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On the number of ends of
rank one locally symmetric spaces

MATTHEW STOVER

Let Y be a noncompact rank one locally symmetric space of finite volume. Then
Y has a finite number e.Y / > 0 of topological ends. In this paper, we show that
for any n 2 N , the Y with e.Y / � n that are arithmetic fall into finitely many
commensurability classes. In particular, there is a constant cn such that n–cusped
arithmetic orbifolds do not exist in dimension greater than cn . We make this explicit
for one-cusped arithmetic hyperbolic n–orbifolds and prove that none exist for
n� 30 .

11F06, 20H10, 22E40

1 Introduction

Let X be real, complex, quaternionic hyperbolic space, or the Cayley hyperbolic plane
and G its orientation-preserving isometry group. Let � <G be a lattice and �nX be
the associated locally symmetric space. Throughout this paper we assume that �nX is
noncompact, ie, that � is a nonuniform lattice in G . Then �nX has a finite number
of topological ends e.�nX / > 0. The purpose of this paper is to prove the following
theorem.

Theorem 1.1 Fix n > 0. There are only finitely many commensurability classes of
arithmetic rank one locally symmetric spaces Y with e.Y /D n.

Some finiteness results were previously known for a fixed rank one symmetric space.
For the hyperbolic plane, the modular group PSL2.Z/ determines the unique com-
mensurability class of nonuniform arithmetic lattices in PSL2.R/. For hyperbolic
3–space see Chinburg, Long and Reid [10], and for the complex hyperbolic plane see
the author’s earlier paper [20]. Every lattice in PSp.n; 1/ or F.�20/

4
is arithmetic by

Corlette [11] and Gromov and Schoen [14], so the arithmetic assumption is superfluous
and we have the following.

Corollary 1.2 For every n> 0 there are, up to commensurability, only finitely many
n–cusped quaternionic and Cayley hyperbolic orbifolds of finite volume.
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In the language of algebraic groups, the arithmetic groups that we consider are those
which have Q– and R–rank one. While the R–rank one assumption is natural from
a geometric perspective, since this corresponds to the negatively curved symmetric
spaces, it is also natural from the point of view of algebraic groups. For example, all
finite volume locally symmetric spaces of Q–rank at least 2 (eg, SLn.Z/ for n� 3) are
one-ended, and many remain ‘1–cusped’ under various alternative definitions of a cusp,
like transitivity of the action on Q–isotropic flags. See Borel and Ji [7] for various
interpretations in higher rank. For Q–rank 1 lattices in semisimple groups of higher
R–rank, one encounters lattices like SL2.OF /, where OF is the ring of integers in an
arbitrary algebraic number field. The number of ends of the locally symmetric space
associated with SL2.OF / equals the so-called class number of F , and whether or not
there are infinitely many number fields of bounded class number is widely expected to
be true, but remains one of the outstanding open problems in number theory.

We now introduce notation that we will use throughout the paper. Since G has real
rank one, there is a unique conjugacy class of parabolic subgroups. Let P denote one
such subgroup. Choose a maximal R–split torus S � P , and let Z be the centralizer
of S in G . Then there is a unipotent subgroup U � P so that P is the semidirect
product of U with Z .

Since P is the stabilizer in G of a point on the ideal boundary X1 of X and G acts
transitively on the boundary, X1 is naturally identified with the coset space G=P .
The ends of �nX are in one-to-one correspondence with the � –conjugacy classes
of parabolic subgroups of � . In other words, ends correspond to � –orbits of those
gP 2G=P such that � \gPg�1 is a cocompact lattice in gPg�1 . This leads to the
following interpretation of the ends of �nX when � is arithmetic.

Let � < G be a nonuniform arithmetic lattice. Then there is an absolutely almost
simple simply connected Q–algebraic group G such that the lift of � to G.R/ under a
central isogeny G.R/!G is commensurable with the group of integral points G.Z/
determined by a representation of G into GLN .Q/. See Borel’s books [5; 6] for details.
We describe the construction of these lattices in Section 2.

Since G has Q–rank one, there is a unique conjugacy class of Q–parabolic subgroups.
Let P be one, and choose a maximal Q–split torus S � P . Then � acts on the
complete variety .G=P/Q D G.Q/=P.Q/. Since P.R/ contains the center of G.R/,
we can identify G.R/=P.R/ with X1 . Parabolic subgroups of � are commensurable
with a lattice in P.Q/, so

(1) e.�nX /D #
�
�nG.Q/=P.Q/

�
:

The focus of this paper is on the right hand side of (1).
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We begin in Section 3 by studying the ends of �nX when X is the image in G of a
so-called principal arithmetic subgroup �Kf

of G.Q/ defined by a coherent compact
open subgroup Kf of G.Af /, where Af denotes the finite adeles of Q. When Kf is
special (see Tits [22]), then we can give an exact formula for e.�Kf

nX / using results
of Borel [4]. In other cases, we only obtain a lower bound. See Proposition 3.1 below.

To prove Theorem 1.1, it suffices to consider maximal arithmetic lattices in G . By a
result of Borel and Prasad [8, Proposition 1.4], every maximal arithmetic lattice is the
normalizer in G of some principal arithmetic lattice. This relationship is analyzed in
Section 4, where we complete the proof of Theorem 1.1. In Section 5, we apply our
techniques to give an explicit bound for one-cusped arithmetic hyperbolic n–orbifolds.

Theorem 1.3 One-cusped arithmetic hyperbolic n–orbifolds do not exist for any
n� 30.

It is known that there are hyperbolic reflection groups that determine one-cusped
arithmetic hyperbolic n–orbifolds for all n� 9. See for instance Hild [15]. We close
the paper by constructing one-cusped hyperbolic n–orbifolds for nD 10; 11. There
may be examples for 12� n� 29 related to definite rational quadratic forms with few
classes in their spinor genus; such quadratic forms do not seem to be classified, so we
do not know if Theorem 1.3 is sharp.
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2 Arithmetic subgroups of rank one groups

In this section, we describe the nonuniform arithmetic lattices in simply connected Lie
groups of R–rank one. See Tits [21] for the full classification. See Knus, Merkurjev,
Rost and Tignol [17, Section 25] for further details about the classification of simply
connected groups. This naturally breaks up into three cases: hyperbolic space, complex
and quaternionic hyperbolic space and the Cayley hyperbolic plane.

2.1 Hyperbolic space

The simply connected form of the isometry group of hyperbolic n–space is the group
Spin.n; 1/, which is the double cover of SO.n; 1/. Note that we have exceptional
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isomorphisms

Spin.2; 1/Š SL2.R/;

Spin.3; 1/Š SL2.C/

with the more familiar groups acting on hyperbolic 2– and 3–space.

All nonuniform arithmetic lattices in Spin.n; 1/ are determined as follows. Let q be an
isotropic nondegenerate quadratic form on QnC1 of signature .n; 1/ and G D Spin.q/.
Recall that a quadratic form is isotropic if there is a nonzero vector v 2 QnC1 so
that q.v/D 0. Then G.R/Š Spin.n; 1/, and every nonuniform arithmetic lattice in
Spin.n; 1/ is commensurable with G.Z/ for some G as above. We note that there are
constructions of arithmetic lattices for all odd n that do not use quadratic forms, but
these constructions do not lead to nonuniform lattices. See Vinberg and Shvartsman
[23] for further details.

We now describe the Q–split tori of G and their centralizers, since they are crucial
throughout this paper. A maximal Q–split torus S of G is isomorphic to the multi-
plicative group Gm over Q. Since q is isotropic, we can find a basis for QnC1 such
that q has matrix

QD

0@0 0 1

0 Q0 0

1 0 0

1A ;
where Q0 is the matrix of an anisotropic (ie, not isotropic) quadratic form q0 on Qn�1 .
That is, q D q0˚ q0 , where q0 is a hyperbolic plane. Under this basis, the image S of
S in the special orthogonal group SO.q/ is the set of matrices of the form

(2)

0@x 0 0

0 In�1 0

0 0 x�1

1A
where x 2Q� and In�1 is the .n� 1/� .n� 1/ identity matrix.

We also need to understand the centralizer Z.S/ of S in G . The centralizer Z.S / of
S in SO.q/ is the group of elements0@x 0 0

0 A 0

0 0 x�1

1A
such that x 2Q� and A 2 SO.q0/. Then Z.S/ is the lift of this group to Spin.q/, and
the quotient of Z.S/ by S is the group Pin.q0/, which contains Spin.q0/ as an index
2 subgroup.
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2.2 Complex and quaternionic hyperbolic space

The simply connected forms of the isometry group of complex and quaternionic
hyperbolic n–spaces are SU.n; 1/ and Sp.n; 1/, respectively. For complex hyperbolic
space, let D be an imaginary quadratic extension of Q. For quaternionic hyperbolic
space, let D be a definite quaternion algebra with center Q, ie, one such that D˝Q R
is isomorphic to Hamilton’s quaternions H . We then have an involution � W D!D

given by the nontrivial Galois automorphism when D is an imaginary quadratic field
and quaternion conjugation when D is a quaternion algebra.

Let h be an isotropic nondegenerate � –hermitian form on DnC1 . Then h is a � –
symmetric matrix in GLnC1.C/ or GLnC1.H/, so it has real eigenvalues. Therefore,
the signature of h makes sense, and we assume that h has signature .n; 1/. If G is the
special automorphism group of h, then G.R/ is isomorphic to SU.n; 1/ when D is
imaginary quadratic and Sp.n; 1/ when D is a quaternion algebra. Any nonuniform
arithmetic lattice in SU.n; 1/ or Sp.n; 1/ is commensurable with G.Z/ for some G as
above. Again, there are other constructions of cocompact lattices, but these algebraic
groups suffice for the nonuniform lattices.

We again describe some facts about centralizers of Q–split tori that we will need
later. As in the hyperbolic case, the maximal Q–split torus S is isomorphic to the
multiplicative group of Q, and we can choose a basis for DnC1 for which

hD

0@0 0 1

0 h0 0

1 0 0

1A
where h0 is an anisotropic � –hermitian form on Dn�1 . Then S is realized as matrices
exactly the same as (2) and the centralizer of S now consists of those matrices

.x;A/D

0@x 0 0

0 A 0

0 0 �.x/�1

1A
such that x 2D� , A is in the unitary group of h0 (not the special unitary group) and
x�.x/�1 det.A/D 1.

We claim that Z.S/=S is isomorphic to U.h0/ (as Q–algebraic groups) under the
map .x;A/ 7!A. The kernel of this map is clearly S , so it suffices to show that this
map is onto. That is, given A 2 U.h0/, we must show that there exists x 2D� such
that .x;A/ 2 SU.h/. That is, we need to know that there exists x 2 D� such that
x�1�.x/D det.A/. This follows immediately from Hilbert’s Theorem 90, which holds
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for both imaginary quadratic fields and quaternion algebras. See Knus, Merkurjev, Rost
and Tignol [17, Section 29.A] for a proof.

2.3 The Cayley hyperbolic plane

See Allcock [1] for a more detailed description of lattices in F.�20/
4

. Let C be a Cayley
algebra over Q with involution � and h be a � –symmetric element of GL3.C /. The
automorphisms of h with reduced norm 1 form an algebraic group G that is simply
connected with G.R/ Š F.�20/

4
. One can also realize this as the automorphisms of

an exceptional Jordan algebra. The Q–split torus of G again has the form (2), and
Z.S/=S is isomorphic over Q to the group of elements in C with reduced norm 1.

3 Principal arithmetic lattices

We begin with some general results. Let Ak be the adeles of the number field k and
Ak;f the finite adeles. We suppress the k when k DQ.

See Borel [6] for the basic theory of algebraic groups over number fields. Let G be
an absolutely almost simple and simply connected k –algebraic group and H be a k –
parabolic subgroup. These assumptions ensure that G has strong approximation, ie, that
G.k/ is dense in G.Ak;f /. See Platonov and Rapinchuk [18, Theorem 7.12] for details.
If Kf � G.Ak;f / is an open compact subgroup, set K1

f
D G.k˝R/�Kf � G.A/.

Then

(3) K1f G.k/D G.A/:

Let Kf be an open compact subgroup of G.Ak;f / and set Lf DH.Ak;f /\Kf . Then
�Kf
D G.k/\Kf is a lattice in G.k˝R/, and we are interested in the quantity

(4) eH.�Kf
/D #

�
�Kf
nG.k/=H.k/

�
:

When k DQ and G.R/ has real rank one, then eH.�Kf
/D e.�Kf

nX /, where X is
the symmetric space associated with G.R/.

In [4, Proposition 7.5], Borel relates eH.�Kf
/ to the so-called class number of H with

respect to Lf , which is the number

(5) c.H;Lf /D #
�
L1f nH.Ak/=H.k/

�
:

Also see Chapters 5 and 8 of Platonov and Rapinchuk [18]. Since we are restating
Borel’s results in different language, and because one direction of his proof works greater
generality than his stated assumptions, we give a complete proof of [4, Proposition 7.5]
in the next two lemmas. The first step is the following general fact.
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Lemma 3.1 Let G be an algebraic group over the number field k and H a k –parabolic
subgroup. Suppose that Kf is an open compact subgroup of G.Ak;f / such that
K1
f

G.k/D G.Ak/. Let Lf DH.Ak;f /\Kf and �Kf
DG.k/\Kf . Then

(6) eH.�Kf
/� c.H;Lf /:

Proof Given h1; h2 2H.Ak/, there exist k1; k2 2K1
f

and g1;g2 2 G.k/ such that
hj D kj gj , j D 1; 2. Now, suppose that there exists 
 2 �Kf

and h 2H.k/ such that
g1 D 
g2h. Then

h1 D k1g1 D k1
g2hD .k1
k�1
2 /h2h 2K1f H.A/H.k/:

Since h1.h2h/�1 2H.Ak/ and k1
k�1
2
2K1

f
, we must have k1
k�1

2
2L1

f
. There-

fore, if g1 and g2 are in the same �Kf
;H.k/ double coset of G.k/, then h1 and h2

are in the same L1
f
;H.k/ double coset of H.Ak/.

Conversely, suppose h1 D `h2h for some ` 2L1
f

and h 2H.k/. Then

g1 D k�1
1 h1 D .k

�1
1 `k2/g2h 2K1f G.k/H.k/:

Since g1;g2; h 2 G.k/, it follows that k�1
1

k2 2 �Kf

. Therefore, if h1 and h2 are
in the same L1

f
;H.k/ double coset of H.Ak/, then g1 and g2 are in the same

�Kf
;H.k/ double coset of G.k/. It follows that there is a well-defined and injective

set map from the finite set L1
f
nH.Ak/=H.k/ into the finite set �Kf

nG.k/=H.k/.
This proves the lemma.

Note that we did not use one of Borel’s assumptions: ‘GpDGop :Hp for every p2 P’. In
our language, this assumption becomes G.Ak;f /DKfH.Ak;f /. When this holds, we
say that G has an Iwasawa decomposition with respect to Kf and H . For example, G
has an Iwasawa decomposition when Kf is a coherent product of parahoric subgroups
and the v–adic component of Kf is maximal and special for every nonarchimedean
place v of k ; see Tits [22, Section 3.3.2]. The following completes our proof of [4,
Proposition 7.5].

Lemma 3.2 With the same assumptions and notation as Lemma 3.1, suppose that G
has an Iwasawa decomposition with respect to Kf and H . Then eH.�Kf

/D c.H;Lf /.

Proof For any g1;g2 2 G.k/, choose k1; k2 2 K1
f

and h1; h2 2 H.A/ so that
gj D kj hj , j D 1; 2, under the Iwasawa decomposition of G with respect to Kf and
H . Note that, by definition of K1

f
, extending this from Ak;f to Ak is trivial.
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If g1 D 
g2h for some 
 2 �Kf
and h 2H.k/, then

h1 D .k
�1
1 
k2/h2h 2K1f H.Ak/H.k/:

It follows that .k�1
1

k2/ 2L1

f
, so h1 and h2 have the same image in

L1f nH.Ak/=H.k/:

If h1 and h2 lie in the same L1
f
;H.k/ double coset of H.Ak/, a similar computation

shows that g1 and g2 have the same image in �Kf
nG.k/=H.k/. This proves that

eH.�Kf
/� c.H;Lf /;

so the two are equal by Lemma 3.1.

We also need the following analogue of [4, Proposition 2.4].

Lemma 3.3 Suppose that

1! C! G �
!H! 1

is a central exact sequence of k –algebraic groups. Let Kf � G.Ak;f / be an open
compact subgroup and Lf D �.Kf /. Then c.G;Kf / � c.H;Lf /. Further, if
c.C; C.Ak;f /\Kf /D 1 then c.G;Kf /D c.H;Lf /.

Proof By assumption, we have a natural surjective map

y� W K1f nG.Ak/=G.k/!L1f nH.Ak/=H.k/:

The first statement follows immediately.

We must show that y� is injective when c.C; C.Ak;f /\Kf /D 1. Suppose that g1;g2

are elements of G.Ak/ and �.g1/D x�.g2/y for some x 2L1
f

and y 2H.k/. Then
we have zx 2K1

f
and zy 2 G.k/ such that g�1

1
zxg2 zy 2 C.Ak/. However,

C.Ak/D
�
C.Ak/\K1f

�
C.k/;

so there exist x1 2 C.Ak/\K1
f

and y1 2 C.k/ such that

g�1
1 zxg2 zy D x1y1:

Since C is central, we get

g1 D .x
�1
1 x/g2.yy�1

1 / 2K1f g2G.k/:

Thus y� is injective.
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Now, we return to the case where k D Q and G.R/ is rank one. Let P D H be a
Q–parabolic subgroup of G . It is unique up to conjugacy by [6, Proposition 21.12]. Let
S � P be a maximal Q–split torus. Then P is a semidirect product Z.S/U , where
Z.S/ is the centralizer of S in G and U is unipotent.

We call an open compact subgroup Kf � G.Af / coherent if it is defined by a coherent
collection of parahoric subgroups of G.Qp/ for all p ; see Borel and Prasad [8] or
Appendix A of Platonov and Rapinchuk [18]. Let G be the orientation preserving
isometry group of the symmetric space X and � <G be a nonuniform lattice. We say
that � is a principal arithmetic lattice if there is an absolutely almost simple and simply
connected Q–group G and a coherent open compact subgroup Kf � G.Af / such
that � is the image in G of �Kf

DKf \G.Q/ under a central isogeny G.R/! G .
The following allows us to further refine the conclusions of Lemma 3.2 for principal
arithmetic lattices.

Proposition 3.1 Let G be a Q algebraic group of real and Q–rank one and P be a
Q–parabolic subgroup with S � P a maximal Q–split torus and Z.S/ the centralizer
of S in G . Let Kf � G.Af / be an open compact subgroup determined by a coherent
product of parahoric subgroups. Set:

Lf DKf \H.Af /;
Mf DKf \Z.S/.Af /;
�Kf
DKf \G.Q/:

If X is the symmetric space for G.R/, then

(7) e.�Kf
nX /� c.Z.S/;Mf /D c.H; �Mf /;

where HDZ.S/=S and �Mf is the image of Mf in H . Moreover, we have equality
in (7) when G has an Iwasawa decomposition with respect to Kf and P .

Proof We will prove that

c.P;Lf /D c.Z.S/;Mf /:

Since the torus S is the multiplicative group over Q, it has class number one. Therefore,
the right hand equality in (7) follows from Lemma 3.3. The proposition then follows
immediately from Lemma 3.1 and Lemma 3.2.

Let U be the unipotent Q–group such that P D Z.S/U . By Corollary 2.5 and
Proposition 2.7 in Borel [6], it suffices to show that

L1f DM1
f N1f ;
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where N1
f
D U.R/� .Kf \U.Af //, and it suffices to prove the analogous decompo-

sition at any nonarchimedean place. However, when the component of Kf at a fixed
nonarchimedean place is a parahoric subgroup, this decomposition follows immediately
from the italicized statement [22, Section 3.1.1] in Tits. This proves the proposition.

Lastly, we will need the following relationship between class numbers of unitary and
special unitary groups. This result may be known in greater generality, but we could
not find a reference.

Proposition 3.2 Let D be Q, an imaginary quadratic field, or a definite quaternion
algebra over Q, and let � be trivial, the nontrivial Galois automorphism, or quaternion
conjugation, respectively. Let h be a � –hermitian form on DN , H the pin/unitary
group of h, and H0 �H the spin/special unitary group. Let Mf �H.Af / be an open
compact subgroup, M1

f
D H.R/�Mf � H.A/ and L1

f
D H0.A/\M1

f
. Then

there is a universal constant c so that

(8) #
�
M1
f nH.A/=H.Q/

�
�

1

c
#
�
L1f nH0.A/=H0.Q/

�
Proof It suffices to show that for any g2H0.A/, the elements of H0.A/ in the double
coset M1

f
gH.Q/ project to at most c elements of L1

f
nH.A/=H.Q/. Suppose that

g1 D kgh for g1 2H0.A/, k 2M1
f

and h 2H.Q/. Since H0.A/ is the kernel of
the determinant map

d W H.A/!D�.A/;

we have d.k/ D d.h/�1 . The image of d is contained in the subgroup D1.A/ of
elements in D.A/ of reduced � –norm 1. Since d.M1

f
/ lies in an open compact

subgroup of D1.A/ and d.H.Q// lies in the rational points, it follows that d.k/

and d.h/ must lie in d.M1
f
/\ d.H.Q//, which is contained in the subgroup O1 of

reduced � –norm 1 elements of some Z–order O of D.Q/.

Then O1 is a finite group of order bounded by a universal constant c0 . Indeed, c0 D 2

if DDQ, is 6 if D is imaginary quadratic, and is 24 when D is a definite quaternion
algebra. Therefore, we can choose elements r1; : : : ; rc0

in M1
f

and s1; : : : ; sc0
2

H.Q/ so that if k 2M1
f

and d.k/D d.rj / then there exists ` 2L1
f

so that k D `rj

and if d.h/Dd.sj / for some h2H.Q/ then there exists h0 2H0.Q/ so that hD sj h0 .

Therefore, if g1 2 H0.A/ and g1 D kgh for some k 2M1
f

and h 2 H.Q/, there
exist ri , sj , ` 2L1

f
, and h0 2H0.Q/ such that

g1 D `.rigsj /h0:
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Then rigsj 2H0.A/, so g1 has the same image in L1
f
nH0.A/=H0.Q/ as one of the

elements of the finite set frigsj g. There are at most c D c2
0

such elements, so this
proves the proposition.

Now we explain these results in greater detail for real and complex hyperbolic space. In
particular, we give sufficient information to compute the number of cusps for principal
arithmetic subgroups of interest.

Hyperbolic space Recall from Section 2.1, H0 is the spin group of q0 where q D

q0˚ q0 for q0 a hyperbolic plane. As explained by Borel [4] for the orthogonal group,
the class number of H0 is the number of classes in the spinor genus of q0 with respect
to the lattice L0 , where L0 is the summand of L associated with q0 . In particular, we
see that Theorem 1.1 follows for principal arithmetic lattices from the fact that there
are only finitely many anisotropic quadratic forms over Q with at most n classes in its
spinor genus. See also Cassels’ book [9, Appendix A.3].

For the Bianchi groups SL2.Ok/, the number of cusps is well-known to equal the class
number hk of the imaginary quadratic field k . See Chinburg, Long, and Reid [10]
for a proof. The quadratic form over Q that determines the corresponding subgroup
of Spin.3; 1/ Š SL2.C/ is the binary quadratic form of discriminant equal to the
discriminant of the imaginary field k . In particular, the above methods show that
SL2.Ok/ has hk cusps via Gauss’s work on binary quadratic forms.

Complex hyperbolic space Let ` be an imaginary quadratic field and h a hermitian
form of signature .n; 1/ on the `–vector space V of dimension nC 1. Then G is the
special unitary group of h and H is the unitary group of the anisotropic summand
h0 . Therefore, the number of cusps corresponds precisely to the class number of the
unitary group of a hermitian lattice. This is closely related to the class number and
restricted class number of imaginary quadratic fields. See the author’s earlier paper
[20] for a complete analysis in the case nD 2 and Zeltinger [26] and Kato [16] for
special cases in higher dimensions.

Quaternionic hyperbolic space has a similar description in terms of a hermitian form
on a definite quaternion algebra over Q. We leave it to the interested reader to work
out this case and the Cayley hyperbolic plane in further detail. We now proceed to
maximal lattices and the proof of Theorem 1.1.

4 Maximal lattices

Let G be a simply connected Q–algebraic group of real and Q–rank one as in Section 3,
and let ƒ< G.R/ be a maximal lattice. To prove Theorem 1.1, we must show that for
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every x 2N , there are only finitely many G such that e.�nX /� x , where X is the
symmetric space associated with G . From Borel and Prasad [8, Proposition 1.4], we
know that there exists a coherent open compact subgroup Kf � G.Af / such that ƒ is
the normalizer in G.R/ of �Kf

D G.Q/\Kf .

Let S be a maximal Q–split torus of G , and H D Z.S/=S be the quotient of the
centralizer of S in G by S . Let H0 be the subgroup of H consisting of elements with
determinant one. It follows from Proposition 3.1 and Proposition 3.2 that

(9) e.ƒnX /�
e.�Kf

nX /

Œƒ W �Kf
�
�

1

c

c.H0; �Mf /

Œƒ W �Kf
�

where �Mf is the open compact subgroup of H0.Af / determined by Kf and c is the
constant from Proposition 3.2. Also, recall from Section 3 that H0 uniquely determines
G . Therefore, it suffices to show that the right hand side of (9) is bounded above by x

for only finitely many H0 .

Let C be the center of G . Then Borel and Prasad [8, Proposition 2.9] gives an exact
sequence

1! C.R/=.C.Q/\�Kf
/!ƒ=�Kf

! ı.G.Q//0‚! 1;

where G is the adjoint form of G and ı.G.Q//0
‚

is the image of ƒ in H1.Q; C/. The
central elements of ƒ clearly act trivially on X1 , so we in fact have:

(10) e.ƒnX /�
1

c

c.H0; �Mf /

#ı.G.Q//0
‚

Once we prove that the right hand side of (10) is bounded above by x for only finitely
many H0 , the proof of Theorem 1.1 will be complete. In other words, we need to
prove the following.

Theorem 4.1 Let G be a Q–algebraic group of real and Q–rank one. Choose a
maximal Q–split torus S in G , and let Z.S/ be the centralizer of S in G . Let H be
the Q–algebraic group Z.S/=S and H0 be the subgroup of elements with determinant
one. Let C be the center of G . If Kf is a coherent open compact subgroup of G.Af /,
let �Mf be the induced coherent open compact subgroup of H0.Af /. For any x 2N ,
there are only finitely many such G with

c.H0; �Mf /

#ı.G.Q//0
‚

� x

where ı.G.Q//0
‚

denotes the image of G.Q/ in H1.Q; C/ and G is the adjoint form
of G .
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Proof Applying Prasad’s volume formula [19] as in Borel and Prasad [8, Section 7.4],
we see that:

c.H0; �Mf /� D
1
2
s.H0/

`

� rY
iD1

mi !

.2�/miC1

�
�. �Mf /

Here, H0 is the unique quasi-split simply connected inner form of H0 , r is the absolute
rank of H0 , ` is the unique extension of Q over which H0 splits, D` is the absolute
discriminant of `, s.H0/ and the mi are as in [19] or [8, Section 3.7], and �. �Mf / is
the Euler product associated with �Mf as in [8, Section 7.4]. Note that ` is either Q or
a quadratic field and that the Tamagawa number of H0 is one.

Note that G has absolute rank r C 2, since H0 has absolute rank r . Simultaneously
considering the three cases arising in Propositions 5.1 and 5.6 of [8, Section 5], we
have the bound:

#ı.G.Q//0‚ � 2h`D`n
2C#T

Y
v<1

#„‚v

Here h` is the class number of `, n is as defined in [8, Section 2.6] (so n� 4 unless G
is of type ArC2 , in which case nD r C 3), T is the set of places of ` defined before
Proposition 5.1 or in Section 5.5 of [8], and „‚v

is defined in [8, Section 2]. Note
that in combining all the cases, we have introduced overkill into several of them.

This gives:

(11)
c.H0; �Mf /

#ı.G.Q//0
‚

�
D

1
2
s.H0/�1

`

2h`n
2C#T

� rY
iD1

mi !

.2�/miC1

� Y
v<1

�
#„‚v

��1
�. �Mf /

To prove that the right hand side of (11) is bounded above by x for only finitely many
H0 (thus finitely many G ), it suffices to prove the following two claims:

1

n#T

Y
v<1

�
#„‚v

��1
�. �Mf / > ı0 with ı0 independent of �Mf(12)

D
1
2
s.H0/�1

`

2h`n
2

 
rY

iD1

mi !

.2�/miC1

!
� x=ı0 for finitely many H(13)

Our proofs closely resemble the proof of Theorem B in Borel and Prasad [8], though we
emphasize that these inequalities are not an immediate consequence of the computations
in [8]. Indeed, they are considering a single group, whereas each of (12) and (13) has
factors from both G and H0 .

Geometry & Topology, Volume 17 (2013)



918 Matthew Stover

We first prove (12). It suffices to show that for all but finitely many �Mf and finitely
many nonarchimedean places v of Q, we have

(14)
e. �Mv/

n�.v/#„‚v

> 1;

where �.v/ 2 f1; 0g depending of whether or not v 2 T, �Mv denotes the component
of �Mf at v , and �. �Mf /D

Q
v e. �Mv/ are the Euler factors of �. �Mf /. When Mv is a

special parahoric subgroup and v … T, then #„‚v
D 1 and the inequality follows from

the fact that e. �Mv/ > 1. For all other v , [8, Section 7.4(4)] gives the inequality

(15) e. �Mv/ >
prvC1

pvC 1

where pv is the rational prime associated with v and rv is the local rank at v .

For the other places, n�.v/#„‚v
� .r C 3/2 (see Section 2.6 and Section A.7 of [8]).

Therefore (14) holds for all rv � 8, independent of pv , and for pv � 17, independent
of r . For each of these finitely many r , we compute the product over the finitely many
pv such that prvC1=.pvC 1/ < 1 and see that ı0 D 0:015 suffices for all H0 . This
proves (12).

Now consider (13). Since ` is Q or a quadratic field, the Brauer–Siegel Theorem
(more precisely, its proof) implies that

(16) h` �
�

5�

6

�2
D`:

See [8, Section 6]. This implies that

1

2h`n
2

D
1
2
s.H0/�1

`

� rY
iD1

mi !

.2�/miC1

�
�

�
6

5�

�2 D
1
2
s.H0/�2

`

2n2

� rY
iD1

mi !

.2�/miC1

�
:

For [8, Section 3.7], s.H0/� 5 when H0 is not split. When H0 is split, `DQ and the
discriminant and class number terms are automatically 1. In particular, independent of
`, we see that

(17) D
1
2
s.H0/�2

`
� 1

for all H0 . Indeed, when D` isn’t already 1, the exponent is at least 0.

To prove that the right hand side of (13) is bounded above by x=ı0 for only finitely
many H0 , it now suffices to show that

1

2n2

rY
iD1

mi !

.2�/miC1
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is bounded above for only finitely many H0 . This is very similar to the proof of
[8, Proposition 6.1]. The numbers fmig form a nondecreasing sequence. Moreover
mi D miC1 can only occur once within the sequence, and only happens for groups
of type Dr for r even. Since mr !1 linearly in r (see Prasad [19, Section 1.5]),
n� r C 3, and since there are only finitely many H0 of bounded absolute rank (since
H0 is the unique quasi-split form), the result follows from Stirling’s Formula.

It remains to prove that finiteness is independent of H0 . That is, for a fixed H0 , we
need to know that there are only finitely many H0 with quasi-split simply connected
inner form H0 such that the class number of H0 with respect to some coherent open
compact subgroup of H0.Af / is bounded above. However, this follows from the fact,
proven in [8, Section 7], that �. �Mf / is bounded above by any real number x for only
finitely many equivalence classes of coherent products �Mf of parahoric subgroups
(not to mention for only finitely many H0 ). This finishes the proof of the theorem.

This proves that e.ƒnX / is bounded above by n for only finitely many commensu-
rability classes of rank one nonuniform arithmetic lattices, and hence completes the
proof of Theorem 1.1.

Remark Fix k 2N and let G and H0 be as above. There are, independent of H0 ,
only finitely many H0.Af /–conjugacy classes of �Mf �H0.Af / such that c.H0; �Mf /

is bounded by k . This does not imply for a fixed G that there are only finitely many
conjugacy classes of Kf � G.Af / so that e.�Kf

nX / � k . Indeed, infinitely many
Kf � G.Af / could induce the same �Mf �H0.Af /. That is, a fixed commensurability
class could contain infinitely many distinct minimal orbifolds with at most k ends. This
is indeed the case for SL2.R/, SL2.C/ and SU.2; 1/, where one can build infinite
families of distinct but commensurable minimal one-cusped orbifolds. See Chinburg,
Long and Reid [10] and the author’s paper [20] for the construction.

5 One-cusped hyperbolic orbifolds

We now use the techniques of Section 4 to prove Theorem 1.3. Let ƒ be a maximal
nonuniform arithmetic lattice in Spin.n; 1/ with associated algebraic group G . Then
G is the spin group of the quadratic form q on QnC1 and H0 is the spin group of q0 ,
where q D q0˚ q0 and q0 is a hyperbolic plane. As above, H0 is the subgroup of
elements with determinant one in HD Pin.q0/, which is the group Z.S/=S , where S
is a maximal torus of G and Z.S/ its centralizer.
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Note that we can take cD4 in Proposition 3.2, since H0 has index two in H . Therefore,
to show that e.ƒnHn/ > 1, it suffices by (10) to show that

(18)
1

4

c.H0; �Mf /

#ı.G.Q//0
‚

> 1

for all n� 30, where the terminology in (18) is all described in Section 4. Since G has
type B or D depending on the parity of n, we prove (18) in two steps.

Proof of (18) for n even Here G and H0 have type Bs for s D n=2; .n� 2/=2. We
then have the inequality

#ı.G.Q//0‚ � 21C#T
Y
v

#„‚v

where T is the finite set of nonarchimedean places over which G doesn’t split (see
Belolipetsky [2, Section 3.5]). Recall from Section 4 that we also have

c.H0; �Mf /�

� rY
iD1

mi !

.2�/miC1

�
�. �Mf /;

where r D .n� 2/=2 is the absolute rank of H0 , since H0 is a spin group in n� 1

variables, �. �Mf / is the Euler factor for �Mf and mi D 2i � 1.

We saw in the proof of Theorem 4.1 that

1

2#T

Y
v

�
#„‚v

��1
�. �Mf / > 1

as long as every local rank as at least 8. Therefore, to show that e.ƒnHn/ > 1, it
suffices to show that � rY

iD1

mi !

.2�/miC1

�
> 8:

This product is less than 1 for nD 28 and greater than 9 for nD 30, so this completes
the proof of Theorem 1.3 for n even.

Proof of (18) for n odd Now our groups G and H0 have type Ds for s D .n˙1/=2.
The cases s even and s odd are slightly different, so we treat each separately.

Suppose that H0 has type Dr for r even. Then G has type 1DrC1 and

#ı.G.Q//0‚ � 4#T
Y
v

#„‚v
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by Belolipetsky and Emery [3, Proposition 4.12(2)(a)]. Again we have

1

2#T

Y
v

�
#„‚v

��1
�. �Mf / > 1

for rank at least 8 from the proof of Theorem 4.1. Therefore, it suffices to show that

(19)
� rY

iD1

mi !

.2�/miC1

�
> 4:

Here,

(20)
� rY

iD1

mi !

.2�/miC1

�
D
.r � 1/!

.2�/r

� r�1Y
iD1

.2i � 1/!

.2�/2i

�
;

and a direct check shows that (19) holds for all even r � 16, ie, for all n� 33 that are
congruent to 1 modulo 4.

Now suppose that H0 has type Dr for r odd. Taking TD R[T1 in [3, Proposition
4.12(2)(c)] implies

#ı.G.Q//0‚ � 41C#Th`
Y
v

#„‚v

where ` is a quadratic field. Then

1

4#T

Y
v

�
#„‚v

��1
�. �Mf / > 1

for r at least 8. Therefore, applying (16) and (17) we want to know when r is
sufficiently large that

(21)
�

6

5�2

�� rY
iD1

mi !

.2�/miC1

�
> 8:

The product on the left hand side of (21) is the same as (20) (note that r � 1 now
appears twice), and we see that (21) holds for all r � 17, ie, for any n � 35 that is
congruent to 3 modulo 4.

It remains to rule out the case nD 31. Here H0 has type D15 . Also factoring

Ds.H0/�2

`
� 3s.H0/�2

D 3
31
2

into (21) gives the necessary bound and completes the proof of Theorem 1.3.
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As mentioned in the introduction, there are known one-cusped hyperbolic n–orbifolds
for all n � 9. See, for instance, Hild [15]. It is not known if there is a one-cusped
hyperbolic manifold for any n � 4. Using the above methods, one could ostensibly
build one-cusped orbifolds for 10 � n � 29 using definite quadratic forms q0 with
few classes in their spinor genus. We now build examples of one-ended orbifolds for
nD 10; 11. We do not know if these appear elsewhere in the literature.

Definite rational quadratic forms with one class in their genus only exist in dimensions
below 10 by Watson [24]. Furthermore, these are precisely the forms with one class
in their spinor genus by Earnest and Hsia [12]. There are, up to adjoints, 2 in 9

variables and 1 in 10 variables by another result of Watson [25]. If q0 is any such
form and q is the direct sum of q0 and a hyperbolic plane, then q has signature .n; 1/
for n D 10; 11 and therefore determines a commensurability class of noncompact
arithmetic hyperbolic n–orbifolds. If G is the Q–algebraic group Spin.q/, choose
Kf � G.Af / so that G has an Iwasawa decomposition with respect to Kf and such
that H0 D Spin.q0/ has class number one with respect to the induced open compact
subgroup �Mf of H0 . Then H D Pin.q0/ also has class number one with respect to
Mf , since H.Q/ contains a coset representative for H0.A/ in H.A/. In particular,
Proposition 3.1 implies that e.�Kf

nHn/D 1.

It remains possible that there are one-cusped arithmetic hyperbolic n–orbifolds for
12 � n � 29. However, there does not seem to be a classification of the definite
rational quadratic forms with two classes in their spinor genus, so we do not know if
Theorem 1.3 is sharp. Given such a form, there is a principal arithmetic lattice �Kf

with 2 cusps by Proposition 3.1, so there is more work needed in order to show that
the form determines a one-ended orbifold. One must then show that the normalizer ƒ
of �Kf

in Spin.n; 1/ is a nontrivial extension and that the covering group ƒ=�Kf
for

the regular covering �Kf
nHn!ƒnHn identifies the two ends of �Kf

nHn .

Remark We close with one final remark regarding one-cusped orbifolds. Instead
of using arithmetic orbifolds, one might try to use the construction of Gromov and
Piatetski-Shapiro [13] to build hybrid examples. In dimension n � 5, codimension-
one totally geodesic subspaces of noncompact arithmetic hyperbolic n–orbifolds are
well-known to be arithmetic, but they are also necessarily noncompact. It follows from
Theorem 1.3 that one cannot use a hybrid construction to build one-cusped orbifolds for
n� 31, since the totally geodesic submanifold along which one must cut already has
too many cusps, not to mention whatever cusps are on either side of the hypersurface.
Similarly, one cannot use this hybrid construction to build a k –cusped hyperbolic
n–orbifold in cases where all arithmetic hyperbolic .n� 1/–orbifolds have more than
k cusps.
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