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The Ingram conjecture
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We prove the Ingram conjecture, ie we show that the inverse limit spaces of tent
maps with different slopes in the interval Œ1; 2� are nonhomeomorphic. Based on the
structure obtained from the proof, we also show that every self-homeomorphism of
the inverse limit space of a tent map is pseudo-isotopic, on the core, to some power
of the shift homeomorphism.

54H20; 37B45, 37E05

1 Introduction

Apart from their interest within continuum theory, inverse limit spaces play a key role
in the description of uniformly hyperbolic attractors (see Williams [35; 36]), global
“Hénon-like” strange attractors (Barge and Holte [6]) and the structure emerging from
homoclinic tangencies in dynamical systems (Barge and Diamond [5]). They find
further use in the area of (substitution) tiling spaces (Anderson and Putnam [1]) which,
in some cases, are covering spaces of the type of inverse limit spaces with which we are
concerned with in this paper; namely, those with a single tent map TsW Œ0; 1�! Œ0; 1�,
x 7!minfsx; s.1�x/g as bonding map. Such inverse limit spaces can be embedded
in the plane as global attractors of homeomorphisms (see Bruin [13], Misiurewicz [26]
and Szczechla [33]) and immersed in the plane as global attractors of skew product
maps (Hofbauer, Raith and Simon [20]).

Inverse limit spaces are notoriously difficult to classify. In this paper, we solve in the
affirmative the classification problem known as the Ingram conjecture:

Theorem 1.1 (Ingram conjecture) If 1� s < s0 � 2, then the corresponding inverse
limit spaces lim

 �
.Œ0; 1�;Ts/ and lim

 �
.Œ0; 1�;Ts0/ are nonhomeomorphic.

This is the main outstanding conjecture regarding dynamics on continua, dating back
to at least the early nineties. In [21, page 257] in 1995, Ingram writes:
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The [: : :] question was asked of the author by Stu Baldwin at the [: : :]
summer meeting of the AMS at Orono, Maine, in 1991. : : : There is
a related question which the author has considered to be of interest for
several years. He posed it at a problem session at the 1992 Spring Topology
Conference in Charlotte for the special case (that the critical point has
period) nD 5.

It is clear that if two interval maps are topologically conjugate, then their inverse
limit spaces are homeomorphic. Thus it may be more natural to ask the question for
the “fuller” logistic family fa.x/D ax.1�x/, a 2 Œ0; 4�, which includes (infinitely)
renormalizable maps (see Definition 6.1). It is well-known (Milnor and Thurston [25])
that each logistic map with positive topological entropy is semiconjugate to a tent map
Ts with log s D htop.fa/, and these semiconjugacies collapse (pre)periodic intervals
to points. The effect of renormalization on the structure of the inverse limit space is
well-understood; see Barge and Diamond [4]: it produces proper subcontinua that are
periodic under the shift homeomorphism and homeomorphic with the inverse limit
space of the renormalized map. The solution of the Ingram conjecture then leads to an
analogous result for logistic maps.

As the parameter a for the logistic map fa is increased, a new periodic point of period k

appears when the graph of f k
a is tangent with the diagonal. If such a tangency happens

at parameter value a� and location .x;x/ then there is an � >0 and a pair of continuous
curves a 7! x�.a/, a 7! xC.a/ of k –periodic points with x�.a�/D x D xC.a�/ so
that x�.a/ is repelling and xC.a/ is attracting under f k

a , for a� < a� a�C � . This
is called a saddle-node bifurcation and fx�.a/;xC.a/g is called a saddle-node pair.
For each a, let �sn be the equivalence relation that identifies saddle-node pairs and let
�.fa/ be the nonwandering set of fa (see Definition 6.2). The reduced nonwandering
set of fa is �.fa/=�sn .

Theorem 1.2 In the parameter range .1; 4�, two logistic maps have homeomorphic
inverse limit spaces if and only if they are conjugate on their reduced nonwandering sets.

There have been several partial results to the Ingram conjecture, eg Barge and Dia-
mond [3], who solved the period n D 5 case, and Swanson and Volkmer [32] and
Bruin [14]. The Ingram conjecture was shown to hold when the critical point is periodic
by Kailhofer [22] (see also Block, Jakimovik, Keesling and Kailhofer [8]), or has finite
orbit by Štimac [31]. More recently, the case where the critical point is nonrecurrent
was solved by Raines and Štimac [29]. Further results that classify certain features
of inverse limit spaces of tent maps with nonperiodic recurrent critical orbits were
obtained by Barge, Brucks and Diamond [11], Bruin [15] and Raines [28].
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Our solution to the Ingram conjecture gives more information about the set of self-
homeomorphisms on lim

 �
.Œ0; 1�;Ts/: we show that any such homeomorphism behaves

like an iterate of the shift homeomorphism � .

The critical point 1
2

of Ts is denoted by c , and we write ci D T i
s .c/. Although Ts is

defined on Œ0; 1�, there is a forward invariant interval Œc2; c1�D Œs.1�s=2/; s=2�, called
the core, on which Ts is surjective. We call lim

 �
.Œc2; c1�;Ts/ the core of the inverse

limit space. The space lim
 �

.Œ0; 1�;Ts/ is the union of the core of the inverse limit and a
ray C converging onto it.

Recall that the composant of x 2X is defined as the union of all proper subcontinua
of X containing x . For 1 < s < 2, lim

 �
.Œ0; 1�;Ts/ has only three composants: the

entire inverse limit space, C, and lim
 �

.Œ0; 1�;Ts/ n f.: : : ; 0; 0; 0/g. But for s >
p

2,
lim
 �

.Œc2; c1�;Ts/ is indecomposable and hence has uncountably many pairwise disjoint
composants, each of which is dense. If s >

p
2 and the orbit of c is finite, the

composants of lim
 �

.Œc2; c1�;Ts/ are the same as the arc-components. Otherwise, the
composants can be very complicated. For 1 < s �

p
2, the core has just two proper

composants that overlap in a single arc-component.

Theorem 1.3 Given s 2 Œ1; 2�, for every homeomorphism hW lim
 �

.Œ0; 1�;Ts/	, there
is an R 2 Z such that h, restricted to the core lim

 �
.Œc2; c1�;Ts/, is pseudo-isotopic to

�R , ie it permutes the composants of the core of the inverse limit in the same way
as �R .

The zero-composant C of lim
 �

.Œ0; 1�;Ts/ containing the endpoint ˛ WD .: : : ; 0; 0; 0/
is important in our proof of the Ingram conjecture; the “core” version of the Ingram
conjecture is still outstanding. Our proof relies on the properties of so-called link-
symmetric arcs in the composant C. Inverse limit spaces are chainable, and with
regard to natural chains, a homeomorphism hW lim

 �
.Œ0; 1�;Ts0/! lim

 �
.Œ0; 1�;Ts/ maps

link-symmetric arcs to link-symmetric arcs. From this we derive that maximal link-
symmetric arcs in lim

 �
.Œ0; 1�;Ts0/ centered at so-called salient points s0i map to link-

symmetric arcs centered at salient points siCM 2 lim
 �

.Œ0; 1�;Ts/ for some M 2 Z and
all sufficiently large i 2N .

This implies that h maps so-called q–points close to p–points, while “translating”
their levels by a fixed number M . This shows that h effectively fixes the folding
pattern of the zero-composant, with the Ingram conjecture as an easy consequence.
Additional arguments show that every self-homeomorphism of lim

 �
.Œ0; 1�;Ts/, when

restricted to the core, is pseudo-isotopic to a power �R of the shift for some R 2 Z.

We give the basic definitions in the next section. In Section 3 we investigate the lengths
of maximal link-symmetric arcs, leading in Section 4 to the proof that a homeomorphism
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between two unimodal inverse limit spaces induces a shift of indices of salient points,
and more generally, acts as a shift on the levels of q–points and p–points. This leads to
the proof of the Ingram conjecture. In Section 5, we prove the results on pseudo-isotopy.
Section 6, finally, is devoted to the proof of Theorem 1.2 on logistic maps.

2 Definitions

Let N WD f1; 2; : : : g and N0 WD f0; 1; 2; : : : g. Let

TsW Œ0; 1�! Œ0; s=2�; Ts.x/Dminfsx; s.1�x/g;

be the tent map with slope s 2 Œ1; 2� and critical point cD 1
2

. Write ciD ci.s/ WDT i
s .c/,

so in particular c1 D
s
2

and c2 D s.1� s
2
/.

The inverse limit space lim
 �

.Œ0; 1�;Ts/ is the collection of backward orbits

fx D .: : : ;x�2;x�1;x0/ W Ts.xi�1/D xi 2 Œ0; s=2� for all i � 0g;

equipped with metric d.x;y/D
P

n�0 2njxn�ynj and induced .or shift/ homeomor-
phism � D �s given by

�.: : : ;x�2;x�1;x0/D .: : : ;x�2;x�1;x0;Ts.x0//:

Let �pW lim
 �

.Œ0; 1�;Ts/! Œ0; 1�, �p.x/D x�p , be the p–th projection map. Since Ts

fixes 0, lim
 �

.Œ0; 1�;Ts/ contains the endpoint ˛ WD .: : : ; 0; 0; 0/. The proper composant
of lim
 �

.Œ0; 1�;Ts/ containing this point is denoted by C; it is a ray converging from ˛

to, but disjoint from, the core of the inverse limit space lim
 �

.Œc2; c1�;Ts/.

Frequently, the Ingram conjecture is posed for slopes s; s0 2 Œ
p

2; 2� only, because for
0< s �

p
2, lim
 �

.Œc2; c1�;Ts/ is decomposable. Since lim
 �

.Œ0; 1�;Ts/ is a single point
for s 2 .0; 1/ and an arc for s D 1, we will always assume that all slopes s are greater
than 1. The next two lemmas show how to reduce the case s 2 .1;

p
2� to s 2 .

p
2; 2�.

Lemma 2.1 For 21=2nC1

� s � 21=2n

, n 2 N , the core of the inverse limit space
lim
 �

.Œc2; c1�;Ts/ is homeomorphic with two copies of lim
 �

.Œ0; 1�;Ts2/ joined at their
endpoints.

Proof For this range of s , Ts.Œc2;p�/ D Œp; c1� and Ts.Œp; c1�/ D Œc2;p�/, where
p WD s=.s C 1/ is the positive fixed point of Ts . It follows that lim

 �
.Œc2; c1�;Ts/ is

homeomorphic with two copies of lim
 �

.Œp; c1�;T
2
s / joined at the endpoint .: : : ;p;p;p/.

Direct calculation shows that, if L is the orientation preserving affine homeomorphism
from Œp; c1� onto Œ0; c1.s

2/�, then L ı T 2
s ı L�1 D Ts2 on Œ0; c1.s

2/� and hence
lim
 �

.Œp; c1�;T
2
s / is homeomorphic with lim

 �
.Œ0; 1�;Ts2/.
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Lemma 2.2 Suppose that 21=2n

< s � 21=2n�1

and 21=2n0

< s0 � 21=2n0�1

, n; n0 2N ,
and suppose that lim

 �
.Œ0; 1�;Ts/ is homeomorphic with lim

 �
.Œ0; 1�;Ts0/. Then n D n0

and assuming that the Ingram conjecture holds for slopes strictly greater than
p

2, then
lim
 �

.Œ0; 1�;T
s2n�1 / is also homeomorphic with lim

 �
.Œ0; 1�;T

.s0/2
n�1 /.

Proof For 21=2 < s < 2, lim
 �

.Œ0; 1�;Ts/ consists of a ray C winding onto an inde-
composable continuum, namely lim

 �
.Œc2; c1�;Ts/. It follows from Lemma 2.1 that

for 21=2n

< s < 21=2n�1

, lim
 �

.Œ0; 1�;Ts/ consists of a ray winding onto a pair of
rays, each winding onto a pair of rays, . . . , each winding onto a pair of rays, each
of which winds onto an indecomposable continuum. There are 2n�1 of these inde-
composable continua, each homeomorphic with the core of the inverse limit space
lim
 �

.Œ0; 1�;T
s2n�1 /. Hence if lim

 �
.Œ0; 1�;Ts/ is homeomorphic with lim

 �
.Œ0; 1�;Ts0/,

then n D n0 and lim
 �

.Œ0; 1�;Ts2n�1 / is homeomorphic with lim
 �

.Œ0; 1�;T.s0/2n�1 /. To
cover the remaining cases, note that if s D 21=2n�1

, then the only alteration needed
in the above description of lim

 �
.Œ0; 1�;Ts/ is that at the penultimate level, instead

of a pair of rays winding onto a pair of indecomposable subcontinua, we just have
two indecomposable subcontinua (each homeomorphic with lim

 �
.Œ0; 1�;T2/) joined at

their common endpoint. It is then clear that if lim
 �

.Œ0; 1�;Ts0/ is homeomorphic with
lim
 �

.Œ0; 1�;Ts/, then s0 D s .

Definition 2.3 The arc-length or xd metric on C is defined as

xd.x;y/D sp
jx�p �y�pj

for each p so that �pW Œx;y�! Œ0; 1� is injective.

If x;y 2 C, then we denote by Œx;y� the arc between x and y , and by .x;y/ the
interior of the arc Œx;y�. We write x � y if x 2 Œ˛;y�, ie xd.˛;x/� xd.˛;y/.

Definition 2.4 A continuum is chainable if for every ">0, there is a cover f`1; : : : ; `ng

of open sets (called links) of diameter < " such that `i \ `j ¤ ∅ if and only if
ji � j j � 1. Such a cover is called a chain. Clearly the interval Œ0; s=2� is chainable.
We call a sequence Cp , p 2N0 , a natural chaining, and each Cp a natural chain, of
lim
 �

.Œ0; 1�;Ts/, if

(1) there is a chain fI1
p ; I

2
p ; : : : ; I

n
p g of Œ0; s=2� such that `j

p WD �
�1
p .I

j
p / are links

of Cp ;

(2) each point x 2
Sp

iD0
T �i

s .c/ is a boundary point of some link I
j
p ;

(3) for each i there is j such that Ts.I
i
pC1

/� I
j
p .
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Let us define width.Cp/ WDmaxj jI
j
p j. If width.Cp/ < "s

�p=2 then

mesh.Cp/ WDmaxfdiam.`/ W ` 2 Cpg< ";

which shows that lim
 �

.Œ0; 1�;Ts/ is indeed chainable.

Condition (3) ensures that CpC1 refines Cp (written CpC1 � Cp ).

Definition 2.5 Let p 2N0 . A point xD .: : : ;x�2;x�1;x0/2C is called a p–point if
x�p�j D c for some j 2N0 . For the largest such j , the number Lp.x/ WD j is called
the p–level. In particular, x0DT

pCj
s .c/. The ordered set of all p–points of composant

C is denoted by Ep , and the ordered set of all p–points of p–level l by Ep;l . Given
an arc A � C with successive p–points x0; : : : ;xn , the p–folding pattern of A,
denoted by FPp.A/, is the sequence FPp.A/D Lp.x

0/; : : : ;Lp.x
n/. The folding

pattern of the composant C, denoted by FP .C/, is the sequence Lp.z
1/, Lp.z

2/, : : : ,
Lp.z

n/, : : : , where Ep D fz
1; z2; : : : ; zn; : : : g and p is any nonnegative integer. Let

q 2 N , q > p , and Eq D fy
1;y2; : : : ;yn; : : : g. Since �q�p is an order-preserving

homeomorphism of C, it is easy to see that, for every i 2 N , �q�p.zi/ D yi and
Lp.z

i/DLq.y
i/. Therefore, the folding pattern of C does not depend on p .

For the above arc A, the projection �pW A! Œ0; s=2� need not be injective, so the
folding pattern of A can be very long and A may pass through the same link `j of
the natural chain Cp many times. If Aj is an arc component of A\ `j , then we say
that Aj goes straight through `j if �pjAj is injective; otherwise it turns in `j . If Aj

turns in `j , then Aj contains at least one p–point.

Definition 2.6 Let `0; `1; : : : ; `k be those links in Cp that are successively visited by
an arc AD Œu; v�� C (hence `i ¤ `iC1 , `i \ `iC1 ¤∅ and `i D `iC2 is possible if
A turns in `iC1 ). Let Ai � `i be the corresponding arc components such that Cl Ai

are subarcs of A. We call the arc A

� p–link-symmetric if `i D `k�i for i D 0; : : : ; k ;

� maximal p–link-symmetric if it is p–link-symmetric and there is no p–link-
symmetric arc B �A and passing through more links than A;

� p–symmetric if �p.u/ D �p.v/ and if for A \Ep D fx
0; : : : ;xng we have

Lp.x
i/DLp.x

n�i/ for every i D 0; : : : ; n.

In any of these cases, k is even and the p–point of Ak=2 with the highest p–level is
called the center of A, and the link `k=2 is called the central link of A.
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It is easy to see that if A is p–symmetric, then n is even and

Lp.x
n=2/DmaxfLp.x

i/ W xi
2A\Epg:

Clearly, every p–symmetric arc is p–link-symmetric as well, but the converse does
not hold.

Definition 2.7 Given p , let .si/i2N be the sequence of all p–points such that

0�Lp.x/ <Lp.si/

for every p–point x 2 .˛; si/. We call p–points satisfying this property salient.

Since for every slope s > 1 and p 2N0 , the sequence FP .C/ starts as 0 1 0 2 0 1 : : : ,
and since by definition Lp.s1/ > 0, we have Lp.s1/D 1. Also, since si D �

i�1.s1/,
Lp.si/D i , for every i 2N . Note that the salient p–points depend on p : if p � q ,
then the salient p–point si equals the salient q–point siCp�q .

Let us extend the notion of folding pattern as follows. A sequence e1; : : : ; ek is the
folding pattern of T j jH for an interval H � Œ0; 1� if ce1

DT j .x1/; : : : ; cek
DT j .xk/,

where x1 < � � �< xk are the critical points of T j on H . (If 0 2H , then the folding
pattern starts with � by convention, just as � denotes the conventional p–level of ˛ .)
In this extended terminology, the p–folding pattern of Œ˛; sjC1� is the same as the
folding pattern of T j on Œ0; c1�, independently of p .

Measured in arc-length, xd.˛; s1/D
1
2
sp , and since �.si/D siC1 we obtain

(2-1) xd.˛; si/D
1
2
sp�1si for all i � 1:

3 Maximal link-symmetric arcs

In this section we establish upper bounds for the lengths of p–link-symmetric arcs. The
Ingram conjecture was previously proved for all tent maps with a (pre)periodic critical
point; see Štimac [31]. So we assume from now on that the slope s is such that c is
not (pre)periodic. Throughout this section we use the notation T WD Ts , ak WD T k.a/

for any point or interval (except for the closest precritical points z�k 2 T �k.c/ in
Definition 3.1 below), and ya WD 1� a is the symmetric point around c .

Definition 3.1 We call z�k a closest precritical point if T k.z�k/D c and T k maps
Œc; z�k � monotonically onto Œck ; c�. Clearly, if z�k is a closest precritical points, so
is yz�k .
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Lemma 3.2 There are infinitely many N and closest precritical points z�N such that
�N WDminfjci � cj W 0< i �N g> jz�N � cj.

Proof If c is not recurrent, then �n 6! 0 and the lemma is trivial. So let us assume
that c is recurrent, but obviously not periodic. Let n be such that jcn� cj D �n .

If x 7! jT n.x/� cj has a local maximum at c , then T n.Œc; cn�/ 3 c . Indeed, if this
were not the case, then by the choice of n, T n maps Œc; cn� in a monotone fashion
into Œc; cn�, which is clearly impossible for tent maps with slope > 1. So in this case,
z�n 2 Œcn; ycn� and the lemma holds with N D n.

So assume now that x 7! jT n.x/�cj has a local minimum at c . Take m 2N minimal
such that the closest precritical z�m 2 Œycn; cn�. We will show that cj 62 Œyz�m; z�m�

for n < j � m. If j D m, then x 7! jT j .x/� cj has a local maximum at c , and
we can argue as above. So assume by contradiction that cj 2 Œyz�m; z�m� for some
n< j <m. If x 7! jT j .x/� cj has a local maximum at c , then the closest precritical
point z�j satisfies T j .Œc; z�m�/� T j .Œc; z�j �/D Œcj ; c�� Œyz�m; c� or Œc; z�m�. This
implies that either Œc; z�m� or Œyz�m; c� is mapped monotonically into itself by T j ,
which is impossible. The remaining possibility is that x 7! jT j .x/� cj has a local
minimum at c . In this case, T j�n maps Œz�m; cn� monotonically onto Œw; cj �. If
c 2 .w; cj /, then m 2N cannot be minimal such that T m.Œc; cn�/ 3 c . If c 62 .w; cj /,
then w 2 Œycn; cn�\T .j�n/�m.c/, and since �m < .j � n/�m < 0, m is again not
minimal such that T m.Œc; cn�/ 3 c .

Take N Dm and the lemma follows.

Take N0 as in Lemma 3.2 and so large that sN0 > 100. Let N �N0 from Lemma 3.2
be so large that

(3-1) ı WD jz�N � cj< 1
100
jz�N0

� cj:

Then jcn � cj � snjz�n � cj � sN0 jz�N � cj > 100ı for every N0 � n � N by the
choice of N0 and jcn� cj> jz�N0

� cj> 100ı for n�N0 by the choice of N .

Definition 3.3 Given r 2H with jr�aj; jr�bj>ı , we say that T njH is "–symmetric
around r , if jT n.r C t/�T n.r � t/j< " whenever both r � t; r C t 2H . The point r

is called the center of symmetry.

Mostly we will be interested in "–symmetries around the midpoint of the interval H ,
but we will always specify the center of "–symmetry, as sometimes there are multiple
centers of "–symmetry. If width.Cp/ < " and the arc J � Œ˛; sk � is p–link-symmetric,
then �pCk W J !H WD �pCk.J / is one-to-one and T k jH is "–symmetric.
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Definition 3.4 We say that T njH is "–periodic of period 2� if

jT n.t/�T n.t C 2�/j< "

for all t; t C 2� 2H .

If T njH is "–symmetric around two centers r1 and r2 such that jr1� r2j D �, then
T njH is "–periodic with period 2�. We will explain this fact in more detail in the
proof of Proposition 3.6, where it is used several times.

Lemma 3.5 Given ı as in (3-1), there exists r0 D r0.ı/ such that for every interval zJ
with j zJ j � 22ı , there exist l � r0N and an interval J with jJ j � 18ı and concentric
with zJ , such that T l jJ is monotone and Jl WD T l.J /� Œc � ı; cC ı�.

Proof Let x be the center of zJ and take m � 0 minimal such that zJm 3 c ; hence
T mj zJ

is monotone.

Clearly, m� .r0�1/N for some r0 � 1 depending only on ı . If @ zJm is ı–close to c ,
then we take J 0� zJ centered at x and slightly smaller such that c 2 @J 0m and m0 >m

minimal such that J 0m0 contains c in its interior. Since jJ 0mj> 20ı , it contains z�N

or yz�N as in (3-1), and m0�m�N and jcm0�m� cj � ı by Lemma 3.2.

If at iterate m0 the other boundary point of J 0 is ı–close to c , then m0 �m < N .
We take the interval J 00 � J 0 centered at x slightly smaller such that c 2 T m0.@J 00/

and take m00 > m0 minimal such that c is an interior point of T m00.J 00/. Since
T m0.z�N / 2 T m0.J 00/, and by (3-1) again, m�m0 �m00 �mCN and @J 00m00 is not
ı–close to c . In each case, there is l � r0N and J 2 f zJ ;J 0;J 00g so that the lemma
holds.

For interval H DW Œa; b� with center x we formulate the following property:

(3-2) c 2H and ı <minfjc � aj; jc � bj; jc �xjg:

Proposition 3.6 Assume that s 2 Œ1; 2� is such that c is not (pre)periodic. There exists
" > 0 such that if H satisfies (3-2), then T njH is not "–symmetric around its midpoint
x for any n 2N0 .

Proof We will prove Proposition 3.6 using the induction hypothesis:

(IHn) If H satisfies (3-2), then T n
jH is not "–symmetric around x .

Take N0 , N and ı as in (3-1), r0 as in Lemma 3.5 and H that satisfies (3-2).
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Let " 2 .0; ı/ be so small that

(3-3) " <minfjci � cj j W 0� i < j � .2C r0/N g:

Since c lies off-center in H by at least ı , by the choice of ", (IHk ) holds for all
k � .2C r0/N . Assume now that (IHj ) holds for all j < n. We will prove (IHn ), but
first, continuing with the interval zJ of Lemma 3.5, we prove the following lemma.

Lemma 3.7 Let zJ be an interval of length j zJ j � 22ı centered at ck for some 1 �

k � 2N . If T j j zJ is "–symmetric around ck for some 0 � j � n, then the interval
Jl WD T l.J / from Lemma 3.5 satisfies condition (3-2).

Proof We know already from Lemma 3.5 that Jl � Œc � ı; c C ı�. Hence if (3-2)
fails, then � WD jckCl � cj � ı . Since T l jJ is monotone, j > l . Therefore T j�l jJl

is "–symmetric around ckCl and symmetric around c , and it follows that T j�l jJl
is

"–periodic with period 2�. Indeed, by symmetry around c , T j�l jJl
is "–symmetric

around the symmetric point yckCl (see Figure 1). Hence T j�l jJl
must also be "–

symmetric around the points c˙2�, which are the reflections of c in ckCl and yckCl , etc.
Extending these symmetries, we see that jT j�l.t/�T j�l.tC2�/j< " for all t; tC2�

in Jl , so T j�l jJl
is "–periodic with period 2�. Even more, T j�l jJl

is "–symmetric
around cC 2i� on every separate subarc Pi WD ŒcC .2i � 1/�; cC .2i C 1/��� Jl .

c � 2� yckCl c ckCl cC 2� � � � Jl

�‚ …„ ƒ
„ ƒ‚ …

P0

„ ƒ‚ …
P2

Figure 1: T j�l jJl
is "–symmetric around ckCl and symmetric around c ,

implying that T j�l jJl
is "–periodic with period 2� .

Recall that 1 � k � 2N and l � r0N , so we have � > " by the choice of " in
(3-3). Since jJl j � 18ı D 18jz�N � cj, one of the components of Jl n fcg, say the
one containing z�N > c , has length � 9ı . We can take r � N minimal such that
z�r 2 ŒcC ı; cC 8:9ı�. Take i 2 Z such that if

(3-4) z�r 2

�
.c; cC 4:3ı� then cC 2i� 2 .z�r C 0:1ı; z�r C 2:1ı/;

.cC 4:3ı; cC 8:9ı� then cC 2i� 2 .z�r � 2:1ı; z�r � 0:1ı/:

Let H � Jl be the longest interval centered at x WD c C 2i� on which T r jH is
monotone. Then H 3 z�r , and T j�l jH and T j�l�r jHr

are "–symmetric around x .
We will show that Hr satisfies .3-2/. Indeed, since jz�r � cj � 9ı < jzN0

� cj=10 (so
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r >N0 ) by (3-1) and jx�z�r j� ı=10, we have jxr�cjD sr jx�z�r j�2N0=2ı=10>ı .
If jz�r � @H j � ı=10, then jc � @Hr j > ı for the same reason. If on the other hand
there is a point y 2 @H such that jy�z�r j< ı=10, then y has to be a precritical point.
By the choice of r , y D z�r 0 2 .cC 8:9ı; cC 9ı� for some r 0 < r . By the choice of
N and Lemma 3.2, jyr � cj D jcr�r 0 � cj � ı .

This shows that Hr satisfies .3-2/, but also T j�l�r jHr
is "–symmetric around xr ,

and this contradicts (IHj�l�r ), proving this lemma.

Combining the induction hypothesis (IHn ) and Lemma 3.7, we have proved the fol-
lowing stronger property.

Corollary 3.8 If zJ is centered at ck for some 1� k � 2N and j zJ j � 22ı , then T j j zJ

is not "–symmetric around ck for j � n.

Now we continue the induction on n and assume by contradiction that T njH is "–
symmetric around midpoint x for some H satisfying (3-2) and for " satisfying (3-3).
Let Œa0; b0� WDH 0 �H be centered around x such that c 2 @H 0 . Assume without loss
of generality that c D a0 is the left endpoint of H 0 , and let L and R be intervals of
length ı at the left and right side adjacent to H 0 . Since jH 0j � ı , so H 0 3 z�N or yz�N ,
there is 0< k �N minimal such that c 2H 0k . Clearly jH 0k j> jLk j D jRk j � 100ı .
We distinguish four cases:

Case I H 0k satisfies (3-2). Then by (IHn�k ), T n�k jH 0k cannot be "–symmetric
around x , and neither can T njH 0 or T njH .

Case II jxk � cj < ı ; see Figure 2 (left). If the length of the interval T n�k.Œxk ; c�/

exceeds ", then since T n�k is also symmetric around c , T n�k must be "–symmetric
on H 0k both with center xk and with center yxk , and therefore "–periodic on H 0 with
period 2� WD 2jxk�cj. We use the same argument as in the proof of Lemma 3.7: T n�k

is "–symmetric on each interval Pi WD ŒcC .2i � 1/�; cC .2i C 1/�� for each i 2 Z
such that Pi �H 0k . Since jH 0k j � 100ı � 100�, Pi �H 0k for at least �25� i � 25.
Take r �N minimal such that Œz�r � ı=10; z�r C ı=10��H 0k , and i 2Z as in (3-4),
and H 00 �H 0 such that H 00k is the maximal interval centered at cC 2i� on which
T r is monotone. As before, T n�.kCr/jH 00kCr

is the "–symmetric but H 00kCr satisfies
(3-2). This would contradict (IHn�.kCr/ ), so it cannot occur.

If on the other hand the length of T n�k.Œxk ; c�/ is less than ", then we might as well
have chosen x such that xk D c . This means that the intervals LkC1 and RkC1 are
adjacent; see Figure 2 (bottom left). More precisely, they are adjacent except for an
error which does not show at "–scale under the iterate T n�.kC1/ , so by a negligible
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‚ …„ ƒH

L H 0 R

a0 D c x b0

?
T k

PPP
PPP

Lk

H 0k Rk

ck xk b0k

?
T

```̀```̀
RkC1

```̀```̀

LkC1

```````````̀          
ckC1

xkC1

ckC1 � b0kC1

c1

‚ …„ ƒH

L H 0 R0

a0 D c x b0

?
T kC1

PPP
PPP

LkC1

H 0kC1
PP

P
PP

P
R0kC1

ckC1 xkC1
c1 � b0kC1

?
T jC1

```````̀

```````̀
LkCjC2

   
   

  
   

   
  R0kCjC2

```````````̀          
ckCjC2

cjC2
c1 � xkCjC2„ƒ‚…

hook

Figure 2: An illustration of Cases II (left) and IV (right)

adjustment, we can assume that they form an interval of length � 100ı with center
ckC1 . Since kC1� 2N , Corollary 3.8 implies that T n�.kC1/jLkC1[RkC1

and hence
T njH are not "–symmetric around x .

Case III ja0k � cj< ı . Since k �N , the choice of ı renders this impossible.

Case IV jb0k � cj< ı ; see Figure 2 (right). Replace R by the largest interval R0 �

H [R with R0 \R ¤ ∅ such that c 2 @R0k and T k jR0 is monotone. If c 2 @R0l
for some 0� l < k , then R0k D Œc; ck�l �, so jR0k j � ı by Lemma 3.2. Also rename
H 0 nR0 to H 0 . Hence T kC1jL[H 0[R0 has three branches, sı � jR0kC1j and 100ı �

jLkC1j � jH
0
kC1j.

Let j > 0 be minimal such that T kCjC1.H 0/ 3 c . If H 0kCjC1 D ŒckCjC1; cjC1�,
which is centered at xkCjC1 , satisfies (3-2), then we can invoke (IHn�.kCjC1/ ),
so assume that this is not the case. Since jLj � ı , so L 3 z�N or yz�N , we have
j � kC j C 1�N . Therefore both jcjC1� cj> ı and jckCjC1� cj � ı .

Thus if (3-2) fails, we must have jxkCjC1�cj< ı . If in the remaining n�.kCj C1/

iterates, the arc ŒxkCjC1; c� grows to length > ", then, as in Case II, T njH 0 must
contain a large "–periodic arc, to which we apply the same argument as in Case II (ie
the argument of Lemma 3.7). The remaining possibility is that xkCjC1 is so close to
c that on an "–scale, we may as well assume that xnCkC1 D c .
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Both ckCjC2Da0kCjC2 and cjC2�b0kCjC2 are local minima of T kCjC2jL[H 0[R0 ;
see Figure 2 (bottom right). Assume without loss of generality that cjC2 < ckCjC2 ,
so R0kCjC2 has a small extra hook before joining up with LkCjC2 . As we assumed
that T njH is "–symmetric around x , the effect of this hook needs to be “"–repeated”
near a0 in L. But LkCjC2 and R0kCjC2 overlap, so in R0 , the same effect needs to
be "–repeated next to the first hook. Continuing this way, we find that T n�.kCjC2/ is
"–periodic over the entire length of R0kCjC2 .

Take i minimal such that R00 WD T i.R0kCjC2/ 3 c . Since jR0k j � ı we have

j C i C 2<N; jR00j � 100ı and j@R00� cj � ı:

Therefore T n�.kCjCiC2/jR00 is "–periodic of period 2�, where the length of the hook
after i more iterates is � WD jcjCiC2� ckCjCiC2j> ", because kC j C i C 2� 2N

and by the choice of " in (3-3). If � < 10ı < jR00j=10, then T n�.kCjCiC2/jR00 is
"–periodic with at least 5 adjacent intervals P of length 2� around the center of which
T n�.kCjCiC2/jR00 is "–symmetric. So we can find a new interval H 00 �R00 centered
around the center of one of these P s such that H 00 satisfies (3-2). But this contradicts
(IHn�.kCjCiC2/ ).

If � � 10ı , then we let H 00 be the arc of length 22ı centered at ckCjCiC2 . Again,
since kC j C i C 2� 2N , the iterate T n�.kCjCiC2/ cannot be "–symmetric on H 00

around ckCjCiC2 by Corollary 3.8. But then the assumed "–symmetry of T njH does
not extend beyond H 0 , and Case IV follows.

This proves the inductive step and the proof of Proposition 3.6 is complete.

Let � WDminfi � 3 W ci � cg. Then � <1 provided 1< s < 2. Let

� � �< c�3 < c�2 < c�1 < c0 D c

be the successive precritical points on the left of c with T j .c�j /D c . Since we have
c��1 < c < c� , then c2�� < c2 < c3�� . Let ı D jz�N � cj as in (3-1) be so small (ie
N as in Lemma 3.2 so large) that

(3-5) ı < 1
30

minfjc�1� c�2j; jc�1� yc1j; jc2� c2�� jg;

where yc1D 1� c1D 1� s=2. Assume that s 2 Œ1; 2� is such that c is not (pre)periodic,
and take " is as in (3-3) in the proof of Proposition 3.6.

Let .Ai/i2N be the sequence of maximal p–link-symmetric arcs with center si for
every i 2N . Recall that .si/i2N is the sequence of salient p–points (see Definition 2.7)
and that width.Cp/ WDmaxj jI

j
p j.
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Lemma 3.9 If width.Cp/ < ", then Ai contains exactly � salient p–points for each
i � � � 1, namely si��C2; si��C3; : : : ; siC1 , and si��C2 is an interior point of Ai .

Proof Let H be the interval centered at c2 such that c is the left endpoint of
H��2 WD T ��2.H /. Then jH j � 22ı by the choice of ı , so by Proposition 3.6
and Lemma 3.7 in particular, T pCi�1jH cannot be "–symmetric around c2 .

J

������

���
���

si��C1 si��C2 si��C3 si siC1

. /
L R

?

�pCi

c1�� c2�� c3�� c c1
��

?

T
XXXXXXXXXXz

@
@@R

c1��

c3�� c

c1��c2„ƒ‚…
H

Figure 3: The arc J and its image under �pCi and T ı�pCi D �pCi�1

Let J D Œx; siC1� be such that J 3 si and xd.si ; siC1/D xd.x; si/, where xd is defined
in Definition 2.3. Then �pCi�1 maps J in a 2–to–1 fashion onto Œc2; c1�, with
�pCi�1.si/ D c1 and �pCi�1.siC1/ D c2 . Therefore J is p–symmetric and also
p–link-symmetric around si . Since c2�� < c2 < c3�� , we have �pCi�1.J / 63 c2�� .
Extend J on either side by equally long arcs L and R such that �pCi�1.L[R/DH ;
see Figure 3. Since T i�1jH is not "–symmetric around c2 , Ai 6�L[J [R provided
width.Cp/ < ". Hence Ai 63 si��C1 as claimed.

Remark 3.10 The bound � in this lemma is not sharp if Ts has a periodic critical
point. For example, for the tent map with c2 < c D c3 < c1 , the folding pattern is

FP .C/D� 0 1 0 2 0 1 3

maximal p–symmetric‚ …„ ƒ
1 0 2 0 4 0 2 0 1 3 1 0 5 0 1 3 1 0 2 0 4 0 2 0 1 6 1 0 2 0 4 0 2„ ƒ‚ …

maximal p –link-symmetric

0 1 : : :

where p–levels of salient p–points are underlined and � denotes the conventional
p–level of ˛ . Since c has period 3, so caD caC3b for all a; b 2N , p–link-symmetric
arcs can be longer than p–symmetric arcs. Indeed, the maximal p–symmetric arc
centered at salient point s5 stretches from s3 to s6 , while maximal p–link-symmetric
arc centered at s5 stretches almost from ˛ to some point with p–level 2. This property
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holds for all salient points: the maximal p–link-symmetric arc around si contains sj

for all j � i C 1.

A preperiodic example is s D 2, ie lim
 �

.Œ0; 1�;Ts/ is the Knaster continuum.

Lemma 3.11 Assume that width.Cp/< " and fix i 2N , i >��1, and let `i and `i�1

be the links of Cp containing si and si�1 respectively. Let y be such that si�1� y � si

and y is not contained in the same arc-component of `i as si , nor in the same arc-
component of `i�1 as si�1 . Then the maximal p–link-symmetric arc J with center y

contains at most one salient p–point, and J �Ai .

Proof Let � � �< c�2 < c�1 < c0 D c be the successive precritical points to the left of
c with T j .c�j /D c . Since Ai contains siC1 and its symmetric point around si (at
least as boundary points), we have �pCi.Ai/� Œyc1; c1�� Œc�1; c�. Let H WD �pCi.J /

with center x WD �pCi.y/ 2 Œc�1; c�. Assume by contradiction that J contains two
salient p–points, or that J 6�Ai . Then jH j � 22ı by the choice of ı in (3-5).

Let w WD .c�1C c/=2. We distinguish four cases.

(1) c � ı < x < c . If jT i.Œx; c�/j � ", then we cannot “"–distinguish” x from c ,
violating our assumption that y and si do not belong to the same arc-component of
the same link. If jT i.Œx; c�/j> ", then T i is "–symmetric on H with centers x and
c , so T i is "–periodic on H with period 2jx� cj. This leads to a contradiction by the
argument of the proof of Lemma 3.7.

(2) w � x � c � ı . Then H satisfies (3-2), so by Proposition 3.6, T i jH cannot be
"–symmetric around x .

(3) c�1Cı=s�x<w . Then by assumption H contains one of c , c�2 or yc1 (whence
jH j � 22ı ), and hence T .H \ Œc�2; c�\ Œyc1; c�/ satisfies (3-2), so T i jH cannot be
"–symmetric around x by Proposition 3.6.

(4) c�1 < x < c�1C ı=s . If jT i.Œc�1;x�/j � ", then we cannot “"–distinguish” x

from c , violating the assumption that y and si�1 are not contained in the same arc
component of `i�1 . If jT i.Œc�1;x�/j> " and again, H by assumption contains one of
c , c�2 or yc1 (so jH j � 22ı ), then T i�1 is "–periodic on T .H / which again leads to
a contradiction by the argument of the proof of Lemma 3.7.

This proves the lemma.
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4 Link-symmetric arcs and homeomorphisms

In this section we study the action of homeomorphisms

hW lim
 �

.Œ0; 1�;Ts0/ �! lim
 �

.Œ0; 1�;Ts/

on salient q–points and q–points in general. Let q;p;g 2N0 be such that

h.Cq/� Cp � h.Cg/:

Recall that we assumed the slopes s0 and s to be such that the critical points c0 and
c are not (pre)periodic. Clearly h maps the zero-composant C0 of lim

 �
.Œ0; 1�;Ts0/ to

the zero-composant C of lim
 �

.Œ0; 1�;Ts/, and in particular the endpoint ˛0 of C0 to the
endpoint ˛ of C. Let �0 WDminfi � 3 W c0i � c0g, where c0i D T i

s0.c
0/. Let us denote

the salient q–points (ie associated with Cq ) by s0i and the salient g–points by s00i .
Therefore, a salient q–point s0i is the same as a salient g–point s00iCq�g . Similarly, let
A0i be the maximal q–link-symmetric arc centered at s0i while as before, Ai denotes
the maximal p–link-symmetric arc centered at si

Since A0i is q–link-symmetric, and h.Cq/ � Cp , the image Di WD h.A0i/ � C is
p–link-symmetric and therefore has a well-defined center, we denote it as mi , and a
well-defined central link p̀ (see Definition 2.6). In fact, h.s0i/ and mi belong to the
central link p̀ and mi is the p–point with the highest p–level of all p–points of the
arc component of p̀ which contains h.si/. Let Mi WDLp.mi/.

Theorem 4.1 MiC1 DMi C 1 for all sufficiently large integers i 2N .

Proof Without loss of generality we can assume that s0 � s , so that �0 � � . We prove
first that if N � � is so large that mN lies beyond the �–th salient p–point of C, then
Lp.y/ <MN , for every y 2 .˛;mN /; ie mN is salient.

Assume by contradiction that there exists y 2 .˛;mN / such that Lp.y/ �MN . By
taking Lp.y/ maximal with this property, we can assume that y D sj�1 �mN � sj

for some j > � . More precisely, mN is not contained in the same arc-component of
the link containing sj�1 as sj�1 , and similarly for sj . Lemma 3.11 implies that DN

contains at most one salient p–point and that DN �Aj . Let us denote by B the p–
link-symmetric arc such that sj is the center of B , DN �B �Aj and @DN \@B¤∅
(see Figure 4). Since Cp � h.Cg/, the arc B00 D �q�g ı h�1.B/ is g–link-symmetric
and contains the arc �q�g ı h�1.DN / D �q�g.A0N /. The center z00 of B00 is the
center of the arc component of the central link `g of B00 containing �q�g ı h�1.sj /.
By Lemma 3.9, A0N contains �0 salient q–points s0N��0C2; : : : ; s

0
N ; s

0
NC1 .
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s0N

A0N‚ …„ ƒ
-

h

mN

DN‚ …„ ƒ
sj„ ƒ‚ …

B„ ƒ‚ …
Aj

@
@
@R
�q�g �

�
�	

�q�g ı h�1

s00NCq�g

�q�g.A0N /‚ …„ ƒ
z00„ ƒ‚ …

B00

Figure 4: The relations between relative salient points and arcs in Cq (left),
Cp (right), and Cg (bottom)

The map �q�g maps the �0 salient q–points s0i 2 A0N to the �0 salient g–points
s00iCq�g 2 �

q�g.A0N /, and B00 contains at least these �0 salient g–points. If the
center z00 of B00 is not salient, then B00 contains at most one salient g–point by
Lemma 3.11, so we have a contradiction. Otherwise, if z00 is salient, then even if z00

is the right-most salient g–point of �q�g.A0N /, then still B00 contains �0� 1 salient
g–points on the left of the center z00 , contradicting Lemma 3.9. Therefore, mN is
salient.

Let us consider the arc DNC�0�2D h.A0NC�0�2/. Since Lq.s
0
iC1/�Lq.s

0
i/D 1, the

arc Œs0i ; s0iC1� contains a q–point of every q–level less than i , so contains q–points of
q–levels 1 and 2. Therefore, �q.Œs

0
i ; s
0
iC1�/D Œc2; c1�. Note that two different points

from s0N ; : : : ; s
0
NC�0�1 2A0NC�0�2 can be mapped into the same link, say p̀ of Cp ,

but cannot be mapped into the same arc component of p̀ . Indeed, if h.Œs0i ; s
0
iC1�/�A,

where A is a arc component of p̀ , then h.Cq/ � p̀ , a contradiction. Therefore,
sMN

; : : : ; sMNC�0�1
are all different.

So, the arc DNC�0�2 is p–link-symmetric and contains at least �0 salient p–points,
sMN

; : : : ; sMNC�0�1
. By Lemma 3.9, the maximal p–link-symmetric arc AMNC�0�2

centered at the salient p–point sMNC�0�2
contains � salient p–points, namely

sMNC�0�2��C2; : : : ; sMNC�0�2
; sMNC�0�2C1:

Therefore, DNC�0�2 �AMNC�0�2
, �0 D � , sMNCi

D sMNCi and MNCi DMN C i

for all 0� i � ��1. By induction we get MNCi DMN C i for all i 2N0 as well.

Every salient p–point si 2 C can be contained in at most two links of Cp , and one of
them is always the central link of Ai , which we will denote by `si

p . Let Ksi
be the
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arc component of `si
p containing si . Given a p–point x 2 C with Lp.x/D l , there

can be two links of Cp containing x , but one of them is always `sl
p . We denote the arc

component of `sl
p containing x by Kx . Let `s0i

q 2 Cq and Ks0i � `
s0i
q be the similar

notation related to C0 and Cq . Also, for a q–point x0 of C0 with Lq.x
0/D k let the

arc component of `s0k
q containing x0 be denoted by Kx0 .

Proposition 4.2 There exists M 2 Z such that the following holds:

(1) Let l 2N and let x0 be a q–point with Lq.x
0/D l . Then u WD h.x0/ 2 `

slCM
p

and the arc component Ku � `
slCM
p containing u, also contains a p–point x

such that Lp.x/D l CM .

(2) For l 2N0 and i 2N , the number of q–points in Œs0i ; s0iC1� with q–level l is
the same as the number of p–points in ŒsMCi ; sMCiC1� with p–level M C l .

Proof .1/ Recall that the set of q–points in C0 is denoted by E0q . By Theorem 4.1,
there exists M 2 Z such that ai WD h.s0i/ 2 `

sMCi
p for every i 2 N0 and the arc

component Kai
of `sMCi

p contains sMCi . Therefore, statement .1/ is true for all
salient q–points.

Also h.Œs01; s
0
2�/D Œa1; a2�, sMC1 2Ka1

and sMC2 2Ka2
. Let q–point x01 2 Œs

0
2; s
0
3�

be such that the arc Œs01;x01� is q–symmetric with center s02 . Then h.Œs01;x
0
1�/ is p–

link-symmetric with center sMC2 . Since there exists a unique p–point b1 such that
the arc ŒsMC1; b1� is p–symmetric with center sMC2 , we have h.x01/ 2 Kb1

; see
Figure 5. Also Lq.x

0
1/D 1 and Lp.b1/DM C 1.

s01 : : : s
0
2
: : :x01 : : : s

0
3
: : :x01;2 : : :x

0
2 : : : s

0
4 : : :

q –symmetric‚ …„ ƒ
„ ƒ‚ …

q –symmetric „ ƒ‚ …
q –symmetric

@
@
@R

h

: : : sMC1 : : : sMC2 : : : b1 : : : sMC3 : : : b1;2 : : : b2 : : : sMC4 : : :

p –symmetric‚ …„ ƒ
„ ƒ‚ …

p –symmetric
„ ƒ‚ …

p –symmetric

Figure 5: The configuration of symmetric arcs
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We have h.Œs02; s
0
3�/ D Œa2; a3�, sMC2 2 Ka2

and sMC3 2 Ka3
. Let the q–point

x02 2 Œs
0
3; s
0
4� be such that the arc Œs02;x02� is q–symmetric with center s03 . Therefore

h.Œs02;x
0
2�/ is p–link-symmetric with center sMC3 . There exists a unique p–point

b2 such that the arc ŒsMC2; b2� is p–symmetric with center sMC3 , so h.x02/ 2Kb2
.

Also Lq.x
0
2/D 2 and Lp.b2/DM C 2. Since Œs02;x02� is q–symmetric, there exists

a q–point x01;2 2 Œs
0
3;x
0
2� such that the arc Œx01;x01;2� is q–symmetric with center

s03 . Then h.Œx01;x
0
1;2�/ is p–link-symmetric with center sMC3 . Since there exists a

unique p–point b1;2 such that the arc Œb1; b1;2� is p–symmetric with center sMC3 ,
we have h.x01;2/ 2Kb1;2

; see Figure 5. Also Lq.x
0
1;2/D 1 and Lp.b1;2/DM C 1.

The proof of .1/ follows by induction. Suppose at step k we have

h.Œs0k ; s
0
kC1�/D Œak ; akC1�; sMCk 2Kak

and sMCkC1 2KakC1
I

see Figure 6. Let again q–point x0k 2 Œs
0
kC1; s

0
kC2� be such that the arc Œs0k ;x0k � is

q–symmetric with center s0kC1 . Then h.Œs0k ;x
0
k �/ is p–link-symmetric with center

sMCkC1 . The unique p–point bk such that ŒsMCk ; bk � is p–symmetric with center
sMCkC1 satisfies h.x0k/ 2Kbk

. Also Lq.x
0
k/D k and Lp.bk/DM C k .

s0k s0kC1 x0 x0k y0 s0kC2 x0kC1 s0kC3

q–symmetric‚…„ƒ

?
h

sMCk

� h.s0k/

sMCkC1 x bk y sMCkC2

� h.s0kC2/

bkC1

� h.x0kC1/

sMCkC3

� h.s0kC3/
„ƒ‚…

p–link-sym.

Figure 6: The relative point in the induction step. Here � stands for “belongs
to the same arc component in the same link”.

Let us suppose by induction that for every q–point x0 2 Eq , Lq.x
0/ > 0, x0 � x0k ,

we have uD h.x0/ 2 `
srCM
p , where r DLq.x

0/, and the arc component Ku � `
srCM
p

contains a p–point x such that Lp.x/D rCM . Since Lq.x
0
k/Dk , Lq.s

0
kC1/DkC1

and Lq.s
0
kC2/ D k C 2, for every q–point x0 2 .s0kC1; s

0
kC2/, x0 ¤ x0k , we have

Lq.x
0/ <Lq.x

0
k/. Hence for every q–point y0 2 .x0k ; s

0
kC2/ there exists a q–point

x0 2 .s0kC1;x
0
k/ such that the arc Œx0;y0� is q–symmetric with center x0k . So the

arc h.Œx0;y0�/ is p–link-symmetric with center bk . The induction hypothesis implies
that for uD h.x0/, the arc component Ku 2 `

srCM
p contains a p–point x such that

Lp.x/D r CM , where r DLq.x
0/.
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Since Lp.bk/DMCk , Lp.sMCkC1/DMCkC1 and Lp.sMCkC2/DMCkC2,
we have Lp.v/ <Lp.bk/ for every p–point v 2 .sMCkC1; sMCkC2/, v¤ bk . Hence
for every p–point v 2 .bk ; sMCkC2/ there exists a p–point w 2 .sMCkC1; bk/ such
that the arc Œw; v� is p–symmetric with center bk . Therefore, and since h.Œx0;y0�/

is p–link-symmetric with center bk , there exists a unique p–point y such that the
arc Œx;y� is p–symmetric with center bk . Also, h.y0/ 2 Ky and Lp.y/ D Lp.x/,
so Lp.y/D Lq.y

0/CM . This proves that for every q–point x0 2Eq , Lq.x
0/ > 0,

x0 � s0kC2 , we have uD h.x0/ 2 `
srCM
p , where r DLq.x

0/, and the arc component
Ku � `

srCM
p contains a p–point x such that Lp.x/D r CM .

Next h.Œs0kC1; s
0
kC2�/ D ŒakC1; akC2�, sMCkC1 2 KakC1

and sMCkC2 2 KakC2
.

Let the q–point x0kC1 2 Œs
0
kC2; s

0
kC3� be such that the arc Œs0kC1;x

0
kC1� is q–

symmetric with center s0kC2 . Then h.Œs0kC1;x
0
kC1�/ is p–link-symmetric with center

sMCkC2 . Since there exists a unique p–point bkC1 such that the arc ŒsMCkC1; bkC1�

is p–symmetric with center sMCkC2 , it follows that h.x0kC1/ 2KbkC1
. Moreover,

Lq.x
0
kC1/DkC1 and Lp.bkC1/DMCkC1. Since Œs0kC1;x

0
kC1� is q–symmetric

with center s0kC2 and ŒsMCkC1; bkC1� is p–symmetric with center sMCkC2 , the same
argument as above shows that for every q–point x0 2 Eq , Lq.x

0/ > 0, x0 � x0kC1 ,
we have uD h.x0/ 2 `

srCM
p , where r DLq.x

0/, and the arc component Ku � `
srCM
p

contains a p–point x such that Lp.x/D r CM . This proves the induction step.

.2/ Let x be a p–point such that Lp.x/ > 0 and v D h�1.x/ lies beyond the �–th
salient g–point. Since h�1 is also a homeomorphism and h�1.Cp/� Cg , .1/ implies
that there exists M 0 such that v 2 `g

s00rCM 0 , where r DLp.x/. Also the arc component
Kv � `g

s00rCM 0 contains a g–point x00 such that Lg.x
00/D r CM 0 .

Let x0 be a q–point such that Lq.x
0/ > 0, x0 lies beyond the �–th salient g–point and

uDh.x0/ lies beyond the �–th salient p–point. Then u2 p̀
sr 0CM , where r 0DLq.x

0/,
and the arc component Ku� p̀

sr 0CM contains a p–point x such that Lp.x/D r 0CM .
Also v D h�1.x/ 2 `g

s00r 0CMCM 0 and the arc component Kv � `g
s00r 0CMCM 0 contains

a g–point x00 such that Lg.x
00/DLq.x

0/CM CM 0 . Since h�1 ı hD id , we have
x00 D x0 . Also Lg.x

00/D Lq.x
0/C q � g implies that M CM 0 D q � g . Since the

number of q–points in Œs0i ; s0iC1� with q–level l , l 2N0 , is the same as the number of
g–points in Œs00q�gCi ; s

00
q�gCiC1� with g–level q�gC l , it follows that this number

is the same as the number of p–points in ŒsMCi ; sMCiC1� with p–level M C l .

Definition 4.3 A point x 2 lim
 �

.Œ0; 1�;Ts/ is called a folding point if it has no closed
neighborhood that is homeomorphic to a Cantor set of arcs.

Proof of Theorem 1.1 Folding points xD .: : : ;x�2;x�1;x0/ are characterized by the
fact that each entry x�k belongs to the omega-limit set !.c/ of the turning point cD 1

2
;
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see [28]. If the critical point c of Ts has (eventual) period n, then lim
 �

.Œc2; c1�;Ts/

contains exactly n folding points. If, on the other hand, !.c/ is infinite, then there are
infinitely many folding points.

Since folding points map to folding points under a homeomorphism, lim
 �

.Œ0; 1�;Ts/

and lim
 �

.Œ0; 1�;Ts0/ must have the same cardinality of folding points. If this cardinality
is finite, then the Ingram conjecture was proved in [31]. So from now on, we can
assume that the critical points of Ts and Ts0 have infinite orbits. Therefore the above
proposition shows that

FPq.Œs
0
k ; s
0
kC1�/D FPpCM .ŒsMCk ; sMCkC1�/D FPp.Œsk ; skC1�/

for every positive integer k , and therefore FP .C0/D FP .C/.

Since orbits of c and c0 are infinite, we have ci ; c
0
i ¤ c for all i 2 N . Note that

cD c0D 1=2, c1; c
0
1 > c , c2; c

0
2 < c and FPp.Œ˛; s2�/D� 0 1 0 2DFPq.Œ˛

0; s02�/. It
is well-known (see eg [12]) that s D s0 if and only if ci and c0i are on the same side of
c for all i 2N (ie if the kneading sequences of Ts and Ts0 are the same). Therefore,
we only need to prove that FP .C/D FP .C0/ if and only if ci and c0i are on the same
side of c for all i 2N . We prove this by induction.

Let us suppose that ci and c0i are on the same side of c for all i � k , and that
FPp.Œ˛; sk �/D FPq.Œ˛

0; s0k �/. Let us denote by x the first p–point on the left of sk

(ie x 2 Œ˛; sk � and between x and sk there are no other p–points), and let x0 be the
first q–point on the left of s0k . Let l DLp.x/DLq.x

0/.

If l D 0, then Lp.�.x//D 1DLq.�.x
0//. If ckC1; c

0
kC1 < c , then

FPp.Œ�.x/; skC1�/D FPp.�.Œx; sk �//D 1 0 kC 1D FPq.Œ�.x
0/; s0kC1�/:

If ckC1; c
0
kC1 > c , then

FPp.Œ�.x/; skC1�/D 1 kC 1D FPq.Œ�.x
0/; s0kC1�/:

Similarly ckC1 < c and c0kC1 > c , or vice versa, implies

FPp.Œ�.x/; skC1�/¤ FPq.Œ�.x
0/; s0kC1�/:

If l ¤ 0, then since x 2 .sk�1; sk/, we have l < k � 1, ie l C 1 < k , and by the
induction hypothesis clC1 and c0lC1 are on the same side of c . Therefore, if ckC1

and c0kC1 are on the same side of c as clC1 , then

FPp.Œ�.x/; skC1�/D l C 1 kC 1D FPq.Œ�.x
0/; s0kC1�/:
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If ckC1 and c0kC1 are on the same side of c , but on the opposite side of clC1 , then

FPp.Œ�.x/; skC1�/D l C 1 0 kC 1D FPq.Œ�.x
0/; s0kC1�/:

Similarly, ckC1 < c and c0kC1 > c , or vice versa, implies

FPp.Œ�.x/; skC1�/¤ FPq.Œ�.x
0/; s0kC1�/:

In every case we conclude that ci and c0i are on the same side of c for all i � kC 1

if and only if FPp.Œ˛; skC1�/D FPq.Œ˛
0; s0kC1�/, and by induction that ci and c0i are

on the same side of c for all i 2N if and only if FP .C/D FP .C0/.

This proves the Ingram conjecture.

5 Pseudo-isotopy

Throughout this section, hW lim
 �

.Œ0; 1�;Ts/! lim
 �

.Œ0; 1�;Ts/ will be an arbitrary self-
homeomorphism. We will extend Proposition 4.2 in order to prove the result on pseudo-
isotopy. Note that .1/ and .2/ of Proposition 4.2 together show that h induces an order
preserving injection hq;p from Eq to Ep such that hq;p.Eq;i/DEp;MCi DEpCM;i

for every i 2 N0 , where Er;l denotes the set of all r –points with r –level l (see
Definition 2.5). In fact hq;p is an order preserving bijection from Eq to EpCM and
is defined as follows:

Definition 5.1 Let x 2 Eq . If x D s0i for some i 2 N , we define hq;p.s
0
i/ D

sMCi 2 Ep . For all other x 2 Eq , there exists i 2 N such that x 2 .s0i ; s
0
iC1/. By

Proposition 4.2, the number of q–points of .s0i ; s0iC1/ is the same as the number
of .pCM /–points of .sMCi ; s

0
MCiC1/. Let .s0i ; s0iC1/\Eq D fx

0; : : : ;xng and
.sMCi ; s

0
MCiC1/\EpCM D fy

0; : : : ;yng. We define hq;p.x
i/D yi , i D 0; : : : ; n.

The next lemma shows that hq;p is essentially independent of q and p .

Lemma 5.2 If q1;p1 2N are such that h.Cq1
/� Cp1

� h.Cq/� Cp , then

hq1;p1
jEq1
D hq;pjEq1

:

Proof By Proposition 4.2, h.Cq/ � Cp implies that there exists M 2 Z such that
hq;p.Eq;i/DEp;MCi for every i 2N0 . Also, h.Cq1

/� Cp1
implies that there exists

M1 2 Z such that hq1;p1
.Eq1;i/DEp1;M1Ci for every i 2N0 . Let r; l 2N be such

that q1 D qC r and p1 D pC l . Since EqCr;i DEq;rCi , we have

hq;p.EqCr;i/D hq;p.Eq;rCi/DEp;MCrCi ;
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and also
hqCr;pCl.EqCr;i/DEpCl;M1Ci DEp;M1ClCi :

We want to prove that MCrDM1Cl . To see this it suffices to pick a convenient point x

in EqCr;j for some j 2N , and to prove that hq;p.x/DyDhqCr;pCl.x/. Then the fact
that y2Ep;MCrCj and y2Ep;M1ClCj implies that MCrCj DLp.y/DM1ClCj .
For us, the convenient choice of x 2EqCr �Eq is a salient .qC r/–point.

Let us denote the salient .qC r/–points by ys0i and the salient .pC l/–points by ysi ,
while as before s0i denotes the salient q–points and si denotes the salient p–points.
Note that the salient .qC r/–point ys0i is the same as the salient q–point s0iCr , and
the salient .pC l/–point ysi is the same as the salient p–point siCl . Let us denote
the maximal .qC r/–link-symmetric arc with the center ys0i by yA0i , and the maximal
.pC l/–link-symmetric arc with the center ysi by yAi , while as before A0i denotes the
maximal q–link-symmetric arc with the center s0i , and Ai denotes the maximal p–link-
symmetric arc with the center si . Note that h. yA0i/ � yAM1Ci , h.A0iCr / � AMCiCr

and ys0i D s0iCr . Also, the center of yAM1Ci is ysM1Ci D sM1CiCl and the center of
AMCiCr is sMCiCr . Therefore, sMCiCr D sM1CiCl and M C r DM1C l .

Corollary 5.3 RDM Cp� q does not depend on M;p; q .

Proof By Lemma 5.2, M1C l DM C r . Therefore

R1 DM1Cp1� q1 DM1C .pC l/� .qC r/DM C r Cp� q� r DR:

Definition 5.4 We call an arc B � C a p–bridge if the boundary points of B are
p–points with p–level 0, and if Lp.x/¤ 0 for every p–point x 2 Int B .

Corollary 5.5 Let B0 � C be a .q C 1/–bridge and @B0 D fa0; b0g. There exists a
.pCM C 1/–bridge B such that for @B D fa; bg we have h.B0/ � Ka [B [Kb

and h.a0/ 2 Ka , h.b0/ 2 Kb , where Ka and Kb are the arc-components of the link
`p

sMC1 of Cp containing a and b respectively.

Proof Proposition 4.2 dealt with points in Eq;j for j � 1, but bridges involve points
of level zero. Since Eq;1DEqC1;0 , in this corollary we can work with .qC1/–bridges.

For each j � 1, Eq;j is contained in a single link `q
s0j 2 Cq and by Proposition 4.2,

for `p
sMCj � h.`q

s0j /, every point of h.Eq;j / is contained in an arc component of
`p

sMCj which contains a p–point of Ep;MCj DEpCM;j . Since EqC1;0DEq;1 and
EpCMC1;0 D EpCM;1 , every point of h.EqC1;0/ D h.Eq;1/ is contained in an arc
component of `p

sMC1 which contains a point of EpCM;1 DEpCMC1;0 .
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Every two adjacent points of EqC1;0 are the boundary points of a .qC1/–bridge, and
every two adjacent points of EpCMC1;0 are the boundary points of a .pCM C 1/–
bridge. We also have hq;pCM .EqC1;0/D hq;pCM .Eq;1/DEp;MC1 DEpCMC1;0 .
Therefore, for every .qC1/–bridge B0 there exists a .pCM C1/–bridge B such that
hq;pCM .B0/D B . More precisely, for every .qC 1/–bridge B0 and @B0 D fa0; b0g,
there exists a .pCM C 1/–bridge B such that for @B D fa; bg we have h.B0/ �

Ka[B [Kb with h.a0/ 2Ka and h.b0/ 2Kb . Note that if B0 is a .qC 1/–bridge
with center z0 and @B0 D fa0; b0g and B0 is contained in a single link `qC1

s01 , then
h.B0/ is contained in the arc component KaDKb which contains also a .pCMC1/–
point z such that LpCMC1.z/ D LqC1.z

0/. So the arc component Ka contains a
.pCM C 1/–bridge B with center z and we have again h.B0/�Ka[B [Kb .

Example 5.6 A sin 1
x

–continuum is a homeomorphic copy of�
f0g � Œ�1; 1�

�
[

n�
x; sin 1

x

�
W x 2 .0; 1�

o
and the arc f0g� Œ�1; 1� is called the bar of the sin 1

x
–continuum. Assume that s>

p
2

is such that the inverse limit lim
 �

.Œ0; 1�;Ts/ contains a sin 1
x

–continuum H . (Such s

exist in abundance; see [2] and [15].) Then f��n.H /g1
nD0

is a sequence of pairwise
disjoint sin 1

x
–continua with diam.��n.H //! 0 as n!1. There is then a sequence

of disjoint neighborhoods Un of ��n.H / with diam.Un/! 0. For each n, Un \C

contains arbitrarily long arcs. Pick a sequence of arcs An � Un \ C of arc-length
� nC 1, and construct a bijection hW lim

 �
.Œ0; 1�;Ts/ 	 such that h is the identity

on lim
 �

.Œ0; 1�;Ts/ n
S

n An and on each An , h fixes @An , but moves some points
in An homeomorphically such that there is xn 2 An with xd.xn; h.xn// D n. Since
diam.Un/! 0, we find that h is continuous and bijective. Finally the compactness of
lim
 �

.Œ0; 1�;Ts/ implies that h is a homeomorphism. Even though h is isotopic to the
identity, supx2C

xd.x; h.x//D1.

Therefore we cannot assume that a general self-homeomorphism of lim
 �

.Œ0; 1�;Ts/ has
an R 2 Z such that supx

xd.h.x/; �R.x// <1. Block, Jakimovik and Keesling [9,
Theorem 4.2] used this property to conclude that h and �R are pseudo-isotopic, ie they
permute the composants of lim

 �
.Œc2; c1�;Ts/ in the same way. However, since ��R ı h

preserves .qC1/–bridges for some R 2Z and q sufficiently large, we can still follow
the argument from [9].

Proof of Theorem 1.3 Let P D s=.1C s/ > 1=2 be the orientation reversing fixed
point of Ts and Q the center between c2 and c1 . Let "Dmesh.Cp/ in Definition 2.4.
Without loss of generality, we can take "=2<minfjc �P j; jc �Qjg. Let

x 2 lim
 �

.Œ0; 1�;Ts/ nCD lim
 �

.Œc2; c1�;Ts/
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be arbitrary. Recall that the composant of x in lim
 �

.Œc2; c1�;Ts/ is the union of all
proper subcontinua of lim

 �
.Œc2; c1�;Ts/ containing x . Without loss of generality we

can fix q 2N such that �qC1.x/� P . Fix p 2N and M 2 Z as in Proposition 4.2
such that h.Cq/� Cp and h sends .qC1/–bridges to .pCM C1/–bridges in terms of
Corollary 5.5. Let RDMCp�q , so pCMC1D qCRC1. Since by Corollary 5.3,
R does not depend on q and p , we can take q and p larger than jRj without loss of
generality.

Recall that the links p̀
k of Cp are of the form p̀

kD��1
p .Ip

k/ of width � "s�p=2. The
map ��R maps the chain Cp to a chain zCp�R whose links are of the form ��1

p�R.Ip
k/

and hence also with width � "s�p=2; this chain is coarser than Cp�R if R < 0.
Furthermore, the ��R –image of a .qCRC 1/–bridge is a .qC 1/–bridge.

Take zhD ��R ı h. Since h.Cq/� Cp , we have zh.Cq/� zCp�R and zh sends .qC 1/–
bridges to .q C 1/–bridges, but the “error” allowed in Corollary 5.5, ie the arc-
components of links from Cp , must now be replaced by arc-components of links of
zCp�R . Recall that width.Cp/Dmaxj jIp

j j, and j�p�i. p̀
j /j D j�p. p̀

j /jsi D jIp
j jsi ,

for every 0� i � p . Therefore,

�p�R. z̀
j
p�R

/D �q�M . z̀
j
q�M

/� "s�p=2;

and

�qC1. z̀
j
p�R

/D �qC1. z̀
j
q�M

/D �q�M . z̀
j
q�M

/s�M�1
� "s�p�M�1=2:

Thus, the .qC 1/–th projection of links of zCp�R are intervals and their lengths are
� "s�.pCMC1/=2D "s�.qCRC1/=2; see Figure 7.

The .qC1/–bridges that are small enough to belong to one or two links of Cq will map
to arcs contained in the link z̀p�R . Since �qC1.x/ � P and "s�.qC1/=2 < jc �P j,
no such short bridge can be close to x . On the longer .qC 1/–bridges of Cq that map
outside of z̀p�R , zh acts as a trivial one-to-one correspondence, sending the first such
bridge to the first, the second to the second, etc.

Find a sequence .xn/n2N � C such that xn! x . Then for large n, xn belongs to a
long .qC 1/–bridge, and by the above argument, zh.xn/ and xn belong to the same
.q C 1/–bridge up to an “error” of at most "s�.qCRC1/=2. Take Hn D Œzh.xn/;xn�

and a subsequence such that Hnj ! H in Hausdorff topology. Clearly H is a
continuum and x; zh.x/ 2 H . Since �qC1.x/ � P , the arcs Hnj belong to arcs
whose .qC 1/–projections belong to Œc � "s�.qCRC1/=2; c1� for all sufficiently large
j . Since qCRC1� 1 and "=2< c�Q, we have Q< c� "=2< c� "s�.qCRC1/=2

implying Œc � "s�.qCRC1/=2; c1�� ŒQ; c1�.
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Figure 7: The .p�R/–th and .qC 1/–th projection of “the bridge” zh.B/
with relevant link z̀p�R . The picture is suggestive of M C 1� 0; if instead
M C 1> 0 , then zh.B/ contains fewer .qC 1/–points than .p�R/–points.

Therefore �qC1.Hnj /; �qC1.H / � ŒQ; c1�, and since ŒQ; c1� is a proper subset of
Œc2; c1� and the inclusion holds for arbitrarily large q , H is a proper subcontinuum
of lim
 �

.Œc2; c1�;Ts/. It follows that zh.x/ and x belong to the same composant of
lim
 �

.Œc2; c1�;Ts/. Apply �R to find that h.x/ and �R.x/ belong to the same composant
as well.

Pseudo-isotopy of h implies that the number of composants being mapped to themselves
is the same for hn and �nR . This number grows like snR , which in [8] provides a proof
of the Ingram conjecture for tent maps with periodic critical point. In this situation, [8]
in fact also shows that h is isotopic to a power of the shift. Due to the existence of
composants that are not arc-connected, this is not so clear in the general case.

Remark 5.7 Not every pseudo-isotopy is an isotopy. For instance, a homeomorphism
flipping the bar of a sin 1

x
–continuum cannot be isotopic to the identity. If the bonding

map is a quadratic map within the first period doubling cascade, then the inverse limit
space is a finite collection of sin 1

x
–continua (see [7]) and we can indeed construct

homeomorphism that are pseudo-isotopic but not isotopic to the identity. Among
those tent maps Ts , s 2 Œ

p
2; 2�, whose inverse limit space is known to contain sin 1

x
–

continua, both in [2] and [15], the topology is much more complicated, as more than a
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single ray can be expected to accumulate on their bars. Thus the following question is
very relevant:

Is every self-homeomorphism of lim
 �

.Œ0; 1�;Ts/ isotopic to a power of the shift?

We know this to be true if c is periodic or nonrecurrent [8; 10], but this case is simpler,
because the only proper subcontinua of lim

 �
.Œc2; c1�;Ts/ are arcs or points.

6 The logistic family

In this section we prove of Theorem 1.2. Logistic maps are by far the best studied
unimodal maps, and we give here a list of its properties that simplify our task, although
they are not essential: Theorem 1.2 works for arbitrary C 2 families just as well.

The map fa.x/D ax.1�x/ has negative Schwarzian derivative, ie

Sfa WD
f 000a

f 0a
�

3

2

�
f 00a
f 0a

�2

< 0

wherever defined. Due to Singer [30], this implies that every p–periodic point x

with multiplier j.f p
a /
0.x/j � 1 is attracting from at least one side, and has the critical

point in its immediate basin of its orbit, ie there is a point y 2 orb.x/ such thatT
k f

pk
a .Œy; c�/D fyg. Another consequence of the Schwarzian derivative being nega-

tive (Guckenheimer [19]) is that every interval K on which f njK is a homeomorphism
for all n � 0 must be attracted by a periodic attractor, so there are no wandering
intervals. The absence of wandering intervals was proved for general C 2 families; see
de Melo and van Strien [24, Theorem 6.2. page 156].

Much more complicated results have been proved for the logistic family as well. The
entropy htop.fa/ is a nondecreasing function of its parameter; see Douady [16] and
Milnor and Thurston [25]. Furthermore, if fa and fb are topological conjugate and
have no periodic attractor, then aD b . This is known as “denseness of hyperbolicity”
and was proved by Graczyk and Światek [18] and Lyubich [23].

The logistic family .fa/a2Œ0;4� is richer than the tent family .Ts/s2Œ0;2� in the sense
that it allows renormalization of all types.

Definition 6.1 A unimodal map f W Œ0; 1�! Œ0; 1� with critical point c is renormaliz-
able if there is a neighborhood J 3 c and period p � 2 such that

(6-1)
f p.J /� J; f p.@J /� @J and
J; f .J /; : : : ; f p�1.J / have disjoint interiors.

In this case, f pW J ! J is a new unimodal map; it is called a renormalization of f .
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If fa is renormalizable, then f p
a jJ is conjugate with another member, fa0 , of the

logistic family. This is because the logistic family is full in the sense that it witnesses
every possible combinatorial type of unimodal map without wandering intervals, [24,
Section II.4]. The renormalization of a unimodal map can itself be renormalizable, etc.
This gives rise to infinitely renormalizable maps, for which there is a nested sequence
.J k/k�1 of pk –periodic neighborhoods of c , such that C WD

T
k

Spk�1
jD0

f j .J k/

is an invariant Cantor set, called a solenoidal attractor. It coincides with !.c/, is
Lyapunov stable and the orbit of Lebesgue-a.e. point converges to C ; yet arbitrarily
close to C there are periodic orbits that are not contained in C .

Definition 6.2 We call a point x nonwandering if for every neighborhood U 3 x ,
there is n � 1 such that f n.U /\U ¤ ∅. The collection �.f / of nonwandering
points is called the nonwandering set. The reduced nonwandering set of a logistic map
fa , �.fa/=�sn , is the nonwandering set of fa with each saddle-node pair identified
to a point. This set inherits an order from Œ0; 1�, and we say that two logistic maps fa

and fbW Œ0; 1�! Œ0; 1� are order-preserving conjugate on their reduced nonwandering
sets if there is an order preserving homeomorphism hW �.fa/= �sn! �.fb/= �sn

such that fb ı h.Œx�/D h ıfa.Œx�/ for all Œx� 2�.fa/=�sn .

Clearly, periodic points are nonwandering, as are points in the closure of the set of
periodic points. For logistic maps, the only wandering points are those that belong to
the basin of a periodic attractor (but are not periodic themselves), or that belong to the
basin of a solenoidal attractor.

Let us describe in some detail the first periodic doubling cascade, occurring at parameters
1 D a0 < a1 < a2 < : : : on the parameter interval Œ0; a1� (see Figure 8), where
a1 D limk ak is the so-called Feigenbaum–Coullet–Tresser parameter [17; 34], at
which fa has the simplest kind of solenoidal attractor. The map fa1 is also called
the 21–map, because it has periodic points of period 2k for all k , and none of higher
period in the Sharkovskiı̆ order. These dynamics are not present in the tent family. It is
also well-known that htop.fa/D 0 if and only if a� a1 ; see [27]. The inverse limits
spaces lim

 �
.Œ0; 1�; fa/ for a 2 Œ0; a1� were described in [7].

� For a2 Œ0; a0�, fa has a single fixed point 0, attracting every x 2 Œ0; 1�. The inverse
limit lim

 �
.Œ0; 1�; fa/ is a single point .: : : ; 0; 0; 0/.

� At aD a0 , the fixed point 0 becomes unstable and splits off another stable fixed
point paD .a�1/=a with multiplier f 0a.pa/D 2�a, attracting every point x 2 .0; 1/.
For all a 2 .a0; a1 D 3�, pa remains stable and lim

 �
.Œ0; 1�; fa/ is a single arc.

Geometry & Topology, Volume 16 (2012)



The Ingram conjecture 2509

-
a0 a0 D 1 2 a1 D 3 1C

p
5 a2 D 1C

p
6 a1 � 3:57 za2 za1 � 3:68

period 1 interval‚ …„ ƒ period 2 interval‚ …„ ƒ period 4‚ …„ ƒperiod 8‚…„ƒ
„ ƒ‚ …
single point

„ ƒ‚ …
single arc

„ ƒ‚ …
sin 1

x
-continuum

„ƒ‚…
C + double sin 1

x
-continuum

c fixed per. doub. c period 2 per. doub. 21 map

period 4
interval
disappears

period 2
interval
disappears

Figure 8: Sketch (not to scale) of the bifurcations in the first period doubling
cascade. The upper braces indicate parameter intervals in which J k is the
smallest periodic interval as in (6-1). The lower braces indicate parameter
intervals where the inverse limit space is as indicated.

� At aD a1 , pa undergoes a period doubling bifurcation. It becomes unstable itself,
and splits off a stable period 2 orbit

q˙a D
aC 1˙

p
.a� 1/2� 4

2a

with multiplier .f 2
a /
0.q˙a /D 5� .a� 1/2 . For all a 2 .a1; a2 D 1C

p
6�, q˙a remain

stable and lim
 �

.Œ0; 1�; fa/ is a sin 1
x

–continuum, consisting of two arc components: the
zero-composant and the bar (an arc containing .: : : ;pa;pa;pa/).

� At a D a2 , q˙a undergo a period doubling bifurcation. They become unstable
themselves, splitting off a stable period 4 orbit. For all a 2 .a2; a3�, this period 4

orbit remains stable and lim
 �

.Œ0; 1�; fa/ has four arc-components: two arcs contain-
ing .: : : ; q�a ; q

C
a ; q

�
a ; q
C
a / and .: : : ; qCa ; q

�
a ; q
C
a ; q

�
a / respectively, one ray containing

.: : : ;pa;pa;pa/ and forming a double sin 1
x

–continuum with the two arcs, and the
zero-composant compactifying on all of the above.

� In general, for a 2 .ak ; akC1�, k � 1, the inverse limit space lim
 �

.Œ0; 1�; fa/ has
2k arc-components arranged in a hierarchical manner. There are 2k�1 arcs, each
containing a 2k�1 –periodic point of the shift homeomorphism. At the next level, there
are 2k�2 rays, each containing a 2k�2 –periodic point and forming a double sin 1

x
–

continuum with two arcs of the first level. The next level consists of 2k�2 rays, each
containing a 2k�2 –periodic point, and compactifying on two double sin 1

x
–continua

(including four arcs) of the previous levels. This structure continues, until, at the highest
level, the zero-composant compactifies on all of the above.

� At aD a1 , this structure contains infinitely many levels, and compactifies on an
additional Cantor set of points x such that x�n 2 !.c/ for all n� 0.

We see that the inverse limit lim
 �

.Œ0; 1�; fa/ is different at every stage of the period
doubling cascade.
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Each saddle node bifurcation occurring at a� > a1 , is followed by its own period
doubling cascade. At aD a� , a fresh neutrally attracting p–periodic orbit emerges,
which immediately splits into an unstable and a stable p–periodic orbit, but this does not
affect the inverse limit space. For this reason we introduced the reduced nonwandering
set which does not discriminate between the twin p–periodic orbits emerging from a
saddle node bifurcation. The nonwandering sets �.fa�/ and �.fa�C"/ are different,
but their reduced nonwandering sets are the same, and their inverse limit spaces
homeomorphic.

For a> a1 , fa has positive topological entropy, and Milnor and Thurston [25] showed
that there is an entropy-preserving semiconjugacy

 aW Œ0; 1�! Œ0; 1� such that  a ıfa D Ts ı a

for log s D htop.fa/. The map  a collapses to a point every interval K on which
the local entropy htop.fajK / D limn

1
n

log l.f n
a jK / < htop.fa/. Here l.f n

a jK / is the
lap-number (ie the number of maximal intervals of monotonicity) of f n

a jK . This
applies to wandering intervals (but logistic maps have none) and (pre)periodic intervals,
with the exception of those created in the first period doubling cascade. These 2k –
periodic intervals (let us denote them by J k ), emerge after the critical point becomes
2k�1 –periodic. For k D 1 and 2 this happens at aD 2 and 1C

p
5 respectively; see

Figure 8.

For a 2 .a1; zak �, the semiconjugacy  a does not collapse J k to a point, but maps it
to a 2k –periodic interval Lk D Œ1� vk ; vk �. One can compute that

vk D
1

2
C

1

2

k�1Y
jD0

s2j � 1

s2j C 1
;

and vk or 1� vk is the 2k�1 –periodic boundary point, according to whether k is odd
or even. So Lk plays the role of J k ; it exists as long as 1< s � 21=2k

.

The interval J k continues to exist until the parameter zak > a1 , where it disappears
in a homoclinic bifurcation. At this parameter, fzak

2k

.c/ and fzak

2kC1

.c/ are the two
boundary points of J k and fzak

2kC1

.c/ is 2k –periodic. The parameters zak form a
decreasing sequence, and limk zak D a1 , due to the denseness of hyperbolicity.

Proof of Theorem 1.2 We start with the “if” direction. Recall that a logistic map
can have at most one periodic attractor. Suppose that fa and fb are conjugate on
their reduced nonwandering sets. If fa and hence fb have no periodic attractor (but
possibly a solenoidal attractor), then denseness of hyperbolicity implies that aD b . In
fact, in this case, the reduced nonwandering set coincides with the nonwandering set,
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and (without invoking denseness of hyperbolicity) the conjugacy hW �.fa/!�.fb/

extends to a conjugacy hW Œ0; 1�! Œ0; 1� such that hıfbDfaıh. Hence lim
 �

.Œ0; 1�; fa/

and lim
 �

.Œ0; 1�; fb/ are homeomorphic.

If fa and hence fb have a periodic attractor, then they have the same period p and we
can choose attracting p–periodic points xa and xb such that spatial order .f i

a .xa//
p�1
iD0

and .f i
b
.xb//

p�1
iD0

are the same. This means that fa and fb are in the same stage of the
same period doubling cascade, and the above description implies that lim

 �
.Œ0; 1�; fa/

and lim
 �

.Œ0; 1�; fb/ are homeomorphic.

Now, for the “only if” direction, assume that lim
 �

.Œ0; 1�; fa/ and lim
 �

.Œ0; 1�; fb/ are
homeomorphic. We gave a complete description of the inverse limit spaces if a< a1 ,
so it suffices to consider the case a1 < a < b . Given a p–periodic interval J as in
(6-1), define the subcontinuum

(6-2) DJ WD fx 2 lim
 �

.Œc2; c1�; fa/ W xnp 2 J for all n� 0g:

Clearly, DJ is p–periodic under the shift homeomorphism, and if a0 is the param-
eter such that fa0 is conjugate to fa

pW J ! J , then DJ is homeomorphic with
lim
 �

.Œ0; 1�; fa0/. Also, all folding points of lim
 �

.Œc2; c1�; fa/ belong to
Sp�1

iD0
� i.DJ /,

so points

x 2 lim
 �

.Œc2; c1�; fa/ n

p�1[
iD0

� i.DJ /

all have Cantor set of arcs neighborhoods in lim
 �

.Œc2; c1�; fa/.

If J is a maximal interval satisfying (6-1), then DJ and its images � i.DJ /, for
0< i <p , are maximal subcontinua in the sense that there is no indecomposable proper
subcontinuum of the core lim

 �
.Œc2; c1�; fa/ that properly contains DJ (and similarly

for � i.DJ /, 0 < i < p ). This shows that if lim
 �

.Œ0; 1�; fa/ and lim
 �

.Œ0; 1�; fb/ are
homeomorphic, then their maximal periodic intervals Ja and Jb must have the same
period, and their respective subcontinua DJa

and DJb
must be homeomorphic.

Next we will show that Ja and Jb are also of the same type (ie the spatial order of
.f i

a .Ja//
p�1
iD0

and .f i
b
.Jb//

p�1
iD0

is the same). For the factor map

‰aW lim
 �

.Œ0; 1�; fa/ �!‰a.lim
 �

.Œ0; 1�; fa//;

.: : :x�2;x�1;x0/ 7�! .: : :  a.x�2/;  a.x�1/;  a.x0//;

‰a.lim
 �

.Œ0; 1�; fa// is homeomorphic with lim
 �

.Œ0; 1�;Ts/ for log s D htop.fa/. Since
 a collapses a periodic interval J only if it does not emerge from the first period
doubling cascade (ie J ¤ J k ), we will from now on assume that J is the maximal
periodic interval other than (so possibly contained in some) J k . We will show (Claims 1
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and 2, below) that ‰a consists of a sequence of quotient maps that, other than squeezing
a single orbit of subcontinua .� i.DJ //

p�1
iD0

to p endpoints, has no effect on the topology.
If Ja and Jb are not of the same type, then ‰a.lim

 �
.Œ0; 1�; fa// and ‰b.lim

 �
.Œ0; 1�; fb//

are homeomorphic with the inverse limit spaces of different tent maps, and, due to
Theorem 1.1, not homeomorphic with each other. Since ‰a and ‰b only squeeze
finitely many well-defined subcontinua to points, lim

 �
.Œ0; 1�; fa/ and lim

 �
.Œ0; 1�; fb/

could not have been homeomorphic.

Therefore, Ja and Jb are of the same type, and since the subcontinua DJa
and DJb

are homeomorphic, fajJa
and fbjJb

must be in the same stage of their period doubling
cascade, and hence their reduced nonwandering sets are conjugate. This finishes the
proof, except for the announced claims:

Claim 1 Let ˆa be the quotient map under the equivalence relation x� y if xD y or
x;y both belong to � i.DJa

/ for the same 0� i < p . Then ˆa.lim
 �

.Œ0; 1�; fa// has p

endpoints in the core (that are p–periodic under the shift) and no other folding points.

Proof Since Ja ¤ J k for any of the 2k –periodic intervals emerging from the first
period doubling cascade, @Ja contains a p–periodic orientation preserving point za .
Let

za D .: : : f
p�1

a .za/; za; fa.za/; : : : ; f
p�1

a .za//I

it is a point in DJa
and one “half” of its arc-component serves as the zero-composant

of DJa
, while the other “half” coils densely in lim

 �
.Œc2; c1�; fa/ (or densely in DJ k

if Ja � J k for some maximal k ); see [4]. The image ˆa.DJa
/ D ˆa.za/ is now

an end-point of the other “half” of the arc-component of za . A similar statement
holds for the points � i.za/, 0 < i < p . Since

Sp�1
iD0

DJa
contains all folding points

of lim
 �

.Œc2; c1�; fa/, ˆa.lim
 �

.Œc2; c1�; fa// contains no other folding points than the
p–periodic endpoints ˆa.�

i.za//, 0� i < p .

Claim 2 ‰a.lim
 �

.Œ0; 1�; fa// is homeomorphic with ˆa.lim
 �

.Œ0; 1�; fa//.

Proof If K is a maximal interval such that f m
a .K/D Ja for some m� 0, then there

is an open neighborhood U of K on which f m
a W U ! f m

a .U / is a diffeomorphism.
Take n� 0 and set

Kn D fx 2 lim
 �

.Œ0; 1�; fa/ W x�n 2Kg n

p�1[
iD0

� i.DJa
/:
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Since all folding points of lim
 �

.Œc2; c1�; fa/ are contained in
Sp�1

iD0
� i.DJa

/, Kn is a
zero-dimensional set of arcs (more precisely, this zero-dimensional set is a Cantor set
together with a countable set coming from the zero-composant). Similarly

U n D fx 2 lim
 �

.Œ0; 1�; fa/ W x�n 2 U g n

p�1[
iD0

� i.DJa
/

is a zero-dimensional set of open arcs, and U n compactly contains Kn . Set x�K n
y if

xDy or if x and y both belong to Kn . It follows that lim
 �

.Œ0; 1�; fa/ is homeomorphic
with lim

 �
.Œ0; 1�; fa/=�K n

for each component K of
S

m�0 f
�m

a .Ja/ and n� 0.

The collection

K WD
�

Kn W K is component of
[

m�0

f �m
a .Ja/; n� 0

�
is a null-sequence, ie for fixed ı > 0, there are only finitely many elements in
K with diam.Kn/ > ı . Therefore, if we denote by �K the intersection of all
equivalence relations �K n

, Kn 2 K , ˆa.lim
 �

.Œ0; 1�; fa// is homeomorphic with
ˆa.lim
 �

.Œ0; 1�; fa//=�K which in turn is homeomorphic with ‰a.lim
 �

.Œ0; 1�; fa//.

This proves the claims and hence Theorem 1.2.
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