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Width is not additive

RYAN BLAIR

MAGGY TOMOVA

We develop the construction suggested by Scharlemann and Thompson in [15] to
obtain an infinite family of pairs of knots K˛ and K0˛ so that w.K˛ # K0˛/ D

maxfw.K˛/; w.K
0
˛/g . This is the first known example of a pair of knots such that

w.K #K0/ <w.K/Cw.K0/�2 and it establishes that the lower bound w.K #K0/�

maxfw.K/; w.K0/g obtained in Scharlemann and Schultens [14] is best possible.
Furthermore, the knots K˛ provide an example of knots where the number of critical
points for the knot in thin position is greater than the number of critical points for the
knot in bridge position.

57M25, 57M27, 57M50

1 Introduction

Thin position for knots was first defined by Gabai [5] in his proof of property R.
The idea of width has had important applications in 3–manifold topology. In par-
ticular, width played an integral role in three celebrated results: the solution to the
knot complement problem by Gordon and Luecke [7], the leveling of unknotting
tunnels by Goda, Scharlemann and Thompson [6] and Thompson’s solution [19] to
the recognition problem for S3 , which was originally achieved by Rubinstein [12].
However, surprisingly little is known about its intrinsic properties. Most strikingly, the
behavior of knot width under connected sums has remained one of the most interesting
and difficult problems to elucidate. In an attempt to shed light on this question, width
has been compared to bridge number: the least number of maxima over all projections
of the knot. Just like bridge number, width depends on the number of critical points
of a projection, but it also takes into account their relative heights. The behavior of
bridge number under connected sum was first established by Schubert [16]. Later,
Schultens [18] gave a considerably more elegant proof of the result. Stacking the two
knots vertically and connecting a minimum of the top one to a maximum of the bottom
one shows that

(1) b.K # K0/� b.K/C b.K0/� 1:
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Schubert’s result affirms that inequality (1) is in fact an equality.

This construction also gives an easy inequality for the width of a connected sum, namely

(2) w.K # K0/� w.K/Cw.K0/� 2:

In general, it is unknown for which knots K and K0 the inequality (2) is also an
equality. Partial results and special cases have been solved. Most notably, Scharlemann
and Schultens showed in [14] that

(3) w.K # K0/�maxfw.K/; w.K0/g

and the work of Rieck and Sedgwick in [11] implies that the equality w.K # K0/D

w.K/Cw.K0/� 2 holds for meridionally small knots. The main result in this paper
is that inequality (2) is strict for some knots and that inequality (3) is best possible if
no restrictions are placed on the knots.

Theorem 1.1 There exists an infinite family of knots K˛ and K0˛ with w.K˛#K0˛/D

maxfw.K˛/; w.K
0
˛/g.

Moreover, the construction also yields examples of another interesting phenomenon.

Theorem 1.2 There exists an infinite family of knots K˛ so that the minimal bridge
position for K˛ has fewer critical points than any thin position of K˛ .

Our construction is based on ideas proposed by Scharlemann and Thompson in [15].
In their paper, the authors give a large family of pairs of knots K˛ and K0˛ for
which it appears that w.K˛ # K0˛/Dmaxfw.K˛/; w.K

0
˛/g. This equality holds if the

projections of K˛ and K0˛ considered by Scharlemann and Thompson have minimal
width amongst all possible projections of the knots, ie that K˛ and K0˛ are in thin
position. One of the knots in each pair is quite simple and its width is easily established.
However, the authors could not verify the width of the second knot in any of their
pairs. In [2], the current authors established that, for most of these pairs, the second
knot is not in thin position. Therefore, most of these pairs do not provide the desired
counterexample to the conjectured equality w.K # K0/D w.K/Cw.K0/� 2.

In this paper, we construct a family of pairs of knots K˛ and K0˛ that satisfy the
properties required for the pairs presented in [15] and we establish that both K˛ and K0˛
are in thin position. For such a pair, it follows that w.K˛#K0˛/Dmaxfw.K˛/; w.K

0
˛/g.

Figure 1 depicts such a pair where one knot is the trefoil. The figure demonstrates a
projection of K # trefoil that has the same width as the given projection of K . We will
show that this projection of K is of minimal width.
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Figure 1

The paper is organized as follows. After some preliminary definitions in Section 3, we
show that if a knot is in thin position and P is a thin level sphere, then cut-disks for P

that do not intersect any other thin spheres can be isotoped to be vertical. This allows
us to use the results about vertical cut-disks developed by the second named author
in [22]. In Section 4, we review results found in Johnson and Tomova [9] about the
behavior of a second bridge surface for a tangle that has a high distance bridge sphere.
In Section 5, we use a theorem of Schubert to construct tangles with high distance
properties so that the numerator closures of certain subtangles yield nontrivial knots.
In Section 6, we construct a three strand tangle for which we can classify all essential
meridional surfaces of Euler characteristic greater than �12. In Section 7, we construct
the candidate knots K˛ . Each of these knots has the general schematic introduced in
Scharlemann and Thompson [15]; see Figure 1. In Section 8, we establish some of
the properties of the knots. The proofs of these properties depend on the results in
the previous sections. In Section 9, we classify all essential meridional spheres in the
complement of K˛ that have fewer than 14 punctures. In Section 10, we determine that
bridge position and thin position for K˛ do not coincide. In Section 11, we introduce
additional constraints on the thin and thick levels of a width minimizing embedding of
K˛ . Finally, in Section 12, we show that the projection given in Figure 1 of each of
the knots K˛ is thin by checking the widths of a relatively small number of possible
thin positions.
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2 Definitions and preliminaries

Let K be a knot embedded in S3 . We will denote a regular neighborhood of K

by �.K/. Unless otherwise stated, all surfaces under consideration are connected.
An essential meridional surface in the knot complement is a surface with nonempty,
meridional boundary that does not have any compressing disks in the knot complement
and that is not boundary parallel in S3��.K/. Let F be a meridional surface embedded
in the complement of K . A cut-disk for F is a disk Dc �S3 such that Dc\F D @Dc ,
jDc \Kj D 1 and the annulus Dc � �.K/ is not parallel in the knot complement to a
subset of F��.K/ via an isotopy during which the boundary component of Dc��.K/

on the boundary of the knot may move, but has to stay on the boundary of the knot. In
particular, if K is prime, the curve @Dc is not parallel to a boundary component of
F � �.K/. We use the term c–disk to refer to either a compressing disk or a cut-disk.

In the following we will often consider height functions on S3 , B3 and S2 � I . In
each of these cases, we only consider height functions with a minimal number of
nondegenerate critical points. Let hW S3! R[ f�1;C1g be the standard height
function on S3 and suppose K is in general position with respect to h. If t is a regular
value of hjK , h�1.t/ is called a level sphere with width w.h�1.t//D jK\h�1.t/j. If
c0< c1< � � �< cn are all the critical values of hjK , choose regular values r1; r2; : : : ; rn

such that ci�1 < ri < ci . Then the width of K with respect to h is defined by
w.K; h/D

P
w.h�1.ri//. The width of K , w.K/, is the minimum of w.K0; h/ over

all knots K0 isotopic to K . We say that K is in thin position if w.K; h/ D w.K/.
Note that by removing a neighborhood of the north and south pole, we can assume
K � S2� I and define width there. We will switch between these two ambient spaces
freely during this discussion. More details about thin position and basic results can be
found in Scharlemann [13].

A level sphere h�1.t/ is called thin if the highest critical point for K below it is a
maximum and the lowest critical point above it is a minimum. If the highest critical
point for K below h�1.t/ is a minimum and the lowest critical point above it is a
maximum, the level sphere is called thick. As the lowest critical point of K is a
minimum and the highest is a maximum, a thick level sphere can always be found. It
is possible that the knot does not have any thin spheres with respect to some height
function. When this occurs the unique thick sphere is called a bridge sphere and the
knot is said to be in bridge position.

We will use the following result found in Scharlemann and Schultens [14] to simplify
our computations.
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Lemma 2.1 [14, Lemma 6.2] Let K be an embedding of a knot in S3 and let
hW S3!R[f�1;C1g be the standard height function on S3 . If faig, i D 0; : : : n,
and fbj g, j D 0; : : : nC 1, are the widths of all thin and all thick spheres respectively,
then

w.K/D

PnC1
jD0 b2

j �
Pn

iD0 a2
i

2
:

Unless otherwise stated, we will always consider all level spheres to lie in the knot
complement, ie they are always meridional surfaces. A key ingredient to our proofs
is the behavior of c–disks for the thin level spheres. We review some already known
results here and then develop some new results in the next section.

Theorem 2.2 [23] Suppose K is a prime knot in thin position and let P be the thin
sphere of lowest width. Then P is incompressible.

Theorem 2.3 [20, Theorem 8.1] Suppose K is a prime knot in thin position and P

is a minimal width thin sphere. If P 0 is a thin sphere so that w.P 0/D w.P /C 2, then
P 0 is incompressible.

In many of our proofs we will consider various 3–balls containing arcs of the knot.
Therefore we need the following definition.

Definition 2.4 A tangle, R, is a tuple, .BR;R/, where BR is a 3–ball or S2 � I

and R is a properly embedded compact 1–manifold in BR . R is an n–strand tangle
if R contains no loops and exactly n arcs.

Given any tangle T in a ball or in S2�I and a height function h, the critical points of
the tangle can be organized into braid boxes as follows: suppose t1 and t2 are adjacent
thin levels. Then a braid box BŒt1;t2� � h�1Œt1; t2� is a ball containing T \ h�1Œt1; t2�.
In this ball, the tangle has some number of minima of T followed by some number
of maxima of T . Given a tangle S in S2 � I and a c–disk Dc for S2 � f0g, then
Dc naturally decomposes S into two subtangles S˛ and Sˇ . These subtangles can be
decomposed into braid boxes fBŒa�

i
;a
C

i
�g and fBŒb�

j
;b
C

j
�g. A horizontal isotopy is an

isotopy that preserves the height of each point. For more details see Tomova [22].

Theorem 2.5 [22, Lemma 9.1] Let L D .BL;L/ be a prime tangle where BL is
homeomorphic to S2 � I , let P be a level sphere for L and let D� be a c–disk for P

that does not have any saddles with respect to the usual height function on S2�I . Then
there exists a horizontal isotopy � which keeps D� fixed such that if fBŒa�

i
;a
C

i
�g and

fBŒb�
j
;b
C

j
�g are the collections of braid boxes for the tangles S˛ and Sˇ respectively,

for any i and j the intervals Œa�i ; a
C
i � and Œb�j ; b

C
j � are disjoint.
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Remark 2.6 As � is a horizontal isotopy it does not change the total number or the
heights of the thin spheres for L.

Corollary 2.7 Let L be a prime knot embedded in S2 � I , let P be a thin sphere for
L, let D� be a c–disk for P above it that intersects each level sphere in at most one
simple closed curve and let P 0 be the thin sphere directly above D� . Then either there
are some thin spheres between P and P 0 or all critical points for L between P and
P 0 are on the same side of D� . In particular, in the latter case c–compressing P along
D� results in a component parallel to P 0 .

Proof Suppose P and P 0 are adjacent thin spheres and suppose L has critical points
on both sides of D� . By Theorem 2.5, we may assume that the braid boxes for the
two sides are disjoint. However, a level sphere that is disjoint from all braid boxes is
necessarily thin and therefore P and P 0 are not adjacent.

3 Vertical cut-disks

Let K be a knot in S3 and let hW S3 ! R [ f�1;C1g be the standard height
function on S3 . Suppose that K is in thin position with respect to h. Let P D h�1.r/

be a level sphere and suppose P has a c–disk, C , that lies above it.

We first introduce some notation and definitions. Figure 3 illustrates all of the termi-
nology outlined below. Let ±C be the singular foliation on the c–disk C induced
by the level sets of hjC . Although conventionally saddles are points, in this paper a
saddle of a surface F is any leaf of the foliation induced by level sets of hjF that is
homeomorphic to the wedge of two circles. By standard position, we can assume that
all saddles of ±C are disjoint from K .

Given a saddle � D s�
1
_s�

2
in a level sphere S� D .h

�1 ıh/.�/, let D�
1

be the closure
of the component of S� � s�

1
that is disjoint from s�

2
and D�

2
be the closure of the

component of S� � s�
2

that is disjoint from s�
1

.

A subdisk D in ±C is monotone if its boundary is entirely contained in a leaf of ±C

and the interior of D is disjoint from every saddle in ±C . In practice, we will use the
term subdisk in a slightly broader sense, allowing @D to be immersed in C , where
if @D is immersed, then @D is a saddle. We say a monotone disk is outermost if its
boundary is s�i for some saddle � and label the disk D� . Similarly, if some s�i bounds
an outermost disk D� , we say � is an outermost saddle. It will usually be the case
that at most one of s�

1
and s�

2
is the boundary of an outermost disk, so, our convention

is to relabel so that @D� D s�
1

.
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Suppose � is an outermost saddle. The level sphere S� cuts S3 into two 3–balls. The
ball that contains D� is again cut by D� into two 3–balls B� and B0� . We choose
the labeling of B� and B0� so that @B� DD�

1
[D� .

We say � is an inessential saddle if � is an outermost saddle and D� is disjoint from
K . An n–punctured disk denotes a disk embedded in S3 that meets K transversely in
exactly n points. An embedded simple closed curve in a c–disk C is c–inessential if
it bounds a 1–punctured disk in C . Similarly, � is a c–inessential saddle if � is an
outermost saddle and D� meets K exactly once. We say � is a removable saddle if �
is an outermost saddle where D� has a unique maximum (minimum) and hjK\B� has
a maximum (minimum) at every point of K\D� . See Figure 2.

�

Figure 2

We say a saddle � in ±C is standard if there is a monotone disk E� such that @.E� /D� .
If � is a standard saddle, A� is the 3–ball with boundary E� [D�

1
[D�

2
such that

A� \S� DD�
1
[D�

2
.

By general position arguments, we can assume every saddle � in ±C has a bicollared
neighborhood in C that is disjoint from K and all other singular leaves of ±C . The
boundary of this bicollared neighborhood consists of three circles c�

1
, c�

2
, and c�

3
,

where c�
1

and c�
2

are parallel to s�
1

and s�
2

respectively. We can assume c�
1

, c�
2

, and
c�

3
are level with respect to h and that c�

1
and c�

2
lie in the same level surface. The

terminology for this section is summarized in Figure 3.

Definition 3.1 A c–disk for a level sphere is vertical if it does not have any saddles
with respect to h, ie if it intersects each level sphere in at most one simple closed curve.

In [23], Wu shows that any compressing disk for a level sphere is isotopic to a vertical
compressing disk by an isotopy that does not change the width of the knot. This is
generally not true of cut-disks, but we will now show that under certain conditions
cut-disks can also be isotoped to be vertical. Many of the arguments in this section are
extensions of techniques developed by Schultens in [18] and extended by Blair in [1].
We will need the following definitions.
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A�

B�

c�
1

c�
2

c�
3

D�
1

D�
2

D� B0�

s�
1

s�
2

E�

�

Figure 3

Definition 3.2 A c–disk, C , for a level surface P is taut with respect to h if the
number of saddles in ±C is minimal subject to the condition that K is a minimal width
embedding and P is a level surface.

Definition 3.3 Following Heath and Kobayashi [8], a sphere P in S3 is called bowl-
like with respect to a height function h if it can be decomposed into two disks, E1 and
E2 , glued along their boundary such that E1 is contained in a level surface for h and
E2 is a monotone disk disjoint from K .

Two thin spheres P and P 0 are adjacent if there is no third thin sphere P 00 so that P

and P 0 are contained in distinct complementary components of P 00 .

Lemma 3.4 Assume P and P 0 are adjacent thin spheres with P 0 above P and C is a
cut-disk for P above it but disjoint from P 0 . We allow the special case where P is the
highest thin sphere and P 0 is a level sphere above it disjoint from K . If ±C contains
an inessential saddle, then C is not taut.

Proof Suppose � is an inessential saddle in ±C .

Case 1 Suppose D� contains a unique minimum. Call this point a.

Case 1a Additionally, suppose B� does not contain �1. Use the “Pop out Lemma”
[18, Lemma 2] to eliminate � ; see Figure 4. This isotopy fixes all of S3 below D�

and above P 0 . However, D� is contained strictly above the level sphere P . Hence,
this isotopy eliminates � while fixing K below P and above P 0 and not creating any
new critical points for hjK . Since all maxima of hjK are above all minima of hjK
in the region between P and P 0 , altering the relative heights of the critical points
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without creating any new critical points can only decrease the width of K . Since we
have decreased the number of saddles of C without increasing the width of K , then
C is not taut.

�! �!

Figure 4

�
�

D�
D�

s�
1

s�
1

1 1

�!

Figure 5

Case 1b Additionally, suppose B� contains �1. We will describe a sequence of
isotopies that allows us to decrease the number of saddles; see Figure 6.

Let ˛ be a monotone arc with endpoints a and �1 that misses K and intersects
C only at local minima. Label the points of ˛ \ C in order of decreasing height
with a D a1; : : : ; an . Since C lies above P , ˛ meets P in a single point b where
h.an/ > h.b/. See Figure 5. Again by general position, we can assume none of the ai

or b lie on K . The following isotopy is a modification of the isotopy presented in [18,
Lemma 1].

Let S� be a level sphere contained in a small neighborhood of �1 such that S� does
not meet K or P . Let ˛b be a subarc of ˛ with endpoints b and �1. Enlarge ˛b

slightly to be a vertical solid cylinder V such that @V consists of a small neighborhood
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of b in P , a small disk in S� and a vertical annulus, A. Replacing P with the isotopic
surface .P �V /[A[ .S��V / represents an isotopy of P in S3�K that fixes K

and results in P being bowl-like.

Toward the goal of isotopying C to be disjoint from ˛ , perform the following isotopy.
Let ˛n be a subarc of ˛ with endpoints an and �1. Enlarge ˛n slightly to be a
vertical solid cylinder V such that @V consists of a small neighborhood of an in
C , a small disk in S� and a vertical annulus, A. Replacing C with the cut-disk
.C � V /[A[ .S� � V / represents an isotopy of C in S3 �K that fixes K , does
not change the number of saddles of ±C and preserves P as bowl-like. The current
arrangement is represented in the third illustration in Figure 6.

By induction on n, we can assume ˛ is disjoint from C and P except at the point a.
By isotopying D� to a new disk D�� in the manner described above, we have enlarged
B0� to contain �1 and shrunk B� so that it is disjoint from �1. After a small tilt so
that h again restricts to a Morse function on D�� , ±D��

is a collection of circles and
one minimum. The resulting cut-disk C � is isotopic to C via an isotopy that leaves �
and K fixed and does not change the number of saddles of ±C .

By the “Pop out Lemma” [18, Lemma 2], we can eliminate � without introducing any
new maxima to hK or new saddles to ±C and while preserving P as bowl-like. The
current arrangement is represented in the fourth illustration in Figure 6.

Since P is now bowl-like, it can be decomposed into two disks E1 and E2 as in
the definition of bowl-like. Let a be the unique minimum on E2 . Again choose a
monotone arc ˛ with endpoints a and �1 that misses K and intersects C only at
local minima. The arc ˛ is disjoint from P except at a. Label the points of ˛\C in
order of decreasing height with a1; : : : ; an . Again by general position, we can assume
none of the ai lie in K . Repeat the above argument to produce an isotopic copy of C

with the same number of saddles that is disjoint from ˛ . The current arrangement is
represented in the fifth illustration in Figure 6.

Horizontally shrink and vertically lower P until it is strictly below all of C . Let S�
be 2–sphere boundary of a regular neighborhood of �1 so that S� is disjoint from
K , P and C . After lowering P into the neighborhood of �1 and expanding P to
fill the neighborhood, we have isotoped P to S� while preserving the width of K

below P and above P 0 . The current arrangement is represented in the sixth illustration
in Figure 6.

Since we have produced an isotopy that decreases the number of saddles of ±C while
not introducing any new maxima to hjK and fixing K below P and above P 0 , then
C is not taut.
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Case 2 Suppose D� contains a unique maximum. The argument is symmetric to the
one in Case 1 above. If necessary, isotope P 0 to be bowl-like to guarantee that B� does
not contain C1, then apply the “Pop out Lemma” to reduce the number of saddles
for C . Finally, restore P 0 to be level. As in Case 1, these isotopies do not affect the
width of K below P and above P 0 and do not introduce new critical points for K ,
so they do not increase the width of the knot. Since we have decreased the number of
saddles of C without increasing the width of K , C is not taut.

�! �!

�! �! �!

C C C

C C C

�1
�1 �1

�1 �1
�1

K K
K

K
K

K

P P P

P P

P

˛

˛ ˛

Isotopy of
C fixing K

Change
perspective

Isotopy of C
and K fixing
number of
maxima of K
and removing
one saddle
from C

Change
perspective

Isotopy of
C and K
returning P
to a level
surface

Figure 6

Corollary 3.5 Assume P and P 0 are adjacent thin spheres with P 0 above P and C

is a cut-disk for P above it but disjoint from P 0 . If ±C contains a nonstandard saddle
� , then C is not taut.

Proof Suppose ±C contains a nonstandard saddle � . By definition of nonstandard,
c�

3
does not bound a monotone disk in C . Since c�

1
, c�

2
and c�

3
are the boundary

components of an embedded pair of pants in C , then two of these curves, assume first
c�

1
and c�

3
, bound, possibly punctured, disks in C denoted E�

1
and E�

3
respectively
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such that both E�
1

and E�
3

are disjoint from c�
1
[ c�

2
[ c�

3
in their interior. Either �

is outermost or a saddle in ±E�
1

is outermost. By hypothesis, E�
3

contains a saddle.
Hence, E�

3
contains an outermost saddle. Since ±C contains two outermost saddles

and C meets K exactly once, then one of these outermost saddles is inessential. By
Lemma 3.4, C is not taut. A similar argument establishes that result if c�

1
and c�

2
or

c�
2

and c�
3

bound disks in C .

Given a cut-disk C for a level sphere P we require a notion of nestedness that we
develop here. Without loss of generality, suppose the C lies above P . C decomposes
the 3–ball above P into two 3–balls B1 and B2 . Each saddle of C is nested with
respect to B1 or is nested with respect to B2 , but not both. We determine a saddles
nestedness in the following way. Let � be a saddle in ±C and Q be the level sphere
either just above or just below � that contains c�

1
and c�

2
. The surface Q� .c�

1
[ c�

2
/

is composed of two disks and an annulus, A. If a collar of @A in A is contained in
B1 , then we say � is unnested with respect to B1 . If not, we say � is nested with
respect to B1 . We define nested and unnested with respect to B2 similarly. Note that
nested with respect to B1 is the same as unnested with respect to B2 and nested with
respect to B2 is unnested with respect to B1 . As an example, the two saddles depicted
in the first illustration in Figure 7 are nested with respect to different 3–balls.

Two saddles � D s�
1
_ s�

2
and � D s�

1
_ s�

2
in ±C are adjacent if, up to subscript labels,

s�
1

and s�
1

cobound an annulus in C that is disjoint from s�
2

, s�
2

, all other saddles,
and K . Recall that, if � is a standard saddle, E� is the monotone disk in C with
boundary � .

Lemma 3.6 Assume P and P 0 are adjacent thin spheres with P 0 above P and C is
a cut-disk for P above it but disjoint from P 0 . If � and � are adjacent saddles in ±C

such that � and � are nested with respect to different 3–balls, then C is not taut.

Proof Assume � and � are adjacent saddles in ±C such that � and � are nested with
respect to different 3–balls. By Corollary 3.5, we can assume both c�

3
and c�

3
bound

monotone disks E� and E� respectively.

Let A be the monotone annulus in C with boundary s�
1
[s�

1
. If K meets A[E�[E�

(the annulus in C with boundary s�
2
[s�

2
), then one of s2

� or s2
� bounds a disk E� in C

that is disjoint from K and an outermost saddle of ±E� is inessential. By Lemma 3.4,
C is not taut. Hence, we can assume K is disjoint from A[E� [E� .

Without loss of generality, suppose � lies above � . Let B be the 3–ball in S3 with
boundary D�

1
[ A [ E� [D�

2
. If B does not contain C1, then use the isotopy

constructed in [18, Lemma 3] to eliminate � without introducing any new saddles to
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±C and without introducing any new maxima to hjK . See Figure 7. If B does contain
C1, then use the isotopy in Case 1 of Lemma 3.4 to isotope P 0 to be bowl-like to
guarantee that B� does not contain C1, then apply [18, Lemma 3] to reduce the
number of saddles for C . Finally, restore P 0 to be level. As in Case 1 of Lemma 3.4,
these isotopies do not affect the width of K below P and above P 0 and do not introduce
new critical points for K , so they do not increase the width of the knot. Thus, C is
not taut.

�!

Figure 7

Lemma 3.7 Assume P and P 0 are adjacent thin spheres with P 0 above P and C is
a cut-disk for P above it but disjoint from P 0 . If � is an outermost saddle in ±C such
that B� \C ¤∅, then C is not taut.

Proof Assume to form a contradiction that C is taut. With out loss of generality,
assume � is nested with respect to B1 . Since all saddles in ±C are standard, by
Corollary 3.5, and no saddles in ±C are inessential, by Lemma 3.4, then there is a
labeling of the saddles of ±C as � D �1 , . . . , �n such that � is an outermost c–
inessential saddle and �i is adjacent to �iC1 for each i 2 f1; : : : ; n� 1g. Inductively,
by Lemma 3.6, � being nested with respect to B1 implies all saddles in ±C are nested
with respect to B1 . Hence, B2 can be decomposed into B� together with a collection
of vertical solid cylinders and solid elbows. Thus, B� is disjoint from C , contradicting
the hypothesis.

Lemma 3.8 Assume P and P 0 are adjacent thin spheres with P 0 above P and C is
a cut-disk for P above it and disjoint from P 0 . If ±C contains a c–inessential saddle,
then C is not taut.

Proof Suppose � is a c–inessential saddle in ±C .
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The isotopy utilized in the following claim was originally described in [18, page 5].

Claim If D� has a minimum and is punctured by K , we may assume that hjK\B�

also has a local minimum at K \D� . Symmetrically, if D� has a maximum and is
punctured by K , we may assume that hjK\B� also has a local maximum at K\D� .

Proof of claim Suppose D� has a minimum and hjK\B� has a local maximum at
p� DK \D� . Let x be the minimum of K that is nearest p� and inside B� . Let
˛ be the monotone subarc of K inside B� with boundary points p� and x . Let ˇ
be a monotone arc in D� with endpoints p� and y such that h.y/ D h.x/. Let ı
be a level arc contained in B� connecting x to y . Let E� be the vertical disk with
boundary ˛[ˇ[ı that is embedded in B� . We can assume the interior of E� meets K

transversely in a collection of points k1; : : : ; kn where h.k1/ > h.k2/ > � � �> h.kn/. It
is important to note that if C meets the interior of E� then C is not taut, by Lemma 3.6.
Hence, we can assume C is disjoint from E� . Let �i be the arc corresponding to a
small neighborhood of ki in K\B� for each i .

Replace �n with a monotone arc which starts at an end point of �n , runs parallel to
E� until it nearly reaches D� , travels along D� until it returns to the other side of
E� , travels parallel to E� (now on the opposite side) and connects to the other end
point of �n . The result is isotopic to K , does not change the number of maxima of
hjK and reduces n. By induction on n, we may assume that K\E� D∅. Isotope ˛
along E� until it lies just outside of D� except where it intersects D� exactly at the
point y . After a small tilt of K , hjK\B� now has a local minimum at p� .

After applying the isotopy given by the claim, we can repeat the arguments in Lemma 3.4
to remove this saddle. We give a very brief summary here.

Case 1 Suppose D� contains a unique maximum. If necessary, isotope C , P 0 and
all level spheres above P 0 so that B� is disjoint from C1. This isotopy replaces
P 0 and all level spheres above it with bowl-like spheres. Next, use the isotopy in [1,
Lemma 3] to eliminate � ; see Figure 8. Finally isotope C , P 0 and all the other spheres
that used to be level, to be level again. This can be done without introducing any new
saddles or critical points for K . This isotopy fixes all of S3 below h.�/ and above
P 0 . Additionally, this isotopy removes at least one saddle of C and does not create any
new critical points for hjK in the thick region between P and P 0 . Since all maxima
of hjK are above all minima of hjK in the region between P and P 0 , altering the
relative heights of the critical points without creating any new critical points can only
decrease the width of K . Hence, C is not taut.

Case 2 Suppose D� contains a unique minimum.
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�! �!

Figure 8

Note that if B� contains �1, then B� contains P and B� \C ¤∅. By Lemma 3.7,
C is not taut. Therefore, we may assume that B� does not contain �1. By the claim,
we may also assume that hjK\B� has a local minimum at p� DK\D� . We can then
use the isotopy from [1, Lemma 3] to eliminate � . As in the previous case this isotopy
can only decrease the width of K and decreases the number of saddles. Hence, C is
not taut.

Theorem 3.9 Let K be a knot in S3 in thin position and let P and P 0 be two adjacent
thin spheres or let P be the highest thin sphere for K . Suppose P is cut-compressible
with the cut-disk C above P such that C \P 0 D ∅. Then there is an isotopy of K

supported between P and P 0 that does not change the width of K after which C is
vertical.

Proof We can assume that we have isotoped C to be taut. By Lemma 3.4 and
Lemma 3.8, ±C has no inessential and no c–inessential saddles. Hence, C is vertical.

The above theorem allows us use the following previously known result.

Theorem 3.10 [22] Let K be a prime knot in thin position and suppose P is a thin
sphere. Let D� be a compressing disk or a vertical cut-disk for P , say above it. Then
there is a thin sphere above D� and if S0 is the lowest such thin level sphere, then
w.S0/ < w.P /.

Combining Theorem 3.9 and Theorem 3.10 we obtain the following corollary.

Corollary 3.11 Let K be a prime knot in thin position and suppose P is a thin sphere.
Let D� be a c–disk for P , say above it. Then there is a thin sphere above P and if P 0

is the lowest such thin sphere, then either D�\P 0 ¤∅ or w.P 0/ < w.P /.
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4 Bridge surfaces

In the previous section, we focused on results pertaining to thin position for knots.
Here we review results about a tangle in bridge position. We begin with a brief review
of the definition of a bridge surface and its distance. For more details see [21].

Suppose M is a 3–manifold homeomorphic either to S3 , to a ball, or to S2 � I and
containing a properly embedded compact 1–manifold, T . A sphere † is a bridge
sphere for M if M � † has two components each of which is either a ball or is
homeomorphic to S2�I and each component of T �† is boundary parallel in M �†

to † or it is a vertical arc in S2 � I . Let HC and H� be closure of the components
of M �† and let �˙ D T \H˙ . We say that .†; .H�; ��/; .HC; �C// is a bridge
splitting for .M;T /.

If B is a ball in .M;T /, under certain conditions B \† induces a bridge sphere for
.B;B \T / as described in the following lemma.

Lemma 4.1 Suppose K is a knot in thin position with two adjacent thin spheres P

and P 0 such that P 0 is above P . Suppose D� is a vertical c–disk for P lying above
it and disjoint from P 0 . Let B be the ball cobounded by D� and P disjoint from P 0

and let T DK\B . Then there exists a thick sphere † between P and P 0 such that
the disk �D B \† together with the possibly once punctured disk that @� bounds in
D� is a bridge sphere for .B;T /.

Proof Since D� is vertical we can lower all of the minima of K in the region bounded
by P and P 0 until each of the minima is below K\D� . This isotopy fixes D� and
alters K only in a neighborhood of its minima. After this isotopy, a level sphere just
above the highest minimum of K in the region bounded by P and P 0 is a thick sphere.
Denote one such thick sphere by †. Since D� is vertical, ˇ D D� \† is a single
essential simple closed curve. Note that ˇ separates D� into a disk that meets K in at
most one point and an annulus that is disjoint from K .

Let E be a bridge disk for some bridge contained in T . By redefining E , we may
assume that E \D� consists only of arcs. Let ˛ be an outermost arc of intersection
that has both of its endpoints in ˇ so that the disk F that ˛ cobounds with a segment
of ˇ in D� is disjoint from E and does not contain the puncture of D� . We can
redefine E by replacing the subdisk ˛ cuts off in E with the disk F . This reduces
jD�\Ej. Therefore every bridge disk for an arc in B is either disjoint from D� or
intersects it in a single arc that has one endpoint in ˇ and one on the puncture of D� .
Moreover there is at most one bridge disk that does the latter. Thus � together with a
parallel copy of the possibly once punctured disk that @� bounds in D� is a bridge
sphere for .B;T /.
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Suppose .†; .H�; ��/; .HC; �C// is a bridge splitting for .M;T /. The curve com-
plex, C.†;T /, is a graph with vertices corresponding to isotopy classes of essential
simple closed curves in † � �.T /. Two vertices are adjacent in C.†;T / if their
corresponding classes of curves have disjoint representatives.

Let VC (respectively V� ) be the set of all essential simple closed curves in †� �.T /
that bound disks in HC� �.T / (respectively H�� �.T /). Then the distance of the
bridge splitting, d.†;T /, is defined to be the minimum distance between a vertex in
VC and a vertex in V� measured in C.†;T / with the path metric.

We will need the following special case of a result proven in [9].

Theorem 4.2 [9, Theorem 4.4] Suppose N is a 3–sphere, a 3–ball or S2 � I

containing a properly embedded compact 1–manifold, K . Let M be a submanifold
homeomorphic to a 3–ball or to S2 � I such that T DK\M is a collection of loops
and arcs properly embedded in M . Let † be a bridge sphere of .M;T / and let †0 be
a bridge sphere of .N;K/. Then one of the following holds:

� There is an isotopy of †0
K

followed by some number of compressions and cut-
compressions of †0

K
\M in M giving a compressed surface †00

K
such that

†00
K
\M is parallel to †K .

� d.†;T /� 2��.†0
K
/.

� �.†K /� �3.

The following result can be easily obtained by a simplified version of the proof of
Theorem 4.2 given in [9] so we will not prove it here.

Theorem 4.3 Suppose N is a manifold containing a properly embedded compact
1–manifold, K . Let M be a submanifold homeomorphic to a ball or to S2 � I such
that T D K \M is a compact 1–manifold properly embedded in M . Let † be a
bridge surface for .M;T / and F be an essential separating surface in N . Then one of
the following holds:

� d.†;T /� 2��.FK /.

� �.†K /� �3.

� Each component of F \ .M � �.T // is boundary parallel in M � �.T /.

Finally, on multiple occasions in our construction we will need tangles that satisfy
certain distance conditions. We will make use of the following two results.
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Corollary 4.4 [3, Corollary 4.10] Let B be a ball containing a b–strand tangle T

with b � 3. Let p1; : : : ;pk be a collection of points T \@B such that 1< k < 2b�1

and let n be any positive integer. Then there is a curve  that bounds a disk in @B
containing exactly the punctures p1; : : : ;pk such that for every compressing disk D

for @B � �.K/ contained in B , dist.@D;  /� n.

Corollary 4.5 [3, Corollary 5.3] Given positive integers b , c , d , and g with c � b

such that if gD 0, then b � 3, and if gD 1, then b � 1, there exists a closed orientable
3–manifold M containing a c–component link L and a bridge surface † of genus g

for .M;L/ so that L is b–bridge with respect to † and d.†;L/� d .

Letting g D 0 and c D 1 allows us to chose the above M to be the three sphere and
the link to be a knot. Furthermore by removing any 3–ball disjoint from the bridge
surface that intersects the link in exactly k < b trivial arcs we obtain the following:

Corollary 4.6 Given positive integers b , d and k with k < b and b � 3, there exists
a 3–ball containing a k –component tangle T with no closed components and a bridge
sphere † so that jT \†j D 2b and d.†;T /� d .

5 Knotting

The goal of this section is to produce 3–strand tangles so that the strands of the tangles
are knotted in some sense while also controlling the distance between certain curves in
the curve complex of the 6–punctured sphere. We will later show how these tangles
can be inserted in the boxes in Figure 1 to construct a knot that is in thin position. We
begin by reviewing some definitions.

Definition 5.1 An n–strand tangle, R, is rational if all arcs of R can be simulta-
neously isotoped into @.BR/. A tangle T is an induced subtangle of a tangle R if
BT D BR and T �R.

Definition 5.2 Given a rational tangle R and a simple closed curve � in @.BR/,
.R; �/ is an equatorial pair if � is disjoint from R and no arc in R has both of its
endpoints on the same component of @.BR/� � . .T ; �/ is an equatorial subpair of an
equatorial pair .R; �/ if .T ; �/ is an equatorial pair and T is an induced subtangle of
R.

Definition 5.3 Given an n–strand tangle, R, and an equatorial pair, .R; �/, embed
BR as the unit ball in R3 such that � is mapped to the unit circle in the xy –plane and
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all points of R\ @.BR/ are mapped to the unit circle in the xz–plane. A projection
of .R; �/ is a projection of such an embedding of R into the xz–plane. If R is a
2–strand tangle, a numerator closure of .R; �/ is a knot obtained by connecting the
endpoints of R via two arcs in the unit circle in the xz–plane so that each of the arcs
is disjoint from the unit circle in the xy –plane.

In the remainder of the section, we will heavily rely on standard results about rational
tangles. In particular, recall that each proper isotopy class of 2–strand rational tangle
can be represented by a fraction p=q , where .p; q/D 1. See [10], or [4] for a detailed
treatment of the subject.

Theorem 5.4 [4] Two 2–strand rational tangles are properly isotopic if and only if
they have the same fraction.

Theorem 5.5 [17] Consider two 2–strand rational tangles with fractions p=q and
p0=q0 . If K.p=q/ and K.p0=q0/ denote the corresponding rational knots obtained by
taking the numerator closures of these tangles, then K.p=q/ and K.p0=q0/ are isotopic
if and only if

� p D p0 and

� either q � q0 mod p or qq0 � 1 mod p .

By Theorem 5.5, if R is a rational 2–strand tangle, .R; �/ has numerator closure the
unknot if and only if .R; �/ has a projection as a 1=q rational tangle. We will call
such an equatorial pair the unpair.

Theorem 5.6 If R is a rational 3–strand tangle and .R; �/ is an equatorial pair, then
there exists an equatorial pair .R; ı/ such that no 2–strand equatorial subpair is the
unpair and d.�; ı/� 4 (where d is the distance function for the curve complex of the
6–punctured sphere).

Proof Suppose R consists of three arcs ˛ , ˇ and  . The equatorial pair .R; �/ has
three 2–strand equatorial subpairs .R1; �/, .R2; �/ and .R3; �/, where R1 contains
˛ and ˇ , R2 contains ˇ and  , and R3 contains  and ˛ . Let p1=q1 , p2=q2 and
p3=q3 be the fractions corresponding to the proper isotopy classes of .R1; �/, .R2; �/

and .R3; �/ respectively. In Definition 5.3, we are free to choose how the points of
R\ @.BR/ are mapped to the unit circle in the xz–plane. In particular, we are free
to twist pairs of points of @R that get mapped to the southern hemisphere of the unit
sphere. This twisting changes the proper isotopy class of each of .R1; �/, .R2; �/ and
.R3; �/. In Conway’s notation, this twisting corresponds to multiplying each fraction
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p1=q1 , p2=q2 and p3=q3 by 1=m, where m corresponds to the number of twists.
Since m can be chosen to be arbitrarily large, we can map BR to the unit ball so that
each of the rational numbers p1=q1 , p2=q2 and p3=q3 lie strictly between �1 and 1.

If none of .R1; �/, .R2; �/ or .R3; �/ are the unpair, then we are done.

Suppose .R1; �/ is the unpair. By Theorem 5.5, .R1; �/ has fraction 1=n. Note that,
by inserting a sufficiently large number of twists between the boundary points of ˛
and ˇ in the southern hemisphere, we can assume n, the denominator for the fraction
representation of .R1; �/, is positive. Isotope R as in Figure 9. This isotopy alters
˛ but fixes ˇ and  . After this isotopy, .R; ı1/ is an equatorial pair such that the
numerator closure of .R1; ı1/ is the twisted Whitehead double of the unknot.

Since � is isotopic to ı1 in @.BR/ � @.R2/, then .R2; �/ D .R2; ı1/. However,
.R3; �/ ¤ .R3; ı1/. Since .R3; �/ has fraction p3=q3 and the isotopy in Figure 9
corresponds to Conway sum of the projection of .R3; �/ and a tangle with fraction 2=1,
then .R3; ı1/ is a tangle with fraction .p3C 2q2/=q2 . However, p3=q3 was assumed
to be strictly between �1 and 1. Hence, .p3C 2q2/=q2 is strictly between 1 and 3

and cannot be of the form 1=r for any integer r . Thus, by Theorem 5.5, .R3; ı1/ is
not the unpair.

" ı1

n> 0

�!

Figure 9

" ı1



n> 0

�!

Figure 10

As illustrated in Figure 10, there is an essential simple closed curve in @.BR/� @.R/

that is disjoint from both � and ı1 . Thus, d.�; ı1/ � 2. If .R2; ı1/ is not an unpair,
then we are done.
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Suppose .R2; ı1/ is an unpair, we repeat the previous process. Let p1
1
=q1

1
, p1

2
=q1

2

and p1
3
=q1

3
be the fractions corresponding to the proper isotopy classes of .R1; ı1/,

.R2; ı1/ and .R3; ı1/ respectively. By Theorem 5.5, .R2; ı1/ has fraction 1=r . By
inserting a sufficiently large number of twists between the boundary points of ˇ and
 in the southern hemisphere, we can assume r , the denominator for the fraction
representation of .R1; �/, is positive.

Isotope R in a fashion similar to that of Figure 9, except with ı1 replacing � , ı2
replacing ı1 . We choose this isotopy so that it alters  but fixes ˛ and ˇ . After
this isotopy, .R; ı2/ is an equatorial pair such that the numerator closure of .R2; ı2/

is a twisted Whitehead double of the unknot. Since this isotopy fixes ˛ and ˇ , the
numerator closure of .R1; ı2/ remains a twisted Whitehead double of the unknot.
Since p1

3
=q1

3
is strictly between 1 and 3, then .p1

3
C2q1

2
/=q1

2
is strictly between 3 and

5 and cannot be of the form 1=r for any integer r . Thus, by Theorem 5.5, .R3; ı2/ is
not the unpair. As before, there is an essential simple closed curve in @.BR/� @.R/

that is disjoint from both ı1 and ı2 . Thus, d.�; ı2/� d.�; ı1/Cd.ı1; ı2/D 2C2D 4.

6 Essential surfaces in high distance tangles

In this section, we lay the foundations that will eventually allow us to construct a tangle
with only one essential surface with Euler characteristic near zero. We begin with some
definitions which build on the definitions introduced in the last section.

Definition 6.1 Let R be a rational n–strand tangles and Q be a rational m–strand.
Let Cl be the curve complex for the 2l –punctured sphere. Let VR be the set of all
isotopy classes of essential simple closed curves in @.BR/�R that bound disks in
BR �R. Define VQ analogously.

Let R (respectively Q ) be an essential curve on @.BR/�R (respectively @.BQ/�Q)
such that R (respectively Q ) bounds a k –punctured disk DR (respectively DQ ) in
@.BR/ (respectively @.BQ/). Create a new .nCm�k/–strand tangle T by identifying
DR and DQ via a homeomorphism  of the k –punctured disk. The resulting tangle
T depends on DR , DQ and  . Let BT be the 3–ball obtained by gluing BR to BQ

in this way. Let D be the image of DR and DQ in BT .

Definition 6.2 Let F be a properly embedded surface or a submanifold in a 3–
manifold M and let K be a properly embedded compact 1–manifold in M . If �.K/
is a regular open neighborhood of K in M , define FK to be F � �.K/.
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Definition 6.3 Given an n–strand rational tangle R, let B be a small ball in the
interior of BR disjoint from R. Then BR �B is homeomorphic to S2 � I . We may
isotope R so each strand of R has exactly one critical point with respect to the height
function obtained from the natural projection of S2 � I onto its I factor. Connect
each of these n critical points to @B via n vertical arcs, one from each critical point to
@B . Let �R DB[ .

Sk
1 �i/. Then �R is the spine of R. Note that the tangle obtained

from .BR;R/ by removing a regular open neighborhood of �R is homeomorphic to
.S2 � I;R�/, where R� is a collection of properly embedded vertical arcs.

Lemma 6.4 [21, Lemma 2.9] If FK is a connected incompressible surface in a
rational tangle R, then one of the following holds:

(1) FK is a sphere bounding a ball.

(2) FK is a twice punctured sphere bounding a ball containing an unknotted arc.

(3) FK \ @.BR/¤∅.

Definition 6.5 A tangle T is prime if every embedded 2–punctured sphere in BT

bounds a 3–ball containing an unknotted arc.

Theorem 6.6 Let T be an irreducible, prime 3–strand tangle as in Definition 6.1.
Suppose FK is a properly embedded connected c–incompressible surface in T with
@F a possibly empty collection of curves isotopic in @.BR/�R to @D . If FK can
be isotoped to be disjoint from a spine of R and a spine of Q, then FK is one of the
following:

(1) FK is a sphere bounding a ball.

(2) FK is a twice punctured sphere bounding a ball containing a unknotted arc.

(3) FK is isotopic to @.BR/K � int.D/.

(4) FK is isotopic to @.BQ/K � int.D/.

(5) FK is isotopic to @.BT /K .

(6) FK is isotopic to DK .

(7) FK is an annulus isotopic into @.BT /K .

Proof Let FR D F \ BR and FQ D F \ BQ , and let �R be the spine of the
rational tangle R such that F \ �R D ∅. Let MR be the complement of an open
neighborhood of �R in BR . Then MR is homeomorphic to .S2 � I/ with @.MR/D

@C.MR/t @�.MR/ so that @C.MR/ is the boundary of a regular neighborhood of
�R and @�.MR/D @.BR/. Hence, FR is properly embedded in MR , is disjoint from
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@C.MR/ and meets @�.MR/ only in D . It will be convenient to refer to the height
function, hR , on MR obtained from the natural projection of S2� I onto its I factor.

As R is a rational tangle, K \MR is isotopic to a collection of arcs, fx1; : : : ;x6g

that are monotone with respect to hR and where x4 , x5 and x6 are the unique arcs
of K \MR that meet D . Let E be an embedded vertical rectangle in MR that is
disjoint from D and contains x1 , x2 and x3 such that @E is the end point union of
x1 ,  , x3 and  0 , where  is an arc in @�.MR/ and  0 is the image of  under the
natural projection from MR onto @C.MR/. By assumption, after isotopy, any arc of
E \FK is disjoint from both  and  0 . Suppose ˛ 2 FK \E is any arc or simple
closed curve.

Claim 1 If ˛ meets xi more than once, then we have conclusion .2/.

Proof If ˛ meets some xi more than once, then for some xj there is a bigon H 0

in E cobounded by a subarc of xj and a subarc of ˛ such that the interior of H 0 is
disjoint from ˛ and from x1 , x2 and x3 . F meets the boundary of a closed regular
neighborhood of H 0 , @.�.H 0//, in a single simple closed curve. Since H 0 is a disk,
@.�.H 0// is a 2–sphere. The closure of each component of @.�.H 0//�F is a disk. One
of these disks, together with a 2–punctured subdisk of FK cobound a 3–ball containing
an unknotted subarc of K . As FK is incompressible, we must have conclusion (2).

Suppose that ˛ is a simple closed curve. If ˛ is disjoint from x2 , it can be eliminated
by using an innermost disk argument that appeals to the incompressibility of FK and
the irreducibility of MR �K . If ˛ intersects x2 , then it must intersect it at least twice
and, therefore, by Claim 1, we have conclusion (2). Hence, we can assume FK \E

contains no simple closed curve

Suppose that ˛ 2 FK \E is an arc. By Claim 1, one endpoint of ˛ must be in x1 and
the other in x3 . Furthermore, by Claim 1, we can assume E\FK consists of arcs that
meet each of the strands x1 , x2 and x3 in exactly one point each. After an isotopy, we
can assume that each curve in E\FK is level with respect to hR . If �.E/ is a regular
open neighborhood of E , then let NR DMR � �.E/. Hence, we can assume that
FK

R meets MR outside of NR in a, possibly empty, collection of level disks each
meeting K in three points. By repeating the symmetric argument with an embedded
vertical rectangle E� in MQ , we can assume that FK

Q meets MQ outside of NQ in
a, possibly empty, collection of level disks each meeting K in three points.

Let N be the union of NR and NQ in BT , see Figure 11. Outside of N , FK is
a collection of 3–punctured disks that are level with respect to hR or hQ . Call the
boundary curves of these two collections DR and DQ respectively. Since FK meets
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D

MR

MQ

N

Figure 11

@.BT / in a collection of curves, D , parallel to @D , then FK \ @N DD[DR [DQ .
Additionally, any two curves in D[DR[DQ are isotopic in @.N /K . N is homeomor-
phic to D2�I , where D2�f1gD @C.MR/��.E/ and D2�f0gD @C.MQ/��.E

�/.
Hence, N has a natural height function, hN , induced by projection onto the I factor.
In particular, hN can be chosen so that every curve in D[DR [DQ is level and each
arc of K \N is monotone. Let H be a properly embedded vertical disk in N that
contains all three strands of N \K . Note that @H meets every curve in D[DR[DQ

in exactly two points and each component of N �H is a 3–ball disjoint from K . See
Figure 12.

Suppose H \F D∅. Since every curve in F \ @N meets H , then F \ @N D∅ and
F is contained in N �H . Hence, we have conclusion (1).

Suppose H \F ¤ ∅. If any component of F \H is a closed curve disjoint from
K , then, by the incompressibility of FK and the irreducibility of N � �.K/, we can
remove it via an isotopy of FK supported in NK . If any component of F \H is
a closed curve not disjoint from K , then, by appealing to the argument in Claim 1,
we have conclusion (2). Hence, every component of FK \H is an arc. Label the
endpoints of an outermost such arc as in Figure 12, where the a˙i lie on DR , the b˙i
lie on DQ , and the c˙i lie on D . There is an outermost arc in FK \H with one of
the following endpoint labels:

(1) a�
1

and aC
1

(similarly, b�t and bCt )

(2) a�i and a�
iC1

(similarly, b�i and b�
iC1

, aCi and aC
iC1

, or bCi and bC
iC1

)

(3) c�i and c�
iC1

(similarly, cCi and cC
iC1

)

(4) aCr and cC
1

(similarly, a�r and c�
1

, bC
1

and cCs , or b�
1

and c�s )

Geometry & Topology, Volume 17 (2013)



Width is not additive 117

(5) c�
1

and cC
1

(similarly, c�s and cCs )

(6) aCr and bC
1

(similarly, a�r and b�
1

)

aC
1

aCr

cC
1

cCs

bC
1

bCt

a�
1

a�r
c�

1

c�s

b�1

b�t

D

H

N H

Figure 12

Let y1 , y2 and y3 be the three strands of K in N . Let ˛ be an outermost arc of
F \H in H . If ˛ meets one of y1 , y2 and y3 in more than one point, then as in
Claim 1, we have conclusion (2). Hence, we can assume that ˛ meets each of y1 , y2

and y3 in at most one point.

Case 1 Suppose ˛ is an outer most arc of FK \H with endpoints a�
1

and aC
1

. Since
˛ meets each of y1 , y2 and y3 in at most one point, ˛\K consists of exactly three
points. Let L be the disk in FR �N that contains a�

1
and aC

1
. The disk L together

with a neighborhood of ˛ in FKR is a 6–punctured annulus in MR . Both boundary
components of this annulus are contained in the interior of MR and bound disks in
MR disjoint from both F and K . See Figure 13. By incompressibility of FK and
irreducibility of MR �K , both boundary components of this annulus bound disks
in FK . Hence, FR is a 6–punctured sphere in MR isotopic to @.BR/K . This is a
contradiction to FK being incompressible, so such an outermost arc must not exist.

Case 2 Suppose ˛ is an outermost arc of FK \H with endpoints a�i and a�
iC1

.
Since ˛ meets each of y1 , y2 and y3 in at most one point, ˛\K D∅. Let L1 and
L2 be the two 3–punctured disks in FK

R
�N that contain a�i and a�

iC1
in there

respective boundaries. Since ˛ is outermost, we can isotope it to be monotone with
respect hN . Let xi be one of the strands of K in MR �N . As in Figure 14, there is
a disk G in MR �R that is vertical with respect to hR and illustrates a parallelism
between a subarc of xi , i 2 f1; 2; 3g, and an arc in FK . As in the proof of Claim 1,
we have conclusion (2).

Case 3 Suppose ˛ is an outermost arc of FK \H with endpoints c�i and c�
iC1

. Since
˛ meets each of y1 , y2 and y3 in at most one point, ˛ \K D ∅. Let 1 and 2
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˛
D

L

MR

Figure 13

˛

H
G

L1

L2

MR

Figure 14

be the curves in D that contain c�i and c�
iC1

respectively. Let C1 and C2 be small
closed neighborhoods of 1 and 2 in F respectively. A neighborhood of ˛ in FK

together with C1 and C2 form a connected subsurface of FK with three boundary
components 1 , 2 and ˇ . The curve ˇ bounds a disk in N disjoint from F and
K . By incompressibility of FK and irreducibility of N �K , ˇ bounds a disk in FK .
Hence, we have conclusion (7).

Case 4 Suppose ˛ is an outermost arc of FK \H with endpoints aCr and cC
1

. Since
˛ meets each of y1 , y2 and y3 in at most one point, ˛\K D∅. Let L be the disk
in FK

R
�N with boundary in DR that contains aCr . Let  be the curve in D that

contains cC
1

and let C1 be a small closed neighborhood of  in F . A neighborhood
of ˛ in FK together with E and C1 forms a 3–punctured annulus subsurface of FK

with boundary components  and ˇ . The curve ˇ bounds a disk in N disjoint from
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F and K . By incompressibility of FK and irreducibility of N �K , ˇ bounds a disk
in FK . Hence, we have conclusion (3). By a similar argument, if ˛ has endpoints bC

1

and cCs or b�
1

and c�s we have conclusion (4).

Case 5 Suppose ˛ is an outermost arc of FK \H with endpoints c�
1

and cC
1

. This
case can only occur if there are no a˙i (ie DR is empty). Since ˛ meets each of y1 ,
y2 and y3 in at most one point, ˛\K consists of exactly three points. Let  be the
curve in D that contains both c�

1
and cC

1
. Let C be a small closed neighborhood

of  in F . C together with a regular neighborhood of ˛ in FK is a 3–punctured
subsurface of FK with three boundary components  , ˇ1 and ˇ2 . However, ˇ1 and
ˇ2 each bound disks in N �K disjoint from F and K . By incompressibility of FK

and irreducibility of N �K , both ˇ1 and ˇ2 bound disks in FK . Hence, we have
conclusion (6).

Case 6 Suppose ˛ is an outermost arc of FK \H with endpoints aCr and bC
1

. This
case can only occur if there are no c˙i (ie D is empty). Since ˛ meets each of y1 , y2

and y3 in at most one point, ˛\KD∅. Let LR be the disk in FR�N with boundary
in DR such that aCr 2 @.LR/ and let LQ be the disk in FQ �N with boundary in
DQ such that bC1 2 @.LQ/. A neighborhood of ˛ in FK together with LR and LQ

is a 6–punctured disk subsurface of FK . The boundary of this disk bounds a disk
in N �K disjoint from F and K . By incompressibility of FK and irreducibility of
N �K , the boundary of this 6–punctured disk bounds a disk in FK . Hence, we have
conclusion (5).

Lemma 6.7 If DK is compressible in BR � R then d.@D;VR/ � 1. If DK is
compressible in BQ�Q then d.@D;VQ/� 1

Proof Let E �BR�R be a compressing disk for DK . Since @E is essential in DK

and disjoint from @.DK /, then @E 2 VR and d.@D;VR/� 1.

Lemma 6.8 If DK is compressible in BT �T then d.@D;VR/� 1 or d.@D;VQ/� 1.

Proof If DK is compressible in BT �T , then DK is compressible in BR�R or DK

is compressible in BQ�Q. By Lemma 6.7, d.@D;VR/� 1 or d.@D;VQ/� 1.

Lemma 6.9 [21, Proposition 4.1] If DK is cut-compressible in BR � R then
d.@D;VR/� 2. Similarly, if DK is cut-compressible in BQ�Q then d.@D;VQ/� 2.
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Proof Let ˛ be the arc of K in BR that punctures the cut-compressing disk, C ,
for DK . Let B be the disk in BR illustrating the boundary parallelism of ˛ . After
perhaps an isotopy of B , B \ C is a single arc ˇ that separates B into two disks
B1 and B2 . Consider a regular neighborhood of C [B1 . Its boundary contains a
disk that intersects @.BR/K in an essential curve  and does not intersect @C . Hence,
d.@D;VR/� d.@D; @C /C d.@C;  /� 2.

Lemma 6.10 If DK is c–compressible in BT � T then either d.@D;VR/ � 2 or
d.@D;VQ/� 2.

Proof If DK is compressible in BT � T then, by Lemma 6.8, d.@D;VR/ � 1 or
d.@D;VQ/� 1. If DK is cut-compressible, then DK is cut-compressible in BR�R or
DK is cut-compressible in BQ�Q. By Lemma 6.9, d.@D;VR/� 2 or d.@D;VQ/� 2

Lemma 6.11 If BT �T is reducible then d.@D;VR/� 1 or d.@D;VQ/� 1.

Proof Let S be a reducing sphere for BT � T . Since BR �R and BQ �Q are
irreducible, S cannot be isotoped to be disjoint from D . Isotope S so that jS \Dj

is minimal. If an innermost curve of D \ S in S is essential in DK , then DK is
compressible and, by Lemma 6.8 d.@D;VR/� 1 or d.@D;VQ/� 1.

Suppose ˛ is a curve in D \S that is innermost in S and bounds a subdisk D0 in
D . Since ˛ is innermost in S , ˛ bounds a subdisk S 0 of S that is disjoint from D

except in its boundary. After pushing D0 slightly off of D toward S 0 , D0 [S 0 is a
2–sphere embedded in either BR �R or BQ�Q. Since both BR �R and BQ�Q

are irreducible, D0 [ S 0 bounds a 3–ball disjoint from K . We can use this 3–ball
to construct an isotopy of S that reduces jS \Dj. However, this contradicts the
assumption that jS \Dj is minimal. Hence, ˛ must be essential in DK .

Lemma 6.12 If BT �T contains an essential 2–punctured sphere then d.@D;VR/�2

or d.@D;VQ/� 2.

Proof Let SK be an essential 2–punctured sphere in BT �T . Since BR �R and
BQ�Q are prime, SK cannot be isotoped to be disjoint from D . Isotope SK so that
jSK \Dj is minimal. If an innermost curve of D\SK in SK bounds a disk in SK

and is essential in DK , then DK is compressible and, by Lemma 6.8, d.@D;VR/� 1

or d.@D;VQ/� 1.

If an innermost curve of D\SK in SK bounds a cut-disk in SK and is essential in DK ,
then DK is cut-compressible. By Lemma 6.10, d.@D;VR/� 2 or d.@D;VQ/� 2.
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Suppose ˛ is an innermost curve of D\SK in SK that bounds a c–disk S 0 in SK

and is inessential in DK . Since ˛ is inessential in DK , ˛ bounds a c–disk D0 in D .
After pushing D0 slightly off of D toward S 0 , D0[S 0 is a sphere or a 2–punctured
sphere embedded in either BR �R or BQ�Q. Since both BR �R and BQ�Q are
irreducible and prime, D0[S 0 bounds a 3–ball or a 3–ball containing an unknotted
arc of K . We can use this 3–ball to construct an isotopy of SK that reduces jS \Dj.
However, this contradicts the assumption that jS \Dj is minimal. Hence, no such ˛
exists.

Lemma 6.13 If @.BT / � T is compressible in BT � T , then d.@D;VR/ � 2 or
d.@D;VQ/� 2.

Proof Assume � is a compressing disk for @.BT /�T in BT �T . Isotope � so that
j�\DK j is minimal. By Lemma 6.8, we can assume that DK is incompressible. By
Lemma 6.11, we can assume that BT �T is irreducible. Since DK is incompressible
and BT �T is irreducible we can assume �\DK consists only of arcs and no simple
closed curves. Let ˛ be an outermost arc of �\DK in � and let F be the subdisk
of � that ˛ cobounds with an arc in @� such that the interior of F is disjoint from
DK . Assume F is properly embedded in BR . If @F is inessential in @.BR/�R,
then F is boundary parallel in BR �R and this boundary parallelism can be used to
construct an isotopy of � that decreases j�\DK j, a contradiction. Hence, F is a
compressing disk for BR �R that intersects @D in exactly two points. It follows that
d.@D;VR/� 2. If F is properly embedded in BQ , then d.@D;VQ/� 2.

Lemma 6.14 There exists a tangle T satisfying Definition 6.1 with d.@.DR/;VR/�3

and d.@.DQ/;VQ/� 3.

Proof This follows immediately from Corollary 4.4.

Lemma 6.15 If FK is a c–incompressible surface in BT �T with @F consisting of
a (possibly empty) collection of simple closed curves isotopic to @D in @.BT /� T ,
d.@D;VR/� 3 and d.@D;VQ/� 3, then, after an isotopy of FK , F \D is a (possibly
empty) collection of simple closed curves all of which are essential in both FK and
DK .

Proof Since all components of @F are isotopic to @D in @.BT /�T , there is an isotopy
of FK supported in a small neighborhood of @.BT / in BT resulting in @F \@D D∅.
Suppose the interior of FK has been isotoped to minimize jF \Dj and suppose ˛ is
a curve in D\F which is inessential in DK . By appealing to an innermost such ˛ ,
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we can assume that the disk or 1–punctured disk, D0 , that ˛ bounds in D is disjoint
from F except in its boundary. Since FK is c–incompressible, ˛ bounds a disk or
1–punctured disk, F 0 , in F . By Lemma 6.11 and Lemma 6.12, D0 [F 0 cobound
a 3–ball or a 3–ball containing an unknotted arc that gives rise to an isotopy which
reduces the number of components of D\F . Hence, if ˛ is inessential in DK , then
we contradict the minimality of jD\F j. By Lemma 6.10, DK is c–incompressible
so a similar argument implies that ˛ is also essential in FK .

Theorem 6.16 [21, Proposition 4.3] Suppose .F; @F /� .BR; @.BR// is a properly
embedded surface transverse to K that satisfies all of the following conditions:

(1) FK has no disk components.

(2) FK is c–incompressible.

(3) FK intersects every spine �R of BR .

(4) All curves of F \ @.BR/ are essential on @.BR/�R.

Then there is at least one curve f 2 F \ @.BR/ that is essential in @.BR/�R such
that d.VR; f /� 1��.FK / and every g 2 F \ @.BR/ that is essential on @.BR/�R

for which the inequality does not hold lies in the boundary of a .@.BR/�R/–parallel
annulus component of FK .

Theorem 6.17 Let T be a tangle as described in Definition 6.1. In addition, choose
DR and DQ such that d.@.DR/;VR/� 3 and d.@.DQ/;VQ/� 3. If FK is a properly
embedded connected c–incompressible surface in BT �T with @F a (possibly empty)
collection of curves isotopic to @D in @.BT /�K , then one of the following holds:

(1) FK is a sphere bounding a ball.

(2) FK is a twice punctured sphere bounding a ball containing a unknotted arc.

(3) FK is isotopic to @.BR/K � int.D/.

(4) FK is isotopic to @.BQ/K � int.D/.

(5) FK is isotopic to @.BT /K .

(6) FK is isotopic to DK .

(7) FK is a @.BT /K –parallel annulus.

(8) d.@D;VR/� 2��.FK /.

(9) d.@D;VQ/� 2��.FK /.
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Proof There are two cases to consider.

Case 1 Suppose FK can be isotoped to be disjoint from D . Then F is properly
embedded in one of BR or BQ with boundary (if nonempty) isotopic to parallel copies
of @D . Without loss of generality, assume F is contained in BR . Note that since every
component of @F is essential in BR �R, no component of FK is a boundary parallel
disk in BR �R. If FK is a disk, then d.@D;VR/D 0 contradicting the hypothesis of
the theorem. If @F is empty, then conclusions (1) or (2) hold, by Lemma 6.4. Hence,
we can assume that FK is a c–incompressible properly embedded surface with no
disk components and nontrivial boundary. If, in addition, FK intersects every spine
�R , then the hypotheses of Theorem 6.16 are satisfied and there is at least one curve
f 2FK\.@.BR/�R/ that is essential in @.BR/�R such that d.VR; f /� 1��.FK /.
Since all curves in FK \ @.BR/�R are parallel to @D , then conclusion (9) holds. If
FK is disjoint from some spine �R , then the hypotheses of Theorem 6.6 are satisfied
and one of conclusions (1) to (7) holds.

Case 2 Suppose FK cannot be isotoped to be disjoint from D . If FK can be isotoped
to be disjoint from some spine �R and some spine of �Q then, by Theorem 6.6, one
of conclusions (1) to (7) holds.

Suppose FK cannot be isotoped to be disjoint from any spine of R. (The case where
FK cannot be isotoped to be disjoint from any spine of Q is proven analogously.) In
particular, FR

K
D FK \BR can not be isotoped to be disjoint from any spine of R. To

apply Theorem 6.16 to FR
K

we need to verify the remaining three hypotheses.

(1) By Lemma 6.10, d.@.DR/;VR/ � 3 and d.@.DQ/;VQ/ � 3 imply that DK is
c–incompressible. By Lemma 6.11, d.@.DR/;VR/� 3 and d.@.DQ/;VQ/� 3 imply
that BT �T is irreducible. By c–incompressibility of D and irreducibility of BT �T

we can assume that FK �D contains no disk components. Hence, FR
K

contains no
disk components.

(2) FK is assumed to be c–incompressible in BT�T . Hence FR
K

is c–incompressible
in BR �R.

(3) We have assumed that FK intersects every spine of R.

(4) By Lemma 6.15, DK and FK can be isotoped to intersect in a nonempty collection
of closed curves that are essential in each surface. In particular, every component of
FR

K
\DK is essential in DK .

Since the hypotheses for Theorem 6.16 are satisfied, there exists a curve f 2FR
K
\DK

that is essential on @.BR/�R and such that d.VR; f /� 1��.FR
K
/. Since both FR

K

and F
Q
K

are planar surfaces containing no disk or sphere components, �.FR
K
/� 0 and
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�.F
Q
K
/ � 0. As �.FK /D �.F

R
K
/C�.F

Q
K
/, �.FR

K
/ � 0 and �.FQ

K
/ � 0, it follows

that 1��.FK / � 1��.FR
K
/ and d.VR; f / � 1��.FK /. Since d.f; @D/ � 1, we

conclude that d.@D;VR/� 2��.FK /.

7 Constructing the example

We will now construct a knot K as in Figure 15. We begin with the schematic in
that figure and we substitute each of the balls B1; : : : ;B4 with tangles satisfying
particular properties. In the schematic S1; : : : ;S4 are punctured spheres, B1 and B2

are the disjoint balls bounded by S1 and S2 containing tangles T1 D .B1;T1/ and
T2 D .B2;T2/ respectively. The unique strand of K that connects S1 and S2 but is
disjoint from S4 will be labeled � . The sphere S4 bounds a ball BT disjoint from
B1 and B2 containing a 3–strand tangle T D .BT ;T /. Thus, the knot K is naturally
decomposed into three tangles: the two 2–strand tangles T1 and T2 and the 3–strand
tangle T .

B1

B2

B3

B4

S1

S2

S3

S4

T

Figure 15

By Corollary 4.6, we may assume that d.†1;T1/ is arbitrarily high and T1 does not
have any closed components. In our construction, we will require that d.†1;T1/� 25.
The tangle .B2;T2/ will be identical to the tangle .B1;T1/.

The tangle T is constructed as follows. Let each of R and Q be a 3–strand rational
tangle. Let VR (respectively VQ ) be the set of all essential simple closed curves in
@.BR/ (respectively @.BQ/) that bound disks in BR �K (respectively BQ �K ).
By Corollary 4.4, there exist equatorial curves R and Q in .@BR/K and .@BQ/K
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respectively such that d.R;VR/� 25 and d.Q;VQ/� 25. By Theorem 5.6, we may
simultaneously require that no 2–strand equatorial subpair of .R; R/ or .Q; Q/ is
the unpair. Let T be the tangle obtained from R and Q as in Definition 6.1. We may
assume that T is symmetric with respect to the disk D .

Theorem 7.1 We may assume that K is a knot.

Proof Consider K to be constructed from the two 2–strand tangles contained in the
two balls bounded by S1 . By our construction, neither of these tangles has any closed
components. Note that we may use any automorphism of the 4–punctured sphere to
create K . In particular, we can choose a homomorphism that ensures that for each
of the strands in B1 the two endpoints are glued to endpoints of different strands in
S3�B1 , thus, creating a knot.

8 Properties of K

In this section, we establish some of the properties of K . For the rest of this paper
all surfaces will be punctured spheres so to avoid multiple subscript we will drop the
subscript K , ie a surface F will always be punctured unless otherwise specified and
will not be denoted by FK .

The first property of K is based on an easy computation for the schematic in Figure 15
using the equation provided in Lemma 2.1.

Property 8.1 w.K/� 134.

Property 8.2 Consider the 4–strand tangle contained between S1 and S3 . If T is
any sphere separating S1 from S3 so that any maxima of the tangle are above T and
any minima are below it, then T intersects the tangle in at least 8 points.

Proof The tangle contained between S1 and S3 consists of the tangle R together
with an additional unknotted strand. By construction no equatorial subpair of R is
the unpair. Thus at least 2 of the three strands in R must intersect T in at least 3
points each. The other two strands have to intersect T in at least one point each as
T separates the endpoints of these strands. Thus T intersects the tangle in at least 8
points as required.

Property 8.3 The spheres S1 , S2 and S3 are all distinct.
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Proof Suppose first that S1 is isotopic to S2 . Since S1 and S2 are disjoint embedded
2–spheres in S3 , the complementary components of S1 [ S2 consist of two open
3–balls and one S2 cross open interval. Let N be the closure of the complementary
component homeomorphic to S2 cross open interval. Thus, N has boundary S1[S2 ,
N\K is a collection of vertical strands and S4�N . Hence, S4 is visibly compressible
into BT . However, this is not possible, by Lemma 6.13, since we have assumed
d.@D;VR/� 25 and d.@D;VQ/� 25.

Suppose then that S1 is isotopic to S3 . Then a copy of S1 will intersect the tangle
contained between S1 and S3 in only 4 points contradicting Property 8.2.

Property 8.4 Any bridge surface for the tangle .B1;T1/ meets T1 in at least 10
points, and similarly for .B2;T2/.

Proof By construction, .B1;T1/ has a bridge surface †1 of distance 25. Suppose †0

is another bridge surface for .B1;T1/. By Theorem 4.2, with B1 playing the roles of
both M and N , it follows that either �.†0/��23 or, after some c–compressions, †0

is parallel to †1 . In either case, T1 intersects †0 at least as many times as it intersects
†1 , ie at least 10 times.

Property 8.5 Both S1 and S2 are c–incompressible in S3�K .

Proof In search of contradiction, suppose that one of S1 or S2 is c–compressible with
c–disk �0 . By taking � to be the disk bounded by an innermost curve of �0\.S1[S2/

in �0 , we can assume that � is a c–disk for S1 and the interior of � is disjoint from
both S1 and S2 . The curve @� separates S1 into two disks D1 and D2 .

If � is contained in B1 , then, up to relabeling D1 and D2 , �[D1 is a 2–punctured
sphere in B1 . If �[D1 is an inessential 2–punctured sphere, then � is boundary
parallel, contradicting the fact that � is a c–disk, or .B1;T1/ is a rational tangle,
a contradiction to Property 8.4. Hence, we can assume that �[D1 is an essential
2–punctured sphere. Maximally compress and cut-compress �[D1 in B1 and let
F be one of the resulting components. Note that F is an essential 2–punctured
sphere. By Theorem 4.3, either F can be isotoped to be disjoint from †1 , †1 has
four punctures or 25 � d.†1/ � 2��.F /D 2��.�[D1/. It is easy to show that
there are no essential surfaces in the complement of a tangle that are disjoint from
its bridge surface. By the construction of B1 , †1 has 10 punctures and therefore
we conclude that �.�[D1/D �.F / � �23. This contradicts the fact that F is an
essential 2–punctured sphere.

Suppose � in not contained in B1 or B2 . Let � be the arc in K� .S1[S2/ that is
disjoint from BT and connects S1 to S2 . As S4 is isotopic to the boundary of the
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neighborhood of S1 [ S2 [ � , it follows that @D is isotopic to a meridional curve
for � . Additionally, if � is contained strictly between S1 and S2 and is disjoint
from � , then � is a c–disk for S4 with boundary disjoint from @D . By Lemma 6.10,
D is c–incompressible, so we can assume that � is disjoint from D . Since � is
disjoint from D then � is a c–disk for @.BR/�R. If � is a compressing disk, then
d.@D;VR/� 1, a contradiction to the construction of the tangle T . If � is a cut-disk
and E is the bridge disk for the strand of R that meets �, then, possibly after an
isotopy of E , we can assume that � meets E in a single arc. The boundary of a
regular neighborhood of E[� contains a compressing disk, �00 , for @.BR/�R that
is disjoint from �. Since @� is disjoint from @D and @.�00/ is disjoint from @� then
d.@D;VR/� 2. This is a contradiction to the construction of T .

If � is contained strictly between S1 and S2 and meets � , then we can assume that
D1 meets K in one point and D2 meets K in three points. If � has an endpoint in
D1 , then D1[� bounds a 3–ball containing a unknotted arc, since � is unknotted.
Hence, � is boundary parallel, a contradiction. Therefore, we can assume that D1

is disjoint from � . The twice punctured sphere �[D1 is disjoint from S1[S2 and
meets � in a single point. Therefore, after isotopying S4 to be the boundary of a
regular neighborhood of S1 [ S2 [ � , .�[D1/\BT is a cut-disk for @.BT /� T

with boundary parallel to a meridional curve of � . As noted before, such a meridional
curve is isotopic to @D . As argued above, this implies d.@D;VR/� 2, a contradiction
to the construction of T .

Property 8.6 Let F be a connected, planar, meridional, nonboundary parallel, c–
incompressible, planar surface in S3� �.K/. Then one of the following holds:

(1) F can be isotoped to be disjoint from BT .

(2) F is isotopic to S3 .

(3) F has at least 14 punctures.

Proof Isotope F so that F \ .S1 [S2/ is minimal. Suppose F \S1 is nonempty.
Since S1 is c–incompressible, by Property 8.5, and K is a knot, then minimality of
F \ .S1[S2/ implies F �S1 contains no disk components. Let F1 be a component
of B1\F . By minimality of jF \ .S1[S2/j, F1 is not isotopic to a subsurface of
S1 . Since F is c–incompressible, so is F1 . So, F1 can not be isotoped to be disjoint
from †1 . Since F1 is c–incompressible and F1 is not isotopic to a subsurface of S1 ,
then F1 is not boundary parallel in B1 � �.T1/. By Theorem 4.3, F1 , and thus F ,
has at least 14 punctures. Hence, we can assume that F is disjoint from S1 and S2 .

Let M be the S2 � I region in S3 with boundary S1 and S2 . Since F is disjoint
from S1 and S2 , F is contained in the interior of M . Recall that � is the strand of
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K\M that is disjoint from BT . Let � be a small open neighborhood of S1[S2[ �

in M . By transversality, F meets � in a possibly empty collection of parallel, disjoint,
1–punctured disks. Recall D from Definition 6.1. Since BT is isotopic to M � �

then F can be isotoped to meet @.BT / in a collection of curves parallel to @D . Since
F is planar and F \ �.�/ is a collection of once-punctured disks, FT D F \BT is
connected. If FT is a disk, then F is a 1–punctured sphere in S3 , a contradiction.
Since F is c–incompressible, so is FT . By Theorem 6.17, FT is isotopic to one of
ten surfaces. Conclusion (1) and (2) cannot occur since F was assumed to be essential.
If conclusion (3), (4), (5) or (7) holds, then we can isotope F to be disjoint from
BT . If conclusion (6) holds, F is the boundary union of D and a 1–punctured disk
that meets � . In this case, F is isotopic to S3 . If conclusion (8) or (9) holds then,
since d.@D;VR/� 25 and d.@D;VQ/� 25, we can conclude that F has at least 14
punctures.

We will be particularly interested in surfaces obtained by tubing two spheres with a tube
that runs along an arc of the knot connecting these spheres. The following definition
describes this construction.

Definition 8.7 Let F and G be disjoint embedded spheres in S3 with the property
that F\K¤∅ and G\K¤∅ and let ˛ be the closure of a component of K�.F[G/

with an endpoint in each of F and G . Then the boundary of a regular neighborhood
of F [˛[G has three components. Let F ]˛ G be the component that is not parallel
to F or to G in the complement of the other two components.

Equivalently, F ]˛G is the embedded connected sum of F and G obtained by replacing
a neighborhood of @.˛/ in F and G with an annulus that runs parallel to ˛ .

Property 8.8 Let Bi;j be the ball bounded by Si ]˛Sj with i; j 2 f1; 2; 3g and i ¤ j

that is disjoint from B1 and B2 and let Ti;j DK\Bi;j . If Si ]˛ Sj is incompressible,
then any bridge sphere †i;j for .Bi;j ;Ti;j / has at least 10 punctures.

In the special case where i D 1, j D 2 and S1 is tubed to S2 along a strand ˛ that
intersects S4 , then the bridge sphere †1;2 for .B1;2;T1;2/ has at least 14 punctures.

Proof There are three cases to consider.

Case 1 Suppose S D S1 ]� S2 . In this case, S is isotopic to S4 and the tangle
under consideration is the tangle T . This tangle contains three arcs ˛ , ˇ and  . By
construction, @D is a simple closed curve in S4 and each arc of T has an endpoint in
each of the two components of S4� @D . For any two arcs in T , say ˛ and ˇ , define
K˛;ˇ to be the link obtained by connecting the endpoints of ˛ and ˇ via two arcs in
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S4 so that each of these arcs is disjoint from @D . Under such restrictions, the link
type of K˛;ˇ is well defined. As illustrated in Figure 16, K˛;ˇ can also be constructed
by taking the connected sum of some numerator closure of an equatorial subpair of
.R; @D/ with some numerator closure of an equatorial subpair of .Q; @D/ neither of
which is the unknot by construction. Since K˛;ˇ is the connected sum of two links,
neither of which is the unknot, then the bridge number of K˛;ˇ is at least 3, by [16].
Hence, one of ˛ or ˇ meets the bridge sphere of T in at least 4 points, the other meets
the sphere in at least 2 points. By examining K˛; and Kˇ; we conclude that one of
˛ or  meets the bridge sphere in at least 4 points and one of ˇ or  meets the bridge
sphere in at least 4 points. Hence, two of the arcs ˛ , ˇ , or  meet the bridge sphere in
at least 4 points and the third meets it in at least 2 points. Thus, the bridge sphere for
T has at least 10 punctures.

D

R

Q

S4

K˛ˇ

Figure 16

Case 2 Suppose S is isotopic to S1 ]˛ S2 where ˛ is one of the three strands
connecting S1 to S2 that intersects S4 and therefore passes through both BR and BQ .
Let  , ı be the other two strands of T and, thus, � ,  and ı are the three strands of
T1;2 . By connecting the endpoints of  with an arc contained in S , we create a knot,
K . The knot-type of K is well-defined and independent of how we connect the
points in @ . We define Kı and K� similarly. As illustrated in Figure 17, K can also
be constructed by taking the connected sum of some numerator closure of an equatorial
subpair of .R; @D/ with some numerator closure of an equatorial subpair of .Q; @D/.
As before, both of these are knotted by construction. Since K is the connected sum
of two knots, then the bridge number of K is at least 3, by [16]. Hence  meets the
bridge sphere in at least 6 points. A similar argument reveals that ı meets the bridge
sphere in at least 6 points. Additionally, � must meet this bridge sphere in at least 2
points. Hence, the bridge sphere for T1;2 must have at least 14 punctures.
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D

R

Q

S1

S2

K˛

Figure 17

Case 3 Suppose S is isotopic to S1 ]˛ S3 or S2 ]˛ S3 . Without loss of generality, we
may assume that S is isotopic to S1]˛S3 . There are four components of K�.S1[S3/

that have a boundary point on each of S1 and S3 . One of these components is contained
in � , so we denote it by ". Call the other three components ˇ ,  , ı . If ˛ D ", then
S1 ]˛ S3 is isotopic to @.BR/, and therefore compressible. Hence, we can assume that
˛ passes through BR . Without loss of generality, assume ˛ D ˇ . In this case, the
strands  , ı and " become the three strands of T1;3 . By connecting the endpoints of 
with an arc contained in S , we create a knot, K . The knot-type of K is well-defined
independent of how we connect the points in @ . We define Kı and K" similarly. As
illustrated in Figure 18, K can also be constructed by taking a numerator closure
of an equatorial subpair of .R; @D/, which is knotted by construction. Since K is
knotted, the bridge number of K is at least 2. Hence,  meets any bridge sphere in
at least 4 points. A similar argument reveals that ı meets any bridge sphere in at least
4 points. Additionally, " must meet any bridge sphere in at least 2 points. Hence, the
bridge sphere for T1;3 must have at least 10 punctures.

Property 8.9 Let S be the tangle .S3 � .B1 [B2/;K \ .S
3 � .B1 [B2///. Then

any bridge sphere for S must have at least 10 punctures.

Proof Let M be the embedded copy of S2 � I in S3 with boundary S1[S2 . The
knot K meets M in four arcs ˛ , ˇ ,  and � , where � is the unique arc disjoint from
S4 . For any two arcs in M , say ˛ and ˇ , define K˛;ˇ to be the knot obtained by
connecting the endpoints of ˛ and ˇ via an arc in S1 and an arc in S2 . The knot
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@D

K

R

S1

S3

Figure 18

type of K˛;ˇ is well defined under this construction. As illustrated in Figure 19, K˛;ˇ

can also be constructed by taking the connected sum of some numerator closure of an
equatorial subpair of .R; @D/ with some numerator closure of an equatorial subpair of
.Q; @D/, both of which are knotted by construction. Since K˛;ˇ is the connected sum
of two knots, then the bridge number of K˛;ˇ is at least 3, by [16]. Similarly, each of
K˛; and Kˇ; has bridge number at least 3. Since K˛;ˇ [K˛; [Kˇ; meets any
bridge sphere in at least 18 points, any bridge sphere for S meets the union of ˛ , ˇ
and  in at least 9 points. Additionally, � must meet any bridge sphere for S in at
least one point. Thus, any bridge sphere for S must have at least 10 punctures.

K˛ˇ

S1

S2

D

R

Q

Figure 19

Property 8.10 Let B0 and B00 be the two balls bounded by S3 and let T 0 DK\B0

and T 00 D K \ B00 . Then any bridge surface for each of the tangles .B0;T 0/ and
.B00;T 00/ has at least 12 punctures.
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Proof Let †0 be a bridge surface for the tangle .B0;T 0/. Without loss of generality,
suppose B1 is contained in B0 . By Theorem 4.2, either d.†1/� 2��.†0/, or †0\B1

is a sphere parallel to †1 with tubes attached. In the first case, †0 has at least 26
punctures. In the second case, if no tubes are attached, then †0 is isotopic to †1 and
so, by Property 8.5, S1 is an essential surface contained in B0 but disjoint from †0

which is not possible since S1 is not isotopic to S3 . Therefore, to recover †0 from
†1 at least one tube must be attached. Since each additional tube adds at least two
punctures, †0 has at least 12 punctures. An analogous argument with S2 playing the
role of S1 shows the result for .B00;T 00/.

9 Meridional essential spheres in the complement of K

In this section, we will classify all essential spheres in the complement of K with
fewer than 14 punctures.

Proposition 9.1 Any meridional essential sphere that is embedded in one of B1 , B2

or BT has at least 14 punctures.

Proof Suppose F is an essential meridional sphere and F � B1 . Maximally cut-
compress F in B1 and let F 0 be one of the resulting components. Note that F 0 is
incompressible, �.F 0/ � �.F / and the number of punctures of F 0 is less than or
equal to that of F since F is a meridional essential sphere in a knot complement. By
Theorem 4.3, it follows that either F 0 can be isotoped to be disjoint from †1 , †1

has four punctures or 25 � d.†1/ � 2� �.F 0/ � 2� �.F /. It is easy to show that
there are no essential surfaces in the complement of a tangle that are disjoint from
its bridge sphere. By the construction of B1 , †1 has 10 punctures and therefore we
conclude that �.F /D �.F 0/��23. It follows that F must have at least 25 punctures.
A symmetric argument produces the desired result if F � B2 .

Suppose F is an essential sphere in BT �T . After maximally cut-compressing F in
BT �T , each component is a meridional, c–incompressible sphere in BT �T . Let F 0

be one such component. By Theorem 6.17, we conclude that d.@.D/;VR/� 2��.F 0/,
or d.@.D/;VQ/ � 2��.F 0/, or F 0 is isotopic to @.BT /�T . In the first two cases,
since d.@.D/;VR/ � 25 and d.@.D/;VQ/ � 25, we conclude that F 0 , and thus F ,
has at least 14 punctures. Hence, we can assume that, after maximally cut-compressing
F in BT , every component is isotopic to @.BT /�T . If there is more than one such
component, then reversing the final cut-compression by attaching a tube between two
parallel copies of @.BT /�T results in a compressible surface, a contradiction to the
incompressibility of F . Hence, F is isotopic to @.BT /� T , a contradiction to F

being essential.
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We associate to the given projection of K a graph � embedded in S2 , the projec-
tion sphere of Figure 15, where each vertex corresponds to one of the four 3–balls,
B1; : : : ;B4 , and the edges correspond to strands of the knot connecting these 3–balls.
We may assume that K lies in an arbitrarily small neighborhood of S2 . Note that a
simple closed curve in S2 that is disjoint from � bounds a disk in S2 that is disjoint
from � . We will use this graph on several occasions.

Lemma 9.2 Suppose F is an essential meridional sphere disjoint from Bi for i D

1; : : : ; 4, that is embedded so that jF \S2j is minimal. Then F \S2 is a single simple
closed curve � . Moreover there are no bigons in S2 whose boundary is the endpoint
union of a segment of an edge of � and a segment of � .

Proof As F is disjoint from all Bi , it intersects the 2–sphere containing � in circles
disjoint from the vertices of the graph. If any such circle bounds a disk in the 2–sphere
disjoint from the graph, it can be removed by an isotopy using the incompressibility of
F , contradicting the assumption that jF \S2j is minimal.

Suppose ˛ and ˇ are two simple closed curves in F \S2 . By the above, both curves
contain points of intersection between F and K . Consider a product neighborhood
S2 � I of S2 so that @.S2 � I/ is disjoint from K and F \ .S2 � I/ is a union of
vertical fibers. Then ˛ is parallel to two curves in the boundary of the product, one
lying in F \ .S2 � f0g/ and the other in F \ .S2 � f1g/. Since F is a sphere, one
of these curves, ˛0 , separates ˛ and ˇ in F . Let D be the disk in @.S2 � I/ that ˛0

bounds and note that D is disjoint from K . As F is incompressible, after possibly
an isotopy of F , we may assume that F \ int.D/ D ∅. As @D D ˛0 separates the
punctures of F lying in ˛ from the punctures lying in ˇ , the disk D is a compressing
disk for F , contradicting the hypothesis. Hence, we can assume F \S2 is a single
simple closed curve, � .

Suppose a subarc of � D S2 \F cobounds with some edge of � a bigon. Without
loss of generality, we may assume that the interior of the bigon is disjoint from � and
F . A regular neighborhood of this bigon contains a compressing disk for F unless F

is a twice punctured sphere parallel to a segment of the edge. As F is essential, no
such bigons can exist.

Proposition 9.3 Any essential meridional sphere, F , that is disjoint from Bi for
i D 1; : : : ; 4 is parallel to one of S1 , S2 , S3 or S4 . In particular, any such surface has
at most 6 punctures.

Proof We will continue using the terminology developed in the proof of Lemma 9.2.
By that lemma, it follows that if � D S2\F intersects any edge in a triple of parallel
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edges of � , it must intersect all three of them. Thus, we can replace these triples with a
single edge and assign it a weight of 3. The projection of K is then modeled by a cycle
graph on 4 vertices, C4 , where three of the edges have weight 3 and one has weight
1. The number of punctures of F lying in � is the sum of the weights of the edges
� intersects. By the Jordan–Brower theorem, � has an even number of intersections
with the edges of � and, by Lemma 9.2, consecutive edges that � intersects must be
distinct.

Let E be one of the two disks C4 bounds in S2 and let l be an outermost arc
of intersection of � and E . Let p1 and p2 be the two endpoints of l . Choose
p0

1
and p0

2
to be points in � that are close to p1 and p2 respectively but not in l

so that the segment of l 0 D � � .p0
1
[ p0

2
/ containing l only intersects C4 in p1

and p2 . Let g be any embedded path in S2 � .� [ C4/ from p0
1

to p0
2

. Consider
a small regular neighborhood S2 � I of S2 . Then there is a disk with boundary
.l 0 � f0g/[ .p0

1
� I/[ .p0

2
� I/[ .l 0 � f1g/ that contains two copies of g . This disk

would be a compressing disk for F unless p1[p2 D � \C4 . Therefore, we conclude
that � intersects exactly two of the edges of C4 and intersects each of those exactly
once. The result follows by considering all possible pairs of edges.

Proposition 9.4 There are no essential twice-punctured spheres that are disjoint from
all of S1 , S2 and S3 .

Proof Let F be an essential twice punctured sphere in the complement of K disjoint
from S1 , S2 and S3 . By Proposition 9.1, F is not embedded in B1 or B2 . Without
loss of generality, we may assume that F is on the same side of S3 as B1 but outside
of B1 . In this case, it is easy to see that F can be isotoped to lie entirely in BT ,
contradicting Lemma 6.12.

Proposition 9.5 The spheres S1 , S2 and S3 are c–essential.

Proof The spheres S1 and S2 are c–essential by Property 8.5. Suppose S3 has a
c–disk Dc . We may assume that this c–disk is disjoint from S1 [ S2 . Let � be
one of the two punctured disks @Dc bounds on S3 . Then F D Dc [� is a sphere
that is disjoint from all Si , i D 1; 2; 3. Note that we may choose � so it has at most
2–punctures. As Dc has at most one puncture and every sphere has an even number
of punctures, F has at most two punctures. As K is not a split link, F is an essential
twice punctured sphere disjoint from S1 , S2 and S3 , contradicting Proposition 9.4.

Corollary 9.6 K is a prime knot.

Geometry & Topology, Volume 17 (2013)



Width is not additive 135

Proof Suppose F is a decomposing sphere for K . As S1 , S2 and S3 are c–essential
by Proposition 9.5, we can find such a sphere that is disjoint from S1 [ S2 [ S3 ,
contradicting Proposition 9.4

Corollary 9.7 Every essential 4–punctured sphere is c–essential.

Property 9.8 Let B0 D S3 �B1 and B00 D S3 �B2 . Any bridge surface for the
tangles T 0 D .B0;K�T1/ and T 00 D .B00;K�T2/ has at least 14 punctures.

Proof We show the result for T 0 , but note that a completely analogous argument
proves the result for T 00 . Let † be a bridge surface for T 0 . By Theorem 4.2, either
d.†2/� 2��.†/, or †\B2 is a sphere parallel to †2 with tubes attached. In the
first case, † has at least 26 punctures, so suppose we are in the second case. If no
tubes are attached, ie if † is parallel to †2 , then S2 is an essential sphere that is
disjoint from the bridge surface of the tangle T 0 which is not possible since S2 is not
isotopic to S3 . If more than one tube is attached, then w.†/� 14. Similarly, if some
tube corresponds to a compressing disk that decomposes † into a component parallel
to †2 and a sphere with more than two punctures or if some tube corresponds to a
cut-disk that decomposes † into a component parallel to †2 and a sphere with more
than four punctures, then w.†/� 14. Therefore, we may assume that † is parallel to
†2 with exactly one tube attached. If this tube corresponds to a compressing disk, then
it connects †2 to a twice punctured sphere and if it corresponds to a cut-disk, then it
connects †2 to a four times punctured sphere.

Claim We may assume the tube corresponds to a compressing disk.

Proof of claim Suppose the tube corresponds to a cut-disk Dc . Then @Dc bounds
a three punctured disk � in †. Consider the arc � that has both of its endpoints in
�. A bridge disk for � can be isotoped to be disjoint from Dc using an innermost
disk/outermost arc argument. Let E be the compressing disk for † obtained by taking
the boundary of a regular neighborhood of the bridge disk for � . Note that E is
disjoint from Dc . Additionally, Dc , E and a once punctured annulus A in † cobound
a twice punctured sphere. By Corollary 9.6, K and, thus, T 0 is prime. As T 0 is
prime, it follows that E [A is isotopic to Dc . Therefore, the surface F obtained
by cut-compressing † along Dc that does not contain � is isotopic to the surface
F 0 obtained from † by compressing it along E that contains A. As F is parallel to
†2 , so is F 0 . Therefore, we may replace the tube corresponding to Dc with a tube
corresponding to E .
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By the claim, we may assume that † can be recovered by tubing †2 to a twice
punctured sphere Q along a tube that is disjoint from the knot. There are 4 strands
of K that have one endpoint in S1 and the other in †2 . By Property 8.5, S1 and S2

are c–essential, so Q can be isotoped to be disjoint from both S1 and S2 . Hence,
the sphere Q intersects at most one of these strands, so there are at least three strands
that have one endpoint in S1 and one point in †. At least two of these strands, ˛ and
ˇ , intersect BT . As † is a bridge surface, ˛ and ˇ are both vertical and, therefore,
parallel to each other. Let R be the rectangle they cobound. Connecting ˛\BT and
ˇ \BT along the two arcs R\S4 results in the unknot. However, this is the knot
K˛;ˇ described in Case 1 of the proof of Property 8.8. By the argument there, the
bridge number of K˛;ˇ is at least three, leading to a contradiction.

Proposition 9.9 Any c–essential meridional sphere with fewer than 14 punctures has
exactly 4 punctures and is parallel to one of S1 , S2 or S3 .

Proof Let F be a c–essential sphere with fewer than 14 punctures. Isotope it to
intersect B1[B2[BT minimally and suppose first that F \B1 ¤∅. Note that no
component of F �S1 can be a c–disk as S1 is c–incompressible. It follows that, if F 0

is any component of F \B1 , �.F 0/� �.F /. Furthermore, F 0 cannot be parallel to
@.B1� �.K// as in this case either jF \B1j can be reduced or F has a cut-disk (this
situation occurs if F \B1 has a component that is an annulus parallel to a segment
of B1 \K ). Recall that †1 has 10 punctures and there are no essential surfaces in
the complement of the tangle that are disjoint from the bridge sphere of the tangle. By
Theorem 4.3, it follows that d.†1;K\B1/� 2��.F 0/. As d.†1;K\B1/� 25, this
implies that �.F 0/��23 and, therefore, �.F /��23. This contradicts the hypothesis
that F has at most 14 punctures and, therefore, it follows that F \B1 D∅. Similarly,
F \B2 must also be empty.

By Property 8.6, it follows that if F\BT ¤∅, then F is S3 or has at least 14 punctures.
Hence, we can assume that F is disjoint from Bi for i D 1; : : : ; 4. By Proposition 9.3,
F is parallel to one of S1 , S2 , S3 or S4 . However, S4 is not c–essential. Thus, F is
parallel to one of S1 , S2 or S3 .

Proposition 9.10 The only incompressible 6–punctured spheres are the ones obtained
by tubing two essential 4–punctured spheres that are not mutually parallel along a
strand of K . In particular, if P is an incompressible 6–punctured sphere, then its
cut-disk, B1 , and B2 are on the same side of P .

Proof Suppose G is an incompressible 6–punctured sphere. By Proposition 9.9, it fol-
lows that G is cut-compressible. As K is prime, cut-compressing a 6–punctured sphere
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results in a pair of 4–punctured spheres. If the original sphere was incompressible, so
are the two 4–punctured ones.

By Corollary 9.7, all essential 4–punctured spheres are c–essential, and all c–essential
4–punctured spheres in the complement of K are parallel to one of S1 , S2 or S3

by Proposition 9.9. If two parallel copies of some 4–punctured sphere are tubed
together along a single strand of the knot, the resulting 6–punctured sphere is always
compressible. Therefore, any incompressible 6–punctured sphere is the result of tubing
together two of S1 , S2 or S3 .

Note that S4 can be obtained by tubing S1 to S2 .

10 Bridge number

In this section, we will show that thin and bridge position for K do not coincide.

Lemma 10.1 Suppose † is a minimal bridge sphere for K , and C1 and C2 are c–
disks for † on opposite sides of † so that @.C1/\ @.C2/D∅. Then bridge position
for K is not thin position.

Proof Let �1 and �2 be the disjoint disks @C1 and @C2 bound in †. The disk �1

must have at least two punctures as @C1 is essential in †. In particular, there is a
strand �1 above † that has both of its endpoint in �1 and is disjoint from C1 . As †
is a bridge sphere, �1 has a bridge disk E1 . Using the fact that there are no spheres
that intersect the knot in exactly one point and an innermost disk argument, we can
choose E1 so that it intersects C1 only in arcs. If there are two distinct outermost arcs
of E1 \C1 in C1 , then one of these arcs bounds a disk in C1 that is disjoint from
E1 and does not contain the puncture. If there is a unique outermost arc of E1\C1

in C1 , then one of the two disks this arc bounds in C1 is disjoint from E1 does not
contain the puncture. In either case, we can boundary compress E1 along the disk
we just found in C1 to find a new bridge disk for �1 that meets C1 in strictly fewer
arcs. Repeat this process to produce a bridge disk E�

1
for �1 that is disjoint from C1 .

In particular, E�
1
\†��1 . Similarly, there is a bridge disk E2 for some strand �2

below † so that E2 \† � �2 . This pair of disks allows us to push the maximum
of �1 below the minimum of �2 , thus decreasing the width of K . Therefore, bridge
position of K is not thin position.

We will rely heavily on the terminology introduced in Section 3 and illustrated in
Figure 3. In addition, we need the following definition first introduced in [1].

Geometry & Topology, Volume 17 (2013)



138 Ryan Blair and Maggy Tomova

Definition 10.2 Let S be a 2–sphere embedded in S3 so that S meets K transversely
in exactly 4 points. S is worm-like if, for every saddle � D s�

1
_ s�

2
, each of s�

1
and

s�
2

cuts S into two twice punctured disks and every saddle in S is nested with respect
to the same side of S .

Theorem 10.3 [1, Theorem A] If S is a c–incompressible 4–punctured sphere and
bridge position for K is thin position, then there is an isotopy of S and K resulting in
hjK having b.K/ maxima and S being worm-like.

Theorem 10.4 Suppose S is a c–incompressible 4–punctured sphere in S3 bounding
3–balls B1 and B2 on opposite sides. Additionally, suppose bridge position for K is
thin position. Then, up to relabeling B1 and B2 , there is a minimal bridge sphere, †,
such B1\† is a collection of punctured disks and S �† is a collection of annuli and
2–punctured disks.

Proof By Theorem 10.3, we can assume that S is worm-like and hjK has b.K/

maxima. In particular, we can assume that all saddles in S are nested with respect to
B1 . Let E1 and E2 be the unique outermost disks of S . By definition of worm-like,
E1 and E2 are 2–punctured disks. Since all saddles in S are nested with respect to B1 ,
the interior of A� is disjoint from S for every saddle � . In particular, A� is disjoint
from A� whenever � ¤ � . If E� has a unique maximum, we can horizontally shrink
and vertically lower A� so that, after this isotopy, A� is contained in an arbitrarily
small neighborhood of the level sphere containing � . If E� has a unique minimum,
we can horizontally shrink and vertically raise A� so that after this isotopy A� is
contained in an arbitrarily small neighborhood of the level sphere containing � . By
general position, we can assume that all saddles occur at distinct heights. Since A�
is disjoint from A� whenever � ¤ � and all saddles occur at distinct heights, we can
isotope S and K so that h.A� /\h.A� /D∅ whenever � ¤ � . This isotopy does not
change the number of critical points of hK , fixes the saddles of S and leaves invariant
the number of saddles of S .

Suppose that, after isotopying all the A� to occur at distinct heights, there exists an A�
with a unique minimum above an A� with a unique maximum. Each of D�

1
, D�

2
, D�

1
,

D�
2

meets K as otherwise S is compressible. Since each of E� and E� are disjoint
from K , A� contains a minimum of K and A� contains a maximum of K . Since A�
is contained completely above A� , there is a minimum of K above a maximum of K ,
a contradiction to the assumption that bridge position is thin position. Hence, we can
assume that all A� with unique maxima lie above all A� with unique minima.

Fix � and � as the two unique outermost saddles of S . Suppose E1DD� and suppose
E1 has a unique maximum. Let fx1;x2g DK\E1 such that h.x2/ < h.x1/.
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The following claim is very similar to the claim in the proof of Lemma 3.8.

Claim 1 After an isotopy that fixes S and preserves that number of maxima of hK ,
we can assume that hK\B� has a local maximum at x1 .

Proof Suppose hK\B� has a local minimum at x1 . Let y be the maximum of K

that is nearest x1 and inside B� . Such a y must exist since K does not meet E1

above x1 . Let ˛ be the monotone subarc of K with boundary x1[y . The arc ˛ is
completely contained in B� . Let ˇ be a monotone arc in E1 with endpoints x1 and
z such that h.z/D h.y/. Let ı be a level arc disjoint from K and contained in B�
connecting x to y . Let E be a vertical disk with boundary ˛[ˇ[ı that is embedded
in B� . We can assume the interior of E meets K transversely in a collection of points
k1; : : : ; kn where h.k1/ > h.k2/ > � � �> h.kn/. Let �i be the arc corresponding to a
small neighborhood of ki in K for each i .

Replace �1 with a monotone arc which starts at an end point of �1 , runs parallel to
E until it nearly reaches E1 , travels along E1 until it returns to the other side of E ,
travels parallel to E (now on the opposite side) and connects to the other end point of
�1 . The result is isotopic to K , does not change the number of maxima of hjK and
reduces n. By induction on n, we may assume that K\E D∅. Isotope ˛ along E

until it lies just outside of E1 except where it intersects E1 exactly at the point y .
After a small tilt of K , we see that x1 is now a local maximum of hK\B� .

By a symmetric argument, we conclude that if E1 has a unique minimum and
fx1;x2g D K \ E1 such that h.x2/ < h.x1/, then, after an isotopy that fixes S

and preserves the number of maxima of hK , we can assume that hK\B� has a local
minimum at x2 .

Suppose E1 has a unique maximum, fx1;x2g D K \E1 such that h.x2/ < h.x1/

and there exists an A& such that A& has a unique minimum and h.&/ > h.x2/. If x2

is a maximum of hB�\K then � is a removable saddle. By [1, Lemma 3.5], we can
eliminate � while preserving the number of maxima of hK . Hence, we can assume
x2 is a minimum of hB�\K . Since x2 is a minimum of hB�\K , then either there is a
maximum of K inside B� or x1 is connected to x2 via a monotone subarc of K . In
the later case, examine a level disk in B� with boundary in E1 such that this disk is
just below x2 . If K meets this disk, then there is a maximum of K in B� . If K does
not meet this disk then S is compressible, a contradiction. Hence, we can assume that
there is a maximum of K in B� . As previously noted, A& contains a minimum of K .

Since x1 is a local maximum of hB�\K , we can horizontally shrink and vertically
lower the portion of B� above x2 to within an arbitrarily small neighborhood of the
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level sphere containing x2 . Similarly, we can horizontally shrink and vertically raise
A& to within an arbitrarily small neighborhood of the level sphere containing & . These
isotopies do not change the number of critical points of hK , however they do raise a
minimum above a maximum, a contradiction to the assumption that bridge position
coincides with thin position.

By a similar argument, we can eliminate the following possibilities.

(1) E1 has a unique minimum, fx1;x2g DK \E1 such that h.x2/ < h.x1/ and
there exists an A� such that A� has a unique maximum and h.�/ < h.x1/.

(2) E2 has a unique maximum, fx1;x2g DK\E2 such that h.x2/ < h.x1/ and
there exists an A& such that A& has a unique minimum and h.&/ > h.x2/.

(3) E2 has a unique minimum, fx1;x2g DK \E2 such that h.x2/ < h.x1/ and
there exists an A� such that A� has a unique maximum and h.�/ < h.x1/.

(4) E1 has a unique minimum where fx1;x2g DK\E1 such that h.x2/ < h.x1/

and E2 has a unique maximum where fy1;y2gDK\E2 such that h.y2/<h.y1/

and h.x1/ > h.y2/.

Suppose E1 has a unique minimum where fx1;x2gDK\E1 such that h.x2/<h.x1/

and E2 has a unique maximum where fy1;y2g DK\E2 such that h.y2/ < h.y1/.
Let f�1; : : : ; �kg be the set of all saddles such that A�i

contains a unique maximum
and f&1; : : : ; &sg be the set of all saddle such that A&i

contains a unique minimum. By
the above eliminations, min.h.y2/; h.�1/; : : : ; h.�k//>max.h.x1/; h.&1/; : : : ; h.&s//

and any level sphere with height strictly between these two values is a bridge sphere
satisfying the conclusions of the theorem.

Suppose E1 has a unique maximum where fx1;x2gDK\E1 such that h.x2/<h.x1/

and E2 has a unique maximum where fy1;y2g DK\E2 such that h.y2/ < h.y1/.
Let f�1; : : : ; �kg be the set of all saddles such that A�i

contains a unique maximum
and f&1; : : : ; &sg be the set of all saddle such that A&i

contains a unique minimum. By
the above eliminations, min.h.y2/; h.x2/; h.�1/; : : : ; h.�k//>max.h.&1/; : : : ; h.&s//

and any level sphere with height strictly between these two values is a bridge sphere
satisfying the conclusions of the theorem. The case when both E1 and E2 have unique
minima follows similarly.

Remark 10.5 In addition, we have shown in the above proof that the number of
components in B1\† is one more than the number of saddles of S when S is taut.

Theorem 10.6 The bridge position and the thin position for K are distinct.
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Proof Assume, towards a contradiction, that bridge position and thin position for K

coincide. Recall that w.K/ � 134, so it is enough to show that the bridge number
of K is at least 9, or equivalently, that K intersects any bridge sphere in at least 18
points. Let † be a minimal bridge sphere for K and consider how S1 intersects †. By
Theorem 10.4, we may assume that one of the 3–balls that S1 bounds intersects † in a
collection of disks and S1�† is a collection of annuli and 2–punctured disks. Suppose
the number of intersection curves jS1\†j is minimal subject to these constraints. Let
c1; : : : ; cn be the curves of S1\† and let D1; : : : ;Dn be the disjoint disks c1; : : : ; cn

bound in †. As S1 is c–incompressible each Di has at least 2 punctures.

Case 1 n� 2.

Claim 1 Either †�
S
fDig is c–compressible both above and below or bridge position

for K is not thin position.

Proof The bridge sphere † separates S3 into two 3–balls H1 and H2 . The pla-
nar surface S1 \H1 consists of a, possibly empty, collection of c–incompressible
annuli, A1 , . . . ,An and a, possibly empty, collection of at most two c–incompressible
2–punctured disks E1 and E2 . We will use the convention that @E1 D @D1 and
@E2 D @Dn . Since n� 2, S1\Hi consists of at least one c–incompressible annulus
or S1\Hi DE1[E2 . Since every properly embedded meridional surface in H1�K

with nonempty boundary is boundary compressible in H1�K , we can choose F to
be a boundary compressing disk for S1\H1 in H1 . In particular, we can assume that
F \S1 is a single essential arc, ˛ , in S1\H1 . Let @F D ˛[ˇ where ˇ is contained
in †. In particular, ˇ is disjoint from S1 except in its boundary. If ˛ is contained in
some Ai and ˇ is contained in †�

S
fDig, then boundary compressing Ai along F

produces a compressing disk for †�
S
fDig above †. If ˛ is contained in some Ai

and ˇ is contained in some Di , then ˛ is not essential in Ai , a contradiction. If ˛ is
contained in some Ei and ˇ is contained in †�

S
fDig, then boundary compressing

Ei along F produces a cut-disk for †�
S
fDig above †. If ˛ is contained in some Ei

and ˇ is contained in †�
S
fDig, then boundary compressing Ei along F produces

a cut-disk for D1 or Dn above †. We can conclude that one of †�
S
fDig, D1

or Dn is c–compressible above. Similarly, we conclude one of †�
S
fDig, D1 or

Dn is c–compressible below. In particular, if D1 is c–compressible above we can
always find a c–disk below † that is disjoint from D1 since n � 2. By examining
all remaining possibilities for c–disks above and below † and noting that D1 and
Dn are distinct, we concluded that either †�

S
fDig is c–compressible both above

and below or † has c–disks that satisfy the hypotheses of Lemma 10.1. Hence, either
†�

S
fDig is c–compressible both above and below or bridge position of K is not

thin position.
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Suppose some Dj is c–compressible. As S1 is c–incompressible, we may assume
that the c–disk is disjoint from it. By taking an innermost curve of intersection of
this c–disk with all other disks Di , we can find a disk Dk that is c–compressible
in the complement of the others. Let � be this c–disk. Without loss of generality,
assume � is above †. By Claim 1, either †�

S
fDig is c–compressible both above

and below or bridge position of K is not thin position. However, we have assumed
that bridge position coincides with thin position, so we may assume †�

S
fDig is

c–compressible both above and below. Therefore, � and a c–disk for †�
S
fDig

below † give a pair of c–disks for † on opposite sides with disjoint boundaries. By
Lemma 10.1, bridge position and thin position for K are distinct, a contradiction.

By the previous argument, we may assume all Di are c–incompressible. If B1 is
contained on the same side of S1 as the Di , then each Di must have at least 20
punctures, by Theorem 4.3. It follows that † has at least 40 punctures so the bridge
number of K is at least 20.

It remains to consider the case when all Di are c–incompressible and are contained
in S3 �B1 . As S2 is essential, it must intersect † and, therefore, it must intersect
some Di , say D1 . Since S2 is c–incompressible, then, after isotoping jS2\D1j to
be minimal, an innermost curve of S2\D1 in D1 must bound a subdisk �1 of D1

containing at least 2 punctures. This subdisk must be c–incompressible as a c–disk
for it would be a c–disk for D1 . If �1 is contained in B2 , it must have at least 20
punctures, by Theorem 4.3, so † has at least 22 punctures and the bridge number of K

is at least 11. We conclude that either bridge and thin position for K do not coincide or
all innermost curves of D1\S2 bound disks in D1 that have at least 2 punctures and
are outside of B2 . If there are at least 8 such innermost curves, then D1 has at least
16 punctures. As each of D2; : : : ;Dn has at least 2 punctures and n � 2, it follows
that † has at least 18 punctures as desired. If there are fewer than 8 innermost curves,
then a second innermost curve cobounds with some of the innermost curves a planar
surface F � B2\D1 with at most 8 boundary components. A c–disk for F would
also be a c–disk for D1 so F is c–incompressible. Let b be the number of boundary
components of F and p be the number of points of intersection between F and K . By
Theorem 4.3, it follows that 2�b�pD�.F /��23. However, D1 meets K in at least
2.b� 1/ points outside of F . Therefore, D1 has at least 25� bC 2.b� 1/D 23C b

punctures. Since b � 2 and n � 2, we conclude that † has at least 27 punctures in
total and the bridge number of K is at least 14.

Case 2 nD 1.

Claim 2 If nD 1, there is an isotopy taking S1 to a level sphere and adding at most
one additional maximum to hK .
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Proof Since nD 1, S1 is a standard round 2–sphere with no saddles, by Remark 10.5.
Label each point of fx1;x2;x3;x4g DK\S1 with an m if it is a local minimum of
hK\B1

and label it with an M if it is a local maximum of hK\B1
. If all points of

K\S1 receive a common label, then S1 is isotopic to a level sphere via an isotopy
that preserves the number of maxima of hK , as in Figure 20.

S1

S1

�!

Figure 20

Order the points in K \ S1 in terms of increasing height so that h.x1/ < h.x2/ <

h.x3/ < h.x4/.

By Claim 1 of Theorem 10.4, there is an isotopy of K fixing S1 and the number of
maxima of hK so that after this isotopy x4 receives a label of M . By a symmetric
argument, we can assume that x1 receives the label m.

S1 S1

�!

Figure 21

Suppose x2 is labeled m. Poke a neighborhood of x4 in S1 along K toward and just
past the nearest maximum of K causing the highest point of K\S1 to now be labeled
m. See Figure 21. After this isotopy, S1 contains a single inessential saddle which
can be removed as in the proof of Lemma 3.4. If x3 is labeled m, then S1 is isotopic
to a level sphere via an isotopy that preserves the number of maxima of hK , as in
Figure 20. If x3 is labeled M , then we can preform an isotopy of K supported in a
neighborhood of x3 that introduces exactly 1 additional maximum to hK and results
in x3 receiving a label of m. Now that all points in K\S1 receive the same label, S1

is isotopic to a level sphere via an isotopy that preserves the number of maxima of hK ,
as in Figure 20. By a symmetric argument, if x2 receives a label of M , then there is
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an isotopy taking S1 to a level sphere and adding at most one additional maximum to
hK .

Use Claim 2 to isotope S1 to be level at the cost of introducing at most one additional
maximum to hK . Without loss of generality, suppose B1 is contained below S1 and
the complement of B1 is contained above S1 . By Property 9.8, the tangle below S1

has at least 7 minima and, therefore, at least 5 maxima. By Property 8.4, the tangle
above S1 has at least 5 maxima and, therefore, in this position K has at least 10
maxima. As at most one maximum was added, K has bridge number at least 9.

11 Some useful lemmas

Recall that K0 denotes an embedding of K that minimizes width. In this section, we
establish additional restrictions on thin and thick spheres for K0 .

Lemma 11.1 If G is an essential, 6–punctured, thin sphere for K0 , then there are
thick spheres of width 10 below and above G . These spheres are not necessarily
adjacent to G .

Proof We will show that there is a thick sphere of width 10 above G . If there is
a thin sphere of width 8 or more above G , the result is clear, so suppose all thin
spheres above G , if there are any, have width 4 or 6. Let P be the highest thin
sphere above G , possibly P D G . If w.P /D 4, then P must be one of S1 , S2 or
S3 , by Corollary 9.7 and Proposition 9.9. The result then follows by Property 8.4,
Property 8.10 or Property 9.8. If w.P /D 6, by Theorem 2.3, P is incompressible and,
by Corollary 3.11, P is c–incompressible above. Therefore, by Proposition 9.10, P is
cut-compressible below. Again by Proposition 9.10, it follows that both B1 and B2

are disjoint from and below P . In this case, the thick sphere above P has width at
least 10 by Property 8.8.

Lemma 11.2 Suppose that P and P 0 are two adjacent thin spheres for K0 so that
4 � w.P /, w.P 0/ � 10. Suppose Dc is a c–disk for P lying between them so that
@Dc bounds a three or four punctured disk � in P . Then the sphere F DDc [� is
essential. Furthermore, if † is the thick sphere between P and P 0 and F does not
separate P and P 0 then:

(1) If w.P /� 6 and w.P 0/� 6, then w.†/� 14.

(2) If w.P /� 6 and w.P 0/D 4, then w.†/� 12.

(3) If w.P /D 8 and w.P 0/D 4 and Dc is a compressing disk, then w.†/� 14.
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Proof Suppose P and P 0 are two adjacent thin spheres for K0 and Dc is a c–disk
for P lying between them so that @Dc bounds a three or four punctured disk � in P .
Consider the four punctured sphere F D�[Dc and suppose F has a compressing
disk E . By using an outermost arc argument, we may assume that @E ��. As F has
only 4 punctures, @E bounds a twice punctured disk ı ��. Then ı[E is a twice
punctured sphere. As K is prime, the strand of the knot with both endpoints in ı can
be isotoped to lie in ı . It follows that this strand can be isotoped to lie just past the
thin sphere P . This isotopy either eliminates a maximum and an adjacent minimum or
slides a maximum below a minimum thus decreasing w.K0/. As K0 is in thin position,
this is a contradiction.

By Theorem 3.9, we may assume that Dc is vertical. Let B be the ball bounded
by F that is disjoint from P 0 and let E D B \†. By Lemma 4.1 E together with
the possibly once punctured disk @E bounds in Dc is a bridge sphere for the tangle
K0\B . As F is an incompressible 4–punctured sphere, it must be parallel to one of
S1;S2 or S3 . By one of Property 8.4, Property 8.10 or Property 9.8, the width of any
bridge sphere for K0\B is at least 10 and, therefore, E has at least 9 punctures. In
addition, let �1; : : : �n be the strands of K between P and P 0 that are disjoint from B .
Then j†\�i j � 1 if �i has one of its endpoints in P and one in P 0 and j†\�i j � 2 if
�i has both of its endpoints on the same sphere. It is easy to check that the conclusions
of the lemma are satisfied in all three cases, see Figure 22.

P P P

P 0 P 0 P 0

Figure 22

Remark 11.3 Note that if P is a six-punctured sphere with a cut-disk disjoint from
all other thin spheres or if P is an eight-punctured sphere with a compressing disk
disjoint from all other thin spheres, then we can always choose � so that the sphere F

which is the union of the c–disk and � is 4–punctured and does not separate P and
its adjacent thin sphere.

Lemma 11.4 Suppose P and P 0 are two adjacent thin spheres for K0 with P 0 above
P and P is incompressible but has a cut-disk Dc above it and disjoint from P 0 .
Suppose furthermore that @Dc bounds a 5–punctured disk in P and the 6–punctured
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sphere G which is the union of Dc and this disk does not separate P and P 0 . Then
the thick sphere † between P and P 0 has width at least w.P /C 4.

In the special case where G D S1 ]˛ S2 , ˛ is a strand that intersects BT and B1 is not
contained between P and P 0 , then † has at least w.P /C 8 punctures.

Proof Let BG be the ball bounded by G and disjoint from P and let T DK0\BG .
By Theorem 3.9, we may assume that G\†Dˇ , where< ˇ is a single essential simple
closed curve in †. By Lemma 4.1, the sphere R obtained by cut-compressing † along
the cut-disk that ˇ bounds in Dc is a bridge sphere for T . A compressing disk for G

would result in a compressing disk for P , so we conclude that G is incompressible
and, therefore, it is one of the spheres in Proposition 9.10. In particular either B1 and
B2 are contained in BG or they are both disjoint from it.

There are two cases to consider. If B1 and B2 are disjoint from BG , then by
Property 8.8 it follows that R has at least 10 punctures. If B1 and B2 are contained in
BG , we can apply Theorem 4.2 with N DBG with the bridge sphere R and M DB1

with the bridge sphere †1 . It again follows that R has at least 10 punctures.

As each strand that has an endpoint in P 0 must intersect † at least once, it follows
that j†\Kj � jR\Kj � 1CjP \Kj � 5� w.P /C 4 as desired.

If G D S1 ]˛ S2 and B1 is not contained between P and P 0 , then, by Property 8.8,
jR\Kj � 13, so j†\Kj � jR\Kj � 1CjP \Kj � 5� w.P /C 8.

12 w.K# trefoil/ D w.K /

In this section, we show that the width of K is 134. This completes the proof that
w.K # trefoil/Dw.K/ < w.K/Cw.trefoil/� 2. Let K0 be a knot isotopic to K that
is in thin position. The argument is separated into two parts depending on whether the
minimal width thin sphere for K0 is cut-compressible or not.

Theorem 12.1 If a thinnest thin sphere for K0 is cut-compressible, then w.K0/� 138.

Proof As all essential 4–punctured spheres in the complement of K are c–incom-
pressible, it follows that the thin sphere of lowest width has at least 6 punctures. In
particular, if P is a thin sphere for K0 , w.P /� 6.

Case A Suppose first that K0 has a compressible thin sphere.

Claim There exist adjacent thin spheres P and P 0 so that P has a compressing disk
on the same side as P 0 but disjoint from it.
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Proof Let P 00 be a compressible thin sphere for K0 with compressing disk D0 .
Consider the intersection of D0 with the collection of all thin spheres for K0 . Assume
that D0 has been isotoped so this intersection is minimal. In particular, every curve
of intersection is essential in the corresponding thin sphere. Let � be an innermost
curve of intersection in D0 . Let P be the thin sphere containing � . Then P has a
compressing disk D �D0 disjoint from all other thin spheres. By Corollary 3.11, there
are other thin spheres on the same side of P as D . In particular, we can choose P 0 to
be such a sphere so that P and P 0 are adjacent thin spheres.

Let P and P 0 be the two spheres guaranteed by the claim. Without loss of generality,
assume P is below P 0 . By Theorem 2.3, it follows that w.P / � 10. If w.P / � 12,
then, by Lemma 2.1, w.K0/ � 1

2
.142 C 142 C 82 � 122 � 62/ D 138, so suppose

w.P / D 10. By Corollary 2.7, compressing P along D yields a copy of P 0 . As
w.P 0/� 6 and K is prime, it follows that w.P 0/D 6 and @D bounds a 4–punctured
disk ��P so that D[� is a sphere that does not separate P and P 0 . By Lemma 11.2
part (1), the thick sphere between P and P 0 has width at least 14. By Lemma 11.1,
there is a thick sphere of width at least 10 above P 0 and one of width at least 12 below
P . It follows that w.K0/� 152.

Case B All thin spheres for K0 are incompressible.

Let P be a thinnest thin sphere for K0 and suppose it is cut-compressible above.
By Corollary 3.11, K0 must have at least one other thin sphere, P 0 , above P . If
w.P 0/� 12, then, by Lemma 2.1, w.K0/� 1

2
.142C 142C 82� 122� 62/D 138, so

suppose every thin sphere for K0 has width at most 10.

Let Dc be the cut-disk for P . By taking an innermost curve of intersection of Dc

with the union of all other thin spheres for K0 , we can find a thin sphere that has a
cut-disk which is disjoint from all other thin spheres. Let P 0 be the thin sphere of
lowest width amongst all thin spheres for K0 that has this property and let D0c be
its cut-disk. Without loss of generality, we will assume D0c is above P 0 . Let P 00

be the thin sphere adjacent to P 0 above it. By Corollary 3.11, this sphere exists and
w.P 00/ < w.P 0/.

Case 1 w.P 0/ D 6. In this case, w.P 00/ � 4, by Corollary 3.11. Hence, this case
does not satisfy the hypotheses of the theorem at hand.

Case 2 w.P 0/D 8. By Corollary 2.7, cut-compressing P 0 along D0c yields a copy
of P 00 . As w.P 00/ in this case must be 6, it follows that @D0c bounds a three punctured
disk in P 0 so that the union of D0c and this disk is a sphere that does not separate P 0

and P 00 . By Lemma 11.2 part (1), the thick sphere between P 0 and P 00 has width at
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least 14. By Lemma 11.1, there is a thick sphere of width at least 10 above P 00 and so
w.K0/� 148.

Case 3 w.P 0/D 10. There are three subcases to consider:

Case 3a Suppose that @D0c bounds a three punctured disk in P 0 so that the union of
D0c and this disk is a sphere that does not separate P 0 and P 00 . By Lemma 11.2 part
(1), the thick sphere between P 0 and P 00 has width at least 14. If w.P 00/D 6, then, by
Lemma 11.1, there is a thick sphere of width at least 10 above it and so w.K0/� 152.
If w.P 00/D 8, then w.K0/� 138.

Case 3b Suppose that @D0c bounds two five-punctured disks in P 0 . As compressing
P 0 along D0c yields a copy of P 00 , w.P 00/ D 6. By Lemma 11.4, the thick sphere
between P 0 and P 00 has width at least 14. By Lemma 11.1, the thick sphere above P 00

has width at least 10. It follows that w.K0/� 152.

Case 3c Suppose that @D0c bounds a seven-punctured disk in P 0 so that the union
of D0c and this disk is a sphere that does not separate P 0 and P 00 . By Theorem 3.9,
we may assume that D0c is vertical. By Corollary 2.7, cut-compressing P 0 along D0c

gives a copy of P 00 . Hence, w.P 00/D 4, contradicting the assumption.

Theorem 12.2 If the thinnest thin sphere for K is cut-incompressible, then w.K0/�
134. Moreover, if w.K0/D 134, any thin position for K0 has exactly three thick levels
of width 10 and exactly two thin levels of width 4.

Proof Let P be the thinnest thin sphere for K0 and note that, by Theorem 2.2, P

is incompressible. As P is cut-incompressible, by Proposition 9.9, P either has 4
punctures or at least 14 punctures. In the second case, w.K0/� 158 so we may assume
that P is one of S1 , S2 or S3 .

Case 1 K0 has exactly one thin sphere, P .

Suppose P is isotopic to S1 and, without loss of generality, suppose that B1 is below
it. By Property 8.4, the thick sphere below P has width at least 10 and, by Property 9.8,
the thick sphere above it has width at least 14. It follows that w.K0/� 140. Similarly,
the same width bound follows if P is isotopic to S2 .

Suppose then that P is isotopic to S3 . By Property 8.10, the thick surfaces above and
below P have width at least 12. In this case, w.K0/� 136 as desired.

Case 2 Neither S1 nor S2 is a thin sphere and there are at least 2 thin spheres.

In this case, we may assume P D S3 and any other thin spheres have width at least
6 and, therefore, are c–compressible. The sphere S3 splits K into two tangles, Ta

Geometry & Topology, Volume 17 (2013)



Width is not additive 149

and Tb , lying above and below S3 respectively. Let w.Ta/ (respectively w.Tb/) be
the sum of the widths of all level spheres lying above (respectively below) S3 . Thus
w.K0/D w.Ta/Cw.Tb/C 4.

By hypothesis, there is at least one other thin sphere say above P . Since all thin
spheres other than P are c–compressible, let D0a be c–disk for some thin sphere
above P . As P is c–incompressible, D0a\P D∅. By taking an innermost curve of
intersection of D0a with the collection of all other thin spheres for K0 , we can find a
cut or compressing disk Da for some thin sphere Pa above P that is disjoint from all
other thin spheres for K0 . In addition, we can assume that either Da is a compressing
disk or Pa is incompressible. Let Ta be the thick sphere that intersects Da .

If w.Pa/� 10, then direct computation shows that w.Ta/� 88.

If w.Pa/D 8, and Da is a compressing disk, then, by Lemma 11.2, w.Ta/� 12 so
w.Ta/� 84.

If w.Pa/D8, and Da is a cut-disk (in particular as noted above this allows us to assume
Pa is incompressible) then either by Lemma 11.2 or by Lemma 11.4, w.Ta/� 12 so
again w.Ta/� 84.

If w.Pa/D 6, then, by Lemma 11.2 part (2), the thick sphere Ta that intersects Da

has width at least 12. In this case, w.Ta/� 80.

We can apply all of the above arguments also to Tb but in addition we must consider
the case when Tb doesn’t have any thin spheres. In that case by Property 8.10, the
thick surface below P has width at least 12 so w.Tb/� 66.

Therefore in this case w.K0/D w.Ta/Cw.Tb/C 4� 80C 66C 4D 150.

Case 3 Exactly one of S1 or S2 is a thin sphere and there are at least two thin spheres.

Without loss of generality, we may assume that P D S1 is a thin sphere and B1 is
below P .

Claim 1 There is a thick sphere of width at least 10 below P .

Proof If there aren’t any thin spheres below P , there is a thick sphere of width at
least 10, by Property 8.4. If there is a thin sphere of width 8 or more, the result follows
immediately. Suppose all thin spheres below P have width at most 6. However, all
such spheres are incompressible, by Theorem 2.3, and there are no such spheres in B1 ,
by Proposition 9.1.

Claim 2 If there is a compressible thin sphere P 0 above P and w.P 0/ � 8, then
w.K0/� 154.
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Proof Suppose that K0 has a thin sphere P 0 that is compressible. By Theorem 2.3, we
may assume that w.P 0/D 8. Let D be its compressing disk. Then D is disjoint from
all thin spheres of width less than 8 as all such spheres are incompressible. Therefore,
by taking the intersection of D with all thin spheres for K0 and rechoosing P 0 we may
assume that D is disjoint from all other thin spheres. If this new P 0 has the property
that w.P 0/� 10, then there are two distinct thin spheres above P and w.K0/� 154.
Hence, we can assume that w.P 0/D 8 and D is a compressing disk for P 0 contained
between consecutive thin spheres P 0 and P 00 . If @D bounds a 2–punctured disk in P 0 ,
then this disk together with D cobound a 3–ball containing an unknotted arc. Such a
3–ball gives rise to an isotopy that thins K0 . Hence, we can assume that @D bounds a
4–punctured disk to each side in P 0 . By Corollary 2.7, compressing P 0 along D gives
rise to a copy of P 00 . Since @D bounds 4–punctured disks to each side in P 0 , then
P 00 is a 4–punctured sphere. By Lemma 11.2 part (3), the thick sphere intersecting D

has width at least 14. Then w.K0/� 158 as desired.

Subcase 3A Suppose first that K0 has no thin spheres above P . By Property 9.8,
there is thick sphere of width at least 14 above P . By hypothesis, there is a thin
sphere below P . By Proposition 9.1, this sphere cannot have width 4 or 6 as all such
spheres are incompressible. Therefore, the sphere must have width at least 8 and so
w.K0/� 158.

Subcase 3B Suppose that K0 has exactly one other thin sphere P 0 above P .

If w.P 0/D 4, then P 0 must be S3 . By Property 8.10, the thick surface above P 0 has
width at least 12. Consider the thick surface T between S1 and S3 . By Property 8.2,
w.T /� 8 and so w.K0/� 138.

Suppose then that w.P 0/� 6. By Claim 2, we may assume that P 0 is incompressible or
w.P 0/� 10. If w.P 0/� 10, then w.K0/� 136 as desired. If P 0 is c–incompressible,
then P 0 meets K in at least 14 points, by Proposition 9.9. Hence, we can assume that
P 0 is cut-compressible. The cut-disk for P 0 is disjoint from P and lies below P 0 , by
Corollary 3.11.

If w.P 0/ D 6, then the thick sphere between P and P 0 has width at least 12, by
Lemma 11.2 part (2). By Lemma 11.1, it follows that the thick sphere above P 0 has
width at least 10 and, therefore, w.K0/� 146.

Suppose then that w.P 0/D 8, then P 0 is incompressible, by Claim 2, and P 0 has a cut-
disk Dc , by Proposition 9.9. As P 0 is the only thin sphere above P , by Corollary 3.11,
Dc must be below it and, by Theorem 3.9, we can assume that Dc is vertical. By
Corollary 2.7, cut-compressing P 0 along Dc results in a copy of P and, therefore,
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@Dc bounds a 5–punctured disk � in P 0 so that the 6–punctured sphere G DDc[�

does not separate P and P 0 .

A compressing disk for G would result in a compressing disk for P 0 and w.K0/� 154,
by Claim 2. Hence, we may assume that G is incompressible and, therefore, it is one
of the spheres classified in Proposition 9.10. In particular, G does not separate B1

and B2 . Let BG be the ball bounded by G disjoint from P . As B1 is disjoint from
BG , so is B2 . Therefore, there are three possibilities to consider: B2 is below P 0 but
outside of BG , B2 is above P 0 or B2 intersects P 0 .

It is clear that B2 cannot be contained below P 0 and be disjoint from BG as that
would imply that the essential surface S2 is completely contained in the product region
between P and the 4–punctured sphere resulting from cut-compressing P 0 along Dc .

If B2 is completely contained above P 0 , then let † be the thick surface for K above
P 0 . By Theorem 4.2, it follows that either † has at least 26 punctures or † is isotopic
to †2 with possibly some tubes attached. If no tubes are attached, then † is parallel
to †2 and S2 is an essential sphere completely disjoint from the bridge sphere of the
tangle lying above P 0 , which is not possible. Therefore, at least one tube is attached.
We conclude that † has at least 12 punctures. By Lemma 11.4, the thick sphere below
P 0 also has width at least 12. Hence, w.K/� 154.

Suppose that B2 intersects P 0 . We have already assumed that P is isotopic to S1

and we have established that cut-compressing P 0 along Dc produces P and a incom-
pressible 6–punctured sphere, G . Since tubing along a strand of K is the inverse
operation to cut-compressing, P 0 is isotopic to G ]ˇ S1 . However, both S1 and G can
be isotoped to be disjoint from B2 . Hence, ˇ intersects B2 , as otherwise B2 could be
isotoped to be disjoint from P 0 .

There are several cases to consider.

If G D S1 ]� S3 or G D S2 ]� S3 , where � is the strand not passing through BT , then
G is compressible which is not possible.

Suppose GDS1] S3 , where  is a strand passing through BT ; see the first schematic
of Figure 23. Then P 0DG ]˛ S1 . The strand ˛ may contain � or it may not. In either
case, the tangle S above P 0 can be obtained from the tangle T 0 contained on one side
of S3 by replacing one of the strands with three parallel strands as in Figure 23. By
Property 8.10, every bridge surface for T 0 has at least 12 punctures. Since each of the
new strands must intersect the bridge surface in at least two points, the thick surface
above P 0 has at least 16 punctures. By Lemma 11.4, the thick sphere directly below
P 0 has at least 12 punctures, so w.K/� 210.
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G

S1

S3

P 0

S1

Figure 23

Suppose G D S1 ] S2 , where  is a strand passing through BT . In this case, by
Lemma 11.4, the thick sphere directly below P 0 has width at least 16, so w.K/� 188.

Suppose G D S1 ]� S2 , where � is the strand not passing through BT , ie G D S4 .
Then the tangle S above P 0 can be obtained from the tangle T2 by replacing one of
the strands with three parallel strands; see Figure 24. As any bridge surface for T2 has
at least 10 punctures, by Property 8.4, and each of the two additional strands has to
intersect the thick surface for S at least twice, it follows that the thick surface above
P 0 has at least 14 punctures. By Lemma 11.4, the thick sphere directly below P 0 also
has at least 12 punctures, so w.K/� 180.

Finally, suppose that G D S2 ] S3 , where  is a strand passing through BT , see
Figure 25. Let S be the 4 strand tangle above P 0 . By deleting two of the four strands
of S , we can obtain the tangle T2 . Therefore, by Property 8.4 the thick surface above
P 0 intersects two of the strands in S in at least 10 points and each of the other two
strands in at least 2 points each. Hence, this thick sphere meets K in at least 14 points.
As before, the thick sphere below P 0 has width at least 12, so w.K/� 180.

Subcase 3C Suppose that there are at least 2 thin spheres above P .

If at least one of these spheres has width at least 10, then w.K0/ � 146. Hence, we
may assume that all thin spheres above P have width at most 8. By Claim 2, we may
assume that all thin spheres for K0 above P are incompressible. If one of the thin
spheres above P is c–incompressible, then, by Proposition 9.9, that thin sphere is
isotopic to S2 or S3 , a contradiction to the assumption that S2 is not a thin sphere.
Hence, one of the thin spheres above P is cut-compressible. By taking the intersection
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S1

S4

P 0

Figure 24

G

S2

S3

S1

P 0

Figure 25

of such a cut-disk with the union of all thin spheres above P , we can find a cut-disk
Dc for some thin sphere P 0 that is disjoint from all other thin spheres. Let P 00 be
the thin sphere adjacent to P 0 on the same side of P 0 as Dc . This sphere exists, by
Corollary 3.11. If w.P 0/D 6, then, by Lemma 11.2 part (2), the thick sphere between
P 0 and P 00 has width at least 12. It follows that w.K0/� 142. If w.P 0/D 8, then, by
Lemma 11.2 or Lemma 11.4, the thick sphere between P 0 and P 00 has width at least
12 and, so w.K0/� 142.

Case 4 S1 and S2 are both thin spheres.
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By Claim 1 of Case 3, it follows that there are thick spheres of width at least 10 below
S1 and above S2 . If there is a thin sphere between S1 and S2 , it must either have
width 4 or it must have width at least 8 as all 6–punctured thin spheres do not separate
B1 from B2 . If there is a thin sphere of width 8, then w.K/� 152. Suppose there is
a thin sphere of width 4 between S1 and S2 . There can be only one such sphere and it
is necessarily S3 . Let Ta and Tb be the thick spheres directly above and below S3 .
Both of these thick spheres must have width at least 6. If w.Ta/D w.Tb/D 6, then
K has exactly one minimum and one maximum between S1 and S3 and similarly
between S3 and S2 . This implies that the tangle T between S1 and S3 has a bridge
sphere of width 8, contradicting Property 8.9. Therefore at least one of these spheres
has width at least 8. But in this case w.K/� 138 as desired.

Suppose that S1 and S2 are adjacent thin spheres. By Property 8.9, the width of the
thick sphere between them is at least 10 and so w.K0/� 134 as desired.

B1

B2

B3

B4

Figure 26

Proof of Theorem 1.1 Let K0˛ be any two-bridge knot and let K˛ be any of the knots
constructed in Section 7. By Theorems 12.1 and 12.2, it follows that w.K˛/D 134. It
is easy to see that the width of any two-bridge knot is eight. Figure 1 demonstrates
that w.K˛ # K0˛/ � w.K˛/ D 134. By [14], w.K˛ # K0˛/ � w.K˛/ and, therefore,
w.K˛ # K0˛/D w.K˛/.

Proof of Theorem 1.2 By Theorems 12.1 and 12.2, it follows that w.K˛/D 134 and
K˛ has a thin position with exactly three thick spheres of width 10 and exactly two
thin spheres of width 4. In this position, K˛ has 11 maxima. However, Figure 26
demonstrates that b.K0˛/� 10.
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