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Nonvarying sums of Lyapunov exponents
of Abelian differentials in low genus

DAWEI CHEN

MARTIN MÖLLER

We show that for many strata of Abelian differentials in low genus the sum of
Lyapunov exponents for the Teichmüller geodesic flow is the same for all Teichmüller
curves in that stratum, hence equal to the sum of Lyapunov exponents for the whole
stratum. This behavior is due to the disjointness property of Teichmüller curves with
various geometrically defined divisors on moduli spaces of curves.

14H10; 37D40, 14H51

1 Introduction

Lyapunov exponents of dynamical systems are often hard to calculate explicitly. For
the Teichmüller geodesic flow on the moduli space of Abelian differentials at least the
sum of the positive Lyapunov exponents is accessible for two cases. The moduli space
decomposes into various strata, each of which carries a finite invariant measure with
full support. For these measures the sum of Lyapunov exponents can be calculated
using results of Eskin, Masur and Zorich [16] together with results of Eskin and
McMullen [15]. On the other hand, the strata contain many Teichmüller curves, eg
those generated by square-tiled surfaces. For Teichmüller curves an algorithm in [15]
calculates the sum of Lyapunov exponents, of course only one Teichmüller curve at a
time.

On several occasions, one likes to have estimates, or even the precise values of Lyapunov
exponents for all Teichmüller curves in the same stratum simultaneously. For example,
it is shown by Delecroix, Hubert and Lelièvre in [13] that Lyapunov exponents are
responsible for the rate of diffusion in the wind-tree model, where the parameters of
the obstacle correspond to picking a flat surface in a fixed stratum. One would like to
know this escape rate not only for a specific choice of parameters nor for the generic
value of parameters but for all parameters.

Zorich communicated to the authors, that, based on a limited number of computer
experiments about a decade ago, Kontsevich and Zorich observed that the sum of
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Lyapunov exponents is nonvarying among all the Teichmüller curves in a stratum
roughly if the genus plus the number of zeros is less than seven, while the sum varies
if this sum is greater than seven.

In this paper we show that a more precise version of this numerical observation indeed
is true. More precisely, we treat the moduli space of genera less than or equal to five.
For each of its strata—with three spin-related exceptions—we either exhibit an example
showing that the sum is varying—the easy part—or prove that the sum is nonvarying.
The latter will be achieved by showing empty intersection of Teichmüller curves with
various geometrically defined divisors on moduli spaces of curves. We remark that
each stratum requires its own choice of divisor and its individual proof of disjointness,
with varying complexity of the argument. In complement to our low genus results we
mention a theorem of [15] that shows that for all hyperelliptic loci the sum of Lyapunov
exponents is nonvarying.

We now give the precise statement of what emerged out of the observation by Kontsevich
and Zorich. Let .m1; : : : ;mk/ be a partition of 2g�2. Denote by �Mg.m1; : : : ;mk/

the stratum parameterizing genus g Riemann surfaces with Abelian differentials that
have k distinct zeros of order m1; : : : ;mk . We say that the sum of Lyapunov exponents
is nonvarying in (a connected component of) a stratum �Mg.m1; : : : ;mk/, if for
all Teichmüller curves generated by a flat surface in �Mg.m1; : : : ;mk/ its sum of
Lyapunov exponents equals the sum for the finite invariant measure supported on (the
area one hypersurface of) the whole stratum.

Theorem 1.1 For all strata in genus g D 3 but the principal stratum the sum of
Lyapunov exponents is nonvarying.

For the principal stratum, the sum of Lyapunov exponents is bounded above by 2.
This bound can be attained for Teichmüller curves in the hyperelliptic locus, eg, for
Teichmüller curves that are unramified double covers of genus two curves and also for
Teichmüller curves that do not lie in the hyperelliptic locus.

Theorem 1.2 For the strata with signature .6/even , .6/odd , .5; 1/, .3; 3/, .3; 2; 1/ and
.2; 2; 2/odd as well as for the hyperelliptic strata in genus g D 4 the sum of Lyapunov
exponents is nonvarying.

For all the remaining strata, except maybe .4; 2/odd and .4; 2/even , the sum of Lyapunov
exponents is varying and bounded above by 5=2.

We give more precise upper bounds for the sum stratum by stratum in the text. We
remark that eg for �M4.4; 1; 1/ the sharp upper bound is 23=10, which is attained for
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hyperelliptic curves, whereas for all nonhyperelliptic curves in this stratum the sum of
Lyapunov exponents is bounded above by 21=10. This special role of the hyperelliptic
locus is visible throughout the paper.

For g D 5, since there are quite a lot of strata, we will not give a full discussion of
upper bounds for varying sums, but restrict to the cases where the sum is nonvarying.

Theorem 1.3 For the strata with signature .8/even , .8/odd and .5; 3/ as well as for the
hyperelliptic strata in genus g D 5 the sum of Lyapunov exponents is nonvarying.

For all the other strata, except maybe .6; 2/odd , the sum of Lyapunov exponents is
varying.

We also expect the three unconfirmed cases .4; 2/even , .4; 2/odd and .6; 2/odd to be
nonvarying1, but a proof most likely requires a good understanding of the moduli space
of spin curves, on which much less is known than on the moduli space of curves.

The above theorems seem to be the end of this nonvarying phenomenon. We cannot
claim that there is not a single further stratum of genus greater than five and not
hyperelliptic, where the sum is nonvarying. But while the sum in strata with a single
zero is always nonvarying for g � 5, the sum does vary in both nonhyperelliptic
components of the stratum �M6.10/, as we show in Proposition 7.4.

As mentioned above, by [15] for hyperelliptic strata in any genus the sum of Lyapunov
exponents is nonvarying. This has significance not only in dynamics, but also in
the study of birational geometry of moduli spaces. In Theorem 8.1 we mention one
application to the extremality of certain divisor classes on the moduli space of pointed
curves, which answers a question posed by Harris [25, page 413] and Harris and
Morrison [27, Problem (6.34)].

We now describe our strategy. One can associate the three quantities of ‘slope’, ‘Siegel–
Veech constant’ and ‘the sum of Lyapunov exponents’ to a Teichmüller curve. Any
one of the three determines the other two. Hence it suffices to verify the nonvarying
property for slopes. To do this, we exhibit a geometrically defined divisor on the moduli
space of curves and show that Teichmüller curves in a stratum do not intersect this
divisor. It implies that those Teichmüller curves have the same slope as that of the
divisor.

The slope of the divisors, more generally their divisor classes in the Picard group of
the moduli space, can be retrieved from the literature in most cases we need. In the

1Recently Yu and Zuo [41] confirmed the three cases using filtration of the Hodge bundle. See also the
authors’ [9, Theorem A.9] for a detailed explanation.
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remaining cases, we apply the standard procedure using test curves to calculate the
divisor class.

Frequently, we also need to consider the moduli space of curves with marked points
or spin structures, but the basic idea remains the same. For upper bounds of sums
of Lyapunov exponents, they follow from the nonnegative intersection property of
Teichmüller curves with various divisors on moduli spaces.

Technically, some of the complications arise from the fact that the disjointness of a
Teichmüller curve with a divisor is relatively easy to check in the interior of the moduli
space, but requires extra care when dealing with stable nodal curves in the boundary.

In a sequel paper [9] we consider Teichmüller curves generated by quadratic differentials
and verify many nonvarying strata of quadratic differentials in low genus. These results
immediately trigger a number of questions. Just to mention the most obvious ones:
What about measures supported on manifolds of intermediate dimension? What about
the value distribution for the sums in a stratum where the sum is varying? We hope to
treat these questions in the future.

This paper is organized as follows. In Sections 2, 3 and 4 we give a background
introduction to moduli spaces and their divisors, as well as to Teichmüller curves and
Lyapunov exponents. In particular, in Section 3.3 we study the properties of Teichmüller
curves that are needed in the proof and in Section 4.3 we describe the upshot of our
strategy. Our main results for g D 3, g D 4 and g D 5 are proved in Sections 5, 6
and 7, respectively. Finally in Section 8 we discuss an application of the Teichmüller
curves in the hyperelliptic strata to the geometry of moduli spaces of pointed curves.
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2 Background on moduli spaces

2.1 Strata of �Mg and hyperelliptic loci

Let �Mg denote the vector bundle of holomorphic one-forms over the moduli
space Mg of genus g curves minus the zero section and let P�Mg denote the asso-
ciated projective bundle. The spaces �Mg and P�Mg are stratified according to the
zeros of one-forms. For mi �1 and

Pk
iD1miD2g�2, let �Mg.m1; : : : ;mk/ denote

the stratum parameterizing one-forms that have k distinct zeros of order m1; : : : ;mk .

Denote by SMg the Deligne–Mumford compactification of Mg . The boundary of SMg

parameterizes stable nodal curves, where the stability means the dualizing sheaf of
the curve is ample, or equivalently, the normalization of any rational component needs
to possess at least three special points coming from the inverse images of the nodes.
The bundle of holomorphic one-forms extends over SMg , parameterizing stable one-
forms or equivalently sections of the dualizing sheaf. We denote the total space of this
extension by � SMg .

Points in �Mg , called flat surfaces, are usually written as .X; !/ for a one-form !

on X . For a stable curve X , denote the dualizing sheaf by !X . We will stick to the
notation that points in � SMg are given by a pair .X; !/ with ! 2H 0.X; !X /.

For di � �1 and
Ps

iD1 di D 4g � 4, let Q.d1; : : : ; ds/ denote the moduli space of
quadratic differentials that have s distinct zeros or poles of order d1; : : : ; ds . The
condition di � �1 ensures that the quadratic differentials in Q.d1; : : : ; ds/ have at
most simple poles. Namely, Q.d1; : : : ; ds/ parameterizes pairs .X; q/ of a Riemann
surface X and a meromorphic section q of !˝2

X
with the prescribed type of zeros and

poles. Pairs .X; q/ are called half-translation surfaces. They appear occasionally to
provide examples via the following construction.

If the quadratic differential is not a global square of a one-form, there is a natural
double covering � W Y !X such that ��q D !2 . This covering is ramified precisely
at the zeros of odd order of q and at its poles. It gives a map

�W Q.d1; : : : ; ds/!�Mg.m1; : : : ;mk/;

where the signature .m1; : : : ;mk/ is determined by the ramification type. Indeed � is
an immersion (see Kontsevich and Zorich [33, Lemma 1]).

There are two cases where the domain and the range of the map � have the same
dimension:

Q.�12gC1; 2g� 3/!�Mg.2g� 2/;

Q.�12gC2; 2g� 2/!�Mg.g� 1;g� 1/I
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see [33, page 637]. In both cases we call the image a component of hyperelliptic flat
surfaces of the corresponding stratum of Abelian differentials. Note that for both cases
the domain of � parameterizes genus zero curves. More generally, if the domain of �
parameterizes genus zero curves, we call the image a locus of hyperelliptic flat surfaces
in the corresponding stratum. These loci are often called hyperelliptic loci, for example
in [33; 15]. We prefer to reserve hyperelliptic locus for the subset of Mg (or its closure
in SMg , see also Section 2.5) parameterizing hyperelliptic curves and thus specify with
‘flat surfaces’ if we speak of subsets of �Mg .

2.2 Spin structures and connected components of strata

A spin structure (or theta characteristic) on a smooth curve X is a line bundle L whose
square is the canonical bundle, ie L˝2 �KX . The parity of a spin structure is given
by h0.L/ mod 2. This parity is well-known to be deformation invariant. There is a
notion of spin structure on a stable curve, extending the smooth case (see Cornalba [10],
also recalled by Farkas and Verra in [20, Section 1]). We only need the following
consequence. The moduli space of spin curves xSg parameterizes pairs .X; �/, where �
is a theta characteristic of X . It has two components xS�g and xSCg distinguished by the
parity of the spin structure. The spin structures on stable curves are defined such that
the morphisms � W xS�g ! SMg and � W xSCg ! SMg are finite of degree 2g�1.2g � 1/

and 2g�1.2gC 1/, respectively, cf loc cit.

Recall the classification of connected components of strata in �Mg by Kontsevich
and Zorich [33, Theorem 1 on page 639].

Theorem 2.1 [33] The strata of �Mg have up to three connected components,
distinguished by the parity of the spin structure and by being hyperelliptic or not. For
g� 4, the strata �Mg.2g�2/ and �Mg.2k; 2k/ with an integer kD .g�1/=2 have
three components, the component of hyperelliptic flat surfaces and two components with
odd or even parity of the spin structure but not consisting exclusively of hyperelliptic
curves.

The stratum �M3.4/ has two components, �M3.4/
hyp and �M3.4/

odd . The stratum
�M3.2; 2/ also has two components, �M3.2; 2/

hyp and �M3.2; 2/
odd .

Each stratum �Mg.2k1; : : : ; 2kr / for r � 3 or r D 2 and k1 ¤ .g � 1/=2 has two
components determined by even and odd spin structures.

Each stratum �Mg.2k � 1; 2k � 1/ for k � 2 has two components, the compo-
nent of hyperelliptic flat surfaces �Mg.2k � 1; 2k � 1/hyp and the other component
�Mg.2k � 1; 2k � 1/non�hyp . In all the other cases, the stratum is connected.
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Consider the partition .2; : : : ; 2/. For .X; !/ 2 �Mg.2; : : : ; 2/
odd with div.!/ D

2
Pg�1

iD1
pi , the line bundle �DOX .

Pg�1
iD1

pi/ is an odd theta characteristic. Therefore,
we have a natural morphism

f W �Mg.2; : : : ; 2/
odd
! xS�g :

Note that f contracts the locus where h0.�/ > 1. Similarly one can define such a
morphism for even spin structures.

2.3 Picard groups of moduli spaces

Let Mg;n be the moduli space (treated as a stack instead of the course moduli scheme)
of genus g curves with n ordered marked points and let Mg;Œn� be the moduli space
of genus g curves with n unordered marked points. We write Pic.�/ for the rational
Picard group Picfun.�/Q of a moduli stack (see eg [27, Section 3.D] for more details).

We fix some standard notation for elements in the Picard group. Let � denote the first
Chern class of the Hodge bundle. Let ıi , i D 1; : : : ; bg=2c be the boundary divisor
of SMg whose generic element is a smooth curve of genus i joined at a node to a
smooth curve of genus g� i . The generic element of the boundary divisor ı0 is an
irreducible nodal curve of geometric genus g� 1. In the literature sometimes ı0 is
denoted by ıirr . We write ı for the total boundary class.

For moduli spaces with marked points we denote by !rel the relative dualizing sheaf
of SMg;1 !

SMg and !i;rel its pullback to SMg;n via the map forgetting all but the
i –th marked point. For a set S � f1; : : : ; ng we let ıiIS denote the boundary divisor
whose generic element is a smooth curve of genus i joined at a node to a smooth curve
of genus g� i and the sections in S lying on the first component.

Theorem 2.2 The rational Picard group of SMg is generated by � and the boundary
classes ıi , i D 0; : : : ; bg=2c.

More generally, the rational Picard group of SMg;n is generated by �, !i;rel , iD1; : : : ;n,
by ı0 and by ıiIS , i D 0; : : : ; bg=2c, where jS j> 1 if i D 0 and 1 2 S if i D g=2.

The above theorem essentially follows from Harer’s result H 0. SMg;Q/ŠQŒ�� [24].
The reader may also refer to Mumford [39] for a comparison between the rational
Picard group of the coarse moduli scheme and of the moduli stack, as well as Arbarello
and Cornalba [1] for the Picard group with integral coefficients.

Alternatively, define  i 2Pic. SMg;n/ to be the class with value ���.�2
i / on any family

of stable genus g curves � WX !C with section �i corresponding to the i –th marked

Geometry & Topology, Volume 16 (2012)



2434 Dawei Chen and Martin Möller

point. By induction on n, we have the relation

!i;rel D  i �

X
i2S

ı0IS I

see eg [1, page 161] and Logan [34, page 108]. Consequently, a generating set of
Pic. SMg;n/ can also be formed by the  i , � and boundary classes.

For a divisor class D D a��
Pbg=2c

iD0
biıi in Pic. SMg/, define its slope to be

s.D/D
a

b0

:

For our purpose the higher boundary divisors need not to be considered, as Teichmüller
curves generated by Abelian differentials do not intersect ıi for i >0 (see Corollary 3.2).

2.4 Linear series on curves

Many divisors on moduli spaces of curves are related to the geometry of linear series.
Here we review some basic properties of linear series on curves (see Arbarello, Cornalba,
Griffiths and Harris [2] for a comprehensive introduction).

Let X be a genus g curve and L a line bundle of degree d on X . Denote by jLj the
linear system parameterizing sections of L mod scalars, ie

jLj D fdiv.s/ j s 2H 0.L/g:

If h0.L/D n, then jLj Š Pn�1 . For a (projective) r –dimensional linear subspace V

of jLj, call .L;V / a linear series gr
d

. If L�OX .D/ for a divisor D on X , we also
denote by jOX .D/j or simply by jDj the linear system.

If all divisors parameterized in a linear series contain a common point p , then p is
called a base point. Otherwise, this linear series is called base-point-free. A base-point-
free gr

d
induces a morphism X ! P r . The divisors in this gr

d
correspond to (the

pullback of) hyperplane sections of the image curve. For instance, a hyperelliptic curve
admits a g1

2
, ie a double cover of P1 . The following fact will be used frequently when

we prove the disjointness of Teichmüller curves with a geometrically defined divisor.

Proposition 2.3 A point p is not a base point of a linear system jLj if and only if
h0.L/� 1D h0.L.�p//, where L.�p/D L˝OX .�p/.

Proof By the exact sequence

0! L.�p/! L!Op! 0;
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we know h0.L.�p// is either equal to h0.L/ or h0.L/� 1. The former happens if
and only if every section of jLj vanishes at p , in other words, if and only if p is a
base point of jLj.

The canonical linear system is a g
g�1
2g�2

, which induces an embedding to Pg�1 for
a nonhyperelliptic curve. The image of this embedding is called a canonical curve.
Let D be an effective divisor of degree d on X . Denote by �K .D/ the linear subspace
in Pg�1 spanned by the images of points in D under the canonical map �K . The
following geometric version of the Riemann–Roch theorem is useful for the study of
canonical curves (see [2, page 12] for more details).

Theorem 2.4 (Geometric Riemann–Roch) In the above setting, we have

dim jDj D d � 1� dim�K .D/:

We will focus on the geometry of canonical curves of low genus. Curves of genus 2 are
always hyperelliptic. For nonhyperelliptic curves of genus 3, their canonical images
correspond to plane quartics.

For g D 4, a nonhyperelliptic canonical curve X in P3 is a complete intersection cut
out by a quadric and a cubic. Any divisor D D pC qC r in a g1

3
of X spans a line

in P3 , by Geometric Riemann–Roch. This line intersects X at p; q; r , hence it is
contained in the quadric by Bézout. If the quadric is smooth, it is isomorphic to P1�P1 .
It has two families of lines, called two rulings. Any line in a ruling intersects X at three
points (with multiplicity), hence X has two different linear systems g1

3
corresponding

to the two rulings. If the quadric is singular, then it is a quadric cone with a unique
ruling, hence X has a unique g1

3
.

For g D 5, a general canonical curve is cut out by three quadric hypersurfaces in P4

and it does not have any g1
3

. On the other hand, a genus 5 curve with a g1
3

, ie a
trigonal curve, has canonical image contained in a cubic scroll surface, which is a
ruled surface of degree 3 in P4 . By Geometric Riemann–Roch, divisors in the g1

3

span rulings that sweep out the surface (see eg Reid [40, Section 2.10]).

Recall that on a nodal curve X , Serre duality and Riemann–Roch hold with the
dualizing sheaf !X in place of the canonical bundle (see eg [27, Section 3.A] for
more details). We also need the following generalized Clifford’s theorem for Deligne–
Mumford stable curves (see eg [2, page 107] for the case of smooth curves and
Caporaso [6, Theorems 3.3, 4.11] for the remaining cases). Following [6, Section 2.1]
let ıZ DZ �Zc be the number of intersection points of Z with its complement and
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wZ D 2g.Z/� 2C ıZ . A divisor D of degree d on a stable curve X is balanced, if
for every irreducible component Z �X we have

d
wZ

2g� 2
�
ıZ

2
� deg.DjZ /� d

wZ

2g� 2
�
ıZ

2
:

Theorem 2.5 (Clifford’s theorem) Let X be a stable curve and D an effective divisor
on X with deg.D/� 2g� 1. Then we have

h0.OX .D//� 1� deg.D/=2

if one of the following conditions holds: (i) X is smooth; (ii) X has at most two
components and D is balanced; (iii) X does not have separating nodes, deg.D/� 4

and D is balanced.

Finally we need to consider the canonical system of a stable curve associated to
its dualizing sheaf. This will help us discuss the boundary of Teichmüller curves.
Recall the dual graph of a nodal curve whose vertices correspond to its irreducible
components and edges correspond to intersections of these components. A graph is
called n–connected if one has to remove at least n edges to disconnect the graph. The
following fact characterizes canonical maps of stable curves based on the type of their
dual graphs (see Hassett [29, Proposition 2.3]).

Proposition 2.6 Let X be a stable curve of genus greater than or equal to 2. Then the
canonical linear system j!X j is base point free (resp. very ample) if and only if the
dual graph of X is two-connected (resp. three-connected and X is not in the closure of
the locus of hyperelliptic curves).

2.5 Special divisors on moduli spaces

In the application for Teichmüller curves generated by flat surfaces we do not care about
the coefficients of ıi for i � 1 in the divisor classes in Pic. SMg/, since Teichmüller
curves do not intersect those components (see Corollary 3.2). As shorthand, we use ıother

to denote some linear combination of ıi for i � 1. Similarly, in SMg;n we use ıother to
denote some linear combination of all boundary divisors but ı0 . By the same reason
we do not distinguish between !i;rel and  i for a divisor class, since they only differ
by boundary classes in ıother .

The hyperelliptic locus in SM3 Denote by H � SMg the closure of locus of genus g

hyperelliptic curves. We call H the hyperelliptic locus in SMg . Note that H is a
divisor if and only if g D 3. A stable curve X lies in the boundary of H if there is an
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admissible cover of degree two zX ! P1 , for some nodal curve zX whose stabilization
is X . We refer to [27, Section 3.G] for an excellent introduction to admissible covers.

The class of the hyperelliptic locus H � SM3 calculated eg in [27, page 188] is given
as follows:

(1) H D 9�� ı0� 3ı1I

hence it has slope s.H /D 9.

Divisors of Weierstrass points Let W � SMg;1 be the divisor parameterizing a curve
with a Weierstrass point. In [12, (2.0.12) on page 328], Cukierman calculated the class
of W for all g , which specializes as follows:

(2) W D 6!rel��� ıother; for g D 3:

The theta-null divisor Consider the divisor ‚� SMg;1 parameterizing .X;p/ such
that X admits an odd theta characteristic whose support contains p . The class of ‚
was calculated by Farkas in [19, Theorem 0.2], which specializes as follows:

(3) ‚D 30�C 60!rel� 4ı0� ıother; for g D 4:

The Brill–Noether divisors The Brill–Noether locus BNr
d

in SMg parameterizes
curves X that possesses a gr

d
. If the Brill–Noether number is �1, ie

�.g; r; d/D g� .r C 1/.g� d C r/D�1;

then BNr
d

is indeed a divisor. We remark that nowadays Mr
g;d

is more commonly
used to denote the Brill–Noether divisors, but we decide to reserve M for the moduli
space only.

There are pointed versions of this divisor. Let wD .w1; : : : ; wn/ be a tuple of integers.
Let BNr

d;w
be the locus in SMg;n of pointed curves .X;p1; : : : ;pn/ with a line bundle L

of degree d such that L admits a gr
d

and h0.L.�
P
wipi//� r . This Brill–Noether

locus is a divisor, if the generalized Brill–Noether number is �1, ie

�.g; r; d; w/D g� .r C 1/.g� d C r/� r.jwj � 1/D�1:

The hyperelliptic divisor and the Weierstrass divisor could also be interpreted as Brill–
Noether divisors, but we stick to the traditional notation for them.

The class of these pointed divisors has been calculated in many special cases, in
particular in [34] and later by Farkas in [18]. We collect the results that are needed
here.
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The class of the classical Brill–Noether divisor for r D 1 was calculated by Harris and
Mumford in [28, page 24], and in particular

(4) BN1
3 D 8�� ı0� ıother; for g D 5:

If jwj D g D d and r D 1 the class of the Brill–Noether divisor was calculated in [34,
Theorem 5.4]. It has class

BN1
g;w D��C

kX
iD1

wi.wi C 1/

2
!i;rel� ıother:

In particular for w D .1; 2/, it specializes as follows:

(5) BN1
3;.1;2/ D��C!1;relC 3!2;rel� ıother; for g D 3;

For w D .1; 1; 2/, it specializes as follows:

(6) BN1
4;.1;1;2/ D��C!1;relC!2;relC 3!3;rel� ıother; for g D 4:

If r D 1 and wD .2/, the class of the divisor was also calculated in [34]. It specializes
to

(7) BN1
3;.2/ D 4!relC 8�� ı0� ıother; for g D 4:

If all wi D 1 and nD r C 1 the Brill–Noether divisor specializes to the divisor Lin
calculated in [18, Section 4.2]. In particular [18, Theorem 4.6] gives

(8) Lin1
3 D BN1

3;.1;1/ D�!1;rel�!2;relC 8�� ı0� ıother; for g D 4:

Generalizing the calculation of Logan for r D 1 and nD 1 to arbitrary weight w1 , one
obtains the divisor called Nfold1

d .1/ in the proof of [18, Theorem 4.9]. From the proof
one deduces

(9) Nfold1
4.1/D BN1

4;.3/ D 7�C 15!rel� ı0� ıother; for g D 5:

Nfold.1/ is a degeneration of the divisor Nfold in [18]. A partial degeneration is
Nfold.2/D BN1

4;.1;2/
in SM5;2 . It has class

(10) Nfold1
4.2/D BN1

4;.1;2/ D 7�C 7!1;relC 2!2;rel� ı0� ıother; for g D 5:

Since this divisor class was not explicitly written out in [18], below we give a proof.

Proof of (10) Using the same logic in the proof of [18, Theorems 4.6, 4.9], �; ı0;  1

have nonvarying coefficients in Nfold1
4 , which is BN1

4;.1;1;1/
in our notation, and in

Nfold1
4.2/. Hence we have

Nfold1
4.2/D 7�� ı0C 2 1C c 2� eı0If1;2g� ıother:

Geometry & Topology, Volume 16 (2012)



Nonvarying sums of Lyapunov exponents 2439

We have to take ı0If1;2g into account, because the test curves used below inter-
sect ı0If1;2g . Let X be a general curve of genus five. Take a fixed general point x2

on X and move another point x1 along C . Call this family B1 . We have

B1 ��D 0; B1 � ı0 D 0; B1 � ı0If1;2g D 1;

B1 � 1 D 9; B1 � 2 D 1:

The intersection number B1 �Nfold1
4.2/ can be calculated using [34, Proposition 3.4]

by setting a1 D 2; a2 D 1;g D 5; hD 1, and it equals 10. Note that Logan counts the
number of pairs (p2; q1 ), which equals 5, but for our purpose x1 can be either p2

or q1 , so we double the counting. We thus obtain a relation

c � eC 8D 0:

Now fix a general point x1 and move another point x2 along X . Call this family B2 .
We have

B2 ��D 0; B2 � ı0If1;2g D 1;

B2 � 1 D 1; B2 � 2 D 9:

The intersection number B2 �Nfold.2/ can also be calculated using [34, Proposition 3.4]
by setting a1D 1; a2D 2;gD 5; hD 1, and it equals 50. This equals Logan’s counting,
since in the pair .p2; q1/ now p2 has weight 2, which distinguishes it from q1 . We
then obtain another relation

9c � e� 48D 0:

Combining the two relations we conclude that c D 7; e D 15, which completes the
proof.

Gieseker–Petri divisors Consider a linear series .L;V / 2 Gr
d
.X / for a linear sub-

space V �H 0.L/ of dimension r C 1, deg.L/D d and the multiplication map

�W V ˝H 0.!X ˝L�1/!H 0.!X /:

Define the Gieseker–Petri locus

GPr
g;d D fŒX � 2

SMg; 9 base-point-free .L;V / 2Gr
d .X / such that � is not injectiveg:

The divisor class of the Gieseker–Petri locus in the case r D 1 was calculated by
Eisenbud and Harris in [14, Theorem 2]. It specializes to

(11) GPD 17�� 2ı0C ıother; for g D 4:
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Alternatively, one can describe GP in M4 as follows. The canonical image of a
genus 4 nonhyperelliptic curve is contained in a quadric surface in P3 . Then GP is
the closure of the locus where this quadric is singular (see eg [2, page 196]).

3 Teichmüller curves and their boundary points

We quickly recall the definition of Teichmüller curves and of square-tiled surfaces
which serve as main examples. New results on the boundary behavior of Teichmüller
curves needed later are collected in Section 3.3.

3.1 Teichmüller curves as fibered surfaces

A Teichmüller curve C !Mg is an algebraic curve in the moduli space of curves
that is totally geodesic with respect to the Teichmüller metric. There exists a finite
unramified cover B! C such that the monodromies around the ‘punctures’ xB nB

are unipotent and such that the universal family over some level covering of Mg pulls
back to a family of curves f W X !B . We denote by f W X ! xB a relatively minimal
semistable model of a fibered surface of fiber genus g with smooth total space. Let
�� xB be the set of points with singular fibers, hence B D xB n�. See eg the second
author [36] for more on this setup. By a further finite unramified covering (outside �)
we may suppose that the zeros of ! on X extend to sections �i of f . We denote by
Si � X the images of these sections.

Teichmüller curves arise as the SL2.R/–orbit of special flat surfaces or half-translation
surfaces, called Veech surfaces. We deal here with the first case only and denote by
.X; !/ a generating flat surface, if its SL2.R/ orbit gives rise to a Teichmüller curve.
Teichmüller curves come with a uniformization C DH=SL.X; !/, where SL.X; !/
is the affine group (or Veech group) of the flat surface .X; !/. Let K DQ.tr. /;  2
SL.X; !// denote the trace field of the affine group and let L=Q denote the Galois
closure of K=Q.

The variation of Hodge structure (VHS) over a Teichmüller curve decomposes into
sub-VHS

R1f�C D .˚�2Gal.L=Q/=Gal.K=Q/L
� /˚M;

where L is the VHS with the standard ‘affine group’ representation, L� are the Galois
conjugates and M is just some representation ([36, Proposition 2.4]). One of the
purposes of our work is to shed some light on what possibilities for the numerical data
of M can occur.
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3.2 Square-tiled surfaces

A square-tiled surface is a flat surface .X; !/, where X is obtained as a covering of a
torus ramified over one point only and ! is the pullback of a holomorphic one-form on
the torus. It is well-known that in this case SL.X; !/ is commensurable to SL2.Z/,
hence L has no Galois conjugates or equivalently, the rank of M is 2g� 2.

In order to specify a square-tiled surface covered by d squares, it suffices to specify
the monodromy of the covering. Take a standard torus E by identifying via affine
translation the two pairs of parallel edges of the unit square Œ0; 1�� Œ0; i �. Consider the
closed, oriented paths uD Œ0; 1� on the horizontal axis and r D Œ0; i � on the vertical
axis. The indices u and r correspond to ‘up’ and ‘right’, respectively. Note that u

and r form a basis of �1.E; b/, where b is a base point in E . Going along u and r

induces two permutations .�u; �r / on the d sheets of a degree d cover of E . Hence
�u; �r can be regarded as elements in the symmetric group Sd . Conversely, given
such a pair .�u; �r /, one can construct a degree d cover of E (possibly disconnected)
ramified over one point only. The domain of the covering is connected if and only if
the subgroup in Sd generated by �u; �r acts transitively on the d letters. Moreover,
the ramification profile over b is determined by the commutator ��1

u ��1
r �u�r .

The surface in Figure 1 corresponds to a degree 5, genus 2, connected cover of the
standard torus: It is easy to see that the monodromy permutations for this square-tiled

1 2 3 4

5

Figure 1: A square-tiled surface of degree 5 and genus 2

surface are given by .�u D .15/.2/.3/.4/; �r D .1234/.5//. Here a cycle .a1 : : : ak/

means the permutation sends ai to aiC1 for 1� i �k�1 and sends ak back to a1 . One
can check that ��1

u ��1
r �u�r D .154/.2/.3/. Therefore, the corresponding covering

has a unique ramification point marked by � with ramification order 2D 3� 1 arising
from the length 3 cycle, since locally the three sheets labeled by 1; 5; 4 get permuted
at that point. By Riemann–Hurwitz, the domain of the covering has genus equal to 2.
The pullback of dz from E is a one-form in the stratum �M2.2/.

Based on the monodromy data, one can directly calculate the Siegel–Veech constant
as well as the sum of Lyapunov exponents (introduced in the next section) for a
Teichmüller curve generated by a square-tiled surface (see [15]). Later on we will
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use square-tiled surfaces to produce examples of Teichmüller curves that have varying
sums of Lyapunov exponents.

3.3 Properties of Teichmüller curves

Here we collect the properties of the boundary points of Teichmüller curves that are
needed in the proofs in the subsequent sections. We will use xC to denote the closure
of a Teichmüller curve C in the compactified moduli space.

Let � be a partition of 2g � 2. If �0 is another partition and if it can be obtained
from � by successively combining two entries into one, we say that �0 is a degeneration
of �. For instance, .2; 6/ is a degeneration of .1; 1; 3; 3/. Geometrically speaking,
combining two entries i; j corresponds to merging two zeros of order i; j into a single
zero of order i C j .

Proposition 3.1 Suppose C is a Teichmüller curve generated by a flat surface in
�Mg.�/ and let �0 be a degeneration of �. Then xC in P� SMg.�/ is disjoint from
P� SMg.�

0/.

Proof The claim is obvious over the interior of the moduli space. We only need to
check the disjointness over the boundary. The cusps of Teichmüller curves are obtained
by applying the Teichmüller geodesic flow diag.et ; e�t / to the direction of the flat
surface .X; !/ in which .X; !/ decomposes completely into cylinders. The stable
surface at the cusp is obtained by ‘squeezing’ the core curves of these cylinders. This
follows from the explicit description by Masur in [35]. Since the zeros of ! are located
away from the core curves of the cylinders, the claim follows.

For a nodal curve, a node is called separating if removing it disconnects the curve.

Corollary 3.2 The section ! of the canonical bundle of each smooth fiber over a
Teichmüller curve C extends to a section !1 of the dualizing sheaf for each singular
fiber X1 over the closure of a Teichmüller curve. The signature of zeros of !1 is the
same as that of ! . Moreover, X1 does not have separating nodes. In particular, xC
does not intersect ıi for i > 0.

Proof The first statement follows from the description in the preceding proof. The
fact that X1 does not have separating nodes is a consequence of the topological fact
that a core curve of a cylinder can never disconnect a flat surface. It implies that xC
does not intersect the boundary divisors ıi for i > 0 on SMg , because by definition a
curve parameterized in ıi for i > 0 possesses at least one separating node.
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Corollary 3.3 For Teichmüller curves generated by a flat surface in �Mg.2g� 2/

the degenerate fibers are irreducible.

For Teichmüller curves generated by a flat surface in �Mg.k1; k2/, with k1 � k2 both
odd, the degenerate fibers are irreducible or consist of two components of genus gi for
i D 1; 2 joined at n nodes for an odd number n such that 2gi � 2C nD ki .

Proof Let X be a degenerate fiber and Z a component of X . The dualizing sheaf of X

restricted to Z has positive degree equal to 2gZ �2CıZ , where ıZ is the intersection
number of Z with its complement in X . For the case �Mg.2g�2/, by Corollary 3.2
it implies that X only has one component, hence it is irreducible. For the case
�Mg.k1; k2/, it implies that X is either irreducible or has two components Z1;Z2 .
For the latter suppose Zi contains the ki –fold zero. By assumption 2gi�2CıZi

D ki

is odd, hence ıZ1
D ıZ2

D n is also odd.

Proposition 3.4 Let C be a Teichmüller curve generated by a flat surface .X; !/
in �Mg.�/. Suppose an irreducible degenerate fiber X1 over a cusp of C is
hyperelliptic. Then X is hyperelliptic, hence the whole Teichmüller curve lies in
the locus of hyperelliptic flat surfaces.

Moreover, if � 2 f.4/; .3; 1/; .6/; .5; 1/; .3; 3/; .3; 2; 1/; .8/; .5; 3/g and .X; !/ is not
hyperelliptic, then no degenerate fiber of the Teichmüller curve is hyperelliptic.

The last conclusion does not hold for all strata. For instance, Teichmüller curves gener-
ated by a nonhyperelliptic flat surface in the stratum �M3.2; 1; 1/ always intersect
the hyperelliptic locus at the boundary, as we will see later in the discussion for that
stratum.

As motivation for the proof, recall why a Teichmüller curve generated by .X; !/

with X hyperelliptic stays within the corresponding locus of hyperelliptic flat surfaces.
The hyperelliptic involution acts as .�1/ on all one-forms, hence on ! . In the flat
coordinates of X given by Re.!/ and Im.!/, the hyperelliptic involution acts by the
matrix �Id. The Teichmüller curve is the SL2.R/–orbit of .X; !/ and �Id is in the
center of SL2.R/. So if .X; !/ admits a hyperelliptic involution, so does A � .X; !/

for any A 2 SL2.R/.

Proof Suppose the stable model X1 of the degenerate fiber is irreducible of geometric
genus h with .g� h/ pairs of points .pi ; qi/ identified. This stable curve X1 being
hyperelliptic means that there exists a semistable curve birational to X1 that admits a
degree two admissible cover of the projective line. In terms of admissible covers, this
is yet equivalent to require that the normalization Xn of X1 is branched at 2hC 2
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branch points over a main component (ie the image of the unique component not
contracted under that passage to the stable model) with covering group generated by an
involution � and, moreover, for each of the 2.g�h/ nodes there is a projective line
intersecting Xn in pi and qi D �.pi/ with two branch points.

In the flat coordinates of Xn given by ! , the surface consists of a compact surface X0

with boundary of genus h and 2.g�h/ half-infinite cylinders (corresponding to the
nodes) attached to the boundary of X0 . We may define X0 canonically, by sweeping
out the half-infinite cylinder at pi (or qi ) with lines of slope equal to the residue
(considered as element in R2 ) of ! at pi until such a line hits a zero of ! , ie a
singularity of the flat structure.

With this normalization, the above discussion shows that for irreducible stable curves
the hyperelliptic involution exchanges the half-infinite cylinders corresponding to pi

and qi and it defines an involution � of X0 . As in the smooth case, � acts as �Id
on X0 .

To obtain smooth fibers over the Teichmüller curve (in a neighborhood of X1 ) one
has to glue cylinders of finite (large) height in place of the half-infinite cylinders of
appropriate ratios of moduli. The hypothesis on � acting on X0 and on the half-infinite
cylinders implies that � is a well-defined involution on the smooth curves. Moreover, �
has two fixed points in each of the finite cylinders and 2hC 2 fixed points on X0 ,
making 2gC2 fixed points in total. This shows that the smooth fibers of the Teichmüller
curve are hyperelliptic.

To complete the proof we have to consider the two-component degenerations for
� 2 f.3; 1/; .5; 1/; .5; 3/g by Corollary 3.3. In all these cases, the hyperelliptic involu-
tions can neither exchange the components (since the zeros are of different order) nor
fix the components (since the zeros are of odd order).

For �D .3; 3/ a hyperelliptic involution � cannot fix the component, since 3 is odd. It
cannot exchange the two components and exchange a pair of half-infinite cylinders that
belong to different nodes, since � could then be used to define a nontrivial involution
for each component. This involution fixes the zeros and this contradicts that 3 is odd.
If � exchanges all pairs of half-infinite cylinders that belong to the same node, � has
two fixed points in each cylinder on the smooth ‘opened up’ surface. Now we can
apply the same argument as in the irreducible case to conclude that the ‘opened up’
flat surfaces are hyperelliptic as well.

For � D .3; 2; 1/ a hyperelliptic involution can neither fix the component with the
(unique) zero of order three, since 3 is odd, nor map it elsewhere, since the zeros are of
different order.
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4 Lyapunov exponents, Siegel–Veech constants and slopes

4.1 Lyapunov exponents

Fix an SL2.R/–invariant, ergodic measure m on �Mg . The Lyapunov exponents for
the Teichmüller geodesic flow on �Mg measure the logarithm of the growth rate of
the Hodge norm of cohomology classes during parallel transport along the geodesic
flow. More precisely, let V be the restriction of the real Hodge bundle (ie the bundle
with fibers H 1.X;R/) to the support M of m. Let St be the lift of the geodesic flow
to V via the Gauss–Manin connection. Then Oseledec’s theorem shows the existence
of a filtration

V D V�1
� � � � � V�k

� 0

by measurable vector subbundles with the property that, for almost all p 2M and all
v 2 Vp n f0g, one has

jjSt .v/jj D exp.�i t C o.t//;

where i is the maximum value such that v is in the fiber of Vi over p , ie v 2 .Vi/p .
The numbers �i for i D 1; : : : ; k � rank.V / are called the Lyapunov exponents of St .
Note that these exponents are unchanged if we replace the support of m by a finite
unramified covering with a lift of the flow and the pullback of V . We adopt the
convention to repeat the exponents according to the rank of Vi=ViC1 such that we will
always have 2g of them, possibly some of them equal. Since V is symplectic, the
spectrum is symmetric, ie �gCk D��g�kC1 . The reader may consult Forni [22] or
Zorich [42] for a more detailed introduction to this subject.

Most of our results will be about the sum of Lyapunov exponents, defined as

LD

gX
iD1

�i :

This sum depends, of course, on the measure m chosen and we occasionally write L.m/

to emphasize this dependence. In particular, one defines Lyapunov exponents for an
SL2.R/–invariant suborbifold of �Mg carrying such a measure m. We will focus on
the case of a Teichmüller curve C . Consequently, we use L.C / to denote the sum of
its Lyapunov exponents.

The bridge between the ‘dynamical’ definition of Lyapunov exponents and the ‘alge-
braic’ method applied in the sequel is given by the following result. Note that if the
VHS splits into direct summands one can apply Oseledec’s theorem to the summands
individually. The full set of Lyapunov exponents is the union (with multiplicity) of the
Lyapunov exponents of the summands.
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Theorem 4.1 (Kontsevich [31], Kontsevich and Zorich [32], Bouw and the second
author [5]) If the VHS over the Teichmüller curve contains a sub-VHS W of rank 2k ,
then the sum of the k corresponding nonnegative Lyapunov exponents equals

kX
iD1

�W
i D

2 deg W .1;0/

2g. xB/� 2Cj�j
;

where W .1;0/ is the .1; 0/–part of the Hodge-filtration of the vector bundle associated
with W . In particular, we have

gX
iD1

�i D
2 degf�!X= xB

2g. xB/� 2Cj�j
:

4.2 Lyapunov exponents for loci of hyperelliptic flat surfaces

We recall a result of [15, Section 2.3] that deals with the sum of Lyapunov exponents for
Teichmüller curves generated by hyperelliptic curves, more generally for any invariant
measure on loci of hyperelliptic flat surfaces. It implies immediately that hyperelliptic
strata are nonvarying.

Theorem 4.2 [15] Suppose that M is a regular SL2.R/–invariant suborbifold in a
locus of hyperelliptic flat surfaces of some stratum �Mg.m1; : : : ;mk/. Denote by
.d1; : : : ; ds/ the orders of singularities of the underlying quadratic differentials on the
quotient projective line.

Then the sum of Lyapunov exponents for M is

L.M /D
1

4
�

X
j such that
dj is odd

1

dj C 2
;

where, as usual, we associate the order di D�1 to simple poles.

Corollary 4.3 Hyperelliptic strata are nonvarying. For a Teichmüller curve C gener-
ated by .X; !/ we have

L.C /D
g2

2g� 1
; s.C /D 8C

4

g
; if .X; !/ 2�Mhyp

g .2g� 2/;

L.C /D
gC 1

2
; s.C /D 8C

4

g
; if .X; !/ 2�Mhyp

g .g� 1;g� 1/:

(12)
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4.3 Siegel–Veech constants, slopes and the sum of Lyapunov exponents

Write �D .m1; : : : ;mk/ for a partition of 2g� 2. Let c� denote the (area) Siegel–
Veech constant of (the connected component of) the stratum �Mg.�/. Roughly
speaking, c� measures the growth rate of the weighted sum of cylinders of length at
most T on a flat surface .X; !/ in �Mg.�/. The weight for each horizontal cylinder
is given by its height/length. Similarly, one can define the Siegel–Veech constant c.C /

for a Teichmüller curve C , or more generally for any SL2.R/–invariant suborbifold in
�Mg.�/ (see [15; 16] for a comprehensive introduction to Siegel–Veech constants).

Let �� be a constant

�� D
1

12

kX
iD1

mi.mi C 2/

mi C 1
;

determined by the signature of the stratum. The Siegel–Veech constant and the sum
of Lyapunov exponents are related as follows. The condition of regularity in the next
theorem is a technical notion that holds for all known examples of invariant suborbifolds
and is expected to hold generally (see [15, Section 1.5] for more details).

Theorem 4.4 [15] For any regular SL2.R/–invariant finite measure m on the stratum
�Mg.�/ we have

(13) L.m/D ��C c.m/:

In particular the regularity and hence the equality hold for the measure with support
equal to a connected component of �Mg.�/ and for the measure supported on a
Teichmüller curve.

For any given Teichmüller curve at a time this theorem allows to calculate the sum
of Lyapunov exponents. It suffices to calculate the cusps (in practice, eg for a square-
tiled surface, this amounts to calculating the Veech group) and to evaluate the (area)
Siegel–Veech contribution of the cusp.

Let s.C / be the slope of a Teichmüller curve C defined by

s.C /D
xC � ı0
xC ��

:

Since a Teichmüller curve generated by a flat surface does not intersect ıi in SMg for
i > 0 (see Corollary 3.2), its slope can also be defined as

s.C /D
xC � ı

xC ��
;
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where ı D
PŒg=2�

iD0
ıi is the total boundary divisor. The latter is more commonly used

for the slope of an arbitrary one-dimensional family of stable genus g curves.

Given a Teichmüller curve C , one has to understand only one of the quantities L.C /,
c.C / and s.C /, because of the relation in Theorem 4.4 and another relation as follows.

Proposition 4.5 For a Teichmüller curve C generated by a flat surface, we have

(14) s.C /D
12c.C /

L.C /
D 12�

12��

L.C /
:

Proof This is a consequence of the Noether formula

12�D ıCf�.c
2
1.!X= xC //;

as shown by the first author in [8, Theorem 1.8].

We can also directly see how it works. By Theorem 4.1 we know � �L.C /D 2 deg�,
where � D 2g.C /� 2C j�j. Using the Noether formula, the class of !X= xC in the
proof of Proposition 4.8 and Theorem 4.4, we can derive that 6� �c.C /D deg ı . Hence
the equality (14) follows immediately.

Now our strategy becomes clear. In order to show a stratum is nonvarying, it suffices
to show all Teichmüller curves in that stratum are disjoint from an effective divisor
on SMg , hence they all have the same slope as that of the divisor. Then by (14), they
have the same sum of Lyapunov exponents as well. We summarize this idea as follows.

Lemma 4.6 Let D be an effective divisor on SMg . Suppose the closures of all
Teichmüller curves xC generated by flat surfaces in a fixed stratum do not intersect D .
Then they have the same slope s.C / D s.D/. In particular, the sums of Lyapunov
exponents are the same for these Teichmüller curves.

Proof Recall the slope of an effective divisor defined in Section 2.3. Suppose D has
class a��

PŒg=2�
iD0

biıi . Then it has slope s.D/D a=b0 . Since xC �DD 0 and xC �ıi D 0

for i > 0 (Corollary 3.2), we conclude that

xC � ı0
xC ��

D
a

b0

I

hence s.C /D s.D/. Since the slopes are nonvarying, so are the sums of Lyapunov
exponents and the Siegel–Veech constants for those Teichmüller curves, according
to (14).

Geometry & Topology, Volume 16 (2012)



Nonvarying sums of Lyapunov exponents 2449

The same argument can help us find upper bounds for the slope as well as for the sum
of Lyapunov exponents for a Teichmüller curve.

Lemma 4.7 Let D be an effective divisor on SMg . Suppose a Teichmüller curve C is
not contained in D . Then we have s.C /� s.D/.

Proof Suppose D has class a��
PŒg=2�

iD0
biıi . By assumption we have C �D � 0. It

implies that a. xC ��/� b0. xC � ı0/� 0, hence

s.C /D
xC � ı0
xC ��

�
a

b0

D s.D/:

In some cases it is not possible to find an effective divisor on SMg to perform the
disjointness argument (see eg the explanation in Section 5.3). Alternatively, we have to
consider moduli spaces of curves with marked points or spin structures. Consequently
we need to know the intersection of Teichmüller curves with the classes !i;rel introduced
in Section 2.3.

Let C be a Teichmüller curve generated by .X; !/2�Mg.m1; : : : ;mk/. Let B!C

be a finite unramified cover such that the mi –fold zero defines a section �i (not only a
multisection) with image Si of the pullback family f W X ! xB .

Proposition 4.8 If f W xB! SMg;1 is the lift of a Teichmüller curve by marking the
zero of order mi , then

S2
i D

��

2.mi C 1/
;

where �D 2g. xB/�2Cj�j and � is the set of cusps in xB . In particular the intersection
number with !i;rel , which is by definition equal to �S2

i , is given by

xB �!i;rel D
xB ��� . xB � ı/=12

.mi C 1/��
;

where �� D 1
12

Pk
jD1

mj .mjC2/

mjC1
.

Proof Let L � f�!X= xB be the (‘maximal Higgs’, see [36]) line bundle whose
fiber over the point corresponding to ŒX � is C �! , the generating differential of the
Teichmüller curve. The property ‘maximal Higgs’ says by definition that

(15) deg.L/D �=2:
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Let S be the union of the sections S1; : : : ;Sk . Pulling back the above inclusion to X
gives an exact sequence

0! f �L! !X= xB!OS

� kX
jD1

mj Sj

�
! 0;

since the multiplicities of the vanishing locus of the generating differential of the
Teichmüller curve are constant along the whole compactified Teichmüller curve. This
implies that !X= xB is numerically equal to

f �LC
kX

jD1

mj Sj :

By the adjunction formula we get

S2
i D�!X= xB �Si D�miS

2
i � deg.L/;

since the intersection product of two fibers of f is zero. Together with (15) we thus
obtain the desired self-intersection formula.

By Theorem 4.1 and the relation (14), we have

xB ��D
�

2
�L;

xB � ı D
�

2
� .12L� 12��/:

Hence the second claimed formula follows, for �S2
i D

xB �!i;rel by definition.

Remark 4.9 For square-tiled surfaces the self-intersection number of a section on the
elliptic surface is not hard to calculate (see Kodaira [30]), recalled by the second author
in [37], and also by the first author in [7, Theorem 1.15]). Pullback introduces the
coefficient mi C 1 in the denominator. This shows the formula in the square-tiled case.
The general case of the formula can also be shown by adapting the argument given by
Bainbridge in [3, Theorem 12.2], since there are mi C 1 ways to split a singularity of
order mi .

If L is nonvarying for all Teichmüller curves (or just those generated by square-tiled
surfaces) in a stratum �Mg.�/, it implies that the sum of Lyapunov exponents for
the whole stratum is equal to L.

Proposition 4.10 As the area (ie the degree of the torus coverings) approaches infinity,
the limit of sums of Lyapunov exponents for Teichmüller curves generated by square-
tiled surfaces in a stratum is equal to the sum of Lyapunov exponents for that stratum.
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This is due to the fact that square-tiled surfaces in a stratum are parameterized by ‘lattice
points’ under the period coordinates (see eg Eskin and Okounkov [17, Lemma 3.1]).
Hence, their asymptotic behavior reveals information for the whole stratum (see eg [8,
Appendix A] for a proof).

5 Genus three

In genus 3 all the strata have nonvarying sums of Lyapunov exponents except the
principal stratum. We summarize the results in Figure 2. We also give a sharp upper
bound for the sum of Lyapunov exponents for the principal stratum.

Let us first explain how to read the table. For example, the stratum .2; 2/odd is
nonvarying. The sum of Lyapunov exponents is equal to 5

3
(� 1:66666) for both the

stratum and every Teichmüller curve in the stratum. On the other hand, the principal
stratum .1; 1; 1; 1/ is varying. The sum of Lyapunov exponents for the whole stratum
is 53

28
(� 1:89285). The sharp upper bound for the sums of Lyapunov exponents of

Teichmüller curves in this stratum is 2. It can be attained, eg by Teichmüller curves in
the locus of hyperelliptic flat surfaces as the image of Q.2; 2;�18/ in the context of
Theorem 4.2. Later on we will use similar tables to encode the behavior of Teichmüller
curves in other genera.

5.1 The stratum �M3.4/odd

In the case �M3.4/
odd the algorithm of [16] to calculate Siegel–Veech constants for

components of strata gives

L.4/odd D 8=5; s.4/odd D 9; c.4/odd D 6=5:

Proof of Theorem 1.1, Case �M3.4/
odd The connected components �M3.4/

odd

and �M3.4/
hyp are not only disjoint in �M3 , by Proposition 3.4 they are also disjoint

in � SM3 . Hence a Teichmüller curve xC generated by a flat surface in this stratum do
not intersect the hyperelliptic locus H in SM3 . Recall the divisor class of H in (1).
By Lemma 4.6 and s.H / D 9, we obtain that s.C / D 9, hence c.C / D 6=5 and
L.C /D 8=5 for all Teichmüller curves in this stratum using (13) and (14).

5.2 The stratum �M3.3; 1/

In the case �M3.3; 1/ we have

L.3;1/ D 7=4; s.3;1/ D 9; c.3;1/ D 21=16:
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Degrees Hyperelliptic Lyapunov exponents
of or spin

zeros structure
.d1; : : : ; dn/ Component Teichmüller curves

�

gP
jD1

�j �

gP
jD1

�j Reference

.4/ hyperelliptic 1:80000 9
5

Nonvarying Theorem 4.2

.4/ odd 1:60000 8
5

Nonvarying Section 5.1

.3; 1/ � 1:75000 7
4

Nonvarying Section 5.2

.2; 2/ hyperelliptic 2:00000 2 Nonvarying Theorem 4.2

.2; 2/ odd 1:66666 5
3

Nonvarying Section 5.3

.2; 1; 1/ � 1:83333 11
6

Nonvarying Section 5.4

.1; 1; 1; 1/ � 1:89285 53
28

2 2 Q.2; 2;�18/

Figure 2: Varying and nonvarying sums in genus three

Proof of Theorem 1.1, Case �M3.3; 1/ As in the case of the stratum �M3.4/
odd ,

a Teichmüller curve C generated by a flat surface in the stratum .3; 1/ does not intersect
the hyperelliptic locus, not even at the boundary by Proposition 3.4. Consequently we
can apply the same disjointness argument as in the preceding case. Since s.H /D 9, we
obtain that s.C /D 9, hence c.C /D 21=16 and L.C /D 7=4 using (13) and (14).

5.3 The stratum �M3.2 ; 2/odd

In the case �M3.2; 2/
odd , we have

L.2;2/odd D 5=3; s.2;2/odd D 44=5; c.2;2/odd D 11=9:

Note that on SM3 the smallest slope of an effective divisor is 9 (attained by the
divisor H of hyperelliptic curves; see Harris and Morrison [26, Theorem 0.4]). In
order to show a Teichmüller curve xC has L.C /D 44=5 in this stratum, we cannot use
an effective divisor D on SM3 such that xC �DD 0. Otherwise by Lemma 4.6 it would
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imply that s.C /D s.D/ � 9 > 44=5. Instead, we have to use another moduli space
parameterizing curves with some additional structure. Here the stratum is distinguished
by spin structures, hence it is natural to consider the spin moduli space introduced in
Section 2.2.

Since the same idea will also be applied to the stratum �M4.2; 2; 2/
odd , we first

consider the general case �Mg.2; : : : ; 2/
odd . Let C be a Teichmüller curve generated

by a flat surface .X; !/ in � SMg.2; : : : ; 2/
odd such that div.!/D2

Pg�1
iD1

pi for distinct
points pi . Using �D

Pg�1
iD1

pi as an odd theta characteristic, we can map xC to xS�g .

Let xZg be the divisor on xS�g parameterizing .X; �/ such that the odd theta character-
istic � satisfies

��OX .2p1Cp2C � � �Cpg�2/:

The class of xZg was calculated in [20, Theorem 0.4]:

xZg D .gC 8/��
gC 2

4
˛0� 2ˇ0�

Œg=2�X
iD1

2.g� i/˛i �

Œg=2�X
iD1

2iˇi ;

where � is the pullback of the �–class on SMg and ˛i ; ˇi are two different boundary
divisors of xS�g over ıi for each 0 � i � Œg=2�. Since Teichmüller curves do not
intersect ıi for i > 0, we focus on ı0 and its inverse images ˛0; ˇ0 only. By definition
in [20, Section 1.2], a spin curve Y in ˇ0 possesses an exceptional component E , ie a
rational curve that meets the rest of Y at two nodes, and the theta characteristic � has
degree 1 restricted to E . In particular, Y cannot be parameterized in the boundary of
a Teichmüller curve, since none of the zeros pi will lie on E due to the fact that !Y jE

has degree 0 and Corollary 3.2. We thus conclude the following.

Lemma 5.1 In the above setting, xC does not intersect any boundary components
of xS�g except ˛0 .

We are interested in the case when an odd theta characteristic does not have extra
sections.

Proposition 5.2 In the above setting, suppose every odd theta characteristic � param-
eterized in S�g union ˛0 satisfies h0.�/D 1. Then the slope of C is

s.C /D
4.gC 8/

gC 2
:

Geometry & Topology, Volume 16 (2012)



2454 Dawei Chen and Martin Möller

Proof In S�g union ˛0 , xZg can be identified as the stratum � SMg.4; 2; : : : ; 2/
odd ,

since the unique section of � determines the zeros of the corresponding Abelian differ-
ential. Consequently by Proposition 3.1, the image of xC in xS�g does not intersect xZg .
Then we have

0D xC � xZg D
xC �
�
.gC 8/��

gC 2

4
˛0

�
;

since xC does not intersect any boundary components except ˛0 by Lemma 5.1. Note
that ���D � and ��ı0D ˛0C2ˇ0 , where � W xS�g ! SMg is the morphism forgetting
the spin structure and stabilizing the curve (see [20, Section 1.2]). By the projection
formula we have

0D .�� xC / �
�
.gC 8/��

gC 2

4
ı0

�
:

The desired formula follows right away.

We remark that the assumption h0.�/D 1 for all � is rather strong and seems to hold
only in low genus, as a consequence of Clifford’s theorem (Theorem 2.5).

Proof of Theorem 1.1, Case �M3.2; 2/
odd For g D 3 an odd theta characteristic

cannot have three or more sections by Theorem 2.5. Hence Proposition 5.2 applies and
we obtain that s.C /D 44=5.

Note that this argument does not distinguish between hyperelliptic and nonhyperel-
liptic curves and for double covers of Q.1; 1;�16/ the result is in accordance with
Theorem 4.2.

5.4 The stratum �M3.2 ; 1; 1/

In the case �M3.2; 1; 1/ we have

L.2;1;1/ D 11=6; s.2;1;1/ D 98=11; c.2;1;1/ D 49=36:

Since s.2;1;1/D 98=11< 9, by the same reason as in the preceding section, one cannot
verify this nonvarying slope by disjointness with an effective divisor on SM3 . This
time the flat surfaces have three zeros, hence it is natural to consider the moduli space
of pointed curves by marking some of the zeros. Consequently we will seek certain
pointed Brill–Noether divisors to perform the disjointness argument.

First we lift a Teichmüller curve generated by a flat surface in this stratum to SM3;2

by marking the double zero p as the first point and one of the simple zeros q as the
second point. In fact, we can do so after passing to a double covering of C where
the simple zeros q and r can be distinguished. This double covering is unramified,
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since by definition of a Teichmüller curve the zeros never collide. Moreover, the slope
and hence the sum of Lyapunov exponents are unchanged by passing to an unramified
double covering. For simplicity we will continue to call C the Teichmüller curve we
work with.

Proposition 5.3 In the above setup, the Teichmüller curve xC does not intersect the
pointed Brill–Noether divisor BN1

3;.1;2/
on SM3;2 .

Proof Recall that BN1
3;.1;2/

parameterizes pointed curves .X;p; q/ that possess
a g1

3
containing p C 2q as a section. Suppose .X; !/ is in the intersection of xC

and BN1
3;.1;2/

. Since h0.OX .pC 2q// D 2 and p; q; r are distinct, we obtain that
h0.OX .pCr�q//D1 by Riemann–Roch and then h0.OX .pCr//D2. If X is smooth,
then X is hyperelliptic and p; r are conjugate. But !X �OX .2pC qC r/, so p; q

are also conjugate, contradiction. For singular X we deduce from h0.OX .pC r//D 2

that p and r are in the same component X0 of X . This component admits an
involution � that acts on the set of zeros of !X jX0

. But p and r have different orders,
so they cannot be conjugate under � , leading to a contradiction.

Proof of Theorem 1.1, Case �M3.2; 1; 1/ By the proposition and the divisor class
of BN1

3;.1;2/
in (5), we obtain that

xC � .��C!1;relC 3!2;rel/D 0:

Since �.2;1;1/ D 17=36, using Proposition 4.8, we have

xC �!1;rel D
xC ��� . xC � ı/=12

17=12
;

xC �!2;rel D
xC ��� . xC � ı/=12

17=18
:

Plugging in the above, we obtain that s.C / D 98=11 and the values of L.C /; c.C /

follow from (13) and (14).

Remark 5.4 Alternatively, the theorem can be deduced by showing that for a Teich-
müller curve xC its intersection loci with the hyperelliptic locus H in SM3 and with
the Weierstrass divisor W in SM3;1 are the same. We show that these intersections are
set-theoretically equal. A complete proof via this method would need to verify that the
intersection multiplicities with the two divisors coincide.

Hyperelliptic flat surfaces in this stratum are obtained as coverings from the stratum
Q.2; 1;�17/ and we deduce from Theorem 4.2 that L

hyp
.2;1;1/

D 11=6. Hence we may
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assume that xC is not entirely in the hyperelliptic locus. If xC intersects W at a point
.X; 2p; q; r/, where p is the marked point, then p is a Weierstrass point. Hence we
have 2pCqC r � 3pC s for some s in X . Consequently qC r � pC s and X must
be hyperelliptic. On the other hand, suppose xC intersects H at a point .X; 2p; q; r/.
Since X is hyperelliptic, p must be a Weierstrass point.

Corollary 5.5 A Teichmüller curve generated by a nonhyperelliptic flat surface in
�M3.2; 1; 1/ does intersect the hyperelliptic locus H at the boundary.

Proof If the statement was false for some Teichmüller curve C , we would have
xC �H D 0, hence s.C /D s.H /D 9, contradicting s.C /D 98=11.

5.5 Varying sum in the stratum �M3.1; 1; 1; 1/

We show by example that the sum of Lyapunov exponents in the principal stratum in
gD 3 is varying, even modulo the hyperelliptic locus. In the case �M3.1; 1; 1; 1/, the
algorithm of [16] to calculate Siegel–Veech constants for components of strata gives

L.1;1;1;1/ D 53=28; s.1;1;1;1/ D 468=53; c.1;1;1;1/ D 39=28:

Examples The ‘eierlegende Wollmilchsau’, the square-tiled surface given by the
permutations .�r D .1234/.5678/; �u D .1836/.2745// (see [22; 37]), generates a
Teichmüller curve C with L.C /D 1.

The square-tiled surface given by the permutations

.�r D .1234/.5/.6789/; �u D .1/.2563/.4897//

generates a Teichmüller curve C with L.C /D 2. It attains the upper bound given by
Theorem 1.1, but it is not hyperelliptic.

There exist square-tiled surfaces in this stratum whose associated Teichmüller curves C

have

L.C / 2 f1; 3=2; 5=3; 7=4; 9=5; 11=6; 19=11; 33=19; 83=46; 544=297g:

Proof of Theorem 1.1, Case �M3.1; 1; 1; 1/ Teichmüller curves in the locus of
hyperelliptic flat surfaces (ie the image of Q.2; 2;�18/) in �M3.1; 1; 1; 1/ have
LD 2 by Theorem 4.2.

If the Teichmüller curve C is not contained in the hyperelliptic locus, then xC �H � 0,
or equivalently s.C /� s.H /D 9 by Lemma 4.7. Using �.1;1;1;1/ D 1=2 this implies
L.C /� 2.

For the last statement in the theorem recall that an double cover of a genus two curve
is always hyperelliptic (eg Farkas [21]).
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6 Genus four

In genus 4 we summarize the nonvarying sums of Lyapunov exponents and upper
bounds for varying sums in Figure 3.

6.1 The stratum �M4.6/even

In the case �M4.6/
even , we have

L.6/even D 14=7; s.6/even D 60=7; c.6/even D 10=7:

Proposition 6.1 Let C be a Teichmüller curve generated by .X; !/ 2�M4.6/
even ,

lifted to SM4;1 using the zero of ! . Then xC does not intersect the theta-null divisor ‚
in SM4;1 .

Proof Recall that the divisor ‚� SM4;1 parameterizes curves that admit an odd theta
characteristic whose support contains the marked point. Suppose the stable pointed
curve .X;p/ lies in the intersection of xC and ‚. Then there exists an odd theta
characteristic � on X with a section t 2H 0.�/ such that div.t/D pCqC r for some
q; r not both equal to p . Denote by LDOX .3p/ the line bundle corresponding to the
even theta characteristic with a section s2H 0.L/ given by 3p . Since �˝2�!X �L˝2 ,
the function s2t�2 implies that 4p � 2q C 2r on X , hence p is not a base point
of jL.p/j D jOX .4p/j. Consequently we have h0.L.p// D 1 C h0.L/ � 3. By
!X �OX .6p/ and Riemann–Roch, h0.OX .2p//D h0.OX .4p//�1� 2. Since X is
irreducible by Corollary 3.2, this implies that X is hyperelliptic and p is a Weierstrass
point. It contradicts the disjointness of the hyperelliptic locus and this component
in SM4 by Proposition 3.4.

Proof of Theorem 1.2, Case �M4.6/
even Using the proposition and the class of the

theta-null divisor ‚ in (3), we obtain that

xC � .30�C 60!rel� 4ı0/D 0:

Using Proposition 4.8 we know

xC �!rel D
xC ��� . xC � ı/=12

4
:

It now suffices to plug this in and use (13) and (14).
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Degrees Hyperelliptic Lyapunov exponents
of or spin

zeros structure
.d1; : : : ; dn/ Component Teichmüller curves

�

gP
jD1

�j �

gP
jD1

�j Reference

.6/ hyperelliptic 2:28571 16
7

Nonvarying Theorem 4.2

.6/ even 2:00000 2 Nonvarying Section 6.1

.6/ odd 1:85714 13
7

Nonvarying Section 6.2

.5; 1/ � 2:00000 2 Nonvarying Section 6.3

.4; 2/ even 2:13333 32
15

Nonvarying ? �

.4; 2/ odd 1:93333 29
15

Nonvarying ? �

.3; 3/ hyperelliptic 2:50000 5
2

Nonvarying Theorem 4.2

.3; 3/ non� hyp 2:00000 2 Nonvarying Section 6.6

.3; 2; 1/ � 2:08333 25
12

Nonvarying Section 6.8

.2; 2; 2/ odd 2:00000 2 Nonvarying Section 6.7

.2; 2; 2/ even 2:28571 166
75

2:333333 7
3

Q.3; 1;�18/

.4; 1; 1/ � 2:06727 1137
550

1:96792 1043
530

(16)

.22; 12/ � 2:13952 5045
2358

1:91666 23
12

Q.2; 1; 1;�17/

.3; 13/ � 2:12903 66
31

2:11523 514
243

(17)

.2; 14/ � 2:18333 131
60

2:80000 14
5

Q.3; 2; 2;�111/

.16/ � 2:22546 839
377

2:50000 5
2

Q.2; 2; 2;�110/

Figure 3: Varying and nonvarying sums in genus four
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6.2 The stratum �M4.6/odd

In the case �M4.6/
odd , we have

L.6/odd D 13=7; s.6/odd D 108=13; c.6/odd D 9=7:

Proposition 6.2 Let C be a Teichmüller curve generated by .X; !/ 2 �M4.6/
odd

lifted to SM4;1 using the zero of ! . Then C does not intersect the pointed Brill–Noether
divisor BN1

3;.2/
.

Proof Recall that BN1
3;.2/

� SM4;1 parameterizes curves that admit a linear se-
ries g1

3
with a section containing 2p , where p is the marked point. Suppose xC

intersects BN1
3;.2/

at .X;p/. Let � D OX .3p/ denote the theta characteristic given
by 3p . Since h0.�/ is odd, Clifford’s theorem implies that h0.�/ D 1. Since
.X;p/ is contained in BN1

3;.2/
, we have h0.OX .2pC q//D 2 for some q different

from p . By !X �OX .6p/ and Riemann–Roch, we have h0.OX .4p�q//D 2, hence
h0.OX .3p� q// � 1. Note that q is not a base point of the linear system jOX .3p/j

for q ¤ p . Consequently we have h0.�/D 1C h0.OX .3p � q// � 2, contradicting
that h0.�/D 1.

Proof of Theorem 1.2, Case �M4.6/
odd Recall the divisor class of BN1

3;.2/
in (7).

By xC �BN1
3;.2/
D 0, we have

xC � .4!relC 8�� ı0/D 0:

It now suffices to use Proposition 4.8 and to plug the result in (13) and (14).

6.3 The stratum �M4.5; 1/

In the case �M4.5; 1/, we have

L.5;1/ D 2; s.5;1/ D 25=3; c.5;1/ D 25=18:

Proposition 6.3 Let C be a Teichmüller curve generated by .X; !/ 2 �M4.5; 1/,
lifted to SM4;1 using the 5–fold zero of ! . Then xC does not intersect the pointed
Brill–Noether divisor BN1

3;.2/
.

Proof Suppose that .X; !/ is contained in the intersection of xC with BN1
3;.2/

, where
div.!/D 5pC q with p the marked point. By Proposition 3.4, X is not hyperellip-
tic. For a nonhyperelliptic curve X which is either smooth, or nodal irreducible, or
consisting of two components joined at three nodes, its dual graph is three-connected,
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hence the dualizing sheaf !X is very ample due to Proposition 2.6. We will analyze
the geometry of its canonical image in P3 .

We have h0.OX .2pC r//� 2 for some smooth point r . Since !X �OX .5pCq/, by
Riemann–Roch, it implies that h0.OX .3pC q� r//� 2, hence h0.OX .3p� r//� 1.
If r ¤ p , then r is not a base point of jOX .3p/j, hence h0.OX .3p//� 2. If r D p ,
then we still have h0.OX .3p//D h0.OX .2pC r//� 2. In any case, 3p admits a g1

3

for X . By Riemann–Roch, 2pCq also yields a g1
3

. These must be two different g1
3

’s,
for p ¤ q .

Since X is not hyperelliptic, its canonical image is contained in a quadric surface Q

in P3 . By Geometric Riemann–Roch, a section of a g1
3

on X corresponds to a line
in P3 that intersects Q at three points (counting with multiplicity). By Bézout, this
line must be a ruling of Q. Since X has two g1

3
’s, Q must be smooth and its two

rulings correspond to the two g1
3

’s. But the two lines spanned by the sections 2pC q

and 3p cannot be both tangent to X at the smooth point p , contradiction.

Proof of Theorem 1.2, Case �M4.5; 1/ We lift the Teichmüller curve xC to SM4;1

using the 5–fold zero of ! . By the proposition xC �BN1
3;.2/
D 0, we have

xC � .4!relC 8�� ı0/D 0:

By Proposition 4.8, we also have

xC �!rel D
xC : �� . xC : ı/=12

11=3
:

Now the result follows by combining the two equalities.

6.4 The stratum �M4.4; 2/even�

In the case �M4.4; 2/
even we have

L.4;2/even D 32=15; s.4;2/even D 17=2; c.4;2/even D 68=45:

Based on numerical values on individual Teichmüller curves, we believe that the sum
of Lyapunov exponents is nonvarying in this stratum. But we have not found a moduli
space and a divisor to perform the desired disjointness argument.

6.5 The stratum �M4.4; 2/odd�

In the case �M4.4; 2/
odd we have

L.4;2/odd D 29=15; s.4;2/odd D 236=29; c.4;2/odd D 59=45:
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We also believe that the sum of Lyapunov exponents is nonvarying in this case. But we
have not discovered a divisor that would do the job.

6.6 The stratum �M4.3; 3/non�hyp

In the case �M4.3; 3/
non�hyp we have

L.3;3/non�hyp D 2; s.3;3/non�hyp D 33=4; c.3;3/non�hyp D 11=8:

Proposition 6.4 Let C be a Teichmüller curve generated by a flat surface .X; !/ 2
�M4.3; 3/

non�hyp , lifted to SM4;2 (after a degree two base change). Then xC does not
intersect the divisor Lin1

3 .

Proof Recall that Lin1
3�
SM4;2 parameterizes pointed curves .X;p; q/ that admit a g1

3

with a section vanishing at p; q; r for some r 2X . Suppose .X;p; q/ is contained in the
intersection of xC with Lin1

3 . Since !X �OX .3pC 3q/ and h0.OX .pC qC r//� 2,
by Riemann–Roch we know that h0.OX .2p C 2q � r// � 2. If r ¤ p; q , then
h0.OX .2p C 2q// � 3, hence 2p C q and 2q C p both admit g1

3
. If X is not

hyperelliptic, using the canonical image of X contained in a quadric in P3 and the
preceding argument of rulings, one concludes that 2pC q and 2qCp span the same
line (connecting p; q ) on the quadric, contradiction. If r D p or q , again, 2pC q

and 2qCp both admit g1
3

and consequently X is hyperelliptic. But this stratum is
nonhyperelliptic, and Proposition 3.4 yields the desired contradiction.

Proof of Theorem 1.2, Case �M4.3; 3/ Since we have xC �Lin1
3 D 0, together with

Proposition 4.8 and �.3;3/ D 5=8, the result follows immediately.

6.7 The stratum �M4.2 ; 2 ; 2/odd

In the case �M4.2; 2; 2/
odd we have

L.2;2;2/odd D 2; s.2;2;2/odd D 8; c.2;2;2/odd D 4=3:

Note that by [33, Proposition 7] this stratum contains the hyperelliptic curves where all
the zeros are fixed, but not those, where a pair of zeros are exchanged.

Proof of Theorem 1.2, Case �M4.2; 2; 2/
odd We just need to apply Proposition 5.2

to obtain the result. It does apply to this case, because an odd theta characteristic
on a genus four curve cannot have three or more sections by Clifford’s theorem
(Theorem 2.5). Note that such a theta characteristic D is balanced, since deg.DjZ /D
wZ=2DwZ deg.D/=.2g�2/ for every component Z of a stable curve X1 over the
Teichmüller curve.
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6.8 The stratum �M4.3; 2 ; 1/

In the case �M4.3; 2; 1/, we have

L.3;2;1/ D 25=12; s.3;2;1/ D 41=5; c.3;2;1/ D 205=144:

Proposition 6.5 Let C be a Teichmüller curve generated by a flat surface .X; !/ 2
�M4.3; 2; 1/, lifted to SM4;3 . Then xC does not intersect the divisor BN1

4;.1;1;2/
.

Proof Recall the Brill–Noether divisor BN1
4;.1;1;2/

� SM4;3 parameterizes curves
with a g1

4
given by p C q C 2r . Suppose .X; !/ is contained in the intersection

of xC with BN1
4;.1;1;2/

, where div.!/ D 3p C 2q C r and p; q; r are the (ordered)
marked points. By the fact that h0.OX .pCqC2r//� 2 and Riemann–Roch, we have
h0.OX .2pC q� r//� 1. Consequently h0.OX .2pCq//� 2 and by Riemann–Roch
again, we have h0.OX .pCqC r//� 2. Note that if 2pCq � pCqC r , then p � r ,
which is impossible. If these are two different g1

3
’s and X is smooth, or stable but

nonhyperelliptic and at least three-connected, then its canonical map is an embedding.
Consequently both p and q lie on two different rulings of the quadric containing the
canonical image of X . This is impossible.

Since hyperelliptic stable fibers cannot occur by Proposition 3.4, the last case to be
excluded consists of a stable curve which is only two-connected. Given the constraints
in Corollary 3.2, there are two possible types for such a stable curve. First, there are
two irreducible nodal curves X1 and X2 of arithmetic genus one and two, respectively,
joined at two nodes fx;yg with q lying on X1 and p and r lying on X2 . Second, there
are irreducible nodal curves X1 , X0 and Y1 , the index specifying the arithmetic genus
with p on Y1 , q on X1 and r on X0 , whose intersection is given by Y1 �X1 D fxg,
Y1 �X0 D fz1; z2g, X1 �X0 D fyg.

For the first type, consider the linear system jOX .2p C q/j. Since p and q lie
on different components of the stable curve, q has to be a base point of this linear
system. Hence !X2

.xCy/�OX2
.4p/, ie p is a Weierstrass point for the line bundle

!X2
.x C y/. By the same argument q is a base point of jOX .p C q C r/j, hence

!X2
.xC y/ �OX2

.2pC 2r/. Since p ¤ r , this implies that p is not a Weierstrass
point and we obtain the desired contradiction.

For the second type, the condition h0.OX .pC qC r// � 2 provides an immediate
contradiction, since all three points lie on different components of the stable curve.

Proof of Theorem 1.2, Case �M4.3; 2; 1/ Recall the divisor class of BN1
.1;1;2/

in (6). By the fact that xC � BN1
4;.1;1;2/

D 0 together with Proposition 4.8, the result
follows directly.
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6.9 Varying sum in the stratum �M4.2 ; 2 ; 2/even

In the case �M4.2; 2; 2/
even , we have

L.2;2;2/even D 166=75; s.2;2;2/even D 696=83; c.2;2;2/even D 116=75:

Note that by [33, Proposition 7] this stratum contains the hyperelliptic curves where a
pair of zeros are exchanged, but not those, where all the zeros are fixed. For Teichmüller
curves C hyp contained in the locus of hyperelliptic flat surfaces within this stratum, we
have

L.C hyp/D 7=3:

Examples The square-tiled surface .X W y6 D x.x� 1/.x� t/; ! D dx=y/ found by
Forni and Matheus [23] has maximally degenerate Lyapunov spectrum, ie L.C /D 1.

Proposition 6.6 A Teichmüller curve C generated by a nonhyperelliptic flat surface
.X; !/ 2� SM4.2; 2; 2/

even has

L.C /� 16=7:

In particular the sum of Lyapunov exponents of any Teichmüller curve generated by a
nonhyperelliptic flat surface in this stratum is strictly smaller than the sum of Lyapunov
exponents of any Teichmüller curve generated by a hyperelliptic flat surface in this
stratum.

Proof Recall the divisor class in (11) of the Gieseker–Petri divisor GP on SM4 . It
has slope equal to 17=2. Hence if C is not entirely contained in this divisor, we have
s.C /� 17=2 by Lemma 4.7, which translates into L.C /� 16=7.

If C is contained in GP, we try to intersect C with the Brill–Noether divisor BN1
4;.3;1/

.
If C is not contained in BN1

4;.3;1/
, using Proposition 4.8 with � D 2=3 we obtain a

better bound L.C /� 2.

Suppose that a generic surface .X; !/ parameterized by C lies in BN1
4;.3;1/

. By
definition, we have h0.OX .3pC q//� 2, which implies h0.OX .qC 2r �p//� 1 by
Riemann–Roch. Consequently we have h0.OX .2rCq//� 2 and h0.OX .2pCq//� 2.
Since we excluded hyperelliptic X , the assumption that X is parameterized in GP
implies that 2r C q � 2p C q . Hence 2p � 2r , which contradicts the assumption
that X is not hyperelliptic.
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6.10 Varying sum in the stratum �M4.4; 1; 1/

In this stratum we have

L.4;1;1/ D 1137=550� 2:06727; s.4;1;1/ D 3118=379; c.4;1;1/ D 1559=1100:

The stratum contains the locus of hyperelliptic flat surfaces coming from Q.3; 2;�19/.
Hence for a Teichmüller curve C hyp in this locus, the sum of Lyapunov exponents is

L.C hyp/D 23=10:

Examples A Teichmüller curve C generated by the square-tiled surface with

(16) .�r D .12/.3/.4/.5/.6 7/.8/.9 10/; �u D .132456879/.10//

has L.C /D 1043=530� 1:96792.

A Teichmüller curve C generated by the square-tiled surface with

.�r D .12/.3/.4/.5/.6/.7; 8/.9/.10 11/; �u D .1 3/.2; 4; 5; 6; 7; 9/.8 10/.11//

has L.C /D 267163=129510� 2:06287.

This stratum also contains Teichmüller curves C generated by square-tiled surfaces
with

L.C / 2 f1043=530� 1:96792; 579=290; 4101=1990; 1799=870� 2:06782; 23=10g:

Proposition 6.7 A Teichmüller curve C generated by a nonhyperelliptic flat surface
.X; !/ 2�M4.4; 1; 1/ has

L.C /� 21=10:

In particular the sum of Lyapunov exponents of any Teichmüller curve generated by a
nonhyperelliptic flat surface in this stratum is strictly smaller than the sum of Lyapunov
exponents of any Teichmüller curve generated by a hyperelliptic flat surface in this
stratum.

Proof By the same argument as in the proof for the stratum �M3.2; 1; 1/ we may
pass to an unramified covering and label the zeros of ! such that !X �OX .4pCqCr/

along the whole family. Using p and q we lift this covering to a curve in SM4;2 that
we continue to call C . We will show that C is not entirely contained in the divisor
BN1

4;.2;2/
, provided that X is not hyperelliptic. Then xC �BN1

4;.2;2/
� 0 together with

Proposition 4.8 using �.4;1;1/ D 39=60 implies the claim.

Suppose a generic flat surface .X; !/ in C is contained in BN1
4;.2;2/

. Then by definition
h0.OX .2p C 2q// � 2 and by Riemann–Roch h0.OX .2p � q C r// � 1. Hence
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h0.OX .2pC r// � 2 and by Riemann–Roch again h0.OX .2pC q// � 2. Since X

is not hyperelliptic, we consider the quadric surface containing its canonical image.
The ruling that is tangent to X at p intersects X at a third point. This point has to
be both q and r due to the g1

3
’s given by 2pC q and 2pC r , which is absurd for

q ¤ r .

6.11 Varying sum in the stratum �M4.3; 1; 1; 1/

In this stratum we have

L.3;1;1;1/ D 66=31� 2:12903; s.3;1;1;1/ D 65=8; c.3;1;1;1/ D 715=496:

This stratum does not contain any submanifolds obtained by double covering construc-
tions.

Examples The Teichmüller curve C generated by the square-tiled surface with

(17) .�r D .123456789 10/; �u D .145836 10/.279//

has L.C /D 514=243� 2:11523.

The Teichmüller curve C generated by the square-tiled surface with

.�r D .123456789 10 11/; �u D .1458 10 27 11/.369//

has L.C /D 1531=720� 2:12639.

There exist Teichmüller curves C generated by square-tiled surfaces in this stratum
with

L.C / 2 f241=114� 2:114035; 72167=33984; 1531=720� 2:1263g:

Proposition 6.8 A Teichmüller curve C which is generated by a flat surface .X; !/ 2
� SM4.3; 1; 1; 1/ has

L.C /� 7=3:

Proof The proof is identical to the one given below for the stratum �M4.2; 1; 1; 1; 1/

using two different lifts to SM4;3 and the divisor BN1
4;.1;1;2/

(see Section 6.13).
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6.12 Varying sum in the stratum �M4.2 ; 2 ; 1; 1/

In this stratum we have

L.2;2;1;1/D5045=2358�2:13952; s.2;2;1;1/D8178=1009; c.2;2;1;1/D6815=4716:

The stratum contains two loci of hyperelliptic flat surfaces. One of them corresponds
to the orientation double covers of Q.4; 2;�110/, hence for a Teichmüller curve C in
this locus, the sum of Lyapunov exponents is L.C /D 5=2. In this locus, the zeros are
permuted in pairs by the hyperelliptic involution.

The second one corresponds to Q.2; 1; 1;�18/, hence for a Teichmüller curve C in
this locus, the sum of Lyapunov exponents is L.C /D 13=6� 2:16.

Examples The Teichmüller curve C generated by the square-tiled surface with

.�r D .12/.3/.4/.5/.67/.8/.9/.10 11/.12/; �u D .134/.256789 10 11 12//

has L.C /D 3313=1590� 2:083.

The Teichmüller curve C generated by the square-tiled surface with

.�r D .12/.3/.4/.56/.7/.89/.10 11/; �u D .134578/.269 10/.11//

has L.C /D 4919=2312� 2:1275.

There exist Teichmüller curves C generated by square-tiled surfaces in this stratum
with

L.C / 2 f3313=1590� 2:083; 157=75; 273529=128580; 4919=2312� 2:1275g:

Proposition 6.9 A Teichmüller curve C generated by a nonhyperelliptic flat surface
.X; !/ 2� SM4.2; 2; 1; 1/ has

L.C /� 13=6:

In particular the sum of Lyapunov exponents of any Teichmüller curve generated by a
nonhyperelliptic flat surface in this stratum is strictly smaller than the sum of Lyapunov
exponents of any Teichmüller curve generated by a hyperelliptic flat surface where the
four zeros are permuted in pairs.

Proof By the same argument as in the proof for the stratum �M3.2; 1; 1/ we may pass
to an unramified covering and label the zeros of ! such that !X �OX .2pC2qCrCs/

along the whole family. We lift this covering to a curve in SM4;3 by marking p; q; r

and continue to call it C . We will show that C is not entirely contained in the

Geometry & Topology, Volume 16 (2012)



Nonvarying sums of Lyapunov exponents 2467

divisor BN1
4;.1;1;2/

. Then xC � BN1
4;.1;1;2/

� 0 together with Proposition 4.8 implies
this proposition.

Suppose a generic flat surface .X; !/ parameterized by C is contained in BN1
4;.1;1;2/

.
Then by definition we have h0.OX .pC qC 2r//� 2 and by Riemann–Roch we have
h0.OX .pC q� r C s//� 1. Hence h0.OX .pC qC s//� 2 and by Riemann–Roch
again h0.OX .pC qC r//� 2. For X nonhyperelliptic this means that on the quadric
containing the canonical image of X in P3 , there are two rulings passing through p

and q (hence they are the same ruling), one intersecting the curve moreover at r and
the other intersecting the curve moreover at s . This is impossible for r ¤ s .

6.13 Varying sum in the stratum �M4.2 ; 1; 1; 1; 1/

In this stratum we have

L.2;1;1;1;1/D131=60�2:18333; s.2;1;1;1;1/D1052=131; c.2;1;1;1;1/D263=180:

It contains the locus of hyperelliptic flat surfaces corresponding to Q.3; 2; 2;�111/.
Hence for a Teichmüller curve C in this locus, the sum of Lyapunov exponents is
L.C /D 14=5D 2:8.

Examples The Teichmüller curve C generated by the square-tiled surface with

.�r D .12/.3/.4/.5; 6/.7/.8/.9 10/.11 12/.13/; �u D .132457689 11 10 12 13//;

has L.C /D 268=129� 2:0775.

The Teichmüller curve C generated by the square-tiled surface with

.�r D .12/.3/.4/.5/.6/.78/.9 10/.11/.12 13/; �u D .13/.245679 11 8 12 10/.13//;

has L.C /D 207826=95511� 2:1759.

There exist Teichmüller curves C generated by square-tiled surfaces in this stratum
with

L.C / 2 f268=129� 2:0775; 239=114; 4031=1923; 207826=95511� 2:175g:

Proposition 6.10 A Teichmüller curve C generated by a nonhyperelliptic flat surface
.X; !/ 2� SM4.2; 1; 1; 1; 1/ has

L.C /� 7=3:

In particular the sum of Lyapunov exponents of any Teichmüller curve generated by a
nonhyperelliptic flat surface in this stratum is strictly smaller than the sum of Lyapunov
exponents of any Teichmüller curve generated by a hyperelliptic flat surface in this
stratum.

Geometry & Topology, Volume 16 (2012)



2468 Dawei Chen and Martin Möller

Proof By the same argument as in the proof for the stratum �M3.2; 1; 1/, we may
pass to an unramified covering and label the zeros of ! so !X �OX .2pCqCrCsCu/

along the whole family. First, using p , q and r we lift this covering to a curve in SM4;3

that we continue to call C .

If C is not entirely contained in the divisor BN1
4;.1;2;1/

, then xC � BN1
4;.1;2;1/

� 0

together with Proposition 4.8 using �.2;1;1;1;1/ D 13=18 implies the claim. If C is
entirely contained in the divisor BN1

4;.1;2;1/
, we can lift C to SM4;3 alternatively by

marking p , q and r . Again, if C is not contained in BN1
4;.1;2;1/

, the claim holds.

Suppose that C is contained in the Brill–Noether divisor for both lifts. Then for .X; !/
parameterized in C , by definition we have h0.OX .pC 2qC r// � 2, consequently
we obtain h0.OX .sCuCp� q//� 1 and h0.OX .sCuCp//� 2. For the second
lift we deduce from h0.OX .pC 2qCu//� 2 that h0.OX .sC r Cp//� 2. Since X

is not hyperelliptic, the canonical map is an embedding and its image lies on a quadric
surface in P3 . Then the unique line on the quadric passing through s and p cannot
have a third intersection point with C at both r and u for r ¤ u.

6.14 Varying sum in the stratum �M4.1; 1; 1; 1; 1; 1/

In this stratum we have

L.1;1;1;1;1;1/ D
839

377
� 2:22546; s.1;1;1;1;1;1/ D

6675

839
; c.1;1;1;1;1;1/ D

2225

1508
:

The stratum contains the locus of hyperelliptic flat surfaces corresponding to the stratum
Q.2; 2; 2;�110/. Hence for a Teichmüller curve C in this locus we have L.C /D 5=2.

Examples The Teichmüller curve C generated by the square-tiled surface with

.�r D .12/.3/.4/.5/.6/.78/.9/.10/.11 12/.13/.14/; �uD.132456798 10 11 13/.12 14//

has L.C /D 125=58� 2:15517.

The Teichmüller curve C generated by the square-tiled surface with

.�r D .12/.3/.4/.56/.7/.8/.9 10/.11/.12/; �u D .132457689 11 10 12//;

has L.C /D 9=4D 2:25.

There exist Teichmüller curves C generated by square-tiled surfaces in this stratum
with

L.C / 2 f125=58� 2:15517; 419=194; 1019=470; 8498=3867� 2:1975; 9=4g:
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Proposition 6.11 A Teichmüller curve C which is generated by a flat surface .X; !/2
� SM4.1; 1; 1; 1; 1; 1/ has

L.C /� 5=2:

Proof The argument is completely analogous to the stratum � SM4.2; 1; 1; 1; 1/.

7 Genus five

In genus 5 only few strata have a nonvarying sum of Lyapunov exponents. We
summarize the results in Figures 4 and 5. Contrary to genus 4 we do not give an
upper bound for the sum in all the (components of) strata where the sum is varying
but provide only one example which often comes from the locus of hyperelliptic flat
surfaces.

7.1 The stratum �M5.8/even

In the case �M5.8/
even we have

L.8/even D 20=9; s.8/even D 8; c.8/even D 50=27:

Proposition 7.1 Let C be a Teichmüller curve generated by a flat surface which is in
�M5.8/

even . Then xC does not intersect the Brill–Noether divisor BN1
3 on SM5 .

Proof Teichmüller curves in this stratum are disjoint from the hyperelliptic locus even
at the boundary of SM5 , since the hyperelliptic component is a different component and
by Proposition 3.4. Suppose .X; !/ is a flat surface contained in the intersection of xC
and BN1

3 . Since X is trigonal (possibly nodal but irreducible) and is not hyperelliptic,
its canonical image lies on a cubic scroll surface in P4 whose rulings are spanned by the
sections of the g1

3
(see eg [40, Section 2.10]). This scroll surface can be either smooth

or singular, corresponding to Hirzebruch surfaces Fn of two types, respectively (see
Beauville [4, Chapter IV] or Coskun [11, Section 2] for preliminaries on Hirzebruch
surfaces). Here we follow the notation in [11].

Suppose the scroll surface is smooth as the embedding of the Hirzebruch surface F1

by the linear system jeC 2f j, where

e2
D�1; e �f D 1; f 2

D 0:

Then X has class 3eC5f . Note that 4p admits a g1
4

, which comes from the projection
of X from a plane ƒ to a line in P4 . This plane ƒ intersects X at greater than or equal
to 4 points (with multiplicity) and the intersection contains the residual 4p . But F1
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Degrees Hyperelliptic Lyapunov exponents
of or spin

zeros structure
.d1; : : : ; dn/ Component Teichmüller curves

�

gP
jD1

�j �

gP
jD1

�j Reference

.8/ hyperelliptic 2:777778 25
9

Nonvarying Theorem 4.2

.8/ even 2:222222 20
9

Nonvarying Section 7.1

.8/ odd 2:111111 19
9

Nonvarying Section 7.2

.7; 1/ � 2:227022 2423
1088

2:229062 7133
3200

(18)

.6; 2/ even 2:301983 178429
77511

2:619047 55
21

Q.5; 1;�110/

.6; 2/ odd 2:190476 46
21

Nonvarying ? �

.6; 1; 1/ � 2:285384 59332837
25961866

2:785714 39
14

Q.5; 2;�111/

.5; 3/ � 2:250000 9
4

Nonvarying Section 7.3

.5; 2; 1/ � 2:300563 4493
1953

2:302594 48541
21081

(19)

.5; 1; 1; 1/ � 2:340909 103
44

2:337802 12381
5296

(20)

.4; 4/ hyperelliptic 3:000000 3 Nonvarying Theorem 4.2

.4; 4/ even 2:311111 104
45

2:400000 12
5

(21)

.4; 4/ odd 2:191613 228605
104309

2:600000 13
5

Q.3; 3;�110/

.4; 3; 1/ � 2:306255 438419
190100

2:302715 777627
337700

(23)

.4; 2; 2/ even 2:374007 34981
14735

2:800000 14
5

Q.4; 3;�111/

.4; 2; 2/ odd 2:260315 538102
238065

2:466666 37
15

Q.3; 1; 1;�19/

.4; 2; 1; 1/ � 2:354799 646039
274350

2:633333 79
30

Q.3; 2; 1;�110/

Figure 4: Varying and nonvarying sums in genus five, part I
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Degrees Hyperelliptic Lyapunov exponents
of or spin

zeros structure
.d1; : : : ; dn/ Component Teichmüller curves

�

gP
jD1

�j �

gP
jD1

�j Reference

.4; 14/ � 2:393586 640763
267700

2:800000 14
5

Q.3; 2; 2;�111/

.3; 3; 2/ � 2:318020 61307
26448

2:833333 17
6

Q.6; 1;�111/

.3; 3; 1; 1/ � 2:358542 47435
20112

3:000000 3 Q.6; 2;�112/

.3; 2; 2; 1/ � 2:366588 6049
2556

2:362268 2041
864

(24)

.3; 2; 13/ � 2:405498 700
291

2:398764 3495
1457

(25)

.3; 15/ � 2:443023 2101
860

2:431085 77785
31996

(26)

.2; 2; 2; 2/ even 2:434379 2096
861

2:666666 8
3

Q.4; 1; 1;�110/

.2; 2; 2; 2/ odd 2:319961 355309
153153

2:333333 7
3

Q.1; 1; 1; 1;�18/

.23; 12/ � 2:413574 79981
33138

2:833333 17
6

Q.4; 2; 1;�111/

.2; 2; 14/ � 2:451217 266761
108828

2:666666 8
3

Q.2; 2; 1; 1;�110/

.2; 16/ � 2:487756 35861
14415

2:833333 17
6

Q.2; 2; 2; 1;�111/

.18/ � 2:523451 235761
93428

3:000000 3 Q.2; 2; 2; 2;�112/

Figure 5: Varying and nonvarying sums in genus five, part II

has degree three, so the intersection F1\ƒ consists of a curve B with possibly finitely
many points outside B . If B is a ruling, then B �X D 3 and ƒ also intersects X

at a point outside B , such that ƒ is spanned by B and that point. Then we cannot
have 4p �ƒ\X , contradiction. If B has higher degree, it can only be a conic (or
its degeneration) of class eC f . Then B �X D 5, so ƒ\X D 4pC q admits a g2

5

by Geometric Riemann–Roch. For q ¤ p we obtain h0.OX .4p� q//D 2 and hence
h0.OX .4p//D 3, contradiction. For q D p , the residual 3p admits a g1

3
, so it gives

rise to a ruling L on the cubic scroll. Then L and B are both tangent to X at p . But
L �B D f � .eCf /D 1, leading to a contradiction.
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If the scroll is singular, it is isomorphic to F3 by the linear system jeC 3f j, where

e2
D�3; e �f D 1; f 2

D 0:

Since X � f D 3 and X � .e C 3f / D 8, it has class 3e C 8f . Then X � e D �1,
which implies that X consists of e union a curve of class 2eC 8f , contradicting the
irreducibility of X .

Proof of Theorem 1.3, Case �M5.8/
even By the proposition we have xC �BN1

3 D 0.
Since this divisor has slope equal to 8 by (4), the Teichmüller curve C has the same
slope s.C /D 8.

7.2 The stratum �M5.8/odd

In the case �M5.8/
odd we have

L.8/odd D 19=9; s.8/odd D 148=19; c.8/odd D 37=27:

Proposition 7.2 Let C be a Teichmüller curve generated by a flat surface .X; !/ 2
�M5.8/

odd lifted to SM5;1 using the zero of ! . Then xC does not intersect the divisor
Nfold1

5;4.1/.

Proof Suppose that .X; !/ is contained in the intersection of xC with Nfold1
5;4.1/.

Note that X is not hyperelliptic, as this component and the hyperelliptic component are
disjoint and by Proposition 3.4. Recall that Nfold1

5;4.1/�
SM5;1 parameterizes curves

that admit a g1
4

given by 3pCq , where p is the marked point and q is a random point.
Then it implies that h0.OX .3pCq//D 2 and h0.OX .4p//D 1 by Clifford’s theorem,
hence we have q ¤ p . By Riemann–Roch, we have h0.OX .5p � q// D 2. Since
h0.OX .5p// D 2 D h0.OX .5p � q//, it implies that q is a base point of jOX .5p/j,
which is impossible.

Proof of Theorem 1.3, Case �M5.8/
odd By Proposition 7.2 we have

xC �Nfold1
5;4.1/D 0:

It now suffices to plug the result of Proposition 4.8 with m1 D 8 into the divisor class
of Nfold1

5;4.1/ in (9) to obtain the desired numbers.
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7.3 The stratum �M5.5; 3/

In the case �Mg.5; 3/ we have

L.5;3/ D 9=4; s.5;3/ D 209=27; c.5;3/ D 209=144:

Proposition 7.3 Let C be a Teichmüller curve generated by a flat surface .X; !/ 2
�M5.5; 3/, lifted to SM5;2 by the zeros of ! . Then xC does not intersect the divisor
BN1

4;.1;2/
.

Proof Note that the degenerate fibers of the family over xC are either irreducible or
consist of two components connected by an odd number (�3) of nodes by Corollary 3.3.
Moreover by Proposition 3.4 the degenerate fibers are not hyperelliptic. Consequently
the dual graph of X is three-connected and !X is very ample by Proposition 2.6.

Suppose that contrary to the claim, .X;p; q/ is contained in the intersection of xC and
BN1

4;.1;2/
, ie h0.OX .2pCqCr//D 2 for some r 2X . Since !X �OX .5pC3q/, by

Riemann–Roch we have h0.OX .3pC 2q� r//D 2. For r D p or q , these equalities
reduce to h0.OX .2pC2q//D 2 and h0.OX .3pCq//D 2. If r ¤p; q , then r is not a
base point of jOX .3pC2q/j, hence h0.OX .3pC2q//D 3 and h0.OX .2pCq//D 2.
Then we still have h0.OX .2pC 2q// D h0.3pC q/ � 2, hence they are equal to 2

by Clifford’s theorem. In any case, 3pC q and 2pC 2q span two different planes
with the corresponding contact orders at p and q to the canonical image of X in P4 .
The two planes contain a common line spanned by p; q whose intersection with X is
2pCq . By Geometric Riemann–Roch, 2pCq gives rise to a g1

3
, hence X is trigonal.

For a trigonal genus 5 curve X with !X very ample, as we have seen in Section 7.1,
its canonical image is contained in a cubic scroll surface in P4 . The residual g2

5
given

by 3pC 2q maps X to a plane quintic Y , whose image differs from X at a double
point u (like a node or cusp), for the arithmetic genus of Y is 6. The unique g1

3
on X

is given by intersections of lines passing through u with Y (subtracting 2u from the
base locus). But 2p C q is contained in the g1

3
, and the line spanned by p; q has

contact order 3 at p and 2 at q to Y , hence u must be p or q by Bézout. For uD q ,
subtracting 2u from 3pC 2q , we know that 3p is also in the g1

3
, hence 3p � 2pC q ,

p � q , impossible. For uD p , we have pC2q is in the g1
3

. Hence pC2q � 2pCq ,
which implies p � q and this is also impossible.

Proof of Theorem 1.3, Case �M5.5; 3/ Proposition 7.3 says that xC �BN1
4;.1;2/

D 0

for a Teichmüller curve C in this stratum. Using the divisor class of BN1
4;.1;2/

in (10)
together with Proposition 4.8, the result follows immediately.
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7.4 The stratum �M5.6; 2/odd�

In the case �M5.6; 2/
odd we have

L.6;2/odd D 46=21; s.6;2/odd D 176=23; c.6;2/odd D 209=144:

Based on numerical values on individual Teichmüller curves, we believe that the sum
of Lyapunov exponents is nonvarying in this stratum. But we have not discovered a
divisor to carry out the desired disjointness argument.

7.5 Examples of square-tiled surfaces in g D 5 and g D 6

In this section we list examples of square-tiled surfaces in gD 5 to justify that the sum
of Lyapunov exponents in the remaining strata is indeed varying.

In the stratum �M5.7; 1/ varying sum can be checked using the square-tiled surface

(18) .�r D .123456789 10/; �u D .1596/.247 10//:

In the stratum �M5.5; 2; 1/ varying sum can be checked using the square-tiled surface

(19) .�r D .123456789 10 11/; �u D .1 11/.23/.46/.79//:

In the stratum �M5.5; 1; 1; 1/ varying sum can be checked using the square-tiled
surface

(20) .�r D .123456789 10 11 12/; �u D .1 12/.23/.46/.810//:

In the stratum �M5.4; 4/
even varying sum can be checked using the square-tiled

surface

(21) .�r D .123456789 10/; �u D .1 10/.29/.3568//:

In the stratum �M5.4; 4/
odd varying sum can be cross-checked using, besides the

hyperelliptic locus, the square-tiled surface

(22) .�r D .123456789 10/; �u D .1 10/.23/.56/.78//:

In the stratum �M5.4; 3; 1/ varying sum can be checked using the square-tiled surface

(23) .�r D .123456789 10 11 12/; �u D .11 194/.2 10 356/.7 12//:

In the stratum �M5.3; 2; 2; 1/ varying sum can be checked using the square-tiled
surface

(24) .�r D .123/.456789 10 11 12/; �u D .1 11/.10 5 13/.27//:
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In the stratum �M5.3; 2; 1; 1; 1/ varying sum can be checked using the square-tiled
surface

(25) .�r D .123456789 10 11 12/; �u D .1 12/.24/.57/.8 10//:

In the stratum �M5.3; 1; 1; 1; 1; 1/ varying sum can be checked using the square-tiled
surface

(26) .�r D .123456789 10 11 12 13/; �u D .1 14/.24/.68/.10 12//:

To indicate that the phenomenon of nonvarying sum of Lyapunov exponents is restricted
to low genus and special loci, such as eg the hyperelliptic locus, we show that already
in g D 6 the best candidates fail.

Proposition 7.4 For g D 6 the sum of Lyapunov exponents is varying in the strata
�M6.10/odd and �M6.10/even .

Proof For �M6.10/odd the sum for the measure supported on the whole stratum is
L.10/odd D

82680540070
35169130909

using [16], but the square-tiled surface

(27) .�r D .123456789 10 11/; �u D .13579 11//

provides an example with L.C /D 3166
1375

. In the even case L.10/even D
9085753953118
3770001658049

but the square-tiled surface

(28) .�r D .123456789 10 11/; �u D .1579 11/.24//

gives an example with L.C /D 244729
101893

.

8 Hyperelliptic strata and moduli spaces of pointed curves

Using Teichmüller curves in the hyperelliptic strata we reverse our engine to present
an application for the geometry of moduli spaces of pointed curves.

In the study of the geometry of a moduli space, a central question is to ask about the
extremality of a divisor class, eg if it has nonnegative intersection numbers with various
curve classes on the moduli space. Now consider the moduli space SMg;1 of genus g

curves with one marked point. Define a divisor class

D1 D 4g.g� 1/!rel� 12�C ı;

where ı is the total boundary class. Let X !B be a complete one-dimensional family
of stable one-pointed curves with smooth generic fibers. Harris [25, Theorem 1] showed
that D1 �B is always nonnegative and asked further if this is optimal, ie if there exists
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such a family B satisfying D1 �BD 0. The reader may also refer to [27, (6.31), (6.34)]
for an expository explanation. Define another divisor class on the moduli space SMg;2

of genus g curves with two marked points:

D2 D .g
2
� 1/. 1C 2/� 12�C ı;

where  i is the first Chern class of the cotangent line bundle associated to the i –th
marked point. By a completely analogous argument as in [25], one easily checks
that D2 has nonnegative intersection with any complete one-dimensional family of
stable two-pointed curves with smooth generic fibers. Similarly one can ask if this is
optimal. Below we show that in both cases the zero-intersection can be attained.

Theorem 8.1 Let C1;C2 be Teichmüller curves in generated by flat surfaces in
�Mg.2g � 2/hyp and �Mg.g � 1;g � 1/hyp , lifted to SMg;1 and SMg;2 using the
zeros of Abelian differentials, respectively. Then we have

xC1 �D1 D 0;

xC2 �D2 D 0:

Proof By the value of s.C1/ given in Corollary 4.3 and Proposition 4.8, we obtain

xC1 ��

xC1 �!rel
D g2;

xC1 � ı

xC1 �!rel
D 4g.2gC 1/:

Plugging them into the intersection xC1 �D1 , an elementary calculation shows that
xC1 �D1 D 0.

Similarly we have

xC2 ��

xC2 � . 1C 2/
D

g.gC 1/

4
;

xC2 � ı

xC2 � . 1C 2/
D .gC 1/.2gC 1/:

One easily checks that xC2 �D2 D 0.

Since square-tiled surfaces in a stratum correspond to ‘lattice points’ under the period
coordinates, the union of all such Teichmüller curves C1;C2 forms a Zariski dense
subset in the hyperelliptic locus. Hence they provide infinitely many solutions to the
above question. We finally remark that the positivity of D1 as well as not being strictly
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ample has a transparent geometric explanation, pointed out to us by one of the referees.
It is proportional to the pullback of the theta line bundle from the universal Jacobian
over SMg;1 via the map .C;p/ 7! ŒO..2g� 2/p/˝!�

C
� by Morita [38, Theorem 1.6].
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