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Periodic flats and group actions
on locally symmetric spaces

GRIGORI AVRAMIDI

We use maximal periodic flats to show that on a finite volume irreducible locally
symmetric manifold of dimension � 3 , no metric has more symmetry than the locally
symmetric metric. We also show that if a finite volume metric is not locally symmetric,
then its lift to the universal cover has discrete isometry group.

57S15, 57S20

1 Introduction

The goal of this paper is to give some new results of the flavor that ‘the locally symmetric
metric on a locally symmetric manifold is the most symmetric metric on that manifold’.
Earlier work, reviewed below, establishes such results for compact manifolds. Our
goal here is to dispense with compactness, resulting in new obstacles and phenomena.
Let .M;g/ be a complete Riemannian manifold homeomorphic to a finite volume,
nonpositively curved locally symmetric space with no local torus factors. In this paper
we prove that the metric g has no homotopically trivial isometries. More precisely, the
isometry group Isom.M;g/ acts on free homotopy classes of loops and this gives an
action homomorphism

(1) �W Isom.M;g/! Out.�1M /:

Theorem 1 The homomorphism � is injective.

If, in addition, the locally symmetric space is irreducible and of dimension � 3, then
Margulis–Mostow–Prasad rigidity shows that the group Out.�1M / is represented by
isometries of the locally symmetric metric hsym . Thus, Isom.M;g/ < Isom.M; hsym/

so that, in a sense, the locally symmetric metric has the most symmetry. If the metric
g has finite volume, then we also get the following dichotomy for the isometry group
of the universal cover.

Theorem 2 Let .M; hsym/ be a finite volume, irreducible, locally symmetric manifold
of dimension � 3. Suppose that M has no local torus factors. If g is any complete,
finite volume Riemannian metric on M , then either:
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� g is a constant multiple of the locally symmetric metric, or
� the isometry group of the universal cover Isom. �M ; zg/ is discrete and contains
�1M as a subgroup of index � vol.M; hsym/=".hsym/.

The constant ".hsym/ is the volume of the smallest locally symmetric orbifold covered
by .M; hsym/. It does not depend on the metric g . The assumption that g has finite
volume turns out to be necessary. In fact, one can construct a complete infinite volume
metric on M such that the isometry group of the universal cover contains �1M �Z
as a discrete subgroup (see section 12 of Avramidi [1]).

Related work

For closed locally symmetric spaces, Theorem 1 was proved by Borel (published
by Conner and Raymond, Theorem 3.2 of [5]) and Theorem 2 was proved by Farb
and Weinberger (Theorem 1.7 of [7]). For finite volume locally symmetric spaces
of non-zero Euler characteristic, Theorem 2 is proved (using L2 cohomology rather
than maximal periodic flats) in [1]. For noncompact locally symmetric spaces with
vanishing Euler characteristic, both theorems are new.

One also has results similar to Theorem 2 for aspherical manifolds (or orbifolds) which
are not locally symmetric. The analogous result for moduli spaces of algebraic curves—
Royden’s Theorem—is treated in [1] and Farb and Weinberger [8]. For a class of closed
aspherical manifolds which are tiled by locally symmetric spaces (piecewise locally
symmetric spaces) Theorem 2 is proved by Tam Nguyen Phan in [14]. For more general
aspherical Riemannian and Lorentz manifolds, one has results about the structure of
isometry groups ([7] and Melnick [11]), but no quantitative bound (depending only on
the topology of M ) on how many isometries of the universal cover are not covering
translations, ie, on the size of Isom. �M ; zg/=�1M (see Conjecture 1.6 in [7]).
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2 Maximal periodic flats in locally symmetric spaces

Our proof of Theorem 1 is based on a result of Pettet and Souto [15], which says that
the fundamental group of a locally symmetric space contains a free abelian subgroup
that ‘moves the boundary as much as possible’. We recall it now.
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Suppose that G is a connected semisimple Lie group with no compact or Euclidean
factors. Let K <G be a maximal compact and � <G a torsion free lattice. Suppose
that r WD rankRG is the real rank of G . By a maximal � –periodic flat we will mean a
totally geodesic r –dimensional flat subspace Rr �G=K that is invariant under some
free abelian subgroup Zr < � .1

We will use the following facts. For an arithmetic locally symmetric space, these are
standard (see Borel and Serre [3]). For general locally symmetric spaces, these facts
are described in [15]. The unpublished manuscript Morris [12] is a general reference
on arithmetic groups.

(1) The symmetric space G=K has a maximal � –periodic flat.

(2) There is a number q D rankQ.M / called the Q–rank of the locally symmetric
space M WD � nG=K and a .q� 1/–dimensional simplicial complex �Q.M /

on which the group � acts simplicially. The complex is called the rational Tits
building of the locally symmetric space M . It is homotopy equivalent to an
infinite wedge of .q� 1/–spheres, ie, �Q.M /Š

W
Sq�1 .

(3) The locally symmetric space M is the interior of a compact manifold M with
boundary @M . There is a � –equivariant homotopy equivalence:

@ �M !�Q.M /

For the rest of this paper, we will use Rr to denote a fixed maximal � –periodic flat
and Zr < � a free abelian subgroup of rank r which leaves that flat invariant. Pettet
and Souto prove the following:

Theorem 3 (Proposition 5.5 in [15]) The stabilizer StabZr .�k/ of a k –simplex in
the building �Q.M / is a free abelian group of rank � r � k � 1.

Remark 1 Heuristically, the stabilizer spans a torus, which is complementary to the
.kC1/–dimensional Q–split torus corresponding to �k , and together they span a torus
of rank rankZ.StabZr .�k//C kC 1� r .

Using this and a theorem of McMullen (6:1 in [15]), Pettet and Souto show that a
maximal periodic flat cannot be homotoped to the boundary. On the level of universal
covers, their theorem is:

1The image of Rr under G=K! � nG=K is what [15] call a maximal periodic flat.
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Theorem 4 (Theorem 1.2 in [15]) With the notation above, let

Rr
�G=K D �M � �M

be a maximal � –periodic flat invariant under a free abelian subgroup Zr < � . Then,

Rr cannot be Zr –equivariantly homotoped into the boundary @ �M .

The following consequence, pointed out to us by Tam Nguyen Phan, is the reason for
our initial interest in maximal periodic flats.

Corollary 5 If .M;g/ is a complete, Riemannian manifold homeomorphic to a finite
volume, aspherical locally symmetric space with no local torus factors, then the group of
homotopically trivial isometries K WD ker.�W Isom.M;g/!Out.�1M // is a compact
Lie group.

Proof The group K is a Lie group by the Myers–Steenrod Theorem [13]. Let N �M

be a collar neighborhood of the boundary. If the group K is not compact, then there
is a homotopically trivial isometry � that sends M nN into the collar neighborhood
of the boundary N . This isometry defines a Zr –equivariant homotopy of a maximal
periodic flat into a neighborhood of the boundary, contradicting Theorem 4.

We will deduce Theorem 4 from Theorem 3 using equivariant homology instead of
McMullen’s Theorem. This seems to be a simplification, and in any case we need it
for our proof of Theorem 1.

First, we will restate Theorem 4 in a slightly different form. Notice that if the flat Rr

can be Zr –equivariantly homotoped to the boundary, then we have a Zr –equivariant
map:

sW Rr
! @ �M !�Q.M /

Give the product Rr ��Q.M / the diagonal Zr –action. By projecting onto the first
factor, we get a bundle .Rr��Q.M //=Zr!T r over the torus T r with fibre �Q.M /.
The Zr –equivariant map

Rr v 7!.v;v/
������!Rr

�Rr id�s
���!Rr

��Q.M /

gives a section of this bundle. Thus, Theorem 4 follows from:

Theorem 6 Let Zr < � be a free abelian subgroup leaving invariant a maximal
� –periodic flat Rr � �M . Then, the bundle

(2) �Q.M /!
Rr ��Q.M /

Zr
! T r

does not have a section.
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Proof We will show that .Rr��Q.M //=Zr has no homology in dimension r , which
implies that (2) cannot have a section. (If there is a section s , then s.T r / represents
a non-trivial homology class.) Let C�.Rs/ and C�.�Q.M // be the simplicial chain
complexes of Zr –equivariant triangulations on Rr and �Q.M /, respectively. The
double complex

(3) E0
s;t WD Cs.R

r /˝Zr Ct .�Q.M //

has the spectral sequence

(4) E1
s;t WDHs.Z

r
ICt .�Q.M ///D)HsCt

�
Rr ��Q.M /

Zr

�
associated to it. We will use the fact that Zr acts with small stabilizers on the rational
Tits building �Q.M /. Note that

E1
s;t WDHs.Z

r
ICt .�Q.M ///

DHs.Z
r
I

M
�t

Zr
� �t /

D

M
�t

Hs.Z
r
IZr
� �t /

D

M
�t

Hs.StabZr .�t //

where the sum is taken over all Zr –orbits of t –simplices. By the result of Pettet and
Souto (Theorem 3), StabZr .�t / is a free abelian group of rank � r � t � 1, so we find
that E1

s;t D 0 for s � r � t , ie, for sC t � r . Since this spectral sequence converges to
the homology of .Rr ��Q.M //=Zr , we find that

(5) Hk

�
Rr ��Q.M /

Zr

�
D 0 for k � r:

This proves Theorem 6.

Homology of @
z

M =Zr

For future use, we rephrase the above computation in terms of the homology of the
Borel–Serre boundary. We have homotopy equivalences

(6) @ �M =Zr
 .Rr

� @ �M /=Zr
! .Rr

��Q.M //=Zr :

The left map is a homotopy equivalence because it is the projection map of a bundle
with fibre Rr . The right map is the obvious homotopy equivalence obtained from the
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Zr –equivariant homotopy equivalence @ �M !�Q.M /. Thus, equation (5) shows that
the homology of the Borel–Serre boundary of the Zr cover vanishes in dimensions
� r , ie:

(7) Hk.@
�M =Zr /D 0 for k � r

This equation, the long exact homology sequence

(8) � � � !H�.
�M =Zr /!H�.

�M =Zr ; @ �M =Zr /!H��1.@
�M =Zr /! � � �

and the fact that �M =Zr has no homology above dimension r (it is homotopy equivalent
to the r –torus) implies that:

(9) Hk.
�M =Zr ; @ �M =Zr /D 0 for k > r

Everything we have said so far is valid for homology with coefficients � in Z;R and
also with coefficients in the field Fp of p elements. It is useful to rewrite this in terms
of homology with local coefficients in the Œ�� module Œ�=Zr � W

Hk.@M I Œ�=Z
r �/D 0 for k � r(10)

Hk.M ; @M I Œ�=Zr �/D 0 for k > r(11)

3 Homotopically trivial Z=p–actions

3.1 Outline of proof of Theorem 1

We have seen that the group K D ker.�/ of homotopically trivial isometries is a
compact Lie group (Corollary 5). Thus, to show this group is trivial we only need
to check that there are no elements of prime order p . In other words, we need to
show that the locally symmetric space M has no non-trivial, homotopically trivial

Z=p–actions. We lift the Z=p–action to the cover �M =Zr , look at the fixed point set
‘near the boundary’ of this cover, and use (10) and (11) (with � D Fp ) to show the
fixed point set is everything.

The Z=p–action may not extend to the Borel–Serre boundary of M , so we need to
replace homology of the boundary (10) and homology relative to the boundary (11) by
homology of the end and homology with closed supports, respectively. We recall these
notions in the next two subsections.
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3.2 Homology with closed supports

Given a � –cover zX ! X , denote by C cl
� .X IV / the complex of chains with closed

support on X and coefficients in the Œ��–module V . More precisely, first define
C cl
� .X I Œ��/ as the complex of those chains on the cover zX that for every compact

set K � zX meet only finitely many �–translates of K . Then, define C cl
� .X IV / WD

C cl
� .X I Œ��/˝Œ�� V .

If M is the interior of a compact manifold with boundary, @M � .0;1/ is an open
neighborhood of the boundary, and M0 WDM n .@M � .0;1// its complement, then
the relative homology of the pair .M0; @M0/ is isomorphic to homology with closed
supports on M via:

H�.M0; @M0IV /ŠH cl
� .M IV /(12)

.c; @c/ 7! c [@c @c � Œ0;1/(13)

One way to see this is to note that the map is Poincaré dual (V.9.2 in [4]) to the
cohomology isomorphism H m��.M IO˝V /ŠH m��.M0IO˝V /, where O is the
orientation module.

3.3 Homology of the end

The complex C e
� .X IV / of chains on the end of X is defined to be the quotient:

(14) 0! C�C1.X IV /! C cl
�C1.X IV /! C e

� .X IV /! 0

Denote the homology of this complex by H e
� .X IV / WDH�.C

e
� .X IV //. Associated

to the short exact sequence of chain complexes (14) there is a long exact homology
sequence:

(15) � � � !H cl
�C1.X IV /!H e

� .X IV /!H�.X IV /! � � �

Putting together the long exact homology sequence of the pair .M0; @M0/ with the
long exact homology sequence (15), we get a commutative diagram:

� � � ! H�C1.M0; @M0IV / ! H�.@M0IV / ! H�.M0IV / ! � � �

# # #

� � � ! H cl
�C1

.M IV / ! H e
� .M IV / ! H�.M IV / ! � � �

The left vertical arrow is an isomorphism by (12) and the right vertical arrow is an
isomorphism because (ordinary) homology is homotopy invariant, so the middle arrow
is an isomorphism:

H�.@M0IV / Š H e
� .M IV /(16)

a 7! a� Œ0;1/
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Putting together (10), (11), (12) and (16) we get:

H e
k .M I Œ�=Z

r �/D 0 for k � r(17)

H cl
k .M I Œ�=Z

r �/D 0 for k > r(18)

3.4 Smith theory

In this subsection we recall the Smith theory we need to compare the homology of
the fixed set of a homotopically trivial Z=p (or S1 )–action to the homology of the
ambient space. One has the following amplification of the classical Smith theorem,
which extends results of Conner and Raymond (see the appendix of [5]).

Theorem 7 (see Theorem 9 in [1]) Let M be an m–dimensional smooth aspherical
manifold and �M its universal cover. Suppose we have a smooth .Z=p/n –action on�M that commutes with the covering action of the fundamental group � WD �1M . Let
F �M be the fixed point set of the projected .Z=p/n –action on M . Let V be an
Fp Œ��–module. Then, the inclusion of the fixed point set induces isomorphisms on
homology and cohomology with coefficients in V , ie:

H�.F IV /ŠH�.M IV /(19)

H�.M IV /ŠH�.F IV /(20)

If we have a smooth .S1/n –action on �M that commutes with � then the same isomor-
phisms are true with coefficients in any RŒ��–module V .

Proof For Z=p–actions this is Theorem 9 in [1]. For .Z=p/n –actions (.S1/n –actions)
this is proved in exactly the same way, starting with the fact that the fixed set of a
.Z=p/n –action (.S1/n –action) on the contractible manifold �M is Fp –acyclic (R–
acyclic).

The cohomology isomorphism can be translated to an isomorphism for homology with
closed supports.

Corollary 8 If the fixed point set has dimension f , then we have an isomorphism of
homology with closed supports:

(21) H cl
�Cm�f .M IV /ŠH cl

� .F IV /

Remark 2 Geometrically, the isomorphism (21) is obtained by sending a cycle c on
M to the transverse intersection c \F on F .
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Proof Denote by OM and OF the orientation Œ��–modules on M and F , respectively.
If � D F2 , then these modules are trivial, so they are equal. Else, then the normal
bundle of the fixed point set (to an .S1/n –action or .Z=p/n –action for an odd prime
p ) is orientable, so again the orientation modules are equal. Combining this with the
Poincaré duality isomorphisms (Theorem V.9.2 of [4]),

H cl
� .M IV /ŠH m��.M IOM ˝V /(22)

H cl
� .F IV /ŠHf��.F IOF ˝V /(23)

and the cohomology isomorphism (20) proves (21).

3.5 Proof of Theorem 1

Since M is a locally symmetric space with no local torus factors, its fundamental group
is centerless (10.3.10 of Eberlein [6]). Thus, by Proposition 9, the homotopically trivial
Z=p–action on M lifts to a Z=p–action on �M that commutes with the covering
action of the fundamental group � . This lets one apply the Smith theory from the
previous subsection.

Let F �M be the fixed set of Z=p acting on M . Denote by f and m the dimensions
of F and M , respectively. Our goal is to show that f Dm, ie, that the fixed point
set has the same dimension as the manifold M . Since the fixed point set is a closed
submanifold of M , and M is connected, this will show that it is everything, ie, that
the Z=p–action is trivial.

In this proof we will use � D Fp coefficients. The inclusion F ,!M induces maps on
homology, homology with closed supports and homology of the end with coefficients
in V WD Fp Œ�=Zr �. These fit together in the commutative diagram

0 Fp

jj jj

� � � ! H e
r .M IV / ! Hr .M IV / ! � � �

" jj

� � � ! H e
r .F IV /

 
! Hr .F IV / ! H cl

r .F IV /

jj

H cl
rCm�f

.M IV /

whose rows are long exact homology sequences. The top row is computed using (17) and
the fact that Hr .M IFp Œ�=Zr �/DHr . �M =Zr IFp/D Fp . The vertical isomorphisms
are the Smith theory isomorphisms (19) and (21). If m> f then equation (18) shows
that  is onto. This is a contradiction, since the commutative diagram shows that  is
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the zero map. Thus, mD f , which means the fixed point set is the entire manifold M ,
ie, the homotopically trivial Z=p–action is actually trivial. This completes the proof
of Theorem 1.

4 Proof of Theorem 2

The following proof uses methods developed in [7]. It closely follows the argument
given in sections 7; 8 and 10 of [1] and is collected here for the convenience of the
reader. The main new ingredient is Theorem 1. We will repeatedly use the following
standard fact about group extensions.

Proposition 9 (IV.8.8. in Mac Lane [10]) A group extension

1!A< B
�
! C ! 1

is determined by:

(1) the conjugation representation �W C ! Out.A/, and

(2) a cohomology class in the group H 2.C IZ.A//.

In particular, if both the center Z.A/ and the representation � are trivial, then the
extension splits as a product. In this case:

� there is a projection B
'
!A which restricts to the identity map on A, and

� a section C
s
! B whose image s.C / commutes with A.

Let � WD �1M be the fundamental group, I WD Isom. �M ; zg/ the isometry group of
the universal cover and I0 its connected component. The Myers–Steenrod theorem
[13] implies I is a Lie group acting smoothly and properly on �M . Let K < I be a
compact Lie group of isometries.

Step 1 If � commutes with the compact Lie group K , then K D 1

To show that K is trivial, it suffices to show that it has no elements � of prime order
p . Since � commutes with � , it descends to a homotopically trivial Z=p–action on
the locally symmetric space M . We showed in the proof of Theorem 1 that there are
no such actions.
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Step 2 If � normalizes the compact Lie group K , then K D 1

We will successively eliminate characteristic compact subgroups. Denote by K0 the
identity component of the compact Lie group K . It can be expressed as an extension

(24) 1!Ksol
0 !K0!Kss

0 ! 1

of the maximal normal connected solvable subgroup Ksol
0
<K by a semisimple group

Kss
0

. The group � acts by conjugation on K , hence also on the connected component
K0; and on its characteristic subgroup Ksol

0
. The group Ksol

0
is compact, connected

and solvable, so it is a torus .S1/n . It contains a finite subgroup .Z=p/n < .S1/n

consisting of the elements of order 1 and p . This subgroup is characteristic, so � acts
on it. Since .Z=p/n is finite, a finite index subgroup � 0 < � acts trivially on it. In
other words, � 0 commutes with .Z=p/n . Now Step 1 implies that nD 0 so that K0

is semisimple. Notice that:

� The center Z.K0/ is trivial: Indeed, the center is finite since the group K0 is
semisimple. Thus, a finite index subgroup of � commutes with it. Hence, Step 1
implies the center is trivial.

� Conjugation gives a homomorphism �W � ! Out.K0/ from � to the group
Out.K0/ of topological outer automorphisms of K0 . This group is finite because
K0 is semisimple with trivial center. Thus, replacing � with a finite index
subgroup if necessary, we may assume the homomorphism � is trivial.

Now, Proposition 9 implies that the extension

1!K0!K0�! �! 1

has a projection 'W K0� ! K0 and section sW � ! K0� whose image commutes
with K0 . Note that the section s.�/ is discrete because it is a compact perturbation
of � .

If r � 1 then eliminating any S1 –action (and hence K0 –action) commuting with
s.�/ is elementary: in this case the homological dimension of � is �m� 1 so Smith
theory implies the fixed set has dimension �m�1. Since the fixed set of S1 has even
codimension, the action must be trivial. Now, we deal with the r � 2 case.

Notation Denote the image of the section s by �� , let Zr
� WD s.Zr / and let M� WD�M =�� . The closure of the image of 'W Zr !K0 is an abelian subgroup and, passing

to a finite index subgroup of Zr if necessary, we may assume that the closure is a torus
'.Zr /D .S1/n DW T . Let F� �M� be the fixed point set of T . Let V WDRŒ�=Zr �.
Pick a homotopy equivalence h between M and M � that on the universal cover �M
Geometry & Topology, Volume 17 (2013)
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takes the �–action to the ��–action.2 This gives an identification V Š RŒ��=Zr
��.

The manifolds M and M� have a common (orbifold) quotient M�=K0 D
�M =K0� .

Let Et be an exhaustion of the end of M�=K0 , zEt its lift to the universal cover, Mt

and M�t its lifts to M and M� , respectively, and F�t WDM�t \F� its restriction to
the fixed point set.

Remark 3 Although M and M� are homotopy equivalent, it is not at all clear that
they are properly homotopy equivalent, so we cannot directly apply Step 1 to M� to
eliminate K0 .

Assume that the torus T is non-trivial, so that its fixed set has dimension f < m.
Starting from this, we will arrive at a contradiction. The key point is that the actions of
Zr and Zr

� differ by elements of T , so on the fixed point set zF� � �M of T the two
actions are identical. Thus, we get a map zF�=Zr

�!
�M =Zr , which is an R–homology

isomorphism (the proof of Theorem 9 in [1] applies because zF� is R–acyclic). Pick a
large enough t so that Mt is contained in a collar neighborhood of the boundary @M .
Then the map from the fixed point set restricts to a map:

eF�t =Zr
�!

eMt =Z
r
! @ �M =Zr

Putting these observations together, we get the commutative diagram

(25)
0D Hr .@

�M =Zr IR/ �! Hr . �M =Zr IR/ DR
" jj

Hr . zF�t=Zr
�IR/ �! Hr . zF�=Zr

�IR/

showing the bottom horizontal map is zero.

Claim The map H e
r .F�IV /

 
!Hr .F�IV /DR is also zero

Proof The map  is the connecting homomorphism arising from the short exact
sequence of chain complexes (14). From the chain level definition, one sees that this
homomorphism factors through

Hr . zF�t=Z
r
�IR/DHr .F�t IV /!H�.F�IV /DHr . zF�=Z

r
�IR/

for every t . Thus, it is the zero map.

2That is, zhW �M ! �M with zh.
x/D s.
 /zh.x/ .
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On the other hand, the long exact homology sequence (15) shows  is onto since

H cl
r .F�IV /ŠHf�r .F�IO˝V / by Poincaré duality;

ŠHf�r .M�IO˝V / by Smith theory with R–coefficients .20/;

ŠHf�r .M IO˝V / via the homotopy equivalence hW M !M�;

ŠH cl
rCm�f .M IV / by Poincaré duality;

D 0 by (18) since f <m:

This is a contradiction. Thus, the torus T must be trivial, ie, Zr is in the kernel of the
homomorphism ' . Since r � 2 and � is an irreducible lattice, the Margulis normal
subgroup theorem (Theorem 8.1.2 in [19]) shows that the image of ' is finite. Its
kernel is a finite index subgroup � 0 < � that commutes with K0 . Now, we can apply
Step 1 to � 0 to show that K0 is trivial.

Remark 4 The argument actually shows that '.A/ is finite for any subgroup A< �

that preserves some maximal � –periodic flat. One can probably deduce from this that
'.�/ is finite without invoking the normal subgroup theorem.

We have shown that K is a finite group. Consequently, some finite index subgroup
of � commutes with it and yet another application of Step 1 shows K is trivial. This
completes the proof of Step 2.

Remark 5 We would like to mention two other ways to prove Step 2.

The first way is to observe that the commutative diagram (25) can be extended to a
commutative diagram

Hr .@
�M =Zr IR/ �! Hr . �M =Zr IR/
" jj

Hr . zEt=Zr
�IR/ �! Hr . �M =Zr

�IR/

mapping from the homology of all of �M =Zr
� (not just the fixed point set) with the

vertical maps obtained by smearing chains out by the torus T via Thurston’s smearing
method.3 From this diagram one can deduce that H e

�r .M�IRŒ��=Z
r
��/D 0. Now one

can do the argument in the proof of Theorem 1 with .� DR coefficients) directly on
the manifold M� to eliminate any homotopically trivial S1 –actions.

The second way is to do the action dimension + surgery argument from page 6 of [8]
since one knows by Bestvina and Feighn [2] that lattices in locally symmetric spaces
do not act properly discontinuously on contractible manifolds of smaller dimension.

3Smearing is described in section 6.2 of [18]. See also section 4.2 of [9].
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Step 3 I0 is semisimple with trivial center and no compact factors

The connected Lie group I0 can be expressed as an extension

(26) 1! I sol
0 ! I0! I ss

0 ! 1

of the maximal connected solvable normal subgroup of I0 by a semisimple group I ss
0

.
The group �0 WD � \ I0 also has a unique maximal normal solvable subgroup [17],
denoted �sol

0
.

Claim �sol
0

is trivial The solvable group �sol
0

is a characteristic subgroup of �0 , so
it is a normal subgroup of � . On the other hand, recall that the fundamental group
� of a locally symmetric space with no local torus factors has no non-trivial abelian
normal subgroups (10.3.10 of [6]), hence no non-trivial normal solvable subgroups.
This proves the claim.

Farb and Weinberger [8] show that �0 is a lattice in I0 . (While their arguments are
stated for the mapping class group, their arguments only use the assumption that zg has
finite � –covolume and no particular properties of the mapping class group situation.)
Then, they apply Prasad’s Lemma 6 in [16] and get that the solvable part I sol

0
is

compact and the center of the semisimple part Z.I ss
0
/ is finite. Since the group � acts

on the solvable part I sol
0

, Step 2 implies the solvable part is trivial. In other words,
I0 D I ss

0
is semisimple. Since � acts by conjugation on the center Z.I ss

0
/ (a finite

group), Step 2 implies that the center is trivial. Since the product of the compact factors
is a compact characteristic subgroup of I0 , Step 2 implies that it is trivial. In summary,
we have shown that I0 is semisimple group with trivial center and no compact factors.

Step 4

The group generated by I0 and � is an extension:

(27) 1! I0! hI0; �i
�
! �=�0! 1

Since I0 is semisimple with trivial center, its outer automorphism group is finite. Thus,
the kernel of the conjugation homomorphism �! Out.I0/ is a finite index subgroup
� 0 < � . Let � 0

0
D � 0\ I0 . Proposition 9 gives a projection 'W hI0; �

0i ! I0 , which
restricts to the identity map on I0 . One easily checks that the product map

(28) hI0; �
0
i
'��
���! I0 ��

0=� 00

is an isomorphism that maps � 0 onto the product � 0
0
� � 0=� 0

0
. Now, we use the

hypothesis that � 0 is irreducible to conclude that either � 0
0
D 1 or � 0

0
is a finite index

subgroup of � 0 . We look at the two possibilities.
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Case 1 � 0
0
< � 0 is a finite index subgroup We will show that in this case .M;g/

is isometric to a locally symmetric space. Since �0 is a lattice in the Lie group I0 ,
the finite index subgroup � 0

0
is also a lattice in I0 . Denote by K < I0 a maximal

compact subgroup. Then, the quotient I0=K is a symmetric space with no compact or
Euclidean factors. Since � 0

0
is a finite index subgroup of � , Margulis–Mostow–Prasad

rigidity implies the locally symmetric space � 0
0
n I0=K is isometric to a finite cover of

.M; hsym/. In particular, the two spaces have the same dimension. On the other hand,
an orbit of the group I0 acting on �M has the form I0 � x D I0=Kx for a compact
subgroup Kx < I0 . We get

dim �M D dim I0=K � dim I0=Kx � dim �M
where all the inequalities are actually equalities. This means the isometry group I0 is
acting transitively on �M , so that . �M ; zg/ is a symmetric space and the quotient .M;g/

is locally symmetric.

Case 2 � 0
0
D 1 The group I0 is compact, since it contains � 0

0
as a lattice. On the

other hand, we have shown that I0 has no compact factors, so I0 D 1, ie, the isometry
group I is discrete. Since � is a lattice in I , we conclude that it is a finite index
subgroup of I . Thus, there is a further finite index subgroup � 00<� that is normalized
by I . Conjugation by I gives a group homomorphism:

�W I=� 00! Out.� 00/

An element in the kernel of this homomorphism is a homotopically trivial isometry of
. �M =� 00; zg/. By Theorem 1, there are no such homotopically trivial isometries, so the
map � is injective. By Margulis–Mostow–Prasad rigidity, the image �.I=� 00/ can be
represented by isometries of the locally symmetric metric hsym . Thus, the group L

of lifts

(29) 1! � 00!L! �.I=� 00/! 1

can be represented by a discrete group of isometries of the symmetric metric. This
extension is determined by � since � 00 has trivial center (Proposition 9) so the group
of lifts L is isomorphic to I . We have shown that I is a group of isometries of the
symmetric metric. Let � act on the universal cover �M by isometries via:

� < I ŠL< Isom. �M ; zhsym/
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By Margulis–Mostow–Prasad rigidity, the quotient . �M =�; zhsym/ is isometric to
.M; hsym/. Consequently,

(30) jI=�j D
vol. �M =�; zhsym/

vol. �M =I; zhsym/
�

vol.M; hsym/

".hsym/

where ".hsym/ is the volume of the smallest locally symmetric orbifold covered by
.M; hsym/. This completes the proof of Theorem 2.

Remark 6 If . �M ; zhsym/ is a symmetric space with no compact or Euclidean factors,
then the volume of the smallest locally symmetric orbifold isometrically covered by
. �M ; zhsym/ is bounded below by a positive constant ".zhsym/ that depends only on the
symmetric space. This is a theorem of Kazhdan and Margulis (cf XI.11.9 in [17]).
By contrast, the real line covers circles of arbitrarily small volume. Similarly, any
symmetric space with a compact or Euclidean factor will support compact quotients of
arbitrarily small volume.
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