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Characteristic varieties of
quasi-projective manifolds and orbifolds
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The present paper considers the structure of the space of characters of quasi-projective
manifolds. Such a space is stratified by the cohomology support loci of rank one
local systems called characteristic varieties. The classical structure theorem of
characteristic varieties is due to Arapura and it exhibits the positive-dimensional
irreducible components as pull-backs obtained from morphisms onto complex curves.

In this paper a different approach is provided, using morphisms onto orbicurves, which
accounts also for zero-dimensional components and gives more precise information
on the positive-dimensional characteristic varieties. In the course of proving this
orbifold version of Arapura’s structure theorem, a gap in his proof is completed. As
an illustration of the benefits of the orbifold approach, new obstructions for a group
to be the fundamental group of a quasi-projective manifold are obtained.
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Introduction

The framework of this paper is the study of properties of fundamental groups of
complements of hypersurfaces in a projective space, or more generally, of smooth
quasi-projective varieties. The approach we take is a classical one, namely to relate
cohomological invariants of the variety (or its fundamental group) to its fibrations
over a smooth curve, sometimes referred to as pencils. This strong relationship has
a long history, going back to Castelnuovo and de Franchis; see Catanese [16]. The
cohomological invariants we consider are the jumping loci of twisted cohomology of
rank one local systems on the variety. The most general structure theorem for these
loci was discovered by Arapura, who described them in terms of fibrations over curves.

We propose here a different approach to obtain another structure theorem, where
the base curve of the fibration is viewed as an orbifold. The language of orbifolds
allows us to improve Arapura’s description, and also to extract finer quasi-projectivity
obstructions. Our main goal is to prove the following result.
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Theorem 1 Let X be a smooth quasi-projective variety and let †k.X / be the k th

characteristic variety of X . Let V be an irreducible component of †k.X /. Then one
of the two following statements holds.

(1) There exists an orbifold C' supported by a smooth algebraic curve C , a sur-
jective orbifold morphism f W X ! C' and an irreducible component W of
†k.�

orb
1
.C'// such that V D f �.W /.

If this is the case we say that V is of pencil type.

(2) V is an isolated torsion point not of pencil type.

The characteristic varieties of a space depend only on its fundamental group and can
be seen as a generalization of the Alexander polynomial. They can be defined in
terms of jumping loci of the cohomology of local systems. These invariants have
been extensively studied from different perspectives. They are closely related to the
Green–Lazarsfeld invariants [32] and to the Bieri–Neumann–Strebel invariants [9] of
groups and spaces.

In this context, the study of the geometry of smooth quasi-projective varieties in terms
of fibrations onto Riemann surfaces has proved to be very fruitful as its widespread use
shows; cf the following contributions by Siu [42], Serrano [39], Beauville [8], Catanese
[16], Simpson [40], Bauer [7], and Arapura [1].

This paper originated from our attempt to understand Arapura’s work. In [1] the
following result is stated in Theorem V.1.6.

Theorem (Arapura [1]) Let V be an irreducible component of †1.X /. We then
have:

(1) If dim V > 0, then there exists a surjective morphism f W X ! C onto a smooth
algebraic curve C , and a torsion character � such that V D �f �.H 1.C IC�//.

(2) If dim V D 0, then V is unitary.

This theorem is a consequence of Proposition V.1.4 from [1]. However, the proof of
this proposition given by Arapura is not complete. The key technical tool used there is
Timmerscheidt’s spectral sequence degeneracy result [43, Theorem 5.1] for unitary local
systems � on X . Note that the relevant E1 –terms are not associated with the divisor
D compactifying X D xX nD , but rather with the subdivisor D� of D consisting of
those components along which � has non-trivial monodromy. The starting assumption
of Arapura’s proof, that one can just deal with a local system having nontrivial local
monodromy about all components of the divisor D after replacing X by X � D xX nD� ,
cannot in fact be made. Indeed, as it can be seen in Example 1.9 below, the resulting
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local system may no longer be in †1.X
�/. Characters that do not ramify along all

components of D have been considered in the context of complements to projective
hypersurfaces (cf Artal, Carmona and Cogolludo [2]) and they seem to be essentially
different from those ramifying everywhere as can be seen in the Hodge-theoretical
characterization provided by Artal, Cogolludo and Libgober [4, Theorem 5.1] where a
character is not ramified everywhere iff it is of weight two. Different techniques than
those coming from cohomological properties of compact manifolds are hence required
in order to deal with this phenomenon.

Our first goal is to fill the gap in Arapura’s proof. This is done in Section 5 in the
language of orbifold morphisms. Proposition 4.2 ensures the validity of Arapura’s
statement in [1, Proposition V.1.4], and Theorem 5.1 is an extension of that statement to
non-torsion characters. We also point out that Theorem 1 works for any characteristic
variety and not only for †1 .

The second goal is to describe, in terms of orbifold morphisms, the translated com-
ponents appearing in Arapura’s work; see also [27] for another approach. Several
papers in this direction can be found in the literature. In particular, Theorem 1 can be
considered as the quasi-projective version of Delzant’s Theorem [24].

Orbifolds have also been used for the study of fundamental groups of smooth algebraic
varieties in recent works by Corlette and Simpson [22], and Campana [13; 15]. In [24]
Delzant proved the exact compact Kähler manifold analogue of Theorem 1, which was
extended to compact Kähler orbifolds in [14].

The third goal is to rule out the existence of non-torsion isolated unitary points in
the characteristic varieties of quasi-projective manifolds. In the compact projective
(resp. Kähler) case this was known from Simpson [41] (resp. Campana [12]). In the
non-compact case it was proved by Libgober [37] for quasi-projective manifolds X

with b1. xX /D 0. Dimca in [27] pointed out that this fact may be deduced from Budur’s
work [11] for general quasi-projective varieties. This can be done with a considerable
amount of work; however, we present here a more direct proof of this fact.

The fourth and final goal is to derive properties of the fundamental groups of quasi-
projective varieties from Theorem 1, which can be used as effective quasi-projectivity
obstructions. As an example, we present here one of the more striking consequences
of Theorem 1.

Proposition 6.9 Let G be a quasi-projective group, and let V1 and V2 be two distinct
irreducible components of †k.G/, resp. †`.G/. If � 2 V1 \ V2 is a torsion point,
then � 2†kC`.G/.
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This result was used by the authors in [5] to rule out certain families of groups as
fundamental groups of quasi-projective manifolds. We collect other properties in
Propositions 6.5 and 6.7. In this way, we recover and extend some of the properties
found by Dimca [27; 26; 25], Dimca and Maxim [28], and Dimca, Papadima and Suciu
[30; 29] using Arapura’s Theorem.

This paper was originally planned with another goal in mind: to prove that only
components of pencil type in Theorem 1 could exist. This was in part justified by the
heuristic fact that, in all the computed examples, only irreducible components of pencil
type were found (even the isolated points). One can also give results in this direction
in the rational surface case, where characters of orders 2, 3, 4 and 6 are of pencil type
for divisors with rational singularities (see [4], Cogolludo and Libgober [19]).

However, the first two authors have recently found an example (see [3]) of a quasi-
projective surface whose isolated points of †1 are not of pencil type (Theorem 1).

The paper is organized as follows. In Section 1 notation for quasi-projective varieties
is set and some of their properties are discussed. The concept of characteristic variety
is introduced in terms of Betti numbers of the 1–cohomology with values in local
systems of coefficients. Some ways to compute this cohomology are sketched and
applied in Section 2 to compute characteristic varieties of orbifolds; these computations
are probably known by specialists but they do not appear explicitly in the literature.
For quasi-projective varieties, the main tool for computation comes from Deligne’s
work [23], which is recalled in Section 3. Also in this section, some technical results
are proved. They are mainly contained, one way or another, in the work of Arapura [1],
Timmerscheidt [43], and Beauville [8]. The purpose of this is two-fold: on one hand to
strengthen the use of the unitary-holomorphic decompositions of a character [1; 8];
on the other hand to prepare the ground for a more precise analysis of the Deligne
decomposition of the 1–cohomology for local systems of coefficients, which will be
considered in Section 5. In Section 4 the Deligne decomposition into holomorphic and
anti-holomorphic parts is analyzed for Riemann surfaces as a main ingredient for the
general decomposition. In Section 5 this analysis is carried over to higher-dimensional
varieties. The main results are stated and proved in Section 5. The key ingredient is
Theorem 5.1, which allows us to prove Theorem 1 for †k for any k , since it states
that any element of the twisted cohomology for a quasi-projective group (as long as
the character is not of torsion type) is obtained as the pull-back of an element of the
twisted cohomology of the orbifold. The strategy to prove Theorem 5.1 is to reduce
it to the holomorphically pure cohomology classes. To that end, we first investigate
in Proposition 4.2 the relation between the anti-holomorphic parts associated with
a character and to its conjugate character. Proposition 5.3 is a generalization of [1,
Proposition V.1.3] to the orbifold case. The results of Section 3 are then used to apply
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Arapura’s method to characters which are non-torsion, not just non-unitary. These
improvements allow us to deal with any non-torsion unitary characters using Delzant’s
approach. The proof of Proposition 5.6 uses Levitt’s interpretation [35] of exceptional
classes and Simpson’s main result in [40] can be applied. A more direct approach using
Delzant’s way could be done if the result in [40] were generalized to the quasi-projective
case. In Section 6, some improvements of the main theorem are discussed for torsion
characters. They are not included in the main theorem because the hypotheses are
rather technical. This section also includes a number of applications which follow from
Theorem 1 and Section 5. Finally, some examples illustrating the properties are shown
in Section 7. More examples, applying these techniques, can also be found in [5].
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1 Preliminaries

Let X be a smooth quasi-projective variety. Using standard Lefschetz–Zariski theory
(see Hamm [33]), since the invariants we are interested in only depend on G WD�1.X /,
X will be assumed to be either a complex curve (a Riemann surface) or a complex
surface. In any case there exists a smooth compact complex surface (or complex curve)
xX such that X D xX nD , where D is a normal crossing divisor. If necessary, additional

blow-ups might be performed in order to obtain a more suitable xX , which will be clear
from the context.

Characteristic varieties are invariants of finitely presented groups G , and they can be
computed using any connected topological space X (having the homotopy type of
a finite CW–complex) such that G D �1.X;x0/, x0 2 X as follows. Let us denote
H WDH1.X IZ/DG=G0 . Note that the space of characters on G is a complex torus

(1-1) TG WD Hom.G;C�/D Hom.H;C�/DH 1.X IC�/:

Given � 2TG , the following local system C� of coefficients over X can be constructed.
Let �abW zXab!X be the universal Abelian covering of X . The group H acts freely
(on the right) on zXab by the deck transformations of the covering. The local system of
coefficients C� is defined as the locally constant sheaf associated with

�� W zXab �H C!X where zXab �H C WD
�
zXab �C

�ı
.x; t/� .xh; �.h�1/t/:
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Definition 1.1 The k th characteristic variety of G is the subvariety of TG defined by

†k.G/ WD f� 2 TG j dim H 1.X;C�/� kg;

where H 1.X;C�/ is classically called the twisted cohomology of X with coefficients
in the local system � 2 TG .

It is also customary to use †k.X / for †k.G/ whenever �1.X /DG .

1.2 Topological construction of H 1.X IC�/ By duality, we will concentrate our
attention on describing the simpler object H1.X IC�/. Let us suppose that X is a finite
CW–complex. Then, zXab also inherits a CW–complex structure. Since H is the group
of automorphisms of �ab , H acts freely on the set of cells of zX , and thus the chain
complex C�. zXabIC/ becomes a free ƒ–module of finite rank, where ƒ WDCŒH � is
the group algebra of H . Given a character � 2 TG , C acquires a ƒ–module structure
denoted C� (obtained by the evaluation of � on the elements of H ). The twisted
chain complex C�.X IC/� WD C�. zXabIC/˝ƒ C� is, as a vector space, isomorphic
to the finite-dimensional complex space C�.X IC/ with twisted differential. This
construction implies that the †k.G/ are algebraic subvarieties of TG defined over Q.

Moreover,

†k.G/ n 1D Chark.H
1. zXab// n 1D CharkC1. zH

1. zXab// n 1

(cf Cogolludo [18, Section 1.2] or Hironaka [34]), where, if M is a finitely generated
ƒ–module then Chark.M / is the algebraic variety associated with the annihilator of
the module

Vk
M . Finally, a presentation matrix for the module zH 1.C�.X IC/�/ is

given by evaluation of the Fox matrix of G via the character � . This matrix is obtained
using Fox calculus [31] and it will be extensively used in Section 2.

Example 1.3 Let G WD hx1; : : : ;xn jR1; : : : ;Rsi be a presentation of G and let K

be the CW–complex associated with the presentation. This CW–complex has one
0–cell, say P , n 1–cells denoted by x1; : : : ;xn such that the 1–skeleton is a wedge
of n circles, and s 2–cells R1; : : : ;Rs such that their attachments to the 1–skeleton
are determined by the corresponding words. Let �W G!C� be a character and let us
denote ti WD �.xi/. Then the twisted differential of the complex C�.KIC/� is defined
as follows:

� @1.xi/D .ti � 1/P

� The map @2 is determined by a map ' defined on the free group in x1; : : : ;xn ,
which is defined inductively:
– The image of the empty word under ' is 0.
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– For a word w , we have:
� '.xiw/ WD xi C ti'.w/

� '.x�1
i w/ WD �t�1

i xi C t�1
i '.w/

Note that '.xk
i w/D

tk
i
�1

ti�1
xi C tk

i '.w/.

1.4 Algebraic construction of H 1.X IC�/ There is another way to compute the
cohomology H 1.X IC�/DH 1.GIC�/, which can be seen as the quotient of cocycles
by coboundaries. A cocycle is a map ˛W G!C such that ˛.gh/D ˛.g/C �.g/˛.h/.
Coboundaries are generated by the mapping g 7! �.g/� 1. A cocycle defines a repre-
sentation G! GL.2IC/, g 7!

�
�.g/ ˛.g/

0 1

�
. Note that the coboundary representation

is reducible.

Remark 1.5 Let r WD Rank H and let TorsG be the torsion subgroup of H DG=G0 .
Then TG is an Abelian complex Lie group with jTorsG j connected components (each
one isomorphic to .C�/r ) satisfying the exact sequence

(1-2) 1! T 1
G! TG! Hom.TorsG ;C

�/! 1;

where T 1
G
WD Hom.H=TorsG ;C

�/ is the connected component containing the trivial
character 1, which is isomorphic to .C�/r via the choice of a basis of the lattice
H=TorsG . Given � 2Hom.TorsG ;C

�/, we will refer to the component of TG whose
image is � as T�

G
. Since the exact sequence (1-2) splits, the elements � can be

considered to be in TG , and T�
G

can also be thought of as the only connected component
of TG passing through � .

When X is a quasi-projective (or Kähler) manifold, the work of Deligne [23] gives a
way to compute the twisted cohomology in terms of geometric properties. Let us give
some details about this computation. Fix a projective manifold xX such that D WD xX nX
is a normal crossing divisor.

Definition 1.6 Let D be an irreducible component of D and let � 2H 1.X IC�/. We
say that � does not ramify, or has trivial monodromy, along D if �.�D/D 1, where
�D is a meridian of D . Otherwise, we say that � ramifies along D .

Remark 1.7 By a meridian of D , we simply mean the boundary of a sufficiently
small disk intersecting D transversally and only at one point. This means nothing but
the boundary of a fiber of the tubular neighborhood (seen as sub-bundle of the normal
fibered bundle) on the smooth part of D . Since the tubular neighborhood of the smooth
part of D in D is connected, all meridians of D are homologically equivalent.
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Remark 1.8 Let D� be the subdivisor of D formed by the irreducible components D

of D such that � ramifies along D . Let X � WD xX nD� and G� WD �1.X
�/. Despite

the notation, X � and G� depend on xX . Note that � naturally determines an element
�0 2 TG� DH 1.X � IC�/. It is clear that �0 2†1.X

�/ implies that � 2†1.X /, but
note that the converse is not true in general as the following example shows. This
stresses a common as well as subtle misconception had when trying to study characters
on X . Therefore, one cannot assume, changing X by X � , that a character � ramifies
along all irreducible components of D .

Example 1.9 Let X WD P1 n f0; 1;1g. The group G WD �1.X / is free of rank 2

(generated, eg, by meridians of 0 and 1). The torus TG is identified with .C�/2

via the images of those meridians. It is not hard to prove that †1.X / D TG ; see
Proposition 2.10. Let us consider a character � defined by .z; z�1/, z 2C n f0; 1g. In
this case, the divisor D is the set f0; 1;1g but the divisor D� is f0;1g since � does
not ramify at 1. Note that X � DC� , whose fundamental group is Abelian. Since �0
is a non-trivial character, �0 …†1.X

�/.

2 Orbifold groups and characteristic varieties

Definition 2.1 An orbifold X' is a quasi-projective Riemann surface X with a
function 'W X !N taking the value 1 outside a finite number of points.

We may think of a neighborhood of a point P 2 X' with '.P / as the quotient of a
disk (centered at P ) by a rotation of angle 2�=n. A loop around P is considered to
be trivial in X' if its lifting bounds a disk. Following this idea, orbifold fundamental
groups can be defined as follows.

Definition 2.2 For an orbifold X' , let p1; : : : ;pn 2X be the points such that mj WD

'.pj / > 1. Then, the orbifold fundamental group of X' is defined as

�orb
1 .X'/ WD �1.X n fp1; : : : ;png/=h�

mj
j D 1i;

where �j is a meridian of pj . For simplicity, X' might also be denoted by Xm1;:::;mn

or X xm .

Example 2.3 If X is a compact surface of genus g and xmD .m1; : : : ;mn/, then

Gg
xm WD �

orb
1 .X xm/

D

�
a1; : : : ; ag; b1; : : : ; bg; �1; : : : ; �n

ˇ̌̌̌ gY
iD1

Œai ; bi �D

nY
jD1

�j ; �
mj
j D 1

jD1;:::;n

�
:
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If X is not compact and �1.X / is free of rank r , then

Fr
xm WD �

orb
1 .X xm/D

�
a1; : : : ; ar ; �1; : : : ; �n

ˇ̌̌̌
�

mj
j D 1

jD1;:::;n

�
:

Definition 2.4 Let X' be an orbifold and Y a smooth algebraic variety. A dominant
algebraic morphism f W Y ! X defines an orbifold morphism Y ! X' if for all
p 2X , the divisor f �.p/ is a '.p/–multiple. The orbifold X' is said to be maximal
(with respect to f ) if no divisor f �.p/ is an n–multiple for n> '.p/.

Remark 2.5 If Y is a smooth algebraic variety, X is a quasi-projective Riemann
surface and f W Y !X is a dominant algebraic morphism, it is possible to define an
orbifold structure 'W X !N , where if p 2X , '.p/ is the gcd of the multiplicities
of the irreducible components of the divisor f �.p/. This structure is maximal if and
only if f is surjective.

The following result is well-known. Proofs can be found in [3] or Catanese, Keum and
Oguiso [17].

Proposition 2.6 Let f W Y !X define an orbifold morphism Y !X' . Then f in-
duces a morphism f�W �1.Y /! �orb

1
.X'/. Moreover, if the generic fiber is connected,

then f� is surjective.

Next we compute T… for orbifold groups ….

Proposition 2.7 If …D Fr
xm , then T… is given by the following short exact sequence:

1! T 1
… D .C

�/r ! T…!
nM

jD1

Cmj ! 1;

(see Remark 1.5) where Cm is the cyclic multiplicative group of m–roots of unity.

If …DGg
xm , then T… is given by a similar short exact sequence where the first term is

T 1
…
D .C�/2g and the last term is the cokernel of the natural mapping Cm!

Ln
jD1 Cmj

where m WD lcmfm1; : : : ;mng.

Proof This is immediate from the fact that H D Zr ˚Cm1
˚ � � �˚Cmn

in the first
case and

H D Z2g
˚

Cm1
˚ � � �˚Cmn

Cm

in the second case.
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Therefore, for orbifolds coming from Riemann surfaces, the components of T… are
parametrized by the n–tuples � D .�1; : : : ; �n/ of roots of unity �j of order mj

(resp. whose product is 1) if X is non-compact (resp. compact). Let T�
…

denote the
component of T… determined by �.

Definition 2.8 The number `.�/ of non-trivial coordinates of � is called the length
of the component T�

…
of T… . If � 2 T�

…
, then this number is also called the length of

� and it is denoted by `.�/.

Note that there are components of any length `, 0� `� n for Fr
xm , whereas this is not

the case for Gg
xm . The arithmetic of m1; : : : ;mn imposes some conditions; for example,

TGg
xm

cannot have components of length 1, and if the mi are pairwise coprime, then
TGg
xm

cannot have components of length 2.

Definition 2.9 We define the k th characteristic variety †k.X'/ of the orbifold X'
as the k th characteristic variety †k.…/ of its orbifold fundamental group.

Also, if � 2 T… is a character on …, then H 1.X' IC�/ will denote H 1.…IC�/.

We now compute †k.X'/ for orbifolds X' . In order to do so, we will follow
Example 1.3 by considering the CW–complex K associated with the presentation
of … WD �orb

1
.X'/ given in Example 2.3. First we consider the case … WD Fr

xm .

Proposition 2.10 Let us consider the group … WD �orb
1
.X'/D Fr

xm . Then,

†k.X'/D

8̂̂̂̂
<̂
ˆ̂̂:

T… if 1� k � r � 1;

f1g[
S
fT�
…
j `.�/� 1g if k D r;S

fT�
…
j `.�/� k � r C 1g if r C 1� k � r C n� 1;

∅ if k � r C n;

is a decomposition in irreducible components of †k.X'/.

Proof First let us consider the case where � ¤ 1. Let us consider the complex
C�.KIC/� ; since � ¤ 1, then dim ker @�

1
D nC r � 1. The matrix M for @�

2
is

obtained using Fox calculus and evaluation by � . Let � WD .�1; : : : ; �n/ the n–tuple of
roots of unity determining the irreducible component of T… containing � . It is easily
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seen that

M WD

0BBBBBBBBBBBBBBBBBBBBB@

�
m1

1
� 1

�1� 1
0 : : : 0

0
�

m1

2
� 1

�2� 1
: : : 0

:::
:::

: : :
:::

0 0 : : :
�

mn
n � 1

�n� 1

0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

1CCCCCCCCCCCCCCCCCCCCCA

2M..nC r/� n;C/

since Rank M D n� `.�/, we obtain that dim H 1.KIC�/ D r C `.�/� 1. On the
other side, dim H 1.KIC1/D Rank H1.…/D r .

Now we consider the case … WDGg
xm , 2gC n� 2 (Gg

xm is trivial if 2gC n< 2). The
following corrects a mistake in Delzant’s statement [24, Proposition 4].

Proposition 2.11 Let us consider the group … WD�orb
1
.X'/DGg

xm , 2gCn� 2. Then,

†k.X'/D

8̂̂̂̂
<̂
ˆ̂̂:

T… if 1� k � 2g� 2;

f1g[
S
fT�
…
j `.�/� 2g if 2g� 1� k � 2g;S

fT�
…
j `.�/� k � 2gC 2g if 2gC 1� k � 2gC n� 2;

∅ if k � 2gC n� 1;

is a decomposition in irreducible components of †k.X'/.

Proof If � D 1, dim H 1.KIC1/D Rank H1.…/D 2g . Let us assume � ¤ 1 and we
assume the notation of Example 2.3 and Proposition 2.10: �D .�1; : : : ; �n/ where �i WD

�.�i/; we denote also xi WD �.ai/ and yi WD �.bi/. We have dim ker @�
1
D 2gCn�1
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and we obtain the matrix M for @�
2

using Fox calculus and evaluation by � :

M WD

0BBBBBBBBBBBBBBBBBBBBBBBBB@

�
m1

1
� 1

�1� 1
0 : : : 0 1

0
�

m1

2
� 1

�2� 1
: : : 0 �1

:::
:::

::: 0
:::

0 0 : : :
�

mn
n � 1

�n� 1
�1 � � ��n�1

0 0 � � � 0 y1� 1

0 0 � � � 0 1�x1
:::

:::
: : :

:::
:::

0 0 � � � 0 yg � 1

0 0 � � � 0 1�xg

1CCCCCCCCCCCCCCCCCCCCCCCCCA
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Since Rank M D nC 1� `.�/, we obtain that dim H 1.KIC�/D 2gC `.�/� 2. The
result follows since the case `.�/D 1 cannot arise.

As an immediate corollary of Propositions 2.10 and 2.11, the twisted cohomologies of
a character, its inverse, and its conjugate can be related as follows.

Proposition 2.12 Let X' be an orbifold, let … WD �orb
1
.X'/, and let � 2 T… . Then

dim H 1.…IC�/D dim H 1.…IC��1/D dim H 1.…ICx�/:

Proof In the proofs of Propositions 2.10 and 2.11 it was computed that

dim H 1.…IC�/D

(
Rank H1.…/ if � D 1;
`.�/��.X / if � 2 T�

…
:

Clearly, if � 2 T�
…

then ��1 2 T��1

…
and x� 2 T

x�
…

. Moreover `.�/D `.��1/D `.x�/,
and the statement follows.

As a consequence of Propositions 2.10 and 2.11 the twisted cohomology of an orbifold
X' can be identified with the twisted cohomology of a Riemann surface.

Proposition 2.13 Let X' be an orbifold with singular points p1; : : : ;pn and orbifold
fundamental group … WD �orb

1
.X'/. For � 2 T… , set Y WDX n fpj 2X j �.�j /¤ 1g.

Let �1 be the character on Y determined by � . Then H 1.X' IC�/ is naturally identified
with H 1.Y IC�1

/.
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Proof The particular cases of Propositions 2.10 and 2.11 where no orbifold points are
present give the dimensions of the twisted cohomology groups of a Riemann surface Y :

dim H 1.Y IC�/D

(
Rank H1.Y / if � D 1;
��.Y / if � ¤ 1:

Now fix J a subset of f1; : : : ; ng of size l and suppose � is such that �.�j / ¤ 1

precisely when j 2 J . Then � 2 T�
…

and `.�/D `. We then have that

dim H 1.X' IC�/D

(
Rank H1.…/ if � D 1;
`��.X / if � ¤ 1:

Clearly Y D X n fpj j j 2 J g is a Riemann surface of Euler characteristic �.Y /D
�.X /�` and first Betti number Rank H1.Y /DRank H1.X /C`DRank H1.…/C`. It
follows that dim H 1.Y IC�/D dim H 1.X' IC�/, and so the restriction H 1.Y IC�/!
H 1.X' IC�/ is an isomorphism.

3 Deligne’s theory and Hodge-like decompositions

In what follows, we briefly summarize Deligne’s results [23] (with some addenda by
Timmerscheidt [43]) on twisted cohomology of quasi-projective varieties. Let � 2 TG ,
G WD �1.X /. Consider the line bundle L� WDC� ˝OX over X . The local system of
coefficients C� induces a flat connection r on L� . Let us fix xL� an extension of L�
to xX , whose associated flat connection xr is meromorphic (having log poles along D )
and extends r . Note that plenty of such extensions are possible (there is a choice of
a logarithm determination around every component D of D). More precisely, fix an
irreducible component D of D and let p 2D nSing.D/. Let u; v be a local analytical
system of coordinates centered at p such that v D 0 is the local equation of D . Let
�D be a meridian of D and let �.�D/DW t . The extension xr to D is determined by
the choice of ˛ 2C such that exp.2

p
�1�˛/D t , or equivalently, such that v˛ is the

equation of a multivalued flat section on a suitable chart of xL� .

Definition 3.1 We say that ˛ is the residue of the meromorphic extension xr around D .

Definition 3.2 An extension xL� as above is said to be suitable if the residues of
xL� around the components of D are not positive integers. The Deligne extension of
.L� ;r/ is the unique holomorphic extension of L� whose associated meromorphic
flat connection (with log poles) is such that its residues around any component of D
have real parts in Œ0; 1/. Such an extension will be denoted by zL� .
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The main result proved by Deligne in [23] states that if xL� is suitable then the hyper-
cohomology of the twisted complex of holomorphic sheaves of logarithmic forms with
poles along D (denoted by ��

xX
.logD/˝ xL� ) is isomorphic to the twisted cohomology

of X with coefficients in � , that is,

(3-1) Hi. xX I��xX
.logD/˝ xL�/ŠH i.X IC�/:

This induces a decomposition H 1.X IC�/DHO
�
˚HO

�
, where HO

�
corresponds to

the .1; 0/–term and HO
�

corresponds to the .0; 1/–term. In a nutshell, Timmerscheidt
[43] showed that, in the case of Deligne extensions of unitary bundles, the associated
spectral sequence degenerates in the first step. Next, we will describe some of the
main properties derived from this result, some of which are particular to the Deligne
extension.

Theorem 3.3 [23; 43] The following properties hold:

(1) If xL� is a suitable extension, then the space HO
�

is the homology of the complex

(3-2) H 0. xX I xL�/
xr
�!H 0. xX I�1

xX
.logD/˝ xL�/

xr
�!H 0. xX I�2

xX
.logD/˝ xL�/

and HO
�

is the kernel of

(3-3) xrW H 1. xX I xL�/!H 1. xX I�1
xX
.logD/˝ xL�/:

(2) If � is unitary and zL� is the Deligne extension then xr D 0 in (3-2) and (3-3), ie,

HO
� DH 0. xX I�1

xX
.logD/˝ zL�/; HO

� DH 1. xX I zL�/:

Remark 3.4 This decomposition is, in general, non-canonical. As in Theorem 3.3(2)
more properties can be derived when � is unitary. Following the ideas in [1, III-IV],
the decomposition H 1.X IC�/ D HO

�
˚HO

�
is natural and carries a mixed Hodge

structure.

Definition 3.5 An element 0¤ � 2H 1.X IC�/ is said to be holomorphically (resp.
anti-holomorphically) pure if � 2HO

�
(resp. � 2HO

�
).

The following is yet another consequence of the Hodge theory on the cohomology of
X , which will be very useful for our purposes. The statement appears in the proof of
[1, Proposition V.1.4] (where X must be replaced by xX in the last summand).
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Proposition 3.6 There is a natural real decomposition

H 1.X IC/D .H 10.X /˚H 11
R .X //˚

p
�1 .H 11

R .X /˚H 1. xX IR//:

The sum of the first three terms corresponds to H 0. xX I�1
xX
.logD//, whereas the sum

of the first two corresponds to those forms having purely imaginary residues. The
residues along the components of D of the forms in the first and last terms are trivial.

3.7 Character decompositions [1; 8] Let � 2 TG D H 1.X IC�/. Note that
there exists a torsion element � such that z� WD ��1� 2 T 1

G
and there exists � 2

H 1.X IC/ such that z� D exp.�/. The element � is unique up to sum by an element in
2
p
�1�H 1.X IZ/. According to Proposition 3.6, there exist

! 2H 0. xX I�1
xX
.logD// and ı 2H 1. xX IR/

such that �D !C
p
�1 ı . Summarizing, � D  exp.!/, where  WD � exp.

p
�1 ı/

is unitary.

Note that any choice of !0 2H 11
R .X / leads to another decomposition � D z exp.z!/

where
z! WD ! �

p
�1!0 and z WD � exp.

p
�1 .ıC!0//:

Definition 3.8 A decomposition � D  exp.!/ is called a unitary-holomorphic de-
composition of � if  is unitary and ! 2H 0. xX I�1

xX
.logD//. Such a decomposition

is called

� integrally unramified if D DD� and ! is holomorphic outside D� ,
� strict if it is integrally unramified and ! … 2

p
�1�H 1.X IZ/.

Remark 3.9 In the definition of integrally unramified, the condition of being holo-
morphic outside D� is non-void. Let � D  exp.!/ be an integrally unramified
decomposition and let � be a logarithmic one-form having integral residues around
the components of D �D� . The decomposition � D  exp.! C �/ is also unitary-
holomorphic but not integrally unramified.

Remark 3.10 Let us fix a unitary-holomorphic decomposition � D  exp.!/. We
consider the Deligne extension zL associated with  . This is also an extension for L�
and the meromorphic connection is r! WD xrC^! (see, eg, [1, Section V] or [8]), where
xr is the connection associated with  : it is a flat meromorphic connection extending
r and its monodromy equals � (using the unitary-holomorphic decomposition).

Lemma 3.11 Let � D  exp.!/ be an integrally unramified unitary-holomorphic
decomposition.
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(1) Any integral residue of r! vanishes (and, in particular, Theorem 3.3(1) can be
applied).

(2) The character  (resp. the form ! ) is a restriction of a unitary character (resp. a
logarithmic form) defined on X � .

Proof Let D be an irreducible component of D where � does not ramify. From the
definition of integrally unramified we deduce that exp.!/ does not ramify along D ,
and hence, the same happens for  . Therefore (1) and (2) follow.

The proofs of the results of Section 5 are easier for characters admitting a strict unitary-
holomorphic decomposition; see Corollary 5.4. The following result shows under
which conditions such decompositions exist. The sufficient condition Lemma 3.12(1)
is classical and it is well-known in the projective case while the second sufficient
condition is original in this context to our knowledge.

Lemma 3.12 In the following cases the character � admits a strict unitary-holomorphic
decomposition:

(1) � is non-unitary

(2) b1.X
�/ > b1. xX /

Proof By Lemma 3.11(2) it is equivalent to find a strict unitary-holomorphic decompo-
sition for the induced character �0 in X � . Then, replacing X by X � , we may assume
that � ramifies along every irreducible component of D . Consider � D  exp.!/ a
unitary-holomorphic decomposition of � .

Following Arapura [1] one can choose !1 2 H 1.X IZ/ with non-trivial residues
along D . Consider �D˛Cˇ a decomposition where ˛ 2H 1. xX IR/ and ˇ 2H 11

R .X /.
Note that

� D exp.!/ exp.2�
p
�1 �/D exp.2�

p
�1 .˛C tˇ// exp.!C2�

p
�1 .1� t/ˇ/:

Note that  1 WD exp.2�
p
�1 .˛C tˇ// has non-trivial residues along D . Eventually

replacing  by  1 and ! by !C2�
p
�1 .1�t/ˇ one might assume that �D exp.!/

is an integrally unramified unitary-holomorphic decomposition of � .

All that is left to check is that this can be done choosing ! 6� 0 mod H 1.X IZ/.

If (1) holds, then ! …H 1.X IZ/ (by Proposition 3.6); otherwise � D  would be a
unitary character.

If (2) holds, then Proposition 3.6 implies that H 11
R .X / ¤ 0. A generic choice of

!0 2 H 11
R .X / leads to another decomposition where  (resp. ! ) is replaced by

 exp.
p
�1!0/ (resp. ! �

p
�1!0 ) satisfying ! …H 1.X IZ/.
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4 Anti-holomorphic pure factors of twisted cohomology

In this section we study the relationship between the twisted cohomologies relative to
characters � and ��1 taking into account Deligne’s theory. In particular, we study the
properties of HO

�˙1
and HO

�˙1
(see (3-1) and paragraph right after for a definition).

Theorem 4.1 [43; 1] If the character � ramifies along each irreducible component
of D , then there is a natural inclusion HO

�
,!HO

��1 .

Theorem 4.1 is proved in [43, Theorem 5.1] for unitary characters (where the inclusion
is in fact an isomorphism). The second part of the proof of [1, Proposition V.1.4]
provides the general result. We can summarize it as follows. For � D  exp.!/,
let ˛ 2 HO

�
, that is, ˛ 2 H 1. xX ; zL / and ˛ ^ ! D 0; cf Remark 3.10 and exact

sequence in (3-3). Since � ramifies along each irreducible component of D , one has
zL�1
 
D zL �1 ˝O xX .�D/ (cf [43, Theorem 5.2]). Therefore,

x̨ 2H 0. xX ; �1
xX
.logD/˝ zL �1/:

According to the L2 cohomology arguments in the proof of [1, Proposition V.1.4]
one has that x̨ ^ ! D 0, and if zL is trivial, then x̨ is not a multiple of ! . Thus
0¤ x̨ 2HO

��1 and the statement follows; see (3-2).

Note that this theorem does not deal with arbitrary characters, but only with those that
ramify along every irreducible component of D . In the general case one might have to
resort to the conjugated character as we will see in what follows. Let � be a character
and consider as in Section 1 the divisor D� (containing the components of D where
� ramifies) and X � WD xX nD� . For the sake of clarity we denote by �0 the character
induced by � on X � .

Proposition 4.2 For any character � on X there is a natural isomorphism

HO
y�
ŠHO

y�0

where y�0 is the character induced by y� on X
y� and y� is either � or its conjugate x� .

In order to prove this proposition we need to recover more information on the Deligne
decomposition of the twisted cohomology of a Riemann surface, which has already
been computed in Section 2. The proof will be postponed to the end of the section.
Note also that Proposition 2.13 allows to extend the concept of decomposition into a
holomorphic and an anti-holomorphic part to H 1.X' IC�/ for orbifolds.
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We consider now some computations of meromorphic extensions for the particular
case X WD P1 n fp1; : : : ;png, n> 0, ie, D ¤∅ is the reduced divisor supported on
fp1; : : : ;png. The group G WD �1.X / is generated by meridians �j , j D 1; : : : ; n.
For a suitable choice of these meridians the only relation is �1 � � ��n D 1. Let us fix a
character � 2 TG ; an extension xL� to P1 of L� WD C� ˝OX (with a meromorphic
extension xr of the connection of L� ) is determined by the choice of j̨ 2 C , j D

1; : : : ; n, such that �.�j /D exp.�2
p
�1� j̨ /. Note that k WD�

Pn
jD1 j̨ 2Z. From

these choices, the line bundle xL� admits a multivalued flat meromorphic section �
having complex order j̨ at pj . We deduce from this fact that xL� Š OP1.�k/.
Using this idea for arbitrary Riemann surfaces we obtain this useful result, which is
well-known.

Proposition 4.3 Let X be a quasi-projective Riemann surface with compactifica-
tion xX , n WD #. xX nX /. Let � be a character on X and let zL� be the Deligne extension
of L� to xX . The following results hold:

(1) If nD 0, then deg zL� D 0.

(2) If n> 0, then �n< deg zL� � 0.

(3) If n> 0 and � is unitary, then � is trivial if and only if deg zL� D 0.

(4) If nD 0 and � is unitary, then � is trivial if and only if zL� ŠO xX .

(5) zL� admits non-zero holomorphic sections if and only if zL� ŠO xX .

Let us continue for a moment our discussion above where the Deligne extension zL� for
the unitary character � has been fixed (hence j̨ 2R). If � is not the trivial character,
then 0 < k < n. Using Theorem 3.3(2), one has HO

�
DH 0.P1I�1

P1.logD/˝ zL�/.
Since

�1
P1.logD/˝ zL� DOP1.�2C n� k/;

one can deduce that dim HO
�
D n�k � 1. Also HO

�
DH 1.P1I zL�/; by Serre duality,

this space has the same dimension as

H 0.P1
I�1

P1 ˝ . zL�/
�1/ and �1

P1 ˝ . zL�/
�1
DOP1.�2C k/:

Hence dim HO
�
D k � 1. Also note that

dim HO
x�
D .n� k/� 1

by Serre duality, which agrees with the isomorphism in Theorem 4.1 for the unitary
case. See also [37] for this kind of computation.

Following these ideas, a more general result holds.
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Proposition 4.4 Let X be a quasi-projective Riemann surface, such that xX is a curve
of genus g , and D WD xX n X is a reduced effective divisor of cardinality n. Let
G WD �1.X / and fix � 2 TG n f1g. Let k be the integer that is the negative of the sum
of residues associated with � . Then, HO

�
¤ 0 except in the following cases:

(1) g D 0 and n� 2

(2) g D 1 and nD 0

(3) g D 0, n� 3 and k D n� 1 (in particular, X DX � )

(4) g D 1, nD 1 and � D exp.!/ for ! 2H 0. xX ; �1
xX
.logD//DH 0. xX ; �1

xX
/D

H 0. xX ;O xX /

Proof The first two cases are immediate since G is Abelian.

We recall (see (3-2)) that HO
�

is the cokernel of

A WDH 0. xX ; zL�/
xr
�!H 0. xX ; �1

xX
.logD/˝ zL�/DW B;

where zL� is, as usual, the Deligne extension of L� to xX . Recall that a WDdeg zL�D�k

and b WD deg�1
xX
.logD/˝ zL� D 2g� 2C n� k ; moreover, 0� k < n if n> 0 and

k D 0 if n D 0. By Proposition 4.3, A ¤ 0 if and only if zL� Š O xX , in particular,
dim AD 1. We distinguish several cases.

If g > 1, since b > 0 then B ¤ 0. Then, we get the statement when AD 0. If A¤ 0,
it is enough to prove that dim B > 1. In this case, B is the space of holomorphic
sections of �1

xX
.logD/, which admits the space of holomorphic 1–forms of xX as a

subspace. Since such a space has dimension g > 1 we are done.

For g D 1, we assume n> 0. Hence 0� k < n and b > 0; if AD 0 we are done. If
A¤ 0, we have in particular that B is the space of holomorphic sections of

�1
xX
.logD/DO xX .D/:

If n � 2, then dim B > 1 and we are done. If n D 1, then dim B D 1 and hence
HO
�
D 0. Note that zL� Š O xX is equivalent to the property � D exp.!/ for ! 2

H 0. xX ; �1
xX
.logD//.

For g D 0, we assume n> 2 in which case b D n� k � 2� �1 and hence dim B D

n� k � 1. If k D 0, we have immediately that dim B > 1D dim A. If k > 0, then
AD 0 and if k < n� 1, then dim B > 0.

Corollary 4.5 Let us assume that H 1.X IC�/ ¤ 0 and HO
�
D 0. Consider p 2 X ,

Y WDX n fpg and �1 the induced character in Y . Then, HO
�1
¤ 0 (on Y ).

Geometry & Topology, Volume 17 (2013)



292 Enrique Artal, José Cogolludo and Daniel Matei

Proof If gD 1, it is trivial. If gD 0, note that the maximum value of k equals n�1

and it can be obtained only when � ramifies around all the punctures.

Example 4.6 In Example 1.9, we showed that the twisted cohomology of a Riemann
surface X � xX with respect to a character � that does not ramify around a point p 2 xX

changes if we replace X by X [ fpg. This example has the same purpose, but is
more subtle and points at the root of the relation between the twisted cohomology of a
character � on X and �0 on X � .

Let xX be an elliptic curve, p a point on it and X D xX n fpg. The spaces of characters
over X and xX coincide. Let us fix 1¤ � 2 T�1.X / and let �0 be the corresponding
character in T�1. xX /

. Since �1. xX / is Abelian, H 1. xX IC�0
/D 0.

Let us decompose � D  exp.!/, where  is unitary and

! 2H 0. xX ; �1
xX
.log p//DH 0. xX ; �1

xX
/:

The Deligne extension of  is a degree 0 line bundle zL over xX , which is trivial if
and only if  D 1. The short exact sequence

0!�1
xX
˝ zL !�1

xX
.log p/˝ zL !Cp! 0

induces (note that �1
xX
ŠO xX )

0!H 0. xX I zL /!H 0. xX IO.p/˝ zL /!C

!H 1. xX I zL /!H 1. xX IO.p/˝ zL /! 0:

Let us assume that  ¤ 1. Then, this sequence implies (using Serre Duality and the
Riemann–Roch formula)

H 0. xX I zL /DH 1. xX I zL /DH 1. xX IO.p/˝ zL /D 0; H 0. xX IO.p/˝ zL /ŠC:

Note also that H 0. xX I zL /D 0DH 1. xX I zL /. Applying (3-2) and (3-3) we obtain
HO
�
ŠC and HO

�
D 0.

If  D 1 the sequence implies

H 0. xX IO/ŠH 0. xX IO.p//ŠH 1. xX IO/ŠC; H 1. xX IO.p//D 0:

Since H 0. xX IO/ŠH 1. xX IO/ŠC , applying (3-2) and (3-3) we obtain HO
�
D 0 and

HO
�
ŠC .

In both cases we obtain that H 1.X IC�/ŠC but the decomposition into the spaces
HO
�

and HO
�

depends on the analytic type of xX .

Geometry & Topology, Volume 17 (2013)



Characteristic varieties of quasi-projective manifolds and orbifolds 293

The situation described in the previous example holds in a more general setting. We
are in position to state the last ingredient needed for the proof of Proposition 4.2.

Proposition 4.7 Let X be a Riemann surface and let � be a character on X such that
the Deligne extension zL associated with the unitary part of a unitary-holomorphic
decomposition of � is non-trivial. Then HO

�
D HO

�0
D H 1. xX I zL / where �0 is the

character induced by � on X � .

Proof Let us consider the chain X �X � � xX and the reduced divisors D WD xX nX

and D� WD xX nX � . Since the statement is trivial when D D D� we may assume
D� ¨ D .

We must consider the sequence (3-3) applied to D and D� for the Deligne extension
zL associated with � D exp.!/, where  is unitary and ! 2H 0. xX I�1

xX
.logD�//.

By hypothesis zL 6ŠO xX .

This sequence reduces to a morphism, defined by the exterior product by ! , where
the source H 1. xX I zL / is common for D and D� . Let us study the targets. For D we
have

H 1. xX I�1
xX
.logD/˝ zL /;

which is isomorphic, by Serre Duality, to the dual of H 0. xX IO.�D/˝ zL�1
 
/. Since

degD > 0 and deg zL�1
 
< degD (see Proposition 4.3), this space is trivial.

Let us now consider H 1. xX I�1
xX
.logD�/˝ zL /, ie, by duality

H 0. xX IO.�D�/˝ zL�1
 /:

Note that the degree e of this line bundle is non-positive. If e < 0, then the space is
trivial again. If e D 0, then we have D� D ∅; since zL is non-trivial, the space is
also trivial.

Then, HO
�
DH 1. xX I zL /DHO

�0
.

Proof of Proposition 4.2 The result is trivial for unitary characters, so we assume
that � is non-unitary. We break the proof in several steps.

Step 1 The case when X is a Riemann surface

After Proposition 4.7 it is enough to prove that either � or x� admits a unitary-
holomorphic decomposition such that the Deligne extension zL associated with the
unitary part is non-trivial.
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Let us assume that this is not the case for � . Then, D�D∅, xX DX � (see Remark 3.10),
the unitary part of � is 1 (see Proposition 4.3) and � D exp.!/, where 0 ¤ ! 2

H 0. xX I�1
xX
/. We deduce that x� D exp.x!/, where x! 2H 1. xX IO xX /.

Let us consider the decomposition x! D ˛Cˇ associated with

H 1. xX IC/D 2
p
�1�H 1. xX IR/˚H 0. xX I�1

xX
/:

Note that the spaces

HO
� and HO

�0

do not change if we replace � by exp.t!/, t 2 R� ; we may assume that ˛ …
2
p
�1�H 1. xX IZ/ and the unitary-holomorphic decomposition x� D exp.˛/ exp.ˇ/

satisfies the hypothesis in Proposition 4.7. The result follows for x� and we have
achieved Step 1.

Step 2 Preparation of an induction process when X is a quasi-projective surface

Using the arguments of Step 1, we obtain that either � or x� fits in a unitary-holomorphic
decomposition such that the Deligne extension of the unitary part is non-trivial. We can
assume that this is the case for � D exp.!/,  unitary with zL 6ŠO xX (in particular,
 ¤ 1) and ! 2H 0. xX I�1

xX
.logD�//.

We prove the statement by induction on the number n of irreducible components of
D0 WD D�D� . If nD 0 the statement is trivially true. Let us assume n > 0 and let
us fix an irreducible component D of D0 . Let us denote D00 WD D �D and � 00 the
character induced by � on X 00 WD xX nD00 . Let LD WDD nD00 . Also set

L00 D�1
xX
.logD00/˝ zL ; LD�1

xX
.logD/˝ zL :

Since H 0. xX ; zL /, we have:

HO
� D ker

�
H 0. xX ;L/ ^!�!H 0. xX ; �2

xX
.logD/˝ zL /

�
HO
�00 D ker

�
H 0. xX ;L00/ ^!�!H 0. xX ; �2

xX
.logD00/˝ zL /

�
HO
� D ker

�
H 1. xX ; zL /

^!
�!H 1. xX ;L/

�
HO
�00 D ker

�
H 1. xX ; zL /

^!
�!H 1. xX ;L00/

�
Both L and L00 fit in the following short exact sequence

0! L00! L! i�. zL /jD ! 0

Geometry & Topology, Volume 17 (2013)



Characteristic varieties of quasi-projective manifolds and orbifolds 295

and the associated long exact sequence
(4-1)

0�!H 0. xX ;L00/�!H 0. xX ;L/
.�/
�!H 0.DI . zL /jD/

.�/
�!H 1. xX ;L00/�!H 1. xX ;L/:

Step 3 If the map .�/ of (4-1) vanishes then HO
�
DHO

�00
.

By the exactness of (4-1) the map H 1. xX ;L00/! H 1. xX ;L/ is injective; since ^!
factorizes through this mapping in the definition of HO

�
, it is immediate that HO

�
DHO

�00
.

We have proved Step 3.

Step 4 If the restriction of  to LD is non-trivial then HO
�
DHO

�00
.

The third term H 0.DI . zL /jD/ of (4-1) vanishes by Proposition 4.3 and hence, also .�/
does. The statement of Step 3 implies Step 4.

Assumption According to Step 4, from now on we assume that the restriction of  
to LD is trivial.

The character  acts trivially on �1. LD/. By Proposition 4.3 . zL /jD ŠOD . Since
H 0.DIOD/ŠC , either .�/ or .�/ vanishes, ie, either

HO
� ŠHO

�00 or HO
� DHO

�00 :

Step 5 If dim H 1.X IC /D dim H 1.X 00IC 00/ then HO
�
DHO

�00
.

This is immediate from the above property.

Assumption According to Step 5, from now on we will assume dim H 1.X IC�/ >
dim H 1.X 00IC�00/.

Step 6 dim H 1.X IC /� dim H 1.X 00IC 00/D 1

The above arguments imply dim H 1.X IC�/� dim H 1.X 00IC�00/D 1. By duality

dim H1.X IC��1/� dim H1.X
00
IC.�00/�1/D 1:

Using a Mayer–Vietoris exact sequence for H1.X
00IC�/, we obtain that a meridian 

around D defines a twisted cycle �D which determines a non-trivial homology class
in the kernel of the natural map H1.X IC�/!H1.X

00IC�00/ induced by inclusion.
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More precisely, let N be a regular neighborhood of LD , and note that X 00 DX [N .
Then X \N has the homotopy type of a Seifert 3–manifold M , in fact a circle bundle
over LD and N has the homotopy type of LD . The character is trivial on both M and
LD ; recall that dim H1.M;C/ � dim H1. LDIC/ and equality arises only when LD is

compact and its Euler number is non-zero. Since the map H1.X;C�/!H1.X
00;C�00/

is surjective, the exact sequence

H1.M;C�/!H1.X;C�/˚H1. LD;C�/!H1.X
00;C�00/! 0

can be completed to a short exact sequence and dim H1.M;C/D dim H1. LDIC/C 1.
These arguments also hold for the characters �t WD  exp.t!/, t 2 C� . Since the
character  is limit of the characters �t , we obtain that the class of �D is a non-trivial
element of H1.X IC /; since the difference of dimensions is at most one, Step 6 is
achieved.

Step 7 The map .�/ is non-trivial.

As stated in Remark 3.4, for the character  the decomposition is natural and we can
evaluate the elements of

HO
 in H1.X IC / and HO

 00 in H1.X
00
IC 00/:

Both spaces are equal to H 1. xX ; zL /. Since �D is a trivial cycle of H1.X
00IC 00/,

8˛ 2 H 1. xX ; zL /, we have that ˛.�D/ D 0. Using the duality between twisted
homology and cohomology, there exists

ˇ 2HO
 DH 0.DI . zL /jD/

such that ˇ. /¤ 0. Then ˇ is an element of H 0. xX ;L/ nH 0. xX ;L00/. The exactness
of (4-1) implies the statement of Step 7.

We conclude that .�/ vanishes and hence HO
�
ŠHO

�00
. One can replace X by X 00 and

apply the induction hypothesis once again.

5 Characters and orbifold maps

The main tool for the proof of Theorem 1 is the following result, which corresponds to
[1, Proposition V.1.4], except for this statement a weaker hypothesis is required (only
non-torsion characters as opposed to non-unitary). In this section the notation used
in Sections 1 and 2 will be followed, that is, X is a smooth quasi-projective surface,
G WD �1.X /, xX is a smooth projective compactification of X such that D WD xX nX

is a normal crossing divisor and C' is an orbifold coming from a Riemann surface C .
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Theorem 5.1 Let � 2 TG be a non-torsion character in †1.X / ¤ ∅ and 0 ¤ � 2

H 1.X IC�/. Then there exists

� an orbifold C' ,

� an orbifold map f W X ! C' ,

� a character �C 2†1.C'/,

� a cohomology class �C 2H 1.C' IC�C
/,

such that � D f �.�C / and � D f �.�C /.

Lemma 5.2 It is enough to prove Theorem 5.1 for holomorphically pure elements
in H 1.X IC�/.

Proof First note that if Theorem 5.1 is true for holomorphically pure elements in
H 1.X IC�/, then it is also true for anti-holomorphically pure elements by Theorem 4.1
and Proposition 4.2.

Let us assume that the claim in Theorem 5.1 holds for holomorphically pure elements
but not in general. Then there exist non-zero �1; ˛2 2H 1.X IC�/, where �1 is holo-
morphically pure, and ˛2 is anti-holomorphically pure, coming from different orbifold
morphisms, say f1W X ! C1 and f2W X ! C2 respectively. We may replace C2 by
C2 n fpg (p 2 C2 ) and X by f �1

2
.C2 n fpg/. By Corollary 4.5 and Proposition 2.13

there exists a holomorphically pure element �2 ¤ 0 that is a pull-back by f2 .

Since �1 is a twisted logarithmic 1–form, p 7!ker.�1/pDker.df1/p defines a foliation
F1 , which determines and is determined by f1 . Analogously, we construct a foliation
F2¤F1 . Choose a point q 2X such that .F2/q ¤ .F1/q . Let .t1; t2/ 2C2 n f.0; 0/g

and consider the holomorphically pure element �.t1;t2/ WD t1�1 C t2�2 . Since we
claim that Theorem 5.1 holds for holomorphically pure elements and two proportional
elements come from the same orbifold morphism, for any Œt1 W t2� 2 P1 we obtain
an orbifold morphism fŒt1Wt2�W X ! CŒt1Wt2� such that for generic p 2 X we have
ker.�.t1;t2//p D ker.dfŒt1Wt2�/p . Since these morphisms have distinct fibers we have
obtained a family of pairwise non-equivalent orbifold morphisms onto a hyperbolic
orbifold parametrized by P1 . The set of equivalence classes of such morphisms is at
most countable (see [1, Lemma V.1.5]) and we obtain a contradiction.

The following key result is the orbifold version of [1, Proposition V.1.4], which in turn
is the quasi-projective version of [8, Proposition 2.1]. We adapt Arapura’s proofs [1,
Propositions V.1.3, V.1.4] stressing the details required for the orbifold version.
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Proposition 5.3 Let � D  exp.!/ 2 TG be a strict unitary-holomorphic decompo-
sition of the character � and let � 2H 1.X IC�/ be a holomorphically pure element.
Then, there exists

(1) an orbifold map f W X ! C' ,

(2) �C 2 T… , … WD �orb
1
.C'/,

(3) �C 2H 1.C' IC�C
/,

such that � D f �.�C / and � D f �.�C /.

Proof Recall that the Deligne extension zL is an extension for L� with a mero-
morphic connection r! . Using (3-2) the pull-back � can be represented by a section
� 2H 0. xX I�1

xX
.logD/˝ zL / such that r!.�/D 0 and it is not the image by r! of

a holomorphic section of zL .

According to Theorem 3.3, � is so that �^! D 0. In addition, if zL DO xX , then �
is not a complex multiple of ! .

Using [1, Proposition V.1.3], a holomorphic mapping f W X!C onto a quasi-projective
Riemann surface C exists with the following properties:

(1) The mapping is the restriction of xf W xX! xC (possibly after performing additional
blow-ups on xX ), D1 WD

xC nC .

(2) There is a logarithmic 1–form !12H 0. xC I�1
xC
.logD1// such that !D xf �.!C /.

At this point it is worth mentioning that [1, Proposition V.1.3] also ensures the existence
of a character on C , whose pull-back by f translated by a torsion element, equals
 . Alternatively, we will use a more detailed description of  to describe it as the
pull-back of a character on a certain orbifold structure on C .

Let ' be the maximal orbifold structure on C naturally induced by f as described
in Remark 2.5, and let LC be the set of non-multiple points for ' . Let us write
xC n LC DD1CD2 , LX WD f �1. LC / and Lf WD fjW LX ! LC . Let L denote the induced
character by  on LX .

Let us consider F a generic fiber of Lf and consider its closure xF in xX . Outside the
multiple fibers there is an exact sequence (see [38, Lemma 1.5C; 17])

�1.F /! �1. LX /! �1. LC /! 1:

In order to check that L is the pullback of a character  LC of �1. LC / it is enough to
check that �1.F /�ker L . Arapura proceeds as follows: there is a meromorphic section
ˇ of zL such that �D !˝ˇ . Since F is generic, one may assume !

j xF ¤ 0. Hence,
ˇ
j xF is holomorphic. This fact has two consequences according to Proposition 4.3

applied to F :
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� . zL /j xF DO xF and hence  and L are trivial on F , thus L is a pullback, say
L D Lf �. LC /. It follows that L� WD L exp.!/ is also a pullback, say L�D Lf �.� LC /,

where � LC D  LC exp.! LC /.

� The meromorphic section ˇ is holomorphic and constant on xF , ie, ˇ is a
pullback by xf , say ˇD xf �.ˇ xC /. Hence � is the pullback by xf of a logarithmic
form, that is �D xf �.! xC ˝ˇ xC / (with poles along D1CD2 ).

� Moreover, the character  LC induces a character  C' on C' . In order to see
this, note that, if f �.p/D

P
niEi , �i is a meridian around Ei and �p is a

meridian around p , then

1D  .�i/D L .�i/D  LC .�
ni
p /D

�
 LC .�p/

�ni :

Therefore
�
 LC .�p/

�'.p/
D 1, since by construction '.p/D gcd.ni/.

The existence of LC , � LC and � LC proves the result for LX with respect to a Riemann
surface. Finally, the discussion above and Proposition 2.13 show the existence of C' ,
�C and �C , which proves the result for X with respect to orbifolds.

The non-unitary case for Theorem 5.1 is partially proved in [1, Proposition V.1.4]. In
fact, the argumentation line in the proof only establishes the statement for characters
that ramify over all components of the divisor D D xX nX . More precisely, since
Theorem 4.1 is needed, Arapura replaces the quasi-projective manifold X by the bigger
manifold X � � xX but, as Examples 1.9 and 4.6 show, this must be done carefully.
Proposition 4.2 solves these issues.

Corollary 5.4 Theorem 5.1 is true when the character � is either non-unitary or
b1.X

�/ > b1. xX /.

Proof It is a direct consequence of Proposition 5.3 and Lemmas 5.2 and 3.12.

Remark 5.5 This corollary is enough if we restrict our attention to the case when
b1. xX /D 0 as in [37].

The remaining case, that is, non-torsion unitary characters � such that b1.X
�/Db1. xX /,

will be treated with different arguments, following Delzant’s technique in [24] for Kähler
manifolds. This strategy uses results by Levitt [35] and Simpson [41], which can be
adapted to our case.

Proposition 5.6 Let � be a non-torsion unitary character such that b1.X
�/D b1. xX /

and let 0¤ � 2H 1.X IC�/. Then, Theorem 5.1 holds.
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Proof Let us assume that � is not algebraic. Since †k WD †k.X / is an algebraic
subvariety of TG , G D �1.X /, defined with rational coefficients, one can deduce
that � cannot be an isolated point of †k . Hence, if k D dim H 1.X IC�/ and V is
the irreducible component of †k containing � , this component contains non-unitary
elements and the result follows easily.

From now on, � will be assumed to be algebraic. If �.G/ only contains algebraic
integers, two cases may happen: either all the conjugates of these algebraic integers
are also algebraic integers, or not. In the first case the Kronecker Theorem implies that
� is torsion and this case has been excluded. In the second case, a conjugate character
z� is non-integral. Since all the statements are algebraic, it is enough to prove the result
for z� .

Then, we can assume � is algebraic and non-integral and we can follow the proof of [24,
Proposition 2]. The first step is to construct an exceptional class ! 2H 1.X IR/ n f0g
in the sense of Bieri, Neumann and Strebel [9]; in fact, ! is defined with integer
coefficients. We identify H 1.X IR/ with Hom.G;R/.

We sketch the construction of ! ; see [24] for more details. Since H 1.X IC�/ is
generated by elements in a number field we may assume that � is represented by a
cocycle (see Section 1.4) in a number field (also denoted by � ). We fix such a number
field K in order to have that 8g 2G the matrix

�
�.g/ �.g/

0 1

�
has coefficients in K. This

defines an action of G on K2 and P1.K/. The fact that � is not integral guarantees
the existence of a valuation � such that ! WD � ı � is not trivial. This element is the
Busemann cocycle of an exceptional action of G on the Bruhat–Tits tree T� (see [10]).
As a consequence, the class ! is exceptional.

Since ! WD � ı � , we deduce that ker � � ker! . As a consequence, ! is the restriction
of 0¤ !� 2H 1.X � IR/. We can strengthen this argument since the target of � is an
ordered group, without torsion. Thus for any g 2 G whose image �.g/ is a torsion
element, one has that g 2 ker! . Hence, let � be the meridian of an irreducible
component of D� . Since b1.X

�/D b1. xX /, �.�/ is a torsion element and, applying
the last comment, � 2 ker! . Hence, there exists ! xX 2H 1. xX IR/ n f0g such that !�
is the restriction of ! xX (in the same way, ! is the restriction of ! xX ). We represent
! xX by a closed differential 1–form (and ! by its restriction to X ). For the sake of
simplicity we keep the notation of ! xX and ! for the differential 1–forms.

Let us consider an unramified Abelian covering x� W xX! ! xX such that x��! xX is
an exact 1–form (eg, the one determined by ker! xX as a character of �1. xX /); let
xF W X! ! R a primitive of x��! xX . Let X! WD x�

�1.X /; since �1.X /! �1. xX / is
surjective the manifold X! is connected. Let us denote by � W X!!X the induced
covering and F W X!!R the restriction of xF ; F is a primitive of ��! .
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Following [35], we have a characterization of exceptional elements of H 1.X IR/ when
they are represented by 1–forms: ! is exceptional if and only if F�1.R>0/ has more
than one connected component where F is unbounded. Since xX nX is a union of
real codimension 2 varieties the number of connected components of F�1.R>0/ and
xF�1.R>0/ is the same. We conclude that ! xX is also exceptional.

Using Simpson’s results [40], one obtains a surjective morphism xf W xX ! xC with
connected fibers, where xC is a compact Riemann surface. Let C WD xf . xC / and let
f WD xfjW X ! C be the restriction morphism. Here C is considered with the maximal
orbifold structure ' defined by f (see Remark 2.5). We follow again the arguments of
the proof of [24, Proposition 2]. For this orbifold C' , the character � is in the pull-back
of the characteristic variety †.C'/. This is proved using the action on the tree and
showing that the action on the projective line P1.K/ is trivial. As a consequence � is
in the pull-back of †.C'/.

Proof of Theorem 5.1 Let � 2 TG be a character on X . If � is not unitary, then
Corollary 5.4 gives the result. Hence we might assume that � is a unitary character.

On the other hand, if b1.X
�/ > b1. xX /, then again Corollary 5.4 gives the result.

Finally, if b1.X
�/D b1. xX /, then Proposition 5.6 shows the statement.

Remark 5.7 Note that the proof of Theorem 5.1 in fact shows a sharper result, namely,
it is also true for unitary characters (torsion or non-torsion) such that b1.X

�/ > b1. xX /.
In other words, the only case missing is unitary torsion characters for which b1.X

�/D

b1. xX /. In fact, the statement is not true in general for this case as illustrated in
Example 7.3.

Proof of Theorem 1 Once Theorem 5.1 is proved, the arguments of [1, Section V]
give the result (they formally apply to †k for any k ).

6 Behavior of torsion characters and further applications

The results of Section 5 do not apply to general torsion characters of a quasi-projective
manifold X . Some of them may appear as isolated points of some characteristic variety
†k.X / and in that case they may fall either in case (1) or in case (2) of Theorem 1.
Since the irreducible components of Theorem 1(1) are torsion-translated subtori of TG ,
G WD �1.X /, even if Theorem 5.1 does not apply to torsion characters, the properties
of close non-torsion points imply that some of the elements of H 1.X IC�/, for �
torsion, do come from an orbifold map. In this section we study the behavior of torsion
characters as well as show some properties of characteristic varieties that can be derived
from Theorem 1.
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Proposition 6.1 Let � 2 TG be a torsion character such that b1.X
�/ > b1. xX /. Then

� cannot be an isolated component of any characteristic variety of X .

Proof It is a direct consequence of Lemma 3.12 and Corollary 5.4 that there is a strict
unitary-holomorphic decomposition � D  exp.!/. Let us assume that � 2 †k.X /.
Following Remark 3.10 and the ideas in [8] and in [1, Proposition V.1.3], for any
t 2C , we have �t WD � D exp.t!/ 2†k.X /, and then � cannot be an isolated point
of †k.X /.

Next we give a generalization of the results about essential coordinate components of
the characteristic varieties of the complement of hypersurfaces in Pn ; see [2; 36]. Let
X be a quasi-projective manifold and let V be an irreducible component of †k.X /.
Let X V be the maximal subvariety X � X V � xX such that any character in V is
defined over X V . Recall that H 1.X V IC�/�H 1.X IC�/ and that V �H 1.X V IC�/.
The following result is a generalization of a Libgober’s result in [36, Lemma 1.4.3].

Proposition 6.2 If V is not contained in †k.X
V / then V is a torsion point not of

pencil type (see Theorem 1).

Proof If V is not isolated then it comes from an orbifold map X ! C' . Following
the ideas in [36, Lemma 1.4.3] we can extend this map to X V using the definition of
this variety.

We recall a definition introduced in [5; 29].

Definition 6.3 For V an irreducible component of †k.G/ such that dimC V � 1,
consider Shd V (not necessarily in †k.G/) parallel to V (Shd V D �V for some
� 2 TG ) and such that 1 2 Shd V . Such a subtorus Shd V will be referred to as the
shadow of V .

The result and the proof of Theorem 1 provide many obstructions for the quasi-
projectivity of a group. We start with a very useful result (see Lemma 5.2).

Lemma 6.4 Let � be a non-torsion character such that H 1.X IC�/¤0. Then there is a
unique maximal orbifold mapping f W X!C' such that �D f ��C and H 1.X IC�/D
f �H 1.C' IC�C

/.

Proof Exchanging � by x� if necessary we may assume that HO
�
¤ 0. Let us assume

that fj W X ! Cj ;' , j D 1; 2, satisfies � D f ��Cj and

f �j H 1.Cj ;' IC�Cj
/�H 1.X IC�/:
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One can remove points from Cj to ensure HO
x�j
¤ 0 (replacing X by a dense Zariski-

open set). The foliation argument used in Lemma 5.2 gives a contradiction.

Proposition 6.5 Let G be a quasi-projective group and V1;V2 different irreducible
components of †k.G/, k � 1 of positive dimension. Then:

(1) If the intersection V1 \ V2 is non-empty, then it consists of isolated torsion
points.

(2) Their shadows are either equal or have 1 as an isolated intersection point.

(3) If V1 is not a component of †kC1.G/ and p 2 V1 \†kC1.G/, then p is a
torsion point.

(4) V1 is an irreducible component of †`.G/, 1� `� k .

Proof Property (4) follows from Lemma 6.4 since it is true for orbifolds. Each
irreducible component comes from an orbifold; if two different components come from
the same orbifold, they are parallel, hence disjoint. Lemma 6.4 gives (1).

If the underlying Riemann surface of the orbifold giving Vj is not C� or an elliptic
curve, then their shadows are in †1 , and (2) follows from (1). The general case is
proved by Dimca. Finally (3) is an immediate consequence of (1) and Theorem 1.

Remark 6.6 Parts (1) and (2) in Proposition 6.5 can also be found in [29]. Part (3) is
proved in [26].

Proposition 6.7 Let G be a quasi-projective group and let V be an irreducible com-
ponent of †k.G/, k � 1 of positive dimension d . Then:

(1) If 1 2 V , then k � d � 1. Moreover, one can ensure that V is a component of
†d�e.G/, where e D 2 if d is even and e D 1 if d is odd.

(2) If 1 … V , then V is a component of †d .G/.

(3) If 1 … V and d > 2, then its shadow is an irreducible component of †1.G/.

(4) If 1 … V and d D 2, then its shadow is an irreducible component of †1.G/ if
and only if its shadow is an irreducible component of †2.G/.

(5) If 1 … V and d D 1, then its shadow is not an irreducible component of †1.G/.

Proof This is a direct consequence of Theorem 1 and the properties of the characteristic
varieties of orbifolds.

Geometry & Topology, Volume 17 (2013)



304 Enrique Artal, José Cogolludo and Daniel Matei

Remark 6.8 The results (4) and (5) in Proposition 6.7 can be found in [26]. The
cases where the shadow is not in the characteristic variety correspond, according to
Theorem 1, to either orbifold pencils over C� or elliptic pencils.

Proposition 6.9 Let G be a quasi-projective group, and let V1 and V2 be two distinct
irreducible components of †k.G/, resp. †`.G/. If � 2 V1\V2 , then this torsion point
satisfies � 2†kC`.G/.

Proof Let Hj �H 1.X IC�/ be the subspace obtained by the pull-back of the orbifold
giving Vj , j D 1; 2, dim H1 D k , dim H2 D `. Using the arguments of the proof of
Lemma 6.4 we prove H1\H2 D f0g.

Remark 6.10 A careful look at the proof of Proposition 6.9 shows stronger conse-
quences. In particular, the hypothesis that the irreducible components V1 and V2 be
distinct can be weakened as follows: V1 and V2 are �–distinct as long as the spaces
Hj �H 1.X IC�/ obtained in the proof are different. Analogously, using the arguments
of the proof of Lemma 6.4 one obtains that H1\H2 D f0g and hence � 2†kC`.G/.

This subtle improvement is illustrated in Example 7.2.

7 Examples

Example 7.1 Consider the curve C with equation

xyz
�
x2
Cy2

C z2
� 2xy � 2xz� 2yz

�
D 0:

The fundamental group G of X WD P2 n C is the Artin group of the triangle with
weights .2; 4; 4/; see [5]. The first characteristic variety of X consists of three irre-
ducible components of dimension 1, intersecting at one character � of order 2. The
second characteristic variety equals f�g and the third one is empty. This illustrates
Proposition 6.9.

Example 7.2 Let us consider a curve C � P2 that is the dual curve of a smooth
cubic and let X WD P2 nC . Note that C is a curve of degree 6 with nine ordinary
cusps and TG is the set of sixth roots of unity, where G WD �1.X /. The fundamental
group of this curve G was computed by Zariski [44]. It is not difficult to prove that
†k.X /, k D 1; 2; 3, equals the set f�6; x�6g of points of order 6, �6 WD exp.

p
�1�=3/.

Concretely, let us define a curve C of equation:

f .x;y; z/ WD x6
Cy6

C z6
� 2.x3y3

Cx3z3
Cy3z3/D 0
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Since

(7-1) f .x;y; z/D .x3
Cy3

� z3/2� 4.xy/3;

the map Œx W y W z� 7! Œ.x3 C y3 � z3/2 W .xy/3� induces an orbifold rational map
P2 Ü P1

2;3
, for which C 7! Œ4 W 1�. Therefore it also determines an orbifold map

X!C2;3 , which produces (by pull-back) a non-zero element �z 2HO
�6
�H 1.X IC�6

/.
From the symmetry of the equation one can obtain two other elements �y and �x . Even
though �x , �y and �z satisfy the statement of Theorem 5.1, one can easily construct
1-forms not satisfying it by simply considering a generic linear combination of �z

and �y .

Also note that one can find other toric decompositions, like the one defined by

(7-2) f .x;y; z/D 4
�
x2
CxzCxyC z2

C zyCy2
�3
� 3

�
z3
C 2xz2

C 2x2z

Cx3
C 2z2yC 2zyxC 2x2yC 2zy2

C 2xy2
Cy3

�2
:

In this case, the forms obtained using these pencils generate H 1.X IC�6
/. This example

can also be found in [19], where an infinite number of decompositions of type f h6 D

g2
3
C g2

3
are described. Such decompositions are called quasi-toric decompositions

and they produce morphisms onto P1
.2;3;6/

.

This illustrates Remark 6.10, since for instance V1 D V2 D f�6g � †1.X / can be
chosen such that V1 (resp. V2 ) is associated with the orbifold map coming from (7-1)
(resp. (7-2)). This automatically implies that �6 2†2.X /.

Note that T…D
S
� T�

…
, where …D �orb.C2;3/D F0

2;3
, �D .�1; �2/ 2C2�C3 , and

T .1;1/
…
D f1g. According to Proposition 2.10,

†1.…/D T .�1;�3/
…

[T .�1;x�3/
…

D f�6; x�6g and †2.…/D∅

.�n WD exp.2�
p
�1=n//.

Summarizing, �6 as an element of †1 is of pencil type. However, if we consider �6 as
an element of †2 , then it is not of pencil type.

Example 7.3 The affine Degtyarev curve C � C2 in [3, Section 3] provides an
example of a space X DC2nC such that †1.X /Df� j �

4��3C�2��C1D 0g[f1g,
but � is not of pencil type. Note that in this case � is a torsion character and both
b1.X

�/D b1. xX /D 0, which is necessary by Remark 5.7.

Example 7.4 Consider the following arrangement (cf Barthel, Hirzebruch and Höfer
[6]) given by equations Cn WD .y

n�xn/.yn� zn/.zn�xn/, n� 2, where

`1C3k WD y � �k
n z; `2C3k WD z� �k

n x; `3C3k WD y � �k
n x:
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This arrangement can be seen as the Kummer covering Œx W y W z� 7! Œxn W yn W zn� of
a Ceva arrangement ramified along fxyz D 0g. It has been considered by Cohen in
[20], by Cohen, Denham and Suciu in [21], and by Dimca in [25], where mainly the
components in †1 have been accounted for. Here we interpret the essential components
in †k for k > 1.

Note the following pencils associated with the arrangement Cn :

F˛;ˇD f̨1C f̌2 WD˛xn
nY

kD1

`1C3kCˇyn
nY

kD1

`2C3kD˛xn.yn
�zn/Cˇyn.zn

�xn/;

where f1Cf2 D zn.yn
�xn/D zn

nY
kD1

`3C3k ;

and

G˛;ˇ D ˛g1Cˇg2 WD ˛

nY
kD1

`1C3k Cˇ

nY
kD1

`2C3k D ˛.y
n
� zn/Cˇ.zn

�xn/;

where g1Cg2 D .y
n
�xn/D

nY
kD1

`3C3k :

The rational maps fi W P2 Ü P1 , i D 1; 2, defined by f1.Œx W y W z�/ WD Œf1 W f2�,
f2.Œx W y W z�/ WD Œg1 Wg2�, are such that fxyzD 0g[CnD f

�1
1
.fŒ0 W 1�; Œ1 W 0�; Œ1 W �1�g/

and Cn D f
�1

2
.fŒ0 W 1�; Œ1 W 0�; Œ1 W �1�g/. Moreover, after resolving the base points of

the rational maps one obtains two morphisms:

zf1W Xn!�1 WD P1
n;n;n;

zf2W Xn!�2 WD P1
n fŒ0 W 1�; Œ1 W 0�; Œ1 W �1�g;

where Xn D P2 nCn . By Proposition 2.11,

†1.�1/D f�D .�
i
n; �

j
n ; �
�.iCj/
n / j `.�/� 3g �†2.�1/D∅;

†1.�2/ D TF2 � †2.�2/ D ∅. The injection zf �
1
.†1.�1// � †1.Xn/ produces a

zero-dimensional embedded component inside the one-dimensional component

zf �2 .†2.�2//�†2.Xn/

(except for nD 2). Using Proposition 6.9 one can deduce that in fact zf �
1
.†1.�1//�

†2.X /. This was already pointed out in [25], but here we give a different approach.
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