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Cubic differentials and finite volume convex projective
surfaces

YVES BENOIST

DOMINIQUE HULIN

We prove that there exists a natural bijection between the set of finite volume oriented
convex projective surfaces with nonabelian fundamental group and the set of finite
volume hyperbolic Riemann surfaces endowed with a holomorphic cubic differential
with poles of order at most 2 at the cusps.

30F30, 35J96, 53A15, 57M50, 53C56

1 Introduction

A projective structure A on an n–dimensional manifold M is the data of a maximal
atlas with values in the real projective space RPn and with transition functions in
the group PGlnC1R of projective transformations. The charts glue together to define
the developing map devW �M ! RPn , where �M is the universal cover of M . The
developing map is well-defined up to PGlnC1R and satisfies, for any loop c in the
fundamental group �1.M /,

dev ı c D hol.c/ ı dev;

where holW �1.M /! PGlnC1R is the holonomy representation.

The projective structure is said to be properly convex when the developing map is a
diffeomorphism onto a properly convex domain ��RPn , namely a domain that reads
as a bounded convex open set in a suitable affine chart. The Hilbert distance on the
properly convex subset ��RPn is defined by

d�.x;y/D j logŒx;y; a; b�j;

where Œx;y; a; b� denotes the cross ratio of the quadruple .x;y; a; b/, and a; b are the
points of intersection of the line .xy/ and the boundary @� of �. The Hilbert distance
derives from a Finsler metric, which gives rise to a measure on � (Section 2.2).
This measure, being invariant under the holonomy group hol.�1.M //, induces a
measure �F on M .
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In this paper, we will mainly focus on projective surfaces S with finite Finsler vol-
ume, namely such that �F .S/ <1. When S is an oriented compact surface with
negative Euler characteristic, François Labourie [10] and John Loftin [14] (see also
C P Wang [22]) have parameterized the set of properly convex projective structures
on S by the data of a complex structure J on S together with a holomorphic cubic
differential U on .S;J /. The aim of this paper is to extend this result to noncompact
projective surfaces with finite Finsler volume, hence positively answering the conjecture
by Loftin in [13].

To an oriented surface S equipped with a properly convex projective structure A, we
associate the following geometric objects. Denote by devW zS!� the developing map.
Cheng–Yau’s solution of the Monge–Ampère equation on � produces an imbedding
zS ,! R3 as an affine sphere (Theorem 2.5). Let h be the induced “affine” metric
on S (Definition 2.2), J be the conformal class of h—which is a complex structure
on S –and U be the Pick form (Remark-Definition 4.9) which is a holomorphic cubic
differential on .S;J /.

Theorem 1.1 Let S be an oriented surface with nonabelian fundamental group. The
map A! .J;U / is a bijection between

(1) the set of properly convex projective structures A on S with finite Finsler
volume,

(2) the set of hyperbolic Riemann surface structures J on S with finite volume
together with a holomorphic cubic differential U on .S;J / with poles of order
at most 2 at the cusps.

Remark 1.2 � Theorem 1.1 was conjectured by Loftin in [13], under the condition
that S has finite affine volume, instead of finite Finsler volume. In Proposition 2.6,
we will prove these conditions to be equivalent by using Benzécri’s cocompactness
theorem (Theorem 2.7).

� Marquis proved in [18] that, when �1.S/ is not finitely generated, S does not
admit any properly convex projective structure with finite Finsler volume.

� This bijection is a homeomorphism for the natural topologies on the two sets. Indeed,
our construction ensures that the map A! .J;U / is a continuous bijective map between
two sets which are homeomorphic to a real vector space (see Marquis [17]).

Let us review the main ingredients of the proof. In order to prove that the map
A! .J;U / is well-defined we must first show that, when .S;A/ is assumed to have
finite Finsler volume, the corresponding hyperbolic Riemann surface .S;J / also has
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Finite volume convex projective surfaces 597

finite volume. Then we must control the Pick form at the cusps. To this end we first
remark that, since the affine metric h is complete (Corollary 3.5) and negatively pinched
at infinity (Proposition 3.1), the generalized maximum principle of Yau ensures that h

is conformally quasi-isometric to the hyperbolic metric h0 on .S;J / (Proposition 5.1).
Hence .S; h0/ has finite volume, thus the ends of .S;J / are parabolic (Corollary 5.4).
The cocompactness theorem of Benzécri is then used again to provide estimates for
the Pick form U , ensuring that the measure jU j2=3 on S has finite mass: this is the
reason why U will have poles of order no more than 2 at the cusps (Corollary 5.8).

The paper is organized as follows. In Section 2, we mainly recall standard material
from affine geometry and Monge–Ampère equations, and prove the equivalence of the
finite Finsler volume condition and the finite affine volume condition. In Section 3 we
assume that S is noncompact, and study the curvature of the affine metric at infinity.
The Pick form of an affine sphere in R3 is defined in Section 4, and the estimates for
the Pick form that ensure that the map A! .J;U / in Theorem 1.1 is well-defined are
given in Section 5. In Section 6, we prove that this map is a bijection.

A right inverse map .J;U /!A as in Theorem 1.1 was constructed by Loftin in [13].
This construction was the motivation for Loftin to state his conjecture. See also [15],
where Loftin extends this construction to allow cubic differentials U with poles of
order at most 3.

Acknowledgements This work was completed while both authors were visiting the
MSRI in Berkeley. We thank this institution for its support and hospitality. We also
thank Alessio Figalli and Ludovic Marquis for interesting discussions on this topic.

2 Affine spheres and the real Monge–Ampère equation

In this section, we recall the definition of an affine sphere (references are for example
Loftin [16] or Nomizu and Sasaki [19]) and the fundamental existence and uniqueness
theorem by Cheng and Yau. We then derive from Benzécri’s cocompactness theorem
the equivalence of the finite Finsler volume condition and of the finite affine volume
condition (Proposition 2.6).

2.1 Affine spheres

Let M � RnC1 be a hypersurface and E DM �RnC1 be the trivial vector bundle
of rank nC 1 over M . The standard affine (flat) connection on RnC1 induces a flat
connection r on E . Each choice of a transverse vector field �W M ! RnC1 yields
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a decomposition E D TM˚L, where L stands for the trivial line bundle over M

spanned by � . It also yields a decomposition

rX Y DDX Y C h.X;Y /� 2 TM˚L;

rX � D�S.X /C �.X /� 2 TM˚L;
(2-1)

where X and Y are tangent vector fields. Observe that D is a torsion-free connection
on TM , h is a symmetric 2–form on TM , S is an endomorphism of TM and � is a
1–form on TM .

Recall that a hypersurface M �RnC1 is locally strictly convex when it can locally be
written in an affine coordinate system as the graph of a function with positive definite
hessian.

Proposition 2.1 Assume that the hypersurface M �RnC1 is locally strictly convex.
Then, there exists a unique transverse vector field � for which

(1) � D 0;

(2) h is positive definite;

(3) j det.Y1; : : : ;Yn; �/j D 1 for any h–orthonormal frame .Y1; : : : ;Yn/ of TM .

Definition 2.2 This vector field � is the “affine normal” of M . The corresponding
connection D on TM is the “Blaschke connection”, the metric h is the “affine metric”
on M and the endomorphism S W TM! TM is the “affine shape operator”. They are
invariant under the action of the group Sl˙nC1R of real matrices with determinant ˙1.

Proposition 2.1 will be a consequence of the following.

Lemma 2.3 Let � and � 0 be two transverse vector fields on M , respectively associated
with .h;S; �/ and .h0;S 0; � 0/.

� If � 0 D ˛� , where ˛ is a nonvanishing function on M , then we have that
� 0.X /D �.X /C .X �˛/=˛ and h0 D h=˛ .

� If � 0D �C� with � a tangential vector field on M , then � 0.X /D �.X /Ch.X; �/

and h0 D h.

Proof Straightforward.
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Finite volume convex projective surfaces 599

Proof of Proposition 2.1 Since M is assumed to be strictly locally convex, h is
either positive or negative definite, and Lemma 2.3 ensures that the conformal class
of h does not depend on the choice of � . Now, starting with any transverse vector
field � , the affine normal will be ˛�C � where ˛ is the unique nonvanishing function
on M such that ˛� satisfies the positivity and normalization conditions 2 and 3, and �
is the unique tangent vector field for which the 1–form �˛� corresponding to ˛� reads
as �˛� D�h. � ; �/.

Definition 2.4 A locally strictly convex hypersurface M �RnC1 with affine normal �
is an affine sphere with affine curvature �1 when the affine shape operator S satisfies
S D � Id. In this case, the point O D m� �.m/ does not depend on m 2M : it is
called the center of the affine sphere.

The following existence and uniqueness theorem was conjectured by Calabi in [3] and
proved by Cheng and Yau in [4]; see also Gigena [6].

Theorem 2.5 (Cheng–Yau) Let C �RnC1 be an open convex cone that contains no
line. There exists a unique embedded affine sphere H�RnC1 with center the origin
and affine curvature �1 which is asymptotic to the boundary of C .

In any chart where C reads (with respect to an adapted unimodular frame) as

C D ft.1;x/ j x 2�; t > 0g;

where ��Rn is a bounded open convex set, H is the radial graph

HD
�
�1

u.x/
.1;x/ j x 2�

�
;

where u WD u� 2 C 0.x�/\C1.�/ is the unique convex solution of the real Monge–
Ampère equation

det D2uD .�1=u/nC2 in �;

uj@� D 0:
(2-2)

Theorem 2.5 will allow us to systematically identify any properly convex open subset
��RPn with the corresponding affine sphere H with affine curvature �1. The affine
metric on H induces a Riemannian metric on �: we still denote it by h, and call it the
affine metric on �. The corresponding measure �h is called the affine measure on �.
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2.2 From properly convex projective manifolds to affine spheres

Assume now that M is an n–dimensional manifold equipped with a properly convex
projective structure. Any of the developing maps identifies its universal cover �M with
a properly convex open set � � RPn . Since � is invariant under the action of the
group hol.�1.M //� PGlnC1R, the uniqueness part in Theorem 2.5 ensures that the
affine metric on � goes to the quotient to give a metric h on M , that we will also call
the “affine metric” on M .

On the other hand, the Hilbert distance on � derives from the Finsler metric defined
for any point x 2� and any vector X 2 Tx� as

kXkF;� D
� 1

kx� ak
C

1

kx� bk

�
kXk;

where a and b are the points of intersection of @� with the line defined by .x;X /
and k�k is any Euclidean norm on an affine chart with x��Rn . To this Finsler metric, we
associate the Borel measure �F on ��Rn with density .1=m.BF;�.x; 1/// with re-
spect to the Lebesgue measure m on Rn , where BF;�.x; 1/DfX 2Tx�; kXkF;�<1g

is the unit ball at the point x for the Finsler metric (see eg Marquis [18]). The Finsler
metric and the corresponding measure �F also go to the quotient to M .

Observe that both the affine and Finsler metrics on M do not depend on the choice of
the developing map.

Proposition 2.6 Let M be a properly convex projective manifold. Then M has finite
Finsler volume if and only if it has finite affine volume.

The rest of the section is devoted to the proof of this proposition. The proof will rely
on the continuity of the map .x; �/! u�.x/ (Proposition 2.8) and on the following
cocompactness result due to Benzécri in [2], which will be used again later in this
paper to provide estimates for the Pick measure (see Lemma 5.7).

Theorem 2.7 (Benzécri) Let E be the set of pairs .x; �/, where � � RPn is a
properly convex open subset of RPn and x is a point in �, equipped with the Hausdorff
topology. The natural action of PGlnC1R on E is cocompact.

As a consequence, the ratio of any two continuous PGlnC1R invariant positive functions
on E will be bounded.

Now let F denote the set of pairs .x; �/, where ��Rn is a bounded convex domain
and x is a point in �.
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Proposition 2.8 The value u�.x/ of the solution of the Monge–Ampère equation (2-2)
at point x depends continuously on .x; �/ 2 F .

Proof Let .x0; �0/ 2 F . When the convex set � is close to �0 in the Hausdorff
topology,

.1� "/�0 ��� .1C "/�0

holds for dilations with center x0 and " > 0 small. The proposition follows readily
from the continuity of u�0

W �0!R, the easy fact that

ut�0
.tx/D tn=.nC1/u�0

.x/

holds for all x 2�0 and t > 0, and the following lemma.

Lemma 2.9 Let �1��2 be two proper convex open subsets of Rn . Then u�2
�u�1

on �1 .

Proof of Lemma 2.9 This assertion is a consequence of the maximum principle.
Observe first that, since the function u�2

is convex, u�2
� u�1

holds on @�1 .
Assuming that the function u�1

�u�2
reaches a negative minimum at an interior point

y 2�1 , the hessian D2
y.u�1

�u�2
/ is positive semidefinite, hence

.�1=u�2
/nC2

D det D2
y.u�2

/� det D2
y.u�1

/D .�1=u�1
/nC2;

thus ju�1
.y/jnC2 � ju�2

.y/jnC2 , a contradiction.

Proof of Proposition 2.6 Let �F and �h denote respectively the Finsler and affine
measures on a proper convex open subset of � � RPn , and let � be their ratio. It
suffices to prove that the function �W E!�0;1Œ is bounded, as well as bounded away
from zero. This follows immediately from Benzécri’s Theorem (Theorem 2.7) since

� � is invariant under PGlnC1R, as both volume elements are;

� � is continuous. Indeed, in a neighborhood of .x0; �0/ in E , we may work in
an affine chart where �0 reads as a bounded set �0 � Rn . It follows immediately
from the definition that the density of the Finsler measure with respect to the Lebesgue
measure dx on Rn depends continuously on .x; �/. It remains to check that the
density of the affine measure also depends continuously on .x; �/: this follows from
Proposition 2.8 and the formula

(2-3) �h D .�u�/
�n�1 dx;

that we now prove. Let H be the affine sphere with affine curvature �1 and center the
origin which is asymptotic to the cone C generated by � (Theorem 2.5). Since the
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affine normal at a point y 2H is �.y/D y , the Lebesgue measure dv of RnC1 reads
on the cone, in coordinates v D sy with .s;y/ 2�0;1Œ�H , as dv D sn ds �h . On the
other hand, in coordinates v D t.1;x/ with .t;x/ 2�0;1Œ��, one has dv D tn dt dx .
The fact that s D�u�.x/t yields (2-3).

3 Estimates for the affine metric

The aim of this section is to prove the following.

Proposition 3.1 Let S be a noncompact properly convex projective surface with finite
volume. Then, the curvature of the affine metric on S tends to a negative constant at
infinity.

Proposition 3.1 will rely on a priori interior estimates which were used by Cheng and
Yau to solve the Monge–Ampère equation (see [4]). We recall the by now classical
estimates for the Hölder norms of the solutions. For x 2 Rn and r > 0, let B.x; r/

denote the Euclidean open ball with center x and radius r .

Proposition 3.2 Let r > 1, ı > 0 and 0< c0 � c1 .

Assume � � Rn is a convex open subset such that B.0; 1/ � � � B.0; r/, and let
v 2 C 0.x�/\C1.�/ be a solution of the Monge–Ampère equation

det D2v D f in �;

vj@� D 0;
(3-1)

where f 2 C1.x�/ satisfies c0 � f � c1 . Then, for any k 2N , k ¤ 1, and ˛ 2�0; 1Œ,
one has

kvkC kC2;˛.�ı/
� C;

where �ı D fx 2� j d.x; @�/� ıg and C is a constant depending only on r , ı , c0 ,
c1 , k , ˛ and kf kC k;˛.�/ .

For k D 0 this bound is Caffarelli’s estimate (see Trudinger and Wang [21, The-
orem 3.2ii]). For k � 2, these bounds result from the uniform ellipticity of the
Monge–Ampère operator due to Pogorelov, and from the Schauder’s estimates (see [21,
Theorem 3.1]).

Corollary 3.3 For any k 2 N , the k –jet Jk.u�/.x/ of the solution of the Monge–
Ampère equation (2-2) on � at point x depends continuously on .x; �/ 2 F .

Geometry & Topology, Volume 17 (2013)



Finite volume convex projective surfaces 603

Proof of Corollary 3.3 We may assume k � 1. Let .xj ; �j / converge to .x; �/
in F , and K �� be a compact neighborhood of x . We may assume that K ��j for
every j . Proposition 2.8 ensures that u�j converges uniformly to u� on K and, by
convexity of the u�j ’s, one has a uniform bound for the first derivative of every u�j
on K . When applied to the function v WD u�j C" on the domain �j ;" WD fu�j <�"g,
where " > 0 is small enough, Proposition 3.2 gives a uniform bound for the jet of
order kC 1 of every u�j on K . After extracting a subsequence, the Ascoli–Arzéla
theorem ensures that u�j , as well as its derivatives of order at most k , converges
uniformly on K .

As a first consequence, we obtain a uniform control of the affine metric in terms of the
Finsler metric.

Proposition 3.4 There exists a constant c > 0 such that, for any .x; �/ 2 E and
X 2 Tx�, we have

.1=c/kXkF;� � kXkh;� � ckXkF;�:

Proof One easily verifies that the affine metric on Tx� can be expressed in terms
of the 2–jet of u� at point x . The proposition follows again from Benzécri’s Theo-
rem (Theorem 2.7) since both metrics are PGlnC1R invariant and depend continuously
on .x; �/: this is obvious for the Finsler metric from its definition, and is a consequence
of Corollary 3.3 for the affine metric.

This observation allows us to recover the following, due to Calabi–Nirenberg; see
Cheng and Yau [5, Corollary 2].

Corollary 3.5 The affine metric on any properly convex domain ��RPn is complete.

Proof This is a consequence of Proposition 3.4, and of the completeness of the Finsler
metric on �.

From now on, we specialize to surfaces. Before going into the proof of Proposition 3.1,
we state a preliminary result. A projective disk is defined as the orientable component
of the complement of a proper conic in RP2 . In a suitable affine chart, it reads as the
interior of an ellipse.

Proposition 3.6 Let � � PGl3R be a discrete subgroup preserving a properly convex
domain � of RP2 .
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(1) There exists a convex fundamental domain K � � for the action of � on �,
such that the map K! �n� is proper.

Assume moreover that the quotient S D �n� has finite volume.

(2) The closure xK of K in RP2 is a finite-sided polyhedron. Let p be a point in
xK\ @�. It corresponds to a cusp of S . The holonomy  of the cusp is regular

unipotent, namely is generated by a matrix in the conjugacy class of0@1 1 0

0 1 1

0 0 1

1A :
(3) There exist two projective disks D1 and D2 with

D1 ���D2;

and such that @D1 and @D2 osculate each other at the point p 2 xK\@�, namely
the disks have a contact of order at least 2 at this point.

Remark 3.7 As a consequence, the curve @� not only admits a tangent at point p ,
but also osculating conics.

Assertion (1) is due to Lee [11], and assertion (2) to Marquis [18].

�

p

D2

�

D1

p

Figure 1: The pencil of conics—The disks D1 and D2
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Proof We only have to prove assertion (3). We develop a strategy initiated by Benzécri
in [2] (see Goldman [8, Proposition 6.14] and Marquis [18, Proposition 5.21]). We
choose homogeneous coordinates Œx;y; z� with p D Œ1; 0; 0�, and where the holonomy
of the cusp is generated by

 D

0@1 1 0

0 1 1

0 0 1

1A :
The holonomy preserves each quadratic form in the pencil that is generated by z2

and y2� .yC 2x/z . The corresponding pencil of conics has base point p and reads
in the chart x D 1 (see Figure 1a) as

z2
D 0;

.y � z=2/2C .�� 1=4/z2
� 2z D 0 .� 2R/:

All these conics admit the line z D 0 as a tangent at the point p and, except for the
singular one, they do osculate each other at this point.

Now pick an affine chart containing � as a bounded subset and new affine coordinates
.y; z/ on this chart for which p D .0; 0/ and the degenerate conic of the pencil still
reads as z2 D 0. In this chart the bounded domain �, being invariant under  , lies in
the half-plane (say z > 0) containing the ellipses in the pencil.

� We first build the exterior disk D2 . Choose m2� and let � be the sector in the
half-plane fz > 0g delimited by the line .pm/ and its image  .pm/D p .m/.
One of the conics in the pencil (actually, one of the hyperbolas) contains � in its
interior D2 . This obviously gives �\��D2 hence, by invariance under  ,

 k.�\�/D�\  k.�/�D2; 8k 2 Z;

and finally ��D2 .

� We now construct the interior disk. The domain �, being convex, contains the
triangle with vertices p;m;  .m/. Since the ellipses in the pencil become tiny
when the parameter � goes to infinity, there exists one of them, say D1 , for
which D1\� is included is this triangle. We conclude as above that the disk D1

satisfies D1 ��.

Observe that the affine metric on a projective disk has constant negative curvature:
this follows from the fact that SO.2; 1/� Sl3R acts transitively on each sheet of the
hyperboloid. This observation will be crucial in the following.
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Proof of Proposition 3.1 We use the notation and conclusion of the previous propo-
sition. Let us focus on the cusp p 2 xK \�. Choose a second point q ¤ p on the
boundary of the exterior disk D2 . Let r be the point of intersection of the tangent
lines to D2 at points p and q , and . t /t2R be the 1–parameter group of projective
transformations that reads as

 t D

0@e�t 0 0

0 et 0

0 0 1

1A ;
with respect to the frame .p; q; r/.

q

D2

D1

p

C

T

p

Figure 2: The orbits of ( t /

In the corresponding homogeneous coordinates Œx;y; z�, this 1–parameter group pre-
serves both quadratic forms z2 and xy . Hence, each orbit of . t / is an arc delimited
by p and q either on a conic through p and q and with tangent .pr/ at p and .qr/

at q , or on the line .pq/. Observe that, except for @D2 itself, none of these conics
osculate @D2 at the point p (Figure 2a).

Since @D1 does osculate @D2 at p , this implies that the orbit of any point m in D2

meets D1 or, more specifically, that

8m 2D2; 9T 2R;8t � T;  t .m/ 2D1:

We infer that  t .D1/ converges to D2 in the Hausdorff topology when t goes to C1.
Since D1 � � � D2 ,  t .�/ also converges to D2 . Thus, by Corollary 3.3, the
curvature of the affine metric h t .�/ converges uniformly to the curvature of hD2

, that
is to a negative constant, on compact subsets of D2 when t !C1.

Let T be a triangular neighborhood of p in xK with interior VT �D1 . There exists
a compact subset C � D2 such that each orbit . t .m//t2R of a point m 2 T \�
intersects C (Figure 2b). The farther m 2 T is in the cusp (that is, the closer to p ), the
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greater the values of t for which  t .m/ 2C . Since the curvature of h� at the point m

equals the curvature of h t .�/ at the point  t .m/, this concludes the proof.

4 The Pick tensor

The aim of this section, which basically follows the presentation by Labourie in [10], is
to define the Pick form U of an affine 2–dimensional sphere (Remark-Definition 4.9)—
which is the second component of the map A! .J;U / in Theorem 1.1.

4.1 From affine spheres to properly convex projective manifolds

To an n–dimensional properly convex projective manifold M with developing map
devW �M ! � � RPn , Theorem 2.5 associates an embedding of the universal cover�M ,!RnC1 as the affine sphere with affine curvature �1 asymptotic to the boundary
of the cone over �. Moreover, the affine metric on �M is complete (Corollary 3.5).

On the other hand, all complete affine spheres of RnC1 have been described by Cheng
and Yau and An-Min Li in [5; 12], respectively, as follows, thus complementing
Theorem 2.5 and proving the whole Calabi’s conjecture stated in [3].

Theorem 4.1 (Cheng and Yau, An-Min Li) Let H�RnC1 be an immersed hyper-
surface, which is an affine sphere with constant curvature �1 and center the origin.
Assume that the corresponding affine metric on H is complete. Then H is embedded,
and is asymptotic to the boundary of a convex cone C �RnC1 which contains no line.

Thus, the data of a properly convex projective structure on the manifold M is equivalent
to the data of an immersion �M ,! RnC1 of its universal cover as a complete affine
sphere with affine curvature �1 and center the origin, which is equivariant under a
representation �1.M /! Sl˙nC1R.

When M �RnC1 is an affine sphere with affine curvature �1 and � is the affine normal,
recall that the affine flat connection r on RnC1 induces a torsion-free connection D

on TM as well as a positive definite 2–form h on TM which satisfies Equation (4-1)
below. Indeed, in this case, Equation (2-1) holds with S D � Id and � D 0 (see
Proposition 2.1(1) and Definition 2.4). In the following subsection, we will study in an
intrinsic way such pairs .D; h/ on M , where D is a torsion-free connection and h is
a Riemannian metric.
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4.2 The intrinsic geometry of an affine sphere

Let M be an n–dimensional manifold. The letters X;Y;Z;W will denote tangent
vector fields on M .

Let D be a torsion-free connection on TM , h be a positive definite symmetric 2–form
on TM and � be a nonvanishing section of the trivial line bundle L over M . To these
data, we associate a torsion-free connection r on TM˚L by letting

rX Y DDX Y C h.X;Y /�;

rX � DX:
(4-1)

In the next three lemmas, we will explore the conditions under which the connection r
will be flat and volume preserving.

Lemma 4.2 The curvature Rr of the connection r is given by

Rr.X;Y /Z DR.X;Y /Z � h.Y;Z/X C h.X;Z/Y C dDh.X;Y;Z/�;

Rr.X;Y /� D 0;
(4-2)

where R is the curvature of D and dDh.X;Y;Z/ WD .DX h/.Y;Z/� .DY h/.X;Z/.

Proof Use the definition Rr.X;Y /Z WD rXrY Z �rY rX Z �rŒX ;Y �Z .

Lemma 4.3 Write D D Dh CA, where Dh is the Levi–Civita connection of the
Riemannian metric h and A is a section of the bundle T �M ˝End TM . Then

(1) A.X /Y DA.Y /X ;

(2) the connection r defined by Equation (4-1) is flat if and only if

(a) each endomorphism A.X / is symmetric with respect to h;
(b) dDh

AD 0, where dDh

A.X;Y / WD .Dh
X

A/.Y /� .Dh
Y

A/.X /;
(c) Rh.X;Y /ZC ŒA.X /;A.Y /�Z D h.X;Z/Y �h.Y;Z/X , where Rh is the

curvature of Dh .

Proof (1) Both connections D and Dh are torsion-free.

(2) The normal part of Rr vanishes if and only if dDh D 0 (Lemma 4.2). Since
DhhD 0,

.DX h/.Y;Z/D�h.A.X /Y;Z/� h.Y;A.X /Z/

holds, thus (1) yields

dDh.X;Y;Z/D h.X;A.Z/Y /� h.Y;A.Z/X /;
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which proves (a).

The tangential part of Rr vanishes if and only if R.X;Y /ZDh.Y;Z/X �h.X;Z/Y .
A simple computation gives

(4-3) R.X;Y /Z DRh.X;Y /ZC .dDh

A.X;Y //ZC ŒA.X /;A.Y /�Z;

and hence the result, since for fixed X and Y , we have that the endomorphism
Z! h.X;Z/Y � h.Y;Z/X , as well as those defined by each term in the right-hand
side of (4-3), are skew symmetric with respect to h, except for Z! .dDh

A.X;Y //Z ,
which is symmetric.

Lemma 4.4 Assume that M is oriented. Define a volume form ! on TM˚L by im-
posing that !.X1; : : : ;Xn; �/D1, whenever .X1; : : : ;Xn/ is a positive h–orthonormal
frame of TM . Then

r! D 0 if and only if D!h D 0 if and only if 8X;Tr A.X /D 0;

where !h denotes the volume form of h and Tr is the trace operator.

Remark 4.5 This lemma is motivated by Proposition 2.1(3), where a constant volume
form on RnC1 is used to normalize the affine normal vector.

Proof Observe that, since rX Y �DX Y is colinear to � and rX � is a tangent vector
field, one has

DX!h.X1; : : : ;Xn/DX �!.X1; : : : ;Xn; �/�

nX
i

!.X1; : : : ;rX Xi ; : : : ;Xn; �/

DrX!.X1; : : : ;Xn; �/:

This proves the first equivalence. On the other hand, since DDDhCA and Dh!hD 0,
one has

DX!h.X1; : : : ;Xn/D�

nX
iD1

!h.X1; : : : ;A.X /Xi ; : : : ;Xn/

D�Tr A.X /!h.X1; : : : ;Xn/;

which concludes the proof.

Corollary 4.6 Define a tensor C on TM by letting

C.X;Y;Z/ WD h.A.X /Y;Z/:

The 3–tensor C is symmetric if and only if each endomorphism A.X / is symmetric
with respect to h. In that case, one also has .DX h/.Y;Z/D�2C.X;Y;Z/.
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Proof The first assertion immediately follows from Lemma 4.3(1), and the second
from the fact that DhhD 0.

Remark-Definition 4.7 Assume that M � RnC1 is an affine sphere, and that D

and h are respectively the Blaschke connection and the affine metric on M . Then the
corresponding 3–tensor C is symmetric. It is called the “Pick tensor” of M . The Pick
tensor C vanishes if and only if the affine sphere M is part of a hyperquadric (see
Cheng and Yau [5, Theorem 1]).

4.3 The Pick form

When specializing the previous section to surfaces, we have the following.

Lemma 4.8 Assume that the manifold M is 2–dimensional and oriented. Let J

denote the underlying complex structure to h and suppose that the 3–tensor C is
symmetric. Then, one has the equivalence: each endomorphism A.X / is trace-free
and dDh

AD 0 if and only if C is the real part of a holomorphic cubic differential U

on .M;J /.

Proof Pick local isothermal coordinates .x;y/ such that the frame .@x; @y/ is posi-
tively oriented, and let z D xC iy . The affine metric reads as hD e2w.dx2C dy2/.
Observe that both endomorphisms A.@x/ and A.@y/ are trace-free if and only if the
symmetric tensor C reads in this chart as

C D P dx3
�P dx dy2

�Q dx2 dyCQ dy3;

where P and Q are real-valued functions or, in other words, if

C D Re..P C iQ/.dxC idy/3/D Re.f .z/ dz3/;

where f D P C iQ is complex-valued. Assume that these conditions are satisfied. It
remains to check under which condition dDh

AD 0 holds. Observe first that this is
equivalent to requiring that dDh

C D 0, where

dDh

C.X;Y;Z;W / WD .Dh
X C /.Y;Z;W /� .Dh

Y C /.X;Z;W /:

Let @z D .1=2/ .@x�i@y/ and @xz D .1=2/ .@xCi@y/. Since h.@z; @z/D h.@xz; @xz/D 0

while h.@z; @xz/ D .1=2/e
2w , and since the connection Dh is torsion-free, we infer

that Dh
@z
@z and Dh

@xz
@xz are respectively colinear to @z and @xz , and Dh

@xz
@zDDh

@z
@xzD0.

The definition of C ensures that, for any vector field Y , one has C.Y; @z; @xz/D 0. It
then follows from the expression of the Levi–Civita connection Dh with respect to the
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frame .@xz; @xz/ that .Dh
X

C /.Y; @z; @xz/D 0 holds for any vector fields X and Y . Since
the tensor dDh

C is skew-symmetric with respect to the first couple of variables, and
symmetric with respect to the second, it follows that dDh

C D 0 if and only if

dDh

C.@xz; @z; @z; @z/D 0:

The easy fact that dDh

C.@xz; @z; @z; @z/D @f =@xz now ends the proof.

Remark-Definition 4.9 It follows from Lemma 4.8 that, when H � R3 is a 2–
dimensional affine sphere, the Pick tensor C reads as C D Re U where the “Pick
form” U is a holomorphic cubic differential on .H;J /. We will also denote by U

the Pick form on any properly convex domain of RP2 , and on any properly convex
projective surface.

5 The conformal structure of .S; h/ and the Pick form

Let S be an oriented surface with nonabelian fundamental group, equipped with a finite
volume properly convex projective structure. We first explore the conformal structure
of the affine metric on S , and show that it has only parabolic ends (Corollary 5.4).
Then, we prove the estimates for the Pick form at the cusps (Corollary 5.8) that will
ensure that the map A! .J;U / of our main theorem (Theorem 1.1) is well-defined.

Proposition 5.1 Let S be an oriented finite volume properly convex projective surface
with nonabelian fundamental group, h be the affine metric on S and write hD e2vh0

(with v 2 C1.S/) where h0 is the hyperbolic metric in the conformal class of h.
Then h and h0 are “conformally quasi-isometric”, namely the conformal factor v is
bounded.

Proof Since S has nonabelian fundamental group, it follows from the uniformization
theorem that there exists a hyperbolic metric h0 in the conformal class of h. The affine
metric is complete (Corollary 3.5) and its curvature is negatively pinched at infinity
(Proposition 3.1). This makes Proposition 5.1 a special case of the following version
of the Ahlfors–Schwarz lemma; see Ahlfors [1].

Lemma 5.2 Let h D e2vh0 be two conformal metrics on a noncompact surface S ,
and with respective curvatures K and K0 . Assume that both metrics are complete and
that

�a�K; K0 � �b < 0;

holds at infinity for some positive constants a and b . Then h and h0 are conformally
quasi-isometric.
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This lemma will be, as in Troyanov [20], a consequence of the generalized maximum
principle of Yau [23].

Theorem 5.3 (Yau) Let w be a smooth function on a complete Riemannian mani-
fold .M; h0/ whose Ricci curvature is bounded below. If w is bounded above and does
not reach its maximum, there exists a sequence of points pn 2M going to infinity, and
such that w.pn/! supM w , jr0w.pn/j ! 0, and with lim�0w.pn/ 2 Œ0;1�.

Here r0 and �0 respectively denote the gradient and the Laplace operator with respect
to the metric h0 , with the sign convention �0 WD �Tr Dh0r0 .

Proof of Lemma 5.2 By symmetry, it is sufficient to prove that v is bounded above.
If this is not the case, the function w WD 1=.1C e�v/ does not reach its maximum,
and there exists a sequence pn 2 S as in Theorem 5.3, with w.pn/! 1. A simple
computation yields

�0w D�0v
e�v

.1C e�v/2
� jr0wj

2.ev � e�v/:

Plugging the equation for curvatures

(5-1) �0v DKe2v
�K0

into this expression gives

�0w DK
ev

.1C e�v/2
�K0

e�v

.1C e�v/2
� jr0wj

2.ev � e�v/;

hence a contradiction when evaluated at the points pn , since the first term goes to �1,
the second one goes to zero and the third one is nonpositive when n!1.

Corollary 5.4 Let S be an oriented finite volume properly convex projective surface
with nonabelian fundamental group. Let J be the underlying complex structure
to the affine metric h on S . Then S has finite topological type and the Riemann
surface .S;J / has only parabolic ends. In other words, there exist a compact Rie-
mann surface xS and a finite set fp1; : : : ;pkg �

xS such that .S;J / identifies with
xS n fp1; : : : ;pkg.

The fact that S has finite topological type is due to Marquis, and was used in the proof
of Proposition 3.1.

Proof Since h has finite volume, Proposition 5.1 ensures that the hyperbolic metric h0

on .S;J / also has finite volume, hence all its ends are parabolic.
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Remark 5.5 In a complex chart fz2C j0< jzj�1=2g around a puncture, the metrics h

and h0 are conformally quasi-isometric to the Beltrami metric gDjdzj2=jzj2j log jzjj2 .
This is again a consequence of Lemma 5.2.

To conclude this section, it only remains to prove that the Pick form U on S (Remark-
Definition 4.9) is a meromorphic form on the compactification xS of S , with a pole of
order at most 2 at each puncture p .

Definition 5.6 Let � be a properly convex open subset of RP2 and U be the corre-
sponding Pick form on �. We define the Pick measure �P WD jU j

2=3 on � by

�P D jf .z/j
2=3
jdzj2

in any complex chart where U reads as U.z/D f .z/ dz3 .

Lemma 5.7 There exists a constant C > 0 such that, for any properly convex open
subset � of RP2 , the ratio ƒ2 Œ0;1Œ of the Pick measure �P by the affine measure �h

is uniformly bounded above by C .

Proof Since the Pick measure can be expressed in terms of the 3–jet of u� , then
Corollary 3.3 and Equation (2-3) ensure that the ratio ƒ depends continuously on
.x; �/ 2 E . This ratio being invariant under the action of PGl3R, we conclude by
Benzécri’s cocompactness theorem (Theorem 2.7) that ƒ is bounded.

Corollary 5.8 Let S be an oriented finite volume properly convex projective surface
with nonabelian fundamental group. Then the Pick form U is a meromorphic cubic
differential on the compactification xS of .S;J /, and with poles of order at most 2 at
each puncture pi (1� i � k ).

Proof Work in a complex chart D�D fz 2C; 0< jzj � 1=2g around a cusp of .S;J /
and let

U.z/D f .z/ dz3;

where f is a holomorphic function on the punctured disk D� . Since the affine metric h

is conformally quasi-isometric to the Beltrami metric in the cusp (Remark 5.5), the
boundedness of ƒ (Lemma 5.7) implies that there exists a constant c > 0 such that

jf .z/j �
c

jzj3j log jzjj3
holds for 0< jzj � 1=2:

Hence f is meromorphic on the disk D D fjzj � 1=2g, with a pole of order at most 2
at the origin.

We just proved that the map A! .J;U / is well-defined. This concludes the first part
of the proof of Theorem 1.1.
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6 Wang’s equation

In this final section, we wrap up the proof of our main theorem (Theorem 1.1) by
constructing the inverse map .J;U /!A as in Loftin’s thesis [13].

6.1 Retrieving the projective structure

In this subsection, we continue the discussion in Section 4, and characterize those
pairs .D; h/ of a torsion-free connection D and a positive symmetric 2–form h on
the tangent bundle of a manifold M which come from an immersion M ,!RnC1 as
an affine sphere.

Proposition 6.1 Let M be an n–dimensional manifold endowed with a torsion-
free connection D and h be a positive definite symmetric 2–form on M . Write
D DDhCA, where Dh denotes the Levi–Civita connection of h and A is a section
of T �M ˝End TM .

Assume the manifold M to be simply connected. Then D is the Blaschke connection
and h is the affine metric corresponding to an immersion M ,! RnC1 as an affine
sphere with constant curvature �1 if and only if the following hold:

(a) each endomorphism A.X / is trace-free and symmetric with respect to h;

(b) dDh

AD 0;

(c) Rh.X;Y /Z C ŒA.X /;A.Y /�Z D h.X;Z/Y � h.Y;Z/X , where Rh is the
Riemannian curvature tensor of h.

Proof Lemma 4.3 and Lemma 4.4 ensure that conditions (a), (b) and (c) are necessary.

Assume now that these conditions are satisfied and choose a nonvanishing section � of
the trivial line bundle over M . Then, the connection r on TM˚L defined by (4-1)
is flat, hence it identifies the bundle TM˚L with the trivial bundle RnC1 �M !M

and the section
m 2M ! �.m/ 2 TmM ˚Lm 'RnC1

provides an immersion of M in RnC1 such that the connection r derives from the
affine flat connection on RnC1 . Moreover since each endomorphism A.X / is supposed
to be trace-free, the form ! in Lemma 4.4, being parallel with respect to r , is the
restriction to M of a multiple of the constant volume form det on RnC1 . Hence, after
renormalizing the determinant, � identifies with the affine normal of this immersion
(Proposition 2.1). Equation (4-1) now tells us that the affine shape operator of this
immersion is S D� Id, that is, M is immersed in RnC1 as an affine sphere with affine
curvature �1.
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6.2 Stating Wang’s equation

We now specialize to surfaces and introduce Wang’s equation, which relates the Pick
form U of an affine sphere (Remark-Definition 4.9) and the conformal factor between
the affine metric h and its uniformization h0 .

Let S be an oriented surface with nonabelian fundamental group. The construction of
the reciprocal map .J;U /!A in Theorem 1.1 goes as follows. Given a pair .J;U /,
where J is a complex structure on S and U is a holomorphic cubic differential
on .S;J /, we want to retrieve the properly convex projective structure A. As explained
in Section 4.1, this boils down to constructing a suitable embedding zS � R3 of the
universal cover of S as an affine sphere.

We first define a symmetric 3–tensor on S by letting C D Re U . Let h0 be the
hyperbolic metric on .S;J /. To each conformal metric hD e2vh0 on S we associate
the section A of the bundle T �S˝End TS for which C.X;Y;Z/ WDh.A.X /Y;Z/ (see
Corollary 4.6). We then define a torsion-free connection D on TS by D WDDhCA,
where Dh denotes the Levi–Civita connection of h. These data .D; h/ lift to the
universal cover zS , and Proposition 6.1 gives necessary and sufficient conditions for
this pair to correspond to an immersion of zS in R3 as an affine sphere.

Remark 6.2 When dealing with surfaces, we have proved in Lemma 4.8 that the
above conditions (a) and (b) in Proposition 6.1 amount to saying that the tensor
C.X;Y;Z/ D h.A.X /Y;Z/ is the real part of a holomorphic cubic differential U

on .S;J /. Thus, it only remains to examine condition (c), which we will do in the
next corollary.

Let A0 be the section of T �S ˝End TS associated to C through the hyperbolic met-
ric h0 , namely such that C.X;Y;Z/ WD h0.A0.X /Y;Z/, and let �0 WD �Tr Dh0r0

denotes the Laplace operator on .S; h0/.

Corollary 6.3 Let the function kW S !R be defined as

(6-1) k WD �h0.ŒA0.X
0
1 /;A0.X

0
2 /�X

0
2 ;X

0
1 /;

where .X 0
1
;X 0

2
/ is any orthonormal frame for the hyperbolic metric h0 .

The pair .D; h/ derives from an immersion of zS in R3 as an affine sphere with affine
curvature �1 if and only if the conformal factor v is solution of Wang’s equation

(6-2) �0v D�e2v
C 1C ke�4v:
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Proof Condition (c) is equivalent to

(6-3) h.Rh.X1;X2/X2;X1/C h.ŒA.X1/;A.X2/�X2;X1/D�1;

where .X1;X2/ is any orthonormal basis for the metric h. It is elementary to check
that

�h.ŒA.X1/;A.X2/�X2;X1/D e�6vk:

Taking into account the equation for curvature �0v DKhe2vC 1—where Kh is the
curvature of the affine metric h—reduces this condition to Wang’s equation (6-2).

6.3 Solving Wang’s equation

In this section, we finally end the proof of Theorem 1.1 by proving that Wang’s equation
admits a unique bounded solution.

Let S be an oriented surface equipped with a pair .J;U /, where J is a complex
structure and U is a holomorphic cubic differential as in Theorem 1.1. If these data
derive (by the construction of Sections 2–4) from a properly convex structure on S with
finite volume, we have seen that the corresponding affine metric h is complete and must
read as hD e2vh0 , where h0 is the hyperbolic metric on .S;J / and the function v is
a bounded solution of Wang’s equation (Proposition 5.1 and Corollary 6.3).

Lemma 6.4 Let .S;J / be a hyperbolic Riemann surface with finite volume, and U

be a holomorphic cubic differential with poles of order at most 2 at the cusps. Then,
the function k defined by Equation (6-1) is nonnegative and bounded.

Proof It is elementary to check that k reads as k D 2e�6' jf j2 in isothermal coor-
dinates where h0 D e2'.dx2C dy2/ and U D f .z/ dz3 . The hypothesis on U and
Remark 5.5 ensure that k is bounded on S .

Proposition 6.5 (Loftin [13]) Let .S; h0/ be a Riemannian surface, and kW S!RC

be a smooth non negative bounded function. Then, Wang’s equation (6-2)

�0v D�e2v
C 1C ke�4v

admits bounded solutions, which are C1 . When S is compact, or the metric h0 is
complete and with curvature bounded from below, such a bounded solution is unique.

End of proof of Theorem 1.1 Let v be the unique bounded solution of Wang’s
equation (6-2). The conformal metric hD e2vh0 on S is complete. The affine metric h

and the Pick form U lift to zS , and Corollary 6.3 and Theorem 4.1 ensure that these
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data correspond to an embedding zS ,! R3 which is asymptotic to a convex cone
C �R3 . Such a bounded solution being unique, this embedding is equivariant under a
representation �1.S/! Sl˙3 R, hence provides the desired properly convex projective
structure on S .

For the sake of completeness we now give a proof of Proposition 6.5, which relies on
the classical so-called method of upper and lower solutions.

Proof of Proposition 6.5 Define f W S�R!R by f .x; t/ WD�e2tC1Ck.x/e�4t .
Since k is positive and bounded, there exist constant functions v� � vC which
provide respectively lower and upper solutions for Equation (6-2), namely such that
�0v� � f .x; v�/ and �0vC � f .x; vC/. Moreover, there exists a constant c > 0

such that, for any v� � s < t � vC and x 2 S ,

(6-4) f .x; s/� c.t � s/� f .x; t/ < f .x; s/

holds.

Assume first that the surface S is noncompact, and choose an exhaustion †k �
V†kC1 ,

[†k D S of S by compact surfaces with smooth boundaries.

Lemma 6.6 Let † be a compact surface with smooth boundary. Let  , vC be two
functions in C1.†/ and c> 0 be a constant. Then, there exists a solution w 2C1.†/

of the linear Dirichlet problem

�0w D�cwC on V†;

w D vC on @†:

Proof Let VH 2
1

be the Hilbert completion of the space C1
0
. V†/ of smooth functions

with compact support in V† for the inner product .f;g/L2
C c.r0f;r0g/L2

. The
Riesz representation theorem in VH 2

1
yields a solution yw 2 VH 2

1
for the equation

�0 yw D �c ywC y , where y WD  � cvC ��0vC lies in C1.†/. Standard elliptic
regularity and Sobolev embedding (see eg Gilbarg and Trudinger [7, 8.13 and 7.26])
ensure that yw 2 C1.†/. The function w WD ywC vC is the desired solution.

Corollary 6.7 Let † be a compact surface with smooth boundary, f 2 C1.R�†/
and c > 0 be a constant such that (6-4) holds. Let  , vC and v� be functions
in C1.†/, and assume that v� � vC , and that �0vC � f .x; vC/ holds while
�0.x; v�/� f .x; v�/. Then, the nonlinear Dirichlet problem

�0v D f .x; v/ on V†;

v D vC on @†;
(6-5)

admits a solution v 2 C1.†/ with v� � v � vC .

Geometry & Topology, Volume 17 (2013)



618 Yves Benoist and Dominique Hulin

Proof We use an iterative scheme. Begin with w0� vC , and let wj 2C1.†/ (j � 1)
be the solution of the linear Dirichlet problem

�0wj D�cwj Cf .x; wj�1/C cwj�1 on V†;

wj D vC on @†;

provided by Lemma 6.6. The maximum principle and property (6-4) ensure recursively
that .wj / is a decreasing sequence, that the wj are upper solutions for Equation (6-5),
and that v� � wj � vC holds for j � 1. Global elliptic estimates and Kondrakov
embedding (Gilbarg and Trudinger [7, 9.14 and 7.26]) show that the sequence wj is
bounded in C 1;˛ (0 < ˛ < 1). Hence a subsequence of .wj / converges uniformly
on † to a weak solution v of Equation (6-5). Elliptic regularity ensures that v is
smooth.

End of proof of Proposition 6.5 For each compact surface †k�S , let vk 2C1.†k/

with v� � vk � vC be the solution of the Dirichlet problem (6-5) on †k given by
Corollary 6.7. The maximum principle ensures that the sequence .vk/ is decreasing,
namely that vkC1�vk holds on †k . Since the sequence is bounded below, it converges
to a weak bounded solution v of Wang’s equation. Elliptic regularity again shows
that v is smooth.

Uniqueness of a bounded solution for Equation (6-2) is an immediate consequence of
the generalized maximum principle of Yau (Theorem 5.3).

When the surface S is compact, a bounded solution is provided by the same recursive
scheme—without boundary conditions—and uniqueness of a bounded solution follows
from the classical maximum principle.

Remark 6.8 Denote by G the set of properly convex projective structures with finite
volume on S , quotiented by the natural action of the group Diff0.S/ of diffeomor-
phisms isotopic to the identity map (see Goldman [9]). One of the interesting fea-
tures of Theorem 1.1 is that, by applying Riemann–Roch, it allows us to identify G
with C8.g�1/C3r , where g is the genus of the compactification xS of S , and r is the
number of punctures. In particular, it endows G with a canonical complex structure.
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