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A universal characterization of
higher algebraic K–theory
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In this paper we establish a universal characterization of higher algebraic K–theory
in the setting of small stable 1–categories. Specifically, we prove that connective
algebraic K–theory is the universal additive invariant, ie the universal functor with
values in spectra which inverts Morita equivalences, preserves filtered colimits and
satisfies Waldhausen’s additivity theorem. Similarly, we prove that nonconnective
algebraic K–theory is the universal localizing invariant, ie the universal functor that
moreover satisfies the Thomason–Trobaugh–Neeman Localization Theorem.

To prove these results, we construct and study two stable 1–categories of “non-
commutative motives”; one associated to additivity and another to localization. In
these stable 1–categories, Waldhausen’s S�–construction corresponds to the suspen-
sion functor and connective and nonconnective algebraic K–theory spectra become
corepresentable by the noncommutative motive of the sphere spectrum. In particular,
the algebraic K–theory of every scheme, stack and ring spectrum can be recovered
from these categories of noncommutative motives. In the case of a connective ring
spectrum R , we prove moreover that its negative K–groups are isomorphic to the
negative K–groups of the ordinary ring �0R .

In order to work with these categories of noncommutative motives, we establish com-
parison theorems between the category of spectral categories localized at the Morita
equivalences and the category of small idempotent-complete stable 1–categories.
We also explain in detail the comparison between the 1–categorical version of
Waldhausen K–theory and the classical definition.

As an application of our theory, we obtain a complete classification of the natural
transformations from higher algebraic K–theory to topological Hochschild homol-
ogy (THH ) and topological cyclic homology (TC ). Notably, we obtain an elegant
conceptual description of the cyclotomic trace map.
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1 Introduction

Algebraic K–theory is a fundamental algebro-geometric invariant, capturing information
in arithmetic, algebraic geometry and topology. The algebraic K–theory of a ring
encodes many of its classical number-theoretic invariants, such as its Picard and Brauer
groups. More generally, the algebraic K–theory of a scheme encodes arithmetic
information as well as information about its singularities. The extension of algebraic K–
theory from classical algebraic objects to ring spectra and to derived schemes provides
a connection to geometric topology; notably, Waldhausen’s A–theory [77] (ie the
K–theory of the sphere spectrum) is essentially equivalent to stable pseudoisotopy
theory.

The subject originated with Grothendieck’s definition of K0 (the “Grothendieck group”)
in the course of his work on the Riemann–Roch theorem. By construction, K0 is the
universal receptacle for Euler characteristics, ie functions � from the set of isomorphism
classes of objects of a category C equipped with a suitable notion of “equivalence” and
“exact sequence” to abelian groups which satisfy the relation

�.X /��.Y /C�.Z/D 0

whenever there is an exact sequence X ! Y !Z in C .

During the 70s and early 80s, Quillen [59] and then Waldhausen [78] extended
Grothendieck’s work making use of tools from algebraic topology. They defined the
connective algebraic K–theory spectrum K.C/ of a suitable category C ; the homotopy
groups of this spectrum are the higher algebraic K–groups Ki ; i � 0. Subsequently,
Thomason and Trobaugh [72] generalized Bass’s work [5] on negative algebraic K–
groups and introduced the nonconnective algebraic K–theory spectrum K.C/ of C in
order to properly capture Mayer–Vietoris phenomena for schemes.

In contrast with the Grothendieck group, however, the construction of these algebraic
K–theory spectra does not provide a universal characterization. The most basic theorem
about connective algebraic K–theory, the additivity theorem (see Waldhausen [78]),
essentially says that the S� construction forces the chosen cofiber sequences to split.
McCarthy’s simplicial proof of the additivity theorem [52] for any theory satisfying
a few simple axioms suggests that the S� construction is a universal construction for
imposing additivity on a functor from categories to spectra. Moreover, the construction
of the connective algebraic K–theory spectrum in terms of iterating the S� construction
(along with the additivity theorem applied to a simplicial path fibration) implies that
the S� construction functions as a kind of delooping functor.

However, although these shadows of a universal description have been known for a long
time, a precise universal characterization of algebraic K–theory proved elusive. A major
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technical impediment has been the absence of a framework in which to systematically
express homotopical constructions in the category of categories. This impediment has
been lifted by recent developments in the foundations of higher category theory, such
as the theory of derivators or 1–categories.

Over the past few years the third author [68] (and Cisinski and the third author [20;
21]) have carried out a program of providing universal characterizations of algebraic
K–theory in the setting of dg–categories via the formalism of derivators. In this paper
we adapt this approach to the setting of Lurie’s theory of stable 1–categories. The
1–category of stable 1–categories provides a natural home for many examples of
interest coming from algebraic geometry and algebraic topology: the 1–category of
perfect complexes associated to a scheme (or a stack), the 1–category of compact
module spectra for a ring spectrum and the 1–category of stable retractive spaces are
all examples of stable 1–categories.

1.1 Universal characterization

Let Catex
1 be the1–category of small stable1–categories and Catperf

1 the full subcate-
gory of small idempotent-complete stable1–categories; see Section 2.2. An exact func-
tor F W A!B in Catex

1 is called a Morita equivalence when its idempotent completion
Idem.F /W Idem.A/! Idem.B/ is an equivalence of1–categories; see Definition 4.21.
This is equivalent to the condition that the induced map F!W Mod.A/!Mod.B/ is an
equivalence of 1–categories.

A sequence A! B! C in Catperf
1 is called exact if the composite is zero, A! B

is fully faithful and the map B=A! C , from the cofiber of the inclusion of A into
B to C , is an equivalence; see Proposition 5.15. The sequence is called split-exact if
there exist adjoint splitting maps such that the relevant composites are the respective
identities; see Definition 5.18. More generally, a sequence A! B! C in Catex

1 is
(split-)exact if Idem.A/! Idem.B/! Idem.C/ is (split-)exact. Now, let

EW Catex
1 �!D

be a functor with values in a stable presentable 1–category D . We say that E is
an additive invariant if it inverts Morita equivalences, preserves filtered colimits and
sends split-exact sequences to (split) cofiber sequences; see Definition 6.1. This last
condition corresponds to the stable 1–categorical analogue of Waldhausen’s additivity
theorem. If E in fact sends all exact sequences to cofiber sequences we say that it is a
localizing invariant; this property corresponds to Neeman’s generalization [56] of the
Thomason–Trobaugh Localization Theorem [72].
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Every localizing invariant is additive, but not every additive invariant is necessarily
localizing. Examples of localizing invariants include the nonconnective version of
algebraic K–theory and topological Hochschild homology. Connective algebraic K–
theory is an example of an additive invariant which is not localizing. Note that, as we
discuss in Sections 7 and 9, the1–categorical versions of these invariants agree with the
“classical” definitions. For instance, we give a precise comparison in Section 7 between
Waldhausen’s algebraic K–theory of a Waldhausen category C and the 1–categorical
algebraic K–theory of the 1–category underlying C .

Our first main result is the following.

Theorem 1.1 (See Theorems 6.10 and 8.7) There are stable presentable 1–catego-
ries Madd and Mloc and universal additive and localizing invariants

.1:2/ UaddW Catex
1 �!Madd and UlocW Catex

1 �!Mloc:

That is, given any stable presentable 1–category D , we have induced equivalences of
1–categories

.Uadd/
�
W FunL.Madd;D/ ��! Funadd.Catex

1;D/;

.Uloc/
�
W FunL.Mloc;D/ ��! Funloc.Catex

1;D/;

where the left-hand sides denote the 1–categories of colimit-preserving functors and
the right-hand sides the 1–categories of additive and localizing invariants.

From a motivic perspective, the 1–categories Madd and Mloc should be considered
as candidate categories of noncommutative motives. In fact, Theorem 1.1 shows us that
every additive (respectively localizing) invariant factors uniquely through Madd (re-
spectively, through Mloc ). That is, all the information concerning additive (respectively,
localizing) invariants is encoded in Madd (respectively, in Mloc ).

Our second main result is the following characterization of the higher algebraic K–
theory of a stable 1–category. Any stable 1–category (and in particular Madd

and Mloc ) admits natural mapping spectra; that is, a stable 1–category is naturally
enriched over the 1–category S1 of spectra (see Sections 2.3 and 4).

Theorem 1.3 (See Theorems 7.13 and 9.8) Let A be an idempotent-complete small
stable 1–category. Then, there are natural equivalences of spectra

Map.Uadd.S!1/;Uadd.A//'K.A/;.1:4/

Map.Uloc.S!1/;U loc.A//'K.A/;.1:5/
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where S!1 is the small stable 1–category of compact spectra. In particular, for all
n 2 Z, we have isomorphisms of abelian groups

Hom.Uadd.S!1//; †�nUadd.A//'Kn.A/;.1:6/

Hom.Uloc .S!1//; †�nUloc .A//'Kn.A/;.1:7/

in the triangulated categories Ho.Madd/ and Ho.Mloc/.

Remark 1.8 In fact, stronger results are true. In equivalence (1.4), S!1 can be replaced
by any compact idempotent-complete small stable 1–category B and the right-hand
side by the K–theory spectrum of Funex.B;A/; see Theorem 7.13. In equivalence (1.5),
S!1 can be replaced by any smooth and proper (ie dualizable) small stable 1–category
B and the right-hand side by K.Bop b̋A/; see Theorem 9.36.

In particular, when A is the 1–category of perfect complexes over a suitable scheme
(or stack), we recover the K–theory spectra of the scheme (stack). Taking A to be the
1–category of compact modules over a ring spectrum R, we recover the K–theory of
R. When R is a connective ring spectrum, we show in Theorem 9.53 that the negative
homotopy groups of the nonconnective K–theory of R are the same as those of �0R.
However, we expect the nonconnective K–theory of a nonconnective ring spectrum to
be an interesting new invariant.

The left-hand sides of the natural equivalences and isomorphisms of Theorem 1.3 are
defined solely in terms of universal constructions on presheaf categories; algebraic K–
theory is not used in their construction. Rather, a variant of Waldhausen’s path-fibration
argument (see Proposition 7.17) shows that Waldhausen’s S� construction acts as the
suspension functor in Madd and also Mloc .

Therefore, Theorem 1.3 (combined with Theorem 1.1) provides an intrinsic charac-
terization of algebraic K–theory as a functor of stable 1–categories. Furthermore,
Theorem 1.12 below (see also Theorem 10.3 in the text) shows that the corepresentability
result coupled with the Yoneda Lemma provides a complete classification of all natural
transformations from algebraic K–theory to an arbitrary additive (or localizing) functor
from small stable categories to spectra.

Remark 1.9 Analogues of Theorems 1.1, 1.3 and 1.12 in the setting of dg–categories
were previously known (due to the third author and Cisinski [20; 21; 68]). Our
arguments follow the same general outline.
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1.2 Morita theory

The main technical device in our proofs of Theorems 1.1 and 1.3 is the Morita theory of
stable categories and spectral categories. In particular, we prove Theorem 1.3 by using
a comparison result between the theory of small spectral categories (see Section 2.1)
and the theory of small stable 1–categories to rigidify questions about the algebraic
K–theory of 1–categories to corresponding questions in the (classical) Waldhausen
K–theory of Waldhausen categories.

The category CatS of small spectral categories carries a Quillen model category structure
in which the weak equivalences are the DK–equivalences, ie the functors that are fully
faithful and essentially surjective up to weak homotopy equivalence; see the third
author’s [69] (reprised below in Theorem 2.2). As a consequence, we can form the
associated 1–category .CatS/1 of small spectral categories.

A spectral functor F W A ! B is called a triangulated equivalence if it induces a
weak equivalence on the triangulated closures of A and B , and it is called a Morita
equivalence if it induces a weak equivalence on the thick closures of A and B ; see
Definition 2.7. Our comparison result, which can be regarded as a generalization of the
Morita theory of [65], is the following.

Theorem 1.10 (See Theorems 4.22 and 4.23) The accessible localization of .CatS/1
along the triangulated equivalences is equivalent to Catex

1 , and the (further) localization
of .CatS/1 along the Morita equivalences is equivalent to Catperf

1 .

We use this comparison result to deduce structural properties of the categories Catex
1

and Catperf
1 , notably that they are compactly generated, complete and cocomplete;

see Corollary 4.25. Furthermore, we prove Theorem 1.3 by using Theorem 1.10 to
lift split-exact sequences of small 1–categories to split-exact sequences of small
spectral categories so we can take the K–theory in the setting of Waldhausen categories.
More generally, this comparison result explains the relationship between the classical
versions of algebraic K–theory (and topological Hochschild and cyclic homology) and
the 1–categorical versions. We believe that Theorem 1.10 is of independent interest
and expect it will find applications in the future. For instance, this theorem provides
clean and concise proofs of the main theorems of Toën’s work [73] on internal hom
objects in the category of dg–categories and its (previously unknown) extension to the
context of spectral categories.

1.3 Symmetric monoidal structure and dualizable objects

The category Catperf
1 is a symmetric monoidal 1–category (in the sense of Lurie [48,

Section 2]), in which the tensor product b̋ is characterized by the property that maps
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out of A b̋B correspond to maps out of the product A � B that preserve colimits
in each variable; see Section 3 for a discussion of this structure, following the work
of Lurie [48] and Ben-Zvi, Francis and Nadler [6]. We will reserve a careful study
of the structure of Madd and Mloc as symmetric monoidal 1–categories for the
authors’ forthcoming paper [9]. However, in order to carry out the extension of the
nonconnective corepresentability theorem described in Remark 1.8, we study the theory
of dualizable objects in Catperf

1 , using the theory of [48, Section 4.2.5].

In analogy with the situation for dg–categories [21, Section 4], we obtain a charac-
terization of the dualizable objects in Catperf

1 as the smooth and proper objects. We
define these notions as follows. Implicit in the comparison between small stable 1–
categories and spectral categories of Theorem 1.10 is the fact that for objects a and b

in a small stable 1–category A there exists a natural mapping spectrum A.a; b/ (see
Definition 2.15). Using this fact, we say that a small stable 1–category A is proper if,
for all pairs of objects a and b of A, the mapping spectrum A.a; b/ is compact. We
say that a small stable 1–category A is smooth if it is perfect as an Aop b̋A–module.
(Here we use the fact that any small stable 1–category can be regarded as a bimodule
over itself.) We then have the following theorem characterizing the dualizable objects
in these terms:

Theorem 1.11 (See Theorem 3.7) An idempotent-complete small stable1–category
A is dualizable (as an object of the symmetric monoidal 1–category Catperf

1 ) if and
only if A is smooth and proper. Moreover, the dual of a dualizable idempotent-complete
small stable 1–category A is the opposite 1–category Aop .

1.4 Trace methods

One of the major revolutions in the calculational study of algebraic K–theory of rings
and schemes in the past two decades has been the development of trace methods,
following the ideas of Goodwillie [35] and Bokstedt–Hsiang–Madsen [17]. The cy-
clotomic trace from K–theory to topological cyclic homology TC and topological
Hochschild homology THH (stable homotopy theory generalizations of negative cyclic
homology and Hochschild homology) has allowed major calculational advances. The
fiber of this map is well understood by work of Goodwillie [35], McCarthy [53] and
Dundas [26], and the target is relatively computable using the methods of equivariant
stable homotopy theory (eg see the extensive body of work by Hesselholt and Madsen
on the Quillen–Lichtenbaum conjecture [37]). One application of the corepresentability
of algebraic K–theorem (Theorem 1.3) is the complete classification of all natural
transformations with source the algebraic K–theory functor.
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Theorem 1.12 (See Theorem 10.3) Given an additive invariant

EW Catex
1 �! S1

with values in the stable 1–category of spectra, we have a natural equivalence of
spectra

Map.K;E/'E.S!1/;

where Map.K;E/ denotes the spectrum of natural transformations of additive invari-
ants. The analogous result for localizing invariants holds. In the particular case where
E is topological Hochschild homology, we obtain an isomorphism

�0Map.K;THH/' �0THH.S!1/' �0THH.S/' Z:

A calculation then provides a canonical construction and conceptual description of the
topological Dennis trace map K! THH .

Corollary 1.13 (See Section 10) The set of homotopy classes of natural transforma-
tions of additive invariants from connective algebraic K–theory to THH is isomorphic
to Z; furthermore, the topological Dennis trace is characterized up to homotopy as the
natural transformation K! THH corresponding to the unit 1 2 Z.

That is, up to scaling, the trace is the only natural transformation of additive invariants
between connective algebraic K–theory and THH . This provides a direct proof that all
known constructions of the topological Dennis trace map agree up to homotopy.

Working directly with topological cyclic homology (TC) is somewhat more complicated;
TC does not preserve filtered colimits in general, and is therefore not an additive or
localizing functor. However, we deduce an analogous identification of the cyclotomic
trace as determined by the unit map; see Section 10.

Finally, we note that in the localizing setting our results provide an extension of the
cyclotomic trace from nonconnective algebraic K–theory to the nonconnective versions
of TC and THH . This generalizes and extends the nonconnective traces constructed
by Geisser and Hesselholt [33] and by the first author and Mandell [14] for rings and
schemes.

1.5 Related works

The “motivic” idea of constructing universal invariants is not new and appears in several
different subjects: for example, Cortiñas–Thom’s work [22] on bivariant algebraic K–
theory, Higson’s work [38] on Kasparov’s bivariant K–theory, Meyer–Nest’s work [54]
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on C �–algebras, Morel–Voevodsky’s work [55] on A1 –homotopy theory of schemes
and Voevodsky’s work [75] on (mixed) motives.

In this vein, over the past few years the third author and Cisinski have carried out a
program [20; 21; 68] of providing universal characterizations of algebraic K–theory in
the setting of dg–categories, using the formalism of derivators. One of the main goals
of our work in this paper completes this program by extending these results to stable
1–categories and by solving a key open question left open in the previous work of the
third author, namely identifying the cyclotomic trace in terms of the corepresentability
results.

Finally, we would like to mention that Barwick [2] has recent work on a universal
characterization of higher algebraic K–theory, in the context of a detailed study of the
algebraic K–theory of 1–categories.
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2 Spectral categories and stable 1–categories

The purpose of this section is to collect and recall the results about spectral categories
and stable 1–categories we will require for our constructions.

2.1 Review of spectral categories

We write T for the symmetric monoidal simplicial model category of simplicial sets
and S for the symmetric monoidal simplicial model category of symmetric spectra [41].
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Recall that a spectral category A is a category enriched in the category of symmetric
spectra. Specifically, a spectral category is given by:

� A class of objects obj.A/.
� For each pair of objects .x;y/ of A, a symmetric spectrum A.x;y/.
� For each triple of objects .x;y; z/ of A, a composition morphism in S

A.y; z/^A.x;y/ �!A.x; z/;

satisfying the usual associativity condition.
� For any object x of A, a morphism S!A.x;x/ in S , satisfying the usual unit

condition with respect to the above composition.

A spectral category is said to be small if its class of objects forms a (small) set. We
write CatS the category of small spectral categories and spectral (enriched) functors.
References on spectral categories are [14, Section 2], [65, Appendix A] and [69,
Section 2].

We now briefly recall the Quillen model structure on spectral categories we work with
in this paper. Given a spectral category A, we can form a genuine category ŒA� by
keeping the same set of objects and defining the set of morphisms between x and y

in ŒA� to be the set of morphisms in the homotopy category Ho.S/ from the sphere
spectrum S to A.x;y/. We obtain in this way a functor

Œ� �W CatS �! Cat;

with values in the category of small categories. Equivalently, we can think of Œ� � as
computed by passing to �0 on the morphism spectra, and so we will also refer to ŒA�
as the homotopy category Ho.A/.

Definition 2.1 A spectral functor F W A! B is a DK–equivalence if:

� For all objects x;y 2A, the morphism in S

F.x;y/W A.x;y/ �! B.Fx;Fy/

is a stable equivalence.
� The induced functor

ŒF �W ŒA� �! ŒB�

is an equivalence of categories.

Theorem 2.2 [69, 5.10] The category CatS carries a right proper Quillen model
structure whose weak equivalences are the DK–equivalences.
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Recall from [69, § 2] the natural adjunction

.2:3/

CatS

�1

��

CatT ;

†1
C

OO

between spectral and simplicial categories, where �1 (also denoted .� /0 ) is the
space of maps from the unit (equivalently, restriction to the 0–th space of the spectrum).
We will use this adjunction to pass between spectral categories and 1–categories.
Using the model structure on simplicial categories of [7], the pair .†1C ; �

1/ is a
Quillen adjunction.

For technical control, we require the following corollary which sharpens the description
of the model structure, providing a combinatorial model category. (For references for
Jeff Smith’s theory of combinatorial model categories, see [3] or [24].)

Corollary 2.4 The category CatS endowed with the model structure of Theorem 2.2
is a combinatorial model category and is Quillen equivalent (via a zig-zag) to a sim-
plicial category with a left proper combinatorial simplicial model structure. There are
simplicial cofibrant and fibrant replacement functors. The adjunction .†1C ; �

1/ can
be lifted to a simplicial Quillen adjunction.

Proof The proof of this corollary follows from a refinement of the proof of Theorem 2.2.
The model structure therein arises as the Bousfield localization of a cofibrantly gen-
erated model structure on CatS in which the weak equivalences are the levelwise
equivalences [69, Section 4], ie the spectral functors F W A!B such that for all objects
x;y 2 A, the morphism A.x;y/! B.Fx;Fy/ is a levelwise equivalence and the
induced simplicial functor �1.A/!�1.B/ is a DK–equivalence.

First, we observe that the category CatS is locally presentable; a small set of small
generators is given by applying the functor U (see [69, A.1]) to a small set of small
generators for the category of symmetric spectra. Since the levelwise model structure
on CatS is cofibrantly generated, it follows that it is combinatorial. Next, the arguments
of [69] produce a generating small set of DK–equivalences at which to localize CatS .
The main theorem about the existence of left Bousfield localization for combinatorial
model categories (eg see the treatment in [3]) now implies that we can localize and
obtain a combinatorial model structure on CatS .

The machinery of Dugger’s approach to universal homotopy theories [24] now permits
us to replace CatS with a Quillen equivalent simplicial model category (the simplicial
objects over CatS ) which is combinatorial and left proper. By applying the techniques
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of [24] and [61], we can promote this adjunction to a simplicial Quillen adjunction.
Specifically, the simplicial prolongation of the adjunction forms a Quillen pair on the
categories of simplicial objects [61, 6.1].

Let A be a (fixed) small spectral category and let Aop denote the opposite spectral
category, defined by Aop.x;y/DA.y;x/.

Definition 2.5 A A–module is a spectral functor from Aop to the spectral category S
of symmetric spectra. We denote by bA the spectral category of A–modules.

By [65, A.1.1], bA can be given a combinatorial spectral model structure in which the
weak equivalences are the pointwise stable equivalences and the fibrations are pointwise
fibrations (referred to as the projective model structure). We will denote by bAcf the
full spectral subcategory of bA on the cofibrant and fibrant A–modules, and by D.A/
the derived category of A, ie the homotopy category Ho. bA/ associated to the model
structure. As usual, there is an equivalence Œ bAcf�'D.A/.

Notice that we have a (fully faithful) spectral Yoneda embedding A! bA which sends
the object z to the functor A.� ; z/W Aop ! S represented by z . Note that when
A is fibrant, the Yoneda embedding lands in bAcf . By [65, §A.1], a spectral functor
F W A! B gives rise to a restriction/extension Quillen adjunction

bB
F�

��bA
F!

OO

and therefore a total left-derived functor LF!W D.A/!D.B/.

We will be most interested in spectral categories A for which the homotopy category
Ho.A/ has a triangulated structure compatible with the mapping spectra; we refer to [14,
4.4] for the definition of a pretriangulated spectral category, and highlight the essential
consequence [14, 4.6] that the homotopy category of a pretriangulated spectral category
is triangulated (with distinguished triangles given by the Puppe sequences). This is
the stable homotopy theory analogue of the notion of a pretriangulated dg–category.
A spectral functor between pretriangulated spectral categories is a DK–equivalence
if and only if it induces an equivalence on homotopy categories [10, 5.7]. Using the
Yoneda embedding, we can construct minimal pretriangulated categories containing
the spectral category A.

Given a spectral category A, the proof of [14, 4.5] constructs a functorial “triangulated
closure” bAtri which is a pretriangulated spectral category. Briefly, bAtri consists of the
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subcategory of cofibrant-fibrant objects in bA which have the homotopy type of finite cell
objects (in the projective model structure). Using retracts of finite cell objects instead
[14, 4.5] produces a functorial “thick closure” bAperf , which is an idempotent-complete
pretriangulated spectral category.

Remark 2.6 In order for the preceding definitions to produce small spectral categories,
we need to restrict the sizes of the sets in the spaces of the mapping spectra. A careful
discussion of this issue appears in [14, Section 4]; see also [11]. We return to the issue
of set-theoretic considerations in Section 2.4.

We start with a spectral functor F W A! B , and tacitly assume we have performed
a functorial fibrant replacement. We denote by F cf

!
W bAcf! bB cf the composite of F!

with a fibrant replacement (note that we do not need a cofibrant replacement here since
F! preserves cofibrant objects) to obtain

F cf
! W

bAcf
�! bB cf:

Since this is a model of the derived functor of F! as a left Quillen functor, it preserves
homotopy colimits and thus sends modules of the homotopy type of finite cell A–
modules to modules of the homotopy type of finite cell B–modules and hence perfect
A–modules to perfect B–modules. Therefore, the following definitions make sense.

Definition 2.7 A spectral functor F W A! B is called

� a triangulated equivalence if the induced functor

F cf
! W

bAtri �! bB tri

is a DK–equivalence of spectral categories;

� a Morita equivalence if the induced functor

F cf
! W

bAperf �! bBperf

is a DK–equivalence of spectral categories.

Remark 2.8 Suppose we are given a spectral functor F W A ! B . Since bAcf is
generated by bAperf under filtered homotopy colimits and Morita equivalences are stable
under filtered homotopy colimits, it follows that F is a Morita equivalence if and only
if F cf

!
W bAcf! bB cf is a DK–equivalence.

We can relate these notions to definitions purely on the level of triangulated categories
(the relationship between triangulated constructions and enriched constructions is dis-
cussed further in Section 5). For a spectral category A, let Dtri.A/ denote the smallest
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triangulated subcategory of D.A/ containing the image of the A under the Yoneda
embedding, and Dperf.A/ denote the smallest thick subcategory of D.A/ containing
the image of A under the Yoneda embedding. Observe that Dtri.A/' Ho. bAtri/ and
Dperf.A/' Ho. bAperf/. As a consequence, we obtain the following proposition.

Proposition 2.9 A spectral functor F W A! B is

� a triangulated equivalence if and only if the induced derived functor

LF!W Dtri.A/ �!Dtri.B/

is an equivalence of (triangulated) categories;

� a Morita equivalence if and only if the induced derived functor

LF!W Dperf.A/ �!Dperf.B/

is an equivalence of (triangulated) categories.

Proof This follows immediately from [10, 5.7].

Finally, note that we can use �1 to obtain simplicial models of the triangulated
and thick closures. Define Mod.A/ to be the simplicial category �1 bAcf , Mod.A/tri
to be the simplicial category �1 bAtri , and Mod.A/perf to be the simplicial category
�1 bAperf . Of course, it is also possible to give intrinsic definitions of the latter two
categories in terms of Mod.A/.

Summarizing the relationships between the various categories, we have the following
commutative diagram (with horizontal arrows induced by the Yoneda embedding and
subsequent inclusions):

A //

�1

��

bAtri
//

�1

��

bAperf
//

�1

��

bAcf

�1

��

�1A //

Ho
��

Mod.A/tri //

Ho
��

Mod.A/perf //

Ho
��

Mod.A/

Ho
��

Ho.A/ // Dtri.A/ // Dperf.A/ // D.A/
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2.2 The 1–categories Catex
1 and Catperf

1

The basic setting for our work is the theory of 1–categories (and particularly stable
1–categories), which provide a tractable way to handle a “homotopical category of
homotopical categories” as well as homotopically meaningful categories of homotopical
functors. There are now many competing models of 1–categories, including Rezk’s
complete Segal spaces [60], the Segal categories of Simpson (see Hirschowitz and
Simpson [40]) and Tamsamani [71], the quasicategories (weak Kan complexes) of
Boardman and Vogt, the homotopy theory of simplicial categories as studied by Dwyer–
Kan [28] and Bergner [7] and others, all of which are known to be equivalent (see
[8] for a nice discussion of the situation). In a sense the situation is analogous to the
situation with the varied modern categories of spectra (eg symmetric spectra, orthogonal
spectra, EKMM S –modules). None of the work of this paper depends in any way
on particular properties of the model of 1–categories chosen; given certain basic
structural properties, one could carry out our arguments in any of them.

We have chosen to work in this paper with the theory of quasicategories. These first
appeared in the work of Boardman and Vogt [15], where they were referred to as
weak Kan complexes. The theory was subsequently developed by Joyal [42] and then
extensively studied by Lurie. In this section we give a rapid review of the relevant
background on the theory of quasicategories as a model of 1–categories. Our basic
references for this material are Lurie’s books [48; 47].

We will write Cat1 to denote the 1–category of small 1–categories and functors,
which we explicitly model as the category of simplicial sets with the Joyal model struc-
ture [42]. There is a simplicial nerve functor N from simplicial categories to simplicial
sets which is the right Quillen functor of a Quillen equivalence [47, Section 1.1.5.5,
1.1.5.13, 2.2.5.1]:

CatT

N
��

Set� :

C

OO

Here the model structure on the top is Bergner–Dwyer–Kan’s model structure on
simplicial categories [7] and the model structure on the bottom is Joyal’s model structure
on simplicial sets.

There are a number of options for producing the “underlying” 1–category of a
category equipped with a notion of “weak equivalence”. The most structured setting
is that of a simplicial model category C , where the 1–category can be obtained by
restricting to the full simplicial subcategory Ccf of cofibrant-fibrant objects and then
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applying the simplicial nerve functor N. More generally, if C is a category equipped
with a subcategory of weak equivalences wC , the Dwyer–Kan simplicial localization
LC [28] provides a corresponding simplicial category, and then N..LC/fib/, where
.� /fib denotes fibrant replacement in simplicial categories, yields an associated 1–
category. Barwick and Kan [4] have studied this procedure in the context of Segal
spaces and Lurie has given a version of this approach in [48, Section 1.3.4]: we
associate to a (not necessarily simplicial) category C with weak equivalences W an
1–category N.C/ŒW �1�; when C is a model category, for functoriality reasons it is
usually convenient to restrict to the cofibrant objects Cc and consider N.Cc/ŒW �1�.

All of these constructions produce equivalent1–categories [48, 1.3.4.20]. Furthermore,
all of them are functorial. Although a simplicial left Quillen functor C!D does not
typically induce a functor between the subcategories of cofibrant-fibrant objects in C
and D respectively, composing with a fibrant replacement functor as in Definition 2.7,
does yield an induced functor on simplicial nerves. Furthermore, given a simplicial
Quillen adjunction .F;G/, there is an induced adjunction of functors on the level of
1–categories by [47, 5.2.4.6]. (Alternatively, it can be seen directly that a functor
C!D which preserves weak equivalences between cofibrant objects induces a functor
N.C/ŒW �1�! N.D/ŒW �1�.)

Given an 1–category C , we can form its homotopy category Ho.C/, which is an
ordinary category [47, Section 1.2.3]. In addition, given an 1–category C , there
is a maximal 1–groupoid (Kan complex) Ciso inside of C , obtained by restricting
to the subcategory of C consisting of those arrows which become isomorphisms in
the homotopy category Ho.C/. The functor which associates to the 1–category C
its maximal subgroupoid Ciso is right adjoint to the inclusion of 1–groupoids into
1–categories. We have the following proposition relating this to other, possibly more
familiar, notions (see also [74, 2.3]).

Proposition 2.10 Let C be a small category with a subcategory wC of weak equiv-
alences which satisfies a homotopy calculus of two-sided fractions (in the sense of
Dwyer and Kan [27, 6.1]). Then there is a weak equivalence of simplicial sets

N.wC/' .N..LH C/fib//iso;

where here LH C denotes the hammock version of the simplicial localization [27] and
.LH C/fib is a fibrant replacement of LH C as a simplicial category.

Proof There is an “inclusion” functor C!LH C . Restricting to the weak equivalences
and passing to nerves via N, we obtain a map of simplicial sets

.2:11/ N.wC/! N.LHwC/! N..LHwC/fib/I
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note that the nerve of wC is the same whether we regard it as a category or as a
category (trivially) enriched in simplicial sets [47, 1.1.5.8]. Since .N..LHwC/fib//iso

is isomorphic to N..LHwC/fib/, the inclusion LHwC!LH C induces a natural map
N..LHwC/fib/! .N..LH C/fib//iso ; under the hypothesis that C satisfies a homotopy
calculus of fractions, this map is a weak equivalence [27, 6.4]. Therefore, it suffices
to show that the map of Equation (2.11) is a weak equivalence. We consider the map
on components; for each homotopy equivalence class Œx�, both sides are equivalent to
B haut.x/ and it is straightforward to see that the map induces the equivalence.

The1–category of functors between two1–categories C and D is denoted Fun.C;D/.
As a point-set object, in this setting Fun.C;D/ is the simplicial set of maps between
the quasicategories C and D , which is itself a quasicategory. Note that the space of
functors from C to D is precisely the maximal subgroupoid Fun.C;D/iso of Fun.C;D/
[47, 1.2.5.3, 3.0.0.1].

Definition 2.12 An 1–category is stable [48, 1.1.1.9] if it has finite limits and
colimits and pushout and pullback squares coincide [48, 1.1.3.4]. Let Catex

1 denote the
(pointed) 1–category of small stable 1–categories and exact functors (ie functors
which preserve finite limits and colimits) [48, Section 1.1.4]. The 1–category of exact
functors between A and B is denoted by Funex.A;B/; this is the full 1–subcategory
of Fun.A;B/ spanned by the exact functors.

For a small stable 1–category C , the homotopy category Ho.C/ is triangulated, with
the exact triangles determined by the cofiber sequences in C [48, 1.1.2.14].

Remark 2.13 A small stable 1–category corresponds to the notion of a pretrian-
gulated spectral category, and the weak equivalences are given by exact functors
which induce triangulated equivalences on passage to the homotopy category. We
will make this correspondence precise in Section 4, but for now observe that given a
pretriangulated spectral category C , the 1–category N..Mod.C//cf/ is stable. Recall
that a stable model category is a pointed model category C for which the functors †
and � on Ho.C/ are inverse equivalences. Given a stable simplicial model category
C , the 1–category N.Ccf/ is stable. More generally, if C is a stable model category,
N.Cc/ŒW �1� is a stable 1–category.

Recall that an 1–category C is idempotent-complete if the image of C under the
Yoneda embedding C! Pre.C/ is closed under retracts (see also [47, Section 4.4.5]);
here Pre.C/ denotes the 1–category Fun.Cop;N.T cf// of presheaves of spaces on C .
Let Catperf

1 denote the 1–category of small idempotent-complete stable 1–categories.
There is an idempotent completion functor given as the left adjoint to the inclusion
Catperf
1 ! Catex

1 [47, 5.1.4.2], which we denote by Idem.
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Definition 2.14 Let A and B be small stable 1–categories. Then we will say that
A and B are Morita equivalent if Idem.A/ and Idem.B/ are equivalent.

We will verify shortly that this notion of Morita equivalence is compatible with the
definition given in terms of spectral categories in Definition 2.7.

2.3 Stabilization of 1–categories

Given any 1–category C with finite limits, we can form the stabilization Stab.C/
[48, Section 1.4]. The 1–category Stab.C/ is stable and comes equipped with a
limit-preserving functor

�1W Stab.C/ �! C:

If in addition C is presentable, then �1 admits a left adjoint

†1C W C �! Stab.C/

by [48, 1.4.4.4].

We now recall an explicit model of the stabilization of an 1–category in terms of
spectrum objects [48, Section 1.4.2]. Recall that a spectrum object of a pointed 1–
category C consists of a functor A from the category of finite pointed spaces to C
that is reduced (takes the terminal object to the terminal object) and excisive (takes
cocartesian squares to cartesian squares) [48, 1.4.2.8]. Since the restriction of A to
the spheres characterizes A, we set Ai DA.S i/ and often refer to A simply by the
collection of pointed objects fAig. We write Sp.C/ for the 1–category of spectrum
objects in C ; Sp.C/ comes equipped with a functor �1W Sp.C/! C which associates
to the spectrum object A its zero space A0 D A.S0/. This is an explicit model for
the stabilization Stab.C/ discussed previously. To ease notation, we will usually just
write T1 ' N.T cf/ for the 1–category of spaces and S1 ' Sp.T1/' N.Scf/ for
the 1–category of spectra.

Now suppose that C is an arbitrary 1–category. The Yoneda embedding C !
Fun.Cop; T1/ preserves finite limits (when they exist), so it induces a functor

Sp.C�/ �! Sp.Fun.Cop; T1/�/' Fun.Cop;S1/

on the level of spectrum objects, where C� denotes the category of pointed objects in
C . Here the last equivalence follows from the fact that limits in functor categories are
computed pointwise, and observe also that C� will be empty unless C has a final object.
On the other hand, if C is a stable 1–category, then C ' C� and �1W Sp.C/! C is
an equivalence with inverse †1W C! Sp.C/ given by .†1a/i D†

ia. This motivates
the following definition:
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Definition 2.15 Let C be a stable 1–category. The spectral Yoneda embedding is the
composite

C ' Sp.C�/ �! Sp.Fun.Cop; T1/�/' Fun.Cop;S1/:

The mapping spectrum functor

MapW Cop
� C �! S1

is the adjoint of the spectral Yoneda embedding.

Informally, the mapping spectrum is described by the formula

Map.b; a/i 'map.b; †ia/:

Note that this is a functor to the 1–category of spectra; this is in contrast to the
(point-set) mapping space functors from the category of quasicategories to the category
of simplicial sets described in [47, 1.2.2] or [25].

We wish to characterize the image of C under the spectral Yoneda embedding:

Definition 2.16 Let C be an 1–category. We will say that a functor X W Cop! S1
is stably representable if there exists a spectrum object A 2 Sp.C�/ and an equivalence
Map.� ;A/'X , where Map.� ;A/ denotes the functor Cop! S1 represented by
A via the spectral Yoneda embedding Sp.C�/! Fun.Cop;S1/.

When C is stable already, the following proposition gives an easy characterization of
stably representable functors.

Proposition 2.17 Let C be a stable 1–category. Then a functor X W Cop ! S1 is
stably representable if and only if it is represented by the suspension spectrum †1z of
a unique (up to equivalence) object z of C .

Proof It suffices to show that any spectrum object A of C is of the form †1z for a
uniquely determined object z of C . This follows from the fact that since C is stable,
�1W Sp.C/! C is an equivalence with inverse †1W C! Sp.C/.

2.4 Compact objects and compactly generated 1–categories

The categorical data which serves as the input to algebraic K–theory is typically obtained
as the objects in a larger ambient category (with weak equivalences and extension
sequences) that satisfy some sort of “smallness” condition; eg the perfect complexes as
a subcategory of all complexes. A key insight initially codified by Thomason–Trobaugh
[72] and subsequently elaborated upon by Neeman [57] is that this example is generic
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in algebraic K–theory, and the typical situation involves working with the compact
objects in some model of a triangulated category, which is generated under homotopy
colimits by those compact objects. Thus, we will systematically regard the small stable
idempotent-complete 1–categories that are the domain of the algebraic K–theory
functor as arising as the compact objects in a larger category.

This notion of looking at large categories which are in some sense determined by the
compact objects is axiomatized in category theory with the formalism of accessible
and locally presentable categories, introduced by Makkai and Paré [49] and further
developed by Adámek and Rosický [1]. This theory was integrated into homotopy
theory in Jeff Smith’s theory of combinatorial model categories and developed further
in this context in the seminal work of Dugger [24].

A version of this theory forms the basis for Lurie’s theory of presentable1–categories,
which is the analogue in the 1–category setting of the homotopy theories encoded by
presentable combinatorial model category structures (see also Simpson’s related work in
the context of Segal spaces [66]). We use this approach to handle the set-theoretic issues
that arise in our work, along the lines described in [47, 1.2.15, 5.4.1]. As indicated in
Remark 2.6, it is also possible to handle some of the set-theoretic technicalities that
arise (ie in the context of the Yoneda Lemma) by explicit size bounds.

This framework is related to Grothendieck’s universe formalization, allowing us to
handle small and large 1–categories on similar grounds. In particular, [47, Section 5]
has extensive discussion of the interaction of the Yoneda embeddings (which arise
pervasively in this context) with set-theoretic concerns. In addition to Lurie’s work, the
paper of Ben-Zvi, Francis and Nadler [6, Sections 2 and 4.1] provides a nice exposé of
this theory in the context of the study of geometric function theory from a perspective
with its origin in Thomason–Trobaugh.

Roughly speaking, presentable1–categories are large1–categories that are generated
under sufficiently large filtered colimits by some small 1–category. To make this
precise, we need to discuss the notion of the Ind–category. Given any small 1–
category C , we can form the 1–category Pre.C/ of presheaves of simplicial sets on
C , which is the formal closure of C under colimits; that is, there is a fully faithful
Yoneda embedding C ! Pre.C/, and Pre.C/ is generated by the image of C under
small colimits [47, 5.1.5.8]. For any 1–category C and infinite regular cardinal � ,
we can form the Ind–category Ind�.C/, which is the formal closure under �–filtered
colimits of C [47, Section 5.3.5]. The 1–category Ind�.C/ is a full subcategory of
Pre.C/, and the Yoneda embedding C! Pre.C/ factors as C! Ind�.C/! Pre.C/. We
record here the following useful properties of the construction of the Ind–category.
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Proposition 2.18 Let C be a small 1–category and � an infinite regular cardinal.

� The 1–category Ind�.C/ admits all �–small colimits that exist in C [47,
5.3.5.14, 5.5.1.1].

� The functor C! Ind�.C/ preserves �–filtered colimits [47, 5.3.5.2, 5.3.5.3].

� Ind�.C/ is a stable 1–category [48, 1.1.3.6].

� The image of C in Ind�.C/ provides a set of compact objects which generates
Ind.C/ under �–filtered colimits [47, 5.3.5.5, 5.3.5.11].

� The category Ind� is characterized by the property that it has �–small filtered
colimits, admits a functor C! Ind�.C/, and this functor induces an equivalence

Fun�.Ind�.C/;D/ �! Fun.C;D/;

for any D which admits �–filtered colimits (here Fun�.� ;� / denotes the
1–category of functors that preserve �–small filtered colimits) [47, 5.3.5.10].

We now recall the following definitions [47, 5.4.2.1, 5.5.1.1].

Definition 2.19 An 1–category C is accessible if there exists a regular cardinal �
and a small 1–category C0 such that there is an equivalence

Ind�.C0/' C:

An 1–category C is presentable if it arises as Ind�.D/ for a small 1–category D
which admits �–small colimits.

A morphism of presentable1–categories is a left adjoint functor; by the adjoint functor
theorem [47, 5.5.2.9], a functor between presentable 1–categories is a left adjoint if
and only if it preserves colimits. We let PrL denote the 1–category of presentable
1–categories and colimit-preserving functors; the 1–category of colimit-preserving
functors is denoted by FunL.� ;� /. In fact, FunL.� ;� / is in fact itself a presentable
1–category [47, 5.5.3.8], yielding an internal hom object for PrL .

We now restrict attention to the situation in which � D! . Recall that an object x of an
1–category C is compact if the functor Cop! T1 represented by x commutes with
filtered colimits [47, Section 5.3.4]. Given an 1–category C , let C! denote the full
subcategory of C consisting of the compact objects of C . A presentable 1–category
C is compactly generated if the natural functor

Ind.C!/ �! C;
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which sends a filtered diagram in C! to its colimit in C , is an equivalence. There is a
correspondence between small idempotent-complete 1–categories and compactly gen-
erated 1–categories given by the construction of the Ind–category [47, Section 5.5.7].
More generally, the construction of the Ind–category sets up a correspondence between
the 1–category of compactly generated presentable 1–categories with morphisms
colimit-preserving functors that preserve compact objects and Cat1 ; the other direction
is given by passage to compact objects [47, 5.5.7.10].

The preceding discussion carries over when we restrict attention to stable categories. In
this setting, the stabilization Stab.C/ is initial amongst presentable stable1–categories
admitting a functor from C [48, 1.4.4.5], in the sense that if D is a presentable stable
1–category then †1C induces an equivalence

FunL.Stab.C/;D/ �! FunL.C;D/:

The 1–category of stable presentable 1–categories PrL
St is a full subcategory of PrL ,

and the Ind–category sets up a correspondence between Catperf
1 and compactly generated

stable 1–categories. We may also apply Ind to nonidempotent-complete stable 1–
categories to obtain a correspondence between Catex

1 and compactly generated stable
1–categories; however, these two 1–categories are rather less closely related, as the
full subcategory of compact objects is always idempotent-complete.

Lemma 2.20 Catperf
1 is a reflective subcategory of Catex

1 , and the localization functor
IdemW Catex

1! Catperf
1 is given by the formula Idem.C/' Ind.C/! .

Proof The subcategory of compact objects Ind.C/! of Ind.C/ is an idempotent-
complete stable 1–category, so that Idem is indeed a functor Catex

1! Catperf
1 . Now

for small stable 1–categories C and D with D idempotent-complete, we have a
commuting square

Funex.Idem.C/;D/ //

��

FunL.Ind.Idem.C//; Ind.D//

��

Funex.C;D/ // FunL.Ind.C/; Ind.D//

in which the horizontal maps are the inclusions of the full subcategories of functors
which preserve compact objects, and the right vertical map is an equivalence as the nat-
ural map Ind.C/! Ind.Idem.C// is an equivalence. Hence Ind.C/!! Ind.Idem.C//!
is an equivalence, and thus the left vertical map is as well.
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2.5 Localization of 1–categories

Given an 1–category C and a suitable collection of morphisms S , one might hope to
form the localization CŒS�1�. This is by definition an 1–category equipped with a
functor f W C! CŒS�1� which satisfies the following universal property: for any other
1–category D , restriction along f identifies

Fun.CŒS�1�;D/ �! Fun.C;D/

as the full subcategory of Fun.C;D/ spanned by those functors which send the mor-
phisms in S to equivalences in D . If S is a small set, then CŒS�1� exists in the same
universe as C ; indeed, without loss of generality we may assume that S contains all
degenerate edges of the simplicial set C , in which case CŒS�1� may be constructed as
a fibrant replacement of .C;S/ in the model category of marked simplicial sets.

Often in practice, however, S is not small, and the existence of CŒS�1� (without passing
to a higher universe) requires more delicate analysis. One standard method is to show
that C is presentable and S is (generated by) a small set of arrows in a certain sense:
this is the theory of Bousfield localization, following Bousfield’s seminal work on the
subject [18]. In this case we may identify the localization as the full subcategory of C
spanned by the S –local objects.

In model categories, there is a well-developed theory of Bousfield localization (see for
example Hirschhorn’s comprehensive discussion in [39], Goerss and Jardine’s treatment
in the simplicial setting [34], or the exposition of Smith’s theory for combinatorial
model categories in [3]). Because localization is a central technical device in our work,
in this section we provide a brief review of Lurie’s version of localization in the setting
of presentable 1–categories from [47, Sections 5.2.7 and 5.5.4].

Specifically, we say that a colimit preserving functor f W C! D of presentable 1–
categories C and D is a Bousfield localization if the right adjoint of f (which exists by
the adjoint functor theorem) is fully faithful [47, 5.2.7.2]. When the context is clear, we
tend to abuse notation and simply refer to this as a localization. A useful observation is
that this data induces an equivalence between D and a full subcategory of C , called
the subcategory of local objects. In fact, [47, 5.2.7.4] gives a useful criterion for an
endofunctor LW C! C to be a localization. Specifically, the following are equivalent:

(i) There exists a functor f W C ! D with a fully faithful right adjoint g and an
equivalence g ıf 'L.

(ii) When regarded as a functor C ! LC , L is the left adjoint of the inclusion
LC! C .

(iii) There exists a natural transformation ˛W idC!L such that for objects X in C ,
the morphisms L.˛.X // and ˛.LX / are both equivalences.
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Recall that a functor is accessible if it is �–continuous (preserves �–filtered colimits)
for some sufficiently large regular cardinal � [47, 5.4.2.5]. A localization is accessible
if g or L are accessible functors (equivalently, see [47, 5.5.1.2]) or the essential image
LC is an accessible subcategory.

Accessible localizations of presentable categories can be completely classified as
follows. Recall from [47, 5.5.4] that associated to any small set of arrows S in
a presentable 1–category C , the Bousfield localization S�1C is equivalent to the
ordinary localization CŒT �1� of C at the strongly saturated class T generated by S

[47, 5.5.4.5]. In particular, many different sets S can generate the same strongly
saturated class T ; they all define the same full subcategory S�1C of C of S –local
objects [47, 5.5.4.15], where S –local is defined in the standard fashion [47, 5.5.4.1].
An accessible localization of a presentable 1–category is presentable. As the notation
suggests, Bousfield localization is characterized by the following universal property
[47, 5.5.4.20]: for any other presentable 1–category D , composition with L induces
a functor

FunL.S�1C;D/ �! FunL.C;D/

that is fully faithful and whose essential image consists of those colimit-preserving
functors which take elements of S to equivalences.

3 Symmetric monoidal structure and dualizable objects

In this section we study the theory of dualizable objects in Catperf
1 . To this end, we need

to give a very brief review of the construction of the symmetric monoidal structure on
Catperf
1 . We do not give a full review of the theory of monoidal 1–categories in this

section, since we need only a small piece of the theory.

3.1 Tensor products of stable 1–categories

The 1–category PrL
St of presentable stable 1–categories is a closed symmetric

monoidal 1–category with product ˝ and internal mapping object given by the
presentable stable1–category FunL.A;B/ of colimit-preserving functors [48, 6.3.1.14,
6.3.1.17]. Following [6, Section 4.1.2], we can then define the tensor product on small
idempotent-complete stable 1–categories as

C b̋DD .Ind.C/˝ Ind.D//! :

The tensor product of idempotent-complete small stable 1–categories is characterized
by the universal property that maps out of A˝B correspond to maps out of the product
A�B which preserve finite colimits in each variable [6, 4.4]. If A and B are arbitrary
small stable 1–categories, then we set A b̋B WD Idem.A/ b̋ Idem.B/.
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More precisely, we can define Catperf
1 as a symmetric monoidal 1–category as follows.

Let PrL
St;cg denote the full subcategory of PrL

St on the compactly generated stable 1–
categories. The criterion of [48, 2.2.1.2] implies that PrL

St;cg is a symmetric monoidal
subcategory of PrL

St ; the tensor product of compactly generated stable 1–categories
is itself compactly generated, as is the unit S1 ' Ind.S!1/.

For a small idempotent-complete stable 1–category A and a presentable 1–category
B , Funex and FunL are related by the formula

Funex.A;B/' FunL.Ind.A/;B/;

which follows from [47, 5.3.5.10] and the fact that functors which preserve filtered
colimits and finite colimits preserve all colimits. Note that

IndW Catperf
1 �! PrL

St

factors through the full subcategory PrL
St;cg by definition. This gives an equivalence of

1–categories between Catperf
1 and the subcategory PrL

St;! of PrL
St whose objects are

the compactly generated stable 1–categories and whose maps

Funex.A;B/' FunL
!.Ind.A/; Ind.B//� FunL.Ind.A/; Ind.B//;

are the full subcategory of the colimit-preserving functors Ind.A/! Ind.B/ which
preserve compact objects [47, 5.5.7.10]. We regard Catperf

1 as a symmetric monoidal
1–category via this equivalence. The observation of [48, 6.3.1.17] implies that Catperf

1

is closed. Hence we have the following result.

Theorem 3.1 The 1–category of small idempotent-complete stable 1–categories
is a closed symmetric monoidal 1–category with respect to b̋ . The unit is the 1–
category S!1 of compact spectra and the internal mapping object is given for small
idempotent-complete stable 1–categories A and B by Funex.A;B/.

Given a small idempotent-complete stable 1–category A, we have the 1–category
of A–modules, given by the compactly generated stable 1–category Funex.Aop;S1/.
The stable Yoneda embedding provides an exact functor [47, 5.3.5.2]

A �! Funex.Aop;S1/:

Proposition 3.2 For any small stable 1–category A, the stable Yoneda embedding

A �! Funex.Aop;S1/

induces an equivalence Ind.A/' Funex.Aop;S1/.
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Proof Clearly Funex.Aop;S1/ admits filtered colimits, as the filtered colimit of
finite colimit preserving functors itself preserves finite colimits. This gives a map
Ind.A/!Funex.Aop;S1/ which is evidently fully faithful, using the fact that the usual
Yoneda embedding is fully faithful and that mapping spaces between representables in
Funex.Aop;S1/ are computed as the limit

limn�
n map.a; †nb/' limn map.a; �n†nb/'map.a; b/:

To show that this map is also essentially surjective, we must show that any exact functor
f W Aop! S1 is ind-representable. Consider the pullback

A=f //

��

A

��

Funex.Aop;S1/=f // Funex.Aop;S1/;

where the right vertical map is the stable Yoneda embedding. We claim that the 1–
category A=f is filtered: to see this, let K be a finite simplicial set and K!A=f a
functor. Since both A and Funex.Aop;S1/=f admit finite colimits and both functors to
Funex.Aop;S1/ preserve finite colimits, we may extend K!A=f to a colimit diagram
KF!A=f . In particular, this gives a cone on K!A=f , which shows that A=f is a
filtered 1–category. Finally, since filtered colimits in Funex.Aop;S1/ are computed
pointwise, it follows that f is a colimit of the diagram A=f �! Funex.Aop;S1/,
which is to say that it is ind-representable.

Provided A is idempotent-complete, [47, 5.4.2.4] tells us that the essential image of
the Yoneda embedding is precisely the 1–category of compact A–modules

A' Funex.Aop;S1/! :

Moreover, we know that if A is an arbitrary small stable 1–category, then the Yoneda
map A! Funex.Aop;S1/! models the idempotent-completion of A.

We use the preceding results to characterize Funex.A;B/ in terms of a certain subcate-
gory of FunL.A b̋Bop;S1/, the 1–category of A–B–bimodules. Specifically, the
Yoneda embedding B! Funex.Bop;S1/ provides the following composite:

Funex.A;B/ �! Funex.A;Funex.Bop;S1//
�! FunL.Ind.A/;FunL.Ind.Bop/;S1//
�! FunL.Ind.A/˝ Ind.Bop/;S1/
�! Funex.Ab̋Bop;S1/;

which exhibits Funex.A;B/ as a full subcategory of Aop b̋B–modules.
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We have the following useful corollary, which is the analogue of a characterization
originally written down by Toën [73]. For each object a 2A, we have a map of small
idempotent-complete stable 1–categories S!1 ! A given by sending S 2 S!1 to
a 2A. Since S!1 is the unit of the tensor b̋ , we obtain a restriction map

�aW Funex.A b̋Bop;S1/ �! Funex.Bop;S1/:

If the image of an element of Funex.A b̋Bop;S1/ under �a is compact for every
a 2A, we will say that the element is right-compact.

Corollary 3.3 Let A and B be small idempotent-complete stable 1–categories.
There is an equivalence of small idempotent-complete stable 1–categories between
Funex.A;B/ and 1–category of right-compact Aop b̋B–modules.

Proof Since the Yoneda embedding is fully faithful, it suffices to look at the essential
image of the composite. The image of Funex.A;B/ in Funex.A b̋Bop;S1/ under �a is
identified with the image of Funex.A;B/ in Funex.A;Funex.Bop;S1// under the cor-
responding map S!1!A. Since this lies inside the image of B inside Funex.Bop;S1/
under the Yoneda embedding, the result follows.

3.2 Smooth and proper stable 1–categories

Our final goal in this section is to characterize the dualizable objects of Catperf
1 . To do

so, we need to introduce certain smallness conditions on small stable 1–categories.

Definition 3.4 A small stable 1–category A is proper if, for all pairs of objects a

and b of A, the mapping spectrum A.a; b/ (recall Definition 2.15) is compact.

Note that a small stable 1–category A is proper if and only if its idempotent-
completion Idem.A/ is proper, as retracts of compact objects are compact.

Definition 3.5 A small stable 1–category A is smooth if it is perfect as an Aop b̋A–
module (ie in the smallest subcategory of Funex.A b̋Aop;S1/ generated by the rep-
resentables under finite colimits and retracts). If A is idempotent-complete, we may
equivalently require that A is a representable Aop b̋A–module: since Aop b̋A is an
idempotent-complete stable 1–category, it is closed under finite colimits and retracts,
and so any perfect Aop b̋A–module is representable.

We will typically only be interested in smoothness and properness of small stable 1–
categories which are also idempotent-complete. This is because these are the situations
which arise in algebra and geometry, eg when A is the stable 1–category of perfect
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modules for a ring spectrum or perfect complexes for a scheme, and such categories are
always idempotent complete. Conversely (as we will show in Section 4) any idempotent-
complete small stable 1–category A is equivalent to the stable 1–category of perfect
modules for some spectral category.

3.3 Dualizability

We now recall the definitions of dualizability in symmetric monoidal 1–categories
from [48, Section 4.2.5]. The salient fact here is that dualizability can be detected in
the (symmetric monoidal) homotopy category:

Definition 3.6 Let C˝ be a symmetric monoidal 1–category. An object of the
underlying 1–category C of C˝ is said to be dualizable if it is dualizable as an object
of the symmetric monoidal homotopy category of C˝ .

In other words, an object A of C is dualizable if there exists an object DA together
with an evaluation map �W A˝DA! 1 and a coevaluation map ıW 1!DA˝A such
that the composites

A'A˝ 1
A˝ı
���!A˝DA˝A

�˝A
���! 1˝A'A

and

DA' 1˝DA
ı˝DA
����!DA˝A˝DA

DA˝�
����!DA˝ 1'DA

are the respective identities in Ho.C/. The object DA is called the dual of A, and is
unique up to equivalence in C .

Recall that the discussion preceding Theorem 3.1 above identifies Catperf
1 as a symmetric

monoidal subcategory of PrL
St;cg ; in particular, the functor Ind preserves dualizable

objects. Next, observe that PrL
St;cg is a rigid symmetric monoidal category; that is, all

objects in PrL
St;cg are dualizable. This is because, for A 2 Catperf

1 ,

Ind.Aop/' Funex.A;S1/' FunL.Ind.A/;S1/

is the dual of A and the coevaluation map

S1 �! Ind.Aop/˝ Ind.A/' Ind.Aop b̋A/' Funex.A b̋Aop;S1/

is given by formation of mapping spectra in Aop .

In analogy with the situation for dg–categories [21, Section 4], this allow us to obtain
the following characterization of the dualizable objects.
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Theorem 3.7 An idempotent-complete small stable 1–category A is dualizable (as
an object of the symmetric monoidal1–category Catperf

1 of idempotent-complete small
stable 1–categories) if and only if A is smooth and proper. Moreover, the dual of a
dualizable object A is its opposite 1–category Aop .

Proof By the proceeding discussion, Ind.A/ is a dualizable object of PrL
St;cg with dual

Ind.Aop/. Thus the dual of A in Catperf
1 is Aop , and A is dualizable in Catperf

1 'PrL
St!

if and only if the evaluation and coevaluation maps lie in the subcategory PrL
St! �

PrL
St;cg . But the evaluation map

Ind.A b̋Aop/' Ind.A/˝ Ind.A/� �! Ind.S!1/' S1

is induced by the mapping spectrum functor MapAW Aop b̋A �! S1 in A; dually,
the coevaluation map

S1 ' Ind.S!1/ �! Ind.Aop/˝ Ind.A/' Ind.Aop b̋A/

given by the map S1 �! Ind.Aop b̋A/ which classifies A as an Aop b̋A–module.
Hence the evaluation map lies in this subcategory if and only if the mapping spectra
A.a; b/ in A are compact, and the coevaulation map lies in this subcategory if and
only if A is a compact Aop b̋A–module. Therefore, by definition, A is a dualizable
object of Catperf

1 if and only if A is smooth and proper.

4 Morita theory

There is a close connection between stable 1–categories and spectral categories. On
the one hand, for every pair of objects in a stable1–category we can extract a mapping
spectrum, as we discussed in Definition 2.15. On the other hand, given a category A
enriched in spectra, the category of (right) A–modules has a standard projective model
structure and the associated 1–category is stable.

The purpose of this section is to provide a precise account of the relationship between
small spectral categories and small stable 1–categories. The moral of the story is that
the homotopy theory of small spectral categories, localized at the Morita equivalences,
is the same as the homotopy theory of small idempotent-complete stable 1–categories.
Specifically, we prove Theorem 1.10 from the introduction, which can be thought of as
a generalization of the Morita theory of [65]; that is, small idempotent-complete stable
1–categories are 1–categories of modules, and the 1–category of exact functors
between two such is a stable subcategory of the 1–category of bimodules.

Establishing this correspondence serves several purposes for us. For one thing, having
models of Catex

1 and Catperf
1 as accessible localizations of an 1–category which arises
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as the nerve of a model category provides technical control on Catex
1 and Catperf

1 ; we
use this to show that Catex

1 and Catperf
1 are compactly generated in Corollary 4.25.

For another, it permits us to rectify diagrams of small stable 1–categories to strict
diagrams in CatS . We exploit this to pass to rigid models for the purposes of using
Waldhausen’s K–theory machinery in Section 7.

As described in Section 2.2, we have several equivalent options for producing a model
of the 1–category of spectral categories (with respect to the DK–equivalences):
we can use the combinatorial simplicial model structure of Corollary 2.4 and take
N..CatS/cf/, we can use the Dwyer–Kan simplicial localization followed by fibrant
replacement to obtain N..LH CatS/fib/, or we can invert the weak equivalences and
form N..CatS/c/ŒW �1�. We will refer interchangeably to the underlying 1–category
as “the” 1–category of small spectral categories.

4.1 Stable envelopes of spectral categories

Given any spectral category C , we can produce an 1–category by passing to the
associated simplicial category, fibrantly replacing, and applying the simplicial nerve to
obtain N.�1.C/fib/. This process yields a functor

CatS �! Set�;

from the category CatS of small spectral categories to the category of simplicial sets.
Precomposing with the functors b.� /perf and b.� / tri , we obtain functors

 tri;  perfW CatS �! Set�

and a natural transformation  tri !  perf . First, we observe that these functors are
compatible with the weak equivalences of Theorem 2.2.

Lemma 4.1 Let A and B be small spectral categories, and let f W A! B be a DK–
equivalence. Then the induced maps  tri.f / and  perf.f / are categorical equivalences
of simplicial sets.

Proof If f W A! B is a DK–equivalence, then one can check that .f!; f
�/ gives a

Quillen equivalence between the spectral model categories bA of A–modules and
the spectral model category bB of B–modules. Passing to underlying simplicial
categories of cofibrant and fibrant objects, we see that �1. bA/cf D Mod.A/cf and
�1.bB/DMod.B/cf are DK–equivalent simplicial categories. Finally, applying the
simplicial nerve yields categorically equivalent simplicial sets. Restricting to various
full subcategories yields the result for  tri.f / and  perf.f /.
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Therefore, we have induced functors ‰tri and ‰perf connecting N..CatS/c/ŒW �1� and
N..Set�/c/ŒW �1�, equipped with a natural transformation connecting them:

‰tri �!‰perfW N..CatS/c/ŒW �1� �! N..Set�/c/ŒW �1�' Cat1 :

In fact, by construction these functors preserve triangulated and Morita equivalences
respectively. Furthermore, ‰tri lands in small stable 1–categories and ‰perf lands in
idempotent-complete stable 1–categories.

Lemma 4.2 ‰triC factors through the subcategory Catex
1 � Cat1 , and ‰perfC factors

through the subcategory Catperf
1 � Cat1 .

Proof As noted in Remark 2.13, since  tri is the underlying simplicial category asso-
ciated to a pretriangulated spectral category, ‰perf is characterized as the idempotent-
completion of  tri given by Proposition 3.2 coupled with Corollary 3.3. Finally, note
that maps of spectral categories induce, by left Kan extension, finite colimit-preserving
on the level of stable 1–categories.

Consequently, we may regard ‰tri as a functor N..CatS/c/ŒW �1�! Catex
1 and ‰perf

as a functor N..CatS/c/ŒW �1�! Catperf
1 .

Remark 4.3 Using the machinery of combinatorial simplicial model categories, we
can also localize the combinatorial model structure of Corollary 2.4 on CatS at the
triangulated or Morita equivalences directly to obtain “triangulated” or “Morita” sim-
plicial model categories on small spectral categories and then pass to simplicial nerves;
this is equivalent to localizing the 1–category N..CatS/cf/.

The content of Theorem 1.10 is that these functors are equivalences. We prove this
theorem by producing an “inverse” to ‰tri and ‰perf such that the composite is a
localization functor on N..CatS/c/ŒW �1�. We begin with the following definition:

Definition 4.4 A simplicial category A is stable if the simplicial nerve of a fibrant
replacement of A is a stable 1–category. A spectral category A is stable if its
underlying simplicial category �1A is stable.

We have the following characterization of equivalences between stable spectral cate-
gories (see also [10, 5.7]).

Proposition 4.5 Let A and B be stable spectral categories. Then a spectral functor
f W A! B is a DK–equivalence if and only if

Ho.�1f /W Ho.�1A/ �! Ho.�1B/

is an equivalence.
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Proof Certainly essential surjectivity is determined on the level of the homotopy cate-
gory, so it suffices to show that, for all pairs of objects a and b of A, �nMap.a; b/!
�nMap.fa; f b/ for all integers n whenever this is the case for nD 0. Since A and
B are stable,

�0Map.†na; b/Š �nMap.a; b/ �! �nMap.fa; f b/Š �0Map.†nfa; f b/;

so this is immediate.

We write Catex
T for the simplicial category of small stable simplicial categories. We can

model this as the subcategory of the simplicial category LH .CatT / of small simplicial
categories where the objects are the stable simplicial categories and the mapping spaces
are computed by restriction of vertices to those simplicial functors which represent
exact functors upon passage to the simplicial nerve.

Proposition 4.6 The 1–category obtained by applying the simplicial nerve to (a
fibrant replacement of) Catex

T is equivalent to the 1–category Catex
1 . That is, the

equivalence (induced by the simplicial nerve [47, 2.2.0.1])

N..LH .CatT /fib/ �! Cat1

restricts to an equivalence

N..Catex
T /

fib/ �! Catex
1 :

Proof It suffices to show that the mapping spaces in Catex
T have the correct homotopy

type, and this follows from the comparison between the mapping spaces of CatT and
Cat1 [47, 2.2.0.1] and the fact that on both sides we define the mapping spaces by the
same restriction of vertices.

4.2 Spectral enrichment of stable 1–categories

The mapping spaces of a stable 1–category C are naturally the underlying spaces of
mapping spectra, as discussed in Section 2.3. We now use this to construct a cofibrant
and fibrant spectral category ‡.C/ whose underlying 1–category N.�1‡.C// is
equivalent to C . Indeed, the simplicial category of presheaves of spectra

Fun�.CŒC�op;S/

on the associated (cofibrant) simplicial category CŒC� is simultaneously a simplicial
model category as well as a spectral category, where the spectral enrichment is inherited
from the spectral structure on S itself. Moreover, we have an equivalence

N.Fun�.CŒC�op;S/cf/' Fun.Cop;S1/;
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so it makes sense to ask whether or not a given presheaf of spectra is stably representable
(in the underlying 1–category Fun.Cop;S1/).

Definition 4.7 Let
‡.C/� Fun�.CŒC�op;S/

denote the full spectral subcategory spanned by those (projectively) cofibrant and fibrant
functors which are stably representable.

Proposition 4.8 For a small stable 1–category C , there is a natural equivalence of
1–categories C! N.�1‡.C//.

Proof The spectral Yoneda embedding

C! Fun.Cop;S1/' N.Fun�.CŒC�op;S/cf/

is adjoint to a simplicial functor

CŒC� �! Fun�.CŒC�op;S/cf

which evidently factors through the full simplicial subcategory �1‡.C/ spanned by
the stably representable functors. The map C ! N.�1‡.C// is the adjoint of the
resulting map CŒC�!�1‡.C/.

To see that this map is an equivalence, we observe first that it is essentially surjective:
Indeed, a stably representable cofibrant and fibrant functor X W CŒC�op!S is necessarily
of the form X 'Map.� ;A/ for some spectrum object AD faig of C ' N.CŒC�fib/.
Since C is stable, ai '†

ia for some object a of C , so X is in the image of C (which
sends a to the presheaf represented by †1a). This map is also fully faithful, because
if a and b are any pair of objects of C , then

map.†1b; †1a/'map.b; �1†1a/'map.b; a/;

since a'�1†1a.

We have the following description of ‡ in terms of the stable Yoneda embedding.

Proposition 4.9 Let C be a small stable 1–category. The fully faithful inclusion

‡.C/ �! Fun�.CŒC�op;S/

factors, on the level of underlying 1–categories, as the composite

N.�1‡.C//' C! Funex.Cop;S1/! � Fun.Cop;S1/' N.Fun�.CŒC�op;S/cf/:
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Proof Any stably representable functor Cop! S1 is exact, giving the factorization

C �! Funex.Cop;S1/� Fun.Cop;S1/:

By Proposition 3.2, we may rewrite this as C! Ind.C/' Funex.Cop;S1/ to see that,
as an exact functor Cop! S1 , any stably representable functor is also compact.

Our model of Catex
T allows us to check that the construction of ‡ induces a simplicial

functor:

Proposition 4.10 The assignment which associates to the stable simplicial category C
the spectral category ‡.C/ defines a simplicial functor

‡ W Catex
T �!LH .CatS/

and hence a functor of 1–categories

N.‡/W Catex
1 �! N..LH .CatS//fib/:

Proof We first check that the construction of ‡ induces a functor Catex
T ! CatS . Let

f W C!D be a map of stable simplicial categories and write

f cf
! W Fun�.Cop;S/cf

�! Fun�.Dop;S/cf

for the induced spectral functor. Suppose that X W Cop! S is projectively cofibrant and
fibrant and that N.X /W N.C/op! S1 is stably representable via the spectrum object
AD faig in NC . Since the diagram

NC //

��

ND

��

Fun.NCop;S1/ // Fun.NDop;S1/

commutes (where the vertical maps are the stable Yoneda embeddings), we see that f!

restricts to a spectral functor ‡.C/! ‡.D/.

To verify that ‡ induces a simplicial functor, we must check that it preserves equiva-
lences of stable simplicial categories. So suppose that f W C!D is an equivalence of
stable simplicial categories. Then it follows that f cf

!
is a DK–equivalence of spectral

categories, as is its restriction to the stably representable objects.

Proposition 4.11 Let A be a spectral category. Then there are natural equivalences of
compactly generated stable 1–categories

N.FunS.Aop;S/c/ŒW �1�' Ind.‰triA/' Funex.‰triAop;S1/:
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Proof The first equivalence follows from the definition of ‰triA as the smallest
stable subcategory of the stable 1–category N.FunS.Aop;S/c/ŒW �1� containing
the representables, together with the observations that N.FunS.Aop;S/c/ŒW �1� is
compactly generated with compact objects

‰perfA' N.FunS.Aop;S/c/ŒW �1�!

and Ind.‰triA/' Ind.‰perfA/ (as Ind–categories are automatically idempotent-com-
plete). The second equivalence follows immediately from Proposition 3.2.

4.3 The triangulated and Morita localizations

Let
M W N..CatS/c/ŒW �1� �! N..CatS/c/ŒW �1�

denote the composite functor

.4:12/ N..CatS/c/ŒW �1�
‰tri
��! Catex

1

N.‡/
���! N..LH CatS/fib/' N..CatS/c/ŒW �1�:

As the previous proposition suggests, MA is essentially the same as the pretriangulated
spectral closure bAtri of A.

Proposition 4.13 There is an equivalencebAtri 'MA

in N..CatS/c/ŒW �1�, natural in spectral categories A.

Proof By Proposition 4.11, we have natural equivalences

N.FunS.Aop;S/c/ŒW �1�! '‰perfA' Funex.‰triAop;S1/! :

These allows us to identify the smallest stable subcategory ‰triA�‰perfA spanned
by the representable functors baW Aop ! S with the stably representable functors
†1baW ‰triAop! S1 .

There is a natural transformation �W id!M which can be described as follows: On
the level of spectral categories, the Yoneda embedding

A �! bA
factors through the inclusion of the essentially small full spectral subcategorybAtri �! bA:
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The result is a natural transformation id ! b.� / tri of endofunctors of CatS . By
Proposition 4.13, there is a natural equivalencebAtri

��! ‡.‰triA/DMA

in N..CatS/c/ŒW �1�; composing with this natural equivalence gives the desired natural
transformation �W id!M .

Proposition 4.14 For any spectral category A, �AW A!MA is fully faithful.

Proof By Yoneda’s Lemma, mapping spectra in MA between stably representable
objects are given by mapping spectra between the representing spectrum objects, giving
an equivalence

MapMA.�A.a/; �A.b//n 'map‰triA.ba; †nbb /:
Since ‰triA is a stable 1–category of spectral functors, Yoneda’s Lemma also gives
an equivalence

MapA.a; b/n 'map‰triA.ba; †nbb /:
Hence MapA.a; b/'MapMA.�A.a/; �A.b//.

Proposition 4.15 The functor �AW A!MA is essentially surjective if and only if A
is stable.

Proof Indeed, A!MA is essentially surjective if and only if �1A!�1MA is
essentially surjective, which is the case if and only if A is already stable.

Combining Propositions 4.14 and 4.15, we obtain the following corollary.

Corollary 4.16 The functor �AW A!MA is an equivalence of spectral categories if
and only if A is a stable spectral category.

Next, we want to verify that M is a localization.

Proposition 4.17 The pair of natural transformations �MA;M�AW MA ! M 2A
induce a homotopy commutative square

A
�A
//

�A
��

MA
M�A
��

MA �MA
// M 2A:
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Proof First note that M�AW MA!M 2A sends xW bA! S1 to the functor

c�A !xW
bMA �! S1

induced by homotopy left Kan extension along c�A W bA! bMA . If xDMapA.� ; a/ is
represented by the object a of A, then the universal properties of representable functors
and homotopy left Kan extensions force an equivalence c�A !x ŠMap.� ; �A.a//, so
that c�A !x is represented by �A.a/. It follows that the restrictions of �MA and M�A
to A are equivalent.

Corollary 4.18 The spectral functors �MA and M�A are equivalent. In particular,
both �MA and M�A are equivalences.

Proof Since A generates MA under finite homotopy colimits and desuspensions, it
suffices to show that M�A preserves finite homotopy colimits and desuspensions. The
fact that M�A preserves finite homotopy colimits follows from the fact that M�A is
a homotopy left Kan extension along c�A . But suspension is an example of a finite
homotopy colimit, so we have that M�A.†x/ ' †M�A.x/. Hence M�A.x/ '

†M�A.†
�1x/, and as M 2A is stable we see that M�A.†

�1x/ ' †�1M�A.x/.
The final statement is a consequence of Corollary 4.16 and the fact that MA is a stable
spectral category.

Corollary 4.19 The functor M defines a localization of N..CatS/c/ŒW �1� with es-
sential image the stable spectral categories.

Proof This follows from the previous proposition and corollary by [47, 5.2.7.4].

To see that we have an accessible localization, we need the following proposition:

Proposition 4.20 Let C' colimi Ci be a filtered colimit of stable1–categories. Then
there is an equivalence of spectral categories

‡.C/' colimi ‡.Ci/:

Proof We must show that the natural map

colimi ‡.Ci/ �! ‡.C/

is a DK–equivalence of spectral categories. Since C and the Ci are all stable spectral
categories and �1 and N commute with filtered colimits, this follows from Proposi-
tions 4.5 and 4.8.
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Following Definition 2.7, we make the following definitions.

Definition 4.21 A map of small spectral 1–categories f W A! B is:

� A triangulated equivalence if ‰trif W ‰triA!‰triB is an equivalence of (stable)
1–categories, and

� A Morita equivalence if ‰perff W ‰perfA!‰perfB is an equivalence of (idem-
potent-complete) stable 1–categories.

Assembling the work of this section we obtain the following two results:

Theorem 4.22 The functor

‰tri.� /W N..CatS/c/ŒW �1� �! Catex
1

admits a fully faithful and accessible right adjoint

‡ W Catex
1 �! N..CatS/c/ŒW �1�:

That is, the 1–category of stable 1–categories is an accessible localization of the
1–category of spectral categories obtained by inverting the triangulated equivalences.

Proof The result follows from Proposition 4.20 and the factorization of M given in
(4.12).

Recall that we have a stable idempotent completion functor IdemW Catex
1 ! Catperf

1 .
Since Idem is left adjoint to the (fully faithful) inclusion Catperf

1 ! Catex
1 , Catperf

1 is
the localization of Catex

1 obtain by inverting idempotent completion maps. Further,
recall that there is an equivalence Idem ı‰tri '‰perf .

Theorem 4.23 The functor

‰perfW N..CatS/c/ŒW �1� �! Catperf
1

admits a fully faithful and accessible right adjoint

‡ W Catperf
1 �! N..CatS/c/ŒW �1�:

That is, the 1–category of idempotent-complete stable 1–categories is an accessible
localization of the 1–category of spectral categories obtained by inverting the Morita
equivalences.

Proof The 1–category of idempotent-complete stable 1–categories is a localizing
subcategory of the 1–category of stable 1–categories, and idempotent-completion is
an accessible functor as the inclusion ‰tri!‰perf preserves filtered colimits.
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Remark 4.24 Theorems 4.22 and 4.23 imply that computing the localizations of the
model category structure on spectral categories from Corollary 2.4 at the triangulated
and Morita equivalences (as discussed in Remark 4.3) and passing to the simplicial
nerve also yields the 1–categories Catex

1 and Catperf
1 respectively.

We conclude the section with the promised applications of the theory. First, the fact that
we have accessible localizations provides the following corollary about the structure of
Catex
1 and Catperf

1 .

Corollary 4.25 The 1–categories Catex
1 and Catperf

1 are compactly generated, com-
plete and cocomplete.

We will use the comparison above to lift small stable1–categories to spectral categories.
To this end, we make the following definition.

Definition 4.26 Let A and B be small idempotent-complete stable 1–categories.
We write rep.B;A/D ‡.Funex.B;A// for the small pretriangulated spectral category
associated to the small stable 1–category of exact functors from B to A.

Corollary 4.27 Let A and B be idempotent-complete small stable 1–categories and
let ‡.A/ and ‡.B/ be spectral categories lifting A and B . Then

N.rep.A;B//' Funex.A;B/

is equivalent to the 1–category of right-compact ‡.A/op ^‡.B/–modules.

Proof This follows from Theorem 4.23 and Corollary 3.3.

We also record the following result concerning lifting diagrams of small stable 1–
categories to diagrams of spectral categories.

Proposition 4.28 Let I be a small category. Given a diagram D of small stable
1–categories indexed by N.I/, there exists an I–diagram of pretriangulated spectral
categories eD lifting D .

Proof This is a consequence of [47, 4.2.4.4]. Given a diagram of small stable 1–
categories, the equivalence in Theorem 4.22 gives rise to a diagram in the localization of
N..CatS/c/ŒW �1�. Including the localization into N..CatS/c/ŒW �1�, we now obtain a
diagram in N..CatS/c/ŒW �1�'N..CatS/cf/ and we can use [47, 4.2.4.4] to lift this to
a rigid diagram in CatS .

Geometry & Topology, Volume 17 (2013)



772 Andrew J Blumberg, David Gepner and Gonçalo Tabuada

5 Exact sequences

In this section we discuss the various definitions of exact sequence, relating notions
for triangulated categories, spectral categories and stable 1–categories. Arguably the
most fundamental definition is that of an exact sequence of triangulated categories,
as it turns out that exact sequences in both spectral and stable 1–categories can be
detected on the level of the homotopy category. Recall that a sequence of triangulated
categories

A �! B �! C

is called exact if the composite is zero, the functor A ! B is fully faithful, and
the induced functor from the Verdier quotient B=A to C is cofinal, ie it becomes
an equivalence after idempotent completion. Said differently, a triangulated functor
C0! C is cofinal if every object of C is a summand of an object of C0 . The purpose of
this section is to develop analogues of these notions for stable 1–categories.

5.1 The Verdier quotient as the cofiber in Catperf
1

Let � denote an infinite regular cardinal. We recall the following terminology from
[47, Section 5.3.4].

Definition 5.1 Let A be an1–category. We say that A is �–cocomplete if A admits
all �–small colimits.

Most of the small 1–categories which arise in this paper can be realized as the
full subcategory C� � C of �–compact objects in a stable presentable 1–category
C . In this case, we can reconstruct C itself as Ind�.C�/, which formally adjoins �–
filtered colimits. To make this precise, we recall the notions of �–filtered 1–category,
�–filtered colimit and �–continuous functor.

Definition 5.2 An 1–category C is �–filtered if every map K! C from a �–small
simplicial set K extends to a functor KF! C (see [47, 2.1.4.2] for the cone notation).
A simplicial set K is �–filtered if there exists a categorical equivalence K! C for
some �–filtered 1–category C . Lastly, a �–filtered colimit is a colimit indexed by a
�–filtered simplicial set.

Definition 5.3 Let A and B be 1–categories and let f W A! B be a functor. We
say that f is �–continuous if f preserves �–filtered colimits.
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We write Catex.�/
1 for the 1–category of small �–cocomplete stable 1–categories

and �–small colimit-preserving functors thereof; note that if � > ! , any small �–
cocomplete stable 1–category A is necessarily idempotent complete [47, 5.4.2.4].
Given a small �–cocomplete stable 1–category A, the 1–category Ind�.A/ is a �–
compactly generated stable 1–category such that Idem.A/' Ind�.A/� [47, 5.5.7.8,
5.5.7.10].

In fact, provided � >! , restriction to subcategories of �–compact objects determines an
equivalence between the 1–category of �–compactly generated stable 1–categories
PrL

St� and the 1–category Catex.�/
1 of small �–cocomplete stable 1–categories,

with inverse Ind� [47, 5.5.7.10]. As a consequence, Corollary 4.25 implies that the
1–category of �–compactly generated stable 1–categories is cocomplete.

We now define an analogue of the Verdier quotient of triangulated categories on the
level of stable 1–categories. Specifically, if A! B is a fully faithful functor of
stable 1–categories, then Ho.A/! Ho.B/ is a fully faithful functor of triangulated
categories, and we may form the usual Verdier quotient Ho.B/=Ho.A/. This is defined
as the initial triangulated category Ho.B/=Ho.A/ equipped with a triangulated functor
Ho.B/! Ho.B/=Ho.A/ such that the composite Ho.A/! Ho.B/! Ho.B=A/ is
trivial [57, 2.1.8].

Definition 5.4 Let f W A! B be a fully faithful functor of presentable stable 1–
categories (this means that f preserves colimits). The Verdier quotient B=A of B by
A is the cofiber of f in the 1–category PrL

St of presentable stable 1–categories.

It is useful to identify the Verdier quotient in terms of a Bousfield localization; specif-
ically, we will see that the Verdier quotient is the Bousfield localization of B at the
arrows with cofiber in A.

Lemma 5.5 Let C be a presentable 1–category and S be a strongly saturated class
of arrows of C . Then S is of small generation if and only if the full subfunctor

FunL
S .C;� /� FunL.C;� /W PrL

�!bCat1

of FunL.C;� /, spanned by those colimit-preserving functors C!D which carry the
arrows in S to equivalences in D , is corepresentable by a presentable 1–category C0 .
Moreover, in this case, C0 ' S�1C .

Proof If S is of small generation then S�1C is presentable and corepresents the
functor FunL

S .C;� / by [47, 5.5.4.14, 5.5.4.20]. Conversely, if this functor is corepre-
sentable by C0 then the identity C0!C0 determines a colimit-preserving functor C!C0 .
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Let T be the class of arrows in C which become invertible in C0 , and note that S � T ,
T is strongly saturated [47, 5.5.4.10] and T is of small generation [47, 5.5.4.16]
(the last claim uses the fact that the equivalences in C0 is the strongly saturated class
generated by the identity of the initial object of C0 , which follows from [47, 5.5.4.5,
5.5.4.6]). Thus T �1C ' C0 , so C0 also corepresents the functor FunL

T .C;� /, showing
that a colimit-preserving functor C!D inverts the arrows of S if and only if it inverts
the arrows of T . Since S is strongly saturated, we conclude that S D T .

The preceding lemma now allows us to characterize the cofiber as a localization.

Proposition 5.6 Let A ! B be a fully faithful functor of presentable stable 1–
categories and let S denote the collection of arrows in B whose cones lie in the essential
image of A. Then S is a strongly saturated class of maps in B of small generation,
and the Verdier quotient B=A is equivalent to the Bousfield localization S�1B .

Proof Let C be a presentable stable 1–category, and note that a colimit-preserving
functor B! C sends the arrows in S to equivalences in C if and only if its restriction
to A is trivial. We therefore may identify

FunL.B=A; C/� FunL.B; C/

with the full subcategory spanned by those colimit-preserving functors B! C which
send the arrows in S to equivalences in C . It follows from Lemma 5.5 that B=A'
T �1B , where T is the strongly saturated class of arrows of B which become equiva-
lences in B=A.

We now show that S is strongly saturated, so that S D T . First, suppose given a
cofiber sequence X ! Y !Z in B such that Z lies in the essential image of A, and
let X !X 0 be any map. Then the cofiber of X 0!X 0 tX Y is equivalence to Z , so
is also in the essential image of A. Second, suppose given a diagram f˛W X˛! Y˛
in Fun.�1;B/ with colimit f W X ! Y , and suppose that the cofibers Z˛ of each f˛
lies in the essential image of A. Commuting colimits implies that the cofiber Z of f
is computed as the colimit of the Z˛ , and this lies in the essential image of A since A
is closed under colimits and the functor A! B preserves colimits. Lastly, suppose
h D g ı f is a composite of f W X ! Y followed by gW Y ! Z , and write Y=X ,
Z=Y and Z=X for the cofibers of f , g and h, respectively. Then we have a cofiber
sequence Y=X !Z=X !Z=Y , so if any two lie in the essential image of A then
so does the third.

In fact, we can be more precise about a generating set for the local equivalences:
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Proposition 5.7 Let i W A! B be a fully faithful inclusion of �–compactly generated
stable1–categories which preserves �–compact objects, let S be the (small) collection
of arrows of B� whose cofibers lie in the image of A� and let T be the (large) collection
of arrows of B whose cofibers lie in the image of A. Then the natural map

S�1B �! T �1B ' BŒT �1�' B=A

is an equivalence of 1–categories, where S�1B and T �1B denote the subcategories
of local objects.

Proof Without loss of generality we may identify A with its essential image in B , so
that an arrow f W X ! Y is in T if and only if any cofiber Z of f lies in A. By [47,
5.5.4.15] it suffices to show that T � S , the strongly saturated class of arrows of B
generated by S (see [47, 5.5.4.5]). To see this, let

X
f
�! Y

g
�!Z

be a cofiber sequence in B such that Z is in A. Then Z D colim˛ Z˛ is a �–filtered
colimit of objects Z˛ 2A� �B� and Y D colim˛ Y˛ is a �–filtered colimit of objects
Y˛ D Y �Z Z˛ . Now Y˛ may not be �–compact, so write Y˛ D colimˇ Y˛ˇ for some
Y˛ˇ 2 B� and consider the resulting diagram of cofiber sequences

X˛ˇ
f˛ˇ
//

��

Y˛ˇ
g˛ˇ
//

��

Z˛ˇ

��

X˛
f˛
//

��

Y˛
g˛
//

��

Z˛

��

X
f

// Y
g
// Z

in which the lower right and upper left squares are cartesian, which implies that these
two squares are also cocartesian and that the maps X˛ ! X and Z˛ˇ ! Z˛ are
equivalences. Hence Z˛ˇ 2A� � B� and we conclude that g˛ˇ and therefore f˛ˇ as
well are maps in B� ; in particular, f˛ˇ is an arrow in S . It follows from [47, 5.5.4.5]
that the pushout f˛ of f˛ˇ along X˛ˇ ! X˛ ' X is in S , and we see from [47,
5.5.4.12] that f ' colim˛ f˛W X ' colim˛ X˛! colim Y˛ ' Y is then also in S .

Definition 5.4 leads to the following definition of an exact sequence.

Definition 5.8 A sequence of presentable stable 1–categories A! B! C is exact
if the composite is trivial, A ! B is fully faithful and the map B=A ! C is an
equivalence.
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Somewhat surprisingly, as a consequence of the hypothesis of stability we can detect
exact sequences on the level of homotopy categories, despite the fact that functors which
are fully faithful on homotopy categories are not typically fully faithful as functors of
1–categories. The following proposition connects the 1–categorical Verdier quotient
of Definition 5.4 to the Verdier quotient of the triangulated homotopy categories.

Proposition 5.9 Let A! B be a fully faithful inclusion of presentable stable 1–
categories. Then the natural map Ho.B/=Ho.A/! Ho.B=A/ is an equivalence.

Proof By construction, B=A� B is the full subcategory on those objects b such that
map.a; b/'� for all objects a in the image of A. This shows that, as full subcategories
of Ho.B/, Ho.B=A/ � Ho.B/=Ho.A/. Conversely, if b is in Ho.B/=Ho.A/, then
�0 map.a; b/ ' � for each object a in the image of A, and we claim that in fact
map.a; b/ ' �. Indeed, A is a stable subcategory of B , so that �n map.a; b/ '
�0 map.†na; b/' �. Hence Ho.B/=Ho.A/� Ho.B=A/ as well.

The argument for the previous proposition also implies the following characterization
of fully faithful maps; note that here we do not need the hypothesis that the stable
1–categories are presentable, as we are not working with localizations.

Proposition 5.10 A map of stable 1–categories A! B is fully faithful if and only
if Ho.A/! Ho.B/ is fully faithful.

Corollary 5.11 A map of stable 1–categories A! B is an equivalence if and only
if Ho.A/! Ho.B/ is an equivalence.

As we are predominantly interested in sequences of small 1–categories, we will now
extend Definition 5.8 to the 1–category Catex.�/

1 .

Definition 5.12 A sequence of �–cocomplete small stable1–categories and �–small
colimit preserving functors A! B! C is exact if the sequence

Ind�.A/ �! Ind�.B/ �! Ind�.C/

is an exact sequence of presentable stable 1–categories.

Although we’ve defined exact sequences in Catex.�/
1 to be those sequences which are

exact in PrL
St , we can give an intrinsic description. Just as in the presentable case,

the quotient B=A will denote the cofiber of the fully faithful inclusion A! B of
�–cocomplete small stable 1–categories.
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Proposition 5.13 A sequence of �–cocomplete small stable 1–categories and �–
small colimit preserving functors A! B! C is exact if and only if the composite
is trivial, A! B is fully faithful, and the resulting map B=A! C is an equivalence
(after idempotent completion if � D ! ).

Proof The fully faithful inclusions A� Ind�.A/ and B� Ind�.B/ show that A! B
is fully faithful if and only if Ind�.A/! Ind�.B/ is fully faithful (for the reverse
direction, this follows from the definition of the mapping spaces in Ind�.� /). Thus it
remains to check that B=A! C is an equivalence upon idempotent completion if and
only if Ind�.B/= Ind�.A/' Ind�.B=A/. Since Ind� preserves cofibers, it is enough
to check that the equivalence Ind�.B/= Ind�.A/' Ind�.B=A/ implies the equivalence
B=A' C whenever the latter are idempotent complete. Thus, given a �–cocomplete
small stable 1–category D (which we assume is idempotent complete if � D ! ), we
must show that

Funex.�/.C;D/ �! Funex.�/.B;D/ �! Funex.�/.A;D/

is a fiber sequence of 1–categories. Since D ' .Ind�.D//� , by adjunction this is
equivalent to the sequence

FunL.Ind�.C/; Ind�.D// �! FunL.Ind�.B/; Ind�.D// �! FunL.Ind�.A/; Ind�.D//

being a fiber sequence, which it is by assumption.

5.2 The Thomason–Neeman Localization Theorem

In fact, we can further reduce to a criterion on the level of homotopy categories. For this,
we need the following proposition. In its proof, we take advantage of the detailed study
of localization in the context of (well-generated) triangulated categories by Neeman [57;
56] and Krause [46] and the fact that the homotopy category of a presentable stable
1–category is a well-generated triangulated category (see [48, 1.4.4.3] and [45]).

Proposition 5.14 Let A ! B be a fully faithful and �–small colimit preserving
functor of �–cocomplete small stable 1–categories. Then the natural map

Ho.B/=Ho.A/ �! Ho.B=A/

is an equivalence. In other words, the functor Ho.� / preserves quotients of fully
faithful functors.

Proof We have equivalences

Ho.Ind�.B//=Ho.Ind�.A//' Ho.Ind�.B/= Ind�.A//' Ho.Ind�.B=A//;
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where the first equivalence follows from Proposition 5.9 and the last equivalence follows
from the fact that Ind� preserves cofibers. We therefore obtain a commutative (up to
natural isomorphism) square

Ho.B/=Ho.A/ //

��

Ho.B=A/

��

Ho.Ind�.B//=Ho.Ind�.A// // Ho.Ind�.B=A//;

where the right vertical map is fully faithful and the bottom map is an equivalence.

To see that the top vertical map is fully faithful, we use Neeman’s generalization of
Thomason’s Localization Theorem (see [57, 4.4.9] or [56]) to show that the left vertical
map is fully faithful. First, since Ind�.A/ and Ind�.B/ are presentable, the criterion
of [45] (characterizing well-generated triangulated categories) and [48, 1.4.4.2] imply
that Ho.Ind�.B// is well-generated and (since the map Ind�.A/! Ind�.B/ is fully
faithful) the image of Ho.Ind�.A// is a localizing subcategory generated by a small set
of objects. Applying the form of Neeman’s Theorem proved by Krause in [46, 7.2.1]
now implies that

Ho Ind�.B/�=Ho Ind�.A/� �! Ho Ind�.B/=Ho Ind�.A/

is a fully faithful map. Since [48, 1.4.4.1] implies that there is an equivalence
Ho.Ind�.A/�/ ' Ho.Ind�.A//� and Ind�.A/� ' A up to idempotent completion
(and similarly for B ), we conclude that the left vertical map is fully faithful.

Finally, this map is essentially surjective because there is a commutative (up to natural
isomorphism) triangle

Ho.B/

ww %%

Ho.B/=Ho.A/ // Ho.B=A/

such that both maps from Ho.B/ are essentially surjective.

Now we can obtain the following correspondence between exact sequences of small
stable 1–categories and exact sequences of triangulated categories.

Proposition 5.15 A sequence of �–cocomplete small stable 1–categories and �–
small colimit preserving functors A ! B ! C is exact if and only if the associ-
ated sequence Ho.A/! Ho.B/! Ho.C/ of triangulated categories is exact, in the
sense that the composite is trivial, Ho.A/ ! Ho.B/ is fully faithful and the map
Ho.B/=Ho.A/! Ho.C/ is an equivalence after idempotent completion.
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Proof Suppose A! B! C is exact. Then the composite is trivial, A! B is fully
faithful and B=A! C is an equivalence up to idempotent completion, and so the same
must be true on the level of triangulated homotopy categories. Thus it is enough to
show that Ho.B/=Ho.A/! Ho.C/ is an equivalence up to idempotent completion,
which follows from Proposition 5.14. Conversely, suppose that

Ho.A/ �! Ho.B/ �! Ho.C/

is exact. Then A ! B is fully faithful by Proposition 5.10, and the equivalences
Ho.B=A/' Ho.B/=Ho.A/' Ho.C/ (the last up to idempotent completion) implies
that B=A' C by Corollary 5.11.

Finally, we record a technical proposition that is used in the context of our construction
of nonconnective K–theory. First, we need a technical lemma about the behavior of
the Ind functor.

Lemma 5.16 Let A! B be an exact functor of small stable 1–categories. Then
the induced map Ind.A/ ! Ind.B/ of presentable stable 1–categories preserves
�–compact objects for all infinite regular cardinals � .

Proof Recall that a right adjoint preserves �–filtered colimits if and only if its left
adjoint preserves �–compact objects [47, 5.5.1.4]. Since functors which preserve
filtered colimits also preserve �–filtered colimits and Ind.� / takes exact functors to
functors which preserve compact objects, the result follows.

Note that in the statement of the following proposition, we implicitly use the facts that
stable 1–categories have all finite colimits and exact functors preserve finite colimits.

Proposition 5.17 Let A!B! C be an exact sequence of small stable1–categories.
Then for any infinite regular cardinal � ,

Ind.A/� �! Ind.B/� �! Ind.C/�

is an exact sequence of idempotent-complete small stable 1–categories.

Proof First, by Proposition 5.15, it suffices to check that

Ho.Ind.A/�/ �! Ho.Ind.B/�/ �! Ho.Ind.C/�/

is an exact sequence of triangulated categories. Again, we will deduce this from
Neeman’s generalization of Thomason’s Localization Theorem (see [57, 4.4.9] or [56]),
as follows. First, observe that [48, 1.4.4.1] implies that there is an equivalence
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Ho.Ind.A/�/ ' Ho.Ind.A//� (and analogous equivalences for the other terms in
the sequence). Next, since Ind.A/ and Ind.B/ are presentable, the criterion of [45]
(characterizing well-generated triangulated categories) and [48, 1.4.4.2] imply that
Ho.Ind.B// is well-generated and (since the map Ind.A/! Ind.B/ is fully faithful)
the image of Ho.Ind.A// is a localizing subcategory generated by a small set of objects.
Once again, the localization theorem [46, 7.2.1] implies that

Ho.Ind.B//�=Ho.Ind.A//� �! Ho.Ind.B=A//�

is an equivalence up to idempotent completion. The hypothesis that B=A! C is an
equivalence up to idempotent completion now implies the result.

5.3 Split-exact sequences

We will be particularly interested in exact sequences which are split in the following
sense.

Definition 5.18 An exact sequence of small �–cocomplete stable 1–categories and
�–small colimit preserving functors

A
f
// B

g
// C

is called split-exact if there exist exact functors i W B!A and j W C! B , right adjoint
to f and g , respectively, such that i ı f ' Id and g ı j ' Id via the adjunction
morphisms.

We will also be interested in (split-)exact sequences of spectral categories.

Definition 5.19 A sequence A! B! C of spectral categories is exact if the induced
sequence of stable presentable 1–categories

N.�1Mod.A/cf/ �! N.�1Mod.B/cf/ �! N.�1Mod.C/cf/

is exact.

The following characterization is an immediate corollary of Proposition 5.15.

Proposition 5.20 A sequence A! B! C of spectral categories is exact if and only
if the induced sequence of triangulated categories

D.A/ �!D.B/ �!D.C/

is exact.

Geometry & Topology, Volume 17 (2013)



A universal characterization of higher algebraic K–theory 781

Next, observe that we can relate these notions as follows (the proof of which is
immediate):

Proposition 5.21 Let A ! B ! C be an (split-)exact sequence of small spectral
categories. Then ‰perf.A/!‰perf.B/!‰perf.C/ is a (split-)exact sequence of small
stable 1–categories.

We also have an essential converse statement.

Proposition 5.22 Let A! B ! C be a (split-)exact sequence of small stable 1–
categories. Then there exists a (split-)exact sequence of small stable spectral categorieseA �! eB �! eC
such that ‰perf. eA! eB ! eC / is naturally equivalent to A! B! C .

Proof This follows from Proposition 4.28.

5.4 Approximating split-exact sequences

In order to localize with respect to the (split-)exact sequences, we need to be able to
choose a set of representatives which generate them under filtered colimits.

Lemma 5.23 The full subcategory .Catperf
1 /! � Catperf

1 of compact small stable
idempotent-complete 1–categories is essentially small. More generally, for any
regular cardinal � , the category .Catperf

1 /� is essentially small.

Proof This is immediate from Corollary 4.25 and the fact that the full subcategory of
�–compact objects in a presentable 1–category is essentially small.

This has the following immediate and essential corollary:

Corollary 5.24 For any regular cardinal � , there exists a small set E of representatives
of split-exact sequences of �–compact small idempotent-complete stable1–categories.

It is straightforward to see that filtered colimits of exact sequences of such1–categories
are exact.

Lemma 5.25 Given a filtered diagram of exact sequences A˛!B˛! C˛ of compact
idempotent-complete small stable 1–categories, the colimit A! B! C is an exact
sequence of idempotent-complete small stable 1–categories; that is, A! B is fully
faithful with cofiber C .
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Proof This follows from the fact that the filtered colimit of fully faithful functors is a
fully faithful functor and that the cofiber of a filtered colimit of fully faithful functors
is equivalent to the filtered colimit of the cofibers.

The 1–category of 1–categories equipped with a localization,

Loc.Cat1/� Fun.�1;Cat1/;

is the subcategory of those functors gW B! C such that g admits a right adjoint j

with g ı j ' IdC , and maps those commutative diagrams which also commute with the
adjoint. We have obvious analogues Loc.Catex

1/ and Loc.Catperf
1 /, and in the stable

setting a localization is part of the data of a split-exact sequence. We write

Split.Catex
1/� Fun.�2;Catex

1/

for the subcategory consisting of those diagrams A
f
! B

g
! C of small stable 1–

categories such that g ı f ' 0, f is fully faithful with cofiber g , f admits a right
adjoint i with IdA ' i ıf and g admits a right adjoint j with g ı j ' IdC ; maps are
those commutative diagrams

A
f
//

˛

��

B
g
//

ˇ
��

C


��

A0
f 0
// B0

g0
// C0

which also commute with the adjoints, ie ˛ ı i ' i 0 ıˇ and ˇ ı j ' j 0 ı  .

Proposition 5.26 The functors

Split.Catex
1/ �! Loc.Catex

1/ and Split.Catperf
1 / �! Loc.Catperf

1 /;

induced by the inclusion �1 Š�f1;2g!�2 , are equivalences.

Proof First observe that a split-exact sequence A
f
! B

g
! C is completely determined

by the projection gW B ! C together with its section j W C ! B . This is because
f W A! B is the fiber of g , which we may identify with the full subcategory of B
spanned by the b 2 B such that g.b/' 0, and, since f is fully faithful, i W B!A is
determined by the composite f ı i W B!A! B , the fiber

f ı i �! idB �! j ıg

of the unit map of the adjunction .g; j /. Hence Split.Catperf
1 / ! Loc.Catperf

1 / has
contractible (homotopy) fibers and is therefore and equivalence.
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Proposition 5.27 The 1–category Split.Catperf
1 / of split-exact sequences of small

stable 1–categories is accessible. In particular, there exists a cardinal � such that any
split-exact sequence in Catperf

1 is a �–filtered (and hence filtered) colimit of �–compact
split-exact sequences in Catperf

1 .

Proof By Proposition 5.26, we may equivalently show that Loc.Catperf
1 / is accessible.

Recall that an adjunction of 1–categories can be described as a map M!�1 which
is both a cocartesian fibration and a cartesian fibration [47, 5.2.2.1]. This leads us to
consider the commutative diagram of pullback squares

Loc.Catperf
1 / //

��

Loc.Cat1/ //

��

Catcart;ff
1=�1

��

Fun.�1;Catperf
1 / // Catcocart

1=�1
// Cat1=�1

in which Catcocart
1=�1 � Cat1=�1 (respectively, Catcart;ff

1=�1 � Cat1=�1 ) denote the subcat-
egories of cocartesian fibrations (respectively, cartesian fibrations whose straightenings
are fully faithful) and functors which preserve cocartesian (respectively, cartesian)
edges.

Since Catperf
1 � Cat1 is an accessible functor between accessible 1–categories, it

suffices, by [47, 5.4.4.3, 5.4.5.16, 5.4.6.6] and the duality between cartesian and
cocartesian fibrations, to show that Catcart;ff

1=�1 is accessible, and that the inclusions

Catcart;ff
1=�1 � Catcart

1=�1 � Cat1=�1

are accessible functors. The straightening functor gives an equivalence

Catcart
1=�1 ' PreCat1.�

1/

between cartesian fibrations over �1 and presheaves of 1–categories on �1 [47,
3.2.0.1].

In order to understand the condition of being fully faithful, we write Cat1 as an
accessible localization Cat1 � Pre.N.�// of simplicial spaces [43]. A functor is fully
faithful when the corresponding map of (local) simplicial spaces is fully faithful, and
recall that a map of simplicial spaces j W X ! Y is fully faithful if and only if

map.�1;X / �!map.@�1;X /�map.@�1;Y / map.�1;Y /

is an equivalence. Thus Catcart;ff
1=�1 is the accessible localization of Pre.�1 �N.�//

obtained by also inverting the pushout product of Id�1 and @�1!�1 . It follows that

Catcart;ff
1=�1 and Catcart;ff

1=�1 � Catcart
1=�1

Geometry & Topology, Volume 17 (2013)



784 Andrew J Blumberg, David Gepner and Gonçalo Tabuada

are accessible.

Finally, it remains to show that the inclusion Catcart
1=�1 � Cat1=�1 is accessible. First,

observe that finite limits commute with filtered colimits in Cat1 , as Cat1' Ind.Cat!1/
is compactly generated, the inclusion Ind.Cat!1/ � Pre.Cat!1/ preserves limits and
filtered colimits [47, 5.3.5.3], and finite limits commute with filtered colimits in presheaf
1–categories (this uses [47, 5.3.3.3] and the fact that (co)limits in presheaf 1–
categories are computed objectwise). It follows that the filtered colimit C ' colimi Ci

of cartesian fibrations pi W Ci !�1 , computed in Cat1 , is itself a cartesian fibration
pW C!�1 ; indeed, the inclusions Ci ! C preserve cartesian edges over Id�1 , and
inspection of the fibers

C ��1 �0
' .colim Ci/��1 �0

' colim.Ci ��1 �0/

over each vertex �0!�1 shows that pW C!�1 is also the colimit in Catcart
1=�1 .

5.5 Strict-exact sequences

Definition 5.28 An exact sequence of small stable 1–categories of the form

.5:29/ A �! B �! B=A

is called strict-exact if A! B is the inclusion of a full subcategory and any object of
B which is a summand of an object of A is also in A. In particular, every split-exact
sequence (see Definition 5.18) is equivalent to a strict-exact exact sequence.

We denote by E�wL a small set of representatives of strict-exact sequences A!B!B=A
with B in .Catex

1/
� .

Proposition 5.30 Any strict-exact sequence A! B! B=A is a �–filtered colimit
of strict-exact sequences A˛! B˛! B˛=A˛ in E�wL .

Proof Write B'colim˛ B˛ as a �–filtered colimit of �–compact stable1–categories
B˛ , and define A˛ D A�B B˛ to be the full subcategory of A consisting of those
objects of A which lie in the image of B˛ . Evidently, A!B!B=A is the �–filtered
colimit of the exact sequences A˛ ! B˛ ! B˛=A˛ , and A˛ ! B˛ ! B˛=A˛ is
strict-exact because if Y 2 B˛ is a summand of X 2 A˛ then Y 2 A˛ because the
image of Y in B lies in A.

We denote by E�L a set of representatives of maps of the form A! Idem.A/ with A
in .Catex

1/
� .
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Proposition 5.31 Any map of the form A ! Idem.A/ is a �–filtered colimit of
elements of E�L .

Proof Write A ' colim˛ A˛ as a �–filtered colimit of �–compact small stable
1–categories A˛ . Then Idem.A/ ' colim˛ Idem.A˛/, since Idem (viewed as an
endofunctor of Catex

1 ) commutes with �–filtered colimits; this follows from the char-
acterization of Idem in terms of a subcategory of the Ind category [47, 5.4.2.4] and
the fact that filtered colimits in Catex

1 can be computed in Cat1 [48, 1.1.4.6].

6 Additivity

In this section we construct the universal additive invariant of small stable1–categories;
see Theorem 6.10. Its construction is divided in two steps: First, using Proposition 5.27,
we construct the unstable version; see Theorem 6.7. Then, by stabilizing, we obtain the
universal additive invariant. Our arguments follow the pattern of the analogous result
for dg–categories given in [68].

Definition 6.1 Let D be a stable presentable 1–category. A functor

EW Catex
1 �!D

is called an additive invariant of small stable 1–categories if it inverts Morita equiva-
lences (see Definition 2.14), preserves filtered colimits and satisfies additivity, ie given
a split-exact sequence

.6:2/ A
i
// C

f
oo

j
// B;

g
oo

the functors i and g induce an equivalence in D ,

E.A/_E.B/ ��!E.C/:

We denote by Funadd.Catex
1;D/ the 1–category of additive invariants with values

in D .

Example 6.3 As we discuss in Sections 7 and 10, appropriate versions of algebraic
K–theory and topological Hochschild homology provide additive invariants of small
stable 1–categories.
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6.1 The unstable version

Let us denote by Pre..Catperf
1 /!/� the 1–category

Fun...Catperf
1 /!/op; T1/�

of presheaves of pointed spaces on the essentially small 1–category .Catperf
1 /! of

compact idempotent-complete small stable 1–categories.

Lemma 6.4 Let D be a pointed presentable 1–category. Then, we have an equiva-
lence of 1–categories

FunL.Pre..Catperf
1 /!/�;D/' Funflt.Catperf

1 ;D/;

where the right-hand side denotes the 1–category of morphisms of 1–categories
which preserve filtered colimits.

Proof The proof is a consequence of the equivalences

FunL.Pre..Catperf
1 /!/�;D/' Fun..Catperf

1 /! ;D/' Funflt.Ind..Catperf
1 /!/;D/

' Funflt.Catperf
1 ;D/;

where the first follows from [47, 5.1.5.6] and the fact that D is pointed, and the last
follows from Corollary 4.25.

Let

�W Catperf
1 �! Pre..Catperf

1 /!/�

be the functor obtained by first taking the Yoneda embedding and then restricting the
presheaves to the category .Catperf

1 /! . Recall from Corollary 5.24 that we can choose a
fixed small set E of representatives of split-exact sequences in .Catperf

1 /! . We denote
by Mun

add the localization of Pre..Catperf
1 /!/� [47, 5.5.4.15] with respect to the set of

maps

.6:5/ �.C/=�.A/ �! �.B/;

where A! C! B is a split-exact sequence in E . Finally, let Uun
add be the composite

.6:6/ Catex
1

Idem.� /
�����! Catperf

1

�
��! Pre.Catperf

1 /!/�

��!Mun

add;

where  is the localization functor.
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Theorem 6.7 The functor Uun
add inverts Morita equivalences, preserves filtered colimits

and sends split-exact sequences in Catex
1 to cofiber sequences in Mun

add . Moreover,
Uun

add is universal with respect to these properties, ie given any pointed presentable
1–category D , we have an equivalence of 1–categories

.Uun
add/
�
W FunL.Mun

add;D/ ��! Funun
add.Catex

1;D/;

where the right-hand denotes the full subcategory of Fun.Catex
1;D/ of morphisms of

1–categories which satisfy the above conditions.

Proof The result follows from Definition 2.14, Lemma 6.4 and from the universal
property of Bousfield localization (see Section 2.5: The functor � preserves filtered
colimits and by Proposition 5.27 any split-exact sequence can be approximated by a
filtered colimit of split-exact sequences in E ).

6.2 The universal additive invariant

Let Madd be the stabilization Stab.Mun
add/ [48, Section 1.4] of Mun

add ; by construction,
this is a stable 1–category. Denote by Uadd the following composite

Catex
1

Uun
add
�!Mun

add �! Stab.Mun
add/:

Remark 6.8 Note that we have the equivalences

Stab.Pre..Catperf
1 /!/�/D Stab.Fun...Catperf

1 /!/op; T1�//
' Fun...Catperf

1 /!/op;Stab.T1�///
' Fun...Catperf

1 /!/op;S1/;

the last of which follows from [48, 1.4.4.11]. Therefore, defining

PreS1..Catperf
1 /!/D Fun...Catperf

1 /!/op;S1/

and writing
 W Catperf

1 �! PreS1..Catperf
1 /!/

for the natural functor, we see that Madd can alternately be described as the localization
of PreS1..Catperf

1 /!/ with respect to the set of maps

.6:9/  .C/= .A/ �!  .B/;

where A! C! B is a split-exact sequence in E .

Geometry & Topology, Volume 17 (2013)



788 Andrew J Blumberg, David Gepner and Gonçalo Tabuada

Theorem 6.10 The functor Uadd is the universal additive invariant, ie given any stable
presentable 1–category D , we have an equivalence of 1–categories

.Uadd/
�
W FunL.Madd;D/ ��! Funadd.Catex

1;D/:

Proof The result follows from Theorem 6.7 and from the universal property of
stabilization (ie [48, 1.4.4.5]). Note that stabilization preserves colimits and Uun

add sends
split-exact sequences to cofiber sequences, so the split-exact sequence (6.2) is sent to a
split cofiber sequence Uadd.C/' Uadd.A/_Uadd.B/ in Madd .

7 Connective K–theory

In this section, we verify that higher algebraic K–theory provides an additive in-
variant of small stable 1–categories; Theorem 6.10 then applies to show that this
invariant descends to Madd . Furthermore, following the outline of [68], we prove
the essential result that algebraic K–theory in fact becomes corepresentable in Madd

(see Theorem 7.13). The underlying point is that Waldhausen’s S� construction
simply becomes the suspension in Madd . This result will allow us to understand
transformations between additive theories from algebraic K–theory via the Yoneda
Lemma; we use this in Section 10 to characterize the cyclotomic trace map. We begin
by developing the necessary background on the construction of algebraic K–theory for
small 1–categories with finite colimits, and in Section 7.2 we compare the K–theory
of a suitable Waldhausen category with the K–theory of its underlying 1–category.

7.1 Algebraic K–theory of 1–categories

Waldhausen’s algebraic K–theory functor takes as input a category with cofibrations
and weak equivalences. It is now well understood that, under mild hypotheses, the
K–theory spectrum is determined by the Dwyer–Kan localization LH C of the Wald-
hausen category C ; see Toën and Vezzosi [74], the first author and Mandell [12] and
Cisinski [19]. Since N..LH C/fib/ yields the 1–category associated to C , these results
can be interpreted as saying that the algebraic K–theory of a Waldhausen category
is an invariant of the underlying 1–category. Moreover, it has long been folklore
that given a sufficiently good theory of 1–categories one can define analogues of
Waldhausen’s construction of algebraic K–theory (eg see [74, Section 7] for a sketch
of such a definition in the context of Segal categories). In this subsection we study
a version of such a direct construction of the algebraic K–theory of 1–categories
in the setting of quasicategories [48, 1.2.2.5]. We prove that Waldhausen’s algebraic
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K–theory of a Waldhausen category C is equivalent as a spectrum to this1–categorical
algebraic K–theory of the associated 1–category N..LH C/fib/.

We begin by reviewing Waldhausen’s S� construction. Let C be a Waldhausen category.
Let ArŒn� denote the category of arrows in Œn�: ArŒn� has objects .i; j / for 0� i �j �n

and a unique map .i; j / ! .i 0; j 0/ for i � i 0 and j � j 0 . Then SnC is the full
subcategory of the category of functors AW ArŒn�! C such that:

� Ai;i D � for all i .
� The map Ai;j !Ai;k is a w–cofibration for all i � j � k .
� The diagram

Ai;j
//

��

Ai;k

��

Aj ;j
// Aj ;k

is a pushout square for all i � j � k .

The algebraic K–theory space of C is then defined to be �jw�S�Cj, where the weak
equivalences in S�C are defined pointwise. Furthermore, since each SnC is itself a
Waldhausen category (with the Reedy cofibrations), we can iterate the S� construction.
The algebraic K–theory spectrum of C is the spectrum with n–th space jw�S .n/� Cj.

Now let C be a small pointed1–category with finite colimits. The following definition
[48, 1.2.2.2] is the 1–categorical analogue of Waldhausen’s S� construction.

Definition 7.1 Let Gap.Œn�; C/ be the full subcategory of Fun.N.ArŒn�/; C/ spanned
by the functors N.ArŒn�/! C such that, for each i 2 I , F.i; i/ is a zero object of C ,
and for each i < j < k , the square

F.i; j / //

��

F.i; k/

��

F.j ; j / // F.j ; k/

is cocartesian.

Remark 7.2 There is an obvious generalization of this definition to small pointed
1–categories equipped with a suitable subcategory of “cofibrations” (satisfying the
usual axioms, eg that cofibrations are stable under cobase change). However, in the
presence of factorization hypotheses, this does not yield added generality; see [12,
1.3], which under such assumptions describes the K–theory space in terms of the
Dwyer–Kan localization C regarded as a category with weak equivalences.

Geometry & Topology, Volume 17 (2013)



790 Andrew J Blumberg, David Gepner and Gonçalo Tabuada

As with the classical S� construction, when C has all colimits, the data of the cocartesian
squares (ie cofibers for the maps F.i; j /!F.i; k/) is necessary only for the simplicial
structure.

Lemma 7.3 Let C be an 1–category with finite colimits. Then for each n, the
forgetful functor

Gap.Œn�; C/ �! Fun.�f1;2;:::;ng; C/

is an equivalence of 1–categories (and observe that �f1;2;:::;ng ' N.Œn� 1�/).

Proof This follows from the fact that the space of colimits for a given diagram in an
1–category is contractible [47, 1.2.12.9, 1.2.13.5]. Alternatively, a constructive proof
along the lines of [11, 2.9] (using a mapping cylinder argument) can be given using the
comparison discussed in Section 7.2 below.

Remark 7.4 Lemma 7.3 implies that Gap.Œn�; C/ is stable when C is stable.

Following [48, 1.2.2.5], we define a simplicial 1–category S1� C by the rule S1n C D
Gap.Œn�; C/. Applying passage to the largest Kan complex levelwise, we obtain a
simplicial space .S1� C/iso . Then �j.S1� C/isoj is the 1–categorical version of Wald-
hausen’s K–theory space. Furthermore, for each n, Gap.Œn�; C/ is itself a small pointed
1–category with finite colimits: once again, we can iterate this procedure. Since
Gap.Œ0�; C/ is contractible (with preferred basepoint given by the point in C ) and
Gap.Œ1�; C/ is equivalent to C , there is a natural map

S1
^ .C/iso �! j.S

1
� C/isoj

given by the inclusion into the 1–skeleton. Therefore, the spaces j..S1� /
n.C//isoj

assemble to form a spectrum K.C/; this is the 1–categorical version of Waldhausen’s
K–theory spectrum. We can see from the definition that Gap.Œn�; C/ is natural in
(right) exact functors, and therefore S1� C and j.S1� C/isoj are also natural. Since the
equivalence Gap.Œ1�; C/! Fun.�; C/' C induced by the restriction map is natural in
C , we deduce that the K–theory spectrum is natural in exact functors.

In practice, we find it more convenient to use an “all at once” reformulation of the
definition of the iterated S� construction (eg see [12, A.5.4], [13, 2.2], the appendix to
[32] and also [62, Section 2]).

Definition 7.5 Write Arn1;:::;nq
for ArŒn1�� � � � �ArŒnq �. For a functor

AW N.Arn1;:::;nq
/D N

�
ArŒn1�� � � � �ArŒnq �

�
�! C;
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we write Ai1;j1I:::Iiq ;jq
for the value of A on the object ..i1; j1/; : : : ; .iq; jq//. Let

Gap..Œn1�; : : : ; Œnq �/; C/ be the full subcategory of Fun.N.Arn1;:::;nq
/; C/ spanned by

the functors such that:

� Ai1;j1I:::Iiq ;jq
' � whenever ik D jk for some k .

� For every object .i1; j1I : : : I iq; jq/ in ArŒn1�� � � � �ArŒnq �, every 1 � r � q ,
and every jr � k � nr , the square

Ai1;j1I:::Iiq ;jq
//

��

Ai1;j1I:::Iir ;kI:::Iiq ;jq

��

Ai1;j1I:::Ijr ;jr I:::Iiq ;iq
// Ai1;j1I:::Ijr ;kI:::Iiq ;iq

is a cocartesian square.

Now we define the multisimplicial 1–category

.S1/.q/n1;:::;nq
C D Gap..Œn1�; : : : ; Œnq �/; C/:

We regard .S1� /
.0/ as C and it is clear that .S1� /

.1/
n is Gap.Œn�; C/. Now we directly

the define the K–theory spectrum of an 1–category C with finite colimits to be the
spectrum with q–th space

KC.q/D
�
.S1/

.q/
�;:::;�

�
iso;

The suspension maps †KC.q/!K.qC1/ are induced on diagrams by the projection
map

ArŒn1�� � � � �ArŒnq ��ArŒnqC1� �! ArŒn1�� � � � �ArŒnq �:

From Definition 7.5 it is now clear that the construction of the K–theory spectrum is
functorial in (right) exact functors.

7.2 Comparison with Waldhausen’s K–theory

We now establish a comparison between Waldhausen’s algebraic K–theory of a Wald-
hausen category C and the 1–categorical version of the algebraic K–theory of the
associated simplicial category LH C . The comparison is essentially a consequence of
the theory of rigidification of homotopy coherent diagrams to strict diagrams in a model
category (originally studied by Dwyer–Kan [29]), which allows us to pass between 1–
categorical diagrams and point-set diagrams, and the “homotopical” S 0� construction of
[11], which allows us to replace the use of pushouts by homotopy pushouts for suitable
Waldhausen categories. The version of the comparison of homotopy coherent diagrams
to strict diagrams we use is originally due to Hirschowitz–Simpson [40] in the context
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of Segal categories (see also Rezk’s work in Segal spaces [60, 8.12]). Since we are
using quasicategories in this paper, we work with the version proved by Lurie in that
setting [47, 4.2.4.4].

Let S be a small simplicial set, D a small simplicial category, and uW CŒS �!D an
equivalence. Let A be a combinatorial simplicial model category, and let U be a
D–chunk of A (see [47, A.3.4.9] for a discussion of D–chunks). Then the induced
map

N..UD/cf/ �! Fun.S;N.U cf//

is a categorical equivalence of simplicial sets. Here the notation .UD/cf indicates the
full subcategory of AD consisting of cofibrant-fibrant objects (in the projective model
structure) landing in U .

Specializing to our situation, assume that S is the (ordinary) nerve N.J / of a diagram
(small category) J ; that is, J is regarded as a discrete simplicial category. Then the
counit map CŒN.J /�! J is an equivalence and so we have that the induced map

N..UJ /cf/ �! Fun.N.J /;N.U cf//

is a categorical equivalence of simplicial sets.

Lemma 7.6 Let A be a combinatorial simplicial model category and C � A a full
subcategory. Then for each n the induced map

N..CArŒn�/cf/ �! Fun.N.ArŒn�/;N.Ccf//

is a categorical equivalence of simplicial sets.

Proof By [47, A.3.4.15], we can choose a small subcategory V �A which contains
C and such that V is an .ArŒn�/–chunk for each n and moreover N..C/cf/ is equivalent
to N..V/cf/. Then as discussed above, [47, 4.2.4.4] implies that for each n the natural
map

N...V/ArŒn�/cf/ �! Fun.N.ArŒn�/;N..V/cf//

is a categorical equivalence of simplicial sets.

To apply these rigidification results, we use the S 0� construction. The S 0� construction
[11, 2.7] is a variant of Waldhausen’s S� construction defined by replacing the cocarte-
sian squares in the definition of S� with homotopy cocartesian squares. In order to
define the S 0� construction, we must work with Waldhausen categories for which there
is a reasonable notion of homotopy cocartesian squares. We briefly recall this theory
from [11, Section 2]. A map is a weak cofibration if it is equivalent by a zig-zag to a
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cofibration, and a square is a homotopy cocartesian square if it equivalent by a zig-zag
to a pushout square with one leg a cofibration. For control on these notions, we require
the hypothesis that any map in C can be factored (not necessarily functorially) as a
cofibration followed by a weak equivalence.

For such a Waldhausen category C , we can then define S 0nC to be the full subcategory
of the category of functors ArŒn�! C such that:

� Ai;i ' � for all i .

� The map Ai;j �!Ai;k is a weak cofibration for all i � j � k .

� The diagram

Ai;j
//

��

Ai;k

��

Aj ;j
// Aj ;k

is a homotopy cocartesian square for all i � j � k .

By construction, the S 0� construction is functorial in weakly exact functors, ie functors
that preserve weak equivalences and homotopy cocartesian squares. Moreover, the
natural inclusion

w�S�C �! w�S
0
�C

is a weak equivalence [11, 2.9]. Therefore, we can equivalently define the algebraic
K–theory space of a Waldhausen category C as �jw�S 0�Cj and similarly the algebraic
K–theory spectrum of C as having n–th space jw�.S 0�/

.n/Cj.

Now, let C be a Waldhausen category that arises as a subcategory of a model category.
Since a square is homotopy cocartesian in C if and only if it is a pushout square in
N..C/cf/, in this setting the equivalence of Lemma 7.6 restricts to give an equivalence

N..S 0nC/cf/ �! Gap.Œn�;N..C/cf//:

Similar considerations for the iterated S 0� construction [12, A.5.4] (as modeled in
Definition 7.5) yield the equivalence

N..S 0.q/n1;:::;nq
C/cf/ �! Gap..Œn1�; : : : ; Œnq �/; C/:

Applying Proposition 2.10, we then obtain the following comparison of algebraic
K–theory spaces and spectra.

Geometry & Topology, Volume 17 (2013)



794 Andrew J Blumberg, David Gepner and Gonçalo Tabuada

Corollary 7.7 Let A be a simplicial model category and C � A a small full sub-
category which has all finite homotopy colimits. Then for each n there is a weak
equivalence of simplicial sets

jw�S
0
nCj ' j.S1n N..C/cf//isoj:

and for each .n1; : : : ; nq/ there is a weak equivalence of simplicial sets

jw�S
0.q/
n1;:::;nq

Cj ' j..S1/.q/n1;:::;nq
N..C/cf//isoj:

In particular, this yields the following theorem:

Theorem 7.8 Let A be a simplicial model category and C�A a small full subcategory
of the cofibrants which admits all homotopy pushouts and is a Waldhausen category via
the model structure on A. Then there is an equivalence of spectra

K.C/'K.N..C/cf//

which is natural in weakly exact functors.

Finally, specializing to our case, we find the following result.

Corollary 7.9 Let C be a small pretriangulated spectral category and let MC denote
the category of perfect C–modules with its Waldhausen structure induced by the model
structure on C–modules. Then there is an isomorphism in the stable category

K.MC/'K.‰perfC/:

As a consequence, Waldhausen’s additivity theorem applies to prove the following
proposition.

Proposition 7.10 The algebraic K–theory functor

KW Catperf
1 �! S1

is an additive invariant.

Proof By Lemma 7.3, K preserves equivalences of stable 1–categories. Therefore,
it suffices to show that K preserves filtered colimits and split-exact sequences. The
former follows from the fact that the S1� construction and restriction to the maximal
subgroup preserve filtered colimits, as N.Ar.Œn�// and �0 are compact 1–categories.
Corollary 7.9 allows us to reduce to consideration of split-exact sequences of spectral
categories bAperf �! bC perf �! bBperf:
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As in [70], we observe that this sequence is Morita equivalent to the sequencebAperf �!E. bAperf; bC perf; bBperf/ �! bBperf

(where E denotes Waldhausen’s category of cofiber sequences in C with first term in
the image of A and cofiber in the image of B ). Now Waldhausen’s additivity theorem
implies the desired splitting on K–theory.

So far, all of our comparison results assume that the Waldhausen category we are
working with arises as a subcategory of a model category. In fact, we can extend
our comparison and functoriality results to Waldhausen categories C such that all
maps admit (not necessarily functorial) factorizations as cofibrations followed by
weak equivalences and which are DHKS–saturated (ie such that a map f is a weak
equivalence in C if and only if its image in the homotopy category is an isomorphism).
We do this as follows, using a construction due to Cisinski [19, Section 4].

Lemma 7.11 Let C be a Waldhausen category with factorization and weak equiva-
lences that are DHKS–saturated. Then there exists a Waldhausen category M.C/ and a
DK–equivalence C!M.C/ which is natural in weakly exact functors.

Proof Given a Waldhausen category C , let P.C/ denote here the pointed simplicial
presheaves on C with the projective model structure (ie weak equivalences and fibrations
are determined pointwise). We can successively localize P.C/ to produce a category
of presheaves which are pointwise Kan complexes, preserve weak equivalences and
take homotopy cocartesian squares in C to homotopy pullback squares in P.C/; denote
this category by Pex.C/ [19, 4.10]. Let M.C/ denote the full subcategory of the
localized category consisting of the objects which are cofibrant and weakly equivalent
to representable presheaves; this can be regarded as a Waldhausen category, inheriting
structure from the model structure on Pex.C/. The Yoneda embedding induces a DK–
equivalence C!M.C/ [19, 4.11], and a weakly exact functor C! C0 induces a left
Quillen functor Pex.C/! Pex.C0/ by left Kan extension, and hence an exact functor
M.C/!M.C0/ by restriction.

As a corollary, we have the following result comparing of the K–theory of Waldhausen
categories that are DHKS–saturated and admit factorization to the associated K–theory
of 1–categories.

Corollary 7.12 In the setting of 7.11, there are equivalences

K.C/ �!K.M.C// �!K.N..M.C//cf//

which are natural in weakly exact functors.
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Proof First, since we have a natural DK–equivalence C!M.C/, there is a natural
equivalence K.C/! K.M.C//; see [12], [19] and [74]. Next, since the category
M.C/ satisfies the hypothesis of Theorem 7.8, the second equivalence holds.

Given a (homotopically) pointed simplicial category with finite homotopy colimits,
we can use essentially the same construction to produce a DK–equivalent Waldhausen
category; see [74, Section 5] and [14, Section 14] for versions of such a construction.

7.3 Corepresentability

This subsection is entirely devoted to the proof of Theorem 7.13. The proof will follow
from Propositions 7.17 and 7.19.

Theorem 7.13 Let A be a small stable 1–category and B be a compact idempotent-
complete small stable 1–category. Then there is a natural equivalence of spectra

Map.Uadd.B/;Uadd.A//'K.Funex.B; Idem.A///:

When B is the small stable 1–category S!1 of compact spectra, there is a natural
equivalence of spectra

Map.Uadd.S!1/;Uadd.A//'K.Idem.A//:

In particular, we have isomorphisms of abelian groups

Hom.Uadd.S!1/; †�nUadd.A//'Kn.Idem.A//

in the triangulated category Ho.Madd/.

Notation 7.14 Given a small stable 1–category A, we denote by Kw
A the object

B 7�! j.S1� .Funex.B; Idem.A////isoj

in Pre..Catperf
1 /!/� and by KA the object

B 7�!K.Funex.B; Idem.A///

in PreS1..Catperf
1 /!/. Note that the value of KA at S!1 is precisely the K–theory

spectrum K.A/ of A, and similarly that Kw
A is the delooping of the K–theory space.

Remark 7.15 Recall that Corollary 4.27 allows us to model the small 1–category of
exact functors Funex.B; Idem.A// as the pretriangulated spectral category rep.B;A/
of right-compact ‡.A/op ^‡.B/–modules. Combined with Proposition 2.10, this
implies that the associated mapping space .Funex.B; Idem.A///iso can be calculated
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as jw�rep.B; Idem.A//j. Moreover, rep.B; Idem.A// inherits a natural Waldhausen
structure as a full subcategory of the cofibrant objects in the model structure on the
category of B– Idem.A/–bimodules. As such, we can also consider the algebraic
K–theory space jw�S�rep.B; Idem.A//j and associated spectrum.

In the following results, we will use the observation that Waldhausen’s S� construction,
applied to a spectral category which is a Waldhausen category with the cofibrations
inherited from a spectral model structure with all objects fibrant, produces a spectral
category (where the mapping spectra are given by an appropriate end) [10, Section 3].
To ensure we are in this setting, we will tacitly use the equivalent model of spectral
categories enriched in EKMM S –modules, as explained in [14, Section 15]. Alterna-
tively, we could stay with spectral categories in symmetric spectra and use the “Moore”
S� construction from [10, Section 4], which uses an explicit model of the homotopy
end. We also need the following lemma which allows us to bring the S� construction
inside:

Lemma 7.16 Let A and B be small stable 1–categories. Then we have an equiva-
lence of simplicial 1–categories

S1� Funex.B;A/' Funex.B;S1� A/

and correspondingly an equivalence of spaces

j.S1� Funex.B;A//isoj ' j.Funex.B;S1� A//isoj:

Proof First, we show that for each n there is an equivalence of 1–categories

Gap.Œn�;Funex.B;A//' Funex.B;Gap.Œn�;A//:

Since Fun.� ;� / is defined simply as the mapping simplicial set [47, 1.2.7.2], we
have the equivalence

Fun.N.ArŒn�/;Fun.B;A//' Fun.B;Fun.N.ArŒn�/;A//:

Since colimits in functor 1–categories are computed pointwise [47, Section 5.1.2.3]
and the 1–category Funex.B;A/ is the full subcategory of Fun.B;A/ spanned by the
exact functors, we have a map

Gap.Œn�;Funex.B;A// �! Funex.B;Gap.Œn�;A//;

and Lemma 7.3 implies that it is an equivalence. It is now straightforward to check
that these comparison maps assemble into the desired simplicial equivalence.

We can now relate Madd to the algebraic K–theory presheaf.

Geometry & Topology, Volume 17 (2013)



798 Andrew J Blumberg, David Gepner and Gonçalo Tabuada

Proposition 7.17 Let A be a small stable 1–category. Then, we have a natural
equivalence †.Uun

add.A//'Kw
A in Mun

add (see notation (6.6)) and a natural equivalence
†Uadd.A/'†KA in Madd .

Proof We begin by handling the unstable case. Theorem 4.23 implies that we can
model A by a small spectral category (which we still denote by A). Following [51,
3.3], we consider the following sequence of simplicial spectral categories:

A�
I
�! PS�A

Q
�! S�A;

where A� is a constant simplicial object and PS�A is the simplicial path object of
S�A. By applying the functor Uun

add to this sequence, we obtain an induced morphism

‚W Uun
add.PS1� A/=Uun

add.A�/ �! Uun
add.S

1
� A/

of simplicial objects in Mun
add . We now show that each component ‚n of ‚ is an

equivalence. For each n� 0, we have a split-exact sequence

A
In

// PSnAD SnC1A
Rn
oo

Qn

// SnA;
Sn
oo

in which

In.A/D .�!A
Id
�!A

Id
�! � � �

Id
�!A/;

Qn.�!A0!A1! � � � !An/D .A1=A0! � � � !An=A0/;

Sn.�!A0!A1! � � � !An�1/D .�! �!A0! � � � !An�1/;

Rn.�!A0!A1! � � � �!An�1/DA0:

By the construction of Mun
add (and of Uun

add ), we conclude that the induced morphisms

‚nW Uun
add.PS1n A/=Uun

add.A/ �! Uun
add.S

1
n A/; n� 0;

are equivalences in Mun
add . This allow us to obtain the following cocartesian square:

Uun
add.A/' jUun

add.A/j

��

// jUun
add.PS1� A/j ' �

��

� // jUun
add.S

1
� A/j;

and so a natural equivalence

†.Uun
add.A// ��! jUun

add.S
1
� A/j
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in Mun
add . By combining this equivalence with the equivalences

Uun
add.S

1
� A/D j.Funex.� ; Idem.S1� A///isoj

' j.S1� Funex.� ; Idem.A///isoj.7:18/

DKw.A/;

where (7.18) follows from Lemma 7.16, we conclude that †.Uun
add.A//'Kw

A in Mun
add .

The identification in the stable setting follows from the unstable considerations and the
usual passage from results on the K–theory space to the K–theory spectrum.

Proposition 7.19 Let A be a small stable1–category. Then, the presheaves Kw
A and

KA (see Notation 7.14) are local, ie given any split-exact sequence B! C!D in E ,
the induced maps of spectra (see (6.5) and (6.9))

map.�.D/;Kw
A/
��!Map.�.C/=�.A/;Kw

A/;

map. .D/;KA/
��!Map. .C/= .A/;KA/;

are equivalences.

Proof The argument is exactly the same in both cases. Therefore, we discuss only
the stable KA . Since B , C and D belong to .Catperf

1 /! , the spectral Yoneda Lemma
shows us that we need to prove that the induced sequence of spectra

K.Funex.D; Idem.A/// // K.Funex.C; Idem.A/// // K.Funex.B; Idem.A///

is a cofiber sequence. Using Corollary 4.27 it suffices to consider the split-exact
sequence of small spectral categories

rep.D;A/ // rep.C;A/oo
// rep.B;A/:oo

Note that, again by Corollary 4.27, all of these spectral categories carry a natural
Waldhausen structure inherited from the usual model structure on spectral modules. We
will apply Waldhausen’s Fibration Theorem [78, 1.6.4]. We have the Waldhausen cate-
gory vrep.C;A/, whose weak equivalences are the morphisms f such that Cone.f / is
contractible, as well as the Waldhausen category wrep.C;A/, with the same cofibrations
as vrep.C;A/ but whose weak equivalences are those f such that Cone.f / belongs
to rep.D;A/. Moreover, we have a natural inclusion vrep.C;A/�wrep.C;A/ and an
equivalence rep.C;A/w ' rep.D;A/; see [78, § 1.6]. The conditions of [78, 1.6.4] are
satisfied, so we obtain a cofiber sequence of spectra

K.rep.D;A// �!K.rep.C;A// �!K.rep.B;A//:
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Proof of Theorem 7.13 Let A be stable 1–category and B a compact small
idempotent-complete stable 1–category. By Proposition 7.17 we have an equivalence
Uadd.A/'KA and by Proposition 7.19 KA is local. Therefore, we have the following
natural equivalence:

Map.Uadd.B/;Uadd.A//'Map. .B/;KA/;

where the right-hand side is calculated in Pre..Catperf
1 /! IS1/. Since B belongs to

.Catperf
1 /! , the presheaf  .B/ is representable and so by the spectral Yoneda Lemma

we have Map. .B/;KA/ ' KA.B/. Finally, since by definition of KA we have
KA.B/DK.Funex.B; Idem.A/// the proof is finished.

8 Localization

The definition of additivity we study in this paper is given in terms of the condition that
algebraic K–theory takes models of split-exact sequences of triangulated categories
to (homotopy) cofiber sequences of spectra. This perspective is motivated in part
by Neeman’s reformulation of the Thomason–Trobaugh Localization Theorem [56].
Neeman observed that following Thomason–Trobaugh and using the construction of
Bousfield localization, one could regard algebraic K–theory as in fact taking exact
sequences of triangulated categories to cofiber sequences of spectra, provided one
worked with nonconnective K–theory (see Theorem 9.34 for a version of this result).
We will refer to such a theory as satisfying localization. In this section we construct
the universal localizing invariant of small stable 1–categories; see Theorem 8.7. Our
work follows the general pattern of the analogous result for dg–categories in [21].

Definition 8.1 Let D be a stable presentable 1–category. A functor

EW Catex
1 �!D

is called a localizing invariant of small stable 1–categories if it inverts Morita equiv-
alences (see Definition 2.14), preserves filtered colimits and satisfies localization,
ie sends exact sequences

A �! B �! C

of small stable 1–categories (see Definition 5.12) to cofiber sequences

E.A/ �!E.B/ �!E.C/

in D . We denote by Funloc.Catex
1;D/ the 1–category of localizing invariants with

values in D .
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Every localizing invariant is an additive invariant (see Definition 6.1), since a split-exact
sequence is exact. The converse does not hold, however: the impetus for the definition of
nonconnective K–theory was precisely the fact that the connective algebraic K–theory
functor does not satisfy localization. As we discuss in Sections 9 and 10, nonconnective
algebraic K–theory (K) and topological Hochschild homology (THH ) are localizing
invariants.

Although the universal localizing invariant can be constructed by direct localization, as
in Section 6, we use a more involved procedure:

(i) First, we construct a variant of the universal additive invariant; see Proposition 8.3.
We work with a general infinite regular cardinal � , and we do not factor through
Catperf
1 ; that is, Morita equivalences are not inverted. This produces the functor

U�addW Catex
1 �!M�

add:

(ii) We localize M�
add so that the exact sequences

A �! B �! B=A;

with Ho.A/ a thick triangulated subcategory of Ho.B/, are sent to cofiber
sequences; see Proposition 8.5. We then obtain the functor

U�wlocW Catex
1 �!M�

wloc:

(iii) We perform a localization of M�
wloc to force Morita equivalences to be sent to

isomorphisms; see Proposition 8.6. We obtain then the functor

U�locW Catex
1 �!M�

loc:

(iv) Finally, we localize M�
loc so that the functor U�loc preserves filtered colimits;

see Theorem 8.7. We end up with the universal localizing invariant

U locW Catex
1 �!Mloc:

The point of this seemingly circuitous process is that it enables a clear, conceptual
proof of the corepresentability of nonconnective K–theory in Mloc ; see Section 9.

Notation 8.2 From now on and until the end of Section 9 we will work with a fixed
infinite regular cardinal � larger than ! , which we assume is sufficiently large so that
Proposition 5.27 applies. We will denote by .Catex

1/
� the category of �–compact small

stable 1–categories (see Section 2.4).
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8.1 Additive �–variant

Let
 W Catperf

1 �! Pre..Catperf
1 /� IS1/

be the functor obtained by first taking the Yoneda embedding and then restricting the
presheaves to the 1–category .Catex

1/
� . Corollary 5.24 allow us to choose a fixed

small set E�A of representatives of split-exact sequences in .Catperf
1 /� . We denote by

M�
add the localization of Pre..Catperf

1 /� IS1/ with respect to the set of maps

Cone. .A/ �!  .C// �!  .B/;

where A!C!B is a split-exact sequence in E�A . Let U�add be the following composite:

Catperf
1

 
�! Pre..Catperf

1 /� IS1/

�!M�

add;

where  is the localization functor.

Proposition 8.3 The functor U�add preserves �–filtered colimits and sends split-exact
sequences

A
i
// C

f
oo

j
// B

g
oo

in Catperf
1 to (split) cofiber sequences in M�

add . Moreover, U�add is universal with respect
to these two properties, ie given any stable presentable 1–category D , we have an
equivalence of 1–categories

.U�add/
�
W FunL.M�

add;D/ ��! Fun�add.Catperf
1 ;D/;

where the right-hand side denotes the full subcategory of Fun.Catex
1;D/ of morphisms

of 1–categories which satisfy the above two conditions.

Proof The result follows from the analogue of the argument for Lemma 6.4 in the
context of �–compact objects and Ind� , and from the universal property of Bousfield
localization (see Section 2.5). Specifically, the functor  preserves �–filtered colimits
and Proposition 5.27 shows that any split-exact sequence can be approximated by a
�–filtered colimit of split-exact sequences in E�A .

Next, we localize M�
add with respect to the set of maps

.8:4/ Cone.U�add.A/ �! U�add.B// �! U�add.B=A/;
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where A! B! B=A is a strict-exact sequence in E�wL (see Section 5.5). Let U�wloc
be the following composite:

Catperf
1

U�
add
��!M�

add

��!M�

wloc;

where  is the localization functor.

Proposition 8.5 The functor U�wloc preserves �–filtered colimits and sends strict-exact
sequences to cofiber sequences in M�

wloc :

A �! B �! B=A 7�! U�wloc.A/ �! U�wloc.B/ �! U�wloc.B=A/:

Moreover, U�wloc is universal with respect to these two properties, ie given any stable
presentable 1–category D , we have an equivalence of 1–categories

.U�wloc/
�
W FunL.M�

wloc;D/ ��! Fun�wloc.Catperf
1 ;D/;

where the right-hand side denotes the full subcategory of Fun.Catperf
1 ;D/ of morphisms

of 1–categories which satisfy the above two conditions.

Proof The result follows from Propositions 8.3 and 5.30 and from the universal
property of localization (see Section 2.5).

8.2 Morita equivalences

We now localize M�
wloc with respect to the set of maps

U�wloc.A �! Idem.A//;

where A! Idem.A/ belongs to E�L . Let U�loc be the following composition:

Catex
1

U�
wloc
��!M�

wloc

��!M�

loc;

where  is the localization functor.

Proposition 8.6 The functor U�loc inverts Morita equivalences, preserves �–filtered
colimits and sends exact sequences A ! B ! C in Catex

1 to cofiber sequences
U�loc.A/ ! U�loc.B/ ! U�loc.C/ to cofiber sequences in M�

loc . Moreover, U�loc is
universal with respect to these two properties, ie given any stable presentable 1–
category D , we have an equivalence of 1–categories

.U�loc/
�
W FunL.M�

loc;D/ ��! Fun�loc.Catex
1;D/;

where the right-hand side denotes the full subcategory of Fun.Catex
1;D/ of morphisms

of 1–categories which satisfy the above three conditions.
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Proof The fact that U�loc preserves �–filtered colimits is clear. Since a functor
A! B is a Morita equivalence if and only if Idem.A/! Idem.B/ is an equivalence,
Proposition 5.31 allow us to conclude that U�loc inverts Morita equivalences. We now
show that U�loc sends exact sequences to cofiber sequences. Let

A �! B �! C

be an exact sequence. Since we have an induced Morita equivalence B=A! C , it
suffices to show that U�loc sends exact sequences of shape

A �! B �! B=A

to cofiber sequences in M�
loc . Since IdemW Catex

1! Catperf
1 is a localization, it com-

mutes with colimits and therefore the right-hand vertical map in the diagram

A //

��

B

��

// B=A

��

Idem.A/ // Idem.B/ // Idem.B/= Idem.A/

is a Morita equivalence. The bottom line is a strict-exact sequence, and so we conclude
that U�loc sends exact sequences to cofiber sequences. Finally, the universality of U�loc
follows from Propositions 8.3 and 8.5 and from the universal property of localization
(see Section 2.5).

8.3 Universal localizing invariant

We denote by EL the small set of maps in M�
loc of shape

colim˛ U�loc.A˛/ �! U�loc.A/;

where fA˛g is a filtered diagram of objects in .Catex
1/

! whose colimit is a �–compact
small stable 1–category A. Localize M�

loc with respect to the set EL , and let Uloc be
the following composition

Catex
1

U�
loc
��!M�

loc

��!Mloc;

where  is the localization functor.

Theorem 8.7 The functor U loc is the universal localizing invariant, ie given any stable
presentable 1–category D , we have an equivalence of 1–categories

.U loc/
�
W FunL.Mloc;D/ ��! Funloc.Catex

1;D/:
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Proof Let us denote by M�
add the small stable1–category constructed as in Section 6

but where we use .Catperf
1 /� instead of .Catperf

1 /! . Similarly to Uadd we have a well-
defined functor U�addW Catex

1!M�
add and so by performing a localization analogous to

the one of Section 8.3 (with EA instead of EL ) we obtain a small stable 1–category
which we denote by M!

add and a composed functor

U!addW Catex
1

U�
add
��!M�

add

��!M!

add:

Let us start by showing that M!
add agrees with Madd and that U!add agrees with Uadd .

For this (and because of the universal property of Uadd and U!add ) it suffices to show
that U!add preserves filtered colimits. Consider the composite

.Catperf
1 /! ,! .Catperf

1 /� � Catex
1

U�
add
��!M�

add:

It inverts Morita equivalences and sends split-exact sequences to split cofiber sequences.
By the construction of Madd we obtain then an additive invariant Catex

1!M�
add and

hence by the universal property of Uadd a colimit preserving functor ˆWMadd!M�
add

and a natural transformation �W ˆıUadd)U�add . We now observe that the two functors

Catex
1

U�
add
��!M�

add

�!M!

add and Catex
1

Uadd
��!Madd

ˆ
�!M�

add

�!M!

add

agree. Since they preserve �–filtered colimits and every object in Catex
1 can be

expressed as a �–filtered colimit of �–small objects, it suffices to show that they agree
for every �–compact small stable 1–category A. The stable 1–category A can
be expressed as a filtered colimit colim˛.A˛/! A, with A˛ 2 .Catex

1/
! , and the

evaluation of the natural transformation � at A identifies with

colim˛ U�add.A˛/ �! U�add.A/:

Since these map belongs to EA , they become invertible in M!
add , and so we conclude

that the above two functors agree. Since the one on the right-hand side preserves
filtered colimits we conclude that U!add also preserves filtered colimits. This shows
that U!add agrees with Uadd (and hence that M!

add agrees with Madd ). Now, let M!
loc

be the category defined as M�
loc but with � replaced by ! . Clearly, the associated

functor U!loc is the universal localizing invariant and so in order to conclude the proof
of Theorem 8.7 it suffices to show that Mloc agrees with M!

loc and that Uloc agrees
with U!loc . Starting with M�

add we can perform the following two localizations:

M�
add �!M�

loc �!M!
loc and M�

add �!M!
add 'Madd �!Mloc:

Since these localizations are independent of the order in which they are performed, our
claim follows and so the proof is finished.
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9 Nonconnective K–theory

Bass introduced the negative K–groups in order to measure the failure of K0 and K1

to satisfy localization; this perspective was studied in detail in Thomason–Trobaugh
and led to the definition of the Bass–Thomason nonconnective K–theory spectrum
of rings and schemes. In fact, any nontrivial theory which is “like K–theory” and
satisfies localization must be nonconnective; there is a nice discussion of this in [44]. In
this section we introduce the nonconnective algebraic K–theory of 1–categories and
show that it becomes corepresentable in Mloc ; see Theorem 9.8. This result depends
critically on the multistage construction of Section 8, which again follows the general
pattern of the argument for dg–categories in [21]. For a connective ring spectrum R,
we give a slightly different definition of the nonconnective K–theory in terms of a
“suspension ring spectrum” of R, and use this show that the negative K–groups of R

are isomorphic to those of �0R.

9.1 Nonconnective K–theory of 1–categories

In order to construct the nonconnective K–theory spectrum associated to a small stable
1–category, we use a generalization of the axiomatic framework due to Schlichting
[64]. For an uncountable regular cardinal � , we will produce functors F� and †�
from Catex

1 to Catex
1 such that for any small stable 1 category A:

(i) K.F�A/ is contractible.

(ii) There are natural transformations

Id �! F� �!†�

such that A! F�A!†�A is exact.

(iii) The functors F� and †� preserve exact sequences.

(iv) F� and †� preserve �–filtered colimits in Catex
1 .

The idea is that F�A is a “K–theoretic cone” and so †�A is a “suspension” of A.
Fix an uncountable regular cardinal � , and for a stable 1–category C recall from
Section 2.4 that C� denotes the �–compact objects in C .

Definition 9.1 Using Proposition 2.18, we define F�AD .Ind!.A//� and †�A to
be the cofiber .Ind!.A//�=A.

Remark 9.2 One might wish to simply use Ind! A as the cone construction; however,
this will rarely turn out to be a small 1–category, whereas passing to the �–compact
objects yields an (essentially) small 1–category by construction.
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Observe that F� is a composite functor

.9:3/ Catex
1 �! PrL

St! �! Catex.�/
1 �! Catex

1 :

By construction and Propositions 5.6 and 5.9, we have an exact sequence

A �! F�A �!†�A;

which is natural in small stable 1–categories A. Next, we check that F�A satisfies
property (i) above.

Lemma 9.4 Let A be a small stable 1–category. Then K.F�A/ is trivial.

Proof Since � is uncountable, F�A has countable coproducts, and so the usual
Eilenberg swindle argument implies that the identity map is null-homotopic on K–
theory and so its K–theory vanishes. Specifically, the functor F W F�A!F�A defined
by X 7!

`
N X is exact. Moreover, there is a natural equivalence of exact functors

idtF ' F induced by the equivalence X t .
`

N X /'
`

N X . Applying K–theory,
we can split off the F component of the resulting equivalence of spectra and deduce
that the identity of F�A is null-homotopic.

We must check that F� and †� preserve exact sequences of small stable1–categories.

Proposition 9.5 Let A! B! C be an exact sequence of small stable 1–categories.
Then the induced sequences

F�A �! F�B �! F�C and †�A �!†�B �!†�C

are exact.

Proof It suffices to show the result for F� , as the statement for †� follows because
colimits commute. Thus, we need to verify that

.Ind!.A//� �! .Ind!.B//� �! .Ind!.C//�

is exact. Definition 5.12 and Proposition 5.15 show that the sequence

Ind! A �! Ind! B �! Ind! C

is exact. Now the result follows from Proposition 5.17.

Passing to the triangulated homotopy category by composing with the functor Ho, we
get a series of functors which satisfies Schlichting’s setup of [64, Section 2.2] and so
produces negative K–groups. Furthermore, we can define the nonconnective K–theory
spectrum as follows, following [64, Section 12].
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Definition 9.6 Let A be a small stable 1–category. Its nonconnective K–theory
spectrum K.A/ is given by

K.A/ WD colimn�
nK.†.n/� .A//:

Here K stands for the K–theory spectrum of Section 7.1, and the structure maps are
induced from the exact sequences

†.n/� .A/ �! F�†.n/� .A/ �!†.nC1/
� .A/; n� 0:

Schlichting’s axiomatic framework implies that this construction agrees with his when
both are defined, and therefore we deduce from his comparison results [64, Section 8]
that the nonconnective K–theory spectrum of Definition 9.6 agrees with the various
classical constructions of nonconnective K–theory spectra.

Finally, we establish the final technical condition; this will be needed in the following
sections.

Lemma 9.7 The functors F� and †� preserve �–filtered colimits.

Proof Recall that F� is the composite (9.3). Hence, the claim follows from the fact
that the passage to Ind� and to �–compact objects preserves �–filtered colimits [47,
5.5.7.8, 5.5.7.10, 5.5.7.11]. Since †� is the cofiber of the inclusion A! F� and
colimits commute, we deduce that †� preserves �–filtered colimits if F� does.

9.2 Corepresentability

This subsection is entirely devoted to the proof of the following corepresentability
result.

Theorem 9.8 Let A be a small stable1–category. Then there is a natural equivalence
of spectra

Map.U loc.S!1/; Uloc.A//'K.A/:

In particular, for each integer n, we have isomorphisms of abelian groups

Hom.Uloc.S!1/; †�nUloc.A//'Kn.A/

in the triangulated category Ho.Mloc/.

The proof of Theorem 9.8 will follow from Theorems 9.9 and 9.10 and from Proposi-
tions 9.17 through 9.26.
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Theorem 9.9 Let A and B be small stable 1–categories such that B is �–compact.
Then there is a natural equivalence of spectra

Map.U�add.B/; U�add.A//'K.Funex.B;A//:

If B D S!1 is the 1–category of compact spectra, this reduces to an equivalence

Map.U�add.S!1/; U�add.A//'K.A/:

Proof The proof is analogous to the argument for Theorem 7.13; instead of the
idempotent-complete stable 1–category Funex.B; Idem.A// we consider the small
stable 1–category Funex.B;A/. Note that since � > ! , S!1 belongs to .Catex

1/
� .

Theorem 9.10 Let A be a small stable 1–category. Then there is a natural equiva-
lence of spectra

Map.U�wloc.S!1/; U�wloc.A//'K.A/:

Proof By construction, the object U�add.S!1/ is compact in M�
add . Let S denote the

set of maps in (8.4), S the strongly saturated collection of arrows generated by S

[47, 5.5.4.5], and let X be an S –local object such that the map U�add.A/!X is an
S –local equivalence (ie U�add.A/!X is in S ). Then by definition,

Map.U�wloc.S!1/;U�wloc.A//'Map.U�add.S!1/;X /;

so it suffices to show that the functor

.9:11/ R WDMap.U�add.S!1/;�/WM�
add �! S1

sends the maps in S to equivalences of spectra. Since M�
add is a stable 1–category

and U�add.S!1/ is compact, R preserves small colimits, so the two-out-of-three property
allows us to reduce to checking that R sends the elements of S to equivalences.

Consider the following diagram:

.9:12/

U�add.A/ // U�add.B/ // U�add.B/=U�add.A/

��

U�add.A/ // U�add.B/ // U�add.B=A/:

By applying the functor (9.11) to the above diagram (9.12) we obtain by Theorem 9.9
a diagram in S ,

.9:13/

K.A/ // K.B/ // K.B/=K.A/

��

K.A/ // K.B/ // K.B=A/;
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where the upper row is a homotopy cofiber sequence. Now, an argument analogous to
the one used in the proof of Proposition 7.19 (where we make use of Waldhausen’s
Fibration Theorem) allow us to conclude that the lower row in the above diagram (9.13)
is also a homotopy cofiber sequence. This completes the argument.

Let V be the partially ordered set f.i; j / W ji � j j � 1; i; j � 0g � N �N . Given a
small stable 1–category A, we denote by Dia.A/ the N.V/–diagram

.9:14/

� � �

F�†.n/� .A/ // †
.nC1/
� .A/

OO

//

// †
.n/
� .A/

OO

// †
.n/
� .A/=†.n/� .A/;

OO

� � �

OO

where F� and †� are as in Definition 9.1.

Lemma 9.15 Let A be a small stable 1–category. Then †.n/� .A/=†.n/� .A/ and
F�†.n/� .A/ become trivial after application of U�wloc .

Proof The object †.n/� .A/=†.n/� .A/ is already trivial in Catex
1 . Since Proposition 2.18

implies that F�†.n/� .A/ admits all �–small colimits, for any B in .Catex
1/

� the small
stable 1–category Fun.B;F�†.n/� .A// also admits all �–small colimits. Thus, the
connective K–theory spectrum K.Fun.B;F�†.n/� .A// is trivial. Finally, Theorem 9.9
and the fact that the objects U�add.B/, with B in .Catex

1/
� generate the category M�

add
[47, 5.5.7.3] allow us to conclude that F�†.n/� .A/ becomes trivial after application of
U�add , and thus after application of U�wloc .

Let A be a small stable 1–category. We denote by V .A/ the object

V .A/D colimn†
�nU�wloc.†

.n/
� .A//

in M�
wloc whose indexing maps are induced from the above diagram (9.14). Note that

V .A/ is functorial in A and that we have a natural map U�wloc.A/!V .A/. We obtain
then a well-defined functor V along with a natural transformation:

.9:16/ V .� /W Catex
1 �!M�

wloc; U�wloc) V .� /:
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Proposition 9.17 Let A be a small stable 1–category. Then, there is a natural
equivalence of spectra

Map.U�wloc.S!1/; V .A//'K.A/:

Proof This follows from the following equivalences:

K.A/D hocolim
n�0

�nK.†.n/� .A//

' hocolim
n�0

�nMap.U�wloc.S!1/;U�wloc.†
.n/
� .A///.9:18/

'Map.U�wloc.S1/� ; colim
n�0

†�nU�wloc.†
.n/
� .A///.9:19/

'Map.U�wloc.S�1/;V .A//:

Equivalence (9.18) comes from Theorem 9.10 and equivalence (9.19) comes from the
compactness of U�wloc.S!1/ in M�

wloc .

Proposition 9.20 The functor V (9.16) inverts Morita equivalences.

Proof It suffices to show that V .� / sends maps of shape A! Idem.A/ to isomor-
phisms. Consider the following diagram:

A

P
��

// F�.A/

F�.P/

��

// †�.A/

†�.P/

��

Idem.A/ // F�.Idem.A// // †�.Idem.A//:

Proposition 2.18 implies that F�.P / is an equivalence. Therefore, since both rows are
strict-exact sequences and Ho.A/ and Ho.Idem.A// differ by direct summands, we
conclude that †�.P / is an equivalence. The definition of the functor V .� / allow us
to conclude the proof.

Proposition 9.21 The functor

V .� /W Catex
1 �!M�

wloc

inverts Morita equivalences, preserves �–filtered colimits and sends exact sequences to
cofiber sequences.

Proof Proposition 9.20 implies that V .� / inverts Morita equivalences. Furthermore,
by Lemma 9.7, F� and †� preserve �–filtered colimits for � > ! , and so V .� / does
as well. Now, let

A �! B �! C
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be an exact sequence. Proposition 9.20 implies that we can assume that Ho.A/ is a
thick triangulated subcategory of Ho.B/. Consider the following diagram:

.9:22/ Dia.A/ // Dia.B/ // Dia.A;B/ WD Dia.A/=Dia.B/

D
��

Dia.A/ // Dia.B/ // Dia.C/;

where Dia.A;B/ is obtained by passage to the cofiber objectwise. Note that since in
the above diagram (9.22) the upper row is objectwise a strict-exact sequence, we obtain
a cofiber sequence

V .A/ �! V .B/ �! V .B;A/ �!†V .A/

in M�
wloc , where

V .B;A/ WD colimn†
�nU�wloc.†

.n/
� .B/=†.n/� .A//:

We now show that the induced map

.9:23/ V .B;A/ �! V .C/

is an equivalence. For this, consider the following commutative diagram:

†
.n/
� .A/

��

// F�†.n/� .A/

��

// †
.nC1/
� .A/

��

†
.n/
� .B/

��

// F�†.n/� .B/

��

// †
.nC1/
� .B/

��

†
.n/
� .B/=†.n/� .A/

��

// F�†.n/� .B/=F�†.n/� .A/

�n

��

// †
.nC1/
� .B/=†.nC1/

� .A/

Dn

��

†
.n/
� .C/ // F�†.n/� .C/ // †

.nC1/
� .C/:

Since the induced triangulated functor

Ho.F�†.n/� .A// �! Ho.F�†.n/� .B//

preserves �–small colimits, [64, Section 3.1] implies that the triangulated category

Ho.F�†.n/� .B/=F�†.n/� .A//
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is idempotent complete. Therefore, �n is an equivalence, and we obtain maps

 nW †
.n/
� .C/ �! F�†.n/� .B/=F�†.n/� .A/

which induce maps

‰nW †
�nU�wloc.†

.n/
� .C// �!†�n�1U�wloc.†

.nC1/
� .B/=†.nC1/

� .A//:

It follows that the natural map

colimn†
�nU�wloc.†

.n/
� .B/=†.n/� .A// �! colimn†

�nU�wloc.†
.n/
� .C//

is an equivalence, which implies that the map (9.23) is an equivalence.

Corollary 9.24 There is a functor

LocWM�
loc �!M�

wloc

such that Loc.U�loc.A//' V .A/, for every small stable 1–category A.

Proof This follows from Propositions 9.21 and 8.6.

Proposition 9.25 The two functors

Loc;  �WM�
loc �!M�

wloc

are canonically equivalent, where  � is the right adjoint of the localization functor.

Proof Let us denote by L the endofunctor Loc ı  of M�
wloc . Note that we have a

natural transformation Id)L. Making use of the definition of V .� / and of the fact
that colimits in 1–categories commute, we observe that L is a localization functor
on M�

wloc [47, 5.2.7.4]. Therefore, it suffices to show that a map in M�
wloc becomes

an equivalence in M�
loc if and only if it becomes an equivalence after application of

L. This follows from the fact that for every small stable 1–category A, we have an
equivalence  .V .A//' U�loc.A/: note that we have cofiber sequences in M�

loc

U�loc.†
.n/
� .A// �! U�loc.F�†.n/� .A// �! U�loc.†

.nC1/
� .A//:

Proposition 9.26 Let A be small stable 1–category. We have a natural isomorphism
in the stable homotopy category of spectra,

Map.U�loc.S!1/; U�loc.A//'K.A/:
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Proof This follows from the following equivalences:

Map.U�loc.S!1/;U�loc.A//'Map.U�wloc.S!1/;  �.U�loc.A///
'Map.U�wloc.S!1/;Loc.U�loc.A///.9:27/

'Map.U�wloc.S!1/;V .A//.9:28/

'K.A/:.9:29/

Equivalence (9.27) comes from Proposition 9.25, equivalence (9.28) comes from
Corollary 9.24, and equivalence (9.29) is Proposition 9.17.

Proof of Theorem 9.8 Recall from Section 8.3 that Mloc is obtained by localizing
M�

loc with respect to the set EL . Since U�loc.S!1/ is compact in M�
loc , it is sufficient

by Proposition 9.26 and the universal property of localization (see Section 2.5) to show
that the functor

Map.U�loc.S!1/;� /WM�
loc �! S1

sends the elements of EL to equivalences. This follows from the fact that the nonconnec-
tive K–theory construction preserves filtered colimits (see [64, Section 7, Lemma 6]),
and so the proof is finished.

9.3 Nonconnective K–theory of Waldhausen categories and localization

In particular, Theorem 9.8 implies that nonconnective K–theory satisfies localization.
This is an extremely useful fact in practice; localization sequences provide one of the
main computation tools for understanding algebraic K–theory. As such, we state a
version of this result in terms of Waldhausen categories. We begin by defining the
nonconnective K–theory of a Waldhausen category.

Definition 9.30 Let C be a DHKS–saturated Waldhausen category with factorization.
Then the nonconnective K–theory K.C/ of C is defined as the nonconnective K–theory
K.N.C/ŒW �1� Œ†�1�/ of the 1–category

N.C/ŒW �1� Œ†�1�' colimfN.C/ŒW �1�
†
�! N.C/ŒW �1�

†
�! � � � g

obtained by inverting the suspension on the underlying 1–category N.C/ŒW �1� in
the 1–category CatRex

1 of 1–categories with finite colimits and right-exact functors.

This definition in terms of the stabilization is reasonable because of the following
consistency results.
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Proposition 9.31 Let C be a presentable 1–category with a zero object, and let
C! Œ†�1� denote the colimit

C! Œ†�1�' colimfC! †
�! C! †

�! � � � g

in CatRex
1 . Then C! Œ†�1� is stable, and the induced functor

C! Œ†�1� �! Stab.C/

identifies the idempotent-completion of C! Œ†�1� with Stab.C/! .

Proof Let D be an idempotent-complete stable 1–category. Then

Funex.C! Œ†�1�;D/' lim Funex.C! ;D/

' lim FunL
!.C; Ind.D//

' FunL
!.Stab.C/; Ind.D//' Funex.Stab.C/! ;D/:

Since Stab.C/! is necessarily idempotent-complete, we conclude that it is equivalent
to the idempotent-completion of C! Œ†�1�.

Proposition 9.32 Let C be a DHKS–saturated Waldhausen category with factorization.
Then the natural map N.C/ŒW �1�! N.C/ŒW �1� Œ†�1� induces a natural equivalence

K.C/ �!K.N.C/ŒW �1� Œ†�1�/:

Proof The additivity theorem implies that, for Waldhausen categories with factor-
ization, the suspension endomorphism †W C ! C induces � idW K.C/! K.C/. By
naturality, we conclude that †W N.C/ŒW �1�!N.C/ŒW �1� acts invertibly on K–theory.
Finally, since K–theory (viewed as a functor of small 1–categories with finite colimits
and a zero object and right-exact functors) preserves filtered colimits, we see that

K.N.C/ŒW �1� Œ†�1�/' colim K.N.C/ŒW �1�/'K.N.C/ŒW �1�/'K.C/;

where the last equivalence follows from Corollary 7.12.

Remark 9.33 On 0–connective covers there is an equivalence K.C/>0 ' K.C/>0

between this notion of nonconnective K–theory and the usual connective K–theory of C .
In degree 0, there an isomorphism �0K.C/Š �0K.C/ if the underlying 1–category
of C is idempotent complete.

Theorem 9.34 Let A ! B ! C be a sequence of DHKS–saturated Waldhausen
categories with factorization such that

Ho.N.A/ŒW �1� Œ†�1�/ �! Ho.N.B/ŒW �1� Œ†�1�/ �! Ho.N.C/ŒW �1� Œ†�1�/
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is a localization sequence of triangulated categories. Then the induced map

K.A/ �!K.B/ �!K.C/

is a cofiber sequence of spectra.

Proof This follows from the natural equivalence K.� / ' K.N.� /ŒW �1� Œ†�1�/

and the fact that cofiber sequence

K.N.A/ŒW �1� Œ†�1�/ �!K.N.B/ŒW �1� Œ†�1�/ �!K.N.C/ŒW �1� Œ†�1�/

is a cofiber sequence because K.� / is a localizing invariant.

9.4 Extending corepresentability

In this section, we show how to extend the corepresentability of negative K–theory
obtained in Theorem 9.8 to maps out of any dualizable object, using the theory developed
in Section 3. We begin with the following technical lemma:

Lemma 9.35 Let B be a small idempotent-complete stable 1–category. Then the
functor given by .� / b̋B preserves equivalences, filtered colimits, the point and exact
sequences.

Proof It follows from the definition that .� / b̋B preserves equivalences, filtered
colimits and the point. The characterization of [48, 6.3.1.16] implies that it preserves
exact sequences.

We can now prove the main theorem of this section:

Theorem 9.36 Let B be a smooth and proper small stable 1–category in the sense
of Definitions 3.4 and 3.5. Then Uloc.B/ is compact in Mloc and for every small stable
1–category A, we have a natural equivalence of spectra,

Map.Uloc.B/;Uloc.A//'K.Bop b̋A/:

Proof For any small idempotent-complete stable 1–category B , we can consider the
functor

.� / b̋BW Catperf
1 �! Catperf

1 :

By Lemma 9.35, the composed morphism

Catperf
1

.� / b̋B
�����! Catperf

1

Uloc
�!Mloc
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is a localizing invariant. Thus, we obtain a commutative diagram

Catperf
1

Uloc
��

.� /b̋B
// Catperf

1

Uloc
��

Mloc
.� /b̋B

//Mloc;

with .� / b̋B a colimit-preserving functor such that

Uloc.A/ b̋B ' Uloc.A b̋B/:

Now, recall from Theorem 3.7 that since B is smooth and proper, it is also dualizable
(in the symmetric monoidal 1–category Catperf

1 of idempotent-complete small stable
1–categories). Therefore, we have an adjunction (on the left) [48, 4.2.5.6], which
induces an adjunction (on the right):

Catperf
1

.� /b̋B
��

Mloc

.� /b̋B
��

Catperf
1 ;

.� /b̋Bop

OO

Mloc;

.� /b̋Bop

OO

with .� / b̋Bop a colimit preserving morphism, such that

Uloc.A/ b̋Bop ' Uloc.A b̋Bop/:

The proof now follows from the following equivalences of spectra:

Map.Uloc.B/;Uloc.A//'Map.Uloc.S!1/b̋B;U loc.A//

'Map.Uloc.S!1/;U loc.A/b̋Bop/

'Map.Uloc.S!1/;U loc.Ab̋Bop//

'K.Ab̋Bop/

'K.Funex.B; Idem.A///:

Finally, since in the adjunction

Mloc

�b̋B
��

Mloc;

�b̋Bop

OO
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the morphism .� /b̋Bop preserves colimits, the object U loc.S!1/ is compact and
Uloc.S!1/b̋B ' U loc.B/, we conclude that U loc.B/ is compact.

9.5 Nonconnective K–theory of connective ring spectra

In this section, we show that for a connective ring spectrum R, the nonconnective
K–theory spectrum we associate to the category of perfect R–modules has negative
homotopy groups determined by the classical nonconnective K–theory spectrum of the
ring �0R.

We give a proof using a model of nonconnective K–theory for connective ring spectra
based on the construction of a “suspension ring spectrum” coupled with Quillen’s plus
construction. We begin by recalling Wagoner’s construction [76] of the nonconnective
K–theory of an ordinary ring R. Given a ring R, we let `R denote the ring of locally
finite (countably) infinite matrices in R; ie N �N matrices such that each row and
column only has finitely many nonzero elements. We let mR denote the finite matrices,
regarded as a 2–sided ideal of `R; these are the matrices with only finitely many
nonzero elements. Then we can form the quotient ring �RD `R=mR, and Wagoner
defines the nonconnective K–theory spectrum to have n–th space

K.R/n DK0.�
nR/�BGLC.�nR/:

It is known that this construction agrees with other possible constructions of the
nonconnective algebraic K–theory spectrum of R (eg see [58, Section 6]).

Next, we recall the generalization of this construction to connective ring spectra. Prior
to the invention of modern notions of structured ring spectra, May initiated the study
of the algebraic K–theory of a multiplicative object called an “A1 ring space”, which
is an E1 space with a suitably compatible A1 multiplication (for a particular pair
of operads) [50; 67]. The prototype example of an A1 ring space is �1R for a
connective ring spectrum R [50, 3.1]. Fiedorowicz, Schwänzl, Steiner and Vogt [31]
extended Wagoner’s constructions by defining mR and `R for A1 ring spaces (using
the work of [67] to define matrices with entries in A1 ring spaces), and then defining
�R to be the homotopy cofiber of the inclusion mR! `R. Furthermore, they prove
that there is an equivalence of spaces

.9:37/ K0.�0.R//�BGLC.R/'�.K0.�0.�R//�BGLC.�R//:

These constructions then allow a definition of the nonconnective algebraic K–theory of
an A1 ring space R with spaces

.9:38/ K.R/n DK0.�
n�0R/�BGLC.�nR/:
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This definition implies that for an A1 ring space R, the natural map R!�0R induces
an isomorphism on the algebraic K–groups K�n.R/ WDK0.�

n�0R/ for n � 0 [31,
1.1].

Our approach involves constructing a variant of the “suspension ring” construction
that allows a construction of a nonconnective K–theory spectrum which agrees with
the nonconnective K–theory of the ring space �1R as defined in Equation (9.38)
on �i for i < 0 and is equivalent to our version of the nonconnective K–theory
K.R/ WDK.bRperf/ spectrum constructed in Definition 9.6. Since �0�

1R Š �0R,
this equivalence implies the desired comparison.

We begin by recalling the definition of the plus construction introduced in [77], ex-
tended to A1 ring spectra. For convenience, we model A1 ring spectra as EKMM
S –algebras. We write MnRD mapR.R

_n;R_n/ for the space of R–module endo-
morphisms of (a cofibrant replacement of) R_n , and write GLn.R/!Mn.R/ for the
full subspace of R–module automorphisms of R_n ; that is, we have a (homotopy)
pullback of spaces

GLn.R/ //

��

Mn.R/

��

GLn.�0R/ // Mn.�0R/Š �0Mn.R/:

Since GLn.R/ is a topological monoid, after replacing to ensure the inclusion of
the unit is a cofibration, we can form its classifying space BGLn.R/. Moreover,
there are natural inclusions GLn.R/! GLnC1.R/ which induce maps BGLn.R/!

BGLnC1.R/. We can form

BGL.R/Š hocolimn BGLn.R/:

Since �1BGL.R/ŠGL.�0R/, we can form the plus construction BGL.R/C , and one
could define the K–theory space to be the infinite loop space K0.�0R/�BGL.R/C .
The consistency of this definition is proved in [30, 7.1], which we restate below:

Lemma 9.39 Let R be a connective A1 ring spectrum. There is an equivalence of
infinite loop spaces

�1K.R/'K0.�0R/�BGL.R/C:

This is consistent in the sense that a check of the definition of the plus construction for
an A1 space [50, Section 7] now yields the following proposition:

Geometry & Topology, Volume 17 (2013)



820 Andrew J Blumberg, David Gepner and Gonçalo Tabuada

Proposition 9.40 For a connective ring spectrum R, the connective algebraic K–
theory space BGL.R/C is equivalent to the algebraic K–theory space BGLC.�1R/.

We now set up analogues of the constructions of [31]. In order to ensure that our
mapping spaces and spectra have the correct homotopy type, we continue to work with
the category of EKMM algebra and module spectra. Since all objects are fibrant, it
then suffices to work with cofibrant modules. For a connective ring spectrum R, in the
following we let MapR.x;y/ denote the mapping spectrum between objects x and y

and mapR.x;y/ the mapping space (which can be computed as �1Map.x;y/) in the
category of R–modules. Moreover, when we write R_n inside a mapping object, we
will tacitly mean the wedge of a cofibrant replacement of R as an R–module.

Definition 9.41 Let R be a connective A1 ring spectrum. We set

MRD colimn MapR.R
_n;R_n/;

the nonunital A1 ring spectrum of finite R–valued matrices. We write LR for the A1
ring spectrum of locally finite matrices, ie the connective A1 ring spectrum obtained
as the homotopy pullback

LR //

��

EndR.R
_1/

��

H`�0R // H End�0R.�0R_1/;

where here H denotes the Eilenberg–Mac Lane spectrum functor.

Remark 9.42 These definitions are consistent with the those of m and ` of [31] in
the case of a ringlike A1 space; one can construct equivalences �1MR'm.�1R/

and �1LR' `.�1R/, although we leave the details to the interested reader, in order
avoid a detailed discussion of the technology for A1 ring spaces.

We now begin to prove the Comparison Theorem 9.53 below. As explained in [14,
Section 15], without loss of generality we can work with categories enriched in EKMM
S –modules as a model for spectral categories, and we tacitly move between categories
enriched in EKMM S –modules and categories enriched in symmetric spectra in the
following discussion.

Let FR denote the spectral category of finitely generated free R–modules. The theorem
follows from Proposition 9.51, which depends on the existence of a spectral category
zF1

R
, equipped with a homotopically fully faithful spectral functor FR!

zF1
R

, whose
1–category of modules has a generator G such that �0 of the endomorphism ring
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spectrum of the image of G in the quotient category ‰. zF1
R
/=‰.FR/ is �.�0�

1R/.
This approach to constructing analogues of �.�1R/ is motivated by the explicit
description of mapping spectra in the stable quotient (see [23, 1.3] for the dg–case
and [14, Section 6] for the spectral analogue) and an idea from [58, 6.1].

We begin by giving a particular construction of such a spectral category. Roughly
speaking, the idea is to adjoin the object R_1 to FR in such as way that the inclusion
FR !

zF1
R

is fully faithful and ‰. zF1
R
/ is generated by an object G D R_1 such

that �0 End zF1.G/Š `.�0�
1R/.

Recall that we denote by bR the category of R–modules, which we can regard as a
spectral category. Let FR denote the full spectral subcategory of bR spanned by the
finite free R–modules R_n , n 2N , and let F1

R
denote the full spectral subcategory

of bR spanned by the finite free R–modules as well as the countable wedge R_1 '

colimn R_n . The inclusion gives a fully faithful spectral functor i W FR! F1
R

. The
spectral category F1

R
is an intermediate construction that we will use to construct zF1

R
.

Write ‰.FR/ and ‰.F1
R
/ for the presentable stable 1–categories of FR –modules

and F1
R

–modules, and let i!W ‰.FR/!‰.F1
R
/ denote the left adjoint of the restriction

i�W ‰.F1
R
/!‰.FR/. Given an R–algebra A, we will also write ‰.A/ for the stable

1–category of A–modules.

Proposition 9.43 The unit natural transformation Id! i�i! is an equivalence.

Proof This is follows from the fact that i!W ‰.FR/!‰.F1
R
/ is fully faithful, which

in turn follows from the fact that i is a fully faithful functor of spectral categories.

Since i! is fully faithful, we have an exact sequence of presentable stable 1–categories

‰.FR/ �!‰.F1R / �! C;

where C denotes the cofiber of i! . We can regard C as the full subcategory of ‰.F1
R
/

spanned by the local objects. In mild abuse of notation, for each 0� n�1, we will
write R_n for the F1

R
–module represented by R_n .

Proposition 9.44 The FR –module represented by any finite wedge R_n is a compact
generator of ‰.FR/ and the F1

R
–module represented by the countably infinite wedge

R_1 is a compact generator of ‰.F1R/. In particular, we have equivalences

‰.R/'‰.EndR.R
_n//'‰.FR/ and ‰.EndR.R

_1//'‰.F1R /:
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Proof The statement about compact generators essentially follows by construction.
Then the 1–categorical version of Schwede and Shipley’s Morita Theorem [65],
see also [48, Section 8.1.2], allows us to characterize these categories in terms of
endomorphisms of the compact generator.

Since i�i! is equivalent to the identity, the counit map i!i
�R_1!R_1 restricts to

an equivalence of FR –modules. However, it is not an equivalence of F1
R

–modules,
since not all endomorphisms of R_1 (eg the identity) factor through i!i

�R_1 .

The following proposition is standard; we restate it for convenience.

Proposition 9.45 An F1
R

–module M is in the full subcategory C�‰.F1
R
/ spanned

by the local objects if and only if i�M ' 0 in ‰.FR/. Similarly, a map of F1
R

–
modules f W M !M 0 is a local equivalence if and only if the cofiber of f lies in the
essential image of i! .

Proof The first claim follows from the fact that i�M ' 0 if and only if for all FR –
modules N , MapF1

R
.i!N;M /' 0. In turn, this holds if and only if for any map of

F1
R

–modules Q! P with cofiber of the form i!N ,

MapF1
R
.P;M /'MapF1

R
.Q;M /:

The second claim follows from the fact that, if the cofiber of f lies in the essential
image of i! , then for any local object L, MapF1

R
.M 0;L/'MapF1

R
.M;L/.

As a consequence, we can identify a compact generator of C .

Corollary 9.46 Let G denote the cofiber of the counit i!i
�R_1!R_1 in ‰.F1

R
/.

Then G lies in the full subcategory C �‰.F1
R
/, ie G is a local object, and the map

R_1!G is a local equivalence. Furthermore, G is a compact generator of C .

Proof By the previous proposition, G is a local object, and the cofiber

†i!i
�R_1 ' i!†i�R_1

of R_1!G is in the image of i! . G is compact because R_1 is a compact generator
of F1

R
and the functor ‰.F1

R
/! C preserves compact objects [64, 2.9].

This suggests that we might consider EndC.G/, regarded as an A1 ring spectrum
under composition, as an analogue of y�R. Note that by Corollary 9.46, EndC.G/'
MapF1R.R

_1;G/ is equivalent to the cofiber (in spectra) of the map

MapF1
R
.R_1; i!i

�R_1/ �!MapF1
R
.R_1;R_1/:
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However, since �0.MapF1
R
.R_1;R_1// can be identified as the collection of infinite

matrices with values in �0.R/ that have finitely many elements per row, we need to
perform a construction analogous to Definition 9.41.

Let
�0
zF1R �! �0F1R

denote the subcategory of �0F1
R

consisting of those maps

f 2 �0Map.R_m;R_n/Š Hom�0R.�0R_m; �0R_n/;

for 0 � m; n �1, which are locally finite when regarded as elements of the group
of �0R–valued m� n–matrices. Since the composition induces on �0 the product of
matrices and products of locally finite matrices are locally finite, this specification does
indeed define a subcategory of �0F1

R
. Furthermore, �0

zF1
R

inherits an enrichment
over abelian groups from that of �0F1

R
. We now perform a categorical analogue of

Definition 9.41, using the Eilenberg–Mac Lane functor H from categories enriched in
abelian groups to spectral categories [65, 5.1.5].

Lemma 9.47 The symmetric monoidal functor �0W Sp�0! Ab is right adjoint to the
Eilenberg–MacLane spectrum functor H , which is lax symmetric monoidal. It induces
a functor

�0W CatSp�0
�! CatAb

from categories enriched in connective symmetric spectra to categories enriched in
abelian groups with right adjoint H .

Using this we obtain a morphism of spectral categories

H�0
zF1R �!H�0F1R :

Note that for 0�m; n<1, the induced map of Eilenberg–Mac Lane spectra

Map
H�0

zF1
R

.R_m;R_n/ �!MapH�0F1
R
.R_m;R_n/

is an equivalence, as finite matrices are locally finite.

We now define spectral categories zF1
R

and zFR as the homotopy pullbacks

zFR
//

��

zF1R
//

��

H�0
zF1

R

��

FR
// F1

R
// H�0F1

R
:
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Observe that zFR and zF1
R

have the same objects as FR and F1
R

, respectively, but
End zF1

R
.R_1/' LR.

Proposition 9.48 The spectral functor zFR ! FR is a weak equivalence of spectral
categories, and there is an equivalence of A1 ring spectra End zF1

R
.R_1/' LR.

Proof As the functor is actually surjective on objects, it is enough to show that it is
fully faithful. This follows from the fact that mapping spectra in the homotopy pullback
spectral category are computed as the homotopy pullbacks of the mapping spectra.
Applying the long exact sequence to the homotopy pullback

Map zF1
R
.R_m;R_n/ //

��

MapF1
R
.R_m;R_n/

��

MapH�0
zF1

R
.R_m;R_n/ // MapH�0F1

R
.R_m;R_n/

implies the desired equivalence. A similar computation with mD nD1 implies the
second statement.

The spectral functor zF1
R
! F1

R
induces a functor (which is not fully faithful)

‰. zF1R / �!‰.F1R /

on 1–categories of modules.

Carrying out the same analysis as above, we see that the quotient

C0 D‰. zF1R /=‰.FR/

can be described as modules over EndC0.G0/, where G0 is the cofiber of the map

i!i
�R_1 �!R_1

(here R_1 is regarded as an object of zF1
R

) and hence as a spectrum EndC0.G0/ is
equivalent to the cofiber in spectra of the map

.9:49/ Map
‰. zF1

R
/
.R_1; i!i

�R_1/ �! End
‰. zF1

R
/
.R_1/:

Lemma 9.50 There is an equivalence of rings �0.EndC0.G0//' �0.��
1R/.

Proof Regarding zF1
R

as a simplicial category, End zF1
R
.R1/ is (by construction) the

A1 ring space `R. Furthermore, we have that

�0.Map
‰. zF1

R
/
.R_1; i!i

�R_1//Š �0.i!i
�R_1/Šm�0R

Geometry & Topology, Volume 17 (2013)



A universal characterization of higher algebraic K–theory 825

and by construction
�0.End

‰. zF1
R
/
.R_1//Š `�0R:

Therefore, Equation (9.49) implies that as groups there is an isomorphism

�0.EndC0.G0//Š `.�0.R//=m.�0.R//Š `.�0.�
1R//=m.�0.�

1R//

Š ��0.�
1R/Š �0.��

1R/;

where the last isomorphism follows from [31, 5.1]. Finally, the universal property of
the cofiber in spectra implies that there is a ring structure induced on �0.EndC0.G0//
induced by the ring structure on m�0.R/ quotiented by the two-sided ideal `�0.R/.
Inspection of �0 shows that this multiplication coincides with the ring structure on
�0.EndC0.G0// induced by composition.

Based on this, we define
y�RŠ EndC0.G0/;

using the setup described above, and we proceed to relate this suspension ring spectrum
construction to an 1–categorical delooping. The basic idea is that our constructions
of the suspension rings give (smaller) models of the 1–categorical cone F� from
Definition 9.1 which are more closely related to the suspension ring spectrum y�R.

Proposition 9.51 Let R be a connective A1 ring spectrum. We have a natural
equivalence of spectra

K.‰tri.y�R//
'
// K..Ind.‰perf.R///

�=‰perfR/

for any infinite cardinal � > ! .

Proof For any infinite cardinal � > ! , there is a natural inclusion map

‰perf.F
1
R / �! .Ind.‰perf.R///

�

induced by the fact that any countable wedge of copies of R is in .Ind.‰.R/perf//
� ,

and the latter is closed under retracts and stable under finite colimits. Since the inclu-
sion ‰perf.FR/!‰perf.F

1
R
/ is compatible with the (Yoneda) inclusion ‰perf.R/!

.Ind.‰perf.R///
� , we have a commutative diagram

‰perf.FR/ //

'

��

‰perf.F
1
R
/

��

‰perf.R/ // .Ind.‰perf.R///
� :
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Combining this with ‰perf. zFR/!‰perf. zF
1
R
/ we obtain the commutative diagram

.9:52/

‰perf. zFR/
//

'

��

‰perf. zF
1
R
/

��

‰perf.FR/ //

'

��

‰perf.F
1
R
/

��

‰perf.R/ // .Ind.‰perf.R///
�

and hence an induced composite map of quotients

˛W ‰perf. zF
1
R /=‰perf.FR/�!‰perf.F

1
R /=‰perf.FR/�! .Ind.‰perf.R///

�=‰perf.R/:

By the work above, ˛ can be described as a map

‰tri.y�R/ �! .Ind.‰perf.R///
�=‰perf.R/:

Finally, since F1
R

has countable coproducts, the usual Eilenberg swindle implies that
K.F1

R
/ is contractible. We also know that K.‰perf. zF

1
R
// is contractible [31, 6.1,6.3].

Therefore, applying Map.U�wloc.S!1/; U�wloc.� // to the commutative diagram, the fact
that all of the horizontal sequences are strict-exact allows us to apply Theorem 9.10 to
conclude that ˛ induces an equivalence on K–theory spectra.

Proposition 9.51 allows us finally to establish the desired result.

Theorem 9.53 Let R be a connective A1 ring spectrum. Then for i � 0, the natural
map R!H�0R induces isomorphisms �iK.R/! �iK.H�0R/Š �iK.�0R/.

Proof Using the proof of Proposition 9.51 and mimicking Definition 9.6, we can
define a spectrum

K 0.R/ WD colimn�
nK.‰tri.y�

nR//:

The conclusion of Proposition 9.51 along with diagram (9.52) (which implies compati-
bility of the structure maps) yields an equivalence K 0.R/'K.R/. By the argument
for [64, 11.7], we see that we can compute the homotopy groups of K 0.R/ using a
fibrant model that is a spectrum with n–th space given by the space

�1K.‰perf.y�
nR//:

Lastly, Lemmas 9.39 and 9.50 imply that there is an equivalence

�1K.‰perf.y�
nR//'K0.�

n�0R/�BGLC.y�nR/:

Therefore, for n> 1, �0�
1K.‰perf.y�

nR// is K0.�
n�0R/DK�n.�0R/.
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10 Trace maps

In this section we apply the work of the preceding sections to give a universal character-
ization of the topological Dennis trace map K! THH [16] and the cyclotomic trace
map K! TC [17]. More generally, we identify all natural transformations of additive
functors from K–theory to THH : they are the multiples of the topological Dennis
trace map. This identification provides a very satisfying conceptual construction of
the cyclotomic trace map, and of course makes it clear that all known definitions are
consistent.

10.1 THH as a localizing invariant

We begin by observing that THH provides a localizing invariant of small stable 1–
categories. Although it is possible to do this directly in the setting of 1–categories
(see for instance the more general discussion of topological chiral homology in [48,
Section 5.3] or the constructions outlined in [6, 5.1.1]), we use existing constructions
in the setting of spectral categories in order to ease technical difficulties that arise in
the subsequent construction of TR and TC . Our basic sources for this material are
[14] and [10].

Recall that for a small spectral category C we can define THH.C/ in terms of the
Hochschild–Mitchell cyclic nerve for spectral categories [14, Section 3]. The cyclic
nerve is defined as the simplicial object

N
cyc
q C D

_
C.cq�1; cq/^ � � � ^ C.c0; c1/^ C.cq; c0/;

where the sum is over the .qC1/–tuples .c0; : : : ; cq/ of objects of C . This becomes a
simplicial object using the usual cyclic bar construction face and degeneracy maps: The
unit maps of C induce the degeneracy maps, and the composition maps in C (along with
the twist map at the end) induce the face maps. We denote the geometric realization as
N cycC .

The spectrum N cycC has the correct homotopy type only when C has cofibrant mapping
spectra [14, 3.1]. Since the cofibrant objects in the Morita model structure on small
spectral categories reviewed in Theorem 2.2 have cofibrant mapping spectra [69, 4.18],
we can define the functor

THH WDN cyc
ıQW CatS �! S;

where Q denotes the cofibrant replacement functor in the Morita model structure on
CatS . Since this construction preserves Morita equivalences [14, 5.12] (and in fact
DK–equivalences [14, 5.9]) the functor descends to the level of 1–categories.
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Lemma 10.1 The functor
THHW CatS �! S

induces a functor of 1–categories

THHW Catex
1 ' N..CatS/c/ŒW �1� �! N..S/c/ŒW �1�' S1:

This definition of THH as a functor of 1–categories lets us deduce the following
proposition from known properties of THH in the setting of spectral categories.

Proposition 10.2 THH is a localizing invariant of small stable 1–categories.

Proof The cyclic bar construction commutes with filtered homotopy colimits of
spectral categories. Furthermore, THH.� / takes exact sequences of spectral categories
to exact sequences of spectra [14, 7.1]. Therefore, the induced functor on1–categories
is a localizing invariant.

The force of the corepresentability result for algebraic K–theory (Theorem 7.13) is that
it implies, via the spectral Yoneda Lemma, the following identification of the spectrum
of natural transformations of additive functors K!E .

Theorem 10.3 Given an additive invariant EW Catex
1 �! S1 with values in the stable

1–category of spectra, we have a natural equivalence

Nat.K;E/'E.S!1/;

where Nat.K;E/ denotes the spectrum of natural transformations from K to E as
additive invariants from small stable 1–categories to spectra.

Proof By Theorem 6.10, we can describe the additive invariants K and E as elements
of FunL.Madd;S1/. The equivalence

Nat.Map.Uadd.S!1/;� /;E/'E.S!1/

follows from 7.13 and the spectral Yoneda Lemma.

In particular, applying Theorem 10.3 to THH yields the following corollary.

Corollary 10.4 We have an equivalence of spectra

Nat.K.� /;THH.� //Š THH.S!/' THH.S/' S:

Passing to �0 on both sides we obtain an isomorphism between homotopy classes of
natural transformations and �0.S/Š Z.
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10.2 The topological Dennis trace map

Next, we want to characterize the topological Dennis trace K ! THH in terms of
the classification of Corollary 10.4. To do this, we briefly recall the construction of
the topological Dennis trace map for spectral categories and verify that it descends
to provide a natural transformation of additive invariants from K–theory to THH on
1–categories. We rely on the work of [14, Section 5].

Recall that any small spectral category A is equivalent in the Morita model structure
to the small spectral category bAperf of perfect modules. The category bAperf admits the
structure of a Waldhausen category by restriction from the spectral model structure
on bA. As explained in [14, Section 15], without loss of generality we can work with
categories enriched in EKMM S –modules. In this case, because all objects are fibrant
the weak equivalences of the Waldhausen structure on bAperf are compatible with the
spectral enrichment in the sense of [10, Section 1].

Now, following [10, Section 5], we construct a trace using the perspective of [52]
by “mixing” a cyclic bar construction and Waldhausen’s S� construction; this is
definition [10, 5.12]. Upon passage to underlying 1–categories, we end up with a
natural transformation of localizing invariants.

Lemma 10.5 The topological Dennis trace above induces a natural transformation of
localizing invariants

K �! THH:

Proof It is clear from the construction of the trace described above that it descends to
a natural transformation of functors of 1–categories K! THH . One checks on each
side that the trace commutes with filtered homotopy colimits of spectral categories,
and so the result follows.

As a corollary, we know that there exists an element x 2 Z such that x corresponds
to the homotopy class of the topological Dennis trace under the identification of
Corollary 10.4. The following theorem identifies this element as the unit.

Theorem 10.6 The topological Dennis trace is (up to homotopy) the natural transfor-
mation given by the identity element 1 2 �0.THH.S//Š �0.S/Š Z.

Proof Given a point � in Nat.K.� /;THH.� // (a specific natural transformation,
that is), we can describe the corresponding element in �0.S/ as the homotopy class
represented by the composite

S �!Map.Uadd.S!1/;Uadd.S!1//'K.S/
�
�! THH.S/' S;
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where the first map picks out the identity map in Map.Uadd.S!1/;Uadd.S!1//. There is
also a classical map i W S!K.S/ constructed (for instance) as the canonical inclusion
of the finite sets into finite spaces. Waldhausen’s calculations [77, Section 5] imply
that the homotopy class of i is represented by 1 2 �0.K.S//. On the other hand, since
the identity map is the unit for the multiplication on �0.Map.Uadd.S!1/;Uadd.S!1///
induced by the composition, it must also be represented by 1 2 �0.K.S//. Finally,
specializing to the case when � is the topological Dennis trace, Waldhausen [77, 5.2]
proves that the composite

S
i
�!K.S/ �! THH.S/' S

is homotopic to the identity.

10.3 TC and the cyclotomic trace map

Much of the interest in the topological Dennis trace comes from the fact that the THH
spectrum comes with an additional equivariant structure (generalizing the classical
connection between the cyclic bar construction of a space and the free loop space)
which allows a refinement into a theory called TC , the topological cyclic homology.
The topological Dennis trace lifts to a map

K �! TC

called the cyclotomic trace map [17].

We will once again apply corepresentability and point-set models to characterize the
cyclotomic trace. However, when attempting to apply our corepresentability results
to TC , we run into certain obstacles. Although TC is Morita invariant and satisfies
localization [14], it does not preserve filtered colimits and is therefore not a localizing (or
additive) invariant. Nonetheless, we can adapt our results to characterize the cyclotomic
trace in this setting.

We begin by recalling the definition of TC in the context of spectral categories. Our
review is brief; once again, we refer the interested reader to [10, Section 5] and [14,
Section 4] for an authoritative treatment. Fix a prime p . For a spectral category C ,
we can realize THH.C/ as a cyclotomic S1 –spectrum. It is convenient to use the
Bokstedt model of THH , which is reviewed in detail in [14, Section 4]. Since the
Bokstedt model is naturally weakly equivalent to N cycQC for any spectral category
C [14, 3.1], we can leverage the work above. A cyclotomic structure is additional
structure on an equivariant spectrum arising from the self-equivalence S1=H Š S1

(for finite H � S1 ) that models the structure of the free loop space.
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Roughly speaking, what we have is a set of compatible maps

�H T �! T

for finite H � S1 . The equivariant structure allows us to consider the associated
nonequivariant spectra

TRn.C/D THH.C/Cpn�1 ;

the fixed points with respect to the induced Cpn�1 action. The inclusion of fixed points
and the cyclotomic structure give rise to maps F and R, respectively,

F;RW TRn
�! TRn�1:

We define TCn.C/ to be the homotopy equalizer

holimF;R TRn.C/ �! TRn�1.C/:

We then have that
TC.C/D holimn TCn.C/;

where we form the homotopy limit over the maps induced by the restriction R; this
definition is equivalent to the one originally given in [17].

The work of [14, Section 5] produces a description of THH.C/ for a spectral category
C as a cyclotomic spectrum, and hence constructions of TRn , TCn and TC . Moreover,
a cyclotomic trace map K! TC is constructed which arises from compatible maps
K! TCn . As above, we import these constructions into the setting of 1–categories.
First, we have the following lemma:

Lemma 10.7 The functors

TRn;TCn;TCW CatS �! S

induce functors of 1–categories

TRn;TCn;TCW Catex
1 ' N..CatS/c/ŒW �1� �! N..S/c/ŒW �1�' S1:

Proof By [14, 3.9], maps which induce equivalences on THH induce equivalences
on TRn , TCn and TC . As a consequence, the result follows from Lemma 10.1.

Next, we observe that each of the objects TCn provides a localizing invariant.

Proposition 10.8 The functor TCn is a localizing invariant of stable 1–categories
with values in the stable 1–category of spectra.
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Proof [14, Localization Theorem 7.1] implies that fTCn.C/g takes short exact se-
quences of spectral categories to short exact sequences of small stable 1–categories.
Thus, we need to show that TRn.C/ preserve filtered colimits. We know this for
THH , and the result now follows inductively from consideration of the fundamental
cofibration sequence (eg [36, 2.1.4])

THH.C/C
pn�1
�! TRn.C/ �! TRn�1.C/

(where the left-hand term denotes the homotopy orbit space) and the fact that homotopy
orbits commute with filtered colimits.

The topological Dennis trace lifts through the constructions of TCn , essentially by
construction. Roughly speaking (see [10, 5.12] for a detailed construction), the trace is
induced by an “inclusion of objects” map S�C! THH.S�C/, given by taking an object
to its identity map in the 0–skeleton. Since the trace lands in the fixed set with respect
to the spacewise S1 –action on the cyclotomic THH spectrum, it is compatible with
the maps R and F (see eg [37, 1.2] for a more detailed discussion of this). Moreover,
we can check that the trace descends to a natural transformation of localizing invariant
using Lemma 10.5.

Lemma 10.9 The topological Dennis trace above induces a natural transformation of
localizing invariants

K �! TCn:

Furthermore, the cyclotomic trace K! TC provides a natural transformation in this
setting which is assembled from natural transformations of localizing invariants.

Lemma 10.10 The natural transformations of localizing invariants

K �! TCn

induce a natural transformation of spectrum-valued functors

K �! TC:

Although TCDholim TCn is not itself a localizing invariant (it does not preserve filtered
colimits in general), any natural transformation of functors K! TC is equivalent to
the data of compatible maps to each TCn . Therefore, if we consider the spectrum of
natural transformations of functors to spectra from K! TC which restrict to localizing
invariants on each component, the spectrum is given by the limit (in the 1–category
of spectra)

limn Nat.K.� /;TCn.� //:
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Finally, this yields the following characterization of the cyclotomic trace.

Theorem 10.11 After p–completion, the set of homotopy classes of compatible local-
izing invariants fK! TCn

g is isomorphic to Zp . The cyclotomic trace is represented
by 1 2 Zp .

Proof Using Theorem 10.3 as in the proof of Corollary 10.4, we see that the spectrum
of natural transformations K ! TC which restrict to localizing invariants on each
component can be computed as the limits (in the 1–category of spectra)

limn Nat.K.� /;TCn.� //' limn TCn.S/D TC.S/:

Completing at the prime p , recall that TC.S/' S_†CP1
�1

[63, Section 1]. Since
�0.†CP1

�1
/D 0, we deduce that the set of homotopy classes of compatible invariants

is Zp . Furthermore, using the argument for Theorem 10.6 and passing to the limit, we
can identify the class of the cyclotomic trace by understanding the homotopy class of
the composite

S �!K.S/ �! TC.S/ �! THH.S/' S

(after p–completion). An elaboration of Waldhausen’s results [77, Section 5] (see [17,
Section 5] or [63, Section 1]) implies that this homotopy class is the identity (ie the
unit splits the trace TC.S/! THH.S/' S , which gives the identification of TC.S/
above), and so using the work of Theorem 10.6 we again deduce that the cyclotomic
trace is represented by the unit.
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