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Spherical subcomplexes of spherical buildings

BERND SCHULZ

Let � be a thick, spherical building equipped with its natural CAT(1) metric and let
M be a proper, convex subset of � . If M is open or if M is a closed ball of radius
�=2 , then ƒ , the maximal subcomplex supported by � nM , is dimƒ–spherical
and non-contractible.

51E24; 11F75

Connectivity properties of subcomplexes in spherical buildings play an important role
in establishing finiteness properties of S –arithmetic groups. The complexes arise as
relative links of filtrations of Euclidean buildings. The main result of this paper is the
sphericity of open and closed hemisphere complexes in spherical buildings.

Let M be a subset with property (P) of a geometrically realized spherical building. The
maximal subcomplex contained in M is called a (P) supported subcomplex. Recall that
a simplicial complex ƒ is homotopy Cohen–Macaulay, if the link of every simplex
� of ƒ (including the empty simplex) is .dimƒ� dim ��1/–spherical. The present
paper uses the theory of abstract spherical buildings and their metric realizations in
order to proof the following two theorems.

Theorem A Non-empty, closed, coconvex supported subcomplexes of spherical
buildings are homotopy Cohen–Macaulay. They are non-contractible for at least one-
dimensional, thick buildings.

The subcomplex supported by the complement of a closed (resp. an open) ball with
radius �=2 is called an open (resp. a closed) hemisphere complex. Note, that closed
hemisphere complexes are closed, coconvex supported subcomplexes. Their sphericity
was also independently proved by J Dymara and D Osajda [18].

Theorem B Open hemisphere complexes of thick spherical buildings are homotopy
Cohen–Macaulay and non-contractible.

In the late 1980’s, P Abramenko [3] and H Abels [1] independently determined the
finiteness length of SLn.Fq Œt �/ provided that q is sufficiently big compared with n.
Later on, Abramenko [4] generalized the result to absolutely almost simple classical
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Fq –groups of positive rank over Fq Œt �. The proofs used the action of these groups �
on a simplicial Euclidean building X and the existence of a cocompact � –filtration of
X with spherical relative links. Once such a filtration was established, the finiteness
length of � followed by Brown’s Criterion [11, Corollary 3.3]. Since links in Euclidean
buildings are spherical buildings, the search for spherical subcomplexes of spherical
buildings was a key problem. Specifically the restrictions on q in the above results
have been made to get the desired connectivity properties of the relative links.

The proof of H Behr’s characterization of finitely generated and finitely presented
S –arithmetic groups over function fields [7] used similar geometric arguments. The
situation was more complicated, because in view of the groups that paper treated the
general case. So X was not simplicial and one needed reduction theory to define a
cocompact � –filtration. Since [7] aimed on finite presentation it was sufficient to show
that relative links are simply connected without dependencies on q . As in [3] and [4],
the verification of the connectivity properties occupied the most part of the article.
Anyway, Behr’s result and its proof suggested that a generalization of the above results
using a suitable filtration of X is possible. The obstacle was that one only knew a
sparse collection of spherical complexes that could serve as relative links in that general
context.

Besides sphericity, subcomplexes of a spherical building � that could serve as relative
links admit the action of a parabolic subgroup P of Aut.�/. In Behr [7] sphericity has
been proofed for the most candidates up to dim�� 2. The method was to show that
P can be generated or even described as an amalgamated sum of the P –stabilizers
that belong to the vertices of a fundamental domain for the action of P (see J Tits [27,
8. Corollaire 1]). Any heretofore known complex of higher dimension that could serve
as a relative link has been investigated in the second part of Abramenko [4]. Using
the flag complex models of classical spherical buildings Abramenko examined the
complexes �o.�/ for a simplex � of �; that is the subcomplex whose chambers are
the chambers of � containing an opposite of � . One knew from other contexts, for
instance K Vogtmann [28], that �o.�/ is spherical without dependency on q for some
types of buildings and simplices. But it turned out that this is not true in general.

These examples have not been sufficient to indicate how a filtration that works in the
general case of S –arithmetic groups over function fields could be constructed. The
aim of this paper is to provide a wide range of subcomplexes of spherical buildings that
could serve as relative links. In order to reduce the complexity of defining a filtration the
complexes should have a uniform description like the �o.�/ that occurred as relative
links in Abels [1] and Abramenko [4]. Behr [7] demonstrated that the invariants of
the Behr–Harder reduction theory give rise to a filtration defined by terms of metric
geometry. Hence, the candidates for the relative links should have a metric description.
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The observation that the most of the above examples that are spherical regardless of
q can be described as a complex supported by the complement of a closed ball with
radius �=2 leaded to the investigation of hemisphere complexes.

In [13] the upper bound of the finiteness length of S –arithmetic groups over function
fields has been determined by K-U Bux and K Wortman without local topological
arguments. But in [14] the same authors used Theorems A and B in order to generalize
the result of U Stuhler [25] on the finiteness length of SL2 over an S –arithmetic ring
to absolutely almost simple rank–1–groups. The idea was to construct a cocompact
�–complex from X by collapsing disjoint horoballs. To prove that this complex is
sufficiently high connected, Bux and Wortman showed that horospheres in X are
spherical applying the sphericity of hemisphere complexes.

Two years later K-U Bux, R Köhl (né Gramlich) and S Witzel [15] removed the
restrictions to the classical types and on q in the result of Abramenko [4] on the
finiteness properties of absolutely almost simple Fq –groups over Fq Œt �. In that paper
the authors returned to Abramenko’s approach and succeed in constructing a cocompact
� –filtration whose relative links are hemisphere complexes or akin to closed, coconvex
supported subcomplexes. Shortly afterwards Witzel [29] advanced the result to groups
over Fq Œt; t

�1� by extending the filtration of [15] to the case of non-simplicial Euclidean
buildings. Finally Bux, Köhl and Witzel [16] treated the general case by improving
the filtration of [29] using reduction theory and determined the finiteness length of
S –arithmetic groups over function fields again applying the sphericity of hemisphere
complexes.

Acknowledgements The current paper is a shortened version of my thesis [23] written
at the Johann Wolfgang Goethe–Universität in Frankfurt am Main. I would like to thank
Peter Abramenko, my doctoral advisor Helmut Behr and Kai-Uwe Bux for helpful
discussions and their support on writing my thesis. I am indebted to Kai-Uwe Bux
for commenting on earlier versions of the present paper and for suggesting valuable
improvements.

1 Notation, conventions and recalls

1.1 Simplicial complexes

We identify simplicial complexes with their geometric realization. The sets of vertices
and simplices of a simplicial complex X will be denoted by vt.X / and S.X /, re-
spectively. Simplices are open (in their closure). St � denotes the star of a simplex � .
The star of a point is the star of the simplex carrying that point. The link Lk � of a
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simplex � 2 S.X / is the subcomplex of X whose simplices � are disjoint from � but
the upper bound � [ � exists. We will write LkX � and StX � if X is a subcomplex.
The join of two simplicial complexes X , Y will be denoted by X �Y .

1.2 Construction of spherical simplicial complexes

We adopt the definitions from Quillen [22, Section 8]. A simplicial complex is n–
spherical (or spherical) if it is n–dimensional and .n�1/–connected. By convention
non-empty complexes are .�1/–connected. The empty complex is .�1/–dimensional
and .�2/–connected. A simplicial complex X is said to be homotopy Cohen–Macaulay
if Lk � is .dim X� dim ��1/–spherical for every simplex � 2 S.X / (including the
empty set ∅ 2 S.X /).

A commonly used way to show connectivity properties of simplicial complexes is
to build these complexes from complexes with known connectivity properties. An
overview of the necessary methods can be found in Björner [9, Sections 9 and 10].
A common method is to build up joins, because the joins of spherical complexes
are known to be spherical (see Abramenko [3, Korollar zu Bemerkung 6], see also
Vogtmann [28, Proof of 1.1]). The following generalization of the gluing lemma (see
Björner [9, Lemma 10.3]) is also a standard tool. It is a consequence of the Hurewicz
isomorphy theorem (see Spanier [24, page 398]), the Mayer–Vietoris sequence of
reduced homology, and Van Kampen’s theorem (see Hilton and Wylie [20, 6.4.3]).

Lemma 1.1 (Gluing Lemma) Let I be an index set. Let X and Yi for i 2 I be
subcomplexes of a simplicial complex Z D X [

S
i2I Yi . Assume Yi \Yj � X for

all i; j 2 I with i ¤ j .

(a) If X and Yi are n–connected and X \ Yi is .n�1/–connected for all i 2 I ,
then Z is n–connected.

(b) If Z and X \Yi are n–connected for all i 2 I , so is X .

To show n–connectedness of a connected simplicial complex, it is sufficient to prove that
every finite subcomplex is contained in a n–connected subcomplex, because continuous
images of spheres and balls are contained in finite subcomplexes (by compactness).
Since the metric topology and the weak topology coincide on finite subcomplexes, one
may use the metric topology.

1.3 Spherical buildings

Geometrically realized spherical buildings � admit a unique metric, invariant under
automorphisms, such that apartments are isometric to the dim�–dimensional unit
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sphere by Bridson and Haefliger [10, II.10 Theorem 10A.4]. We will denote the
corresponding canonical metric by d (or by d� if it is necessary to avoid confusions).
.�; d/ is complete and CAT.1/. Isomorphisms of apartments induce isometries and d

is a length metric.

In most considerations we do not need to consider the cardinality of chambers containing
a given panel. But some crucial constructions need a thick building. Note that the main
results do not hold for weak buildings. Thus, for simplicity, we agree that buildings
are thick throughout this paper.

According to Abramenko and Brown [5, Proposition 12.18], retractions onto apartments
are distance decreasing. We record the precise statement.

Proposition 1.2 The retraction �D �†;C W �!† onto † centered at C is distance
decreasing for every apartment † and every chamber C of †, that is, d.�.x/; �.y//�

d.x;y/ for all x;y 2�. Equality holds if x 2 SC .

Notation 1.3 For x;y 2 � we put Œx;y� D fz 2 � j d.x;y/ D d.x; z/C d.z;y/g.
As usual, we replace a square bracket by a round bracket if the corresponding endpoint
is left out.

Proposition 1.4 If d.x;y/ < � , then Œx;y� lies in any apartment that contains x and
y . Therefore Œx;y� is the unique segment joining x and y . If d.x;y/D � then Œx;y�
is the union of apartments containing x and y .

According to Bridson and Haefliger [10, II.1 Proposition 1.4 (1)], there are deformations
along geodesic segments for spherical buildings.

Proposition and Definition 1.5 For x;y 2 � with d.x;y/ < � and t 2 Œ0; 1� let
r�.x;y; t/ 2 Œx;y� be the point defined by d.x; r�.x;y; t//D td.x;y/. The map

r�W f.x;y/ 2��� j d.x;y/ < �g � Œ0; 1�!�I .x;y; t/ 7! r�.x;y; t/

is continuous with respect to the metric topology.

By the uniqueness of d , the apartments of � are spheres, triangulated by the hyper-
planes of a finite essential reflection group, since finite Coxeter complexes can be
realized this way. It is clear that roots are closed hemispheres and that walls are the
corresponding equators. Hence, �; � 2S.�/ are opposite, if and only if there are points
x 2 � and y 2 � with d.x;y/D � . Two points at distance � are called antipodal.
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Notation 1.6 For a point x 2 �, the set of its antipodal points will be denoted by
Ant.x/. Furthermore we denote Ant�.x/D Ant.x/[fxg.

A subset of � is � –convex if it contains the joining segments for every pair of non-
antipodal points out of it. By Tits [26, Theorem 2.19] a subcomplex of � is convex in
the sense of [26, 1.5], if and only if its intersection with any apartment is an intersection
of roots, that is, if and only if its intersection with any apartment is � –convex. Then it
is also � –convex as a subset, since by Proposition 1.4 a subset is � –convex, if and
only if its intersection with any apartment is � –convex.

For simplicity, we call a subset of � convex if it is � –convex. The complement of a
convex set is said to be coconvex.

For a set of simplices M � S.�/, we denote the full convex hull in the sense of
Tits [26, 1.5] by Conv.M /. Note, that this differs in general from the metric convex
hull.

Notation 1.7 If � is one of the relations <, �, >, �, or D and x 2 �, we put
��
�
.x/D fy 2� j d.x;y/� �=2g.

Lemma 1.8 Let x 2� be a point. The balls �<
�
.x/ and ��

�
.x/ are convex.

Proof Let y; z 2� be non-antipodal points and let v2 Œy; z�. By Proposition 1.4, there
is an apartment † containing Œy; z�. Let � be the retraction onto † centered at some
chamber of † containing v in its closure. Then d.y; �.x//� d.y;x/, d.z; �.x//�

d.z;x/ and d.v; �.x// D d.v;x/ hold by Proposition 1.2. Therefore, the lemma
follows from the convexity of hemispheres in apartments.

Proposition and Definition 1.9 Let x 2 � be a point. For y 2 � nAnt�.x/ exists
a unique point pxy 2 @St x such that pxy 2 Œx;y� or y 2 Œx;pxy�. The geodesic
projection

px W � nAnt�.x/ �! @St xI y 7�! pxy

with center x onto the boundary of St x is continuous with respect to the metric
topology.

Proof The map px is well defined by Proposition 1.4. The continuity follows from
Proposition 1.2 since the restriction pxj† is continuous for any apartment † that
contains x .
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For a simplex � 2S.�/, we denote the projection to the star of � in the sense of Tits [26,
2.30] by proj� . By definition, proj� � is the maximal simplex of St � \Conv.�; �/.
The geodesic projection and the combinatorial projection are related by the following
lemma.

Lemma 1.10 Let x 2� and y 2�nAnt�.x/ be points. Let � and � be the simplices
carrying x and y , respectively. Then .x;pxy/ is contained in proj� � .

For x 2� and y; z 2�nAnt�.x/ let †x.y; z/ denote the angle of the triangle .x;y; z/
at x . Since links are spherical buildings and the canonical metric is unique, we get the
following lemma from Charney and Lytchak [17, Proposition 2.3 (2)].

Lemma 1.11 The canonical metric on the link of a vertex x is given by †x .

The spherical law of cosines (see Bridson and Haefliger [10, 1.2 Proposition 2.2])
relates the length of a side in a spherical triangle to its opposite angle. Using 1.2,
geodesic projection and additionally Proposition 1.4 for the “only if”-part, one gets:

Proposition 1.12 (Spherical law of cosines) Let x be a point of � and let y; z be
points of � nAnt�.x/. Then:

cos d.y; z/� cos d.x;y/ cos d.x; z/C sin d.x;y/ sin d.x; z/ cos†x.y; z/

Equality holds if and only if x , y and z are contained in an apartment.

If �D�1 ��2 is a reducible spherical building, then � is a spherical join, that is,
the inclusions �k �� are isometric embeddings and the distance of points lying in
different factors is �=2. Hence, chambers of reducible spherical buildings contain
points at distance �=2.

Lemma 1.13 The length of edges joining two vertices does not exceed �=2.

Proof We use induction on dim�. The case dim�D 1 is clear. Suppose dim�> 1.
Let x;y and z be vertices of a common chamber. By the induction hypothesis and
Lemma 1.11 the angles †x.y; z/, †y.x; z/ and †z.x;y/ of the triangle .x;y; z/
are not obtuse. We therefore get the assertion, since the edges of a spherical triangle
without obtuse angles can not be longer than �=2.

Corollary 1.14 The diameter of closed chambers does not exceed �=2.
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Proposition 1.15 Let C be a chamber of � and x;y 2 SC . If d.x;y/ D �=2, then
�D�x ��y is a spherical join, such that x 2�x and y 2�y . That is, a spherical
building is reducible if and only if there is a chamber containing points at distance �=2.

Proof The assertion follows immediately from the Buekenhout product theorem [12,
Theorem 7.3], once we show that C has two complementary faces � carrying x and
� carrying y , such that d.u; v/D �=2, for all u 2 vt.�/ and v 2 vt.�/.

Let u be some vertex of C . By Corollary 1.14 we get d.x;u/��=2 and d.y;u/��=2.
Furthermore †u.x;y/ does not exceed �=2 by Corollary 1.14 and Lemma 1.11. Hence,
using the spherical law of cosines on the triangle .x;u;y/ we obtain d.x;u/D �=2

or d.y;u/D �=2.

Now let � be the face of C whose vertices have distance less than �=2 to x and let
� DC n� be the complementary face. Then x lies in x� and y is a point of x� , because
the distances from a point to the vertices of the simplex carrying that point are less
than �=2. For u 2 vt.�/ and v 2 vt.�/, we know that d.x; v/D �=2, d.x;u/ < �=2

and †u.x; v/� �=2. Hence, d.v;u/D �=2 by the spherical law of cosines.

2 Coconvex supported subcomplexes

Definition 2.1 Let ƒ be a simplicial complex and let M be a subset of ƒ. By ƒ.M /

we denote the maximal subcomplex of ƒ contained in M . We shorten ƒ0.M / D

ƒ0.M \ƒ0/ for a subcomplex ƒ0 �ƒ. The set M is said to be a support of ƒ.M /.
A subcomplex ƒ0 �ƒ is a (P) supported subcomplex (of ƒ) if and only if ƒ0 admits
a support with property (P).

We investigate the connectedness properties of coconvex supported subcomplexes of
spherical buildings. This section is dedicated to the proof of the first main result.

Theorem A Non-empty, closed, coconvex supported subcomplexes of spherical
buildings are homotopy Cohen–Macaulay. They are non-contractible for at least one-
dimensional, thick buildings.

The first claim is shown in Proposition 2.5 and Corollary 2.7; the second claim is
Proposition 2.8.

Note that coconvex supported subcomplexes are not coconvex in general. But for
a coconvex set M and a simplex � which is not contained in neither M nor its
complement, M \ @� is a strong deformation retract of M \ x� . We can therefore
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construct a sequence ƒ D ƒn � � � � � ƒ0 D ƒ.M / of subcomplexes such that
the maximal dimension of simplices like � is decreasing and ƒi \M is a strong
deformation retract of ƒiC1\M . This means that coconvex supported subcomplexes
are homotopy equivalent to their coconvex supports. We record this observation.

(a) (b)
Figure 1: Deformation of a coconvex support onto the supported subcomplex

Observation 2.2 Let ƒ be a subcomplex and let M be a coconvex subset of �. Then
ƒ\M and ƒ.M / are homotopy equivalent.

Lemma 2.3 Suppose dim�> 0. If M is an open, convex subset of � containing a
pair of antipodes, then M D�.

Proof Let x;y 2M be antipodal points, contained in some apartment †. Then †
is contained in M , since the convex hull of x together with a neighborhood of y

covers †. The closure of any chamber C that intersects M is contained in M , since
C has an opposite chamber in † and we therefore get an apartment in M (as above)
containing both. Now the assertion follows by induction on the gallery distance from
†.

Next we will show that closed, coconvex supported subcomplexes are spherical. The
proof is mainly based on the following lemma.

Lemma 2.4 (von Heydebreck [19, Lemma 3.5]) Let C be chamber of � and let M

be a finite set of apartments containing C . Then there is a finite set M 0Df†1; : : : ; †r g

of apartments containing C with M �M 0 such that †j \
�Sj�1

iD1
†i

�
is a union of

half–apartments containing C for 2� j � r .

Proposition 2.5 Closed, coconvex supported subcomplexes of � are dim�–spherical
or empty.
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Proof Let M be a non-empty, closed and coconvex subset of �. Since the case
dim�D 0 is trivial and the case �D�.�/ is covered by the Solomon–Tits theorem,
suppose that M is a proper subset and dim�> 0.

Let † be an apartment whose intersection with M is not empty. Then † nM is
contained in an open hemisphere of †, since it is a proper, open, convex subset.
Therefore †\M contains a closed chamber by Corollary 1.14. Hence, �.M / is
dim�–dimensional.

Let C be a chamber not contained in M . Any finite subcomplex of �.M / is coverable
by a finite set f†1; : : : ; †mg of apartments, each of which contains C . Let us denote
ƒr D†1[ : : :[†r and ‰r D†r \ƒr�1 . According to Lemma 2.4 we may choose
the set of apartments and their order such that, for any r , ‰r is a union of roots
in †r . We prove the .dim��1/–connectedness of ƒm.M /. Clearly, as †r \M

is closed and coconvex, †r .M / � †r \M is .dim��1/–connected. Hence, the
desired assertion follows from Lemma 1.1(a), once we show that ‰r \M �‰r .M /D

†r .M /\ƒr�1.M / is .dim��2/–connected.

Let x be a point of C nM and let pW †r nAnt�.x/! @.†r \M / denote the geodesic
projection with center x onto the boundary of †r \M . Since ‰r is a union of roots,
each of which contains x as an inner point, we know that ‰r is star shaped with respect
to x and does not contain the antipode of x in †r . Therefore the restriction of p to
‰r \M is a retraction ‰r \M !‰r \ @.M \†r / inducing a strong deformation
retraction

.‰r \M /� Œ0; 1� �!‰r \M I .z; t/ 7�! r�.z;p.z/; t/

from ‰r \M onto ‰r \ @.M \†r /. Hence, ‰r \M �‰r \ @.M \†r /.

Observe that p maps .†r nM / n‰r onto the complement @.M \†r / n‰r of the
above retract. Let qW †r nAnt�.x/! �D

†r
.x/ denote the geodesic projection with

center x onto the equator �D
†r
.x/. Note that the restriction of q to @.M \†r / is the

inverse homeomorphism of pj�D
†r
.x/ and that q D q ıp . Furthermore q maps open,

convex subsets of †r nAnt�.x/ to open, convex sets. Since .†r nM /n‰r is open and
convex, q.@.M \†r /n‰r /D q..†r nM /n‰r / is an open, convex subset of �D

†r
.x/.

Therefore ‰r \ @.M \†r / is .dim��2/–connected, since it is the homeomorphic
image of a closed, coconvex subset of �D

†r
.x/.

Remark K-U Bux, R Köhl and S Witzel observed the assumptions of Proposition 2.5
could be weakened, since its proof mainly used that the intersections of M with
apartments containing C are coconvex, but not that M is coconvex. So they showed
in [16, Proposition 4.3] that a complex is spherical provided that it is supported by a
set that has a coconvex intersection with any apartment containing a given chamber.
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(a) (b)

x

‰r\@.M\†r /

�D
†r
.x/

†r\M

‰r\M

Figure 2: Via geodesic projection with center x we get (a) a homotopy
equivalence ‰r \M � ‰r \ @.M \ †r / and (b) a homeomorphism of
‰r \ @.M \†r / and a coconvex subset of �D

†r
.x/

Lemma 2.6 Suppose dim�> 0. Let x;y 2� be opposite vertices and let M be a
proper, open, convex subset of .x;y/ (see Notation 1.3 and Proposition 1.4). Then the
image of M under the geodesic projection onto Lk x is a proper, open, convex subset
of Lk x .

Proof Let A be an arbitrary apartment of Lk x . The convex hull of x;y and A is an
apartment †. For a point z 2A, the geodesic segment joining x and y going through
z is contained in †. Therefore † contains the preimage of z under the restriction
pxj.x;y/ . Hence, px.M /\AD px.M \†/.

Let q be the geodesic projection with center x onto the equator �D
†
.x/. From

q D q ıpxj† we get q.M \†/D q.px.M /\A/. Therefore q.px.M /\A/ is an
open, convex subset of �D

†
.x/, because q maps open, convex subsets of † nAnt�.x/

to open, convex subsets of �D
†
.x/. Since the restriction of q on A is an isometry

according to Lemma 1.11, px.M /\A is open and convex in Lk x . Recall that A has
been chosen arbitrary. Hence, px.M / is open and convex in Lk x .

Assume there are u; v 2 M such that †x.pxu;pxv/ D �=2. Then the union of
segments Œx;u�[ Œu;y�[ Œy; v�[ Œv;x� would be a great circle. But this is impossible,
because M would contain x or y or a pair of antipodal points from �. Hence, px.M /

is a proper subset of Lk x .

Corollary 2.7 The links in non-empty, closed, coconvex supported subcomplexes of
� are non-empty, closed, coconvex supported subcomplexes.
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Proof It is sufficient to prove the assertion for vertices. Let M �� be a proper, open,
convex subset and let x be a vertex in � nM . Since M is open, a simplex of Lk x

is contained in the link Lk�.�nM / x if and only if its closure does not intersect the
image px.M \St x/. Let y op x be a vertex. Since Œx;y� contains a neighborhood of
x , by Kleiner and Leeb [21, Lemma 3.6.1], it also contains St x . Hence, the assertion
follows from Lemma 2.6.

Proposition 2.8 Non-empty, closed, coconvex subsets of at least one-dimensional,
thick spherical buildings are non-contractible.

Proof Let � be at least one-dimensional and let M �� be a proper, open, convex
subset. We proof the existence of a dim�–dimensional sphere in � nM by induction
on dim�.

Since � is thick, there are three pairwise opposite chambers. Then there is a pair
x op y of opposite vertices inside � nM by Lemma 2.3.

Let S be the union of the open geodesic segments that join x , y and contain a
point from M 0 D px.M \ Œx;y�/. Then Œx;y� n S is a subset of � nM . Further-
more Œx;y� n S is the spherical join of fx;yg and .Lk x nM 0;†x/ by Kleiner and
Leeb [21, Proposition 3.10.1]. Hence we are done, if Lk xnM 0 contains a .dim Lk x/–
dimensional sphere. Clearly, that is assured by the induction hypothesis, provided that
dim� > 1, since M 0 is a proper, open, convex subset of Lk x by Lemma 2.6. But
even if dim�D 1 we get a 0–sphere in Lk x nM 0 , since M 0 is connected and Lk x

is thick.

3 Hemisphere complexes

In this section we will examine some special coconvex supported subcomplexes. Their
supports are unions of hemispheres, so the complexes will be called hemisphere
complexes. Throughout the remainder of this paper we fix an arbitrary point x of �.

Definition 3.1 The subcomplex �>.x/D�.�>
�
.x// is said to be the open hemisphere

complex of � with respect to the pole x and ��.x/D �.��
�
.x// is said to be the

closed hemisphere complex of � with respect to the pole x . �D.x/D�.�D
�
.x// is

the equator complex of x .

The sets �<
�
.x/ and ��

�
.x/ are convex by Lemma 1.8. Hence, hemisphere complexes

are coconvex supported subcomplexes.
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Corollary 3.2 Closed hemisphere complexes of thick spherical buildings are homo-
topy Cohen–Macaulay and non-contractible.

Proof The assertion is an immediate consequence of Theorem A except for the non-
contractibility in the case dim�D 0. But closed hemisphere complexes are also in
this case non-contractible, since � is thick and �<

�
.x/ is a single point.

Note that the intersection of ��
�
.x/ with apartments containing x is convex. Hence,

��
�
.x/\ � is convex for any simplex � . We therefore get the following observation.

Observation 3.3 Open hemisphere complexes, closed hemisphere complexes and
equator complexes are full subcomplexes of �.

Notation 3.4 If � is reducible, then �hor.x/ denotes the maximal join factor of �
that is contained in �D

�
.x/ and �ver.x/ denotes the minimal join factor containing x .

We certainly have �D�hor.x/��ver.x/, since any irreducible join factor that does
not intersect the closure of the simplex carrying x lies in �D

�
.x/ by Proposition 1.15.

Now let us have a look at the induced join decomposition of hemisphere complexes:

Let �D�1 ��2 be a reducible spherical building and let � be one of the relations
>, �, or D. We get ��.x/ D �1.�

�

�
.x// ��2.�

�

�
.x// from Observation 3.3. If

x is a point of �1 , then �1.�
>
�
.x//D�>.x/ and �2 is a subcomplex of �hor.x/.

Therefore �2.�
�

�
.x// is empty if � is a strong inequality or all of �2 otherwise. If

x is not contained in neither �1 nor �2 then there are two unique points x1 2 �1

and x2 2 �2 such that x lies inside their joining segment. In this case we have
�i.�

�

�
.x//D��i .xi/:

Assume fi; j g D f1; 2g and y 2�i . Then d.x1;x2/D �=2D d.y;xj /, since points
of disjoint factors have distance �=2. There is an apartment containing x , x1 , x2 and
y . We therefore get from the spherical law of cosines

cos d.x;y/D sin d.xj ;x/ cos†xj .x;y/

D sin d.xj ;x/ cos†xj .xi ;y/

D sin d.xj ;x/ cos d.xi ;y/:

Hence, d.x;y/� �=2 if and only if d.xi ;y/� �=2. We proved:

Proposition 3.5 Assume �ver.x/D�1 � � � � ��k is a decomposition of �ver.x/ into
irreducible factors. Then �>.x/D�>ver.x/D�1.�

>
�
.x//� � � ���k.�

>
�
.x// is a join

of open hemisphere complexes in �1; : : : ; �k and the equator complex decomposes to
�D.x/D�Dver.x/��hor.x/.
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If � is irreducible, then the closed stars of the simplices opposite to the simplex
carrying x are contained in �>

�
.x/, since the diameter of closed chambers is less

than �=2 by Proposition 1.15. Hence, open hemisphere complexes of irreducible
spherical buildings have the same dimension as the surrounding building. In general,
dim�>.x/D dim�ver.x/� dim� by Proposition 3.5; and the last inequality is strict
if �hor.x/ is not empty. In the sequel we will have to take care of this case.

Lemma and Definition 3.6 Let � be a simplex of �D.x/. There is a unique point
p�x 2 Lk � such that

d.x;y/� �=2” dLk� .p�x;y/� �=2;

for any point y 2 Lk � and any relation <, �, D, � or >. For the simplex � carrying
x and the simplex � carrying p�x , holds � [�D proj� � . (If � is a vertex then p�x

is the geodesic projection of x on @St � D Lk � .)

Proof We induct on the dimension of � . So let � 2 �D.x/ be a vertex and let
y 2 Lk � be a point. There is an apartment containing x , y and � . By the spherical
law of cosines and Lemma 1.11 we therefore get

cos d.x;y/D sin d.�;y/ cos†� .x;y/D sin d.�;y/ cos dLk� .p�x;y/:

Hence, d.x;y/ � �=2 if and only if dLk� .p�x;y/ � �=2. The assertion on the
projection is an immediate consequence of Lemma 1.10.

For simplices � of higher dimension, one obtains the assertion and the characterization
of p�x by regarding a simplex as a vertex in the link of one of its codimension–1–faces.
This is justified, since proj� � D proj� proj� � for � � � by Tits [26, 2.30.5] and since
the canonical metric is unique.

Lemma 3.7 The links in open hemisphere complexes of irreducible buildings are
non-empty, closed, coconvex supported subcomplexes.

Proof Suppose � is irreducible. Let � be a simplex of �>.x/. The idea is to
recognize Lk�>.x/ � as a link Lk��.x0/ � in a closed hemisphere complex (to a
slightly perturbed pole x0 ) and to apply Corollary 2.7. The task is to choose x0 .

Let y be a point of � . As D D fjd.x; z/� �=2j j z 2 vt.�/ n vt.�D.x//g is finite
by Proposition 1.2, we may chose a point x0 on a segment joining x and y such
that 0 < d.x;x0/ < min D . From the triangle inequality we get the implications
d.x; z/ > �=2) d.x0; z/ > �=2 and d.x; z/ < �=2) d.x0; z/ < �=2 for any vertex
z of �. Hence,

vt.�>.x//� vt.�>.x0//� vt.��.x0//� vt.��.x//:
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Therefore Lk�>.x/ � is contained in Lk��.x0/ � . Let z be a vertex of Lk��.x0/ � .
According to Proposition 1.15, d.y; z/ is less than �=2. If y is an antipode of x , then
we have d.x; z/ > �=2. If x and y are not antipodal, we deduce d.x; z/ > d.x0; z/

from d.x;y/>d.x0;y/>�=2, †y.x; z/D†y.x
0; z/ and the spherical law of cosines.

Hence, Lk�>.x/ � D Lk��.x0/ � , because their vertex sets coincide. Now the lemma
follows from Corollary 2.7.

The following proposition, together with the results we previously reached immediately
imply our second main result.

Proposition 3.8 Let � be a thick spherical building. Then �>.x/ is dim�ver.x/–
spherical and non-contractible.

In particular:

Theorem B Open hemisphere complexes of thick spherical buildings are homotopy
Cohen–Macaulay and non-contractible.

Proof By Proposition 3.8 the open hemisphere complex �>.x/ is dim�ver.x/–
spherical and non-contractible. Let � be a simplex of �>.x/. From Proposition 3.5
and Lemma 3.7 we know that irreducible join factors of �ver.x/ containing a non-empty
face of � , intersect Lk � in a non-empty, closed, coconvex supported subcomplex. The
intersection of Lk � with an irreducible join factor of �ver.x/ that does not meet �
is an open hemisphere complex according to Proposition 3.5. Then Lk�>.x/ � is a
.dim�ver.x/� dim � � 1/–dimensional join of open hemisphere complexes and non-
empty, closed, coconvex supported subcomplexes. Since its join factors are spherical
by Propositions 2.5 and 3.8, so is Lk�>.x/ � .

The proof of Proposition 3.8 will occupy the remainder of this paper. Note that the
proof of Proposition 2.5 would not work in the case of open hemisphere complexes,
since the intersection of an open hemisphere with a union of closed hemispheres
is not .dim��2/–connected in general. A closer look at the proof of Lemma 2.4
(von Heydebreck [19, Lemma 3.5]) suggests that such situations arise inevitably. For
classical buildings one is able to achieve a precise description of the links in hemisphere
complexes. Therefore I tried to mimic the sphericity proofs Abels and Abramenko used
in [2] and [4], but I was not able to avoid limitations on the thickness of the underlying
buildings. This led to a different approach: Starting with a closed hemisphere complex,
which is known to be spherical by Corollary 3.2, we delete the stars of simplices
contained in the equator complex by a filtration such that the boundary of the deleted
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�
�
.x
/

�
>
.x
/

�D.x/

x

z op y

@St��.x/ y

y

Figure 3: The segments joining @St��.x/ y with z op y are contained in
�>.x/ . Hence, the boundary of the St��.x/ y is contractible in �>.x/ .
(Here � is the flag complex of the projective plane over F2 .)

stars is contractible in the remaining subcomplex (see Figure 3). To do this, we will
have to spend some work in advance. We begin by describing the obstacles that need
to be overcome:

For a point y of the equator complex, suppose there is an antipode z 2 �>.x/. (In
the sequel we will show that such an antipode exists.) Any point u 2 @St��.x/ y is
connected to z by a unique geodesic segment. In an ideal world, we could therefore
contract @St��.x/ y inside �>.x/ by geodesically coning off from z . This idea works
sometimes, but if u lies also in the equator, we would like to see .u; z���>

�
.x/. This,

however, does not always happen. There are two obstructions.

Obstruction 3.9 Let � be the simplex carrying y and let � denote the simplex
carrying u. As .u; z� is contained in a geodesic segment joining y and z , the initial
segment .u; z�\ St � of .u; z� lies in a simplex � of St � that is opposite to � [ �
in St � . If � n � is a simplex of a join factor of Lk � that lies in �D

�
.x/, then � is

contained in the equator, since � n � is also a simplex of that join factor. In this case
.u; z� can not be contained in �>

�
.x/ regardless of which antipode z of y we use.

Our first step will be to circumvent this problem. In Section 4 we construct a filtration
that removes � from the equator complex before � is removed, if � [� is a simplex of
the equator complex and � n � is contained in a join factor of Lk � that lies in �D

�
.x/.
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Obstruction 3.10 Even if we can find an antipode z for any u 2 @St��.x/ y such
that .u; z���>

�
.x/, it may happen that there is no antipode z such that the cone over

@St��.x/ y with tip in z is contained in �>
�
.x/. For instance, this case occurs, if

the link of the simplex � carrying y has a join factor that lies in the equator and the
corresponding (opposite) join factors of the links of the simplices opposite to � are
not completely contained in the hemisphere complex.

The example shows that we can not get around the second obstruction. In general
we are only able to contract pieces of @St��.x/ y by geodesically coning off inside
�>.x/. Here we use Lemma 1.1(b). Hence, we are forced to find dim�–spherical
subcomplexes of the filtration stages that contain the boundaries of the relative stars.
In order to deal with this problem, our second step will be to proof a lemma on dim�–
sphericity of a union of cones over subcomplexes of @St y . This will be the task of
Section 5. In Section 6, we establish a family of subcomplexes of the boundaries of the
relative stars and suitable antipodes such that the corresponding cones are contained in
�>.x/. We finally complete the proof of Proposition 3.8 in Section 7.

4 A filtration of closed hemisphere complexes

In this section we construct a filtration of the closed hemisphere complex starting with
the corresponding open hemisphere complex. The aim is to control the progress of
connectivity properties as the filtration shrinks. Since we intent to use Lemma 1.1(b), it
will be appropriate that two consecutive complexes of the filtration differ by a disjoint
union of relative stars. In view of Obstruction 3.9 we also require the following property:
If the upper bound � [ � of �; � 2 S.�D.x// exists and � n � is contained in a join
factor of Lk � that lies in �D

�
.x/ then � is at a lower stage of the filtration than � .

Later on, we shall see that the filtration satisfying these properties affords the desired
control of connectivity properties. In the present section we show its existence.

Proposition 4.1 There is a filtration �>.x/ ��hor.x/D F0 � F1 � � � � � FN (see
Notation 3.4) of the closed hemisphere complex FN D�

�.x/ that satisfies the follow-
ing two properties:

(a) For 1� k �N , the complex Fk is the disjoint union Fk�1[
S
�2Ik

StFk
� for

some set of simplices Ik � S.Fk/ nS.Fk�1/.

(b) For 1� k �N , every simplex � 2 Ik and any simplex � of �D.x/\ @StFk
� ,

the horizontal part .Lk �/hor.p�x/ of Lk � does not contain � n � .
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To explain the further strategy, let us at first suppose that we have got a filtration
that satisfies Proposition 4.1(a). We agree that I0 D f∅g and F�1 D ∅. Then any
simplex � 2 S.Fk/ nS.Fk�1/ has a unique face R.�/ 2 Ik such that � is contained
in the relative star StFk

R.�/. We can characterize R.�/ as the unique minimal face
of � 2 S.Fk/ n S.Fk�1/ that is not contained in S.Fk�1/. Hence, there is a map
RW S.��.x//!

S
k Ik that determines all relative stars and a grading on its image

that determines all stages of the filtration. In analogy to Björner [8, Definition 1.1] we
call R the restriction map of the filtration.

Our task is to construct a filtration that additionally satisfies Proposition 4.1(b). From
the geometric point of view, Proposition 4.1(b) means that the walls bordering the
relative stars of the filtration in question must not contain x . To receive this feature we
initially define the restriction map RW S.��.x//!S.�D.x// and hereby decompose
��.x/ into the relative stars we would like to have. Of course, one has to show
that R.�/ D R.�/ for any face � of � that contains R.�/ in order to assure that
R�1.R.�// is the star of R.�/ in some subcomplex.

We also need a grading on the image of the restriction map. Since R�1.R.�// shall
become a relative star, the restrictions R.�/ such that R.�/[R.�/ is a simplex of
R�1.R.�// should be at a lower stage than R.�/. We use this observation to define a
partial ordering on imR. If will turn out that strictly increasing chains have bounded
length. We finally obtain the grading on imR from the length of strictly increasing
chains.

Definition 4.2 For a chamber C 2Ch.�/ and a vertex v of C let Cv DC nv denote
its complementary face. For a simplex � 2 S.�/ let �Dx be its maximal face contained
in �D.x/. The map Rx

�W S.�
�.x// �! S.�D.x// defined by

vt.Rx
�.�//D fv 2 vt.�Dx / j 9 C 2 Ch.St �Dx / W Lk Cv 6��

D.x/g

(see Figure 4) is called the .�;x/–restriction on ��.x/.

Lemma 4.3 For x;y 2� the following statements are equivalent:
(a) �D�x ��y decomposes as a spherical join, such that x 2�x and y 2�y .

(b) Lk Cv � �
D.x/ for any chamber C of St y and any vertex v of the simplex

carrying y .

Proof The implication (a) ) (b) is clear. Suppose (b) holds. Let † be an apartment
containing x and y . Then (b) means that x is contained in any wall bordering St† y .
Therefore x is a point of St† y . Since d.x; v/D �=2 for any vertex v of the simplex
carrying y , we get d.x;y/D �=2 from Corollary 1.14, Lemma 1.11 and the spherical
law of cosines. Hence, (a) follows by Proposition 1.15.
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∅
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Lk Cz D Lk Dz
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Figure 4: The .�;x/–restriction in an apartment of Flag.P3.F // containing
x . (Here x is the midpoint of an edge joining a point and a hyperplane of
P3.F / .)

Corollary 4.4 Let � be a simplex of ��.x/. Then

Rx
�.�/D∅” �Dx is a simplex of �hor.x/:

Notation 4.5 For � 2 S.�/ let �� denote the simplicial map St �! St �; � 7! � [� .

Lemma 4.6 Let � be a simplex of �D.x/ and let � be a face of � . Then we have
Rp�x

Lk� .� n �/DRx
�.�/ n � and Rx

�.�/\ � is a face of Rx
�.�/.

Proof The map �� identifies StLk� .� n �/ with St � . Note that for any vertex
v 2 vt.� n�/ and any chamber C of StLk� .� n�/ we have LkLk� Cv DLk.��C /v . By
Lemma and Definition 3.6 we know that .Lk �/D.p�x/ equals Lk � \�D.x/. Hence,
using the definition one gets Rp�x

Lk� .� n �/DRx
�.�/ n � . The second assertion is clear,

since St � contains St � .

Corollary 4.7 The restriction map Rx
� is idempotent and its image imRx

� is a
subcomplex of �ver.x/.

Proof By Lemma 4.6 any face � of Rx
�.�/ is a face of Rx

�.�/, hence Rx
�.�/D �

for all faces of Rx
�.�/. According to Corollary 4.4 a simplex � 2 imRx

� is contained
�hor.x/ if and only if � DRx

�.�/D∅.

Lemma 4.8 Let � be a simplex of ��.x/ and let � be a face of �Dx . The following
statements are equivalent:

(a) .� n �/Dx is a simplex of .Lk �/hor.p�x/.
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(b) Rx
�.�/ is a face of � .

(c) Rx
�.�/DRx

�.�/.

Proof We may suppose � D �Dx . By Lemma 4.6 and Corollary 4.4 the simplex � n �
is contained in .Lk �/hor.p�x/, if and only if Rx

�.�/n� D∅ holds, hence, if and only
if Rx

�.�/ is a face of � . Thus, (a) , (b).

The implication (c) ) (b) is obvious, since Rx
�.�/ is a face of � . We show

(b) ) (c): Assume Rx
�.�/ is a face of � . Then Rx

�.�/ is a face of Rx
�.�/ ac-

cording to Lemma 4.6. Further � nRx
�.�/, hence its face Rx

�.�/ nR
x
�.�/ is con-

tained in .LkRx
�.�//hor.pRx

�
.�/x/ by (b) ) (a). It follows Rx

�.�/ nR
x
�.�/D∅ by

Corollary 4.4, Lemma 4.6 and Corollary 4.7. So Rx
�.�/DRx

�.�/.

By Lemma 4.8 the Rx
�–preimage of � 2 S.imRx

�/ is StF � for some subcomplex
F � ��.x/ and LkF � D .Lk �/>.p�x/ � .Lk �/hor.p�x/. Moreover: If � [ � is
an equatorial simplex of StF � and � n � is contained in .Lk �/hor.p�x/, then � is a
face of � , since Lemma 4.8 implies that Rx

�.�/DRx
�.� [ �/D � . Thus, a filtration

whose relative stars are the Rx
�–preimages of the simplices in imRx

� will satisfy
Proposition 4.1(b).

It also would have been possible to use the equivalence of Lemma 4.8 as a definition
of the restriction map. This was done by Bux, Köhl (né Gramlich), Witzel and Wort-
man [14; 15; 16; 29] to define a filtration of Euclidean buildings whose relative links
should get the above properties.

Now we are going to construct a grading on the image of the restriction map. Note that
imRx

� is in general not a full subcomplex of �ver.x/.

Definition 4.9 For two simplices � , � of imRx
� we define � � � if and only if the

upper bound � [ � exists and Rx
�.� [ �/D � . We write � � � if and only if � � �

but not � � � .

Lemma 4.10 Let � be a simplex of �D.x/ and let � be a simplex of imRx
� . Suppose

Rx
�.�/� � . Then � [ � exists and Rx

�.� [ �/D � .

Proof Set �DRx
�.�/. According to Lemma 4.8 � n� is a simplex of .Lk �/hor.p�x/,

whereas � n � D Rx
�.� [ �/ n � D Rp�x

Lk � .� n �/ is contained in .Lk �/ver.p�x/ by
Corollary 4.7. Hence, � [ � exists.

Rx
�.� [ �/\� is a face of � by Lemma 4.6. Since � n � and Rx

�.� [ �/ are disjoint,
the latter is a face of � [� . From Lemma 4.8 we get Rx

�.� [�/DRx
�.� [�/D � .
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Corollary 4.11 .imRx
�;�/ is a poset with unique minimal element ∅.

Proof Let � , � and � be simplices of imRx
� . Suppose � � � and � � � . Then

the upper bound � [ � [ � exists and Rx
�.� [ � [ �/ D � by Lemma 4.10. From

Lemma 4.8 follows Rx
�.� [ �/D � , since Rx

�.� [ � [ �/ is a face of � [ � . Hence,
� � � .

Suppose �0 � �1 � � � � is a strictly increasing sequence in .imRx
�;�/. According to

Lemma 4.10 the upper bounds �0[�1[ � � � [�k exist and the sequence of their ranks
is strictly increasing. So, the length of any strictly increasing sequence in .imRx

�;�/

is bounded from above by rk�Dver.x/. That is, strictly increasing sequences are finite.

Definition 4.12 For a simplex � of ��.x/ let its height ht.�/ be the length of the
longest strictly increasing chain in .imRx

�;�/ ending with Rx
�.�/.

Lemma 4.13 Let � be a simplex of ��.x/. Then ht.�/� ht.�/, for any face � of � .
Equality holds if and only if Rx

�.�/DRx
�.�/.

Proof According to Lemma 4.8 we have Rx
�.R

x
�.�/[Rx

�.�//DRx
�.�/, for any

face � of � (replace � by Rx
�.�/[R

x
�.�/ and use (b)) (c)), hence Rx

�.�/�Rx
�.�/

and consequently ht.�/ � ht.�/. By definition, we have either Rx
�.�/DRx

�.�/ or
Rx
�.�/�Rx

�.�/ (which means ht.�/ < ht.�/).

We conclude this section by the following corollary that is a more precise version of
Proposition 4.1.

F2 F1 F0

x x x

Figure 5: The filtration of an apartment of Flag.P3.F // containing x . (Here
x is the midpoint of an edge joining a point and a hyperplane of P3.F / .)
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Corollary and Definition 4.14 For 0� k � rk�Dver.x/ we define

Fk D
S
f� 2 S.��.x// j ht.�/� kg:

Then �>.x/ ��hor.x/ D F0 � F1 � � � � � Frk�Dver.x/
D ��.x/ is sequence of sub-

complexes. The complex Fk is the disjoint union of the previous complex and the
relative stars (in Fk ) of the height-k-simplices from imRx

� . For any height-k-simplex
� from imRx

� the relative star StFk
� is the preimage of � under .�;x/–restriction

and LkFk
� D .Lk �/>.p�x/� .Lk �/hor.p�x/.

5 Spherical unions of cones

If, for some simplex � , we would like to contract a .dim��1/–spherical subcomplex
L of @St � without using the points of St � , we recognize L as the base of a geodesic
cone with tip in some simplex opposite to � . But sometimes, we only have cones
over some L covering family of subcomplexes at our disposal. In the present section
we establish a lemma on dim�–sphericity of a union of cones over subcomplexes of
@St � , in order to deal with this case.

Notation 5.1 For any pair � op � of opposite simplices from � and any simplex �
of St � we put

C�* .�; �; �/D Conv.���; proj� ���/;

C�.�; �; �/D C�* .�; �; �/ nSt �;

C.�; �; �/D C�* .�; �; �/ n .St � [St �/:

Recall that �� denotes the simplicial map St � ! St � I � 7! � [ � .

Lemma 5.2 Let � and � be opposite simplices of � and let � be a simplex of
St � . Suppose C is one of the complexes C�* .�; �; �/, C�.�; �; �/, or C.�; �; �/. Then
C \ @St � D @��� nSt � .

Proof Any face of ��� that is not contained in St � lies in C . Conversely, let �
be a simplex of Conv.���; proj� ���/\ @St � . Since � is opposite to � , we have
��� D proj� proj� ��� . Then Conv.���; proj� ���/ equals Conv.�; proj� ���/ and
��� is a face of ��� , because proj� proj� ��� is the unique maximal simplex of
Conv.�; proj� ���/\St � . Hence, � is contained in @��� nSt � .

Note, that for any point z of � , the complex C�.�; �; �/ is the geodesic cone over
@��� nSt � with tip in z .
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Notation 5.3 Let � and � be opposite simplices of �. For any non-empty subcomplex
L of St � we put

C�* .�;L; �/D
S
�2S.L/ C

�
* .�; �; �/

and analogously C�.�;L; �/ as well as C.�;L; �/.

Definition 5.4 A subcomplex ƒ�� contained in � nAnt�.y/ is quasi-star-shaped
with respect to y if and only if for any point z 2ƒ the segment Œz;pyz� joining z and
its geodesic projection on @St y is contained in ƒ. We denote the set of subcomplexes
that are quasi-star-shaped with respect to y by Qy .

Observation 5.5 Qy is closed under unions and intersections.

Observation 5.6 For any ƒ 2Qy , there is a strong deformation retraction of ƒ onto
ƒ\@St y induced by the geodesic projection to @St y . In particular ƒ and ƒ\@St y

are homotopy equivalent.

Lemma 5.7 Let � op � be opposite simplices of � and let y be a point of � . Further-
more let � be a simplex of St � . Then C.�; �; �/ is contained in Qy .

Proof Since C�* .�; �; �/ is contained in an apartment, there is only one antipode
z of y in C�* .�; �; �/. Certainly z is a point of � . For any point u 2 C.�; �; �/,
the geodesic segment s joining y; z going through u is contained in C�* .�; �; �/,
because s D Œy;u�[ Œu; z� and C�* .�; �; �/ is convex. From Lemma 1.10, it follows
that s n .St y [St z/D Œpyu;pzu�. Then Œpyu;u�� Œpyu;pzu� lies in C.�; �; �/.

Corollary 5.8 Let � and � be opposite simplices of � and let L be a subcomplex of
Lk � . Then C�.�;L; �/ is .dim �C dim LC1/–dimensional and contractible.

Lemma 5.9 Let I ¤∅ be an index set and let fLi j i 2 Ig be a family of non-empty
subcomplexes of Lk � . Furthermore let f�i j i 2 Ig be a family of simplices opposite
to � . Suppose Li \

S
J Lj is dim Lk � –spherical, for any i 2 I and any non-empty,

finite J � I . Then
S

i2I C�.�;Li ; �i/ is dim�–spherical.

Proof For subsets J � I we put

C�.J / WD
S

j2J C�.�;Lj ; �j / and C.J / WD
S

j2J C.�;Lj ; �j /

Since it is sufficient to give a proof for #I <1, we use induction on #I . The case
#I D 1 is clear by Corollary 5.8.
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Now assume #I > 1. We put J D I nfig and J 0Dfj 2J j �j D �ig for some i 2 I . Let
y be a point of � and let ˛ W Lk � ! Lk �i denote the isomorphism induced by proj�i

.
Recall that there is a labeling on �. Since all �j have the same labels, St �j \ St �l

is empty, unless �j D �l . Furthermore St �i \ C.J / and St �i \ C.fig/ are empty. We
therefore get

C�.fig/\ C�.J /D
�
C.fig/[StC�.fig/ �i

�
\
�
C.J /[StC�.J 0/ �i

�
D .C.fig/\ C.J //[

�
StC�.fig/ �i \StC�.J 0/ �i

�
D .C.fig/\ C.J //[��i

�
˛Li \

S
j2J 0˛Lj

�
The second complex of this union is contractible, since it is a cone with tip in �i .
According to Lemma 5.7 and Observation 5.5, the first complex is contained in Qy ;
and by Observation 5.6 and Lemma 5.2, it is homotopy equivalent to the .dim��1/–
spherical complex

@St � \ C.fig/\ C.J /D .@St � \ C.�;Li ; �i//\
S

j2J .@St � \ C.�;Lj ; �j //

D .@� �Li/\
S

j2J .@� �Lj /D @� �
�
Li \

S
j2J Lj

�
Their intersection

.C.fig/\ C.J //\��i

�
˛Li \

S
j2J 0˛Lj

�
D
�
˛Li \

S
j2J 0˛Lj

�
� @�i

is .dim��1/–spherical as well. Then C�.fig/ \ C�.J / is .dim��1/–spherical
by Lemma 1.1(a). Hence, C�.I/ is dim�–spherical by the induction hypothesis,
Corollary 5.8 and again by Lemma 1.1(a).

6 Some subcomplexes of Fk

We intent to deduce the dim�–sphericity of a filtration stage Fk�1 from those of the
next stage Fk using Lemma 1.1 (b) in order to proof the dim�–sphericity of F0 D

�>.x/. Therefore we need a dim�–spherical subcomplex of Fht.�/�1 containing
the boundary of the relative star StFht.�/ � for any simplex � ¤ ∅ of imRx

� . The
cones C�.�; @StFht.�/ �; �/ for some opposite � of � would be good candidates. But
unfortunately, an opposite � of � such that the cone over @StFht.�/ � with tip in �
is contained in Fht.�/�1 may not exist. In order to deal with this obstruction, we
already proofed Lemma 5.9 to establish a criterion on dim�–sphericity of a union
of cones over subcomplexes of @St � . In this section we construct subcomplexes L

of @StFht.�/ � and corresponding opposites � such that C�.�;L; �/ is contained in
Fht.�/�1 . The first step is to reduce the question, whether C�.�;L; �/ is contained in
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Fht.�/�1 to the question, whether there is a simplex � of L such that proj� � is an
equatorial simplex.

Lemma 6.1 Let � be a simplex of �D.x/ and let � be a simplex opposite to � . Then
C�* .�;L; �/ is a subcomplex of ��.x/ for any subcomplex L of @St��.x/ � .

Proof Let y 2 � be a point and let z be its antipode in � . From the triangle inequality
we get d.z;x/� �=2. Let u be a point of C�* .�;L; �/ n fy; zg. Then u 2 C�* .�; �; �/
for some simplex � 2 S.L/. The projection pyu of u on @St � is a point of @��� by
Lemma 5.2. It holds d.pyu;x/� �=2, because ��� is a simplex of ��.x/. Hence,
†y.x;u/ is not acute and we obtain d.x;u/� �=2 by the spherical law of cosines.

Lemma 6.2 Let � ¤ ∅ be a simplex of imRx
� and let � be opposite to � . Let L

be a subcomplex of @StFht.�/ � . If C�* .�;L; �/ \�D.x/ is contained in St � , then
C�* .�;L; �/ is a subcomplex of Fht.�/ and C�.�;L; �/D C�* .�;L; �/\Fht.�/�1 .

Proof Let � be a simplex of C�.�;L; �/. Then � 2 S.��.x// by Lemma 6.1. Either
� is a simplex of �>.x/, which means ht.�/D 0< ht.�/, or we have �Dx ¤∅ (see
Definition 4.2). In the latter case �Dx is contained in @��� n St � for some simplex
�2S.L/ by Lemma 5.2. Since � is not a face of �Dx , we get Rx

�.�
D
x /¤Rx

�.���/D�

from Lemma 4.8. Then ht.�/D ht.�Dx / < ht.���/D ht.�/ according to Lemma 4.13.
Therefore C�.�;L; �/ is a subcomplex of Fht.�/�1 . The claim follows, since any
simplex of C�* .�;L; �/ is either a simplex of C�.�;L; �/ or lies in StFht.�/ � and
Fht.�/�1 � Fht.�/ nStFht.�/ � by Corollary and Definition 4.14.

Lemma 6.3 Let � ¤∅ be a simplex of �D.x/ and let � be opposite to � . Let L be
a subcomplex of @St��.x/ � . If C�* .�;L; �/\�D.x/ is not contained in St � , then
proj� � 2 S.�D.x// for some simplex � of �D.x/\ .��L nSt �/.

Proof Recall that we are dealing with open simplices. Therefore, a simplex contained
in a closed hemisphere lies entirely in the associated equator if it carries a point of the
equator.

Let u be a point of �D.x/\ C�* .�;L; �/ that is not contained in St � . Furthermore
let y 2 � and z 2 � be antipodal points. If uD z , then � D proj∅ � is a simplex of
�D.x/ by Lemma 6.1. Hence, suppose u¤ z .

The segment Œy;u� lies in ��
�
.x/ as well as in C�* .�;L; �/��

�

�
.x/. Therefore Œy;u�

is entirely contained in �D
�
.x/. By Lemma 5.2 the simplex � carrying pyu is in

��L nSt � and also a simplex of �D.x/ by Lemma 6.1. The projection pyu lies on
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the geodesic segment joining y and z going through u. We obtain Œpyu;u�� Œpyu; z�,
implying by Lemma 1.10 that proj� � carries a point of �D

�
.x/. Then proj� � is a

simplex of �D.x/ according to Lemma 6.1.

Let � be a non-empty simplex of imRx
� . Now, we will show that C�.�;L; �/ is

contained in Fht.�/�1 for some opposite � of � , provided � is thick and L is a
subcomplex of @StFht.�/ � such that L\�D.x/�† for some apartment † containing
x and � . We begin by a sketch of the idea:

Let y be a point of � . We denote the simplex carrying x by � and the simplex carrying
pyx by �. Let † be an apartment containing � and � . Further, let � be an equatorial
simplex of †\ @St � and let †0 be some other apartment that contains �, � and � .
We choose a point u of � . Denote the opposite of � in †0 by � and the antipode of y

in � by z .
x 2 �

pyx 2 �

xy

� 3 .x;uy/\ .uz ;xy/

proj� � 3 uz � 3 u uy y 2 �

Figure 6: d.uz ;x/D �=2 implies proj�[� � D �D proj�[� proj� �

Suppose proj� � is an equatorial simplex. Hence proj� � contains a point uz 2 Œz;u/ at
distance �=2 to x . By the spherical law of cosines the triangle .uz;y;x/ is contained
in some apartment. Then for any uy 2 .u;y/ and any xy 2 .y;pyx/, the segments
.x;uy/, .uz;xy/ and .u;pyx/ intersect each other (see Figure 6). We can choose uy

and xy such that .x;uy/\.uz;xy/ is near .u;pyx/ but outside the triangle .u;y;pyx/.
With this choice the simplex � carrying .x;uy/\ .uz;xy/ is not contained in St � .
We obtain proj�[� � D �D proj�[� proj� � D proj�[� � by Lemma 1.10. Therefore
†\†0 is not contained in St � .

Thus, proj� � is not an equatorial simplex for any opposite � of � chosen in an apart-
ment †0 satisfying †\†0 D St† � . Provided � is thick, such an apartment exists by
the following lemma, which follows directly from Abramenko and Van Maldeghem [6,
Proposition 4.1].
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Lemma 6.4 Let � be a thick spherical building. If K is a non-empty, convex chamber
subcomplex of an apartment † of �, then there exists an apartment †0 of � such that
K D†\†0 .

Lemma 6.5 Let � ¤ ∅ be a simplex of imRx
� and let †, †0 be apartments such

that x 2† and †\†0 contains St† � . Let � be the opposite of � in †0 . If proj� � is
contained in S.�D.x// for some simplex � of †D.x/\ @StFht.�/ � , then †\†0 is
strictly greater than St† � .

Proof Let � be a simplex of †D.x/\ @StFht.�/ � and proj� � 2 S.�D.x//. At first
we show that if suffices to consider the case � D∅ and � 2 S.�D.x//.

We have Rx
�.� [�/D � by Corollary and Definition 4.14, hence � n� is a non-empty

simplex of imRp�x

Lk � according to Lemma 4.6. The star of � n � in Lk† � is contained
in the apartment Lk†0 � and p�x lies in Lk† � . From Lemma 1.10 we know that
.proj� �/ n � is opposite to � n � in Lk†0 � and Lemma 3.7 implies that .proj� �/ n �
is in the equator complex of Lk � with respect to p�x if and only if proj� � is a
simplex of �D.x/. If Lk† � \Lk†0 � is strictly greater than the closed star of � n �
in Lk† � , then †\†0 is also strictly greater than St† � . Hence, suppose � D∅ and
� 2 S.�D.x//.

Let y 2 � and z 2 � be antipodal points. Denote the simplex carrying x by � and
the simplex carrying pyx by �. Since d.y;x/C d.x; z/ D � , there is a geodesic
segment s joining y and z going through x . It holds s n St � D Œz;pyx/. Since
Rx
�.�/D � ¤∅, the pole x can not be a point of St � according to Proposition 1.15

and Corollary 4.4. Then x is an interior point of Œz;pyx�. By Lemma 1.10, it follows
that proj� � is not contained in St � and also that proj� � D proj� � is a simplex of
†\†0 .

Corollary 6.6 Let � be thick and let � ¤ ∅ be simplex of imRx
� . If L is a

subcomplex of LkFht.�/ � such that L\�D.x/�† for some apartment † containing
x and � , then there exists an opposite � of � such that C�* .�;L; �/ is a subcomplex of
Fht.�/ and C�.�;L; �/D C�* .�;L; �/\Fht.�/�1 .

Proof By Lemma 6.4 there is an apartment †0 such that †\†0DSt† � . Let � be the
opposite of � in †0 . Then for any simplex � of †D.x/\ @StFht.�/ � , the projection
proj� � is not a simplex of �D.x/ by Lemma 6.5. Since �D.x/\ .��L n St �/ is
contained in †D.x/\@StFht.�/ � , we obtain C�* .�;L; �/\�D.x/�St � by Lemma 6.3.
Now, the assertion follows from Lemma 6.2.
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7 Proof of Proposition 3.8

Now, we have got all pieces that are needed to complete the proof of Proposition 3.8.

Proposition 7.1 Let � be a thick spherical building. Then �>.x/ is dim�ver.x/–
spherical.

Proof We use induction on dDdim�D.x/. If �D.x/ is empty then �ver.x/D� and
�>.x/D��.x/ is dim�–spherical by Corollary 3.2. Let d � 0 and suppose, open
hemisphere complexes with equator complex of dimension less than d are spherical.

If �hor.x/¤∅, we are done by Proposition 3.5 and the induction hypothesis. Hence,
assume that �D�ver.x/. We show that for any non-empty simplex � of imRx

� there
is a complex K� that satisfies the following two conditions.

Condition 1: K� � Fht.�/ and K� D StFht.�/ � [ .K� \Fht.�/�1/.

Condition 2: K� \Fht.�/�1 is dim�–spherical.

Assuming, we have such K� , we argue as follows: For 1� k � d C 1, let Ik denote
the set of simplices from imRx

� at height k . Since StFk
�\StFk

� D∅, for �; � 2 Ik

with � ¤ � by Corollary and Definition 4.14, we obtain by the first condition:

Fk D Fk�1[
S
�2Ik

K� and K� \K� � Fk�1 , for �; � 2 Ik with � ¤ � .

Then Fk�1 is dim�–spherical provided the same holds for Fk , by Lemma 1.1 (b)
and the second condition. Recall that �hor.x/ is empty. Hence, �>.x/ D F0 is
dim�–spherical, since FdC1 D�

�.x/ is dim�–spherical by Corollary 3.2.

It remains to find the complexes K� . Let � be a non-empty simplex of imRx
� . We

put LD .Lk �/>.p�x/. There are two cases:

Case 1 .Lk �/hor.p�x/D∅ In this case we have LkFht.�/ � DL by Corollary and
Definition 4.14. Since L\�D.x/ is empty and � is thick, Corollary 6.6 provides
us with an opposite � op � such that C�* .�;L; �/ is a subcomplex of Fht.�/ and
C�.�;L; �/D C�* .�;L; �/\Fht.�/�1 . Certainly, C�* .�;L; �/D StFht.�/ �[C�.�;L; �/
since StFht.�/ � D ��L. Furthermore C�.�;L; �/ is dim�–spherical by Corollary 5.8.
Hence, K� D C�* .�;L; �/ satisfies the two conditions above.

Case 2 .Lk �/hor.p�x/¤∅ In this case we further put Lh D .Lk �/hor.p�x/. Let
C be a chamber of Lh and let A denote the set of apartments of Lh that contain C .
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We show that for any apartment A 2A, there is an apartment †A of � that contains
x and ��A.

Let C 0 be opposite to C in A. We choose points y 2 C [ � and y0 2 C 0 [ � and
look at the triangle .x;y;y0/. Since d.x;y/D �=2D d.x;y0/ and †y.x;y

0/D �=2,
equality holds in the spherical law of cosines. Hence, there is an apartment †A that
contains x and ��AD Conv.C [ �;C 0[ �/.

Let A2A be arbitrary. Since .L�A/\�D.x/ is contained in †A and � is thick, we
get an opposite �A of � by Corollary 6.6 such that C�* .�;L�A; �A/ is a subcomplex
of Fht.�/ and C�.�;L�A; �A/D C�* .�;L�A; �A/\Fht.�/�1 . We define

K� D
S

A2A C�* .�;L�A; �A/ and K0� D
S

A2A C�.�;L�A; �A/.

Then K� is a subcomplex of Fht.�/ , and K0� D K� n St � is its intersection with
Fht.�/�1 . From Corollary and Definition 4.14, we know that LkFht.�/ � D L �Lh .
Since Lh is covered by A, the link of � in K� is also L�Lh . Therefore, the stars of
� in K� and Fht.�/ coincide. Hence, K� D StFht.�/ �[K0� satisfies the first condition.

The open hemisphere complex L is dim.Lk �/ver.p�x/–spherical by the induction
hypothesis, since dim.Lk �/D.p�x/ < d . For any A 2A and any non-empty, finite
A0 �A, the intersection A\

S
A0 is a union of convex subcomplexes of A each of

which contains C . Therefore A\
S

A0 equals A or is contractible. Then

.L�A/\
S

A02A0.L�A0/DL�
�
A\

S
A0
�

is dim Lk � –spherical. From Lemma 5.9 we now get the dim�–sphericity of the
complex K0� DK� \Fht.�/�1 , hence the second condition.

Proposition 7.2 Let � be a thick spherical building. Then �>.x/ is non-contractible.

Proof By Proposition 3.5 we suppose �hor.x/ D ∅. We show the existence of a
dim�–sphere in �>.x/ by induction on dim�.

If dim�D 0, then ��
�
.x/Dfxg is a single point. Since � is thick, �>.x/D�nfxg

contains a 0–sphere.

Let dim�> 0 and suppose, open hemisphere complexes of dimension less than dim�

contain a top-dimensional sphere. If �D.x/D∅, then �>.x/ is a closed, coconvex
supported subcomplex and the assertion follows from Corollary 3.2. We therefore
assume �D.x/¤∅.

Let y 2 F1 n F0 be a vertex. By Corollary and Definition 4.14, its relative link
L D LkF1

y is a subcomplex of F0 D �>.x/ and an open hemisphere complex
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of Lk y . According to the induction hypothesis, there is a .dim��1/–dimensional
sphere S � L. Suppose y has two opposites z0; z00 2 �>.x/. By Lemma 6.2 and
Lemma 6.3, the union C�.y;L; z0/[ C�.y;L; z00/ is a subcomplex of �>.x/. This
complex contains the two geodesic cones over S with tip in z0 and z00 , hence it contains
a dim�–sphere. It remains to show that y has two opposites in �>.x/.

†

†0

†00

�
�
.x
/

�
>
.x
/

z0 z00

�D.x/
D y

C

pyx

x

Figure 7: The construction of antipodes in �>.x/

Let † be an apartment containing x and y . Since � is thick, we obtain an apartment
†0 by Lemma 6.4, such that †\†0 D St† y . Denote by z0 the vertex of †0 that is
opposite to y . According to Lemma 6.5, z0 is contained in �>.x/ since the intersection
of �D.x/ with @StF1

y is empty and proj∅ z0 D z0 . Let C be a chamber of St y that
contains pyx in its closure. Denote the panel projz0 C n fz

0g by D . By Lemma 6.4
there is an apartment †00 such that †0\†00 D Conv.C;D/. Denote by z00 the vertex
of †00 that is opposite to y . Then z00 ¤ z0 , since the vertices of Conv.C;D/ are not
opposite to y . We show that z00 2�>.x/.

By the triangle inequality we have d.x; z00/��=2. Suppose d.x; z00/D�=2. There is
a geodesic segment joining y and z00 going through x by Proposition 1.4 . Then x is a
point of Œy;pz00x�, because x can not be contained in St z00 according to Lemma 1.13.
Since pyx is a point of this segment, we get pz00x D pz00pyx . Observe, that pz0pyx

is a point of Conv.C; projz0 C /\ @St z0 D SD 2 S.†00/. The retraction �†00;C on †00

centered at C maps pz0pyx to pz00pyx , hence pz0pyx D pz00pyx . Therefore x lies
on Œy;pz0pyx��†0 . This implies d.x; z0/D � � d.x;y/D �=2 by Proposition 1.4
in contradiction to z0 2�>.x/.
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