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Embedability between
right-angled Artin groups

SANG-HYUN KIM

THOMAS KOBERDA

In this article we study the right-angled Artin subgroups of a given right-angled
Artin group. Starting with a graph � , we produce a new graph through a purely
combinatorial procedure, and call it the extension graph �e of � . We produce a
second graph �e

k
, the clique graph of �e , by adding an extra vertex for each complete

subgraph of �e . We prove that each finite induced subgraph ƒ of �e gives rise
to an inclusion A.ƒ/! A.�/ . Conversely, we show that if there is an inclusion
A.ƒ/!A.�/ then ƒ is an induced subgraph of �e

k
. These results have a number

of corollaries. Let P4 denote the path on four vertices and let Cn denote the cycle
of length n . We prove that A.P4/ embeds in A.�/ if and only if P4 is an induced
subgraph of � . We prove that if F is any finite forest then A.F / embeds in A.P4/ .
We recover the first author’s result on co-contraction of graphs, and prove that if
� has no triangles and A.�/ contains a copy of A.Cn/ for some n � 5 , then �
contains a copy of Cm for some 5 �m � n . We also recover Kambites’ Theorem,
which asserts that if A.C4/ embeds in A.�/ then � contains an induced square. We
show that whenever � is triangle-free and A.ƒ/ <A.�/ then there is an undistorted
copy of A.ƒ/ in A.�/ . Finally, we determine precisely when there is an inclusion
A.Cm/!A.Cn/ and show that there is no “universal” two–dimensional right-angled
Artin group.

20F36

1 Introduction

This article gives a systematic study of the existence of embeddings between right-
angled Artin groups.

By a graph, we mean a (possibly infinite) simplicial 1–complex; in particular, we do
not allow loops or multi-edges. For a graph � , we denote its vertex set by V .�/ and
its edge set by E.�/. One can define the right-angled Artin group A.�/ with the
underlying graph � by the following presentation:

A.�/D hV .�/ j Œv; v0�D 1 for each fv; v0g 2E.�/i:
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It is a fundamental fact that two right-angled Artin groups are isomorphic if and only
if their underlying graphs are isomorphic; see Kim, Makar-Limanov, Neggers and
Roush [20], also Sabalka [29], Koberda [24]. Note that A.�/ is free Abelian for a
complete graph � , and free for a discrete graph � . In these two extreme cases, all the
subgroups are right-angled Artin groups of the same type; namely, free Abelian or free,
respectively.

Subgroups of more general right-angled Artin groups are diverse in their isomorphism
types. If a group H embeds into another group G , we say G contains H and write
H � G . By a long cycle, we mean a cycle of length at least five. If � is a long
cycle, then A.�/ contains the fundamental group of a closed hyperbolic surface; see H
Servatius, Droms and B Servatius [31]. Actually, the fundamental group of any closed
surface with Euler characteristic less than �1 embeds into some right-angled Artin
group; see Crisp and Wiest [13]. A group H is said to virtually embed into another
group G if a finite index subgroup of H embeds into G . A recent outstanding result
in 3–manifold theory is that the fundamental group of an arbitrary closed hyperbolic
3–manifold virtually embeds into some right-angled Artin group; see Agol [1]. In this
paper, we are mainly concerned about subgroup relations between various right-angled
Artin groups.

Question 1.1 Is there an algorithm to decide whether there exists an embedding
between two given right-angled Artin groups?

We remark that the answer to Question 1.1 remains unchanged if we replace “embedding”
with “virtual embedding”. Indeed, suppose � and ƒ are finite graphs and we have
an embedding H !A.�/, where H �A.ƒ/ is a finite index subgroup. Every finite
index subgroup of A.ƒ/ contains a copy of A.ƒ/. To see this, let V be the set of
vertices of ƒ, viewed as generators of A.ƒ/, and let H �A.ƒ/ have finite index N .
Without loss of generality, H is normal. Then the group generated by fvN j v 2 V g is
contained in H and is isomorphic to A.ƒ/.

Let � be a graph and U be a set of vertices of � . The induced subgraph of � on U

is the subgraph ƒ of � consisting of U and the edges whose endpoints are both in
U ; we also say � contains an induced ƒ and write ƒ� � . It is standard that ƒ� �
implies that A.ƒ/�A.�/. By a clique of � , we mean a complete subgraph of � .

Definition 1.2 Let � be a graph.

(1) The extension graph of � is the graph �e where the vertex set of �e consists
of the words in A.�/ that are conjugate to the vertices of � , and two vertices
of �e are adjacent if and only if those two vertices commute, when considered
as words in A.�/.
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(2) The clique graph of � is the graph �k such that the vertex set is the set of
nonempty cliques of � and two distinct cliques K and L of � correspond to
adjacent vertices of �k if and only if K and L are both contained in some
clique of � .

Our first main theorem describes a method of embedding a right-angled Artin group
into A.�/ using extension graphs.

Theorem 1.3 For finite graphs ƒ and � , ƒ� �e implies A.ƒ/�A.�/.

The next theorem limits possible embeddings between right-angled Artin groups.
Actually, we will prove a stronger version of Theorem 1.4, that is, Theorem 4.3.

Theorem 1.4 For finite graphs ƒ and � , A.ƒ/�A.�/ implies ƒ� �e
k

.

For many of the previously known examples of embeddings between right-angled Artin
groups A.ƒ/ and A.�/, there exists an inclusion ƒ! �e . We therefore ask:

Question 1.5 For which finite graph � (or, for which finite graph ƒ) do we have
A.ƒ/�A.�/ if and only if ƒ� �e ?

In general, A.ƒ/�A.�/ does not imply that ƒ� �e . M Casals-Ruiz has informed
the authors of examples found with A Duncan and I Kazachkov giving negative answers
to Question 1.5 (Casals-Ruiz, Duncan and Kazachkov [8]).

Theorems 1.3 and 1.4 have a number of corollaries, many of which provide examples
that positively answer Question 1.5. Let � be a graph and L be a set of vertices in
� . Write DL.�/ for the double of � along L; this means DL.�/ is obtained by
taking two copies of � and gluing them along the copies of the induced subgraph on
L. For a vertex v of � , the link of v is the set of adjacent vertices of v and denoted
as Lk�.v/ or Lk.v/. The star of v is the set Lk.v/[ fvg and denoted as St�.v/ or
St.v/. An easy argument on HNN–extensions shows that for a graph � and its vertex t ,
A.DLk�.t/.� X ftg// � A.�/; see Lyndon and Schupp [25], and Crisp, Sageev and
Sapir [12]. We strengthen this result as follows.

Corollary 1.6 Let � be a finite graph and t be a vertex of � . Then A.DSt�.t/.�//�

A.�/.

We note that the above corollary was also observed by Bestvina, Mladen and Kleiner,
Bruce and Sageev in [5], and Bell in [4].

Question 1.5 has a positive answer is when ƒ is a forest, namely, a disjoint union of
trees. We first characterize right-angled Artin groups containing or contained in A.P4/.

Geometry & Topology, Volume 17 (2013)



496 Sang-hyun Kim and Thomas Koberda

Theorem 1.7 For a finite graph � , A.P4/�A.�/ implies that P4 � � .

Theorem 1.8 Any finite forest ƒ is an induced subgraph of P e
4

; in particular, A.ƒ/

embeds into A.P4/.

Corollary 1.9 Let ƒ and � be finite graphs such that ƒ is a forest. Then A.ƒ/ �

A.�/ if and only if ƒ� �e .

We will use the shorthand Cn to denote the graph that is a cycle of length n and the
shorthand Pn for the graph which is a path on n vertices (namely, of length n�1). We
call C3 a triangle, and C4 a square. When ƒ is a square, we will deduce an answer
to Question 1.5 from Theorem 1.3 in a stronger form as follows; the same result was
originally proved by Kambites [18].

Corollary 1.10 (cf [18]) For a finite graph � , F2 �F2 Š A.C4/ � A.�/ implies
that � contains an induced square.

A graph � is ƒ–free for some graph ƒ if � contains no induced ƒ. We positively
resolve Question 1.5 when the target graph � is triangle-free; this includes the cases
when � is bipartite or a cycle of length at least 4. It is easy to see that a graph � is
triangle-free if and only the associated Salvetti complex of A.�/ has dimension two.

Theorem 1.11 Suppose ƒ and � are finite graphs such that � is triangle-free. Then
A.ƒ/ embeds in A.�/ if and only if ƒ is an induced subgraph of �e .

A corollary of Theorem 1.11 is the following quantitative resolution of Question 1.5
when the target graph is a cycle:

Theorem 1.12 Let m; n� 4. Then A.Cm/�A.Cn/ if and only if mD nCk.n� 4/

for some k � 0.

In particular, A.C5/ contains A.Cm/ for every m� 6. We write �opp for the comple-
ment graph of a graph � ; this means �opp is given by completing � and deleting the
edges which occur in � . The following result, originally due to the first author,1 is
also an easy consequence of Theorem 1.3.

Corollary 1.13 (cf [22]) For n � 4, A.C
opp
n�1

/ embeds into A.C
opp
n /; in particular,

A.C
opp
n / contains A.C5/DA.C

opp
5
/ for any n� 6.

1The complement graph of C6 was the first known example of a graph not containing a long induced
cycle such that the corresponding right-angled Artin group contains the fundamental group of a closed
hyperbolic surface (Kim [22]); see also [12] and Kim [23].
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An interesting, but still unresolved case of Question 1.5 is when ƒ is a long cycle. A
graph � is called weakly chordal if � does not contain an induced Cn or C

opp
n for

n � 5. We will show that �e contains an induced long cycle if and only if � is not
weakly chordal (Lemma 3.9). Hence, Question 1.5 for the case when ƒ is a long cycle
reduces to the following:

Question 1.14 (Weakly Chordal Question) For which weakly chordal graphs � does
A.�/ avoid subgroups isomorphic to A.Cn/ for every n� 5?

We note the Weakly Chordal Question has a positive answer when � is triangle-free or
square-free; see Corollary 8.2. However, Casals-Ruiz, Duncan and Kazachkov [8] have
shown that A.P

opp
8
/ contains a copy of A.C5/, even though P

opp
8

is weakly chordal.

In geometric group theory, one often wants to understand the geometry of an inclusion
H <G between two finitely generated groups H and G . Both G and H have word
metrics coming from their finite generating sets, but the distances between elements
in H with respect to the word metric on H might be very different from the distance
in the word metric on G . A subgroup H < G is called undistorted if the inclusion
map is a quasi-isometry. Precisely, let dH and dG be the word metrics induced by the
finite generating sets for H and G . The subgroup H <G is undistorted if there exist
constants K > 1 and C > 0 such that for all pairs x;y 2H , we have

1

K
� dG.x;y/�C � dH .x;y/�K � dG.x;y/CC:

Distortion of subgroups (or lack thereof) is independent of the choice of generating sets.
Many naturally occurring finitely generated subgroups of finitely generated groups are
undistorted. For instance in [10], Clay, Leininger and Mangahas prove that many right-
angled Artin subgroups of mapping class groups are quasi-isometrically embedded. On
the other hand, it is well-known that right-angled Artin groups contain many highly
distorted subgroups. We will prove the following result, which can be viewed as a
corollary of Theorem 1.11:

Corollary 1.15 Suppose � is triangle-free and suppose that A.ƒ/ < A.�/. Then
there is a subgroup H <A.�/ that is undistorted and such that H ŠA.ƒ/.

A final topic which we address in this paper is the (non)-existence of universal right-
angled Artin groups. A right-angled Artin group is n–dimensional if its cohomological
dimension is n. An n–dimensional finitely generated right-angled Artin group G is
called a universal n–dimensional right-angled Artin group if G contains copies of
each n–dimensional right-angled Artin group. Since F2 contains every other finitely
generated free group and since free groups are precisely the groups with cohomological
dimension one, F2 is a universal 1–dimensional right-angled Artin group. We prove:
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Theorem 1.16 There does not exist a universal two–dimensional right-angled Artin
group.

This paper is organized as follows. In Section 2, we recall basic facts on right-angled
Artin groups and mapping class groups. Definition and properties of extension graphs
will be given in Section 3. We prove Theorems 1.3 and 1.4 in Section 4. Section 5
mainly discusses A.P4/ and as a result, we resolve Question 1.5 when ƒ or � is
a forest. Answers to Question 1.5 for complete bipartite graphs will be given in
Section 6. Results on co-contraction are proved in Section 7. In Sections 8, we resolve
Question 1.5 for � a triangle-free graph, and give the quantitative version when �
and ƒ are both long cycles. In Section 9, we prove that there is no universal two–
dimensional right-angled Artin group. Section 10 contains a topological proof of
Corollary 1.6.

The reader may note some similarity between the method of proof of Theorem 1.4
and the main result of M Kapovich in [19], where he proves that each right-angled
Artin group embeds in the group of Hamiltonian symplectomorphisms of a symplectic
manifold.
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2 Background material

2.1 Centralizers of right-angled Artin groups

Suppose � is a graph. Each element in V .�/[V .�/�1 is called a letter. Any element
in A.�/ can be expressed as a word, which is a finite multiplication of letters. Let
w D a1 � � � al be a word in A.�/ where a1; : : : ; al are letters. We say w is reduced if
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any other word representing the same element in A.�/ as w has at least l letters. We
say w is cyclically reduced if any cyclic conjugation of w is reduced. The support of
a reduced word w is the smallest subset U of V .�/ such that each letter of w is in
U [U�1 ; we write U D supp.w/.

We will use the notation h�1gh D gh for two group elements g and h. Let g be
an element in A.�/. There exists p 2 A.�/ such that g D wp for some cyclically
reduced word w . Put B D supp.w/, and let B1;B2; : : : ;Bk be the vertex sets of the
connected components of �opp

B
, where �B is the induced subgraph of � on B . Then

one can write w D g
e1

1
g

e2

2
� � �g

ek

k
where supp.gi/ 2 Bi , ei > 0 and hgii is maximal

cyclic for each i D 1; : : : ; k . We say each gi is a pure factor of g , and the expression
gDp�1g

e1

1
� � �g

ek

k
p is a pure factor decomposition of g ; this decomposition is unique

up to reordering (Servatius [30]). In the special case when p D 1 D k and e1 D 1,
g is a pure factor. The centralizer of a word in A.�/ is completely described by the
following theorem.

Theorem 2.1 (Centralizer Theorem [30]) Let � be a finite graph and

g D p�1g
e1

1
� � �g

ek

k
p

be a pure factor decomposition of g in A.�/. Then any element h in the centralizer of
g can be written as

hD p�1g
f1

1
� � �g

fk

k
g0p

for some integers f1; : : : ; fk and g0 2 A.�/ such that each vertex in supp.g0/ is
adjacent to every vertex in

S
i supp.gi/ in � .

For two graphs �1 and �2 , the join �1 ��2 of �1 and �2 is defined by the relation
�1 ��2D .�

opp
1

`
�

opp
2
/opp . Note that A.�1 ��2/DA.�1/�A.�2/. A graph is said

to split as a nontrivial join if it can be written as �1 ��2 for nonempty graphs �1 and
�2 . As a corollary of Theorem 2.1, one can describe when the centralizer of a reduced
word is non-cyclic.

Corollary 2.2 (Behrstock and Charney [3]) Let g 2A.�/ be cyclically reduced. The
following are equivalent:

(1) The centralizer of g is noncyclic.

(2) The support of g is contained in a non-trivial join of � .

(3) The supports of the words in the centralizer of g is contained in a non-trivial
join of � .
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The following is well-known and stated at various places, such as in Charney and
Vogtmann [9].

Lemma 2.3 For a finite graph � , the maximum rank of a free Abelian subgroup of
A.�/ is the size of a largest clique in � .

2.2 Mapping class groups

The material in the subsection can be found in most general references on mapping
class groups, such as Farb and Margalit’s book [16]. Let † be a surface of genus g� 0

and n � 0 punctures. The mapping class group of † is defined to be the group of
components of the group of orientation-preserving homeomorphisms of †. Precisely,

Mod.†/Š �0.HomeoC.†//:

It is a standard fact that mapping class groups are finitely presented groups. The
following result is due to Nielsen and Thurston:

Theorem 2.4 Let  2Mod.†/. Then exactly one of the following three possibilities
occurs:

(1) The mapping class  has finite order in Mod.†/.

(2) The mapping class  has infinite order in Mod.†/ and preserves some finite
collection of homotopy classes of essential, non-peripheral, simple closed curves.
In this case,  is called reducible.

(3) The mapping class  has infinite order in Mod.†/ and for each essential, non-
peripheral, simple closed curve c and each nonzero integer N ,  N .c/ and c

are not homotopic to each other. In this case,  is called pseudo-Anosov.

In many senses, “typical” mapping classes are pseudo-Anosov. Nevertheless, we shall
be exploiting reducible mapping classes in this paper. The following result characterizes
typical reducible mapping classes, and is due to Birman, Lubotzky and McCarthy in [6]:

Theorem 2.5 Let  be a reducible mapping class in Mod.†/. Then there exists a
multicurve C , called a canonical reduction system, and a positive integer N such that:

(1) Each element c 2 C is fixed by  N .

(2) The restriction of  N to the interior of each component of †XC is either trivial
or pseudo-Anosov.

The mapping class  N is called pure.
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If  is a pure mapping class and C is its canonical reduction system,  may not act
trivially on a neighborhood of C . In particular,  may perform Dehn twists, which are
homeomorphisms given by cutting † open along C and re-gluing with a power of a
twist.

The primary reducible mapping classes with which we concern ourselves in this paper
are Dehn twists and pseudo-Anosov homeomorphisms supported on a proper, connected
subsurface of †. We denote by T˛ the Dehn twist about a simple closed curve ˛ on a
surface; here, we assume ˛ is oriented whenever needed.

Lemma 2.6 (cf Penner [28], Mangahas [26]) Suppose † is a connected surface
and ˛1; : : : ; ˛r are pairwise-non-isotopic, essential simple closed curves on † such
that

S
i ˛i is connected. We let †0 be the connected subsurface of † obtained by

taking a regular neighborhood of
S

i ˛i and capping off boundary curves which are
nullhomotopic in †. Then for each M > 0, there exists a word  in the M th powers
of Dehn twists along ˛1; ˛2; : : : ; ˛r satisfying the following:

(i) The restriction of  on †0 is pseudo-Anosov for any m¤ 0.

(ii) For any i; j D 1; : : : ; r ,  m.˛i/ essentially intersects j̨ for m sufficiently
large.

(iii) If an essential subsurface †1 of † essentially intersects †0 ,  1 is a pure
mapping class on † that is pseudo-Anosov only on †1 , and ˇ is an essential
simple closed curve in †1 , then each  m.˛i/ essentially intersect  k

1
.ˇ/ for

m; k sufficiently large.

Such a pseudo-Anosov homeomorphism can be constructed quite explicitly:

Proof of Lemma 2.6 The proof is by induction on r . If ˛1 and ˛2 are intersecting
simple closed curves then there exist powers n and m such that T Mn

˛1
T Mm
˛2

is pseudo-
Anosov on the subsurface filled by ˛1 and ˛2 . For the inductive step, let  0 be a
pseudo-Anosov supported on a surface †0

0
and let ˛ be a curve which intersects †0

0

essentially (in the sense that it cannot be homotoped off of †0
0

). Then by [26] there
exist powers n and m such that . 0/nT Mm

˛ is pseudo-Anosov on the subsurface filled
by †0

0
and ˛ . For (iii), apply [26] to  �k

1
 m .

By the disjointness of two curves or two subsurfaces of a surface, we will mean
disjointness within their isotopy classes. Namely, c1 and c2 are not disjoint if no
isotopy representatives of c1 and c2 are disjoint.
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Definition 2.7 Let † be a connected surface and C be either

(i) a collection of essential simple closed curves on †, or

(ii) a collection of connected essential subsurfaces of †.

Then the co-incidence graph of C is a graph where C is the vertex set and two vertices
x and y are adjacent if and only if x and y are disjoint.

3 The topology and geometry of extension graphs

Let � be a finite graph. Note that there is a natural retraction �e! � that maps vw to
v for each vertex v of � and a word w of A.�/. Suppose a and b are vertices of � ,
and x and y are words in A.�/. By Theorem 2.1, ax and by commute in A.�/ if
and only if Œa; b�D 1 and aw D ax; bw D by for some w 2A.�/; this is equivalent to
hSt.a/ix\hSt.b/iy¤¿. We will think of � and �e as metric graphs so that adjacent
vertices have distance one. We will denote the distance functions commonly as d. � ; � /.
There is a natural right action of A.�/ on �e ; namely, for g; w 2A.�/ and v 2 V .�/

we define vw:g D vwg . Note that the quotient of �e by this action is � . In this paper,
we will always regard � as an induced subgraph of �e and �k . In particular, �e is
the union of conjugates of � .

We can explicitly build the graph �e as follows. Fix a vertex v of � and glue two
copies of � along the star of v ; the resulting graph is an induced subgraph of �e

on V .�/[ V .�/v . To obtain �e , we repeat this construction for each vertex of �
countably many times, at each finite stage getting a (usually) larger finite graph. So,
we have the following.

Lemma 3.1 Let � be a finite graph and ƒ be a finite induced subgraph of �e . Then
there exists an l > 0, a sequence of vertices v1; v2; : : : ; vl of �e , and a sequence of
finite induced subgraphs � D�0 ��1 � � � � ��l of �e where �i is obtained by taking
the double of �i�1 along St�i�1

.vi/ for each i D 1; : : : ; l , such that ƒ� �l .

There are various other ways to think of �e . Probably the most useful of these is
that �e is a “universal” graph obtained from � , in the sense that �e produces all
potential candidates for right-angled Artin subgroups of A.�/ (cf Theorems 1.3 and
1.4). Another useful perspective is that �e is an analogue of the complex of curves for
A.�/ (cf Lemma 3.5 (4)). In this section we will list some of the properties of �e and
amplify these perspectives.

The essential tool in studying extension graphs is the following special case of a result
due to the second author in [24]:
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Lemma 3.2 [24] Let c1; : : : ; cm be pairwise-non-isotopic, essential, simple closed
curves on a surface †, and let T1; : : : ;Tm be the respective Dehn twists in the mapping
class group Mod.†/. Let � be the co-incidence graph of fc1; : : : ; cmg, so that the
vertices corresponding to two curves are connected if and only if the two curves are
disjoint. Then there exists an N > 0 such that for any n�N ,

hT n
1 ; : : : ;T

n
mi ŠA.�/ <Mod.†/:

Furthermore, for any finite graph � one can find a surface and a collection of curves
with co-incidence graph � .

We note that there is a similar construction which is an equivalent tool for our purposes,
using pseudo-Anosov homeomorphisms supported on subsurfaces of a given surface
† instead of Dehn twists. M Clay, C Leininger and J Mangahas have recently proven
in [10] that under certain further technical conditions, powers of such mapping classes
generate a quasi-isometrically embedded right-angled Artin group:

Lemma 3.3 [10] Let  1; : : : ;  m be pseudo-Anosov homeomorphisms supported
on subsurfaces †1; : : : ; †m such that no inclusion relations hold between †i and †j

for i ¤ j .

(1) There exists an N such that for each n � N , the group h n
1
; : : : ;  n

mi is a
right-angled Artin group which is quasi-isometrically embedded in the mapping
class group.

(2) The abstract isomorphism type of h n
1
; : : : ;  n

mi is the “expected” right-angled
Artin group, as in Lemma 3.2.

(3) Each nontrivial word in the group h n
1
; : : : ;  n

mi is pseudo-Anosov on the mini-
mal subsurface filled by the letters occurring in the word.

The following lemma is sometimes called Manning’s bottleneck criterion. Recall
that in a metric space .X; d/, a point m is a midpoint of two points x and y if
d.x;m/D d.y;m/D 1

2
d.x;y/. We denote by B.xI r/ the r –ball centered at x .

Lemma 3.4 (Manning [27]) A geodesic metric space .X; d/ is quasi-isometric to a
tree if and only if there is a �> 0 satisfying the following: for every pair of points x;y

in X , there is a midpoint m of x and y such that every path from x to y intersects
the B.mI�/.

We summarize important geometric properties of �e as follows.

Lemma 3.5 Let � be a finite graph.
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(1) If � D �1 ��2 for some finite graphs �1 and �2 , then �e D �e
1
��e

2
.

(2) If � D �1

`
�2 for some finite graphs �1 and �2 , then �e is a countable union

of disjoint copies of �e
1

and �e
2

.

(3) The operation � ! �e respects induced subgraphs: if ƒ � � is an induced
subgraph then ƒe � �e is an induced subgraph.

(4) The graph �e embeds as an induced subgraph into the 1–skeleton of the curve
complex of some surface †, which we can take to be closed of some genus g

depending on � .

(5) Suppose � is connected. Then the graph �e is connected. The graph �e has
finite diameter if and only if � is an isolated vertex or � splits as a nontrivial
join. The graph �e is finite if and only if � is complete.

(6) Suppose � is connected. If two vertices w;w0 of �e do not belong to the same
conjugate of � , then w and w0 are separated by the star of some vertex. If we
further assume that � has no central vertices, then the star of each vertex v of
�e separates �e .

(7) Suppose � is connected. Then �e is quasi-isometric to a tree.

(8) The chromatic number of � is equal to that of �e .

Proof (1) Since A.�/ D A.�1/ � A.�2/, the group A.�1/ acts trivially on the
vertices of �2 , and vice versa. So each conjugate of every vertex of �2 will be adjacent
to each conjugate of every vertex of �1 . We thus get the claimed splitting.

(2) We get a splitting A.�/DA.�1/�A.�2/. No conjugate of any vertex of �1 is
adjacent to any conjugate of any vertex of �2 by the definition of �e . The description
of �e can be seen by taking one copy of �e

1
for each element of A.�2/ and one copy

of �e
2

for each element of A.�1/. The conjugation action permutes the copies of these
graphs according to the regular representation.

(3) We clearly have a map ƒe ! �e . Any edge between two vertices of �e is a
conjugate of an edge in � by an element of A.�/. The claim follows, since two
vertices in the image of ƒe are connected by an edge if and only if those two vertices
are simultaneously conjugate to adjacent vertices in � , be it by an element of A.ƒ/ or
an element of A.�/.

(4) One can realize � as the co-incidence graph of pairwise-non-isotopic simple
closed curves f˛.v/ W v 2 V .�/g on a closed surface †. Namely, ˛ is an embedding
from � to the curve complex C.†/ such that the image of ˛ is an induced subgraph.
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By Lemma 3.2, there exists an N > 0 such that the map �W A.�/!Mod.†/ defined
by �.v/D T N

˛.v/
is injective. We extend ˛ to ˛eW �e! C.†/ as follows:

˛e.vw/D �.w�1/:˛.v/; for v 2 V .�/ and w 2A.�/:

We claim that ˛e is an injective graph map such that the image is an induced subgraph.
To check that ˛e is well-defined, suppose vwDv0w

0

for some v; v0 2V .�/ and w;w0 2
A.�/. Then v D v0 and w0w�1 2 hSt.v/i and so, �.w0w�1/ is some multiplication
of Dehn twists about ˛.v/ and simple closed curves which are disjoint from ˛.v/. It
follows that ˛.v/D �.w0w�1/:˛.v/, and ˛e.vw/D ˛e.v0w

0

/. We can also easily see
that ˛e maps an edge fvw; v0wg to an edge, where w 2A.�/ and fv; v0g 2E.�/. For
injectivity, assume ˛e.vw/ D ˛e.v0w

0

/. After conjugation, we may assume w0 D 1.
Then �.v0/DT N

˛.v0/
DT N

�.w�1/:˛.v/
D�.w�1/ıT N

˛.v/
ı�.w/D�.vw/. The injectivity

of � implies that v0 D vw . Similar argument shows that the image of ˛e is an induced
subgraph.

To alternatively see that every finite subgraph of �e embeds in the curve complex of
some surface as an induced subgraph, one can use the result of Clay, Leininger and
Mangahas in Lemma 3.3 to embed A.�/ into the mapping class group of some surface
† by sending vertices to certain pseudo-Anosov homeomorphisms on connected
subsurfaces of †. By considering conjugates of sufficiently high powers of these
pseudo-Anosovs by elements of A.�/, we obtain a collection of subsurfaces of †
whose co-incidence graph is precisely �e . These subsurfaces are then equipped
with pseudo-Anosov homeomorphisms, any finite collection of which generates a
right-angled Artin subgroup of A.�/ corresponding to a finite subgraph ƒ of �e .
Approximating the stable laminations of these pseudo-Anosov homeomorphisms with
simple closed curves on † embeds any finite subgraph of �e into the curve complex
of † as an induced subgraph.

(5) The first claim is obvious by the construction of �e via iterated doubles along
stars of vertices, namely Lemma 3.1.

If � splits nontrivially as �1��2 then every conjugate of each vertex in �1 is adjacent
to every conjugate of each vertex in �2 , so that �e has finite diameter. If � is complete
then the conjugation action of A.�/ on the vertices of � is trivial so that �e D � .
Conversely, if � is not complete then there are two vertices in � that generate a copy
of F2 in A.�/ and hence there are infinitely many distinct conjugates of these vertices.
If � does not split as a join then we can represent generators of A.�/ as powers of
Dehn twists about simple closed curves on a connected surface † or as pseudo-Anosov
homeomorphisms on connected subsurfaces of † (see [10] or [24]), and the statement
that � does not split as a nontrivial join is precisely the statement that these curves fill
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a connected subsurface †0 of †. By Lemma 3.3, there is a word in the powers  of
these Dehn twists that is pseudo-Anosov on †0 and hence has a definite translation
distance in the curve complex of †0 . It follows that  –conjugates of twisting curves
in the generators of A.�/ have arbitrarily large distance in the curve complex of †0 .
There is a map � from the graph �e to the curve complex of †0 that sends a vertex
to the curve about which the vertex twists. General considerations show that this map
is distance non-increasing. It follows that �e has infinite diameter.

(6) By the symmetry of conjugate action, we may assume w belongs to � . Construct
�e as

� D �0 � �1 � � � � ;

where the union of these graphs is �e and �n is obtained from �n�1 by doubling
�n�1 along the star of a vertex of � , for each n. There is k such that w0 is a vertex of
�k X�k�1 ; we choose �0; �1; : : : such that k is minimal. This implies that w and w0

belongs to distinct components of �k XSt.v/ for some vertex v of �k�1 . We claim
that w and w0 remain separated in �e XSt.v/.

If w and w0 are in the same component of �e XSt.v/, then this fact becomes evident
at a finite stage of the construction of �e . There exists m� k such that w and w0 are
separated in �mXSt.v/; and furthermore, we assume �mC1 is the double of �m along
the star of a vertex z , and w and w0 are in the same component of �mC1XSt.v/. See
Figure 1(a). Note that if z … St.v/ then St.z/D St�m

.z/ cannot intersect both of the
components of �m X St.v/ that contain w and w0 and thus those two vertices are in
two different components of �mC1 X St.v/. Therefore, we may assume z 2 St.v/. In
that case, the two copies of v in both copies of �m are identified, so that the star of v in
�mC1 is the union of the two stars of v in the two copies of �m ; see Figure 1(b). The
stars of v separated both copies of �m into components S1; : : : ;Sn and T1; : : : ;Tn ,
where these are subgraphs of the two respective copies of �m . It is possible that Si

is glued to Ti along some common vertices, but it is not possible for two distinct
components Ti and Tj to be glued to a single copy of Si . Indeed otherwise Si and
Sj would share a common vertex, a contradiction. It follows that the components
of �m X St.v/ that contain w and w0 are not contained in the same component of
�mC1 XSt.v/.

To prove the second claim, assume v;w 2� and simply let w0 be a vertex in the double
of � along St.v/ such that w0 62 � . We have shown that w and w0 belong to distinct
components of �e XSt.v/.

(7) From (5), we can assume that � does not split as a nontrivial join. To apply
Lemma 3.4, let us consider two vertices x0;y0 in �e , a geodesic 
0 joining them, and
the midpoint m of 
0 . Here, m is either a vertex or the midpoint of an edge. We have
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Si St.v/

St.v/

Sj

Ti Tj

�m

� 0m

St.z/

w
w0

(a) �mC1

St�m.v/

St�m.v/

v z

(b) St�mC1
.v/

Figure 1: Proof of Lemma 3.5(6)

only to find �> 0 such that B.mI�/ separates x0 and y0 . For arbitrary pair of points
p; q on 
0 , we denote by Œp; q� the geodesic on 
0 joining p and q . We may assume
D D diam� � 2 and d.x0;y0/� 5D . We now inductively define zi ;xiC1;yiC1 and

iC1 as long as d.xi ;yi/� 5D , for i � 0:

(i) Using Lemma 3.6(2) below, choose a vertex zi such that St.zi/ separates xi

from yi , and d.zi ;xi/; d.zi ;yi/� 2D .

(ii) xiC1 is a vertex in St.zi/\ 
i .

(iii) 
iC1 is the closure of the component of 
i XxiC1 containing m.

(iv) @
iC1 D fxiC1;yiC1g.

Note that d.xi ;yi/D l.
i/ is strictly decreasing, since xiC1 62 fxi ;yig. So for some
j > 0, we have d.xj ;yj /� 5D and d.xjC1;yjC1/ < 5D . Without loss of generality,
let us assume x0;xj ;xjC1;yj D yjC1;y0 appear on 
0 in this order. If p is a vertex
in St.zj /\ Œx0;xj �, then d.xj ;xjC1/ < d.p;xjC1/� d.p; zj /Cd.zj ;xjC1/� 2 and
this contradicts d.xj ;xjC1/ � d.xj ; zj /� 1 � 2D � 1. So, St.zj / intersects neither
Œx0;xj � nor Œyj ;y0�. If there were a path ı from x0 to y0 not intersecting St.zj /, then
ı[ Œx0;xj �[ Œyj ;y0� would be a path joining xj to yj without intersecting St.zj /. It
follows that St.zj / separates x0 from y0 . We see that 5DC 1 is a desired value for
�, for, m 2 ŒxjC1;yjC1� and St.zj /D B.zj I 1/� B.xjC1I 2/� B.mI 5DC 1/.

(8) A coloring of � pulls back to a coloring of �e by the natural retraction �e! � .
Hence, the chromatic number of �e is at most that of � . The converse is immediate.
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Lemma 3.6 Let � be a finite graph with diameter D , and x;y 2 V .�e/.

(1) There exist x D x0;x1; : : : ;xl ;xlC1 D y in V .�e/ such that
(i) xi and xiC1 belong to the same conjugate of � for i D 0; 1; : : : ; l ,

(ii) St.xi/ separates x from y , for i D 1; : : : ; l .

(2) If x and y are vertices in �e such that d.x;y/� 5D , then there exists a vertex
z in �e which is at least of distance 2D from x and y , and whose star separates
x from y in �e .

Proof (1) As in the proof of Lemma 3.5(6), there exist �0��1�� � ���k ��
e such

that �0 is a conjugate of � containing x , �k contains y , and �iC1 is obtained from
�i by doubling along the star of a vertex vi in �i , for i D 0; : : : ; k �1. Let us choose
k to be minimal, so that St.vk/ separates x from y in �e . We may assume �0 D � .
We claim that there exist l � 0, g0 D 1;g1; : : : ;gl 2A.�/, xi 2 V .�gi�1/\V .�gi /

for i D 1; : : : ; l , and ƒ0 �ƒ1 � � � � �ƒl � �
e such that:

(i) x 2ƒ0 D � and y 2 �gl �ƒl � �k .

(ii) ƒi Dƒi�1[�
gi and ƒi�1\�

gi � St.xi/ for i D 1; : : : ; l .

(iii) St.xi/ separates x from y in �e for i D 1; : : : ; l .

If k D 0, then l D 0 and so the claim is clear. To use induction, we assume the claim
for k � 1. Write �k D �k�1[�

z
k�1

for some z 2 V .�k�1/. By inductive hypothesis,
one can construct x 2ƒ0 � � � � �ƒm � �k�1 and z 2ƒ0

0
� � � � �ƒ0m0 � �

z
k�1

such
that z 2 �gm � ƒm , y 2 ƒ0m0 , and the conditions (i), (ii), (iii) above are satisfied.
Let us define ƒmCi Dƒm [ƒ

0
i�1

for i D 1; : : : ;m0C 1. This means, in particular,
that xmC1 D z and �gmC1 Dƒ0

0
. Note that ƒmCm0C1 � �k and St.xmC1/D St.z/

separates x from y in �e . If St.xi/ did not separate x from y in �e for i ¤mC 1,
one would get a contradiction by finding a path from x to z and z to y avoiding
St.xi/. The claim is proved.

(2) In (1), we note that d.xi ;xiC1/ � D for each i D 0; : : : ; l . There exists j

such that d.x0;xj�1/ � 2D and d.x0;xj / � 2D . Then d.xj�1;xl/ � 3D and
d.xj ;xl/� d.xj�1;xl/� d.xj�1;xj /� 2D .

Lemma 3.7 Suppose � is a finite graph with at least two vertices such that � does
not split as a nontrivial join. If ƒ1 � �

e and ƒ2 � �
e , then ƒ1

`
ƒ2 � �

e .

Proof We may only consider the case ƒ1 D ƒ D ƒ2 , for in general, we can just
take ƒ D ƒ1 [ƒ2 . We may further assume that ƒ does not split as a nontrivial
join; otherwise, replace ƒ by ƒ[� . Write the vertices of ƒ as vw1

1
; v
w2

2
; : : : ; v

wr
r
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where vi 2 V .�/; wi 2 A.�/. Following the notation in the proof of Lemma 3.5(4),
consider an embedding �W A.�/!Mod.†/ for some closed surface † such that each
vertex v of � is mapped to some power of the Dehn twist about a simple closed curve
˛.v/. We take the union of the regular neighborhoods of the curves �.w�1

i /:˛.vi/

for i D 1; : : : ; r and cap off the null-homotopic boundary curves, to get a connected
subsurface †0 of †. Let  be some product of powers of the Dehn twists about
�.w�1

i /:˛.vi/ for i D 1; : : : ; r to get a pseudo-Anosov homeomorphism on †0 , as
per Lemma 2.6. There exists M > 0 such that  M�.w�1

i /:˛.vi/ and �.w�1
j /:˛.vj /

essentially intersect for any i; j D 1; : : : ; r . Note that  �M is the image of some
word w 2A.�/ by the embedding � . It follows that an arbitrary vertex vwiw

i of ƒ:w
is neither equal nor adjacent to any vertex vwj

j of ƒ.

Let � be a graph. We say .v1; : : : ; vn/ spans an induced Pn for v1; : : : ; vn 2 V .�/ if
fv1; : : : ; vng induces Pn in � and vi and viC1 are adjacent for i D 1; : : : ; n� 1. We
also say .v1; : : : ; vn/ spans an induced Cn , if fv1; : : : ; vng induces Cn in � and vi

and viC1 are adjacent for i D 1; : : : ; n with the convention that vnC1 D v1 .

Lemma 3.8 Suppose t is a vertex of a finite graph � . Let �� denotes the double of
� along the star of t .

(1) If �� contains an induced Cn for some n� 6, then � contains an induced Cm

for some 5�m� n.

(2) If �� contains an induced C
opp
n for some n � 5, then � contains an induced

C
opp
n or C

opp
nC1

.

(3) If �� contains an induced P4 , then � contains an induced P4 .

Proof Let L be the link of t in � and AD V .�/X .L[ ftg/. Take an isomorphic
copy � 0 of � , and let A0 be the image of A in � 0 . We may write �� D �

S
� �
0 ,

where � is the restriction on L[ ftg of the given isomorphism between � and � 0 .
The image of L or t in �� is still denoted by L or t , respectively. Let �W ��! �

be the natural retraction so that �.A0/ D A. Note V .��/ D A[A0 [L[ ftg, and
L[ftg separates �� into induced subgraphs on A and on A0 ; see Figure 2(a).

(1) Suppose � Š Cn is an induced subgraph of �� for some n � 6, and assume
the contrary of the conclusion. If t is in �, then V .�/XSt�.t/D V .�/X .L[ftg/

induces a connected graph in �� and hence, V .�/ is contained either in A[L[ftg

or A0[L[ftg; in particular, � would contain an induced Cn .

So we have t 62 �. Suppose the tuple of vertices .v1; : : : ; vn/ spans � Š Cn . We
will take indices of vi modulo n. If fviC1; : : : ; viCkg form a maximal path that is
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contained in A or in A0 for some 1 � k � n� 3, then vi ; viCkC1 2 L and hence,
.t; vi ; �.viC1/; : : : ; �.viCk/; viCkC1/ spans an induced CkC3 in � ; hence, k D 1.
This means that if vi is in A or A0 , then Lk�.vi/ is contained in L. If vi ; vj 2A[A0

for i ¤ j and �.vi/D �.vj /, then vj˙1 2L are adjacent to vi and hence, Cn Š C4 ;
this implies that �.v1/; : : : ; �.vn/ are all distinct. Since �.�/ is not an induced Cn

in � , �.vi/ and �.vj / are adjacent for some vi 2A and vj 2A0 .

Case 1 Suppose some x 2Lk�.vi/XLk�.vj / is non-adjacent to some y 2Lk�.vj /X
Lk�.vi/. Then, .t;x; vi ; �.vj /;y/ spans an induced C5 in � .

Case 2 Suppose Case 1 does not occur. This implies that Lk�.vi/ and Lk�.vj / are
neither equal nor disjoint. One can write Lk�.vi/Dfx;yg and Lk�.vj /Dfx; zg such
that y and z are adjacent. Then .vi ;x; vj ; z;y/ spans an induced C5 in �, which is
a contradiction.

(2) Suppose �Š Cn is an induced subgraph of .��/opp for some n� 5, and assume
the contrary of the conclusion. Let ƒ��opp and ƒ0� .� 0/opp be the induced subgraphs
on A and on A0 , respectively. Note that ƒ�ƒ0 � .��/opp ; see Figure 2(b).

First suppose t 2� and write Lk�.t/Dfa; a0g. If a; a0 2A, then V .�/� ftg[A[L

and hence, � � �opp . Similarly, it is not allowed that a; a0 2 A0 . Hence, we may
assume a 2 A and a0 2 A0 ; this would still be a contradiction since a and a0 are
adjacent in .� 0/opp .

This shows t 62�. Note that �\ .ƒ �ƒ0/ has at most three vertices, since so does
every non-trivial join subgraph of �Š Cn .

Case 1 Suppose V .�\ƒ/D fag and V .�\ƒ0/D fa0g for some a; a0 . We label
cyclically V .�/ D fa; a0; v1; : : : ; vn�2g where v1; : : : ; vn�2 2 L. Since � is not a
triangle, �.a0/¤ a. If �.a0/ is adjacent to a in ƒ, �.�/ is an induced Cn in �opp .
If �.a0/ is not adjacent to a in ƒ, then .a; t; �.a0/; v1; : : : ; vn�2/ spans an induced
CnC1 in �opp .

Case 2 V .�\ƒ/Dfag and V .�\ƒ0/Dfa0; a00g for some a; a0; a00 : write V .�/D

fa00; a; a0; v1; : : : ; vn�3g where v1; : : : ; vn�3 2L. Then

.�.a00/; t; �.a0/; v1; : : : ; vn�3/

spans an induced Cn in �opp .

(3) Suppose � Š P4 is an induced subgraph of �� , and assume � is P4 –free.
Since � intersects both A and A0 , we have jV .�/\ .L[ ftg/j � 2. If t 2�, then
j�\Lj D 1; this is a contradiction, for �\ .L[ftg/ separates � while the valence
of t in � is 1. Hence t 62�.
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Now if �\ .L[ftg/D�\L is a single vertex, then one of A or A0 intersect � at
two vertices, and those two vertices along with t and �\L span an induced P4 in � .
If �\L has two vertices, say x and x0 , then �\AD fag; �\A0 D fa0g for some
vertices a and a0 . We note that a and �.a0/ are adjacent, since � is P4 –free. Without
loss of generality, we may assume .a;x;x0; a0/ or .x; a;x0; a0/ spans � Š P4 ; in
either case, .t;x; a; �.a0// spans an induced P4 in � .

A0A L

t

(a) ��

A0A
L

t

(b) .��/opp

Figure 2: Proof of Lemma 3.8

The extension graph of a given graph preserves Cm –freeness for certain m, as described
in Lemma 3.9.

Lemma 3.9 Suppose � is a finite graph.

(1) If � is triangle-free, then so is �e .

(2) If � is square-free, then so is �e .

(3) Suppose n� 5, and � is triangle-free or square-free. If � is Cm –free for every
mD 5; : : : ; n, then so is �e .

(4) If � is weakly chordal, then so is �e .

(5) If � is bipartite, then so is �e .

Proof (1) is immediate from the definition of �e . (2) is similar to, and much easier
than, the proof of Lemma 3.8; a key observation is that if � is square-free and t is
a vertex, then � X ftg does not have an induced P3 that intersects Lk.t/ only on its
endpoints. The proofs of (3) and (4) are direct consequences of Lemma 3.8 and the
fact that C

opp
n contains a triangle and a square for every n� 6. For (5), consider the

pullback of a 2–coloring of � by the retraction �e! � .
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Remark The class W of weakly chordal graphs is closed under edge contractions
[21, Theorem 4.7]. Oum pointed out to us that W is closed under taking the double
along the link of a vertex (private communication). Lemma 3.9(4) follows the lines of
these two results.

Lemma 3.10 Suppose � is a finite weakly chordal graph. Then �e satisfies the 2–thin
bigon property. Namely, suppose that x and y are two geodesic segments connecting
two vertices v and w . Then x is contained in a 2–neighborhood of y .

Proof Lemma 3.9(4) implies that �e is weakly chordal. Since x is geodesic, non-
consecutive vertices of x , or those of y , are non-adjacent. If one vertex in y is not
adjacent to any vertex in x , it is easy to check that both of its neighbors in y are adjacent
to a vertex of x ; otherwise, �e would contain an induced long cycle. Therefore, the
distance between any vertex of y and a vertex of x is at most two.

We will need the following observation later on:

Lemma 3.11 Let n� 5 and consider an arbitrary inclusion i W Cn! C e
n . Then i.Cn/

is conjugate to the original copy of Cn .

Proof Suppose that the inclusion i maps Cn into C e
n in such a way that the image

i.Cn/ is not contained in a conjugate of Cn . By Lemma 3.5(6), there is a star of a vertex
v which separates i.Cn/ into at least two smaller connected subgraphs. Let A and B

be the closures of two distinct components of i.Cn/XSt.v/. Since C e
n is triangle-free

and square-free, B 6Š P3 . Hence, the induced subgraph of �e spanned by A[fvg is
a cycle of length strictly less than n. This is a contradiction to Lemma 3.9(3).

4 Right-angled Artin subgroups of right-angled Artin groups

In this section we will prove Theorems 1.3 and 1.4. To get a more concrete grip on
�e , one can check the following three examples. In the case where � is a complete
graph, �e D � . In the case where � is discrete and jV j > 1 then �e is a countable
union of vertices with no edges.

In the case where � is a square, we have our first nontrivial example. Label the vertices
of � by fa; b; c; dg, with a and c connected to b and d . Performing the construction
of �e , we see that the vertices consist of all c–conjugates of a, all d –conjugates of b ,
all a–conjugates of c and all b–conjugates of d . Note also that each conjugate of a

and c is connected to each conjugate of b and d . It follows that �e is isomorphic to a
complete bipartite graph on two countable sets.

Geometry & Topology, Volume 17 (2013)



Embedability between right-angled Artin groups 513

We will give two proofs of Theorem 1.3. The first will use Dehn twists and the result
from [24]. The other will use pseudo-Anosov homeomorphisms and the result from
[10]. Also, one can deduce Theorem 1.3 from Corollary 1.6, of which we give an
alternative, topological proof in Section 10.

First proof of Theorem 1.3 Let us recall the notation from the proof of Lemma 3.5(4).
There exists a closed surface †, an embedding ˛W �! C.†/ and N > 0 such that the
map �W A.�/!Mod.†/ defined by �.v/D T N

˛.v/
for each v 2 V .�/ is injective. If

we extend ˛ to an embedding

˛e
W �e
! C.†/

by ˛e.vw/D �.w�1/:˛.v/ for v 2 V .�/ and w 2A.�/, then the image of ˛e is an
induced subgraph of C.†/.

Now put V .ƒ/ D fv
w1

1
; : : : ; v

wn
n g � V .�e/, where vi 2 V .�/ and wi 2 A.�/ for

iD 1; : : : ; n. The co-incidence graph of f˛e.v
w1

1
/; : : : ; ˛e.v

wn
n /g is ƒ. By Lemma 3.2,

there exists an M > 0 such that the map  W A.ƒ/!Mod.†/ defined by  .vwi

i /D

T MN

˛e.v
wi
i
/

is injective. Since

T MN

˛e.v
wi
i
/
D T MN

�.w�1
i
/:˛.vi /

D �.w�1
i / ıT MN

˛.vi /
ı�.wi/D �..v

M
i /wi /;

we have that  factors through � as follows.

A.ƒ/� q

##G
G

G
G

G
� �  // Mod.†/

A.�/
, �

�
::

Since  is injective, we have an embedding from A.ƒ/ to A.�/.

Second proof of Theorem 1.3 Choose a closed surface † with a configuration of
subsurfaces and pseudo-Anosov homeomorphisms whose co-incidence graph is �
and which satisfy the technical hypothesis of [10]. The second proof of the theorem
is essentially identical to the first one, with Dehn twists replaced by pseudo-Anosov
homeomorphisms. The only nuance is that for each finite subgraph of �e that we
produce, we must show that we do not get any unexpected nesting of subsurfaces.

The easiest way to avoid unexpected nesting is to arrange for the pseudo-Anosov
generators of A.�/ to be supported on surfaces with no inclusion relations between
them. It is clear and can be seen from [24] that one can find a configuration of
subsurfaces with the desired intersection correspondence on a surface of sufficiently
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large genus. Furthermore, one can arrange for these subsurfaces to all have a given
genus g and one boundary component. If � has n vertices fv1; : : : ; vng, modify
the subsurface corresponding to vi to have genus g C n � i , i punctures and one
boundary component. It is clear then that no two subsurfaces produced in this way can
be nested in a way that sends punctures to punctures. After finding a pseudo-Anosov
homeomorphism on each of these subsurfaces that does not extend to the subsurfaces
with the punctures filled in, we can apply the main result of [10].

Proof of Corollary 1.6 Note that the induced subgraph of �e on V .�/[V .�/: t is
isomorphic to DSt.t/.�/. Theorem 1.3 completes the proof.

We now turn our attention to Theorem 1.4. Suppose two cyclically reduced words w
and v have pure factor decompositions wDw1 � � �wn and vD v1 � � � vm . Then w and
v do not commute if and only if there is a pair of pure factors wi and vj such that
Œwi ; vj �¤ 1, which follows easily from the Centralizer Theorem. Using the pure factor
decomposition, we can give the following result concerning the structure of copies of
Z�Z2 in a right-angled Artin group:

Lemma 4.1 Suppose cyclically reduced words a; b and x generate a copy of Z�Z2

of A.�/, where the splitting is given by

hxi � ha; bi:

Let fx1 � � �xkg be the sets of pure factors of x . Then there is a pure factor xl which
commutes with neither a nor b .

Proof Suppose to the contrary that every pure factor appearing in the pure factor
decomposition of x commutes with either a or b . We may assume that

x D .x
e1

1
� � �xem

m / �x
emC1

mC1
� � �xen

n ;

where each of fx1; : : : ;xmg commute with a and each of fxmC1 � � �xng commute
with b for some integers e1; : : : ; en . We then form the commutator Œb; ax �, which is
nontrivial in Z�Z2 . Note that this is just the commutator of b with a conjugated by
x

emC1

mC1
� � �x

en
n . Since this last element commutes with b , and a commutes with b , the

commutator is trivial, so we have a contradiction.

Let � be a finite graph. For W �A.�/, the commutation graph of W is a graph with
vertex set W such that two vertices are adjacent if and only if they commute in A.�/.
The following is a key step in the proof of Theorem 1.4.
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Lemma 4.2 Let � be a finite graph and W D fw1; : : : ; wng be a set of conjugates of
pure factors in A.�/ such that wi ¤w

˙1
j for any i ¤ j . Then the commutation graph

of W embeds into �e as an induced subgraph.

Proof Let Z be the commutation graph of W , and write wi Du
pi

i where ui is a pure
factor and pi 2A.�/. Consider an embedding �W A.�/!Mod.†/ for some closed
surface †, as described in Lemma 3.2; here, each vertex v maps to a power of a Dehn
twist along a simple closed curve ˛.v/. We set †i to be the regular neighborhood
of the union of the simple closed curves f˛.v/ W v 2 supp.ui/g; we will cap off any
null-homotopic boundary components of †i . Since ui is a pure factor, †i is connected.
Centralizer Theorem implies that the co-incidence graph of f�.pi/

�1.†i/g is the same
as Z . Note our convention that if �.pi/

�1.†i/ and �.pj /
�1.†j / are isotopic and

i ¤ j , then the two corresponding vertices in the co-incidence graph are declared to
be distinct and non-adjacent.

A certain multiplication of Dehn twists along f˛.v/ W v 2 supp.ui/g will give a pseudo-
Anosov homeomorphism  i on †i by Lemma 2.6. One may choose  i D �.qi/

for some qi 2 hsupp.ui/i. For each i , arbitrarily fix si 2 supp.ui/. Then for some
sufficiently large M , the co-incidence graph Z0 of

f�.pi/
�1. �M

i .˛.si/// W i D 1; 2; : : : ; ng

is the same as the co-incidence graph of f�.pi/
�1.†i/g. Note that Z0 is the same as

the induced subgraph of �e spanned by

fs
qM

i
pi

i W i D 1; : : : ; ng:

Therefore, to prove that a particular graph is an induced subgraph of �e , it suffices to
exhibit it as the commutation graph of some conjugates of pure factors. We remark
that Lemma 4.2 can be proved alternatively using the primary result of [10]. The proof
carries over nearly verbatim, replacing Dehn twists and annuli with pseudo-Anosov
homeomorphisms and the surfaces on which they are supported.

Theorem 1.4 is an easy consequence of the following.

Theorem 4.3 Suppose ƒ and � are finite graphs and A.ƒ/�A.�/.

(1) There is an embedding �W A.ƒ/ ! A.�/ that factors through  W A.ƒ/ !

A.�e/ and the natural retraction � W A.�e/!A.�/ such that for each vertex v
of ƒ, supp. .v// induces a clique Kv � �

e .

(2) In (1),  can be chosen so that Kv 6�Kw for any v ¤ w 2 V .ƒ/.
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Proof (1) We write V .ƒ/Dfv1; : : : ; vng. Suppose �W A.ƒ/!A.�/ is an inclusion,
and put �.vi/Dwi . For each i D 1; : : : ; n, we have a unique pure factor decomposition

wi D

� n.i/Y
jD1

u
ai;j

i;j

�pi

where ai;j ¤ 0, pi 2A.�/ and ui;j is a pure factor. We can further assume that no
two elements in fui;j W i D 1; : : : ; n and j D 1; : : : ; n.i/g are inverses of each other.
Let Z be the commutation graph of fupi

i;j g. There is a clique in Z corresponding to
the words fupi

i;j W j D 1; : : : ; n.i/g for each i .

We denote the vertex of Z corresponding to u
pi

i;j by ki;j . Let �W A.Z/!A.�/ be
the map sending ki;j to u

pi

i;j 2 A.�/. There is a map �W A.ƒ/! A.Z/ that sends
each vertex vi to the element

n.i/Y
jD1

k
ai;j

i;j :

Notice that � D � ı � and so, � is injective. By Lemma 4.2, the graph Z embeds
in �e as an induced subgraph. By the proof of Theorem 1.3, there is an embedding
�0W A.Z/! A.�e/ where �0 maps each vertex ki;j in Z to a power of a vertex in
�e , such that � ı �0 is injective. We define Ki to be the clique of �e induced by
fsupp.�0.ki;j // W j D 1; : : : ; n.i/g and  D�0ı�. Note � ı D .� ı�0/ı� is injective;
see the following commutative diagram.

A.�e/

�

$$
A.ƒ/

� //

 
00

� �

�

// A.Z/
, �

�0

::

� � //

�
))

A.�/

A.�/

For each vertex vi of ƒ,

 .vi/D �
0

� n.i/Y
jD1

k
ai;j

i;j

�

is generated by the vertices of Ki .
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(2) Choose  in (1) such that
P
v2V .ƒ/ j supp. .v//j is minimal. Assume the

contrary so that for some v ¤ w 2 V .ƒ/,

 .v/D a
e1

1
� � � aer

r and  .w/D a
f1

1
� � � afr

r

where fa1; : : : ; ar g induces a clique in �e , e1 ¤ 0, and fi ¤ 0 for each i D 1; : : : ; r .
There exists `m ¤ 0 such that  .v`wm/ D a

d2

2
� � � a

dr
r for some d2; : : : ; dr 2 Z.

We note that if Œw;x� D 1 for some x 2 V .ƒ/, then each ai is adjacent to each
vertex in supp. .x//, and so, Œ .v/;  .x/�D 1. This shows Lk.w/� St.v/. Define
�;�0W A.ƒ/ ! A.ƒ/ by �.w/ D vw , �0.w/ D wm and �.x/ D x D �0.x/ for
x 2 V .�/X fwg. Then �0 is a monomorphism and � is an isomorphism, called a
transvection [30].

Define a new embedding A.ƒ/! A.�e/ by  0 D  ı�0 ı�` . For a vertex x , we
have

 0.x/D

(
 .x/ if x ¤ w;

a
d2

2
� � � a

dr
r if x D w:

Since j supp. 0.w//j � r � 1< j supp. .w//j, we have a contradiction.

Corollary 4.4 (cf [18]) Let � be a finite graph and let F2 �F2 < A.�/. Then �e

contains an induced square.

This is not the exact statement of Kambites’ Theorem (Corollary 1.10), but it is the
most important step in the proof. Combining Corollary 4.4 and Lemma 3.9(2), we
obtain the statement given by Kambites.

Proof of Corollary 4.4 Label the edges of a square cyclically by

fa; b; c; dg:

By Theorem 1.4, there exists an embedding of the square C4! �e
k

so that the support
of each edge of C4 in �e is a clique. Denote the supports of the vertices of C4 in �e by
fVa;Vb;Vc ;Vdg. There exist nonadjacent vertices x and y in Va and Vc , respectively,
and nonadjacent vertices w and z in Vb and Vd , respectively. The vertices x and y

are clearly distinct and are adjacent to each vertex of Vb and Vd and are therefore
distinct from w and z . It follows that .x; w;y; z/ is an induced cycle of length four
in �e .
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5 Trees and the path on four vertices

Recall that a forest is a disjoint union of trees. In this section, we characterize the
right-angled Artin groups that contain, or are contained in, the right-angled Artin groups
on forests.

Proposition 5.1 Let �; � 0 be finite graphs such that � is a forest. If A.� 0/ embeds
into A.�/, then � 0 is also a forest.

Proof Since A.�/ is a 3–manifold group (Brunner [7]), so is A.� 0/, and � 0 is a
disjoint union of trees and triangles (Droms [15]). As the maximum rank of an Abelian
subgroup of A.�/ is two, � 0 does not contain a triangle.

Proposition 5.2 Every finite forest is an induced subgraph of P e
4

.

Proof Label V .P4/ as fa; b; c; dg such that Œa; b�D Œb; c�D Œc; d �D 1 in GDA.P4/.
Put B D hSt.b/i D ha; b; ci and C D hSt.c/i D hb; c; di. Let X be the induced
subgraph of P e

4
spanned by the vertices that are conjugates of b or c .

By Lemma 3.7, it suffices to show that every finite tree T is an induced subgraph of P e
4

.
We use an induction on the number of vertices of T . Assume every tree with at most k

vertices embeds into X as an induced subgraph, and fix a tree T with kC 1 vertices.
Choose a valence-one vertex v0 in T and let T 0 be the induced subgraph of T spanned
by V .T /Xfv0g. By inductive hypothesis, T 0 can be regarded as an induced subgraph of
X . Let v1 be the unique vertex of T 0 that is adjacent to v0 . Without loss of generality,
we may assume that v1 D b . Write V .T 0/ D fbu0 ; bu1 ; : : : ; bup ; cv1 ; : : : ; cvqg such
that u0 D 1 and ui 62 B for i > 0. Recall that for i D 1; 2; : : : ;p , cw and bui are
non-adjacent if and only if Bui \Cw D¿; this is equivalent to w 62 CBui . Also, cw

and cvj are distinct if and only if w 62Cvj . Hence, the following claim implies that the
induced subgraph of X spanned by V .T 0/[fcwg is isomorphic to T for w D aM .

Claim For some M > 0,

aM
2 CB X

�Sp
iD1

CBui [
Sq

jD1
Cvj

�
:

Choose M to be larger than the maximum number of occurrences of a˙1 in

u1; : : : ;up; v1; : : : ; vq:

It is clear that aM does not belong to Cvj , since a˙1 occurs at most M � 1 times in
each element of Cvj D hb; c; divj . Suppose aM 2CBui for some i D 1; : : : ;p . One
can choose w1.b; d/2hb; di and w2.a; c/2ha; ci such that aM Dw1.b; d/w2.a; c/ui .
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Since ui is not in B , there exists a d˙1 in ui . In particular, one can write aM D

w0d˙1w00d�1w000 where w0 is a subword of w1.b; d/, w000 is a subword of ui , and
w00 is a word in St.d/D hc; di. The number of the occurrences of a˙1 on the right-
hand-side is at most that of w000 , which is less than M . This is a contradiction.

Lemma 5.3 (cf Corneil, Lerchs and Burlingham [11]) For a finite graph � , the
following are equivalent.

(i) � is P4 –free.

(ii) �e is P4 –free.

(iii) Each connected component of an arbitrary induced subgraph of � either is an
isolated vertex or splits as a nontrivial join.

(iv) � can be constructed from isolated vertices by taking successive disjoint unions
and joins.

Also known as co-graphs, P4 –free graphs are extensively studied [11]. Here, we give
a self-contained proof for readers’ convenience.

Proof of Lemma 5.3 (i) , (ii) follows from Lemma 3.8 (3).

For (ii) ) (iii), suppose �e is P4 –free, and choose a connected component ƒ of
some induced subgraph of � . Then ƒ and ƒe are also P4 –free. Since ƒ has no path
on four vertices, it must certainly have bounded diameter. By Lemma 3.5(5), this can
happen only if ƒ is an isolated vertex or splits as a nontrivial join.

(iii) ) (iv) is immediate from induction on jV .�/j.

(iv) ) (i) follows from the observation that the join of two P4 –free graphs are still
P4 –free.

We will now prove Theorem 1.7. Recall the statement:

Theorem 1.7 There is an embedding A.P4/! A.�/ if and only if P4 arises as an
induced subgraph of � .

Proof of Theorem 1.7 We use an induction on the number of vertices of � . Suppose
there is an embedding �W A.P4/!A.�/ and � is P4 –free. Note that A.P4/ is freely
indecomposable. By Kurosh subgroup theorem, we may assume that � is connected.
From the characterization of P4 –free graphs, one can write � D �1 � �2 for some
nonempty P4 –free graphs �1 and �2 . Let �i denote the projection A.�/!A.�i/. By
the inductive hypothesis, the kernel Ki of �i ı� is nontrivial. The subgroup K1K2 of
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A.P4/ is isomorphic to K1�K2 . If we can show that K1 and K2 are both non-Abelian
then we are done. Indeed, then we obtain an embedding A.C4/Š F2 �F2!A.P4/

and this contradicts to Proposition 5.1.

To see that K1 and K2 are both non-Abelian, notice that they are both normal in
A.P4/. Fix i D 1 or 2. Since A.P4/ is centerless, there exist g 2Ki and h 2A.P4/

such that Œg; h�¤ 1. By Baudisch [2], g and h generate a copy of F2 . In particular, g

and gh generate a copy of F2 in Ki . The conclusion follows.

The argument given in Theorem 1.7 is a reflection of a more general principle concerning
right-angled Artin subgroups of right-angled Artin groups on joins:

Theorem 5.4 Let ƒ be a finite graph whose associated right-angled Artin group has
no center and let J D J1 � J2 be a nontrivial join. Suppose we have an embedding
A.ƒ/! A.J /. Let �1 and �2 be the projections of A.J / onto A.J1/ and A.J2/.
Restricting each �i to A.ƒ/, we write K1 and K2 for the two kernels. Then either at
least one of K1 and K2 is trivial or ƒ contains a induced square.

Proof Since A.ƒ/ is embedded in A.J /, the intersection K1\K2 is trivial. There-
fore, K1K2 ŠK1 �K2 . Since each Ki is normal in A.ƒ/ and since A.ƒ/ has no
center, either at least one of K1 and K2 is trivial or we can realize F2�F2 as a subgroup
of A.ƒ/. In the latter case, ƒ must contain a induced square by Corollary 1.10.

The conclusion of the previous result holds in particular whenever ƒ does not split as
a nontrivial join.

Corollary 5.5 Suppose ƒ is a square-free graph. If A.ƒ/ is centerless and contained
in A.J1 �J2/, then A.ƒ/ embeds in A.J1/ or A.J2/.

Corollary 5.6 Suppose we have an embedding Z�Z2!A.�/. Then � contains a
disjoint union of an edge and a point as an induced subgraph.

Proof Clearly we may assume that � is P4 –free. If � is connected, then � is a
nontrivial join � D J1 �J2 . In this case, Z�Z2 embeds in A.J1/ by Corollary 5.5.
The conclusion follows from induction. Now assume � is disconnected. Since Z2 has
rank two, at least one of the components of � has an edge. Therefore, � contains a
disjoint union of an edge and a vertex as an induced subgraph.
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Proof of Corollary 1.9 Let d be the diameter of a largest component of ƒ. If d � 3,
then A.P4/�A.�/ and so, Theorem 1.7 and Proposition 5.2 imply that �e contains
every finite forest as an induced subgraph.

Assume d D 2. In this case, P3 � ƒ. We see P3 � � for otherwise, � would be
complete. So, �e contains an induced P e

3
, which is the join of a vertex and an infinite

discrete graph. Hence, �e contains each component of ƒ as an induced subgraph. If
ƒ is connected or � does not split as a nontrivial join, this would imply that ƒ� �e ;
see Lemma 3.7. Suppose ƒ is disconnected and � D �1 ��2 . Since A.ƒ/ has no
center, Theorem 5.4 implies that A.ƒ/ � A.�i/ for i D 1 or 2. By induction, we
deduce that ƒ� �e . When d � 1, A.ƒ/ is Abelian and the proof is easy.

6 Complete bipartite graphs

We denote the complete graph on n vertices by Kn . The complete bipartite graph that
is the join of m and n vertices is written as Km;n . For convention, we also regard
discrete graphs Kn;0 and K0;n as complete bipartite graphs. Question 1.5 can be
answered positively when � is complete bipartite; more precisely, one can classify
right-angled Artin groups embedded in A.Km;n/ as follows.

Corollary 6.1 Let ƒ be a finite graph.

(1) Suppose m; n � 2. Then A.ƒ/ � A.Km;n/ if and only if ƒŠKp;q for some
p; q � 0.

(2) Suppose n � 2. Then A.ƒ/ � A.K1;n/ if and only if ƒ Š Kp;q for some
0� p � 1 and q � 0.

(3) A.ƒ/�A.K1;1/ if and only if ƒŠKp;q for some 0� p; q � 1.

Proof We first show that if �DKm;n and A.ƒ/�A.�/, then ƒ is complete bipartite.
Note that a triangle-free graph which is a non-trivial join is complete bipartite. We have
that � and ƒ are triangle-free; see Lemma 2.3. Recall that Pm denotes a path on m

vertices. Since � does not have an induced subgraph isomorphic to P1

`
P2 , neither

does ƒ by Corollary 5.6. So if ƒ is disconnected, then each connected component is
a vertex and in particular, ƒ is discrete. Now we assume ƒ is connected. As ƒ does
not contain an induced P4 , Lemma 5.3 implies that ƒD J1 �J2 for some nonempty
graphs J1 and J2 in K . Since ƒ is triangle-free, ƒ is complete bipartite.

To complete the proof of (1), it remains to show that A.Kp;q/ � A.Km;n/ for any
p; q � 0, which is clear since C e

4
�Ke

m;n and C e
4

is the complete bipartite graph on
two countable sets.
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In (2), if A.ƒ/ � A.K1;n/, then ƒ is a complete bipartite graph not containing an
induced square by Corollary 1.10. The converse follows from Ke

1;2
DK1;1 . Proof of

(3) is clear.

7 Co-contraction

Let us recall the definition of the operations contraction and co-contraction on a graph
[22]. Let � be a finite graph and B a connected subset of the vertices; this means the
induced subgraph on B is connected. The contraction CO.�;B/ is a graph whose
vertices are those of � XB together with one extra vertex vB , and whose edges are
those of � XB together with an extra edge whenever the link of a vertex in � XB

intersects B nontrivially. In this case we draw an edge between that vertex and vB . A
subset is anticonnected if it induces a connected subgraph in �opp . Co-contraction is
defined dually for anticonnected subsets of the vertices of � . For instance, any pair of
nonadjacent vertices is anticonnected. We have

CO.�;B/D CO.�opp;B/opp:

We can explicitly define co-contraction as follows. The vertices of CO.�;B/ are the
vertices of � XB , together with an extra vertex vB . The edges of CO.�;B/ are the
edges of � XB . In addition, we glue in an edge between vB and a vertex of � XB if
B is contained in the link of that vertex.

A very easy observation is the following:

Lemma 7.1 Let � be a finite graph and B an anticonnected subset of the vertices of
� . Then there is a sequence of graphs

� D �0! �1! � � � ! �p D CO.�;B/

such that �i is obtained from �i�1 by co-contracting �i�1 relative to a pair of non-
adjacent vertices.

We can now give another proof of the following result which appears in [22]:

Theorem 7.2 Let � be a finite graph and B an anticonnected subset of the vertices of
� . Then

A.CO.�;B//�A.�/:

Proof It suffices to prove the theorem in the case where B is a pair of nonadjacent
vertices. Write BDfv1; v2g. Consider the induced subgraph ƒ of �e on V .�/[fv

v1

2
g.
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In ƒ, there is an edge between vv1

2
and another vertex v of � if and only if v is

connected to both v1 and v2 . Write vB D v
v1

2
and delete v1 and v2 from ƒ. Note

that the resulting graph is precisely CO.�;B/, and that we obtain the conclusion of
the theorem by Theorem 1.3.

Proof of Corollary 1.13 It is clear from the definition that C
opp
n co-contracts onto

C
opp
n�1

for n� 4.

For the rest of this section, we use mapping class groups to recover the theory of
contraction words from [22]. We begin with an illustrative example: Consider the graph
C

opp
6

. We think of this graph as C5 with a “split vertex”. Precisely, label the vertices
of a 5–cycle as fa; b; c; d; eg and then split c into two vertices v and w . We have that
v and w are both connected to b and d , and we add two extra edges between v and a

and between w and e . It is easy to check that this graph is C
opp
6

; see Figure 3.

C
opp
6
D

wb

a

v d

e

��

�

� �

� C5 D

a
b

c
d

e

�
�

�
�

�
split coo

Figure 3: C
opp
6

and C5

Proposition 7.3 If the generators of A.C
opp
6
/ are labeled as in Figure 3, then there

exists an N such that for all n�N ,

han; bn; .vw/n; dn; en
i ŠA.C5/:

Proof Represent the vertices of C
opp
6

as simple closed curves on a surface † with
the correct co-incidence correspondence. We may arrange so that v and w together fill
a torus T with one boundary component, as the curves x and y . Writing v D Tx and
w D T �1

y , we may assume that vw is a pseudo-Anosov homeomorphism supported
on T . By [24], we have the conclusion since the co-incidence graph of fa; b;T; d; eg
is precisely C5 .

In [22], the first author constructs so-called contraction words and contraction sequences.
We will not give precise definitions for these terms other than if v and w are nonadjacent
vertices in a graph � , then any word in

ha; bi X fambn
Wm; n 2 Zg˙1
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is a contraction word. The primary result concerning contraction words is the following:

Theorem 7.4 [22] Let � be a graph and let fB1; : : : ;Bmg be disjoint, anticon-
nected subsets of � . For each i , we write vBi

for the vertex corresponding to Bi in
CO.�; .B1; : : : ;Bm//, and we write gi for some contraction word of Bi . Then there
is an injective map

�W A.CO.�; .B1; : : : ;Bm///!A.�/

such that for a vertex x , we have �.x/D gi if x D vBi
and �.x/D x otherwise.

We can partially understand this result using mapping class groups as follows: our
contraction words will be built out of two nonadjacent vertices a and b in � and will be
of the form .anbm/˙N for some N sufficiently large. To see this, we simply arrange
a and b to correspond to two simple closed curves x and y that fill a torus T with one
boundary component in a large surface †. Taking a power of a positive twist about x

and a power of a negative twist about y and declaring these to be a and b , respectively,
shows that .anbm/˙1 is always a pseudo-Anosov homeomorphism supported on T .
Passing to a power of this homeomorphism, we obtain that the subgroup of A.�/

generated by .anbm/˙N and sufficiently large powers of the other vertices of � will
isomorphic to A.CO.�; fa; bg//.

8 Triangle-free graphs and long cycles

In this section, we prove Theorem 1.11.

Proof of Theorem 1.11 We suppose A.ƒ/ embeds into A.�/ for some nonempty
graphs ƒ and � . We can assume that � is not complete and does not split as a
non-trivial join; otherwise, � is complete bipartite and the proof is obvious from
Corollary 6.1. By Lemma 3.7, we have only to consider the case when ƒ is connected.

Lemmas 3.9 and 2.3 imply that �e and ƒ are both triangle-free. By Theorem 1.4, there
is an embedding �W ƒ! �e

k
whose image is an induced subgraph. We can further

require that for any distinct vertices v and v0 of ƒ, the clique corresponding to i.v/

is not contained in the clique corresponding to i.v0/. There is a natural embedding
 W �e ! �e

k
. If �.ƒ/ is not contained in  .�e/, then for some vertex u of ƒ,

�.u/D va;b where va;b 2 V .�e
k
/ corresponds to an edge fa; bg of �e . This implies

that  .a/;  .b/ 62 �.V .ƒ/Xfug/. Since ƒ is connected and the two vertices a and b

separate va;b from the rest of �e
k

, ƒ is a single vertex fug. In particular, ƒ� �e .

We note another consequence of Theorem 1.11, related to the Weakly Chordal Question
(Question 1.14).
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Corollary 8.1 Let � be a finite graph and n� 5.

(1) Suppose � is triangle-free. If A.Cn/�A.�/ for some n� 5, then Cm � � for
some 5�m� n.

(2) Suppose � is bipartite. If ƒ is a finite graph and A.ƒ/ � A.�/, then ƒ is
bipartite.

Proof of Corollary 8.1 In (1), if � does not contain an induced Cm for any 5�m�n,
then Lemma 3.9 would imply that �e has no induced Cn . Proof of (2) is immediate
from Theorem 1.11 and by observing that the extension graph of a bipartite graph is
bipartite.

Corollary 8.2 The Weakly Chordal Question has a positive answer whenever � is
triangle-free or square-free.

Proof The triangle-free case was shown in Corollary 8.1(1).

A graph � is called chordal if it contains no induced cycle of length n�4. Right-angled
Artin groups on chordal graphs do not contain fundamental groups of closed hyperbolic
surfaces; see [23] and [12]. However, it is well-known that right-angled Artin groups on
long cycles contain hyperbolic surface groups [31]. Hence, right-angled Artin groups
on chordal graphs do not contain A.Cn/ for any n� 5. This completes the square-free
case.

Remark The smallest example of a weakly chordal graph for which Weakly Chordal
Question is unresolved is P

opp
6

[12]. It is known that A.P
opp
6
/ does not contain A.Cn/

for an odd n� 5 [12], Guba and Sapir [17].

Theorem 1.11 trivially answers the Weakly Chordal Question for the case where the
target graph � is a cycle. A more precise statement on when there is an embedding
from A.Cm/ to A.Cn/ is given by Theorem 1.12.

Proof of Theorem 1.12 Let us fix one conjugate of Cn in C e
n and denote it by �. We

may assume m; n� 5 by Corollary 6.1 and Corollary 1.10. By Theorem 1.11, it suffices
to prove that Cm embeds in C e

n as an induced subgraph if and only if mD nCk.n�4/

for some k � 0.

We first prove the forward implication by an induction on m. If m � n, the claim
is trivial by Lemma 3.9. Suppose that 
 Š Cm is an induced subgraph of C e

n , with
m> n. Notice that 
 is not contained in one conjugate of � inside of C e

n . Therefore,
there exist two vertices x;y in 
 such that x and y belong to distinct conjugates of
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� in C e
n . By Lemma 3.5(6), there exists a vertex v 2 C e

n such that 
 \St.v/ contains
at least two vertices, none of which are equal to v , and such that 
 X 
 \ St.v/ is
disconnected. Consider the graph spanned by 
 and v . The vertex v induces at least
two more edges, but possibly more. Taken together, these edges cellulate 
 , dividing it
into smaller induced cycles fA1; : : : ;Akg. Any two of these cycles meet in either a
path of length two, a single edge or precisely at the vertex v . See Figure 4.

A1

A2

v

x

y

(a)

A1

A3

A2 A4
v

x

y

(b)

A1

A2

A3

v

x

y

(c)

Figure 4: Separation of a cycle, in the proof of Theorem 1.12

We claim that v and 
 determine a cellulation of 
 that consists of exactly two induced
subcycles. To prove this, it suffices to see that there cannot be three or more induced
cycles meeting at v such that any two of the cycles intersect in an edge or a single
vertex; that is, (b) or (c) in Figure 4 does not occur. Suppose we are given k � 3 such
cycles “packed” about a vertex v of C e

n . First, notice that we may assume these cycles
all have length n. Indeed, if any one of them is longer, then we can cellulate it by cycles
of strictly shorter length by finding a vertex whose star separates the cycles, as above.
Now suppose that k cycles of length n are packed around a vertex v . By Lemma 3.11,
any n–cycle in C e

n is a conjugate of �. So, we may assume v is a vertex in � with
neighbors a and b . Since the cycles are packed about v , they are all conjugate to � by
an element of the stabilizer of v , which is the group generated by fa; b; vg. Since v is
central in this group, we may ignore it when we consider conjugates. As in Figure 5(a),
there exist 1 D w1; w2; : : : ; wk 2 ha; bi � A.�/ such that the following cycles are
cyclically packed about v :

f�w1 ; : : : ; �wk g:

Notice that for each i , the word wi is a word in a and b . Furthermore, wi�1w
�1
i is a

nonzero power of a or of b , depending on the parity of i . If k � 3, wk cannot be a
multiple of a or b ; however, since �wk and �w1 share an edge, this would have to
be the case. So, k D 2.
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It follows that 
 is given by concatenating two induced cycles of length k and k 0

along a path of length two, so that m D k C k 0 � 4. When n � 5, square-freeness
implies that k and k 0 are both smaller than m, which completes the induction.

Conversely, suppose that mD nC k.n� 4/ for some k � 1. We can easily produce
a copy of Cm in C e

n as a “linear” cellulation of a disk, as follows. We think of Cn

as the boundary of a disk. On the boundary of each disk, choose two edge-disjoint
induced paths .a; b; c/ and .x;y; z/. If nD 5, we let aD x ; otherwise, we assume
fa; b; cg and fx;y; zg are disjoint. Arrange k of these disks in a row and glue them
together, identifying the copy of fa; b; cg in one disk with the copy of fx;y; zg in the
next, gluing a to x , b to y and z to c . See Figure 5(b). The boundary of the resulting
disk is clearly an induced subgraph of C e

n and has the desired length nC k.n� 4/.

v
b bw2

a

aw3

�w2�D�w1

�w4 �w3

(a)

a

b

c

a

b

c

a

b

c

x

y

z

x

y

z

x

y

z

� � �

(b)

Figure 5: Proof of Theorem 1.12. (a) Cycles packed around a vertex. Note
that w2 2 haiw1 D hai; w3 2 hbiw2; w4 2 haiw3 , and so forth. (b) A linear
cellulation of a disk in C e

n .

9 Universal right-angled Artin groups

In this short section, we prove Theorem 1.16.

Proof of Theorem 1.16 If � is triangle-free and has chromatic number n then so
does �e ; see Lemma 3.5(8). Furthermore, all the induced subgraphs of �e also have
chromatic number at most n. It is a standard result of Erdős that there exist triangle-free
graphs with arbitrarily large chromatic number (see [14], for example), so there is no
chance that �e contains every triangle-free graph.
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10 Undistorted right-angled Artin subgroups

For a group G and an isomorphism between two subgroups �W H !H 0 , let us denote
by G �� G the free product of two copies of G amalgamated by the map � . The
HNN–extension of G amalgamated by the map � is denoted as G�� . From [25], it
easily follows that G �� G embeds into G�� . We strengthen this classical result as
follows.

Lemma 10.1 Under the above notation, we denote by  the isomorphism induced by
��1 from the image of H 0 in the first factor of G �� G onto the image of H in the
second factor. We set P D .G �� G/� , QD G�� and call the stable generators of
P and Q by s and t , respectively. We denote by � the natural group isomorphism
from the first factor of G �� G onto the second factor. Define f W P !Q by f .g/D
g; f .�.g//D gt for g 2G and f .s/D t2 . Then f embeds P into Q as an index-two
subgroup.

Proof Let X be a CW–complex and Y;Y 0 be a subcomplex such that �1.X /D G ,
�1.Y /DH and �1.Y

0/DH 0 . Construct a complex Z for Q by gluing Y � Œ0; 1� to
Y;Y 0 �X along Y � 0 and Y � 1, respectively. Then we can construct a complex W

for P by taking two copies Z1;Z2 of Z , cutting Zi along the image of Y � 1
2

, and
suitably gluing those cut images in Z1 to the cut images in Z2 , so that W is an degree-
two cover of Z and f is the induced map between �1.W /D P and �1.Z/DQ.

The reason for giving this strengthening is that it provides another proof of Theorem 1.3
that is purely combinatorial. However, the proof of Theorem 1.3 as it is given previously
is the “correct” proof since it leads to the natural generalizations which require mapping
class groups in their proofs.

Alternative proof of Theorem 1.3 From Lemma 10.1, it easily follows that
A
�
�
S

St.v/ �
�

sits as an index-two subgroup of A.�/ for a graph � and its vertex
v (this latter result was also shown in [5] by a similar idea to Lemma 10.1). The
conclusion is now immediate by Lemma 3.1.

Proof of Corollary 1.15 By Theorem 1.11, we have that ƒ embeds in �e . Therefore,
we can double � along stars of vertices finitely many times to get a finite subgraph X

of �e , which contains ƒ. By Lemma 10.1, we have that A.X / < A.�/ with finite
index, so that there is an undistorted copy of A.X / in A.�/. Now we have that ƒ is
an induced subgraph of the defining graph X . It follows that the corresponding copy of
A.ƒ/ <A.X / is undistorted, since the corresponding inclusion of Salvetti complexes
is an isometry.
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