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A splitting theorem for nonnegatively curved Alexandrov
spaces

ANDREAS WÖRNER

We study Alexandrov spaces of nonnegative curvature whose boundaries consist of
several strata of codimension 1. If the space is compact and the common intersection
of all boundary strata is empty, then the space is a metric product. In particular, this is
fulfilled if the compact space has dimension n and contains more than nC1 boundary
strata. The splitting factors are in general non-flat.

53C23; 51H25

1 Introduction

Many of the known splitting theorems for nonnegatively curved Riemannian manifolds
provide flat factors. For instance, according to Toponogov’s Splitting Theorem [28] and
its generalization by Cheeger and Gromoll [4], the manifold splits off an R–factor if it
contains a straight line. The analogous result for locally compact Alexandrov spaces
was proved by Milka [12] (in Russian; a proof in English can be found in the book
by Burago–Burago–Ivanov [2]). Later, Mitsuishi [13] eliminated the assumption of
local compactness. In finite dimensional Alexandrov spaces the assumptions can be
weakened further due to Mashiko [10] and to Alexander–Bishop [1]. They assumed
not the existence of a straight line, but of certain non-trivial affine functions.

If one is interested in non-flat factors for a metric splitting, the soul of the space
according to Cheeger’s and Gromoll’s Soul Theorem [5] is a natural candidate. Wal-
shap [29] obtained conditions ensuring that a space splits off its soul. His result has
been improved independently by Strake [27] and by Yim [32]. They showed that the
splitting happens if, and only if, the normal bundle of the soul has trivial holonomy.
Another approach was given by Shioha [26] by considering the ideal boundary: if
its radius is close enough to � , the space splits off its soul. Shioha conjectured that
assuming the radius of the ideal boundary to be bigger than �

2
is already sufficient,

which was proved independently by Medonça [11] and by Perelman [19].

A soul theorem for Alexandrov spaces was proved by Perelman in his unpublished
preprint [16]. Crucial is his observation that the distance to the boundary is a (strictly)
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concave function if the space has (positive) nonnegative curvature. Hence, the set
where the function attains its maximum is a convex subset. If it has boundary, the
procedure is iterated. A retraction map is given by the (later in much more generality
developed) gradient push or by an iteration of gradient pushes, respectively. It is not
known, however, if the obtained Sharafutdinov retraction (compare Sharafutdinov [25])
is a submetry, that is, if it maps balls onto balls preserving their radii. For Riemannian
manifolds, in contrast, Perelman proved this fact in his solution of the soul conjec-
ture [18]. The soul conjecture states that if the space has quasi-positive curvature (that
is nonnegative curvature and there exists a point of positive curvature), then the soul is
a point. For Alexandrov spaces this conjecture is still open.

In this paper we will assume that the boundary of a compact Alexandrov space consists
of several components in order to show that the space splits off its soul.

1.1 Definition Let M be a finite dimensional Alexandrov space with lower curvature
bound and with boundary @M . A boundary stratum is an extremal set of locally
constant codimension 1. A collection F1; : : : ;F` of boundary strata is a stratification
of @M , if F1[ : : :[F` D @M and codim .Fi \Fj /� 2 8 i ¤ j .

For more information about extremal sets and references see Section 2. The boundary
@M itself is always a boundary stratum according to our definition. If we choose
several boundary strata, we always mean distinct elements of some fixed stratification
of @M .

The main result of this paper is the following one.

1.2 Theorem (Splitting Theorem) Let M be an n–dimensional compact Alexan-
drov space of nonnegative curvature with boundary. Assume that F1; : : : ;F`C1 is a
stratification of @M and there is 1� k � ` such that the following holds.

� F1\ : : :\FkC1 D∅,

� F1\ : : :\ yFi \ : : :\FkC1 ¤∅ 8 i 2 f1; : : : ; kC 1g.
(The notation yFi means that Fi is omitted from the respective collection.)

Then M is isometric to the Euclidean product of nonnegatively curved Alexandrov
spaces S and D fulfilling dim S D n � k; dim D D k , and S can be chosen as
any intersection F1 \ : : : \ yFi \ : : : \ FkC1 . Then, in addition, the sets FkC2 \

S; : : : ;F`C1 \S form a stratification of @S , provided k < `. Otherwise, S has no
boundary and is a soul of M .
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1.3 Corollary Under the assumptions of Theorem 1.2, the space M has no point of
positive curvature.

These assumptions may seem a bit technical. However, if the total number of boundary
strata of M is high enough, they are fulfilled automatically.

1.4 Theorem Let M be a nonnegatively curved Alexandrov space with @M ¤ ∅.
Then the following holds for any subcollection F1; : : : ;Fk of any stratification of @M :
If k � n and F1\ : : :\Fk ¤∅, then this intersection has locally constant dimension
n� k . If k > n, then F1 \ : : :\Fk is always empty. Moreover, for any k � 3 it is
impossible that all intersections of k � 2 boundary strata Fi are nonempty, while all
intersections of k � 1 boundary strata are empty.

1.5 Corollary Under the assumptions of Theorem 1.4, let M be compact and have
quasi-positive curvature. Then F1\ : : :\Fk ¤∅ if and only if k � n.

Note that if M has positive curvature, a proof of Corollary 1.5 does not need both,
Theorem 1.2 and Theorem 1.4, but follows from the latter one together with Petrunin’s
generalization [23] of Frankel’s Theorem.

Now we may formulate the consequences as follows.

1.6 Corollary If a compact Alexandrov space M of nonnegative curvature and of
finite dimension n has more than nC 1 boundary strata, then it is a metric product.

In case the maximal numbers of boundary strata occur, we get the following results.

1.7 Corollary Let M be a compact n–dimensional Alexandrov space of quasi-
positive curvature. Assume that M contains nC 1 boundary strata. Then the soul of
M is a point. In other words, the soul conjecture holds for Alexandrov spaces with the
maximal number of boundary strata.

The subsequent result about spaces of nonnegative curvature has already been proved
by Perelman, as we were told. For completeness we also mention it here.

1.8 Corollary The maximal number of boundary strata of a compact n–dimensional
Alexandrov space M with nonnegative curvature is 2n. Equality holds if and only if
M is a Euclidean cuboid.

Another consequence of our Splitting Theorem is a weaker version of Shioha’s Splitting
Theorem, which was mentioned above. Indeed, we get the splitting under stronger
assumptions on the radius of the ideal boundary as follows.
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1.9 Corollary Let M be a noncompact Alexandrov space of nonnegative curvature
without boundary. Assume that the ideal boundary of M has dimension m and it
contains mC 2 points at distance > �

2
from each other. (In particular, the radius of the

ideal boundary is bigger that �
2

.) Then M splits off its soul.

The idea of obtaining structure results by assumptions about boundary decompositions
came from Wilking. In [30] he studied orbit spaces of manifolds by Lie group actions. If
such a space M has positive curvature in the Alexandrov sense, the number of boundary
strata determines the homeomorphism type of M as a stratified space. Namely, if
dim M D n and there are nC 1 boundary strata, then M is homeomorphic to an
n–simplex. If there are kC 1< nC 1 boundary strata, then M is homeomorphic to
the join of a k –simplex and the intersection of all boundary strata. These results carry
over to general Alexandrov spaces of positive curvature. Indeed, the main principle
of Wilking’s proof stays the same if one uses Perelman’s Morse theory [17] and his
Stability Theorem. All tools needed can be found in papers by Perelman–Petrunin [20]
and Kapovitch [7].

This paper is organized as follows. In Section 2 we give a short survey on basic
facts about Alexandrov spaces and our notation. In all subsequent sections we always
consider Alexandrov spaces of nonnegative curvature. Boundary strata and their distance
functions are investigated more closely in Section 3. By Perelman’s work, superlevel
sets are convex subsets and therefore again Alexandrov spaces. As long as no collapse
happens, the boundary strata of such superlevel sets intersect in the same matter as in
the original space. This means that we can “shrink” the space by “shifting” boundary
strata. In Section 4 we investigate some properties of intersections of boundary strata.
In particular, the first part of Theorem 1.4 will be proved. In Section 5 the proof will
be completed. We consider the sets where the distance to some boundary stratum is
maximal. In other words, we “shrink” our space till it collapses. It will turn out that
the resulting space still inherits basic properties of its boundary strata from the original
space. More precisely, if the space fulfills the assumptions of the Splitting Theorem,
such a maximum set fulfills them, too. The rest of the paper is devoted to the proof of
the Splitting Theorem. In Section 6 the basic assumptions will be fixed. Thereafter,
in Section 7 we will prove that the space is fibrated into isometric convex subsets. In
Section 8 the canonical gradient pushes will turn out to be submetries. In particular, the
space can be retracted onto each of those isometric convex subsets. Therefore, these
sets are souls. The existence of dual fibrations follows directly, and in Section 9 also
some uniqueness will be proved. Namely, the dual fibrations coming from different
submetries do in fact coincide. This result enables the proof in Section 10 that all souls
are equidistant. At this point, the Splitting Theorem is essentially proved. Remaining
details are added in Section 11.
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The results presented here were mostly obtained in the author’s PhD thesis [31]. I am
deeply grateful to my advisor Prof. Burkhard Wilking.

2 Preliminaries and notation

In this work the term Alexandrov space always means an intrinsic metric space with
lower curvature bound in the sense of Burago–Gromov–Perelman [3]. For the basic
theory we refer there or to Burago–Burago–Ivanov [2]. Mostly, we consider finite
dimensional complete path-connected Alexandrov spaces. The class of such spaces of
dimension n 2N and with curvature bound � 2R will be denoted by ALEXn.�/. The
term dimension always refers to the topological dimension. For Alexandrov spaces,
however, it equals the Hausdorff dimension.

For M 2 ALEXn.�/ and p 2M the space of directions at p is denoted by †p . It
satisfies †p 2 ALEXn�1.1/, and its metric cone K.†p/ coincides with the tangent
cone TpM at p . For distinct points p; q 2M a fixed shortest path between p and
q is denoted by pq . The direction of pq at p is denoted by "q

p , while *q
p and *A

p

denote the set of all directions in †p of shortest paths from p to q or to some closed
set A�M , respectively. Distance functions are denoted by dA WD d.�;A/.

Let U �M be an open subset and f WU !R a continuous function. Since for p 2U

the tangent cone TpM is the pointed Gromov–Hausdorff limit of blow-ups centered at
p , this may induce a well-defined function on TpM . If this is the case, f is called
differentiable at p . The differential is a function dpf WTpM !R mapping v 2 TpM

onto the directional derivative dpf .v/. Distance functions are differentiable and, more
generally, so is the following class of functions: Let � 2R and assume that @M D∅
(otherwise consider the doubling SM , see below). A function f WU ! R is called
�–concave, if t 7! .f ı  /.t/� �

2
t2 is concave for any shortest path  in U . If this

holds locally with different values of �, then f is called semi-concave. Moreover, semi-
concave functions have a well-defined gradient rpf 2 TpM . It points in the direction
where f increases most in first order, and its length satisfies jrpf j

2 D dpf .rpf /.
This gives rise to well-defined gradient curves and a flow called gradient push. That
is a map ˆt

f
WM !M existing for all time t � 0. The concept was introduced by

Perelman–Petrunin [21]. Our definition is according to Petrunin [24], where detailed
information is available. Lytchak [9] investigated gradients in more general spaces.

Further important structure results on Alexandrov spaces were obtained in Perelman’s
work [17]. He developed a Morse theory in order to show that a finite dimensional
Alexandrov space is stratified into topological manifolds. This stratification was adapted
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to the geometry of the space using so-called extremal subsets defined by Perelman–
Petrunin [20]. More information and the following equivalent definition can be found
in Petrunin’s survey paper [24]: For M 2 ALEXn.�/ a subset E �M is extremal if
ˆt
f
.E/�E holds for each semi-concave function f WM !R and all times t � 0. An

extremal set is called primitive if it contains no proper extremal subset with nonempty
relative interior. A relative version of the Morse Lemma by Perelman and Petrunin
shows that also an extremal set is a stratified manifold. It has locally constant dimension
if, and only if, it is the union of primitive extremal sets of the same dimension. Therefore,
if such a union has codimension 1, it is a boundary stratum according to our definition.

The boundary @M is defined inductively via p 2 @M ” @†p ¤ ∅ (note that a
1–dimensional Alexandrov space is either a line, a circle or an interval). Another
characterization of @M uses Perelman’s Morse theory, which shows that @M is the
closure of all points p 2 M such that TpM is homeomorphic to the half space
Rn�1 �R�0 . This implies that @M is an extremal set. It has codimension 1 and,
vice versa, each primitive extremal set of codimension 1 lies in @M . This follows
by induction over dimension and the following important fact about extremal sets: If
E �M is extremal and p 2E , then †pE is extremal in †p . The converse holds if
E contains at least two points.

A comprehensive reference for all results related to the Morse Lemma is Kapovitch’s
paper [7] on Perelman’s Stability Theorem, the highlight of structure results in Alex-
androv geometry. It states that each compact finite dimensional Alexandrov space
M possesses a number " > 0 such that any compact Alexandrov space of the same
dimension at Gromov–Hausdorff distance at most " is homeomorphic to M . Kapovitch
extended this result to a relative version using the relative Morse Lemma. Thus, the
homeomorphisms from above can be chosen such that they respect the extremal sets of
the spaces.

The Gluing Theorem by Petrunin [22] states that two Alexandrov spaces with isometric
boundaries can be glued together yielding an Alexandrov space. A special case is the
Doubling Theorem by Perelman [16], where two isometric copies of an Alexandrov
space M are glued together along @M . We denote the obtained space by SM . For a
subset A�M let xA be the preimage of A under the canonical projection SM !M .

3 Boundary strata

The Doubling Theorem by Perelman also works when gluing along some boundary
strata. By this fact, it often suffices to consider spaces without additional boundary
strata apart from those of interest.

Geometry & Topology, Volume 16 (2012)
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3.1 Proposition (Doubling Theorem) Let M 2 ALEXn.�/ and let F be a boundary
stratum. Then the doubling SM obtained by gluing along F is an Alexandrov space
SM 2 ALEXn.�/. Moreover, if G is another boundary stratum, the set xG is a boundary

stratum of SM .

For the proof just repeat Perelman’s one from [16] with @M replaced by F and take
basic facts about extremal sets into account. This can be found written up in the author’s
PhD thesis [31]. As an immediate consequence, also Perelman’s concavity result for
the distance function d@M carries over.

3.2 Corollary Let M 2 ALEXn.�/ with � � 0 and let F be a boundary stratum.
Then the distance function dF is concave on M nF . It is strictly concave if � > 0.

Proof If F ¤ @M , consider SM by gluing along the boundary stratum @M nF and
obtain that @ SM D xF . Now use Perelman’s result [16, Theorem 6.1] or Petrunin’s
one [24, Theorem 3.3.1].

3.3 Remark If M 2 ALEXn.0/ and F is a boundary stratum, gradient curves of the
function dF are also well-defined when starting at any point p 2 F . This is because
d†pF is strictly concave on †p n†pF . Thus, there is a unique direction where dF

increases most. More details are given in [31, Lemma 2.9].

Note that a gradient curve of dF can leave an extremal set E only if it starts in E\F .
On the other hand, if E \F D∅ holds, even more can be said.

3.4 Lemma For M 2 ALEXn.0/ let F be a boundary stratum. Let E �M be an
extremal set satisfying E\F D∅. Then dF is constant on E , attaining its maximum.

Proof In case E is compact, there are points p2E ; q2F satisfying jpqjDjEF j¤0.
Assume, by way of contradiction, that there exists p0 2M such that dF .p

0/ > dF .p/.
By concavity of dF we have that 0 < dpdF ."

p0

p / D � cos j*F
p "

p0

p j and therefore
]qpp0 > �

2
. On the other hand, the distance function dq

ˇ̌
E

attains its minimum at p .
Since E is extremal, it follows that ]qpp0 � �

2
, a contradiction.

If E is not compact, we use quasigeodesics according to Perelman–Petrunin [21]; see
also [24, Section 5]. We may assume E to be connected. Furthermore, by way of
contradiction, let p1;p22E such that dF .p1/>dF .p2/. According to the generalized
Lieberman Lemma [24, 2.3.1], a shortest path  between p1 and p2 in the induced
intrinsic metric of E is a quasigeodesic of M . Hence, it can be extended inside E for
infinite time beyond p2 . Since dF is concave on quasigeodesics and strictly decreasing
on  near p2 , we conclude that E\F ¤∅, which contradicts the assumptions. Thus,
dF

ˇ̌
E

is constant and we can proceed as in the first part of the proof.
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We now investigate superlevel sets of the distance function of a boundary stratum.

3.5 Lemma Let M 2 ALEXn.0/ and let F1 be a boundary stratum. Choose s 2 R
such that M 0 WD d�1

F1
.Œs;1//¤∅. This implies that M 0 2 ALEXm.0/, where m� n.

Equality holds if and only if s< supp2M dF1
.p/. In addition, if F2 is another boundary

stratum, we set F 0
2
WD F2 \M 0 and obtain that dF 0

2
D dF2

ˇ̌
M 0

. Moreover, if F 0
2

is
properly contained in M 0 , it is a boundary stratum of M 0 .

Proof The function dF1
is concave and therefore, M 0 �M is a convex subset. Since

the dimension of M is locally constant, collapse occurs exactly if s D sup dF1
<1.

Let p 2M 0 nF 0
2

and q 2 F2 such that dF2
.p/ D jpqj. We claim that this implies

q 2 F 0
2

and hence dF2

ˇ̌
M 0
D dF 0

2
. First, we may assume that q 62 F1 , because q 2 F1

implies p 2 F1 and therefore the trivial case that M 0 DM . Take r 2 F1 at minimal
distance to q 62F1 . By extremality of F2 and the choice of q , we obtain that ]pqr � �

2

and hence dqdF1
."

p
q /� 0. Concavity of dF1

implies that dF1
.q/�dF1

.p/� s , which
means that q 2M 0 and proves the claim.

Now it is clear that the following holds: If p 2M 0nF 0
2

is given and the function dp

ˇ̌
F 0

2

attains its minimum at q 2 F 0
2

, we have that ]pqx � �
2

for all x 2M 0 . Therefore,
F 0

2
is an extremal set in M 0 (note that F 0

2
is closed). If M 0 is not collapsed, it is clear

that F 0
2

has locally constant codimension 1 and hence is a boundary stratum. If M 0

is collapsed, but F 0
2

¨ M 0 , let t > 0 be small enough such that it is a regular value
of the function dF 0

2
. By the Morse Lemma, the level set Z WD d�1

F 0
2

.t/ is of locally

constant codimension 1 in M 0 . We define a map  WZ! F2 like follows: For z 2Z

let  .z/ be the endpoint of some shortest path from z to F2 . It is easy to see that  
is noncontracting, because a shortest path to a boundary stratum is perpendicular to
it. The same holds in each superlevel set d�1

F2
.Œt 0;1// for t 0 2 .0; t/ with boundary

stratum d�1
F2
.t 0/. Now, since  .Z/� F 0

2
, we obtain that dim F 0

2
�m� 1. However,

dim F 0
2
Dm would imply F 0

2
DM 0 , since F 0

2
is extremal.

For the proof of the Splitting Theorem 1.2 both results of the lemma will be needed,
the collapsed case and the non-collapsed one. In the latter case boundary strata are
“shifted inwards” preserving their intersection behaviour like follows.

3.6 Lemma Let M 2 ALEXn.0/ and let F1; : : : ;F` be a stratification of @M . Let
s 2R be given such that M 0 WD d�1

F1
.Œs;1// has dimension n. We set F 0

1
WD d�1

F1
.s/

and F 0i WD Fi \M 0 for i D 2; : : : ; `. Then F 0
1
; : : : ;F 0

`
is a stratification of @M 0 and

the following holds:\
i2I

Fi D∅ ()

\
i2I

F 0i D∅ for each subset I � f1; : : : ; `g
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Proof According to Lemma 3.5 the sets F 0
2
; : : :F 0

`
are boundary strata. We consider

F 0
1

and again, for s D 0 there is nothing to prove. Hence, we may assume that s is
a regular value of the function dF1

. Indeed, local maxima of concave functions are
in fact global, and s D sup dF1

leads to collapse. Now the Morse Lemma implies
that F 0

1
is the closure of points possessing neighborhoods in M 0 homeomorphic to

Rn�1 �R�0 . Therefore, F 0
1

is a boundary stratum of M 0 . It is easy to see that the
collection F 0

1
; : : : ;F 0

`
is a stratification of @M 0 . Finally, we investigate the intersections

of boundary strata. The stratum F1 plays a special role, so let I � f2; : : : ; `g and
F WD

T
i2I Fi ; F 0 WD

T
i2I F 0i .

If F D∅, clearly also F 0D∅. Thus, let F ¤∅ and consider the following two cases.
If F1\F D∅, we can apply Lemma 3.4, because F is an extremal set. We obtain
that dF1

.F /Dmax dF1
> s and therefore F 0 D F . If F1 \F ¤∅, let p 2 F1 \F

and consider the gradient curve p̨ of the function dF1
. Since p̨.t/ 2 F for all t � 0,

there exists T > 0 such that dF1
. p̨.T //D s . This implies that p̨.T / 2F 0

1
\F 0¤∅

and completes the proof.

3.7 Corollary For M 2 ALEXn.0/ let F1; : : : ;F` be a stratification of @M and
s1; : : : ; s` 2 R such that M 0 WD d�1

F1
.Œs1;1//\ : : :\ d�1

F`
.Œs`;1// is non-collapsed.

Then @M 0 possesses the stratification @M 0 D F 0
1
[ : : : [ F 0

`
with boundary strata

F 0i WD d�1
Fi
.si/\M 0 . Moreover, the intersection of any collection of the strata Fi is

empty if and only if the intersection of the corresponding strata F 0i is empty.

Proof This follows by iterated use of Lemma 3.6 and the fact that the order of taking
superlevel sets is irrelevant according to Lemma 3.5.

4 Intersections of boundary strata

In order to investigate boundary strata, it is often useful not to work in the space M

itself but in slightly smaller superlevel sets. Thereafter, we pass to the Hausdorff limits,
which behave like expected.

4.1 Lemma Let M 2 ALEXn.0/ and let E;F1; : : : ;Fk be a stratification of @M .
We choose a sequence .si/ decreasing to 0 such that all Mi WD d�1

E
.Œsi ;1// are not

collapsed. We set Ei WD d�1
E
.si/ and let F D

T
`2I F` be the intersection of boundary

strata for some index set I � f1; : : : ; kg. Then we have the Hausdorff convergences
Mi

i!1
�!M ; Ei

i!1
�!E and Ei \F

i!1
�!E \F .
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Proof Since si is decreasing, we have that Mi � MiC1 for all i . Thus, the con-
vergence Mi !M is clear. Now, if " > 0 is given, choose i big enough such that
maxfsi ; dH .Mi ;M /g< ", where dH denotes the Hausdorff distance. Then we have
by definition jpMi j< " for all p 2M , which implies jpEi j< " for all p 2E . On the
other hand we have jqEjD si <" for all q 2Ei and hence, Ei!E . For the remaining
convergence we show that E \F is exactly the set of limit points of sequences .pi/

with pi 2Ei\F . Indeed, if .pi/ is such a sequence converging to p 2M , then clearly
p 2E \F , since Ei !E and F is closed. Vice versa, let q 2E \F and let ˛q be
the gradient curve of the function dE starting at q . Hence, the gradient curve ˛q stays
in F . By setting qi WD ˛q \Ei we obtain a sequence qi! q with qi 2Ei \F . Now
it is clear that E \F is the Hausdorff limit of Ei \F , since this holds by Blaschke’s
Compactness Theorem (see for example Burago–Burago–Ivanov [2, Theorem 7.3.8])
inside any compact ball.

We are now able to prove the first part of Theorem 1.4 using the Morse Lemma and
the Stability Theorem as well as their relative versions.

4.2 Proposition Let M 2 ALEXn.0/ and let F1; : : : ;Fk be boundary strata. If
the intersection F1 \ : : :\Fk is nonempty, it is an extremal set of locally constant
dimension n� k and k � n holds necessarily.

Proof We use induction over k . The base step k D 1 is clear, since a boundary
stratum F �M induces for p 2F the boundary stratum †pF �†p . Thus, induction
over dimension shows that an extremal set is a boundary stratum if, and only if, it has
locally constant codimension 1.

Now assume that F1\: : :\Fk¤∅ and that, by induction assumption, F1\: : :\Fk has
locally constant dimension n�kC1. First of all, for any p2F1\: : :\Fk�1 the gradient
curve of the function dFk

immediately leaves the set Fk , but stays in F1\ : : :\Fk�1 .
This implies that dim.F1\ : : :\Fk�1/� 1 and therefore k � n. Let s > 0 be small
enough such that d�1

Fk
.Œs;1// is not collapsed. In other words, s is a regular value

for dFk
. By the relative Morse Lemma, the set F1\: : :\Fk�1\d�1

Fk
.s/ has dimension

n� k , possibly not locally constant. We know, however, that F1 \ : : :\Fk�1 has
locally constant dimension, which implies that the relative Morse Lemma works like
the original Morse Lemma. Namely, F1 \ : : : \ Fk�1 \ d�1

Fk
.s/ is an MCS-space

instead of only an AMCS –space, compare Perelman–Petrunin [20, Section 2]. This
implies that the space has locally constant dimension.

Taking Lemma 3.6 into account, the induction step is proved for the superlevel set
d�1

Fk
.Œs;1//. Now we choose the values for s as a sequence descending to 0. By
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Lemma 4.1, boundary strata and their intersections in the superlevel sets converge in
the Hausdorff sense to the corresponding intersections in M . If M is compact, the
relative Stability Theorem by Kapovitch [7, Theorem 9.2] implies that the converging
extremal sets in question are homeomorphic to their limit. Thus, also the latter one
has locally constant dimension n� k . In the noncompact case, the (relative) Stability
Theorem holds for pointed Gromov–Hausdorff limits, compare [7, Theorem 7.11]. This
implies in our setting that the converging extremal sets are locally homeomorphic to
their limit. Hence, also in this case the induction step is proved.

4.3 Corollary For † 2 ALEXn.1/ let F1; : : : ;Fk be boundary strata. Then we have
that F1\ : : :\Fk ¤∅ if and only if k � n.

Proof This follows immediately from Proposition 4.2 and Petrunin’s version of
Frankel’s Theorem [23, Theorem 3.2].

Note that Proposition 4.2 can also be proved using the spaces of directions, which
requires double induction over n and k , see [31, Theorem 2.18]. A similar method
like above, however, will be used to prove the following fact.

4.4 Proposition Let M 2ALEXn.0/ and let F1; : : : ;Fk be boundary strata. Assume
that F WD F1\ : : :\Fk ¤∅ and let p 2 F such that TpF �Rn�k�1 �R�0 . Then
the point p is contained in some boundary stratum distinct from F1; : : : ;Fk , in other
words p 2 @M n .F1[ : : :[Fk/. In particular, if there is no additional boundary
stratum intersecting with F1\ : : :\Fk , such points p do not exist.

Proof The assertion is proved via induction on k . As base step we consider k D 0

and define F to equal M . Then Perelman’s characterization of the boundary implies
that p 2 @M .

For the induction step, let p 2 F with TpF � Rn�k�1 �R�0 and assume, by way
of contradiction, that p lies in no other boundary stratum. Hence, we can assume
that @M D F1 [ : : : [ Fk . Indeed, otherwise consider the doubling SM obtained
by gluing along the boundary stratum @M n .F1[ : : :[Fk/. This does not affect
TpF D Tp

xF by the assumption on p . Now choose s > 0 small enough such that it
is a regular value for dFk

. We consider the set F 0 WD F1\ : : :\Fk�1\ d�1
Fk
.s/ and

claim that there is no open subset U V�F 0 homeomorphic to Rn�k�1 �R�0 . Assume
the contrary and let q 2 U . The function dFk

is admissible and regular near q and the
set F1\ : : :\Fk�1 is extremal. Hence, the relative local fibration theorem gives that
q has a neighborhood V V�F1\ : : :\Fk�1 satisfying V �U �R�Rn�k �R�0 . By
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the induction assumption it follows that q lies in some boundary stratum distinct from
F1; : : : ;Fk�1 . This implies q 2 Fk , a contradiction to the definition of F 0 .

The claim still holds if we choose the values of s descending to 0. By Lemma 4.1 and
the relative Stability Theorem, we have that F � F 0 for s small enough and if M is
compact. In the noncompact case we may consider everything inside an appropriate
compact ball. By the choice of p , there is some open subset in F homeomorphic to
Rn�k�1 �R�0 . Hence, such subset exists also in F 0 , a contradiction to the claim.
Thus, the induction step is proved.

As another structure result, in positive curvature intersections of boundary strata turn
out to be connected (unless they are 0–dimensional).

4.5 Lemma Let † 2 ALEXn.1/ and let F1; : : : ;Fk be boundary strata with k < n,
n� 2. Then the intersection F1\ : : :\Fk is connected.

Proof First, recall that F1\: : :\Fk¤∅ by Corollary 4.3. Now we use induction on k .
The base step k D 1 is clear by Frankel’s/Petrunin’s Theorem. Indeed, dim F1D n�1

and 2.n� 1/ � n since n � 2. Therefore, two connected components of F1 would
intersect.

For the proof of the induction step let p; q 2 F1 \ : : : \ Fk . Since dF1
is strictly

concave, the subset in † where dF1
attains its maximum consists of one point only. If

z1 denotes this point, we have that z1 2 F2\ : : :\Fk , because all gradient curves of
the function dF1

end at the point z1 . In particular, there is a curve  � F2\ : : :\Fk

from p to q . We claim that  can be chosen such that z1 62  . Assume the contrary,
then for each neighborhood U � F2 \ : : :\Fk of z1 the set U n fz1g is not path-
connected. This implies that K.†z1

F2\ : : :\†z1
Fk/ n fapexg is not path-connected

and therefore also †z1
F2\: : :\†z1

Fk is not path-connected. By induction assumption,
†z1

F2\ : : :\†z1
Fk is connected and hence also path-connected, since it is a stratified

manifold. This contradiction proves the claim.

Let x 2†n .F1[fz1g/. The concavity of dF1
implies that j*F1

x *
z1
x j>

�
2

. Therefore,
the gradient rxf of the function f WD d2

z1
is non-zero. Thus, the gradient flow of

f pushes  into the extremal subset F1 \ : : :\Fk . We assume that there is some
T 2 .0;1/ such that ı WD ˆT

f
. / � F1 \ : : :\ Fk . If p̨; ˛q denote the gradient

curves of f starting at p and q , respectively, the curve ı connects the points p̨.T /

and ˛q.T /. Hence F1\ : : :\Fk is connected. If such finite T does not exist, perform
the construction from above in the space †0 D d�1

F1
.Œs;1// for s > 0 small enough.

It is clear that in the space †0 an appropriate T exists. Now let s & 0 and apply
Lemma 4.1, which gives that F1 \ : : :\Fk is connected as Hausdorff limit of the
corresponding connected sets F 0

1
\ : : :\F 0

k
.
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5 Maximum sets

We already know that the set where the distance function of a boundary stratum attains
its maximal value is a convex set. It inherits boundary strata from the ambient space if
it is not contained in the strata in question. In this section we investigate such maximum
sets more closely.

5.1 Lemma Let M 2 ALEXn.0/ and let F1; : : : ;FkC1 be boundary strata such that
the following holds.

(1) F1\ : : :\FkC1 D∅,

(2) F1\ : : :\ yFi \ : : :\FkC1 ¤∅ 8 i 2 f1; : : : ; kC 1g.

For each i 2 f1; : : : ; k C 1g the maximum ai WD maxp2M dFi
.p/ exists and we set

Ai WD fp 2M j dFi
.p/ D aig. Let p 2 Ai and q 2M such that for all j ¤ i we

have that dFj
.q/ < dFj

.p/ if dFj
.p/ > 0 and dFj

.q/D 0 if dFj
.p/D 0. Then also

q 2Ai . Moreover, it follows that Ai � F1[ : : :[ yFi [ : : :[FkC1 .

Proof We show the assertion for AkC1 . First of all, the assumptions and Lemma 3.4
imply that dFkC1

attains its maximum on F1\ : : :\Fk , that is F1\ : : :\Fk �AkC1 .
According to Corollary 3.7, the analog is true for each superlevel set as long as no
collapse occurs. For j D 1; : : : ; k we set sj WD dFj

.p/ and tj WD dFj
.q/. Now we

consider the space M 0 WD d�1
F1
.Œt1; a1�/\ : : :\ d�1

Fk
.Œtk ; ak �/, which is not collapsed

since tj < sj or tj D sj D 0. We have that q 2F 0
1
\ : : :\F 0

k
and again by Lemma 3.4,

the function dFkC1

ˇ̌
M 0

attains its maximum at q . On the other hand we, have that
p2M 0 and therefore akC1DdFkC1

.p/�dFkC1
.q/�akC1 . This implies everywhere

equality and hence q 2AkC1 .

Assume now, by way of contradiction, that sj > 0 for all j D 1; : : : ; k . Let z 2

F1\ : : :\Fk and r > 0 satisfying r < sj for all j 2 f1; : : : ; kg. Then, by the first part,
the ball Br .z/ (taken in M ) is contained in AkC1 , a contradiction to the definition
of AkC1 . Hence, for each p 2AkC1 there exists some index i such that dFi

.p/D 0.
In other words, AkC1 � F1[ : : :[Fk .

The last statement enables the proof of the following result, which in turn provides the
remaining part of Theorem 1.4.

5.2 Lemma Let M 2 ALEXn.0/ and let F1; : : : ;FkC1 be boundary strata. Then the
following constellation is impossible: All intersections of k � 1 boundary strata Fi are
nonempty, while all intersections of k boundary strata are empty.
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Proof Assume, by way of contradiction, there is such constellation. Note that only
for k � 2 there is something to prove. Let AkC1 as in Lemma 5.2 and set Gi WD

F1 \ : : :\ yFi \ : : :\Fk for i D 1; : : : ; k . By assumption there are points pi 2 Gi

for each i 2 f1; : : : ; kg and these points are pairwise distinct. In addition, we have
that Gi \FkC1 D∅ and therefore, by Lemma 3.4, that Gi �AkC1 for i D 1; : : : ; k .
Moreover, by applying Lemma 5.1 to the subcollection F2; : : : ;FkC1 , we obtain
that AkC1 � F2 [ : : :[Fk . Let q1 2 p1p2 be some interior point. Since AkC1 is
convex, we have that q1 2 AkC1 . The fact that p1 62 F1 and p2 62 F2 implies that
q1 2 .F2 [ : : :[Fk/ n .F1 [F2/, because all Fi are extremal. Now let q2 2 q1p3

be some interior point and obtain that q2 2 .F2 [ : : :[ Fk/ n .F1 [ F2 [ F3/ and
iterate. This process leads to some point qk�1 2 qk�2pk satisfying the condition
qk�1 2 .F2[ : : :[Fk/ n .F1[ : : :[Fk/, a contradiction.

Maximum sets lying in some boundary strata may have additional boundary strata not
coming from the ambient space. Namely, there may be topological boundary as well.
In the following we make this precise.

5.3 Definition Let .X; d/ be a metric space and A � B � X . The topological
boundary BdBA of A in B is defined as

BdBA WD fx 2 B j Br .x/\A¤∅ and Br .x/\ .B nA/¤∅ 8 r > 0g;

where the balls are taken in X .

5.4 Lemma Let M 2 ALEXn.0/ and let F1; : : : ;Fk be boundary strata with k < n.
Let A�M be a convex subset satisfying A�F1\ : : :\Fk and dim AD n�k . Then
p 2 BdF1\:::\Fk

A implies that p 2 @A.

Proof We use induction on m WD n� k . The base step mD 1 is trivial by definition
of @A. For m � 2 let p 2 BdF1\:::\Fk

A and let " > 0. We endow the extremal set
F1\ : : :\Fk with the induced intrinsic metric denoted by yd . Recall that d and yd are
locally bi-Lipschitz equivalent according to Perelman–Petrunin [20, Corollaries 3.2].
We choose q 2 .F1\ : : :\Fk/ nA such that yd.p; q/� "

2
. Let x 2A be a point with

minimal distance yd.x; q/. Let  be a shortest path in F1\ : : :\Fk from x to q . The
choice of x implies that C.0/ 62†xA. In other words, the convex subset †xA�†x

satisfies †xA ¨ †x.F1 \ : : :\Fk/. By Lemma 4.5, the set †x.F1 \ : : :\Fk/ D

†xF1 \ : : : \ †xFk is connected and therefore Bd†xF1\:::\†xFk
†xA ¤ ∅. By

the induction assumption we conclude that @†xA ¤ ∅ and hence x 2 @A. Since
d.x;p/� yd.x;p/� " and @A is closed, this implies that p 2 @A as desired.
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5.5 Remark The statement remains true for kD0, that is, if A�M is a convex subset
of full dimension. A proof will be carried out in the upcoming book on Alexandrov
geometry by Alexander, Kapovitch and Petrunin. The proof of the lemma above is an
adapted version of their one.

Under the assumptions of our Splitting Theorem 1.2 we observe the interesting fact
that the maximum sets Ai D fp j dFi

.p/Dmax dFi
g essentially look the same as the

space M itself. This means, if @Ai is not empty, it contains mC 1< kC 1 boundary
strata fulfilling the same intersection conditions as the strata of @M . This property is
crucial for the proof of our Splitting Theorem, since we may assume by an induction
argument that inside Ai everything is already proved.

5.6 Proposition Let M 2 ALEXn.0/ and let F1; : : : ;FkC1 be a stratification of @M
such that F1\: : :\FkC1D∅, while F1\: : :\ yF`\: : :\FkC1¤∅ for `D1; : : : ; kC1.
We set a` WD max dF`

and A` WD fp 2M j dF`
.p/ D a`g. Then @A` ¤ ∅ holds if

and only if A` © F1 \ : : :\ yF` \ : : :\FkC1 . In this case let I � f1; : : : ; kC 1g be
the maximal set of indices such that A` �

T
i2I Fi DW F . Then 1 � jI j < k and a

stratification of @A` is given by the strata A` \Fi for i 2 f1; : : : ; kC 1g n .I [ f`g/

plus the stratum BdF A` . These strata have an analog intersection behaviour as the
Fi , namely all together have empty intersection, while all minus one do intersect. In
addition, the dimension of A` satisfies dim A` D dim F D n� jI j.

Proof The assertion will be proved for AkC1 . By Lemma 3.4, we have that F1 \

: : :\Fk �AkC1 . If equality holds, Proposition 4.4 implies that @AkC1 D∅. Hence,
we assume that F1\ : : :\Fk ¨ AkC1 . Let p 2AkC1 be a point such that dFi

.p/¤ 0

for a maximal number of indices i 2 f1; : : : ; kg. By renumbering we may assume that
dFi

.p/ ¤ 0 for i D 1; : : : ;m and dFi
.p/ D 0 for i D mC 1; : : : ; k . According to

Lemma 5.1, we have that m< k . We claim that AkC1�FmC1\ : : :\Fk . Assume, by
way of contradiction, there exists q 2AkC1 and j 2 fmC1; : : : ; kg with dFj

.q/¤ 0.
Recall that Fj is an extremal set. Thus, any inner point r of some shortest path pq

fulfills dFi
.r/¤ 0 for i 2 f1; : : : ;mg[ fj g. But r also lies in the convex set AkC1 ,

contradicting the choice of p . This means that I D f1; : : : ;mg. By the claim and
Proposition 4.2, we obtain that dim AkC1 � dim.FmC1 \ : : :\Fk/ D n� .k �m/.
The converse inequality follows by Lemma 5.1. Indeed, if we set si WD dFi

.p/ for
i D 1; : : :m, we have that d�1

F1
.Œ0; s1//\: : :\d�1

Fm
.Œ0; sm//\FmC1\: : :\Fk �AkC1 .

Now we set Gi WDAkC1\Fi for i D 1; : : : ;m. According to Lemma 3.5 (applied for
s D akC1 , hence M 0 DAkC1 ), the sets Gi are boundary strata of AkC1 . We have to
show that there exists the additional boundary stratum GmC1 WD BdFmC1\:::\Fk

AkC1

and that the strata intersect like stated in the Proposition. Let p 2 @AkC1 . Assume
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that p 62GmC1 , which implies that TpAkC1 D Tp.FmC1\ : : :\Fk/. According to
Proposition 4.4, we have that p 2Gi for some i 2 f1; : : : ;mg. Indeed, this is true if
TpAkC1�Rn�.k�m/�1�RC and such points are dense in @AkC1nGmC1 . Therefore
it follows that @AkC1 �G1[ : : :[GmC1 . It is clear that GmC1 ¤∅, because each
limit point of some gradient curve to the function dFkC1

starting (and hence staying)
in FmC1 \ : : :\Fk lies in GmC1 . In order to refine this argument, the same holds
if the gradient curve starts in F1 \ : : : \ yFj \ : : : \ Fk , for each j 2 f1; : : : ;mg.
By slightly “shifting” the strata F1; : : : ;Fm , that is, performing that construction in
superlevel sets M 0 close to M , we conclude that there are points in GmC1 arbitrary
close to G1 \ : : :\ yGj \ : : :\Gm , but not contained in any G1; : : : ;Gm , for each
j 2 f1; : : : ;mg. According to Lemma 5.4, we have that GmC1 � @AkC1 . Hence, it
follows that @AkC1 n .G1[ : : :[Gm/ is nonempty and therefore a boundary stratum.
Moreover, we have that @AkC1 n .G1[ : : :[Gm/� GmC1 . In order to see equality,
consider the doubling SM by gluing along F1[ : : :[Fm . The set xAkC1 is a convex set
of SM . Its boundary @ xAkC1 coincides on the one hand with the topological boundary
Bd xFmC1\:::\ xFk

xAkC1 D
xGmC1 and on the other hand with the doubling of the stratum

@AkC1 n .G1[ : : :[Gm/. Similar doubling procedures show that G1 [ : : :[GmC1

is indeed a stratification of @AkC1 , that is, there is no intersection Gi \Gj ; i ¤ j

which is itself a boundary stratum.

As proved above, we have that G1 \ : : : \ yGj \ : : : \ Gm \ GmC1 ¤ ∅ for all
j D 1; : : : ;m. Moreover, by G1\: : :\GmDF1\: : :\Fm\AkC1�F1\: : :\Fk �

F1\: : :\Fm\AkC1 we conclude that G1\: : :\GmDF1\: : :\Fk ¤∅. It remains
to show that G1\: : :\GmC1D∅. Again, choose p2AkC1 such that si WDdFi

.p/>0

for all iD1; : : : ;m. Then d�1
F1
.Œ0; s1//\: : :\d�1

Fm
.Œ0; sm//\FmC1\: : :\Fk �AkC1

is a neighborhood of the set G1\ : : :\Gm . In particular, this neighborhood does not
contain any points of GmC1 .

Note that the Proposition requires that F1; : : : ;FkC1 is indeed a stratification of @M .
However, as mentioned before, if there are additional boundary strata, we may glue
them away. In this form we will approach the proof of our Splitting Theorem.

6 Assumptions for the subsequent sections

From now on until otherwise stated we use the following assumptions and notation.

6.1 Notation The space M is given as in the Splitting Theorem 1.2 with kD`. Hence,
F1; : : : ;FkC1 is a stratification of @M such that any k strata intersect, but not all kC1.
Moreover, we set fi WD dFi

, ai WDmaxp2M fi.p/ and Ai WD fp 2M jfi.p/D aig.
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By an induction argument we assume that the Splitting Theorem holds for all spaces
fulfilling the above assumptions for a boundary stratification with less than kC1 strata.
The base step has to be proved directly.

6.2 Proposition If k D 1, then F1 and F2 are isometric convex subsets of dimen-
sion n, and M is isometric to the product F1 � Œ0; d � where d D jF1F2j.

This fact is not difficult to prove and has been known to be true by a large number of
experts in the field. Probably, it was not written up anywhere except in the author’s
PhD thesis [31, Theorem 3.3]. For a detailed proof we refer there and only sketch it
briefly here.

Sketch of proof Lemma 3.4 and Lemma 5.1 imply that F1 DA2 and F2 DA1 are
convex and equidistant sets. According to Proposition 4.4, they have no boundary. We
set d WD a1 D a2 . The arguments can be repeated for any non-collapsed superlevel set
f �1

i .Œs; d �/. Hence, M is fibrated into souls of dimension n� 1. It is easy to see that
a dual fibration is given by shortest paths from any p 2 F1 to F2 (or vice versa; these
paths are unique). The dual fibers are also equidistant and intersect perpendicularly
with the souls. Hence, the space M carries the product metric where the factors are
given by an arbitrary soul and an arbitrary dual fiber.

7 Fibration into isometric souls

7.1 Proposition The space M is fibrated into totally convex subsets of dimension
n�k without boundary. On each such set all functions fi are constant, iD1; : : : ; kC1.
All intersections F1 \ : : :\ yFi \ : : :\FkC1 belong to the fibration. Moreover, each
set Ai possesses a fibration which coincides with the one of M on Ai .

7.2 Definition The elements of the fibration in Proposition 7.1 are called souls of M .
We denote by S.p/ the soul containing the point p 2M .

7.3 Remark The term “soul” for a totally convex subset S �M without boundary
suggests (according to the Soul Theorem by Cheeger and Gromoll) that M can be
retracted onto S . This will be proved later. Note also that Proposition 7.1 implies
that the fibration is compatible with all (intersections of) superlevel sets. That is,
if M 0 WD f �1

1
.Œs1; a1�/ \ : : : \ f

�1
kC1

.ŒskC1; akC1�/ is non-collapsed, its fibration
coincides with the fibration of M on M 0 . The statement about the sets Ai carries
over to respective sets A0i �M 0 .
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Proof of Proposition 7.1 We fix some i 2 f1; : : : ; k C 1g. If F1 \ : : :\ yFi \ : : :\

FkC1 coincides with Ai , it is a totally convex set. Its dimension equals n� k by
Proposition 4.2. Otherwise, according to Proposition 5.6, the boundary @Ai consists of
mC 1 strata for some 1�m< k . In addition, some intersection of m strata of @Ai

coincides with F1 \ : : :\ yFi \ : : :\FkC1 . Consequently, this set is totally convex,
since by induction assumption the statement is proved for Ai .

In order to obtain a soul S.p/ through an arbitrary point p 2M , we do the following.
We set s` WD f`.p/ for ` D 1; : : : ; k C 1. If there is an index j such that sj D aj ,
then p 2Aj and the statement follows like above. If such an index does not exist, p

is in particular not contained in any intersection of k boundary strata. Hence, there is
an index (in fact, at least two indices) j such that 0< sj < aj . Then we consider the
superlevel set M 0 WD f �1

j .Œsj ; aj �/ and iterate the procedure, which clearly terminates.
However, it may happen that p lies in several maximum sets Aj . We have to clarify
that S.p/ does not depend on the choice of j , because such dependencies could
complicate further proofs, especially in view of the inductive arguments.

Assume that, say, p 2A1\A2 . According to Lemma 3.5, the set A1\F2 is a stratum
of @A1 and we have that dA1\F2

.p/D f2.p/D a2 . On the other hand, if q 2A1 is a
point at maximal distance to A1\F2 , it follows that a2�dA1\F2

.q/�dA1\F2
.p/Da2 .

This implies that q 2A1\A2 . Therefore, the set A WDA1\A2 coincides with the set
of points in A1 at maximal distance to the boundary stratum A1\F2 . Analogously, A

coincides with the set of points in A2 at maximal distance to A2\F1 . By induction
assumption, A1 and A2 are products with souls as first factors. Thus, a product
structure is induced on A in a priori two different ways. They coincide if the first
factors coincide. In other words, if there exists at least one soul in A which is a soul
of both supersets A1 and A2 , then this holds for all souls of A. Let S �A be a soul
of A1 given as the intersection of boundary strata of A1 . Then S is in fact given
as the intersection of primitive boundary strata of A1 and hence of A. This follows
easily from the Splitting Theorem, compare also [31, Corollaries 4.1, 4.2]. Since the
stratification of @A into primitive strata is unique, S is also the intersection of primitive
boundary strata of A2 . Therefore, S is also a soul of A2 .

7.4 Proposition All souls of the form Si WDF1\ : : :\ yFi\ : : :\FkC1 are isometric
for i D 1; : : : ; kC 1.

Proof The assertion will be proved for the souls S1 and SkC1 . At first we assume
that there is T 2 .0;1/ such that ˆT

fkC1
.S1/ � SkC1 and ˆT

f1
.SkC1/ � S1 . Then

the map ˆ WDˆT
f1
ıˆT

fkC1
WS1! S1 is nonexpanding. We claim that ˆ is homotopic

to the identity on S1 . Indeed, for t 2 Œ0; 1/ we set Mt WD f
�1

1
.Œta1; a1�/ and define
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a map ˆt analogously to ˆ from above, but in the space Mt . It is clear that this
works while keeping the value of T . We have that ˆ0 D ˆ and in addition we set
ˆ1 WD idS1

. In order to show that .t;p/ 7! ˆt .p/ is a homotopy, it is sufficient to
show that t 7!ˆt .p/ is continuous for each fixed p 2 S1 . This follows because all
maps ˆt are nonexpanding. The continuity of t 7! ˆt .p/ is a consequence of the
fact that s 7!ˆs

fkC1
is continuous and fkC1 stays the same in all superlevel sets Mt .

In addition, f̂1
is nonexpanding and f1 changes only by an additive constant in the

superlevel sets Mt . Hence the claim is proved.

We show now that ˆ is an isometry. By Proposition 7.1, the soul S1 is an Alex-
androv space of dimension n � k without boundary. According to Grove and Pe-
tersen [6, Lemma 1], the .n�k/th Alexander–Spanier cohomology of S1 is non-trivial,
that is, xH n�k.S1;Z2/ D Z2 . On the other hand, for each p 2 S1 we have that
xH n�k.S1 n fpg;Z2/D 0. Indeed, using the gradient flow of the function d2

p , we get
that S1 n fpg is homotopically equivalent to some space of dimension less than n� k .
Therefore, the map ˆ is surjective, because the homotopy ˆ' idS1

implies that the
induced homomorphism xH n�k.ˆ/WZ2! Z2 is an isomorphism. Being a surjective
nonexpanding map of a compact metric space onto itself, ˆ is an isometry (see for
example Burago–Burago–Ivanov [2, Theorem 1.6.15]).

It may happen, however, that such finite T does not exist. In this case we use the fact
that by induction assumption all souls of a maximum set Ai are isometric. If A1 and
AkC1 intersect, take some p 2A1\AkC1 and consider the soul S.p/. According to
Proposition 7.1, the souls S1 and SkC1 are also souls of the spaces A1 and AkC1 ,
respectively, and S.p/ is a soul of both spaces. This implies that S1 Š S.p/Š SkC1

as desired. Thus, we may assume that A1 \AkC1 D ∅. Choose a point p 2 .F2 \

: : : \ Fk/ n .A1 [AkC1/ and consider the superlevel set M 0 WD f �1
1
.Œf1.p/; a1�/.

Then there exists some T 2 .0;1/ such that ˆT
fkC1

.S1/ � S 0
kC1
WD F 0

1
\ : : :\F 0

k
.

Indeed, since S1 is compact, such T exists for each finite "–net N of S1 , and since
the gradient flow is nonexpanding, all other points are pushed "–close to ˆT

fkC1
.N /.

It is clear by construction that A0
1
DA1 and A0

1
\A0

kC1
D∅, where A0

1
;A0

kC1
are

defined as A1;AkC1 , but for the space M 0 . Therefore, we can pass to some superlevel
set M 00 �M 0 by shifting the boundary stratum F 0

kC1
in an analogous way and obtain

that the space M 00 fulfills the assumptions from the first part of the proof. In particular,
the corresponding souls S 00

1
and S 00

kC1
of M 00 are isometric. This in turn holds if we

choose p from above arbitrarily close to AkC1 . By Lemma 4.1, the particular souls
S 00

kC1
converge to a soul of AkC1 . Since all souls of AkC1 are isometric, we have

that S 00
kC1
Š SkC1 . The same construction applied to S 00

1
gives that S1 Š S 00

1
and

therefore S1 Š SkC1 .
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7.5 Corollary All souls of M are isometric.

Proof Let S �M be a soul. It is sufficient to prove that SŠS1 WDF2\: : :\FkC1 . If
S �A1 , the assertion follows by induction assumption. Therefore, we may assume that
s1 WD f1.S/< a1 and consider the superlevel set M 0 WD f �1

1
.Œs1; a1�/. Proposition 7.4

implies that S1ŠF 0
1
\F 0

3
\ : : :\F 0

kC1
. If S �A0

2
, the assertion is proved; otherwise

iterate the process of passing to superlevel sets.

These results can be improved further in order to obtain that any soul of M can be
“shifted” continuously onto any other soul.

7.6 Lemma Let S;S 0 be souls of M . Then there exists a continuous map ‡ WS �
Œ0; 1�!M such that ‡� .S/ WD ‡.S; �/ is a soul for each � 2 Œ0; 1� and ‡0.S/ D

S ; ‡1.S/D S 0 .

Proof The proof of Corollary 7.5 shows that it is sufficient to prove the assertion for
the case that S and S 0 are given as intersections of k boundary strata. This case, in
turn, is treated like in the proof of Proposition 7.4. We define S1 and SkC1 like there.
Again, we first assume that there exists some finite time T such that ˆT

fkC1
.S1/�SkC1 .

In fact, Proposition 7.4 implies equality, since ˆT
fkC1

maps S1 isometrically. We write
ˆ WDˆT

fkC1
for short and consider it as a map ˆWF2\: : :\Fk!SkC1 . Consequently,

ˆ maps each soul in F2 \ : : :\Fk isometrically onto SkC1 . If we show that also
the sets ˆt

fkC1
.S1/ are souls for all t 2 Œ0;T �, the desired map ‡ is given by f̂kC1

(after reparametrizing Œ0;T �! Œ0; 1�).

Let p; q 2S1 be distinct points and let P WDˆ�1.ˆ.p// ; Q WDˆ�1.ˆ.q// denote the
fibers through p and q , respectively. We claim the following: P and Q are equidistant
with jPQj D jpqj, and points x 2 P ; y 2 Q fulfilling jxyj D jPQj have to lie in
the same soul S.x/D S.y/. In order to prove the claim, let  be some shortest path
from P to Q. Since ˆ is 1–Lipschitz, we obtain that length.ˆ. //� length. / and
therefore equality. Moreover, the fact that ˆ

ˇ̌
S1
WS1! SkC1 is an isometry implies

that jpqj D length.ˆ. //D length. /D jPQj. For the equidistance let x 2 P and
y WD S.x/\Q, the latter being well-defined since ˆ

ˇ̌
S.x/

is an isometry. This clearly
also implies that jxyj D jPQj. By swapping the roles of x and y , the equidistance of
P and Q is proved. Now assume, by way of contradiction, there is z 2Q satisfying
jxzjD jxyj and z 62S.x/DS.y/. Then there is some s 2xz such that s 62S.x/[S.z/.
Let u WD S.s/ \Q. This implies, according to the results above, that jsuj � jszj.
Hence, we have that

jxzj D jxsjC jszj � jxsjC jsuj � jxuj � jxQj D jxyj D jxzj
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and therefore everywhere equality. But this means that the shortest paths xu and
xz branch at the point s , which is a contradiction. Now let t � 0. Since ˆ

ˇ̌
S1

is
an isometry and ˆt

fkC1
is 1–Lipschitz, the restriction ˆt

fkC1

ˇ̌
S1

is also an isometry
onto its image. This implies that

ˇ̌
ˆt
f1
.p/ˆt

f1
.q/
ˇ̌
D jpqj, and by the claim the points

ˆt
fkC1

.p/ and ˆt
fkC1

.q/ lie in the same soul.

If a finite T like above does not exist, the flow ˆt
fkC1

can be extended to t D1 via
Hausdorff limits. This also works like in the proof of Proposition 7.4. By reparametriza-
tion Œ0;1�! Œ0; 1�, we obtain the desired map ‡ .

8 Submetries and Retractions

We will now prove that the term “soul” is fully justified. The respective result is the key
point in the proof of our Splitting Theorem. First, we recall the definition of submetries.

8.1 Definition Let X and Y be metric spaces. A map f WX ! Y is a submetry if
f . xBr .x//D xBr .f .x// holds for all x 2 X and all r � 0. Here, xBr .x/ denotes the
closed ball of radius r centered at x .

8.2 Proposition For each soul of the form Sj WD F1 \ : : :\ yFj \ : : :\FkC1 ; j 2

f1; : : : ; kC 1g there exists a submetry ‰j WM ! Sj such that the following holds: If
S �M is a soul, the restricted map ‰j

ˇ̌
S
WS ! Sj is an isometry.

Moreover, ‰j is composed of gradient flows like follows: ˆT
fj

is a submetry of M

onto Aj , possibly with T D1. The latter case is defined via (possibly not uniquely
determined) limits. If Sj ¨ Aj , the flowing process is iterated inside Aj and hence,
‰j is obtained as the composition of these gradient flows. In addition, if S �M is a
soul and t 2 Œ0;1�, the set ˆt

fj
.S/ is also a soul of M .

Proof The proof is carried out for j D 1, that is, for ‰1WM ! S1 . Let S �M be a
soul. First we consider the case that there is some finite T � 0 such that ˆT

f1
.M /DS1 .

According to Lemma 7.6, there is a continuous map ‡ WS1 � Œ0; 1�!M such that
‡0.S1/ D S1 and ‡1.S1/ D S . Thus, the composition ˆT

f1
ı ‡1WS1 ! S1 is

homotopic to ˆT
f1
ı‡0 D idS1

. Like in the proof of Proposition 7.4, the argument
involving Alexander–Spanier cohomology shows that f̂1

ˇ̌
S
WS ! S1 is an isometry.

Moreover, since this holds for any soul S , we can repeat the argument from the proof
of Lemma 7.6 in order to see that the sets ˆt

f1
.S/ are souls for all t � 0.

If a finite T only exist such that ˆT
f1
.M /DA1 , we can use the fact that by induction

assumption the desired submetry exists inside A1 . Let ‰A1

1
denote this submetry.
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Then we define ‰1 as the composition ‰1 WD‰
A1

1
ıˆT

f1
. If even such finite T does

not exist, we have to construct a 1–Lipschitz map ˆ1
f1
WM !A1 . Note that this map

will not extend the flow ˆt
f1

continuously in the t –parameter! Let .p`/`2N �M be
a dense sequence of points and 0 � t0;1 < t0;2 < t0;3 < : : : a diverging sequence in
R. Since M is compact, the sequence

�
ˆ

t0;i

f1
.p1/

�
has some partial limit, denoted

by ˆ1
f1
.p1/. Let .t1;i/ be a subsequence of .t0;i/ such that ˆt1;i

f1
.p1/

i!1
�!ˆ1

f1
.p1/.

Now define ˆ1
f1
.p2/ as some partial limit of

�
ˆ

t1;i

f1
.p2/

�
, and so on. It is clear by

continuity that ˆ1
f1
.p`/ 2 A1 for all ` 2N . We claim that ˆ1

f1
W fp` j ` 2Ng ! A1

is nonexpanding. Indeed, assume that, say, jp1p2j D d and
ˇ̌
ˆ1
f1
.p1/ˆ

1
f1
.p2/

ˇ̌
> d .

Then there exists t2;i for i big enough such thatˇ̌
ˆ

t2;i

f1
.p1/ˆ

t2;i

f1
.p2/

ˇ̌
> d;

a contradiction. Now, since A1 is compact, in particular complete, there exists a (unique)
nonexpanding extension ˆ1

f1
WM !A1 . All the arguments of the first part of the proof

carry over, if we substitute ˆT
f1

by ‰A1

1
ıˆ1

f1
. In particular, ˆ1

f1

ˇ̌
S

is an isometry onto
its image for each soul S . This holds independently of the choice of our dense sequence
.p`/. Therefore, we can conclude that also ˆt

f1

ˇ̌
S

is an isometry onto its image for all
t � 0. Indeed, assume there are points x;y 2 S whose distance is decreased by ˆt

f1

ˇ̌
S

.
Then we substitute p1;p2 by x;y and obtain for the corresponding construction of
ˆ1
f1

that
ˇ̌
ˆ1
f1
.x/ˆ1

f1
.y/
ˇ̌
< jxyj, contradiction. Finally, by these results, also the fact

that ˆt
f1
.S/ is a soul for each t 2 Œ0;1� and each soul S carries over.

The following consequences are immediate.

8.3 Corollary For each j 2 f1; : : : ; kC1g the soul Sj DF1\ : : :\ yFj \ : : :\FkC1

is a strong deformation retract of M . Moreover, if we set Dj .p/ WD ‰�1
j .‰j .p//

for p 2 M , the map p 7! .S.p/;Dj .p// is a bijection between M and the set
f.S;Dj / j S soul of M ; Dj fiber of ‰j g. The fibers Dj .p/;Dj .q/ are equidistant
for all p; q 2M , and x 2Dj .p/ ; y 2Dj .q/ satisfy jxyj D jDj .p/Dj .q/j if and only
if S.x/D S.y/.

8.4 Definition For each j 2 f1; : : : ; kC1g the set Dj .p/ defined as in Corollary 8.3
is called the j th dual fiber through p 2M .

The name indicates that these dual fibers will provide the second factor in our metric
splitting of M . First, we have to prove that all j th dual fibers through any point
actually coincide.

Geometry & Topology, Volume 16 (2012)



A splitting theorem for nonnegatively curved Alexandrov spaces 2413

9 The dual fibers

We investigate the canonical projections along souls. They turn out to be locally
Lipschitz almost everywhere, which implies that Lipschitz paths are mapped onto
Lipschitz paths. Moreover, Rademacher’s Theorem can be applied. For that reason, the
following result plays a crucial role.

9.1 Proposition Let j 2f1; : : : ; kC1g and let Dj be a j th dual fiber. Let �Dj
WM!

Dj denote the projection along souls onto Dj , that is �Dj
.p/DS.p/\Dj for p 2M .

Then �Dj
is locally a Lipschitz map near almost all points. More precisely, if p 2M is

a regular point of the Alexandrov space S.p/, there is an open neighborhood U V�S.p/

such that �Dj

ˇ̌
‰�1

j
.‰j .U //

is Lipschitz.

Proof Let p 2M be a regular point of its soul S.p/. In other words, p is .n�k; ı/–
strained in S.p/ for all ı > 0, see Burago–Burago–Ivanov [2, Definition 10.8.9].
Choose some small ı > 0 and an open neighborhood V V�S.p/ of p small enough such
that all points x 2 V are also .n�k; ı/–strained with the same points b1; : : : ; b2.n�k/

of the strainers. We set hi.x/ WD
1
2
jbixj

2 for i D 1; : : : ; 2.n � k/ ; x 2 S.p/. By
construction, there is a global constant C > 0 such that jrxhi j �C for all x 2 V ; i D

1; : : : ; 2.n� k/. The functions hi are 1–concave, and so are all convex combinationsP
ˇihi (where

P
ˇi D 1 ; ˇi � 0). If x 2 V is regular and all differentials dhi

are
linear, then rx

�P
ˇihi

�
D
P
ˇirxhi holds for all convex combinations. By the

generalized Rademacher Theorem, see for example Lytchak [8, Proposition 3.8], this
is true for almost all points x 2 V , and since they are .n� k; ı/–strained, the positive
constant C from above can be chosen such that

ˇ̌
rx

�P
ˇihi

�ˇ̌
�C holds for almost all

x 2 V and all convex combinations. Moreover, for all such points x and any direction
� 2†xS.p/, there exist ˇi � 0 ;

P
ˇi D 1 such that rx

�P
ˇihi

�
D
P
ˇirxhi has

the given direction � . We will call such points nice.

Now let U � V be an open neighborhood of p small enough such that xy � V for
all x;y 2 U . Moreover, if any two points x;y 2 U are given, there is a shortest path
 with endpoints in U arbitrarily close to x and y , respectively, such that almost
all points on  are nice. This fact can be proved by adapting a proof by Otsu and
Shioya in [15]. They showed that the property holds if all regular points instead of nice
points are considered. The adapted proof can be found in the author’s PhD thesis [31,
Proposition 2.1]. It follows that almost every tangent vector of  coincides with the
gradient of a suitable convex combination

P
ˇihi . To be precise, the equality of the

vectors holds only up to length; we reparametrize  to get full equality. Since all
gradient lengths are bounded below by C , the reparametrized path  is defined on an
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interval of length at most T <1. Here, T is a universal constant valid for all such
paths  , independent of the given points x;y 2 U . The proof of the Proposition is
now carried out in the subsequent three steps.

Step 1 For any x;y 2 U the projection along souls from Dj .x/ onto Dj .y/ is
eT –Lipschitz.

In order to show this, we define the functions yhi WM ! R ; q 7! 1
2
jq Dj .bi/j

2 for
i D 1; : : : ; 2.n� k/. It follows that also the functions yhi are 1–concave. Furthermore,
according to Corollary 8.3, we have that yhi

ˇ̌
S.p/
D hi . Since all souls are isometric, a

respective statement holds in each soul. Now we assume for the moment that x and
y can be connected by some shortest path  as above. Thus, almost every tangent
vector of  coincides with the gradient of some convex combination

P
ˇi
yhi . For

any other soul we get the same result, and since the functions yhi are defined on the
entire space M , the Lipschitz property of the gradient push according to Petrunin (see
Petrunin [24, 1.3.5 and 2.1.4]) implies that the following holds: If x1;x2 2 Dj .x/

and y` D S.x`/\Dj .y/ ; `D 1; 2, then jy1y2j � eT jx1x2j. If x and y cannot be
connected directly by such path  , there are adequate points in each neighborhood of
x and y . Therefore, the Lipschitz constant stays the same.

Step 2 For any x 2 U the projection along souls from ‰�1
j .‰j .U // onto Dj .x/ is

2eT –Lipschitz.

This follows easily from Step 1. Indeed, let q; r 2 ‰�1
j .‰j .U // and project r onto

Dj .q/, that is, r is mapped onto r 0 WD S.r/\Dj .q/. We obtain that

jqr 0j � jqr jC jrr 0j � jqr jC jDj .r/Dj .q/j � 2jqr j

and hence the statement follows by Step 1.

Step 3 The projection along souls from ‰�1
j .‰j .U // onto Dj is Lipschitz.

For the proof take some shortest path � from p to Dj . In other words, � lies in
S.p/ and ends at S.p/\Dj . Let z 2 � be an interior point close enough to p such
that z 2 U . According to Step 2, the projection along souls from ‰�1

j .‰j .U // onto
Dj .z/ is Lipschitz. Hence, it is sufficient to show that also the projection along souls
from Dj .z/ onto Dj is Lipschitz. It is clear that the gradient flow of the function
x 7! 1

2
jxpj2 pushes z along � onto S.p/\Dj and the same is true via isometric

copies in all souls. Like in Step 1, the gradient flow of the function x 7! 1
2
jx Dj .p/j

2

has the identical action on each soul. Moreover, since z ¤ p , the flow pushes Dj .z/

onto Dj in finite time. Hence, the Lipschitz property of the gradient push implies that
the projection along souls is Lipschitz, too.
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9.2 Corollary For any j th dual fibers Dj ;D
0
j the projection along souls from Dj

onto D0j is a homeomorphism.

Proof Let p 2M be regular in its soul S.p/. By Proposition 9.1, the projections
Dj .p/!Dj and Dj .p/!D0j are in particular continuous, hence (by compactness
and bijectivity) homeomorphisms.

9.3 Remark The fact that points p 2M which are regular in its soul S.p/ form
a set of full measure in M follows by Proposition 8.2 and Rademacher’s Theorem.
Indeed, each submetry ‰j is differentiable almost everywhere with linear differential.
The points where this is true are as requested.

Lytchak’s results [8] about submetries imply the following statements.

9.4 Lemma For p2M and j 2f1; : : : ; kC1g let S WDS.p/ and D WDDj .p/. Then
the tangent cones TpS and TpD are convex subsets of TpM and therefore Alexandrov
spaces. Their Hausdorff dimensions are dimH TpS D n� k and dimH TpD D k . In
addition, we have that TpS D fu 2 TpM j hu; vi D 0 8 v 2 TpDg.

Proof Since S �M is a convex subset of Hausdorff dimension n�k , the same holds
for the tangent cone TpS . According to Proposition 8.2, the map ‰i WM !Si WDF1\

: : :\ yFi \ : : :\FkC1 is a submetry. By [8, Proposition 5.1] it induces a homogeneous
submetry dp‰i WTpM !TpSi of the tangent cones. Again Proposition 8.2 implies that
dp‰i

ˇ̌
TpS

is an isometry. Therefore, if u 2 TpS , then dp‰i preserves its length (this
property of u is called horizontal by Lytchak). Now [8, Lemma 5.3] and Corollary 8.3
imply that the converse is also true, that is, u 2 TpM fulfills jdp‰i.u/j D juj if and
only if u 2 TpS . Hence, dp‰i is a regular submetry as defined in [8, Definition 6.4].
It follows from [8, Korollar 7.5] that dimH TpD D k . The cone TpD � TpM

coincides with the preimage
�
dp‰i

�
�1.o/ by [8, Proposition 5.2]. The latter is a

convex subset by [8, Proposition 6.4(1)], while (2) implies that dp‰j preserves the
lengths of precisely those vectors in the cone K.P / over the polar set P � †p of
†pD , that is P D f� 2†p j j� †pDj � �

2
g. Therefore we obtain that TpS DK.P /

and hence TpS D fu 2 TpM j hu; vi � 0 8 v 2 TpDg.

Now let q 2S ; q¤p and � 2†pD . Assume, by way of contradiction, that j�"q
pj>

�
2

.
We choose in D a sequence pm

m!1
�! p such that "pm

p ! � and set qm WD S.pm/\

Dj .q/. Corollary 9.2 implies that qm ! q . By passing to a subsequence we may
assume that the directions "qm

q converge to some � 2†qDj .q/. Now the assumption
together with j�"p

qj �
�
2

(by the previous result) implies that there exists some N 2N
such that jpN qN j> jpqj. This contradicts Corollary 8.3.
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By lower semi-continuity of angles the result holds for all directions in †pS . In other
words, we obtain that hu; vi D 0 for all u 2 TpS and all v 2 TpD . Thus, the Lemma
is proved.

We are now able to prove that we do not have to distinguish j th dual fibers, but there
are unique dual fibers through all points.

9.5 Proposition For all i; j 2 f1; : : : ; kC 1g and any p 2M we have that Di.p/D

Dj .p/DWD.p/

Proof The assertion is proved for i D 1 ; j D 2 and almost all points p . Let
p 2 M such that it is regular in the soul S.p/. Let S � M be a soul and set
q1 WD S \D1.p/ ; q2 WD S \D2.p/. Assume, by way of contradiction, that q1 ¤ q2 .
Since all dual fibers are path connected, q1 can be assumed to lie arbitrarily close to p .
Moreover, by [8, Theorem 7.2] the induced metric and the induced intrinsic metric
on dual fibers are locally bi-Lipschitz equivalent. Thus, there exists a Lipschitz path
1W Œa; b�!D1.p/ from p to q1 . By choosing q1 close enough to p , we can apply
Proposition 9.1 and obtain that the projection along souls onto D2.p/ maps 1 onto a
Lipschitz path 2 �D2.p/ from p to q2 .

According to Perelman and Petrunin [21, Proposition 2.1(a)], the left and right tangent
vectors C

`
.t/; �

`
.t/ exist and are opposite for almost all t 2 Œa; b� ; `D 1; 2. Thus, the

function LW Œa; b�!R ; t 7! j1.t/ 2.t/j is differentiable for almost all t . Moreover,
for such t we have that L0.t/D 0 by Lemma 9.4. Since L is Lipschitz, in particular
absolutely continuous, L is constant. This implies that 0¤ jq1q2j DL.a/DL.b/D

jppj D 0, contradiction.

Thus, the Theorem is proved for the dual fibers through almost all points p 2M . The
equality of i th and j th dual fibers carries over to their Hausdorff limits (being also
i th and j th dual fibers, respectively, by Proposition 8.2) and hence, the statement is
proved for all dual fibers.

We are now prepared for proving that the souls form equidistant subsets.

10 Equidistance of the souls

The previous results already imply that certain souls are equidistant, namely along
shortest paths to the boundary strata Fi . More precisely, we obtain the following result.

Geometry & Topology, Volume 16 (2012)



A splitting theorem for nonnegatively curved Alexandrov spaces 2417

10.1 Proposition Let i 2 f1; : : : ; kC 1g and denote by ˛x the gradient curve of fi

starting at x 2M . Then for each soul S �M and t � 0 we have that

length
�

p̨

ˇ̌
Œ0;t �

�
D length

�
˛q

ˇ̌
Œ0;t �

�
8p; q 2 S:

Proof The proof is carried out for i D 1. Let p; q 2 S and let  be some shortest
path from p to q . Choose two distinct interior points p0; q0 2  . We claim that
jrp0

.f1/j D jrq0
.f1/j.

If S � A1 , there is nothing to prove. Thus, we may assume that S � F1 , because
otherwise we could proceed in the superlevel set f �1

1
.Œf1.S/; a1/�. If there is some

j 2 f2; : : : ; k C 1g with S � Fj , the direction � of the gradient rp0
.f1/ satisfies

� 2†p0
Fj . This implies that rp0

.f1/ stays the same if we consider the doubling SM
obtained by gluing along F2[ : : :[FkC1 . In SM we have that x†p0

xF1 D @x†p0
. The

direction � is the (unique) one at maximal distance to @x†p0
. The analog statement holds

for q0 and since p0; q0 are interior points of  , Petrunin’s parallel transportation implies
that x†p0

Š x†q0
, see [23, Theorem 1.1A]. Hence, the claim jrp0

.f1/j D jrq0
.f1/j

follows.

Now let t � 0. According to Proposition 8.2, the pushed soul ˆt
f1
.S/ is again a soul

of M and is isometric to S via the gradient flow. In particular, ˆt
f1
. / is a shortest

path from ˆt
f1
.p/ to ˆt

f1
.q/ containing the distinct interior points ˆt

f1
.p0/; ˆ

t
f1
.q0/.

For these points the claim from above holds, too. This implies that the gradient curves
starting at p0 and q0 , respectively, satisfy length

�
p̨0

ˇ̌
Œ0;t �

�
D length

�
˛q0

ˇ̌
Œ0;t �

�
.

We choose now sequences .pn/; .qn/ of interior points of  such that pn! p and
qn!q . The argument from above carries over to all pn; qn , and we obtain sequences of
converging gradient curves with equal lengths. According to Petrunin [24, Lemma 2.1.5]
and its proof, the limits are the gradient curves p̨ and ˛q , respectively, having the
same lengths on each subinterval.

10.2 Corollary For each i 2 f1; : : : ; kC1g the following holds: Let p 2M nFi and
let  be some shortest path from p to Fi . Then for any dual fiber D the canonical
projection  !D ;  .t/ 7! S. .t//\D is a shortest path from q WD S.p/\D to Fi .

Proof Let p0 2 Fi be the endpoint of  and set q0 WD S.p0/\D . We denote by
 W Œ0; fi.p/�!M ; t 7!  .fi.p/� t/ the curve coinciding with  , but with reversed
parametrization. Then the (unit speed) curve  coincides with the gradient curve

p̨0

ˇ̌
Œ0;fi .p/�

of the function fi . According to Proposition 10.1, it has the same length
as the gradient curve ˛q0

ˇ̌
Œ0;fi .p/�

DW ı . Hence, ı is a shortest path from ı.fi.p//

to Fi . Finally, by Proposition 8.2, the curve ı coincides with the canonical projection
of  along souls and ı.fi.p//D q .
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In order to show in the end that all souls are equidistant subsets of M , we will use the
projection along souls to transport some shortest path between two souls into any dual
fiber. The key point is to show that such projections are 1–Lipschitz maps. This in turn
will be proved using the differential near souls with special properties.

10.3 Lemma Let p 2M n@M such that
ˇ̌
*

Fi
p

ˇ̌
D 1 for all i 2 f1; : : : ; kC1g. Thenˇ̌

*
Fi
q

ˇ̌
D 1 holds also for all i 2 f1; : : : ; kC 1g and all q 2 S.p/. Moreover, we have

that
ˇ̌
"

Fi
q "

Fj

q

ˇ̌
D
ˇ̌
"

Fi
p "

Fj

p

ˇ̌
for all i; j 2 f1; : : : ; kC 1g.

Proof Choose some q 2 S.p/. The first statement is an immediate consequence of
Corollary 10.2. This Corollary also implies, together with Proposition 9.5, that the
shortest path from q to any Fi coincides with the projection along souls of the shortest
path from p to Fi into the unique dual fiber D.q/. Therefore, the directional derivative
dpfi

�
"

Fj

p

�
coincides with dqfi

�
"

Fj

q

�
for all i; j 2 f1; : : : ; kC 1g. This implies the

second statement.

The following is just a technical lemma.

10.4 Lemma Let 1� `� k and v1; : : : ; v`C1 2Rk such that the following holds:

(1) v1; : : : ; v`C1 are minimal linearly dependent, that is, the vectors of any subcol-
lection v1; : : : ; yvi ; : : : ; v`C1 are linearly independent for all i 2 f1; : : : ; `C 1g;

(2) ].vi ; vj /�
�
2
8 i ¤ j .

Let V WD span.v1; : : : ; v`C1/ and W WD
˚
w 2Rk

ˇ̌
hvi ; wi � 0 8 i 2 f1; : : : ; `C 1g

	
.

Then W is a vector subspace fulfilling dim W D k � ` and W D V ? .

Proof The main part is to prove that V D
˚P`C1

iD1 ˛ivi

ˇ̌
˛i�0

	
. We will use induction

over `. The base step ` D 1 is clear, hence let ` � 2. In the following we work in
V D R` and we assume without loss of generality that v`C1 D .�1; 0; : : : ; 0/. For
i D 1; : : : ; ` we define wi as the orthogonal projection of vi onto v?

`C1
, that is, wi

is obtained by setting the first component of vi to 0. According to our assumptions,
wi ¤ 0 for i D 1; : : : ; `. We claim that w1; : : : ; w` 2 v

?
`C1
ŠR`�1 fulfill the induction

hypothesis.

It is clear that w1; : : : ; w` are linearly dependent. Now assume that, say, w2; : : : ;

w` are already linearly dependent. Then there is a non-trivial linear combinationP`
iD2 �iwi D 0. By definition of the wi , this implies that

P`
iD2 �ivi D �v`C1

for some � 2 R. Thus, v2; : : : ; v`C1 are linearly dependent, which contradicts the
assumptions. In addition we have that ].wi ; wj /�

�
2

for all i ¤ j . Indeed, for each
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i D 1; : : : ; ` the unit vectors vi

jvi j
;
v`C1

jv`C1j
2 S`�1 can be connected by a unique shortest

path in S`�1 . Its intersection point with v?
`C1

coincides with the unit vector wi

jwi j
. Now

it is easy to see that ].wi ; wj / <
�
2

would imply that ].vi ; vj / <
�
2

.

Hence, by induction assumption, we have that v?
`C1
D
˚P`

iD1˛iwi j˛i � 0
	

. It follows
immediately that the half space f.x1; : : : ;x`/2R` jx1 � 0g is contained in the convex
set

˚P`C1
iD1˛ivi j˛i � 0

	
. Thus, the entire space V is contained if, and only if, there

is some vi 2 f.x1; : : : ;x`/ 2 R` jx1 > 0g. This is equivalent to wi ¤ vi . But the
latter is satisfied for at least one index i , since otherwise v1; : : : ; v` would be linearly
dependent.

Now we prove the assertion of the Lemma. Let w 2W and j 2 f1; : : : ; `C1g. By the
previous result, there are coefficients ˛1; : : : ; ˛`C1 � 0 such that �vj D

P`C1
iD1 ˛ivi .

It follows that

�hvj ; wi D

� `C1X
iD1

˛ivi ; w

�
D

`C1X
iD1

˛ihvi ; wi � 0

and therefore hvj ; wi D 0. We obtain that

W D
˚
w 2Rk

ˇ̌
hvi ; wi D 0 8 i 2 f1; : : : ; `C 1g

	
which yields the desired results.

We are now able to investigate the differential of the projection along souls almost
everywhere.

10.5 Proposition Let D be a dual fiber and �D WM ! D ; x 7! S.x/ \ D the
projection along souls onto D . Then for almost all p 2M the differential dp�D exists
and is 1–Lipschitz.

Proof According to Proposition 9.1, the projection �D is locally Lipschitz near almost
all points. Hence, it is differentiable almost everywhere with linear differential. More
precisely, we consider �D as a map into M (thus, the target space is Alexandrov) with
image in D , where D is equipped with the induced metric. Then for almost all p 2M

we have the following.

� TpM is isometric to Rn .

� T�D.p/M is isometric to Rm �C , where C 2 ALEXn�m.0/ is a cone.

� dp�D is a linear map with image in the Rm –factor of T�D.p/M .
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Moreover, the Euclidean cone TpM can be assumed to split into the factors TpS.p/Š

Rn�k and TpD.p/ŠRk . Indeed, since to each vector v 2TpM there exists the oppo-
site vector �v 2 TpM , it follows from Lemma 9.4 that TpS.p/ŠRn�k . According
to the proof of that Lemma, TpD.p/D

�
dp‰i

�
�1.0/ for each i 2 f1; : : : ; kC 1g. All

maps ‰i are 1–Lipschitz, hence dp‰i is linear at almost all p 2M . If we take such a
point p , it follows that TpD.p/ŠRk .

Finally, we may assume that each shortest path from p to any Fi can be extended
beyond p . Indeed, points where this is not possible form a set of measure zero. Otsu
proved in [14] that the cut locus has measure zero. His proof can be adapted to our
situation; this has been written up in the author’s PhD thesis [31, Proposition 2.2].

For i D 1; : : : ; k C 1 we set bi WD "
Fi
p 2 TpD.p/. It is easy to see that jbibj j �

�
2

holds for all i ¤ j . Indeed, this is a consequence of the concavity of dFi
, compare

Lemma 3.5. In addition, Corollary 10.2 and Lemma 10.3 imply that

hbi ; bj i D hdp�D.bi/; dp�D.bj /i 8 i; j 2 f1; : : : ; kC 1g:

Now let v2TpM . By the orthogonal splitting TpM DTpS.p/�TpD.p/ it is sufficient
to consider v 2 TpD.p/. If there are coefficients ˇi 2 R such that v D

PkC1
iD1 ˇibi ,

then linearity of dp�D implies the following.

jvj2 D hv; vi

D

X
i;j

ˇi ǰ hbi ; bj i

D

X
i;j

ˇi ǰ hdp�D.bi/; dp�D.bj /i

D hdp�D.v/; dp�D.v/i

D jdp�D.v/j
2

Hence, the Proposition is proved in the case of span.b1; : : : ; bkC1/D TpD.p/.

In the general case we choose some minimal linearly dependent subcollection of fbig

in the sense of Lemma 10.4. We assume, by renumbering, that b1; : : : ; b`C1 is such
subcollection, where 1 � ` � k . Let V and W be given as in Lemma 10.4, hence
TpD.p/ splits orthogonally as TpD.p/DV ˚W . According to the results from above,
it is sufficient to consider v 2W . For i D 1; : : : ; ` we shift the boundary strata Fi to p ,
that is, we consider the intersection M 0 WD f �1

1
.Œf1.p/; a1�/\ : : :\f

�1
`
.Œf`.p/; a`�/

of superlevel sets. Each boundary stratum Fi is perpendicular to the corresponding
shortest path from p to Fi and the same holds in superlevel sets. It also holds in M 0 ,
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since all these shortest paths are extendable beyond p . Thus, the tangent cone TpM 0

coincides with the set
˚
v 2 TpM j hv; bii � 0 8 i 2 f1; : : : ; `g

	
. No collapse occurs,

because b1; : : : ; b` are linearly independent and therefore TpM 0 has full dimension.

We claim that f`C1

ˇ̌
M 0

attains its maximum at p 2M 0 . Indeed, let w 2 TpM 0 such
that hw; b`C1i � 0. Then w 2 TpS.p/˚W , which implies that in fact hw; b`C1i D 0.
The claim follows by concavity of f`C1 . By the claim, the vector v 2W � TpM 0 can
be considered as v2W �TpA0

`C1
, where A0

`C1
Dmaxx2M 0 f`C1.x/. More precisely,

we have that TpA0
`C1
D TpS.p/˚W . By induction assumption, the statement of the

Proposition is proved for the set A0
`C1

and hence, jdp�D.v/j D jvj. This completes
the proof.

10.6 Proposition For each dual fiber D , equipped with the induced metric, the
projection along souls �D WM !D ; x 7! S.x/\D is 1–Lipschitz.

Proof Choose an arbitrary dual fiber D . Let p; q 2M be distinct points and " > 0.
Choose ı > 0 small enough such that �D.Bı.x// � B".�D.x// for x D p and
x D q (recall Corollary 9.2). It follows from Proposition 10.5 that there are points
yp 2 Bı.p/ ; yq 2 Bı.q/ such that for almost all points x 2 ypyq the differential dx�D

is 1–Lipschitz (see also the remark about nice points in the proof of Proposition 9.1).
This implies that j�D. yp/ �D.yq/j � j ypyqj. Thus, we obtain the following:

j�D.p/ �D.q/j � j�D.p/ �D. yp/jC j�D. yp/ �D.yq/jC j�D.yq/ �D.q/j

� "Cj ypyqjC "

� 2"C 2ıCjpqj

By choosing " and hence ı arbitrarily small, the result follows.

10.7 Corollary The souls form an equidistant fibration of M . All dual fibers are
isometric and form convex subsets of M .

Proof Let S1;S2 be souls and p 2 S1 ; q 2 S2 such that jS1S2j D jpqj. By
Proposition 10.6, the shortest path pq can be transported via projection along souls
into any dual fiber D and satisfies length.�D.pq// � jpqj. Thus, equality follows,
which proves the first statement and therewith also the second statement.

11 The Splitting Theorem

Now the proof of the Splitting Theorem and its corollaries can be completed.
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Proof of Theorem 1.2 for k D ` We pick arbitrarily a soul S and a dual fiber D .
Since the set of souls is equidistant and so is the set of dual fibers, M is isometric to
the product S �D equipped with the product metric. Indeed, in M the Pythagorean
Theorem holds up to an error of order o.h/ if h is some side length of a rectangular
triangle. Since souls and dual fibers intersect perpendicularly, we obtain the canonical
isometry �S ��D WM ! S �D , where �S ; �D are the canonical projections.

In order to complete the proof in full generality, we keep the notation as fixed in
Section 6, but allow k � `.

Proof of Theorem 1.2 in general So far, the splitting is proved if F1; : : : ;FkC1 is a
stratification of @M . In this case, souls are Alexandrov spaces without boundary, which
is essential for the proof of Proposition 7.4. Assume now that @M contains additional
boundary strata FkC2; : : : ;F`C1 . This does not affect the results till Proposition 5.6.
Also this one carries over with minor changes, namely, Ai \FkC2; : : : ;Ai \F`C1

form additional boundary strata of the maximum set Ai . This follows according to
Lemma 3.5 if we prove that Ai is not contained in any stratum FkC1; : : : ;F`C1 .
Indeed, if we consider the space SM by gluing along FkC2 [ : : :[F`C1 , we obtain
that dim xAi D dim Ai . By construction, we have that Ai �Fj if, and only if, xAi �

xFj

for j 2 f1; : : : ; k C 1g. Hence, Ai cannot be contained in any additional boundary
strata, since this would imply a smaller dimension.

The extended Proposition 5.6 allows us to assume by induction that the Splitting
Theorem holds in full generality for maximum sets Ai . Therefore, we obtain a fibration
of M into convex sets of dimension n�k like in Proposition 7.1. These sets, however,
have now boundary. For simplicity, we still call them “souls” and obtain that each soul
S �M has boundary stratification S \FkC2; : : : ;S \F`C1 . Now we can consider
again the doubling SM from above and apply the Splitting Theorem for k D `. We
obtain the product structure SM D xS �D . Here, xS is exactly the doubling of S , since
the boundary strata of S are induced by FkC2; : : : ;F`C1 . Therefore, M inherits the
product structure and is isometric to S �D . This shows that the Splitting Theorem
also holds in full generality.

Proof of Corollary 1.3 In the Alexandrov category, a point has positive curvature if
it possesses a neighborhood U such that each triangle in U fulfills the comparison
condition with a comparison space of positive curvature. In particular, there is no
triangle in U for which the Pythagorean Theorem holds. If M is a (nontrivial) metric
product, however, there are Pythagorean triangles at each point.

Proof of Corollary 1.5 The result follows immediately from Theorem 1.2 and
Theorem 1.4.
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Proof of Corollary 1.6 Let M be a compact nonnegatively curved Alexandrov space
of dimension n. Assume that @M consists of more than nC 1 boundary strata. By
Theorem 1.4, any intersection of nC 1 boundary strata is empty and there must be an
intersection of n boundary strata which is also empty. Hence, Theorem 1.2 implies
that M is a nontrivial metric product, that is, the S –factor has dimension at least 1.

Proof of Corollary 1.7 The result follows from Corollary 1.5 and Theorem 1.2. Note
also that M cannot possess more than nC 1 boundary strata. It is easy to prove this
directly, but it immediately follows from Corollary 1.6 and Corollary 1.3.

Corollary 1.8 follows by iterated use of Theorem 1.2. As mentioned, Perelman had
proved the results directly, so we only sketch our proof here for completeness. For
more details see the author’s thesis [31, Theorem 4.5].

Sketch of proof for Corollary 1.8 Let M be a compact nonnegatively curved Alex-
androv space of dimension n. Let F1; : : : ;F` be a stratification of @M . For any
p 2M n @M we have that

ˇ̌
"

Fi
p "

Fj

p

ˇ̌
�
�
2

for all i ¤ j . This implies that ` � 2n.
Now assume that equality holds. It is easy to see that all points in M n @M are regular
and shortest paths to any Fi are unique. Pick some p 2M n @M and assume, by
renumbering, that

ˇ̌
"

F1
p "

F2
p

ˇ̌
D � . It follows from semicontinuity of angles that such

points form an open set. This in turn implies that all points p 2M n @M fulfill thatˇ̌
"

F1
p "

F2
p

ˇ̌
D � . Hence, F1\F2 D∅, and Theorem 1.2 can be applied. The D–factor

is an interval, while the S –factor has dimension n� 1 and contains 2n� 2 boundary
strata. Iteration proves the statement.

Sketch of proof for Corollary 1.9 We consider the rays corresponding to the mC 2

points p1; : : : ;pmC2 in the ideal boundary at distance > �
2

from each other. Further,
we denote by b1; : : : ; bmC2 the Busemann functions corresponding to the rays. Let .ai/

be a monotonely increasing diverging sequence such that the intersections of sublevel
sets Mi WD b�1

1
.Œ0; ai �/\ : : :\ b�1

mC2
.Œ0; ai �/ are non-collapsed for all i 2 N . Then

each Mi is a compact nonnegatively curved Alexandrov space with mC 2 boundary
strata. Indeed, if it is not compact, we find a ray and therewith a point q in the ideal
boundary distinct from p1; : : : ;pmC2 . Since the distance function to each boundary
stratum is concave, we conclude that d.q;p`/ �

�
2

for ` D 1; : : : ;mC 2, which is
impossible.

For each i we denote the boundary strata of Mi by F1
i ; : : : ;F

mC2
i . Now Theorem 1.2

implies the following. If there exists a collection of strata F
n1

i ; : : : ;F
nkC1

1
with

minimal k such that F
n1

i \ : : :\F
nk

1
D∅ holds for infinitely many indices i , then

M splits off its soul of codimension k . For k < mC 1 this would imply that the
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.mC1/–dimensional cone over the ideal boundary also splits. This contradicts the
existence of p1; : : : ;pmC2 . On the other hand, if we show that for k D mC 1 the
intersection from above is indeed empty for infinitely many indices i , the Corollary
is proved. We assume, by way of contradiction, that F1

i \ : : :\FmC2
i is nonempty

for almost all indices i . If we rescale the spaces Mi keeping the diameter constant,
we see that the asymptotic cone of this sequence coincides with the asymptotic cone
of M cut down to the intersection of sublevel sets of the Busemann functions. In
particular, we get an intersection of mC 2 boundary strata in a space of dimension
mC 1, contradiction.
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