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Kervaire invariants and selfcoincidences

ULRICH KOSCHORKE

DUANE RANDALL

Minimum numbers decide, eg, whether a given map f W Sm! Sn=G from a sphere
into a spherical space form can be deformed to a map f 0 such that f .x/¤ f 0.x/ for
all x 2 Sm . In this paper we compare minimum numbers to (geometrically defined)
Nielsen numbers (which are more computable). In the stable dimension range these
numbers coincide. But already in the first nonstable range (when m D 2n � 2)
the Kervaire invariant appears as a decisive additional obstruction which detects
interesting geometric coincidence phenomena. Similar results (involving, eg, Hopf
invariants taken mod 4) are obtained in the next seven dimension ranges (when
1 <m� 2nC 3 6 8). The selfcoincidence context yields also a precise geometric
criterion for the open question whether the Kervaire invariant vanishes on the 126–
stem or not.

55M20, 55P40, 55Q15, 55Q25, 57R99; 55Q45

1 Introduction and statement of results

Given two (continuous) maps f1; f2W M !N between polyhedra, we are interested
in somehow measuring the size of the coincidence subspace

(1-1) C.f1; f2/ WD fx 2M j f1.x/D f2.x/g

of M , and in capturing mainly those “essential” features that remain preserved by
homotopies fi � f

0
i , i D 1; 2. Thus the central problem of topological coincidence

theory is to determine the minimum numbers

(1-2) MC.f1; f2/ WDminf#C.f 01; f
0

2/ j f
0

1 � f1; f
0

2 � f2g

and

(1-3) MCC.f1; f2/ WDminf#�0.C.f
0

1; f
0

2// j f
0

1 � f1; f
0

2 � f2g

of coincidence points and of coincidence path components, respectively, within given
pairs of homotopy classes (cf Koschorke [23]; compare also with similar notions in
topological fixed point theory, eg in Brown [8, page 9]).

The special case where these minimum numbers vanish is of particular interest.
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622 Ulrich Koschorke and DR

Definition 1.4 We call the pair .f1; f2/ of maps loose if there are homotopies f1�f
0

1
,

f2 � f
0

2
such that f 0

1
.x/¤ f 0

2
.x/ for all x 2M (ie, f1; f2 can be “deformed away”

from one another).

When M and N are smooth manifolds and M is closed (and hence MCC.f1; f2/ —
but not necessarily MC.f1; f2/ — is finite) there is a strong lower bound for both min-
imum numbers at our disposal, namely the Nielsen number N #.f1; f2/ (cf Koschorke
[21] or [23]). It is a nonnegative integer that depends only on the homotopy classes of
f1 and f2 and can be extracted from a careful geometric analysis of just one generic
pair of representing maps.

Question I When is MCC.f1; f2/ different from its lower bound N #.f1; f2/?

In this paper we study the very special case M D Sm , N D spherical space form (ie,
N D Sn=G where the finite group G acts smoothly and freely on the sphere Sn ).

Theorem 1.5 Consider two maps f1; f2W S
m!Sn=G , m; n > 1. If MCC.f1; f2/¤

N #.f1; f2/, then f1 � f2 (ie, f1; f2 are homotopic).

Since the minimum and Nielsen numbers depend only on the homotopy classes, it
suffices to consider the selfcoincidence case f1 D f2 DW f in order to get interesting
answers to our Question I. (We may even assume that f preserves base points.)

As a special feature of the selfcoincidence setting we have the following refinement of
Definition 1.4 (introduced by Dold and Gonçalves; cf [11, page 296]).

Definition 1.6 Given a map f W M !N between manifolds, put f1D f2DW f . The
pair .f1; f2/D .f; f / is loose by small deformation if and only if for every metric on
N and every � > 0 there exists an �–approximation f 0 of f such that f 0.x/¤ f .x/
for all x 2 Sm .

Question II When is .f; f / loose, but not by small deformation?

In our special case M D Sm , N D Sn=G (compare Theorem 1.5) Question II turns
out to be very closely related to our Question I above. In order to see that, consider the
(horizontal) exact homotopy sequence
(1-7)

� � � �m.VnC1;2/ �m.S
n/ �m�1.S

n�1/ �m�1.VnC1;2/ � � �

�m.S
n/

@ incl�

E WD suspension
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Kervaire invariants and selfcoincidences 623

of the Stiefel manifold VnC1;2 D ST .Sn/ of unit tangent vectors of Sn , fibered
over Sn .

Definition 1.8 We call the assumption

0D @.�m.S
n//\ ker

�
EW �m�1.S

n�1/! �m.S
n/
�

the Wecken condition for .m; n/ (briefly: WeC.m; n/).

This condition holds at least if n is odd (and hence @.�m.S
n//D 0 due to the existence

of a nowhere zero vector field on Sn ) or in the “stable dimension range” m< 2n� 2

(where ker E D 0) or if m 6 nC 5, .m; n/¤ .11; 6/ or if nD 2 6 m.

The previous discussion motivates us to study the five geometric or homotopy theoretical
conditions (i); : : : ; (v) written down below. They are related to one another and to the
Wecken condition Definition 1.8 by the following result. (For proofs and further details
see Section 2 below and eg [23].)

Theorem 1.9 Given a finite group G acting smoothly and freely on Sn , let N D

Sn=G be the resulting orbit space and consider any Œf � 2 �m.N /, m; n > 1. Then

MC.f; f /DMCC.f; f /

and these minimum numbers (as well as the Nielsen number N #.f; f /) can take only
0 and 1 as possible values.

Moreover, if Œf � lifts to some homotopy class Œ zf � 2 �m.S
n/ we have the following

logical implications:

.i/ @.Œ zf �/ 2 �m�1.S
n�1/ vanishes

m

.ii/ .f; f / is loose by small deformation

+ .m eg, if G ¤ 0/

.iii/ MCC.f; f /D 0I equivalently, .f; f / is loose .by any deformation/

+ .m eg, if G © Z2/

.iv/ N #.f; f /D 0

m

.v/ E ı @.Œ zf �/D 0

In particular, the five conditions (i)–(v) are equivalent for all maps f W Sm!N if and
only if the Wecken condition WeC.m; n/ holds (cf Definition 1.8) (and in this case
MC.f; f /DMCC.f; f /DN #.f; f / for all f ).

Geometry & Topology, Volume 17 (2013)



624 Ulrich Koschorke and DR

In view of this theorem we may say that N #.f; f / is “at most one desuspension short”
of being a complete looseness obstruction. Note also that

MC. zf ; zf /DMCC. zf ; zf /DN #. zf ; zf /DN #.f; f /:

The following equivalent version of conditions (iv) and (v) above is sometimes more
suitable for computations.

Corollary 1.10 Let n > 2 be even. In the setting of Theorem 1.9 we have: N #.f; f /

(or, equivalently, N #. zf ; zf /) vanishes if and only if

(vi) 2Œ zf �D Œ�n; �n� ı h0. zf /.

Here h0W �m.S
n/ ! �m.S

2n�1/ denotes the 0th Hopf–Hilton homomorphism (cf
Whitehead [28, Chapter XI, 8.3]). (If m 6 3n� 3, then condition (vi) takes also the
form

(vi0 ) 2Œ zf �D Œ�n;E
�nC1.h0. zf //�

where E�nC1 denotes the inverse of the iterated suspension isomorphism En�1 .)

Now assume that EW �m�1.S
n�1/! �m.S

n/ is surjective. Then

N #.f; f /DN #. zf ; zf /D

�
0 if 2Œ zf �D 0,
1 otherwise.

Assume in addition that ker E Š Z2 with generator v . Then the Wecken condition
WeC.m; n/ fails if and only if

v 2 .�n�1C �n�1/�.�m�1.S
n�1//:

If also .�n�1C �n�1/� � 2 � id�m�1.Sn�1/ then @.Œ zf �/ D 2 �E�1.Œ zf �/ is obtained by
multiplying any desuspension of Œ zf � with 2; moreover, WeC.m; n/ fails precisely when
v can be halved, ie, v D 2u for some u 2 �m�1.S

n�1/.

When can failures of the Wecken condition occur, and which geometric consequences
do they have? It turns out that they are directly related to our Questions I and II.

Corollary 1.11 Assume that G is nontrivial. Then, given Œf � 2 �m.S
n=G/ and a

lifting Œ zf � 2 �m.S
n/ of Œf �, m; n > 1, the following conditions are equivalent:

(i) @.Œ zf �/¤ 0 but E ı @.Œ zf �/D 0

(ii) MCC.f; f /¤N #.f; f /

(iii) N #.f; f / D 0 but f is coincidence producing (ie, the pair .f; f 0/ cannot be
loose for any map f 0W Sm!N ; thus MCC.f; f 0/¤ 0)

Geometry & Topology, Volume 17 (2013)



Kervaire invariants and selfcoincidences 625

(iv) MCC.f; f / >MCC. zf ; zf /

(v) MC.f; f / >MC. zf ; zf /

(vi) . zf ; zf / is loose, but .f; f / is not loose

(vii) . zf ; zf / is loose, but not by small deformation

None of these conditions can hold when G © Z2 (since then �.N / � #G ¤ �.Sn/)
or when n 6� 0 (2) or in the “stable dimension range” m � 2nC 3 6 0 where our
suspension homomorphism

EW �m�1.S
n�1/! �m.S

n/

(cf (1-7) and Definition 1.8) is injective by Freudenthal’s Theorem.

Definition 1.12 We call the integer

q WDm� 2nC 3

the degree of nonstability of E .

In view of Theorem 1.9 and Corollary 1.11 let us take a closer look at the first few
nonstable dimension settings q D 1; 2; 3; : : : when n is even and G D Z2 and hence
N D Sn=G is the orbit space of a fixed point free involution on Sn (standard example:
N DRPn ).

Already in the first dimension setting outside of the stable range we encounter fascinating
interrelations of coincidence theory with other, seemingly distant branches of topology.

Theorem 1.13 (q D 1) For all Œf � 2 �2n�2.S
n=Z2/, as well as Œ zf � 2 �2n�2.S

n/

lifting Œf �, n even, n > 2, we have:

N #.f; f /D

�
0 if 2Œ zf �D 0;

1 otherwise.

If n ¤ 2; 4; 8, then MCC.f; f / D 0 precisely when N #.f; f / and the Kervaire
invariant KI.Œ zf �/ WD KI.E1.Œ zf �// of Œ zf � vanish. If n D 2; 4; 8 then MCC.f; f / D
N #.f; f /.

The Wecken condition WeC.2n�2; n/ fails if and only if nD 16, 32 or 64 (or possibly
128); in these dimensions Œf �, Œ zf � have the seven equivalent properties .i/; : : : ; .vii/
in Corollary 1.11 precisely if Œ zf � has order 2 and Kervaire invariant one.

Geometry & Topology, Volume 17 (2013)



626 Ulrich Koschorke and DR

Here we define the composite homomorphism KI D KI ıE1 ,

(1-14) KI W �2n�2.S
n/ �s

n�2
Z2;

E1

Š

KI

by the Kervaire invariant when n� 0 (4) and by the trivial homomorphism otherwise;
recall that the stable stem �s

n�2
can also be interpreted as the .n�2/th framed bordism

group.

Originally M Kervaire introduced his invariant in order to exhibit a triangulable closed
manifold that does not admit any differentiable structure (cf [17]). Subsequently M
Kervaire and J Milnor used it in their classification of exotic spheres (cf [18]; see also
Milnor [25]). Then W Browder showed that, given Œ zf � 2 �2n�2.S

n/, KI.Œ zf �/ D 0

whenever n is not a power of 2 (cf [6]). But for n D 16; 32 or 64 there exists an
element Œ zf � 2 �2n�2.S

n/ such that KI.Œ zf �/ D 1 and 2Œ zf � D 0 (“strong Kervaire
invariant one conjecture”; cf Barratt, Jones and Mahowald [2, pages 10–11] and Cohen
[9, page 1195]); eg Barratt, Jones and Mahowald [3] construct Kervaire invariant one
elements in �s

62
Š Z4˚Z2˚Z2˚Z3 (cf Kochman and Mahowald [19]). On the

other hand, according to the spectacular recent results of M Hill, M Hopkins and D
Ravenel KI.Œ zf �/ � 0 whenever n > 128 (cf [15]). Only the case n D 128 remains
open. This open question turns out to be closely related to selfcoincidences.

Theorem 1.15 The following conditions are equivalent:

(i) There exists no Kervaire invariant one element in �s
126
Š �254.S

128/ (in partic-
ular, KI.E12.Œh�//D 0 for all Œh� 2 �242.S

116//.

(ii) There exists a suspended element ŒEg� in E.�240.S
115//� �241.S

116/ such
that .Eg;Eg/ is loose, but not loose by small deformation.

Theorems 1.13 and 1.15 involving the Kervaire invariant will be proved in Section 4
below.

In the next nonstable dimension setting the Wecken condition fails in infinitely many
exceptional dimension combinations. Recall that for n even the group �2n�1.S

n/ is
the direct sum of its torsion subgroup and a copy of Z generated by the Hopf maps
when nD 2, 4 or 8, and by Œ�n; �n� otherwise.

Theorem 1.16 (q D 2) Consider any Œf � 2 �2n�1.S
n=Z2/, and Œ zf � 2 �2n�1.S

n/

lifting Œf �.

If n¤ 4; 8, n even, then

N #.f; f /D

�
0 if the torsion part of Œ zf � has order 6 2,
1 otherwise.

Geometry & Topology, Volume 17 (2013)



Kervaire invariants and selfcoincidences 627

If n� 0 .4/ or nD 2, then MCC.f; f /DN #.f; f /.

If n� 2 .4/, n > 6, the Wecken condition WeC.2n� 1; n/ does not hold; moreover,
MCC.f; f / D 0 precisely when N #.f; f / D 0 and the Hopf invariant H. zf / of zf
is divisible by 4; in particular, Œf � and Œ zf � satisfy the seven equivalent conditions
.i/; : : : ; .vii/ in Corollary 1.11 precisely when the torsion part of Œ zf � has order 6 2 and
H. zf /� 2 .4/.

This and the following theorem will be proved in Section 5 below.

Theorem 1.17 (q D 3) Consider any Œf � 2 �2n.S
n=Z2/, and Œ zf � 2 �2n.S

n/ lifting
Œf �.

If n� 0 .4/ or nD 2 or nD 6, then ker E D 0 and

MCC.f; f /DN #.f; f /D

�
0 if 2Œ zf �D Œ�n; �n� ı h0. zf /,
1 otherwise.

(Here h0 denotes the 0th Hopf–Hilton invariant as in Corollary 1.10(vi)).

Now assume that n� 2 .4/ and n > 10. Then E is surjective with kernel ker E ŠZ2 ,
generated by Œ�n�1; �

2
n�1

� 2 4 ��2n�1.S
n�1/; in particular a desuspension E�1.Œ zf �/ 2

�2n�1.S
n�1/ of Œ zf � exists, and 2 �E�1Œ zf �/ is well-defined. Moreover the Wecken

condition WeC.2n; n/ fails to hold and we have

N #.f; f /D

�
0 if 2Œ zf �D 0;

1 otherwise;

and

MCC.f; f /D
�

0 if 2 �E�1.Œ zf �/D 0,
1 otherwise.

Thus MCC.f; f /¤N #.f; f / if and only if 2Œ zf �D 0 but 2 �E�1.Œ zf �/D Œ�n�1; �
2
n�1

�

(compare Corollary 1.10).

Further results concerning the Wecken condition in the first 8 nonstable dimension
settings can be found in Table 1 below. They are based on complete injectivity and
surjectivity criteria for E (extracted from the literature and listed in the first two
columns of Table 1) as well as from the following proposition.

Proposition 1.18 Assume q 6 8 (cf Definition 1.12) and n � 0 .2/, n > 2. Then
either ker ED 0 (and therefore the Wecken condition holds) or ker EŠZ2 (and nearly
always generated by a suitable Whitehead product).

Geometry & Topology, Volume 17 (2013)



628 Ulrich Koschorke and DR

m E is injective iff E is onto iff The Wecken condition
WeC.m; n/ fails to hold

m 6 2n� 3 always always never
.q 6 0/

mD 2n� 2
nD 2; 4; 8 always iff nD 16, 32 or 64

.q D 1/ (or possibly 128)

mD 2n� 1
n� 0 (4) or nD 2 never iff n� 2 (4), n > 6

.q D 2/

mD 2n n� 0 (4) or
n� 2 (4), n > 6

iff n� 2 (4),
.q D 3/ nD 2; 6 n > 10

mD 2nC 1
n� 0 (8) or nD 4 eg if n� 2 .4/ and n > 10 and

.q D 4/
or nD 2i � 2 n� 2 (4), n > 10 n¤ 2i � 2 for i > 4 and

for i > 2 Œ�n�1; �n�1� can be halved

mD 2nC 2 always never never
.q D 5/

mD 2nC 3 always n > 4 never
.q D 6/

mD 2nC 4
n� 6; 8 (8) or iff n� 2; 4 (8) and n > 10

.q D 7/
nD 2i � 4 for i > 3 n > 4 and n¤ 2i � 4 for i > 4

or nD 2 and Œ�n�1; �
2
n�1

� can be halved

mD 2nC 5 n� 0 (16) or n� 2; 4 (8) and eg if n 6� 0 (16) and

.q D 8/ nD 2; 4; 8; 12
n¤ 2i � 4 n > 14 and

for i > 4 and n > 10 Œ�n�1; �n�1� can be halved

Table 1: The suspension homomorphism EW �m�1.S
n�1/! �m.S

n/ and
the Wecken condition for m; n > 2 , n even. (We adopt the notation of [12];
eg �2 , �4 , �8 denote the Hopf maps).

This follows from the work of many authors, collected and completed by M Golasiński
and J Mukai in [12]. Actually these sources allow us also to decide which of the two
alternatives hold.

Example 1.19 (q D 6) If n > 2 is even and a discrete group G acts freely and
smoothly on Sn , then we have for every map f W S2nC3! Sn=G

MC.f; f /DMCC.f; f /DN #.f; f /D

�
0 if 2Œf �D 0 (eg if nD 2; 6 or 14),
1 otherwise.

Geometry & Topology, Volume 17 (2013)



Kervaire invariants and selfcoincidences 629

This is mainly due to the fact that the stable homotopy groups �s
4

and �s
5

vanish.

2 Minimum numbers and Nielsen numbers

Minimum numbers and four types of Nielsen numbers (agreeing with the classical
notions in the setting of fixed point theory) were discussed in great detail in the survey
paper [23], and so were various “Wecken theorems” specifying conditions where
a minimum number equals a Nielsen number. In particular, proofs of the results
Theorem 1.5, Theorem 1.9 and Corollary 1.11 were indicated in [23], sometimes
in the more general context of maps from Sm into an arbitrary smooth connected
n–dimensional manifold N (for more background see Koschorke [20]–[22]; see also
Crabb [10] for some work on related questions).

It is not surprising that the boundary homomorphism

@N W �m.N /! �m�1.S
n�1/

of the homotopy exact sequence of the tangent sphere bundle ST.N /, fibered over N ,
plays an important role. So let us describe it geometrically.

Decompose Sm into half-spheres Sm
C and Sm

� , and consider the pullback � D

f �.ST.N // of the tangent sphere bundle of N by f W Sm!N . Choose a section s

of �jSm
�

and use a (suitably orientation preserving) trivialization

�jSm
C
Š Sm

C �Sn�1

to interpret sjSm�1 as an “index map” into the fibre Sn�1 . The resulting homotopy
class agrees with @N Œf �.

Often it seems difficult to compute @N , even when N D Sn (and hence @N D @, cf
(1-7)). However, here is a well known partial result.

Lemma 2.1 The composite homomorphism

@ ıEW �m�1.S
n�1/! �m�1.S

n�1/

is induced by the self map of Sn�1 having degree �.Sn/D 1C .�1/n .

Proof If f is the suspension of some map f 0W Sm�1 ! Sn�1 in the geometric
description of @N .f / above, the decompositions of Sm and Sn into the half-spheres
are preserved. Thus s can be chosen to be the pullback of a vector field on Sn with
index �.Sn/.

Geometry & Topology, Volume 17 (2013)
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This gives no new insights when n is odd and hence @� 0 on the whole group �m.S
n/

(and not just on E.�m�1.S
n�1//), due to a nowhere vanishing vector field on Sn and

the resulting splitting of (1-7).

If n is even and ˛ 2 �m�1.S
n�1/ then according to Theorem 8.9 in [28, chapter XI],

we have

(2-2) @ıE.˛/D .2��n�1/ı˛D 2˛CŒ�n�1; �n�1�ıh0.˛/�
�
Œ�n�1; �n�1�; �n�1

�
ıh1.˛/

where h0 and h1 denote Hopf–Hilton homomorphisms. (The last term to the right
vanishes trivially when m63n�5, ie, n>qC2, since then h1.˛/2�m�1.S

3n�5/D0.)

Proof of Corollary 1.10 We apply Theorem 1.9 to the case when G is trivial and
conclude that condition (v) is equivalent to . zf ; zf / being loose. But this means that
zf is homotopic to its composite with the antipodal map on Sn or, equivalently, that
Œ zf �D .��n/ ı Œ zf � (cf [11, 2.10]). Thus Corollary 1.10 follows from [28, chapter XI,
8.12 and chapter XII, 2.4-2.5], as well as from Lemma 2.1 above.

3 Whitehead products and suspensions

Since we are looking for interesting answers to our Questions I and II we assume from
now on that n is even. Let us first discuss the claims in Table 1 concerning the kernel
and cokernel of EW �m�1.S

n�1/ ! �m.S
n/. They are based on work of Adams,

Barcus, Barratt, Freudenthal, Golasiński, Hilton, Hoo, James, Kristensen, Madsen,
Mahowald, Mimura, Mori, Mukai, Oda, Oshima, Serre, Thomeier, Toda, Whitehead
and others, as summarized in [12] and quoted below.

Using the notation of [12] we write �2 2 �3.S
2/, �4 2 �7.S

4/ and �8 2 �15.S
8/ for

the Hopf maps. Suspend and/or compose them to obtain the elements

(3-1)

�j D Œidentity map� 2 �j .S
j /; j > 1;

�j 2 �jC1.S
j / and �2

j D �j ı �jC1 2 �jC2.S
j /; j > 2;

�j 2 �jC3.S
j / and �2

j D �j ı �jC3 2 �jC6.S
j /; j > 4;

�j 2 �jC7.S
j /; j > 8:

According to the Hopf-invariant-one result of Adams [1] and to [12, Section 2] we
have:

(3-2) #Œ�j ; �j �D

8<:
1 if j D 1; 3 or 7;
2 if j is odd, j ¤ 1; 3; 7;

1 if j is even:

9=;.j > 1/

Geometry & Topology, Volume 17 (2013)
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Œ�j ; �j �D 0 if and only if j � 3 .4/ or j D 2; 6:(3-3)

Œ�j ; �
2
j �D 0 if and only if j � 2; 3 .4/ or j D 5:

)
.j > 2/

(3-4)

#Œ�j ; �j �D

8̂̂̂<̂
ˆ̂:

1 if j � 7 .8/ or j D 2i � 3 for i > 3I

2 if j � 1; 3; 5 .8/> 9 and j ¤ 2i � 3I

12 if j � 2 .4/> 6 or j D 4; 12;
24 if j � 0 .4/> 8 unless j D 12:

(3-5)

Œ�j ; �
2
j �D 0 if and only if j � 4; 5; 7 .8/ or j D 2i

� 5 for i > 4:

9>>>>>=>>>>>;
.j > 4/

(3-6)

(3-7)

#Œ�j ; �j �D

8̂̂̂<̂
ˆ̂:

1 if j D 11 or j � 15 .16/;

2 if j is odd and j > 9 unless j D 11 or j � 15 .16/,
120 if j D 8;

240 if j is even and j > 10:

9>>>=>>>;.j > 8/

Here # denotes the order of a group element.

Now assume that m 6 3n� 5 and consider the exact sequence
(3-8)

�m�nC1.S
n�1/

Œ�n�1;��
�����! �m�1.S

n�1/
E
�! �m.S

n/
E�nıH
�����! �m�n.S

n�1/
Œ�n�1;��
�����! � � �

derived from the EHP–sequence (cf [28, XII, 2.3 and 2.5]). The group �m�nC1.S
n�1/

is stable (ie, isomorphic to �s
q�1

, cf Definition 1.12) and generated by one of the
homotopy classes listed in (3-1) if 1 6 q 6 8, q¤ 5; 6. Thus the Whitehead product of
�n�1 with this generator vanishes precisely if the subsequent suspension homomorphism
E in (3-8) is injective.

Similarly E is onto if and only if E�n ıH � 0, ie, the generator of �m�n.S
n�1/ has

the same order as its Whitehead product with �n�1 . The claims in the first two columns
of Table 1 now follow from (3-1)–(3-7).

The remaining injectivity and surjectivity claims in the finitely many dimension combi-
nations where m> 3n�5 and qDm�2nC3 6 8 can be established by using Toda’s
explicit calculations in chapter V of [27] or the 2–primary sequence in [27, Chapter IV,
(4.4)]. Indeed, since we assume n to be even, ker E has no odd torsion (by Serre’s
Theorem, cf [27, 13.1]).

These techniques yield also a proof of Proposition 1.18.

Example 3.9 If q 6 8 and nD 4, then ker E D 0.

Clearly EW �m�1.S
n�1/! �m.S

n/ is also injective whenever nD 2 6 m.
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4 Kervaire invariants

In this section we discuss Theorems 1.13 and 1.15, which deal with the first nonstable
dimension setting m D 2n� 2, n even, n > 2. The role that the Kervaire invariant
plays for selfcoincidence questions was first noted in Gonçalves and Randall [13; 14].

First we prove Theorem 1.13, using Proposition 1.18. We may assume that n¤ 2; 4; 8

(since E is an isomorphism otherwise). Then the EHP–sequence (cf (3-8)) yields the
short exact sequence

(4-1) 0 Z2 �2n�3.S
n�1/ �2n�2.S

n/ 0;
E

@

where ker E Š Z2 is generated by

(4-2) wn�1 D Œ�n�1; �n�1�:

Moreover @ıE� 2 �id on �m�1.S
n�1/DE.�m�2.S

n�2// and hence @� 2 �E�1 (by
(2-2)). Therefore the Wecken condition WeC.2n�2; n/ fails if and only if there is some
˛ 2�2n�3.S

n�1/ such that 2˛Dwn�1 , ie, wn�1 can be halved. But this is equivalent
to the existence of a Kervaire invariant one element Œ zf � 2 �2n�2.S

n/Š �s
n�2

having
order 2 (cf [7]) which is known to exist, eg, for nD 16, 32 and 64 (cf [2, page 11] and
[9, page 1195]). In fact, for all order 2 Kervaire invariant one elements Œ zf � we know
that @.Œ zf �/D 2 �E�1.Œ zf �/Dwn�1 (cf [2, page 11]); hence the homomorphisms @ and
KI agree on all Œ zf � 2 �2n�2.S

n/ such that 2Œ zf � or equivalently, N #. zf ; zf / vanish.

Proof of Theorem 1.15 Toda [27] denotes the standard im J generator for the 2–
primary component Z8 of the stable 11–stem Z504 by � . Now, [24, Theorem 3.1]
affirms that the vanishing of the Whitehead product Œ�115; �115� in �240.S

115/ is the
complete obstruction to the existence of �6 . If Œ�115; �115�D0, any map hW S242!S116

with Hopf invariant �231 has the property that KI.ŒE12h�/D 1 by [4, Theorem A].

We assume now that condition (i) holds, ie, Œ�115; �115�¤ 0, and shall derive (ii). We
shall deduce that Œ�115; �115� 2 8�240.S

115/ from Nomura’s tables in [26, page 164]
(also see [24, (3.2)]). With respect to the Stiefel fibering

S115 i
! V128;13! V128;12;

Nomura shows that i�.�115/D 8i8s5�119 2 �126.V128;13/. Consider the J –morphism
J W SO.115/! SF.115/D�115S115 . Since the boundary morphism

@W �126.V128;13/! �125.SO.115//
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is an isomorphism in the fibration SO.115/ ! SO.128/ ! V128;13 , the image of
i�.�115/ under the morphisms

�126.V128;13/ �125.SO.115// �125.SF.115//
@

Š

is represented by

S125 �114
���! S114 T .S115/

������! SO.115/
J
�! SF.115/:

The adjoint of the above map represents Œ�115; �115�. Thus nontriviality of Œ�115; �115�

yields Œ�115; �115�D 8˛ for some class ˛ 2�240.S
115/. Let gW S240!S115 represent

4˛ . Then ŒEg� has order 2 so .Eg;Eg/ is loose. Note that h0.Œg�/ D h0.4˛/ D

4h0.˛/ D 0 in �240.S
229/ by [28, Chapter XI, Theorem 8.6]. Now in the Stiefel

fibering V117;2! S116,

@.ŒEg�/D .2�115/ ı Œg�D 2Œg�C Œ�115; �115�h0.Œg�/D 2Œg�D Œ�115; �115�:

Consequently, .Eg;Eg/ is not loose by small deformation.

We now assume that condition (ii) holds and shall deduce that Œ�115; �115� ¤ 0 so
condition (i) must hold. By hypothesis, for some map gW S240! S115 , .Eg;Eg/

is loose, but not loose by small deformation. That is, @.ŒEg�/ ¤ 0 in �240.S
115/

in the Stiefel fibering S115 ! V117;2 ! S116 , but E.@.ŒEg�// D 0 in �241.S
116/.

Now .Eg;Eg/ is loose means .��116/ ı ŒEg� D �ŒEg� D ŒEg� so 2ŒEg� D 0. So
P W �242.S

231/ ! �240.S
115/ must be nontrivial on the 2–primary component of

�242.S
231/ by exactness of the EHP–sequence. Consequently, P .�231/D Œ�115; �115�¤

0.

5 Criteria involving Hopf invariants

In this section we prove Theorems 1.16 and 1.17 as well as the claims in the third column
of Table 1, applying Corollary 1.10 and Proposition 1.18, which were established in
Sections 2 and 3. Again let n be even throughout.

Assume that h0W �m�1.S
n�1/! �m�1.S

2n�3/ vanishes and ker E is isomorphic to
Z2 . If the generator v of ker E can be halved, ie, v D 2˛ for some ˛ 2 �m�1.S

n�1/,
then the Wecken condition WeC.m; n/ (cf Definition 1.8) fails; indeed

@.E.˛//D 2˛C Œ�n�1; �n�1� ı h0.˛/D v

(cf (2-2)) is a nontrivial element of @.�m.S
n//\ ker E . When E is also onto, then

@.�m.S
n//D 2 ��m�1.S

n�1/, and WeC.m; n/ fails precisely if v can be halved.
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In the dimension range q 6 8 we know when ker E Š Z2 and when E is onto (cf
Table 1 and Proposition 1.18). So let us take a closer look at h0 .

Lemma 5.1 Assume that q 6 8 and ker E ¤ 0. Then h0.�m�1.S
n�1//D 0 except

when q D 4 and n� 4 .8/, n > 12, or possibly also when q D 8 and nD 6 or 10.

Proof If .q; n/¤ .8; 6/; .8; 10/ our assumptions imply that n > qC3 or, equivalently,
m� 1 6 3.n� 1/� 4 (cf the first column of Table 1); thus the piece

�m�2.S
n�2/

E0

��! �m�1.S
n�1/

E01�nıH 0

�������! �m�n.S
n�2/

Œ�n�2;��
�����! �m�3.S

n�2/

of the EHP–sequence (for m�1; n�1 instead of m; n in (3-8)) is exact and h0D˙H 0

(cf [5, Theorem 4.18]) vanishes precisely if the generator n�2 of �m�n.S
n�2/ has

the same order as its image Œ�n�2; n�2�. According to formulas (3-2)–(3-7) above this
holds except when q D 4, n� 4 (8) and n > 4 (ie, except when #Œ�n�2; �n�2�D 12

and ker E ¤ 0; anyway, note that E is not surjective in this case).

Now we are ready to establish the claims in the third column of Table 1. In all
dimension combinations listed there, the nontrivial element v 2 ker E Š Z2 is the
indicated Whitehead product of �n�1 with a generator of �m�nC1.S

n�1/ (compare
(3-8)). Moreover it follows from Lemma 5.1 that @ ıE � 2 � id�m�1.Sn�1/ (cf (2-2)).
In view of the discussion above and of Corollary 1.10 our claims for q¤ 2 are reduced
to the question whether v can be halved. When q D 1 this is just the “strong Kervaire
invariant one problem” discussed eg in Theorem 1.13 and Section 4 above. The
following proofs contain detailed answers also for q D 2 or 3.

Proof of Theorem 1.16 We need to consider only the case n > 4, n even (since
�m�1.S

n�1/, @, E ı @, MCC.f; f / and N #.f; f / all vanish for n D 2). We have
the exact sequence

(5-2) ker E � �2n�2.S
n�1/ �2n�1.S

n/ Z;
E H 6� 0

@

where the kernel of E is generated by vn�1 WD Œ�n�1; �n�1� (cf (3-8)). Clearly ker H D

E.�2n�2.S
n�1// is just the torsion subgroup of �2n�1.S

n/. Moreover

(5-3) @.Œ�n; �n�/D vn�1

(cf [16, (7.4)]).
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If n¤ 4; 8, we can write

Œ zf �DE˛C
�

1
2
H.Œ zf �/

�
� Œ�n; �n�I

then

(5-4) @.Œ zf �/D 2˛C
�

1
2
H.Œ zf �/

�
vn�1

(cf (2-2) and Lemma 5.1); hence E ı @.Œ zf �/D 2E.˛/. This implies the first claim in
Theorem 1.16 (cf Theorem 1.9).

If n� 0 (4), E is injective (cf Table 1); hence the Wecken condition holds.

Thus assume n� 2 (4), n > 6. Then ker E ŠZ2 (cf Table 1) and vn�1 is a nontrivial
element of ker E \ @.�2n�1.S

n// (cf (5-3)). Therefore the Wecken condition fails (cf
Definition 1.8). Moreover vn�1 cannot be halved, ie, vn�1 62 2�2n�2.S

n�1/ (cf [16,
5.2]). Thus @.Œ zf �/D 0 if and only if 2˛ D 0 and 1

2
H.Œ zf �/ is even (cf (5-4)); in turn,

2˛ D 0 precisely if 2E.˛/DE ı @.Œ zf �/ or, equivalently, N #.f; f / vanishes. In view
of Theorem 1.9 this completes the proof.

For early examples illustrating Theorem 1.16; see [13, Section 4].

Let us note one interesting aspect of the previous discussion. The question of whether
the generator v of ker E can be halved (ie, lies in 2�m�1.S

n�1// plays crucial but
different roles in the first two nonstable dimension settings. If q D 1 the Wecken
condition fails and an additional looseness obstruction (the Kervaire invariant) is
needed precisely when v is both nontrivial and halvable. In contrast, if q D 2 the
Wecken condition fails when only v¤ 0; then the Hopf invariant, taken mod 4, appears
as the extra looseness obstruction (in addition to N # ) because v cannot be halved.

Proof of Theorem 1.17 Now assume q D 3. Then such halvability considerations
play no role. Indeed, v D Œ�n�1; �

2
n�1

� is even divisible by 4. Eg if n� 2 (4), n > 10,
then vD 4˛ for a certain element ˛D J.in�1.R/�

0
n�2

/ of �2n�1.S
n�1/ (cf [12], lines

10–13 of the introduction, together with formula (4.5)). Theorem 1.17 follows now
from our results Theorem 1.9, Corollary 1.10, Proposition 1.18, Lemma 5.1 and the
injectivity and surjectivity criteria in Table 1.

Example 5.5 (nD 2 or nD 6) Here the pair .f; f / is loose by small deformation
for all maps f W S2n ! Sn=Z2 . Indeed, �2n.S

n/ D Z2 and hence 2Œ zf � D 0. If
nD 2 and ˇ denotes the homotopy class of the Hopf map, then Œ�n; �n�D ˇCˇ , and
h0.Œ zf �/ 2 �4.S

3/D E.�3.S
2//; thus Œ�n; �n� ı h0. zf /D 2.ˇ ı h0. zf // vanishes also.

(As an alternative we may use Theorem 1.9 and the fact that @.Œ zf �/ lies in �3.S
1/D 0.)
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If n D 6, then Œ�n; �n� ı h0. zf / D 0 by the following more general argument. Given
n > 3, the diagram

Z2 � �n D �nC1.S
n/

�2n.S
n/

�2n.S
2n�1/

Œ�n;��

Š En�1

Œ�n; �n��

commutes (cf [28, Chapter XII, (2.4) and (2.5)]). Thus the induced homomorphism
Œ�n; �n�� is injective precisely when Œ�n; �n�¤ 0, ie, n¤ 6 and n 6� 3 .4/ (cf (3.3)). In
particular, given any element Œ zf � 2 �2n.S

n/, we obtain also:

Corollary 5.6 When n� 0 .4/ and 2Œ zf �D 0 (eg when n 6 16, cf [27]) then . zf ; zf /
is loose if and only if h0.Œ zf �/ 2 �2n.S

2n�1/ vanishes.

Remark 5.7 It is important to notice that the Hopf homomorphisms h0 appearing
in Corollary 1.10, Theorem 1.17 and Corollary 5.6 on the one hand, and in (2-2) and
Lemma 5.1 on the other hand, are defined in different dimension settings. Since the
parity of j plays a big role in formulas (3-2)–(3-7), h0.�m�1.S

n�1// may often vanish
(eg as in Lemma 5.1) while h0.�m.S

n// need not be trivial. Eg the Hopf invariant h0

occurring in Corollary 5.6 above is never identically zero: h0.�2n.S
n//¤ 0 whenever

n� 0 (4) (since E is not onto in this case).
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