
conformal structure on Y such that V' can be represented by a group of automorphisms.

Suppose first that 27~2 — 1 > g. Since we are assuming that the restriction of ¢ to
Z"~1 x {0} is not surjective, Lemma 5.3 implies that V' has at least 2" elements. Then:

" =42"—1)+4>4g +4,

which is impossible since Theorem 2.7 asserts that Map(Y') does not contain finite
abelian groups with more than 4g + 4 elements.

Suppose now that g = 4. If n > 5 we obtain a contradiction using the same argument
as above. Thus assume that n = 4. Since 2471 =32 > 20 = 4-4 + 4, it follows from
the equality statement in Lemma 5.3 that V is isomorphic to (Z/2Z)*. Luckily for us,
Kuribayashi and Kuribayashi have classified all groups of automorphisms of Riemann
surfaces of genus 3 and 4. From their list, more concretely [31, Proposition 2.2(c)], we
obtain that (Z/27)* cannot be realized as a subgroup of the group of automorphisms
of a surface of genus 4, and thus we obtain the desired contradiction.

Finally, suppose that g = 3. As before, this case boils down to ruling out the possibility
of having (Z/27Z)* acting by automorphisms on a Riemann surface of genus 3. This
is established in [31, Proposition 1.2(c)]. This concludes the case g = 3 and thus the
proof of the lemma. |

Remark One could wonder if in Lemma 5.4 the condition n > 4 is necessary. Indeed
it is, because the mapping class group of a surface of genus 3 contains a subgroup
isomorphic to (Z/27Z)3, namely the group H (8, 8) on the list in [31].

We are finally ready to prove Proposition 5.1:
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Proof of Proposition 5.1 Recall that a cut system in X is a maximal multicurve
whose complement in X is connected; observe that every cut system consists of g
curves and that every nonseparating curve is contained in some cut system.

Given a cut system 7 consider the group T, generated by the Dehn twists along the
components of 1, and recall that T, >~ Z&. Any permutation of the components
of n can be realized by a homeomorphism of X . Consider the normalizer N (T})
and centralizer Z(Ty) of Ty in Map(X). As mentioned in Section 2.4, we have the
following exact sequence:

1 — Z(Ty) — N(Ty) — Sg — 1,

where Sg denotes the symmetric group of permutations of the components of 7.
Observe that the action by conjugation of N (T,) on T, induces an action Sy =
N(Ty)/Z(Ty) ~ Ty which is conjugate to the standard action of Sy ~, Z¢. Clearly,
this action descends to an action Sg ~ ¢(T5).

Seeking a contradiction, suppose that the image under ¢ of a Dehn twist §,, along a
nonseparating curve has finite order. Since all the Dehn twists along the components of
n are conjugate to J,, we deduce that all their images have finite order; hence ¢ (T;)
is generated by finite order elements. On the other hand, ¢ (T}) is abelian because it is
the image of an abelian group. Being abelian and generated by finite order elements,
¢ (Ty) is finite.

It thus follows from Lemma 5.4 that the subgroup of T, generated by Dehn twists
along g — 1 components of 7 surjects under ¢ onto ¢ (T;). This implies that

¢(Tn) = ¢(Tn’)

whenever n and 7’ are cut systems which differ by exactly one component. Now, since
the cut system complex is connected [20], we deduce that ¢ (8¢) € ¢(T;) for every
nonseparating curve «. Therefore the image of Map(X) is the abelian group ¢(T5),
as Map(XX) is generated by Dehn twists along nonseparating curves. By Theorem 4.1,
any homomorphism Map(X) — Map(Y) with abelian image is trivial, and thus we
obtain the desired contradiction. |

Before moving on, we discuss briefly the proof of Theorem 5.2:

Proof of Theorem 5.2 Suppose that Y is not closed, in which case every finite
subgroup of Map(Y) is cyclic. In particular, the bound on the number of generators
in Lemma 5.3 implies that if V' C Map(Y) is a finite abelian group endowed with an
action of Sy and ¢: 7" — V' is an Sy—equivariant epimomorphism then the restriction
of ¢ to Z"~1 x {0} is surjective. Once this has been established, Theorem 5.2 follows
with the same proof, word for word, as Proposition 5.1. O
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Remark Let X and Y be surfaces, where Y has a single boundary component and
no cusps. Let G be a finite index subgroup of Map(X) and let ¢: G — Map(Y) be a
homomorphism. A simple modification of a construction due to Breuillard—Mangahas
[34] yields a closed surface Y’ containing ¥ and a homomorphism

¢': Map(X) — Map(Y”)
such that for all g € G we have, up to isotopy, ¢'(g)(Y) =Y and ¢'(g2)|y = ¢(g2).

Suppose now that G could be chosen so that there is an epimorphism G — Z. Assume
further that ¢: G — Map(Y') factors through this epimorphism and that the image
of ¢ is purely pseudo-Anosov. Then every element in the image of the extension
¢’: Map(X) — Map(Y) either has finite order or is a partial pseudo-Anosov. A result
of Bridson [11], stated as Theorem 6.1 below, implies that every Dehn twist in Map(X)
is mapped to a finite order element in Map(Y'). Hence, the extension homomorphism
¢’ produces a negative answer to Question 1.

We have hence proved that a positive answer to Question 1 implies that every finite
index subgroup of Map(X) has finite abelianization.

6 The map ¢,

In addition to the triviality results given in Theorems 4.1 and 4.4, the third key ingredient
in the proof of Theorem 1.1 is the following result due to Bridson [11]:

Theorem 6.1 (Bridson) Suppose that X,Y are surfaces of finite type and that X
has genus at least 3. Any homomorphism ¢ : Map(X') — Map(Y') maps roots of
multitwists to roots of multitwists.

A remark on the proof of Theorem 6.1 In [11], Theorem 6.1 is proved for surfaces
without boundary only. However, Bridson’s argument remains valid if we allow X to
have boundary. That the result can also be extended to the case that ¥ has nonempty
boundary needs a minimal argument, which we now give. Denote by Y’ the surface
obtained from Y by deleting all boundary components and consider the homomorphism
7: Map(Y) — Map(Y’) provided by Theorem 2.5. By Bridson’s theorem, the image
under 7 o ¢ of a Dehn twist §,, is a root of a multitwist. Since the kernel of 7 is the
group of multitwists along the boundary of Y, it follows that ¢(, ) is also a root of a
multitwist, as claimed. O

A significant part of the sequel is devoted to proving that under suitable assumptions
the image of a Dehn twist is in fact a Dehn twist. It is worth stressing that, without any
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restrictions on genus, there exist homomorphisms between mapping class group that
map Dehn twists to nontrivial roots of multitiwists, as the next example shows:

Example 3 Suppose that X has a single boundary component and at least two punc-
tures. By [15], the mapping class group Map(.X') is residually finite. Fix a finite group
G and an epimorphism 7: Map(X) — G. Let Y be a connected surface on which
G acts and which contains |G| disjoint copies Xg (g € G) of X with gX), = X,
for all g, h € G; for example, such surface Y may be constructed by considering the
connected sum of |G| copies of X, where the connected sums are performed according
to the edges of a chosen Cayley graph of G.

Given x € X, denote the corresponding element in Xz by xg. If /: X — X isa
homeomorphism fixing pointwise the boundary and punctures, we define

1Y —>Y

with f(xg) = (f()n( g for xg € Xg and f(») = 7([/D) for ¥ ¢ Ugeg Xe:
here [ f] is the element in Map(X) represented by f.

Notice that f does not fix the marked points of Y ; in order to by-pass this difficulty,
consider Y the surface obtained from Y by forgetting all marked points, and consider
f to be a self-homeomorphism of Y. The map f f induces a homomorphism

¢: Map(X) — Map(Y)
with some curious properties, namely:

e If y C X isasimple closed curve which bounds a disk with at least two punctures
then the image ¢(d,) of the Dehn twist §,, along y has finite order. Moreover,
8y € Ker(¢) if and only if §,, € Ker(x).

e If y C X is a nonseparating simple closed curve then ¢ (6, ) has infinite order.
Moreover, ¢ (8, ) is a multitwist if §,, € Ker(r); otherwise, ¢ (3, ) is a nontrivial
root of a multitwist. Observe that in the latter case, ¢ (8, ) induces a nontrivial
permutation of the components of the multicurve supporting any of its multitwist
powers.

This concludes the discussion of Example 3.
While a finite order element is by definition a root of a multitwist, Proposition 5.1
ensures that, under suitable bounds on the genus of the surfaces involved, any nontrivial

homomorphism Map(X) — Map(Y) maps Dehn twists to infinite order elements.
From now on we assume that we are in the following situation:
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(*) X and Y are orientable surfaces of finite topological type, of genus g and g’
respectively, and such that one of the following holds:
e g>4and g’ <g.
e g>6and g’ <2g—1.

Remark It is worth noticing that the reason for the genus bound g > 6 in Theorem 1.1
is that 2672 — 1 <2g—1if g <6.

Assuming (x), it follows from Proposition 5.1 that any nontrivial homomorphism
¢: Map(X') — Map(Y) maps Dehn twists 6, along nonseparating curves y to infinite
order elements in Map(Y). Furthermore, it follows from Theorem 6.1 that there is
N such that ¢(8}],V ) is a nontrivial multitwist. We denote by ¢«(y) the multicurve in
Y supporting ¢(8)1,V ); observe that ¢4 (y) is independent of N, for if two multitwists
have a common root then the supporting multicurves must be equal. Notice that two
multitwists commute if and only if their supports do not intersect; hence, ¢x preserves
the property of having zero intersection number. Moreover, the uniqueness of ¢« ()

implies that for any f € Map(X) we have ¢« (f(y)) = ¢ (f)(¢p«(y)). Summing up
we have:

Corollary 6.2 Suppose that X and Y are as in (*) and let
¢: Map(X) — Map(Y)

be a nontrivial homomorphism. For every nonseparating curve y C X, there is a
uniquely determined multicurve ¢«(y) C Y with the property that ¢ (J,) is a root of a
generic multitwist in Ty, (). Moreover the following holds:

o i(¢«(y),d«(y")) = 0 for any two disjoint nonseparating curves y and y’.

o O (f(y) = d(f)(@«(y)) for all f € Map(X). In particular, the multicurve
¢« (y) is invariant under ¢ (Z(8y)). |

The remainder of this section is devoted to give a proof of the following result:

Proposition 6.3 Suppose that X and Y are as in (x); further, assume that Y is
not closed if it has genus 2g — 1. Let ¢: Map(X) — Map(Y) be an irreducible
homomorphism. Then for every nonseparating curve y C X the multicurve ¢«(y) is a
nonseparating curve.

Recall that a homomorphism ¢: Map(X) — Map(Y) is irreducible if its image does
not preserve any essential curve in Y, and that we consider boundary-parallel curves
to be essential.

Before launching the proof of Proposition 6.3 we will establish a few useful facts.
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Lemma 6.4 Suppose X and Y satisty (x) and that ¢: Map(X) — Map(Y) is an
irreducible homomorphism. Let Y be obtained from Y by filling in some, possibly all,
punctures of Y, and let 5 = 130¢: Map(X) — Map(Y) be the composition of ¢ with
the homomorphism t4 induced by the embedding 1: Y — Y . For every nonseparating
curve y C X we have:

e ((¢«(y)) is a multicurve.

® 5*()/) = (P« ().
In particular, ¢ yields a bijection between the components of ¢«(y) and qT* (y).

Proof First, arguing by induction, we may assume that Y is obtained from Y by
filling in a single cusp. We suppose from now on that this is the case; it follows from
Lemma 4.2 that ¢ is not trivial. Notice also that since Y and Y have the same genus,
$x(y) is well-defined by Corollary 6.2.

By definition of ¢« and ¢, we can choose N € N such that ¢(8)1,V ) and 5(8)],\’ ) are
generic multitwists in Ty, () and Ta* )" In particular, it follows from Lemma 3.2
that in order to prove Lemma 6.4 it suffices to show that ¢(¢«(y)) does not contain (1)
inessential components, or (2) parallel components.

Claim 1 (¢« (y)) does not contain inessential components.

Proof of Claim 1 Seeking a contradiction, suppose that a component 7 of ¢ (y) is
inessential in Y . Since Y is obtained from Y by filling in a single cusp, it follows that
n bounds a disk in Y with exactly two punctures. Observe that this implies that for
any element F € Map(Y') we have either F(n) =n or i (F(n),n) > 0. On the other
hand, if f € Map(X) is such that i (f(y), y) = 0 then we have

@)1 =i @()(Px(¥). px(¥) = i (P« (S (¥)). #x(¥)) = 0.

We deduce that n = ¢ (/) () C ¢« (f(y)) for any such f. Since any two nonseparating
curves in X are related by an element of Map(.X') we obtain:

(x) Ify’ is a nonseparating curve in X with i(y, y’) =0 then n = ¢(8,)(n) and
nCx(y).

Choose Y’ C X so that X \ (y Uy’) is connected. It follows from (x) that if 3"

any other nonseparating curve which is disjoint from at least one of y or y’, then
¢ (8y~)(n) = n. Since Map(X) is generated by Dehn twists along such curves, we
deduce that every element in ¢(Map(X')) preserves 7, contradicting the assumption
that ¢ is irreducible. This concludes the proof of Claim 1. |
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We use a similar argument to prove that ¢(¢«(y)) does not contain parallel components.
Claim 2 (¢« (y)) does not contain parallel components.

Proof of Claim 2 Seeking again a contradiction suppose that there are n # n’ C
¢+(y) whose images in Y are parallel. Hence, n U i’ bounds an annulus which
contains a single cusp. As above, it follows that for any element f € Map(Y) we
have either f(nUn') =nuUn’ or i(f(n),n) > 0. By the same argument as before, we
obtain that ¢(Map(X)) preserves n U n’. Now, it follows from either Theorem 4.1 or
Theorem 4.4 that ¢ (Map(X)) cannot permute n and 1. Hence ¢ (Map(X)) preserves
n, contradicting the assumption that ¢ is irreducible. |

As we mentioned above, Lemma 6.4 follows from Claims 1 and 2 and Lemma 3.2. O

Continuing with the preliminary considerations to prove Proposition 6.3, recall that
the final claim in Corollary 6.2 implies that ¢ (3, ) preserves the multicurve ¢« (y).
Our next goal is to show that, as long as ¢ is irreducible, the element ¢ (8, ) preserves
every component of ¢ (y).

Lemma 6.5 Suppose that X and Y are as in () and let ¢: Map(X') — Map(Y') be
an irreducible homomorphism. If y C X is a nonseparating simple closed curve, then
#(20(8y)) preserves every component of ¢« (y). Hence, ¢(Zo(3y)) € Zo(Ty,(y))-

Recall that Zy(d,) is the subgroup of Map(.X') preserving not only y but also the two
sides of y and that it has at most index 2 in the centralizer Z(d,) of the Dehn twist 4, .

Proof We first prove Lemma 6.5 in the case that Y is closed. As in Section 2,
we denote by X, the surface obtained by deleting the interior of a closed regular
neighborhood of y from X . Recall that by (2-1) there is a surjective homomorphism

Map(Xy) — Zo(8y).

Consider the composition of this homomorphism with ¢ and, abusing notation, denote
its image by ¢(Map(Xy)) = ¢(Zo(8y)).

By Corollary 6.2, the subgroup ¢(Map(X,)) of Map(Y') acts on the set of components
of ¢«(y) and hence on Y \ ¢p«(y). Since Y is assumed to be closed and of at most
genus 2g — 1 we deduce that Y \ ¢«(y) has at most |x(Y)| =2¢'—2 <4g —4
components. Since the surface X, has genus g —1 > 3, we deduce from Theorem 4.4
that ¢ (Map(X,)) preserves each component of ¥ \ ¢« ().
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Suppose now that Z is a component of Y \ ¢« () and let n be the set of components
of ¢«(y) contained in the closure of Z. Noticing that

4—d4g < x(¥Y)=x(Z)=—n|+2

we obtain that 1 consists of at most 4g —2 components. Since ¢ (Map(.X,)) preserves
Z , it acts on the set of components of 1. Again by Theorem 4.4, it follows that this
action is trivial, meaning that every component of ¢«(y) contained in the closure
of Z is preserved. Since Z was arbitrary, we deduce that ¢ (Map(X,)) preserves
every component of ¢4(y) as claimed. Now, Theorem 4.1 implies that ¢(Z((8,)) =
¢(Map(Xy)) C Zo(T4,(y))- This concludes the proof of Lemma 6.5 in the case that
Y is closed.

We now turn our attention to the general case. Recall that the assumption that ¢ is
irreducible implies that 3Y = @. Let Y be the surface obtained from Y by closing
up all the cusps and denote by ¢: Map(X) — Map(Y) the composition of ¢ with the
homomorphism t4: Map(Y) — Map(Y) induced by the embedding ¢: ¥ — Y. By the
above, Lemma 6.5 holds true for a . On the other hand, Lemma 6.4 shows that for any
¥ C X nonseparating there is a bijection between ¢« (y) and ¢« (). Thus the lemma
follows. O

Note that Lemma 6.5 yields the following sufficient condition for a homomorphism
between mapping class groups to be reducible:

Corollary 6.6 Suppose that X and Y are as in (*) and let ¢: Map(X) — Map(Y)
be a nontrivial homomorphism. Let y and y’ be disjoint curves on X such that
X\ (y Uy’) is connected. If the multicurves ¢« (y) and ¢«(y’) share a component,
then ¢ is reducible.

Proof First, Map(XX) is generated by Dehn twists along curves o which are disjoint
from y or y’. For any such o we have &y € Z¢(65) U Zy(8,). In particular, it follows
from Lemma 6.5 that ¢»(Map(X)) fixes every component of ¢ (y) N ¢« (y’). |

We are now ready to prove Proposition 6.3:

Proof of Proposition 6.3 Let y be a nonseparating curve on X . Extend y to a
multicurve n C X with 3¢ —3 components y1,...,¥3g—3, and such that the surface
X\ (yi Uy;) is connected for all i, j. Since J,, and §,, are conjugate in Map(X)
we deduce that ¢« (y;) and ¢«(y;j) have the same number K of components for all
i, j. Since ¢ is irreducible, Corollary 6.6 implies that ¢« (y;) and ¢« (y;) do not share
any components for i # j. This shows that | J; ¢«(y;) is the union of (3g —3)K
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distinct curves. Furthermore, since §,; and §,, commute, we deduce that | _J; ¢« (i)
is a multicurve in Y.

Suppose first that ¥ has genus g’ < 2g — 2. In light of Lemma 6.4, it suffices
to consider the case that Y is closed. Now, the multicurve | J; ¢«(y;) has at most
3g' —3<3(2g—2)—3 < 6g—6 components. Hence:

6g —6

bg—6 _,

3g-3

and thus the multicurve ¢«(y) consists of K = 1 components; in other words, it is

a curve. If ¢«(y) were separating, then the multicurve | J; ¢«(y;) would consist of
3g — 3 separating curves; however, a closed surface of genus g’ < 2g¢ — 2 contains at

K<

most g’ < 2g — 2 disjoint separating curves that are equivalent under the action of the
mapping class group. This concludes the proof of the proposition in the case that Y
has genus at most 2g — 2.

It remains to consider the case that Y has genus g’ = 2g — 1 and at least one puncture.
Again by Lemma 6.4, we can assume that Y has a single puncture, which we consider
as a marked point. In this case, the multicurve |_J; ¢« (y;) consists of at most 3¢’ —2 =
6g—5 curves. Since we know that (_J; ¢« (y;) is the union of (3g—3)K distinct curves,
we deduce that K < 2. In the case that | J; ¢«();) has fewer than 6g — 6 components,
we proceed as before. Therefore, it remains to rule out the possibility of having exactly
6g — 6 components.

Suppose, for contradiction, that | J; ¢«(y;) has 6g — 6 components. Since Y has
genus 2g — | and exactly one marked point, the complement of | J; ¢«(y;) in Y is
a disjoint union of pairs of pants, where one of them, call it P, contains the marked
point of Y. Now, the boundary components of P are contained in the image under
¢« of curves ay,az,az €{y1,...,Y3g—3}. Assume, for the sake of concreteness, that
a; # aj whenever i # j; the remaining case is dealt with using minor modifications
of the argument we give here.

Suppose first that the multicurve o = a; U a; U a3 does not disconnect X and let
o’ # a be another multicurve with three components satisfying:

(1) X\« is connected,
(2) i(a,a’) =0, and
(3) X\ (yUy’) is connected for all y,y' €eaUa’.

Note that X \ @ and X \ &’ are homeomorphic, and thus there is f € Map(X) with
f(a) =a’. Now, P’ = ¢(f)(P) is a pair of pants which contains the marked point
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of Y. Taking into account that P C ¢« () and dP’ C ¢« (a’) we deduce from (2)
that i (dP,dP’) = @ and hence that P = P’. Since o’ # o we may assume, up to
renaming, that a; ¢ o«’. Since ¢(f)(dP) = dP’ and dP N ¢«(a;) # &, we deduce
that there is i such that ¢« (a;) N ¢« (f(a1)) contains a boundary curve of P. In light
of (3), it follows from Corollary 6.6 that ¢ is reducible; this contradiction shows that
X \ @ cannot be connected.

If X \ « is not connected, then it has two components, as X \ (a; Ua,) is connected.
Suppose first that neither of the two components Z1, Z, of X \ « is a (possibly
punctured) pair of pants; in particular, Z; and Z, both have positive genus. Let
Py C Z; be an unpunctured pair of pants with boundary dP; = a; Ua, U ag and let
P, C Z, be second unpunctured a pair of pants with Z, \ P, connected and with
boundary 0P, = a3 Ua’ Ua), where @ and @/, are not boundary parallel in Z;;
compare with the figure below. Notice that Z] = (Z; U P;) \ P; is homeomorphic

to Z;. Similarly, Z, = (Z, U Py) \ P, is homeomorphic to Z,. Finally notice
also that Z/ contains the same punctures as Z; for i = 1,2. It follows that there is
J eMap(X) with f(Z,)=Z] and f(Z,) = Z/. In particular, f(a) =’ where
o' =a Ua, Ud’. We highlight a few facts:

(1) Thereis f € Map(X) with f(a) =d/,
(2) i(a,a’) =0, and
(3) X\ (yUy’) is connected for all y,y’ € {ay,a,.a),d,}.

As above, we deduce that ¢( f)(dP;) = 0P, and that for all i = 1,2, 3 there is j such
that ¢« (a;) N ¢«(f(a;)) contains a boundary curve of P. In light of (3), it follows
again from Corollary 6.6 that ¢ is reducible. We have reduced to the case that one of
the components of X \ «, say Z, is a (possibly punctured) pair of pants.

We now explain how to reduce to the case that Z is a pair of pants without punctures.
Let a’3 C Z; be a curve which, together with a3, bounds an annulus A C Z such
that Z; \ A does not contain any marked points. Note that the multicurve y; U---U
¥3g—3 does not intersect a. It follows that i (¢« (a%).(J #«(yi)) = 0. Now, a pants
decomposition of Y consists of 3(2g —1) —3 41 = 6g — 5 curves. Since ¢«(a})
has two components and | J ¢«(y;) has 6g — 6 components, we deduce that there
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exists i such that ¢« (a}) and ¢«(y;) share a component. If i # 3, property (3) and
Corollary 6.6 imply that ¢ is reducible, since a’ | y; does not separate X . It thus
follows that ¢«(a}) and ¢« (a3) share a component, and so P C ¢« (a; Uas Uay).

Summing up, it remains to rule out the possibility that Z; is a pair of pants without
punctures. Choose o’ C X, with o’ # «, satisfying:

(1) «’ bounds a pair of pants in X,

(2) i(a,a’) =0, and

(3) X\ (yUy’) is connected for all y,y’ ea Ua’.

Now there is f € Map(X) with f(«) = ¢’ and we can repeat word by word the
argument given in the case that X \ o was connected.

After having ruled out all possibilities, we deduce that | J; ¢«();) cannot have 6g — 6
components. This concludes the proof of Proposition 6.3. |

7 When the genus decreases

In this section we show that every homomorphism Map(X') — Map(Y) is trivial if the
genus of X is larger than that of Y. As a consequence we obtain that, under suitable
genus bounds, the centralizer of the image of a nontrivial homomorphism between
mapping class groups is torsion-free.

Proposition 7.1 Suppose that X and Y are orientable surfaces of finite topological
type. If the genus of X is at least 3 and larger than that of Y , then every homomorphism
¢: Map(X) — Map(Y) is trivial.

Castel [12] has obtained an independent proof of the above result. For closed surfaces,
Proposition 7.1 is due to Harvey—Korkmaz [19].

Proof We will proceed by induction on the genus of X . First, Proposition 4.5
establishes the base case of the induction. Observe that, by Lemma 4.2, we may assume
that Y is has empty boundary and no cusps.

Suppose now that X has genus g > 4 and that we have proved Proposition 7.1 for
surfaces of genus g — 1. Our first step is to prove the following:

Claim Under the hypotheses above, every homomorphism Map(X) — Map(Y) is
reducible.

Geometry € Topology, Volume 16 (2012)



2318 Javier Aramayona and Juan Souto

Proof of the claim Seeking a contradiction, suppose that there is an irreducible
homomorphism ¢: Map(X) — Map(Y), where Y has smaller genus than X . Let
y C X be a nonseparating curve. Observing that X and Y satisfy (x), we deduce that
¢x(y) is a nonseparating curve by Proposition 6.3 and that ¢(Zo(3y)) C Z0(84,(y))
by Lemma 6.5. By (2-2), Zy(84,(y)) surjects onto Map(ng* (y))» Where q;* o) =
Y \ ¢«(y). On the other hand, we have by (2-1) that Zy(d,) is an image of the group
Map(X, ), where X, is obtained from X by deleting the interior of a closed regular

neighborhood of y.

Since ¢« (y) is nonseparating, the genus of Y(/’)* ) and X, is one less than that of Y

and X, respectively. The induction assumption implies that the induced homomorphism
Map(Xy) — Map(Yy_ ()
is trivial. Lemma 4.3 proves that the homomorphism
Map(Xy) — Z0(8¢,(y)) C Map(Y)

is also trivial, and so Z(d;) C Ker(¢). Since Z((,) contains a Dehn twist along a
nonseparating curve, we deduce that ¢ is trivial from Lemma 2.2. This contradiction
concludes the proof of the claim. O

Continuing with the proof of the induction step in Proposition 7.1, suppose there
exists a nontrivial homomorphism ¢: Map(X) — Map(Y). By the above claim, ¢ is
reducible. Let n C Y be a maximal multicurve in Y which is componentwise preserved
by ¢ (Map(X)), and notice that ¢ (Map(X)) C Z¢(T,) by Lemma 4.3. Consider

¢': Map(X) — Map(¥y).

the composition of ¢ with the homomorphism (4-1). The maximality of the multicurve
n implies that ¢’ is irreducible. Since the genus of Y,; is at most equal to that of ¥,
we deduce from the claim above that ¢’ is trivial. Lemma 4.3 implies hence that ¢ is
trivial as well. This establishes Proposition 7.1 a

As we mentioned before, a consequence of Proposition 7.1 is that, under suitable
assumptions, the centralizer of the image of a homomorphism between mapping class
groups is torsion-free. Namely, we have:

Lemma 7.2 Let X and Y be surfaces of finite topological type, where X has genus
g >3 and Y has genus g’ <2g. Suppose that Y has at least one (respectively three)
marked points if g’ =2g — 1 (respectively g’ =2g). If ¢: Map(X) — Map(Y) is a
nontrivial homomorphism, then the centralizer of ¢ (Map(X)) in Map(Y) is torsion-
free.
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The proof of Lemma 7.2 relies on Proposition 7.1 and the following consequence of
the Riemann—Hurwitz formula:

Lemma 7.3 Let Y be a surface of genus g’ > 0 and let t: Y — Y be a nontrivial
diffeomorphism of prime order, representing an element in Map(Y'). Then t has
F <2g’ + 2 fixed-points and the underlying surface of the orbifold Y /{t) has genus
atmost g = (2¢g' +2— F)/4.

Proof Consider the orbifold Y/(z) and let F' be the number of its singular points,
which is also equal to the number of fixed points of t since t has prime order p.
Denote by |Y/(7)| the underlying surface of the orbifold Y /(). The Riemann-Hurwitz
formula shows that

(7-1) 2-2¢"=x(¥)=p-x(Y/{x))—(p—1)- F.
After some manipulations, (7-1) shows that
_2¢'-2+4p-(2-23)
= P

where g is the genus of |Y/{t)|. Clearly, the quantity on the right is maximal if g =0
and p = 2. This implies that F < 2g’ 4 2, as claimed.

F

’

Rearranging (7-1), we obtain
28’ +(2-F)(p—1)
2p '
Again this is maximal if p is as small as possible, ie p =2. Hence g < (2g’+2—F)/4.
O

g =

We are now ready to prove Lemma 7.2.

Proof of Lemma 7.2 First, if ¥ has nonempty boundary there is nothing to prove,
for in this case Map(Y) is torsion-free. Therefore, assume that Y = &. Suppose, for
contradiction, that there exists [t] € Map(Y') nontrivial, of finite order, and such that

¢ (Map(X)) C Z([z]).

Let 7: Y — Y be a finite order diffeomorphism representing [t]. Passing to a suitable
power, we may assume that the order of 7 is prime. Consider the orbifold Y /(t) as a
surface with the singular points marked, and recall that by Theorem 2.8 we have the
following exact sequence:

I —> ([2]) — Z([]) 2> Map*(¥/ (1))
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On the other hand, we have by definition
1 — Map(Y/(t)) — Map*(Y /(1)) — Sp — 1,

where F is the number of punctures of Y /(r). Again, F is equal to the number of
fixed points of 7 since t has prime order.

Lemma 7.3 gives that F <2g’ + 2 < 4g + 2; hence, it follows from Theorem 4.4 that
the composition

¢ B
Map(X) — Z([t]) — Map*(Y/(r)) — SF
is trivial; in other words,

(B o¢)(Map(X)) C Map(Y/(t)).

Our assumptions on the genus and the marked points of Y imply, by the genus bound
in Lemma 7.3, that Y/(t) has genus less than g. Hence, the homomorphism

B o ¢: Map(X) — Map(Y/(z))

is trivial by Proposition 7.1. This implies that the image of ¢ is contained in the abelian
group ([z]). Theorem 4.1 shows hence that ¢ is trivial, contradicting our assumption.
This concludes the proof of Lemma 7.2 O

The following example shows that Lemma 7.2 is no longer true if Y is allowed to have
genus 2g and fewer than 3 punctures.

Example 4 Let X be a surface with no punctures and such that 0X = S!. Let
Z be a surface of the same genus as X, with dZ = & but with two punctures.
Regard X as a subsurface of Z and consider the two-fold branched cover ¥ — Z
corresponding to an arc in Z\ X joining the two punctures of Z . Every homomorphism
X — X fixing pointwise the boundary extends to a homeomorphism of Z fixing the
punctures and which lifts to a unique homeomorphism Y — Y which preserves the
two components of the preimage of X under the covering ¥ — Z. The image of
the induced homomorphism Map(X) — Map(Y) is centralized by the involution 7
associated to the two-to-one cover ¥ — Z. Moreover, if X has genus g then Y has
genus 2g and 2 punctures.

8 Dehn twists to Dehn twists

We are now ready to prove that under suitable genus bounds, homomorphisms between
mapping class groups map Dehn twists to Dehn twists. Namely:
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Proposition 8.1 Suppose that X and Y are surfaces of finite topological type, of
genus g > 6 and g’ <2g — 1 respectively; if Y has genus 2g — 1, suppose also that it
is not closed. Every nontrivial homomorphism

¢: Map(X) — Map(Y)

maps (right) Dehn twists along nonseparating curves to (possibly left) Dehn twists
along nonseparating curves.

Remark The proof of Proposition 8.1 will apply, word for word, to homomorphisms
between mapping class groups of surfaces of the same genus g € {4, 5}.

We will first prove Proposition 8.1 under the assumption that ¢ is irreducible and then
we will deduce the general case from there.

Proof of Proposition 8.1 for irreducible ¢ Suppose that ¢ is irreducible and recall
that this implies that Y = &. Let ¥ C X be a nonseparating curve. Thus ¢«(y) is
also a nonseparating curve, by Proposition 6.3. We first show that ¢(d,) is a power of

Let X, be the complement in X of the interior of a closed regular neighborhood of y
and Yq;* = Y \ ¢«(y) the connected surface obtained from Y by removing ¢«(y).
We have that:
(») X, and Yd’,* (y) have genus g—1=>3 and g’ —1<2g—2 respectively. Moreover,
qu* (y) has two more punctures than Y'; in particular, Yd’,* (y) has at least 3
punctures if it has genus 2g — 2.

By (2-1) and (2-2) we have epimorphisms
Map(Xy) — Z0(8,) and  Zo(84,(y)) — Map(Yy_(,)-

In addition, we know that ¢(Zo(8y)) C Zo(¢,(,)) by Lemma 6.5. Composing all
these homomorphisms we get a homomorphism

¢": Map(Xy) — Map(¥Yy ()

It follows from Lemma 2.2 that the restriction of ¢ to Z((8,) is not trivial because
the latter contains a Dehn twist along a nonseparating curve; Lemma 4.3 implies that
¢’ is not trivial either.

Since 8, centralizes Zy(8,), it follows that ¢'(6,) € Map(Yq;* (y)) centralizes the
image of ¢’. Now, the definition of ¢«(y) implies that some power of ¢(5,) is a
power of the Dehn twist 84, ;). Hence, the first claim of Lemma 2.6 yields that ¢'(6,)
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has finite order, and thus ¢'(6,) € Map(qu* (y)) is a finite order element centralizing
¢(Map(X,)). By (%), Lemma 7.2 applies and shows that ¢’(8,,) is in fact trivial. The
final claim of Lemma 2.6 now shows that ¢ (3, ) is a power of 4, (,); in other words,

: _sN
there exists N € Z \ {0} such that ¢(§,) = 8¢* )"

Note that N does not depend on the particular nonseparating curve y since any two
Dehn twists along nonseparating curves are conjugate. It remains to prove that N = +1.

Given simple closed curves 1, y» C X with i (1, y2) = 1, choose curves y3, ..., ¥y C
X with i(y1,y:) = 0 for all i > 3 and such that the Dehn twists §,,,...,d,,
generate Map(X) (compare with Figure 1). Note that i(¢«(y1), d«(yi)) = 0 for
i > 3 and that the elements 85)\; (i) 85)\; (v, generate ¢(Map(X)). Observe that
i (P« (y1), P« (y2)) #0, for otherwise the curve ¢« (1) would be ¢ (Map(X'))—invariant,
contradicting the assumption that ¢ is irreducible. Since i (y1, y2) =1, the Dehn twists
8y, and §,, braid. Thus, the N —th powers 5%(;/1) = ¢(8y,) and Sé\fk(yz) = ¢(8y,) of
the Dehn twists along ¢« (y1) and ¢« () also braid. Since i(¢«(y1), P«(32)) = 1,
Lemma 2.3 shows that i (¢« (1), ¢« (y2)) =1 and N = +1, as desired. |

Before moving on, we remark that in the final argument of the proof of the irreducible
case of Proposition 8.1 we have proved the first claim of the following lemma:

Lemma 8.2 Suppose that X, Y are as in the statement of Proposition 8.1, and let
¢: Map(X) — Map(Y) be an irreducible homomorphism. Then the following holds:

o i(p«(y),¢«(y")) =1 forall curves y,y' C X withi(y,y’) = 1.

e Ifa,b,c,d,x,y and z form a lantern with the property that no two curves chosen
among a,b,c,d and x separate X, then ¢« (a), p«(b), p«(c), P« (d), P« (x),
¢« (y) and ¢« (z) form a lanternin Y .

Proof We prove the second claim. By the irreducible case of Proposition 8.1 we know
that if y is any component of the lantern in question, then ¢«(y) is a single curve
and ¢(8,) = 4, (5. In particular, the Dehn twists along ¢« (a), (D), ¢« (c), d«(d),
¢« (x), d«(y) and ¢« (z) satisfy the lantern relation. Since a, b, c,d, x are pairwise
disjoint, Corollary 6.2 yields that the curves ¢«(a), ¢« (b), d«(c), P« (d), Pp«(x) are
also pairwise disjoint. Moreover, the irreducibility of ¢, the assumption that no two
curves chosen among a, b, ¢, d and x separate X, and Corollary 6.6 imply that the
curves ¢« (a), P« (b), P«(c), p«(d) and ¢ (x) are pairwise distinct. Thus, the claim
follows from Theorem 2.4. O

We are now ready to treat the reducible case of Proposition 8.1.
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Proof of Proposition 8.1 for reducible ¢ Let ¢: Map(X') — Map(Y') be a nontriv-
ial reducible homomorphism, and let n be the maximal multicurve in Y which is
componentwise preserved by ¢ (Map(X)). Recall the exact sequence (4-1):

1 — Ty —> Z(Ty) — Map(¥,) — 0
Lemma 4.3 shows that ¢(Map(X)) C Zo(T,) and that the composition
¢": Map(X) — Map(Y,)

of ¢ and the homomorphism Z,(T;) — Map(Y,;) is not trivial. Observe that ¢’ is
irreducible because n was chosen to be maximal.

The surface Y,; may well be disconnected; if this is the case, Map(Y,;) is by definition
the direct product of the mapping class groups of the connected components of Y,;.
Noticing that the sum of the genera of the components of Y,; is bounded above by the
genus of Y, it follows from the bound g’ <2g — 1 and from Proposition 7.1 that Y,;
contains a single component Y,;’ on which ¢ (Map(X)) acts nontrivially. Hence, we can
apply the irreducible case of Proposition 8.1 and deduce that ¢': Map(X) — Map(Y})
maps Dehn twists to possibly left Dehn twists. Conjugating ¢ by an outer automorphism
of Map(X) we may assume without loss of generality that ¢’ maps Dehn twists to
Dehn twists.

Suppose now that «, b, c,d, x, y and z form a lantern in X as in Lemma 8.2; such a
lantern exists because X has genus at least 3. By Lemma 8.2 we obtain that the images
of these curves under ¢/, also form a lantern. In other words, if S C X is the four-holed
sphere with boundary a Ub U c Ud then there is an embedding «: S — Y, C ¥, such
that for any y € {a, ..., z} we have

¢,(5y) = 8L(V)'

Identifying Y," with a connected component of ¥; = Y \  we obtain an embed-
ding 7: S — Y. We claim that for any y in the lantern @, b,c,d, x, y,z we have

¢(By) = ‘ST(V)'

A priori we only have that, for any such y, both ¢(dy) and &, project to the
same element §,(,) under the homomorphism Zy(Ty) — Map(Y,;). In other words,
there is 7, € Ty with ¢(8,) = &,y . Observe that since any two curves y, y’ in the
lantern a, b, ¢, d, x, y, z are nonseparating, the Dehn twists 6,, and &, are conjugate in
Map(X). Therefore, their images under ¢ are also conjugate in ¢ (Map(X)) C Z¢(T5).
Since T, is central in Z4(T5), it follows that in fact 7, = 7, for any two curves y
and y’ in the lantern. Denote by 7 the element of T, so obtained.
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On the other hand, both J4,...,68; and &y, .., 87(2) satisfy the lantern relation and,
moreover, T commutes with everything. Hence

1= ¢(82)p(8p) P8I (82)p(82) ' (8y) 1 p(8x) "
= 81(a) T86) 810 Ty TT T S5 T T i)

L

—1 ¢—1 ¢o—1
= 83(a) 81 5110) 81) 872) 870 S T = T

and thus

#(8a) = &a)T = Sia)-
In other words, the image under ¢ of the Dehn twist along some, and hence every,
nonseparating curve is a Dehn twist. |

9 Reducing to the irreducible

In this section we explain how to reduce the proof of Theorem 1.1 to the case of irre-
ducible homomorphisms between mapping class groups of surfaces without boundary.

9.1 Weak embeddings

Observe there are no embeddings X — Y if X has no boundary but Y does. We are
going to relax the definition of embedding to allow for this possibility. For this purpose,
it is convenient to regard X and Y as possibly noncompact surfaces without marked
points; recall that we declared ourselves to be free to switch between cusps, marked
points and ends.

Definition Let X and Y be possibly noncompact surfaces of finite topological type
without marked points. A weak embedding 1. X — Y 1is a topological embedding of
X into Y.

Given two surfaces X and Y without marked points there are two, essentially unique,
compact surfaces X and Y with sets Px and Py of marked points and with X =
X \Pgxand Y = Y \ Py. We will say that a weak embedding ¢: X — Y is induced by
an embedding T: ()? , Px) — (}A’, Pyp) if there is a homeomorphism f: Y — Y which
is isotopic to the identity relative to Py, and iy = f ot.

Observe that a weak embedding ¢: X' — Y is induced by an embedding if and only
if the image ¢(y) of every curve y C X which bounds a disk in X containing at
most one marked point bounds a disk in Y which again contains at most one marked
point. Since ¢(y) bounds a disk without punctures if y does, we can reformulate this
equivalence in terms of mapping classes:

Geometry & Topology, Volume 16 (2012)



Homomorphisms between mapping class groups 2325

Lemma 9.1 A weak embedding t: X — Y is induced by an embedding if and only if
8.(y) 1s trivial in Map(Y') for every, a fortiori nonessential, curve y C X which bounds
a disk with a puncture. |

Notice that in general a weak embedding X — Y does not induce a homomorphism
Map(X) — Map(Y). On the other hand, the following proposition asserts that if a
homomorphism Map(X') — Map(Y) is, as far as it goes, induced by a weak embedding,
then it is induced by an actual embedding.

Proposition 9.2 Let X and Y be surfaces of finite type and genus at least 3. Suppose
that ¢: Map(X) — Map(Y) is a homomorphism such that there is a weak embedding
t: X — Y with the property that for every nonseparating curve y C X we have
¢(38y) = 8,(y). Then ¢ is induced by an embedding X — Y .

We thank the referee for suggesting a simplification of the original proof.

Proof Let Z be a closed regular neighborhood of the union of the curves on X
shown in Figure 1, and recall that the Dehn twists about such curves generate Map(X).
The inclusions of Z into X, and of ((£) into Y, together with the homeomorphism
t|z: Z — 1(Z) induce homomorphisms between the corresponding mapping class
groups, so that the following diagram commutes:

Map(Z) —— Map(X)

| X

Map((Z)) —— Map(Y)

By construction, the left vertical arrow is an isomorphism and so the claim now follows
from Lemma 9.1 d

9.2 Down to the irreducible case

Armed with Proposition 9.2, we now prove that it suffices to establish Theorem 1.1 for
irreducible homomorphisms. Namely, we have:

Lemma 9.3 Suppose that Theorem 1.1 holds for irreducible homomorphisms. Then it
also holds for reducible ones.

Proof Let X and Y be surfaces as in the statement of Theorem 1.1 and suppose
that ¢: Map(X) — Map(Y) is a nontrivial reducible homomorphism. Let 1 be a
maximal multicurve in ¥ whose every component is invariant under ¢(Map(X)); by

Geometry € Topology, Volume 16 (2012)



2326 Javier Aramayona and Juan Souto

Lemma 4.3, ¢(Map(X)) C Z¢(T,). Consider, as in the proof of Proposition 8.1, the
composition
¢": Map(X) — Map(Y,)

of ¢ and the third homomorphism in (4-1). Theorem 4.1 and Lemma 4.2 show that ¢’
is nontrivial; moreover, it is irreducible by the maximality of 7. Now, Proposition 8.1
implies that for any y nonseparating both ¢(8,) = 84, () and ¢'(,) = ¢, () are
Dehn twists. As in the proof of the reducible case of Proposition 8.1 we can consider
Y,; =Y \ 1 as a subsurface of Y. Clearly, ¢«(y) = ¢,(y) after this identification.

Assume that Theorem 1.1 holds for irreducible homomorphisms. Since ¢’ is irreducible,
we obtain an embedding

X =Y,
inducing ¢’. Consider the embedding ¢: X — Y,; as a weak embedding ©: X — Y.
By the above, ¢(8,) = 8y, for every y C X nonseparating. Finally, Proposition 9.2
implies that ¢ is induced by an embedding. |

9.3 No factors

Let ¢: Map(X) — Map(Y') be a homomorphism as in the statement of Theorem 1.1.
We will say that ¢ factors if there is a surface X', an embedding ©: X' — X', and a
homomorphism ¢: Map(X) — Map(Y) such that the following diagram commutes:

Map(X)

(9-1) g

Map(X) = Map(Y)

Since the composition of two embeddings is an embedding, we deduce that ¢ is induced
by an embedding if ¢ is. Since a homomorphism Map(X) — Map(Y) may factor
only finitely many times, we obtain:

Lemma 9.4 If Theorem 1.1 holds for homomorphisms ¢: Map(X) — Map(Y) which
do not factor, then it holds in full generality. a

Our next step is to prove that any irreducible homomorphism ¢: Map(X) — Map(Y)
factors if X has boundary. We need to establish the following result first:

Lemma 9.5 Suppose that X and Y are as in the statement of Theorem 1.1 and let
¢: Map(X) — Map(Y) be an irreducible homomorphism. Then the centralizer of
¢(Map(X)) in Map(Y') is trivial.
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Proof Suppose that there is a nontrivial element f in Z(¢(Map(X))); we will
show that ¢ is reducible, which is a contradiction. Noticing that the genus bounds
in Theorem 1.1 are more generous than those in Lemma 7.2, we deduce from the
latter that f* has infinite order. Let y C X be a nonseparating curve and recall that
¢(8y) is a Dehn twist by Proposition 8.1. Since f commutes with ¢(J,) it follows
that f is reducible; let n be the canonical reducing multicurve associated to f (see
[9]). Since ¢(Map(X)) commutes with f we deduce that ¢ (Map(X)) preserves 7.
We will prove that ¢ (Map(X)) preserves some component of 1, hence obtaining a
contradiction to the assumption that ¢ is irreducible. The arguments are very similar
to the arguments in the proof of Lemma 6.4 and Lemma 6.5.

First, the same arguments as the ones used to prove Lemma 6.4 imply that some
component of 7 is preserved if some component of Y \ 7 is a disk or an annulus.
Suppose that this is not the case. Then Y \ n has at most 2g’ —2 < 4g —4 components.
Hence Theorem 4.4 implies that ¢ (Map(X)) preserves every component of Y \ 7.
Using again that no component of Y \ 1 is a disk or an annulus we deduce that every
such component C has at most 2g’ + 2 < 4g — 2 boundary components. Hence
Theorem 4.4 implies that ¢ (Map(X)) preserves every component of dC C 1. We have
proved that some component of 7 is preserved by ¢ (Map(XX')) and hence that ¢ is
reducible, as desired. d

We can now prove:

Corollary 9.6 Suppose that X and Y are as in Theorem 1.1 and that X # &. Then
every irreducible homomorphism ¢: Map(X) — Map(Y') factors.

Proof Let X' = X\ dX be the surface obtained from X by deleting the boundary and
consider the associated embedding ¢: X — X’. By Theorem 2.5, the homomorphism
tu: Map(X) — Map(X") fits in the exact sequence

1 — Tyxy —> Map(X) — Map(X') — 1,

where Tjyy is the center of Map(XX). It follows from Lemma 9.5 that if ¢ is irreducible,
then Tyx C Ker(¢). We have proved that ¢ descends to ¢’: Map(X’) — Map(Y)
and hence that ¢ factors as we needed to show. a

Combining Lemma 9.3, Lemma 9.4 and Corollary 9.6 we deduce:

Proposition 9.7 Suppose that Theorem 1.1 holds if
e X and Y have no boundary, and
e ¢: Map(X) — Map(Y) is irreducible and does not factor.

Then Theorem 1.1 holds in full generality. |
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10 Proof of Theorem 1.1

In this section we prove the main result of this paper, whose statement we now recall:

Theorem 1.1 Suppose that X and Y are surfaces of finite topological type, of genus
g>6and g’ <2g—1 respectively; if Y has genus 2g — 1, suppose also that it is not
closed. Then every nontrivial homomorphism

¢: Map(X) — Map(Y)

is induced by an embedding X — Y .

Remark As mentioned in the introduction, the same conclusion as in Theorem 1.1
applies for homomorphisms ¢: Map(X) — Map(Y) if both X and Y have the same
genus g € {4, 5}. This will be shown in the course of the proof.

By Proposition 9.7 we may assume that X and Y have no boundary, that ¢ is ir-
reducible and that it does not factor. Moreover, by Proposition 8.1, the image of a
Dehn twist §,, along a nonseparating curve is either the right or the left Dehn twist
along the nonseparating curve ¢«(y). Notice that, up to composing ¢ with an outer
automorphism of Map(Y) induced by an orientation reversing homeomorphism of Y,
we may actually assume that ¢ (J,,) is actually a right Dehn twist for some, and hence
every, nonseparating curve y C X . In light of this, we can assume that we are in the
following situation:

Standing assumption X and Y have no boundary; ¢ is irreducible and does not
factor; ¢(8y) = 8¢, () for all y C X nonseparating.

Under these assumptions, we will prove that ¢ is induced by an orientation preserving
homeomorphism. We will make extensive use of the concrete set of generators of
Map(X) given in Figure 1, which we include here as Figure 4 for convenience. The
reader should have Figure 4 constantly in mind throughout the rest of this section.

The sequence a;,by,a3,b;,...,ag,be in Figure 4 forms a chain; we will refer to it
as the a;b;—chain. We will refer to the multicurve rq{ U--- U ry as the r;—fan, and to
the curve with label ¢ simply as the curve c¢. Since all these curves are nonseparating,
it follows from Proposition 6.3 that ¢«(y) is a nonseparating curve for any curve y in
the collection a;, b;, r;, c.

Before moving on, we remark that since the Dehn twists along the curves ¢.(a;), ¢« (b;),
¢« (r7), P« (c) generate ¢p(Map(X)), and since we are assuming that ¢ is irreducible,
we immediately obtain:
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ai by dar b, as b3

c ri ry

Figure 4: Dehn twists along the curves «;, b;, ¢ and r; generate Map(X)

Lemma 10.1 The image under ¢, of the a;b; —chain, the r; —fan and the ¢ —curve fill
Y. m|

Suppose that y, y’ are two distinct elements of the collection a;, b;, ri,c. We now
summarize several of the already established facts about the relative positions of the

curves ¢«(y), ¢«(y'):
(1) Ifi(y,y’) =0 then i(¢«(y), d«(y')) = 0 by Corollary 6.2.

(2) If y,y’ are distinct and disjoint, and X \ (y Uy’) is connected, then ¢y (y) #
¢«(y") by Corollary 6.6.

(3) Ifi(y,y’) =1 then i(¢«(y), dx(y’)) =1 by Lemma 8.2.

Note that these properties do not ensure that ¢« (r;) # ¢« (r;) if i # j. We denote by
R C Y the maximal multicurve with the property that each one of its components is
homotopic to one of the curves ¢« (r;). Note that R = & if and only if X has at most
a puncture and that in any case R has at most as many components as curves has the
ri—fan. The next lemma follows easily from (1), (2) and (3) above:

Lemma 10.2 With the notation of Figure 4 the following holds:

e The image under ¢+ of the a;b; —chain is a chain of the same length in Y .

» Every component of the multicurve R intersects ¢« (bg) exactly once, and is
disjoint from the images of the other curves in the a;b; —chain.

e The curve ¢«(c) is disjoint from every curve in R, intersects ¢« (b,) exactly
once, and is disjoint from the images of the other curves in the a;b; —chain.

At first glance, Lemma 10.2 yields the desired embedding without any further work,
but this is far from true. We sketch, for the convenience of the reader, what is left of
the proof of Theorem 1.1. First, we will clarify the relative positions of the images of
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the a;b;—chain and the curve ¢ under ¢«. This will allow us to prove Theorem 1.1 if
X has at most one puncture. For the general case we will start by proving that X and
Y have the same genus, and that ¥ has at most as many punctures as X . At this point,
the main problem left will be to understand the relative positions of the curves in the
multicurve R. A few results describing the ¢+—images of pairs of curves bounding
annuli in X will allow us to prove that ¢ is a bijection, preserving a certain order,
from the r;—fan to R. Having established this, Theorem 1.1 will quickly follow.

As we just announced, we first clarify the position of ¢« (c):

Lemma 10.3 Let Z be a regular neighborhood of the a;b; —chain with ¢ C Z . Then
there is an orientation-preserving embedding F: Z — Y such that ¢«(y) = F(y) for
y =aj,bij,candi=1,...,g.

Proof The image under ¢4 of the a;b;—chain is a chain of the same length, by
Lemma 10.2. Let Z’ be a regular neighborhood of the ¢—image of the a;b;—chain.
Since regular neighborhoods of any two chains of the same length are homeomorphic
in an orientation-preserving manner, there is an orientation-preserving embedding

F.Z—-Z7
with F(a;) = ¢«(a;) and F(b;) = ¢«(b;) for all i. It remains to prove that F can be
chosen so that F(c) = ¢«(c).

Let Zy C Z be the subsurface of X filled by ay, by, a,, b, and observe that, up to
isotopy, ¢ C Zy. The boundary of Zj is connected and, by the chain relation (see
Section 2) we can write the Dehn twist along 0Z as

53Z() = (5(11 5b25a2 81)2) 10'

Hence we have

¢ (83z,) = ($(8ay)$(8,) P (8a2) P (8,))'°
= (892 (a1)86..(62)86.. (@209, (0)) "
= (8F(a)8F(52)8 F(an)SF (b)) "°
= 8F(920)
where the last equality follows again from the chain relation.

Since c¢ is disjoint from dZ, we have that §. and 837, commute, and hence the
same is true for 84, () = ¢ () and Sp(nz,) = ¢(85z,)- Since §f(yz,) is a nontrivial
mapping class, it follows that ¢« (c) does not intersect F(dZp). On the other hand,
¢« (c) intersects ¢«(by) C F(Zy), and hence ¢« (c) C F(Zy) C F(Z).
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Observe now that F(Z) \ (U ¢«(ai) U ¢«(bi)) >~ Z \ (Ja; U b;) is homeomorphic
to an annulus A. It follows from Lemma 10.2 that the intersection of ¢« (c) with A4
is an embedded arc whose endpoints are in the subsegments of dA corresponding to
¢«(b2). Up to isotopy, there are two choices for such an arc. However, there is an
involution t: F(Z) — F(Z) with t(¢«(a;i)) = ¢«(a;) and t(P«(b;)) = ¢« (b;) and
which interchanges these two arcs. It follows that, up to possibly replacing F by to F,
we have F(c) = ¢«(c), as we needed to prove. |

At this point we are ready to prove the first cases of Theorem 1.1.

Proof of Theorem 1.1 (X is closed or has one puncture) Let Z and F: Z — Y be
as in Lemma 10.3. If X has one puncture, then there is a weak embedding X — Z C X
which is homotopic to the identity X — X . Denote by f: X — Y the weak embedding
obtained by composing the weak embedding X — Z with the embedding F: Z — Y.
By construction we have ¢(8,) =67, forall y in a;, b;, c. Since the elements Jg; , dp,
and &, generate Map(X), it follows that ¢ (8, ) = d¢(,) forall y C X". Proposition 9.2
implies that ¢ is induced by an embedding, as we needed to prove.

We now treat the case that X is closed. Since we are assuming that ¢ is irreducible,
and since a collection of curves in F(Z) fills Y, we obtain that Y \ F(Z) is a disk
containing at most one puncture. If Y \ F(Z) is a disk without punctures, then we
can extend the map F: Z — Y to a continuous injective map X — Y. Since any
continuous injective map between closed connected surfaces is a homeomorphism, F
is an embedding and we are done in this case.

It remains to rule out the possibility that X is closed and Y has one puncture. Suppose
that this is the case and let Y be the surface obtained from Y by filling in the puncture.
We can now apply the above argument to the induced homomorphism

¢: Map(X) — Map(Y),

obtaining that ¢ is induced by an embedding X — Y. Since any embedding from a
closed surface is a homeomorphism we deduce that ¢ is an isomorphism. Composing
$o¢~': Map(Y) — Map(Y) with the filling-in homomorphism Map(Y) — Map(Y)
we obtain the identity. Hence, ¢ o ¢! is a splitting of the Birman exact sequence

1 — (YY) — Map(Y) — Map(Y) — 1,

which is impossible [26]. It follows that ¥ cannot have a puncture, as we needed to
prove. m|

From now we will assume:

Geometry € Topology, Volume 16 (2012)



2332 Javier Aramayona and Juan Souto

Standing assumption X has at least 2 punctures.

Next, we prove that Y has the same genus as X .
Lemma 10.4 Both surfaces X and Y have the same genus g .

Proof With the same notation as in Lemma 10.3 we need to prove that S =Y \ F(Z)
is a surface of genus 0. By Lemma 10.1 the arcs p; = ¢«(r;) N S fill S. Denote by S
the surface obtained by attaching a disk to S along F(dZ) C dS, noting that the arcs
pi can be extended to a collection of disjoint curves p; on S. Moreover, every curve

in S either agrees with, or else intersects one of the curves p; more than once. This is
impossible if S has genus at least 1; this proves Lemma 10.4. a

Note that if n C X is separating, all we know about ¢(3;) is that it is a root of a
multitwist by Theorem 6.1; in particular, ¢(8;) may be trivial or have finite order. If
this is not the case, we denote by ¢, (1) the multicurve supporting any multitwist power
of ¢(8,). If n bounds a disk with punctures then, up to replacing the a;b; —chain by
another such chain, we may assume that i (n, a;) = i(n, b;) = 0 for all i. In particular,
¢« (n) does not intersect any of the curves ¢« (a;) and ¢« (b;). It follows that every
component of ¢4 (1) is separating. We record our conclusions:

Lemma 10.5 Suppose that n C X bounds a disk with punctures and that ¢ (8;) has
infinite order. Then every component of the multicurve ¢+ (1) separates Y . a

Our next goal is to bound the number of cusps of Y:

Lemma 10.6 Every connected component of Y\ (Ul dsx(a;) U R) contains at most a
single puncture. In particular Y has at most as many punctures as X .

Recall that R C Y is the maximal multicurve with the property that each one of its
components is homotopic to one of the curves ¢« (7;).

Proof Observe that Lemma 10.1 and Lemma 10.3 imply that the union of R and
the image under ¢« of the a;b;—chain fill Y. In particular, every component of the
complement in Y of the union of R and all the curves ¢« (a;) and ¢« (b;) contains at
most one puncture of Y. By Lemma 10.2, the multicurve | ¢« (b;) does not separate
any of the components of the complement of (| J ¢«(a;)) UR in Y ; we have proved
the first claim.

It follows again from Lemma 10.2 that the multicurve | J ¢« (a;) U R separates Y into
at most k components where k& > 2 is the number of punctures of X'. Thus, Y has at
most as many punctures as X . m
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So far, we do not know much about the relative positions of the curves in R ; this will
change once we have established the next three lemmas.

Lemma 10.7 Suppose that a,b C X are nonseparating curves that bound an annulus
A. Then ¢«(a) and ¢4« (b) bound an annulus A" in Y ; moreover, if A contains exactly
one puncture and ¢« (a) # ¢«(b), then A’ also contains exactly one puncture.

Proof Note that A is disjoint from a chain of length 2g — 1. Since ¢+ maps chains
to chains (Lemma 10.2), preserves disjointness (Corollary 6.2) and since Y has the
same genus as X (Lemma 10.4), we deduce that ¢«(dA) consists of nonseparating
curves which are contained in an annulus in Y. The first claim follows.

Suppose that ¢.(a) # ¢«(b); up to translating by a mapping class, we may assume
that @ = ay and that b is a curve disjoint from (| a;) U (| r;) and with i (b, by) =1
and i (b,b;) =0 for i =2,..., g (compare with the dashed curve in the figure below).

ai bl 75 bz as b3 bg Tk

r ra

Since ¢+ preserves disjointness and intersection number one (Lemma 8.2), it follows
that the annulus A’ bounded by ¢« (a) = ¢«(a1) and ¢«(b) is contained in one of the
two connected components of Y\ (Ul o« (ai) U; o« (ri)) adjacent to ¢«(ay). By
Lemma 10.6, each one of these components contains at most a puncture, and thus the
claim follows. a

Lemma 10.8 Let y,y’ C X be nonseparating curves bounding an annulus with one
puncture. Then ¢« (y) # ¢« ().

Proof We will prove that if ¢«(y) = ¢«(y’), then ¢ factors in the sense of (9-1),
contradicting our standing assumptions.

Suppose ¢« (y) = ¢«(y’), noting that Proposition 8.1 implies that ¢(8,) = ¢(5,7).
Let p be the puncture in the annulus bounded by y and y’. Consider the surface X
obtained from X by filling in the puncture p and the Birman exact sequence (3-1),

1 — 71 (X, p) — Map(X) — Map(X) — 1,
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associated to the embedding X — X . Let o € 711 (X, p) be the unique essential simply
loop contained in the annulus bounded by y U y’. The image of « under the left arrow
of the Birman exact sequence is §, 8 ! Hence, « belongs to the kernel of ¢. Since
71 (X, p) has a set of generators con51st1ng of translates of @ by Map(X') we deduce
that 71 (X, p) C Ker(¢). This shows that ¢: Map(X) — Map(Y) factors through
Map(X) and concludes the proof of Lemma 10.8. d

Lemma 10.9 Let a,b C X be nonseparating curves which bound an annulus with
exactly two punctures. Then ¢« (a) and ¢«(b) bound an annulus A’ C 'Y with exactly
two punctures. Moreover, if x C A is any nonseparating curve in X which separates
the two punctures of A, then ¢«(x) C A’ and separates the two punctures of A’.

Proof Let x C A be a curve as in the statement. Suppose first that ¢ (a) # ¢« (D).
Consider the annuli A", 4} and A4’ in ¥ with boundaries

A' = hu@ Uu(b). 04} = du@) Ugs(x). 94} = pu(x) U s (D).

By Lemmas 10.7 and 10.8, the annuli A/ and A’ contain exactly one puncture. Finally,
since ¢«(x) does not intersect ¢« (a) U ¢« (D), 1t follows that A" = 4’ U 4, and the
claim follows.

It remains to rule out the possibility that ¢«(a) = ¢«(b). Seeking a contradiction,
suppose that this is the case. Consider curves ¢, d, y, z as in Figure 6.

Figure 6: The black dots represent cusps

The curves a, b, c,d, x, y, z form a lantern, where ¢, d are not essential. In particular,
the lantern relation reduces to §,8p = 8x9,6,. Applying ¢ we obtain

(10-D) 83 @) = 864 (0)86. ()P (82).
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Observe also that each of ¢ Ux and ¢ U y bound an annulus in X containing exactly
one cusp. We deduce from Lemma 10.7 and Lemma 10.8 that there are annuli A', 4/,
in Y, each containing one cusp, with

81‘1/1 = ¢« (@) U ¢ (x), aAlz = ¢« (@) U ().

Noting that i (¢« (x), ¢« (»)) is even, it remains to rule out the following three possibil-
ities:

Case 1: i(¢«(x),¢«(y)) >2 By [16, Theorem 3.10], the restriction of 8, (x)34..(»)
to the subsurface of Y filled by ¢« (x) U ¢« () is pseudo-Anosov. On the other hand,

86,0186, () = 85, @y P(62) ™"

is a root of a multitwist because, by Theorem 6.1, ¢(8,)~! is a root of a multitwist
that commutes with 84, (z) = ¢(84); this yields a contradiction.

Case 2: i(¢p«(x), d«(y)) =2 We are in the situation of Figure 7, meaning that we can

Figure 7: The solid lines are ¢« (@), ¢«(x) and ¢«(y) and the black dots are cusps

extend the collection ¢« (a), P« (x) ¢« () to a lantern ¢« (a), b, d O« (x), P« (»)
and Z, with ¢, d nonessential and b nonseparatmg From the lantern relatlon we obtain

From (10-1) and (10-2) we get that ¢(6;) = 8385 8¢, (a)- In particular, ¢ (J;) is a mul-
titwist whose support contains nonseparating components, contradicting Lemma 10.5
because z bounds a disk in X .

Case 3: i(¢x(x), () =0 Rewriting (10-1) we obtain

8ga 00900005 @) = D (62).

As x and y are disjoint from a, ¢(8;) is a multitwist supported on a multicurve
contained in ¢4 (a) U ¢« (x) U ¢«(y). Since these three curves are nonseparating,
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Lemma 10.5 implies that ¢(6;) = Id, and hence ¢« (a) = ¢«(x) = ¢«(y). Since a
and x bound an annulus which exactly one puncture, we obtain a contradiction to
Lemma 10.8.

Having ruled out these three cases, we deduce that ¢«(a) # ¢«(b); this concludes the
proof of Lemma 10.9 m|

We are now ready to finish the proof of Theorem 1.1.

Proof of Theorem 1.1 Continuing with the same notation and standing assumptions,
we now introduce orderings on the r;—fan and the multicurve R C Y. In order to do
so, observe that the union of the multicurve | J ¢; and any of the curves in the r;—fan
separates X . Similarly, by Lemma 10.2 the union of the multicurve (J ¢«(«@;) and
any of the components of R is a multicurve consisting of g 4+ 1 nonseparating curves.
Since Y has genus g, by Lemma 10.4, we deduce that the union of the multicurve
| ¢« (a;) and any of the components of R separates Y. We now define our orderings:

* Given two curves r;, rj in the r;—fan we say that r; <r; if r; and ¢ are in the
same connected component of X \ (a; U---Uag Urj). Notice that the labeling
in Figure 4 is such that r; <r; fori < j.

 Similarly, given two curves r,r’ € R we say that r <r’ if r and ¢« (c) are in
the same connected component of X \ (¢« (a;) U---Ux(ag) Ur’).

The minimal element of the r;—fan, the curve ry in Figure 4, is called the initial curve
of the r;—fan; we define the initial curve of the multicurve R in an analogous way. We
claim that the image of r; under ¢ is the initial curve of R:

Claim ¢« (ry) is the initial curve of R.

Proof of the claim Suppose, for contradiction, that ¢«(r1) is not the initial curve in
R. Consider, besides the curves in Figure 4, a curve ¢’ as in Figure 8. In words, ¢ and
¢’ bound an annulus with exactly two punctures and

(10-3) i(c',ri)=0 Vi>2 and i(c,a;)=0 Vi.

Notice that by Lemma 10.9, ¢«(c) and ¢« (c’) bound an annulus 4 which contains
exactly two punctures.

Since ¢ (1) is not the initial curve, then 7 (¢« (c’), | ¢« (rj)) =0 forall j,asi(c’,rj) =
0 forall j > 1. Also, by disjointness i (¢« (c’), ¢« (a;)) =0 for all i . Since the boundary
A = ¢« (c)Ugx(c’) of the annulus A is disjoint from | ¢« (a;) U« (r;), it is contained
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ai by dar b, as b3

Figure 8: The dotted curve ¢’, and c, together bound an annulus with two punctures

in one of the connected components of X \ (| ¢« (a;) U ¢« (r;)). However, each one
of these components contains at most one puncture, by Lemma 10.6. This contradicts
Lemma 10.9, and thus we have established the claim. O

We are now ready to prove that ¢ induces an order-preserving bijection between
the r;—fan and the multicurve R. Denote the curves in R by ri’ , labeled in such a
way that r/ < r; if i < j. By the previous claim, ¢« (r1) = rj. Next, consider the
curve r,, noting that r; and r, bound an annulus with exactly one puncture. Hence,
Lemma 10.8 yields that ¢« (r;) = r; and ¢« (r;) also bound an annulus with exactly
one puncture. In particular, ¢« (r,) cannot be separated from r; by any component of
R. This proves that ¢« (r;) = r;. We now consider the curve r3. The argument just
used for rp implies that either ¢« (r3) = r; or ¢«(r3) = rj. The latter is impossible,
as the curves r; and r3 bound an annulus with exactly two punctures and hence so do
¢+ (r1) = r| and ¢« (r3) by Lemma 10.9. Thus ¢« (r3) = rj. Repeating this argument
as often as necessary we obtain that the map ¢, induces an injective, order-preserving
map from the r;—fan to R. Since by definition R has at most as many components as
the r;—fan, we have proved that this map is in fact an order-preserving bijection.

Let Z C X be a regular neighborhood of the a;b;—chain, and recall that ¢ C Z.
By Lemma 10.3 there is an orientation-preserving embedding F: Z — Y such that
¢« (y) = F(y) for y = a;,bj,c (i =1,...,g). We choose Z so that it intersects
every curve in the 7;—fan in a segment. Lemma 10.2 implies that F can be isotoped so
that

F(zn(Jr)) =F@Z)nR.

The orderings of the r;—fan and of R induce orderings of Z N (| Jr;) and F(Z)N'R.
Since the map ¢« preserves both orderings we deduce that F' preserves the induced
orderings of ZN (| Jr;) and F(Z)N'R.

Let k& be the number of curves in the r;—fan, and thus in R. We successively attach k
annuli along the boundary 0Z of Z, as indicated in Figure 9. In this way we get a
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Figure 9: Attaching the first (left) and second (right) annuli along 0Z

surface Z; naturally homeomorphic to X. We perform the analogous operation
on JF(Z), thus obtaining a surface Z, which is naturally homeomorphic to Y.
Since the map ¢4 is preserves the orderings of the r;—fan and of R, we get that
the homeomorphism F: Z — F(Z) extends to a homeomorphism

F:X—>Y
such that

F(y) = ¢«(y)

for every curve y in the collection a;, b;, c, r;. It follows that the homomorphisms
¢ and Fy both map the Dehn twist along y to the Dehn twist along ¢«(y) and,
in particular, to the same element in Map(Y'). Since the Dehn twists along the
curves a;, bi,c,r; generate Map(X), we deduce ¢ = F4. This finishes the proof
of Theorem 1.1. O
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