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On the equivalence of
Legendrian and transverse invariants

in knot Floer homology

JOHN A BALDWIN
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Using the grid diagram formulation of knot Floer homology, Ozsváth, Szabó and
Thurston defined an invariant of transverse knots in the tight contact 3–sphere. Shortly
afterwards, Lisca, Ozsváth, Stipsicz and Szabó defined an invariant of transverse
knots in arbitrary contact 3–manifolds using open book decompositions. It has been
conjectured that these invariants agree where they are both defined. We prove this fact
by defining yet another invariant of transverse knots, showing that this third invariant
agrees with the two mentioned above.

57M27; 57R58

1 Introduction

Since the beginning of modern contact geometry in the work of Eliashberg, Legendrian
and transverse knots have played a prominent role in understanding contact structures
on 3–manifolds. Transverse knots arise naturally, for example, as binding components
of open book decompositions, and both Legendrian and transverse knots can be used
to discern subtle geometric information about the contact manifolds they inhabit.

Legendrian knots come equipped with two “classical” invariants: the Thurston–Benne-
quin number and the rotation number. Transverse knots possess a single classical
invariant called the self-linking number. Knot types whose Legendrian or transverse
representatives are classified by their classical invariants are referred to as Legendrian or
transversely simple. While it is known that some knot types are simple (Eliashberg and
Fraser [9], and Etnyre and Honda [14; 15]), most appear not to be. As such, developing
and understanding non-classical invariants, capable of distinguishing and classifying
Legendrian and transverse knots, is a central aim of contact geometry.

The first non-classical invariant of Legendrian knots, dubbed Legendrian contact homol-
ogy (LCH), appeared as an outgrowth of Eliashberg and Hofer’s work on symplectic
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field theory (Eliashberg, Givental and Hofer [10]). Among its other achievements, LCH
provided the first examples of Legendrian non-simple knot types (Chekanov [7]) and
resolved the Legendrian mirror problem (Ng [25]). Despite such progress, vanishing
properties of LCH prevent one from applying this general theory to classification
problems and to the study transverse knots.

A little over a decade later, Ozsváth, Szabó and Thurston defined powerful invariants
� and y� of Legendrian links in the standard contact 3–sphere, which take values
in the minus and hat versions of knot Floer homology [33]. Their invariants are
defined via grid diagrams and are thus combinatorial in nature. Furthermore, � and y�
remain unchanged under negative Legendrian stabilization, and, therefore, give rise
to transverse link invariants � and y� through Legendrian approximation. We refer to
�; y�; �; y� as the GRID invariants.

In a different direction, Lisca, Ozsváth, Stipsicz and Szabó used open book decomposi-
tions to define invariants L and �L of (null-homologous) Legendrian knots in arbitrary
contact 3–manifolds [21]. These alternate invariants also take values in the minus and
hat version of knot Floer homology, though they are defined in far greater generality
than their combinatorial counterparts. Both L and �L remain unchanged under negative
Legendrian stabilization, and may therefore be used as above to define transverse knot
invariants T and �T via Legendrian approximation. Because they are defined using
open book decompositions, these invariants are also more clearly tied to the geometry
of Legendrian and transverse knot complements. We refer to L;�L;T;�T as the LOSS
invariants.

It has been conjectured for several years that the GRID invariants agree with the
LOSS invariants where both are defined – for Legendrian and transverse knots in the
tight contact 3–sphere, .S3; �std/. Such a result would have a number of important
consequences. Generally speaking, the GRID invariants are well-suited to computation.
Even for relatively complicated knots, determining whether y�; y� are zero or nonzero is
often a straightforward process. This computational ease underpins many of the known
results regarding families of transversely non-simple knot types: Ng, Ozsváth and
Thurston [26], Vértesi [41], Baldwin [3], and Khandhawit and Ng [19]. On the other
hand, the more geometric construction in [21] makes it possible to establish general
properties of the LOSS invariants that are hard to prove for the GRID invariants, like
Ozsváth and Stipsicz’s result on their behaviors under .C1/–contact surgeries [29], or
Sahamie’s result relating �L.L/ to the contact invariant of .C1/–contact surgery on
L [38]. Further, it is conjectured that the Legendrian invariants defined in [33] and
[21] are well-behaved with respect to Lagrangian cobordism. If true, this will almost
certainly be proven in the LOSS context. Knowing that “LOSS = GRID” would allow
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one to combine the intrinsic advantages of each and to port results from one realm to
the other. This “LOSS = GRID” equivalence is the content of our main theorem, below.

Theorem 1.1 Let K be a transverse knot in the standard contact 3–sphere. There
exists an isomorphism of bigraded .Z=2Z/ŒU �–modules,

 W HFK�.�S3;K/! HFK�.�S3;K/;

which sends T.K/ to �.K/.

Since the Legendrian invariants L and � can each be defined from T and � via
transverse pushoff (roughly, the inverse of Legendrian approximation), the following is
an immediate corollary of Theorem 1.1.

Theorem 1.2 Let L be a Legendrian knot in the standard contact 3–sphere. There
exists a isomorphism of bigraded .Z=2Z/ŒU �–modules,

 W HFK�.�S3;L/! HFK�.�S3;L/;

which sends L.L/ to �.L/.

Remark 1.3 It follows from the proofs of Theorems 1.1 and 1.2 that analogous
correspondences exist for the Legendrian and transverse invariants defined in the hat
version of knot Floer homology.

Since both the GRID and LOSS invariants are defined using Heegaard diagrams, there
is a naive approach to showing that the two agree: construct a sequence of Heegaard
moves connecting the two relevant diagrams and show that the associated isomorphism
on knot Floer homology sends one invariant to the other. Versions of this approach
have been tried without success by many people. For one thing, the Heegaard diagrams
defining the two types of invariants are radically different and there is no obvious
canonical sequence of moves connecting the two. Second, there is no reason to expect,
for any such sequence, the task of tracking the image of the Legendrian invariant under
the associated isomorphism to be easy or even combinatorial. With this in mind, we
employ a completely different strategy to prove Theorem 1.1.

We start by defining a third invariant of transverse links in arbitrary contact 3–manifolds.
Our construction uses Pavelescu’s result [34] that any transverse link K� .Y; �/ can be
braided with respect to any open book decomposition .B; �/ for .Y; �/. Given such a
transverse braid, we define classes t.K/ 2HFK�.�Y;K/ and yt.K/ 2 1HFK .�Y;K/,
which remain unchanged under positive braid stabilization and positive open book

Geometry & Topology, Volume 17 (2013)



928 John A Baldwin, David Shea Vela-Vick and Vera Vértesi

stabilization. As a result, t and yt define transverse invariants, by Pavelescu’s analogue
of the Transverse Markov Theorem [34]. We refer to t; yt as the BRAID invariants.

Our construction differs from those in [33] and [21] in a couple interesting ways. For
one thing, our BRAID invariants are manifestly transverse invariants – they are defined
in terms of transverse links rather than in terms of Legendrian links via Legendrian
approximation. Furthermore, our invariants lend themselves more naturally to under-
standing the connections between transverse links, braids and mapping class groups,
a rich area of exploration even for knots in .S3; �std/. As a preliminary step in this
direction, we define the notion of a right-veering braid, following Honda, Kazez and
Matić [17], and prove the theorem below.

Theorem 1.4 Suppose K is a transverse braid with respect to some open book for
.Y; �/. If K is not right-veering, then yt.K/D 0.

This theorem, combined with Corollary 6.9, has subsequently been used by the first
author in joint work with Grigsby [4] to show that link Floer homology provides a
solution to the word problem in the braid group. Our invariant also appears to be
well-suited to studying transverse satellites. This is something we hope to return to in
a future paper.

We prove Theorem 1.1 by showing that “LOSS = BRAID” and that “BRAID = GRID.”
For the first correspondence, we find, for any transverse knot K � .Y; �/, a single
Heegaard diagram in which the same generator of CFK�.�Y;K/ represents both
T.K/ and t.K/. For the second correspondence, we rely on a reformulation of the
BRAID and GRID invariants for transverse knots in .S3; �std/, as described roughly
below.

If K is a transverse link in .S3; �std/, then a result of Bennequin [6] states that K can
be braided with respect to the open book decomposition .U; �/ of .S3; �std/ whose
pages are disks (and whose binding U is therefore the unknot). The unknot �U ��S3

induces an Alexander filtration on the knot Floer chain complex of K ��S3 ,

∅D F�U
m � F�U

mC1 � � � � � F�U
n D CFK�.�S3;K/:

Let
b Dminfj jH�.F�U

j /¤ 0g;

and let Ht .F
�U
b
/ denote the summand of H�.F

�U
b
/ in the top Maslov grading. In

Section 6, we show that Ht .F
�U
b
/ has rank one and that t.K/ can be characterized as

the image of the generator of Ht .F
�U
b
/ under the map

H�.F
�U
b /! HFK�.�S3;K/
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induced by inclusion.1 In Section 7, we show that the GRID invariant � admits the
same formulation. The fact that the filtered quasi-isomorphism type of this filtration is
an invariant of the link K[�U ��S3 then implies that there is an isomorphism of
knot Floer homology that identifies t.K/ with �.K/.

The astute reader will notice that this reformulation of t is very similar to the way
in which the contact invariant c.Y; �/ is defined in Ozsváth and Szabó [31] – via a
filtration on cCF.�Y / induced by the connected binding of an open book supporting
.Y; �/.

Moreover, our reformulations of t and � reveal yet another interesting link between
knot Floer homology and Khovanov homology. In [35], Plamenevskaya defines a
transverse invariant in reduced Khovanov homology that associates to a transverse
braid K � .S3; �std/ a class  .K/ 2 fKh.K/. The braid axis U of K specifies an
embedding of K into a solid torus, which one can think of as the product of an annulus
with an interval. The reduced Khovanov skein complex of K �A� I , as defined by
Asaeda, Przytycki and Sikora [1], is the associated graded object of a filtration on the
Khovanov complex for K . Roberts proves in [37] that  .K/ is characterized with
respect to this filtration in the same way that t is with respect to F�U . His work
partially inspired this aspect of our story.

Organization

Section 2 provides background on knot Floer homology, the relationship between
transverse and Legendrian links, the constructions of the GRID and LOSS invariants
and the correspondence between transverse knots in contact 3–manifolds and braids with
respect to open books. We define our BRAID invariant t in Section 3. In Section 4, we
prove Theorem 1.4. In Section 5, we prove the equivalence of t with the LOSS invariant
T. In Section 6, we show that t can be reformulated in the manner described above,
and, in Section 7, we prove that the GRID invariant � admits the same reformulation.
Finally, in Section 8, we prove the equivalence of t with � , completing the proof of
Theorem 1.1.
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2 Preliminaries

2.1 Knot Floer homology

This subsection provides a review of knot Floer homology. Our exposition is tailored
to our specific needs, and therefore includes some aspects of the theory that are not
usually discussed in the literature. We shall assume that the reader has some familiarity
with the subject; for a more introductory treatment, see Ozsváth and Szabó [30; 32],
and Rasmussen [36]. We work with coefficients in F D Z=2Z throughout this paper.

A multi-pointed Heegaard diagram for an oriented link L � Y is an ordered tuple
HD .†; ˛; ˇ ; zL;wL[wf /, where

� † is a Riemann surface of genus g ,

� ˛ D f˛1; : : : ; ˛gCmCn�1g and ˇ D fˇ1; : : : ; ˇgCmCn�1g are sets of pair-
wise disjoint, simple closed curves on † such that f˛1; : : : ; ˛gCm�1g and
fˇ1; : : : ; ˇgCm�1g span g–dimensional subspaces of H1.†IZ/,

� zL , wL are sets of m “linked” basepoints such that every component of the com-
plements †�f˛1; : : : ; ˛gCm�1g and †�fˇ1; : : : ; ˇgCm�1g contains exactly
one point of zL and one of wL , and

� wf is a set of n “free” basepoints such that every component of the complements
†� ˛ and †� ˇ contains exactly one point of wL[wf .

We further stipulate that Y is specified by the Heegaard diagram .†; ˛; ˇ / and that
L is obtained as follows. Fix m disjoint, oriented, embedded arcs in †� ˛ from
points in zL to those in wL and form 
 ˛

1
; : : : ; 
 ˛m by pushing their interiors into the

handlebody specified by ˛ . Similarly, define pushoffs 
 ˇ
1
; : : : ; 


ˇ
m of oriented arcs in

†� ˇ from points in wL to points in zL . L is the union

LD 
 ˛1 [ � � � [ 

˛
m[ 


ˇ
1
[ � � � [ 
 ˇm:

Note that the Heegaard diagrams .†; ˇ ; ˛;wL; zL[wf / and .�†; ˛; ˇ ; zL;wL[wf /
both encode the link L��Y . We will make use of this fact later.
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For each w 2wL[wf , let Uw be a formal variable corresponding to w . Consider the
tori T˛ D ˛1�� � ��˛gCmCn�1 and Tˇ Dˇ1�� � ��ˇgCmCn�1 in SymgCmCn�1.†/.
The knot Floer complex CFK�.H/ is the free F ŒfUwgw2wL[wf �–module generated
by the elements of T˛ \Tˇ . For x; y 2 T˛ \Tˇ , a Whitney disk � 2 �2.x; y/ and a
suitable path of almost complex structures on SymgCmCn�1.†/, we denote by M.�/

the moduli space of pseudo-holomorphic representatives of � . Its formal dimension
is given by the Maslov index �.�/. Let �M.�/ denote the quotient of this moduli
space by the translation action of R. For a point p 2 † � ˛ � ˇ , we denote by
np.�/ the algebraic intersection number of � with fpg�SymgCmCn�2.†/. Similarly,
for a finite subset p D fp1; : : : ;pkg � †� ˛ � ˇ , we define np.�/ to be the sum
np1

.�/C � � �C npk
.�/.

If b1.Y / D 0, then the Maslov grading is an absolute Q–grading on CFK�.H/,
specified up to an overall shift by the fact that

M.x/�M.y/D �.�/� 2nwL[wf .�/

for x; y 2 T˛ \Tˇ and any � 2 �2.x; y/, and the fact that multiplication by any Uw
lowers M by two. Suppose that L is an l –component link, LDL1[ � � � [Ll . Then
we can write zLD zL1

[� � �[ zLl
and wLDwL1

[� � �[wLl
, where the sets zLi

and
wLi

specify the component Li . For each i , the Alexander grading associated to the
oriented knot Li is an absolute Q–grading, specified up to an overall shift by the fact
that

ALi
.x/�ALi

.y/D nzLi
.�/� nwLi

.�/;

and the fact that multiplication by Uw lowers ALi
by one for any w 2 wLi

and
multiplication by any other Uw preserves ALi

. We use A.x/ to denote the sum
AL1

.x/C � � �CALl
.x/.

The differential
@�W CFK�.H/! CFK�.H/

is defined on generators by

@�xD
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nz .�/D0 8z2zL

# �M.�/ �
Y

w2wL[wf

U nw.�/
w � y:

The minus version of knot Floer homology is defined to be

HFK�.Y;L/ WD HFK�.H/ WDH�.CFK�.H/; @�/:

The formal variables Uw and Uw0 act identically on HFK�.Y;L/ when w and w0

correspond to the same component of L (ie, are in the same wLi
for some i ). We let
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Ui denote the action of Uw for w 2wLi
. Then HFK�.Y;L/ is an invariant of the link

L � Y , well-defined up to graded F ŒU1; : : : ;Ul ; fUwgw2wf �–module isomorphism.
Moreover, the variables Uw for w 2 wf act identically on HFK�.Y;L/, so the latter
is really an invariant of the pair .Y;L/.

Recall that 1CFK .H/ is the chain complex obtained by setting Uw D 0 for exactly
one w in each wLi

. Let y@ denote the induced differential, and let

pW CFK�.Y;L/!1CFK .Y;L/

be the natural quotient map. It follows from the discussion above that the hat version
of knot Floer homology,

1HFK .Y;L/ WD 1HFK .H/ WDH�.1CFK .H/; y@/;

is independent, up to graded F –module isomorphism, of which Uw we set to zero in
defining 1CFK .H/. A similar statement of independence holds for the induced map

p�W HFK�.H/! 1HFK .H/:

We now focus on a slightly different chain complex, CFK�;wf .H/, obtained from
CFK�.H/ by setting the Uw D 0 for all w 2 wf . This complex and filtered versions
of it will play important roles in later sections. The homology

HFK�;n.Y;L/ WD HFK�;n.H/ WDH�.CFK�;wf .H/; @�/

depends, up to graded F ŒU1; : : : ;Ul �–module isomorphism, only on the link L�Y and
the number n of free basepoints. Accordingly, we will usually write CFK�;wf .H/ as
CFK�;n.H/. As an aside, the chain complex CFKy;n.H/, obtained from CFK�;n.H/
by setting Uw D 0 for exactly one w in each wLi

, has homology

1HFK .Y;L/˝V ˝n

for V D F.0;0/˚ F.�1;0/ , where the subscripts indicate the .M;A/ gradings of the
summands.

Recall that any two multi-pointed Heegaard diagrams for L � Y are related by a
sequence of Heegaard moves in the complement of the basepoints. These moves are
isotopy, handleslide, index 1/2 (de)stabilization, and two additional moves that we term
linked and free index 0/3 (de)stabilization, following Manolescu and Ozsváth [22].
Two such diagrams with the same numbers of free basepoints can be related using just
the first four moves. There are maps associated to the first three moves that induce
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isomorphisms of HFK�;n.Y;L/.2 In the case of isotopy and handleslide, these maps
can be described in terms of pseudo-holomorphic triangle counts; the map associated
to index 1/2 (de)stabilization is induced by an isomorphism of complexes. Below, we
study the effects of the last two moves on HFK�;n.Y;L/.

Let D be a region of †� ˇ that contains some z 2 zL and w 2wL . Linked index 0/3
stabilization is the operation of adding one basepoint to zL , one to wL , one curve to
˛ and one to ˇ in the manner shown in Figure 1. We refer to the new ˛; ˇ curves as
˛0; ˇ0 , the new basepoints as z0; w0 and the new Heegaard diagram as H0 . In addition,
we denote by x0 and y0 the intersection points between ˛0 and ˇ0 , as shown in the
figure. Linked index 0/3 destabilization is the inverse of this operation.

Let CFK�;n.H0/1 be the quotient complex of CFK�;n.H0/ generated by elements of
the form x[fx0g, and let CFK�;n.H0/2 be the subcomplex generated by the elements
x[fy0g, for x 2 T˛ \Tˇ . Then, CFK�;n.H0/ is isomorphic to the mapping cone of

f W CFK�;n.H0/1! CFK�;n.H0/2;

where f is defined by

f .x[fx0g/D .Uw0 CUw/ � .x[fy0g/:

It follows that the map from CFK�;n.H/ to CFK�;n.H0/ which sends x to x[fy0g
induces an isomorphism on homology. This is the isomorphism we associate to linked
index 0/3 stabilization. To linked index 0/3 destabilization, we associate the inverse of
this isomorphism.

z0w w0 zw z

y0

x0

˛0ˇ0

Figure 1: Left: before stabilization. Right: after stabilization.

Free index 0/3 stabilization is the operation of adding one free basepoint to wf , one
curve to ˛ and one to ˇ in the configuration shown in Figure 2. It is important that
this new configuration is added in a region of †� ˛ � ˇ containing some element
z 2 zL . As before, we refer to the new ˛; ˇ curves as ˛0; ˇ0 , the new basepoint as w0

2Henceforth, when we speak of “isomorphisms,” we mean graded isomorphisms over the appropriate
polynomial ring.
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and the new Heegaard diagram as H0 . Let x0 and y0 denote the intersection points
between ˛0 and ˇ0 as shown. We say that ˛0; ˇ0 form a small configuration around
w0 . Free index 0/3 destabilization is the inverse of this procedure.

w0 zz

x0

y0

˛0 ˇ0

Figure 2: Left: before stabilization. Right: after stabilization.

The complex CFK�;nC1.H0/ splits as a direct sum of complexes,

(1) CFK�;nC1.H0/D CFK�;nC1.H0/1 ˚ CFK�;nC1.H0/2;

where CFK�;nC1.H0/1 is generated by elements of the form x [ fx0g and
CFK�;nC1.H0/2 is generated by the elements x [ fy0g, for x 2 T˛ \ Tˇ . Note
that each direct summand is naturally isomorphic to CFK�;n.H/. In particular, the
inclusion

i W CFK�;n.H/! CFK�;nC1.H0/;

which sends a generator x to x[ fx0g, is an isomorphism from CFK�;n.H/ to the
summand CFK�;nC1.H0/1Œ1�, where the Œ1� indicates that we have shifted the Maslov
grading upwards by 1. The projection

j W CFK�;nC1.H0/! CFK�;n.H/;

which sends a generator x [ fx0g to x and all others to zero is the inverse of this
isomorphism when restricted to CFK�;nC1.H0/1Œ1�. Since the splitting in (1) is a
splitting of complexes, i and j are chain maps and therefore induce injections and
surjections, i� and j� , on homology. Next, we describe the induced splitting on
homology via an action associated to the free basepoint w0 , following Baldwin and
Levine [5, Section 3.3].

For any w 2 wf , we define a map

‰wW CFK�;n.H/! CFK�;n.H/;
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which counts disks that pass through w exactly once. Precisely, ‰w is defined on
generators by

‰w.x/D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nw.�/D1
nz .�/D0 8z2zL

# �M.�/ �
Y
v2wL

U nv.�/
v � y:

A degeneration argument shows that ‰w is a chain map and, hence, induces a map  w
on homology. Similarly, one can show that  2

w D 0 and that  w1
 w2
D  w2

 w1
for

w1 ¤w2 2wf . Further degeneration arguments involving holomorphic triangles show
that  w commutes with the isomorphisms associated to isotopy and handleslide (cf [5,
Proposition 3.6]). More transparently,  w commutes with the maps associated to index
1/2 and linked index 0/3 (de)stabilization as well as the map associated to free index
0/3 (de)stabilization as long as w is not the free basepoint being added (or removed).

Note that for the Heegaard diagram H0 obtained from H via free index 0/3 stabilization
as above, CFK�;nC1.H0/1 D coker‰w0 and CFK�;nC1.H0/2 D ker‰w0 . Therefore,
the splitting in (1) gives rise to the splitting on homology,

HFK�;nC1.Y;L/D coker w0 ˚ ker w0 :

The inclusion i� induces an isomorphism

i�W HFK�;n.Y;L/! coker w0 Œ1�

and the projection j� restricts to an isomorphism

j�W coker w0 Œ1�! HFK�;n.Y;L/:

Moreover, j� ı i� is the identity.

The above can be generalized as follows. Suppose that H0 is obtained from H via k

free index 0/3 stabilizations. Let w0
1
; : : : ; w0

k
denote the free basepoints added in these

stabilizations. Let
ik
W CFK�;n.H/! CFK�;nCk.H0/

denote the obvious composition of k of the inclusion maps i , and

j k
W CFK�;nCk.H0/! CFK�;n.H/

be the composition of k of the projection maps j . Then ik
� induces an isomorphism

ik
� W HFK�;n.Y;L/!

� k\
iD1

coker w0
i

�
Œk�:
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Likewise, j k
� restricts to an isomorphism

j k
� W

� k\
iD1

coker w0
i

�
Œk�! HFK�;n.Y;L/;

which is the inverse of the isomorphism above. In Section 8, we use the relationships
between ik

� ; j
k
� and the free basepoint action together with the fact that this action

commutes with the maps induced by Heegaard moves to prove Theorem 1.1.

2.2 Legendrian and transverse links

In this short subsection, we collect a few basic notions involving Legendrian and
transverse links that are used in defining the invariants discussed in later sections. As
in the previous subsection, we assume a fair amount of familiarity with the subject. For
a basic reference, see Etnyre [12].

Recall that an oriented link in a contact 3–manifold .Y; �/ is called Legendrian if it is
everywhere tangent to � , and transverse if it is everywhere transverse to � and intersects
� positively.3 We say that two Legendrian (resp. transverse) links are Legendrian (resp.
transversely) isotopic if they are isotopic through Legendrian (resp. transverse) links.

A Legendrian link L can be perturbed to a canonical (up to transverse isotopy) transverse
link K called the transverse pushoff of L. Legendrian isotopic links give rise to
transversely isotopic pushoffs. Conversely, every transverse link K is transversely
isotopic to the pushoff of some Legendrian link L; we call such an L a Legendrian
approximation of K .

There is a local operation on Legendrian links called negative Legendrian stabilization,
which preserves transverse pushoffs; see [12]. Said more precisely, the transverse
pushoff of a Legendrian link is transversely isotopic to the pushoff of its negative
stabilization. Conversely, any two Legendrian approximations of the same transverse
link become Legendrian isotopic after sufficiently many negative Legendrian stabi-
lizations (Etnyre and Honda [14], and Epstein, Fuchs and Meyer [11]). It follows
that the operation of transverse pushoff gives rise to a one-to-one map from the set
of Legendrian links up to Legendrian isotopy and negative stabilization to the set of
transverse links up to transverse isotopy. Legendrian approximation is the inverse of
this map.

Suppose now that I is an invariant of Legendrian links (up to Legendrian isotopy)
that remains unchanged under negative Legendrian stabilization. The discussion above

3All contact structures in this paper are co-oriented.
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implies that I can also be used to define an invariant I 0 of transverse links: if K is a
transverse link and L is a Legendrian approximation of K , define

I 0.K/ WD I.L/:

As we shall see, this is precisely how the transverse GRID and LOSS invariants � and
T are defined from the Legendrian GRID and LOSS invariants � and L, respectively.

2.3 The GRID invariants

In this subsection, we describe the invariants of Legendrian and transverse links in
.S3; �std/ constructed by Ozsváth, Szabó and Thurston in [33] using grid diagrams.

Throughout, we shall think of S3 as R3[f1g. Under this identification, �std restricts
to the unique tight contact structure on R3 , which we also denote by �std (Eliashberg
[8]). We consider the latter to be given by

�std D ker.dz�y dx/:

There is a natural map from the set of Legendrian links in .R3; �std/ to the set of
Legendrian links in .S3; �std/. This map induces a one-to-one correspondence between
Legendrian isotopy classes of Legendrian links in .R3; �std/ and those in .S3; �std/.
The analogous statements hold for transverse links as well. We shall therefore think
of a Legendrian or transverse link as living in .R3; �std/ or .S3; �std/ depending on
which is most convenient.

The construction in [33] starts with the notion of a grid diagram. A grid diagram G is a
k�k square grid along with a collection of k z ’s and k w ’s contained in these squares
such that every row and column contains exactly one z and one w and no square
contains both a z and a w . One can produce from G a planar diagram for an oriented
link L � S3 by drawing a vertical segment in every column from the z basepoint
to the w basepoint and a horizontal segment in each row from the w basepoint to
the z basepoint so that the horizontal segments pass over the vertical segments, as in
Figure 3.

By rotating this planar diagram 45ı clockwise, and then smoothing the upward and
downward pointing corners and turning the leftward and rightward pointing corners
into cusps, one obtains the front projection of an oriented Legendrian link in .R3; �std/,
as in Figure 3. Let us denote this Legendrian link by L.G/. As discussed above, we
may think of L.G/ as a Legendrian link in .S3; �std/. Conversely, every Legendrian
link in .S3; �std/ is Legendrian isotopic to L.G/ for some grid diagram G .

One associates to G a multi-pointed Heegaard diagram .T 2; ˛; ˇ ; z;w/ for L� S3 ,
where T 2 is the torus obtained by identifying the top and bottom sides of G and the
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Figure 3: Left: the grid diagram G . Middle: the link L . Right: the Legen-
drian front projection of L.G/ .

left and right sides of G . We orient T 2 so that its normal direction points out of the
page. The vertical line segments on G correspond to k circles on T 2 ; we denote this
set of circles by ˛ . Likewise, ˇ refers to the set of k circles on T 2 corresponding to
the horizontal lines on G . Finally, z and w are the sets of z and w basepoints on T 2 ,
respectively.

Suppose L is an oriented Legendrian link in .S3; �std/. Let G be a grid diagram such
that L is Legendrian isotopic to L.G/, and let .T 2; ˛; ˇ ; z;w/ be the multi-pointed
Heegaard diagram associated to G . Then HD .�T 2; ˛; ˇ ; z;w/ is a multi-pointed
Heegaard diagram for L��S3 . Let x denote the generator of CFK�.�T 2; ˛; ˇ ; z;w/
consisting of the intersection points at the upper right-hand corners of the squares
containing the basepoints in z. Then x is a cycle in CFK�.�T 2; ˛; ˇ ; z;w/, and
Ozsváth, Szabó and Thurston define the invariant4

�.L/ WD Œx� 2 HFK�.�S3;L/:

Likewise, the authors in [33] define

y�.L/ WD Œx� 2 1HFK .�S3;L/:

The GRID invariants � and y� behave nicely with respect to negative Legendrian
stabilization:

Theorem 2.1 (Ozsváth, Szabó and Thurston [33]) Suppose L is a Legendrian link
in .S3; �std/ and L� is its negative stabilization. Then there exists an isomorphism
from HFK�.�S3;L/ to HFK�.�S3;L�/ that sends �.L/ to �.L�/. The analogous
statement holds for y�.

4In fact, they define two invariants, �C and �� ; our � is their �C . We will not devote any attention
to �� as there is an isomorphism from HFK�.�S3;L/ to HFK�.�S3;�L/ that identifies ��.L/ with
�C.�L/ [33, Proposition 1.2].
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This invariance under negative Legendrian stabilization allows Ozsváth, Szabó and
Thurston to define invariants � and y� of transverse links as suggested in the previous
subsection. Namely, if K is a transverse link in .S3; �std/ and L is a Legendrian
approximation of K , they define

�.K/ WD �.L/ 2 HFK�.�S3;K/ and y�.K/ WD y�.L/ 2 1HFK .�S3;K/:

Moreover, they show that the Alexander and Maslov gradings of �.K/ are given by

A.�.K//D
sl.K/C1

2
and M.�.K//D sl.K/C 1:

Here, sl.K/ is the self-linking number of the transverse link K . See [12] for details.

2.4 The LOSS invariants

In this subsection, we describe the invariants of Legendrian and transverse knots in
arbitrary contact 3–manifolds constructed by Lisca, Ozsváth, Stipsicz and Szabó in
[21].

Recall that an open book decomposition of a 3–manifold Y is a pair .B; �/ consisting
of an oriented (fibered) link B�Y and a locally trivial fibration � W Y �B!S1DR=Z
whose fibers are interiors of Seifert surfaces for the binding B . The closures of these
fibers are called pages. It is convenient to record this fibration in the form of an abstract
open book .S; '/, where S is a compact surface with boundary homeomorphic to a
page, and ' is a boundary-fixing diffeomorphism of S that encodes the monodromy
of the fibration. More precisely, we identify Y with .S � Œ0; 1�/=�' , where �' is the
relation defined by

.x; 1/�' .'.x/; 0/; x 2 S;

.x; t/�' .x; s/; x 2 @S; t; s 2 Œ0; 1�:

Under this identification, B is given by @S �ftg, and � is the map which sends .x; t/
to t . We denote the page S � ftg by St . Recall that a positive stabilization of .B; �/
is an open book decomposition corresponding to a fibered link obtained by plumbing
a positive Hopf band to B . Abstractly, a positive stabilization of .S; '/ is an open
book .S 0;D
 ı'/, where S 0 is obtained from S by attaching a 1–handle and D
 is
the right-handed Dehn twist around a curve 
 � S 0 that passes through this 1–handle
exactly once.

An open book decomposition is said to be compatible with a contact structure .Y; �/
if � D ker˛ for some 1–form ˛ 2 �1.Y / such that d˛ > 0 on the pages of the
open book and ˛ > 0 on its binding. Giroux proved that the map that sends an
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open book decomposition to a compatible contact structure gives rise to a one-to-one
correspondence from set of open book decompositions of Y up to positive stabilization
to the set of contact structures on Y up to isotopy [16] (see also Etnyre [13], and
Thurston and Winkelnkemper [39]).

With this background out of the way, we may now define the LOSS invariants. Suppose
L is a Legendrian knot in .Y; �/. Then there exists an open book decomposition .B; �/
compatible with .Y; �/ such that L sits as a homologically essential curve on some
page ��1.t/. Let .S; '/ be an abstract open book corresponding to .B; �/ in the
manner described above. We can think of L as sitting on the page S1=2 .

A basis for S adapted to L is a set of properly embedded arcs fa1; : : : ; akg in S

whose complement is a disk such that L only intersects a1 , and does so transversely
in a single point.5 Let fb1; : : : ; bkg be another such basis, where each bi is obtained
from ai by shifting the endpoints of ai slightly in the direction of the orientation on
@S and isotoping to ensure that there is a single transverse intersection between bi and
ai , as shown in Figure 4.

S1=2

L

˛1ˇ1

z

w

z

w

Figure 4: Part of the S1=2 portion of † near the intersection of L with ˛1 .
Which region contains z depends on the orientation of L as indicated. The
orange box represents the component of x on ˛1\ˇ1 .

Let † denote the closed surface S1=2[�S0 . For i D 1; : : : ; k , let ˛i D ai �f1=2g[

ai � f0g and ˇi D bi � f1=2g [ '.bi/ � f0g. Let w be a point on S1=2 outside of
the thin strips between the curves ˛i and ˇi , and let z be a point on S1=2 in one of
the two regions between ˛1 and ˇ1 , depending on the orientation of L, as shown in
Figure 4. Let ˛ D f˛1; : : : ; ˛kg, ˇ D fˇ1; : : : ; ˇkg, zL D fzg and wL D fwg. Then
.†; ˛; ˇ ; zL;wL/ is a doubly-pointed Heegaard diagram for L� Y , from which it
follows that .†; ˇ ; ˛;wL; zL/ is a doubly-pointed Heegaard diagram for L��Y . Let
x denote the generator of CFK�.†; ˇ ; ˛;wL; zL/ consisting of the intersection points
on S1=2 between the ˛i and ˇi curves. Then x is a cycle in CFK�.†; ˇ ; ˛;wL; zL/,
and Lisca, Ozsváth, Stipsicz and Szabó define the invariant

L.L/ WD Œx� 2 HFK�.�Y;L/:

5Here, we are thinking of L as lying on S via the canonical identification of S with S1=2 .
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Likewise, they define �L.L/ WD Œx� 2 1HFK .�Y;L/:

As was the case for the GRID invariants, the LOSS invariants L and �L behave nicely
with respect to negative Legendrian stabilization:

Theorem 2.2 (Lisca, Ozsváth, Stipsicz and Szabó [21]) Suppose L is a Legendrian
knot in .Y; �/ and L� is its negative stabilization. Then there exists an isomorphism
from HFK�.�Y;L/ to HFK�.�Y;L�/ that sends L.L/ to L.L�/. The analogous
statement holds for �L.

Using Theorem 2.1, Lisca, Ozsváth, Stipsicz and Szabó define invariants T and �T of
transverse knots as in the previous subsection. Namely, if K is a transverse knot in
.Y; �/ and L is a Legendrian approximation of K , they define

T.K/ WD L.L/ 2 HFK�.�Y;K/ and �T.K/ WD �L.L/ 2 1HFK .�Y;K/:

For a transverse knot K � .S3; �std/, they also prove that the Alexander and Maslov
gradings of T.K/ are given by

A.T.K//D
sl.K/C 1

2
and M.T.K//D sl.K/C 1:

In particular, the gradings of T agree with those of � where both invariants are defined.

2.5 Transverse braids and open books

In this subsection, we discuss the relationship between transverse knots and braids in
open books. We will use this relationship in Section 3 to define our BRAID invariant t .

Suppose .B; �/ is an open book compatible with the contact structure .Y; �/. A
transverse link K in .Y; �/ is said to be a braid with respect to .B; �/ if K is positively
transverse to the pages of .B; �/. Two such braids are said to be transversely isotopic
with respect to .B; �/ if they are transversely isotopic through links that are braided
with respect to .B; �/. The following result of Pavelescu is a generalization of a
theorem of Bennequin [6].

Theorem 2.3 (Pavelescu [34]) Suppose .B; �/ is an open book compatible with
.Y; �/. Then every transverse link in .Y; �/ is transversely isotopic to a braid with
respect to .B; �/.
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If K is a braid with respect to .B; �/, then K intersects every page of .B; �/ in the
same number of points, say n. In this case, we refer to K as an n–braid. Let B0 be a
binding component of .B; �/. In [34], Pavelescu defines an operation called positive
Markov stabilization around B0 , which is a generalization of the standard positive
Markov stabilization for braids in S3 . This operation replaces K with an .nC1/–braid
KC with respect to .B; �/, which is transversely isotopic to K . See Figure 5 for an
illustration. In addition, Pavelescu proves the following generalization of Wrinkle’s
Transverse Markov Theorem [42] (see also Orevkov and Shevchishin [28]).

Theorem 2.4 (Pavelescu [34]) Suppose K1 and K2 are braids with respect to an
open book .B; �/ compatible with .Y; �/. Then K1 and K2 are transversely isotopic
if and only if there exist positive Markov stabilizations KC

1
and KC

2
around the binding

components of .B; �/ such that KC
1

and KC
2

are transversely isotopic with respect to
.B; �/.

B0 B0

K KC

Figure 5: On the left, K near the binding component B0 . On the right, the
positive stabilization KC .

The following is an immediate corollary of Pavelescu’s work.

Corollary 2.5 Suppose K1 and K2 are braids with respect to open books .B1; �2/

and .B2; �2/ compatible with .Y; �/. Let .B; �/ be any common positive stabilization
of .B1; �1/ and .B2; �2/, and let K0

1
and K0

2
denote the induced braids with respect

to .B; �/. Then K1 and K2 are transversely isotopic if and only if there exist positive
Markov stabilizations .K0

1
/C and .K0

2
/C around the binding components of .B; �/

such that .K0
1
/C and .K0

2
/C are transversely isotopic with respect to .B; �/.

Below, we describe how to think about braids in terms of abstract open books. Suppose
.B; �/ is an open book compatible with .Y; �/ and that K is a transverse link in
.Y; �/ that is an n–braid with respect to .B; �/. Let .S; '/ be an abstract open book
corresponding to .B; �/ and let p1; : : : ;pn be distinct points in the interior of S .

Geometry & Topology, Volume 17 (2013)



On the equivalence of Legendrian and transverse invariants in knot Floer homology 943

Then ' is isotopic to a diffeomorphism y' of the pair .S; fp1; : : : ;png/, which fixes
@S point-wise, such that the braid K is corresponds to .fp1; : : : ;png � Œ0; 1�/=�y' in
the identification of Y with .S � Œ0; 1�/=�y' . We say that the braid K is encoded by
the pointed open book .S; fp1; : : : ;png; y'/.

Next, we provide an abstract interpretation of what it means for two braids to be
transversely isotopic with respect to a given open book. Suppose .S; '1/ and .S; '2/

are two abstract open books corresponding to .B; �/ and K1 and K2 are braids
with respect to .B; �/, encoded by the pointed open books .S; fp1

1
; : : : ;p1

ng; y'1/ and
.S; fp2

1
; : : : ;p2

ng; y'2/. It follows from the discussion in [34] that K1 and K2 are
transversely isotopic with respect to .B; �/ if and only y'2 is isotopic to h ı y'1 ı h�1

for some diffeomorphism h that sends fp1
1
; : : : ;p1

ng to fp2
1
; : : : ;p2

ng (by an isotopy
that fixes fp2

1
; : : : ;p2

ng and @S point-wise).

B0

pn

pnC1




Figure 6: On the left, a portion of S near the boundary component B0 .
The shaded region is N.B0/ . The map d
 is the identity outside of a
neighborhood of the arc 
 . The middle and rightmost figures show such a
neighborhood. The diffeomorphism d
 is specified on this neighborhood up
to isotopy by where it sends the vertical blue arc in the middle diagram. The
rightmost diagram shows the image of this arc under d
 .

The following is an abstract analogue of positive Markov stabilization. Consider the
pointed open book .S; fp1; : : : ;png; y' /. Let pnC1 be a point in a collar neighborhood
N.B0/ of some boundary component B0 of S such that y' is the identity on N.B0/.
Let 
 be a properly embedded arc in S �fp1; : : : ;pn�1g with endpoints on pn and
pnC1 , and let d
 denote the right-handed half twist along 
 , as indicated in Figure 6.
Then the pointed open book .S; fp1; : : : ;pnC1g; d
 ı y' / is said to be a positive Markov
stabilization of .S; fp1; : : : ;png; y' /. If K is encoded by .S; fp1; : : : ;png; y' /, then
any positive Markov stabilization KC of K is encoded by some positive Markov
stabilization .S; fp1; : : : ;pnC1g; d
 ı y' / of .S; fp1; : : : ;png; y' /, as discussed in [34].

It follows from the above discussion and Corollary 2.5 that any two pointed open books
that encode transversely isotopic links are related by isotopy, conjugation, positive
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(open book) stabilization and positive Markov stabilization. We use this fact in the next
section to define our invariant t .

3 The BRAID invariants

In this section, we define the BRAID invariants t and yt . Our construction uses a
Heegaard diagram very similar to that used in the construction of the LOSS invariants.

Suppose K is a transverse link in .Y; �/, braided with respect to some open book
decomposition .B; �/ compatible with .Y; �/. Let .S; '/ be an abstract open book
corresponding to .B; �/, and let .S; fp1; : : : ;png; y' / be a pointed open book encoding
K . A basis for .S; fp1; : : : ;png/ is a set fa1; : : : ; akg of properly embedded arcs in S

such that S�fa1; : : : ; akg is a union of n disks each of which contains exactly one point
in fp1; : : : ;png. Let fb1; : : : ; bkg be another such basis, where each bi is obtained
from ai by shifting the endpoints of ai slightly in the direction of the orientation on
@S and isotoping in the complement of the points p1; : : : ;pn to ensure that there is a
single transverse intersection between bi and ai , as discussed in Section 2.4.

Let † denote the surface S1=2[�S0 . For i D 1; : : : ; k , let ˛i D ai�f1=2g[ai�f0g

and ˇi D bi � f1=2g [ y'.bi/� f0g, and let wi D pi � f1=2g and zi D pi � f0g. Let
˛ D f˛1; : : : ; ˛kg, ˇ D fˇ1; : : : ; ˇkg, zK D fz1; : : : ; zng and wK D fw1; : : : ; wng.
Then .†; ˛; ˇ ; zK ;wK / is a multi-pointed Heegaard diagram for K � Y . It follows
that HD .†; ˇ ; ˛;wK ; zK / is a multi-pointed Heegaard diagram for K ��Y . See
Figure 7 for an example.

Let x.H/ denote the generator of CFK�.H/ consisting of the intersection points on
S1=2 between the ˛i and ˇi curves. Note that x.H/ is a cycle in CFK�.H/. We
define

t.K/ WD Œx.H/� 2 HFK�.�Y;K/D HFK�.H/;

and we define yt.K/ 2 1HFK .�Y;K/ to be the image of t.K/ under the natural map
p�W HFK�.H/! 1HFK .H/ discussed in Section 2.1. The theorem below justifies
this notation and implies that t and yt are transverse link invariants.

Theorem 3.1 Suppose .S1; fp
1
1
; : : : ;p1

ng; y'1/ and .S2; fp
2
1
; : : : ;p2

ng; y'2/ are pointed
open books encoding braids K1 and K2 with respect to open books .B1; �1/ and
.B2; �2/ compatible with .Y; �/. Let H1 and H2 be the Heegaard diagrams associated
to these pointed open books and bases for .S1; fp

1
1
; : : : ;p1

ng/ and .S2; fp
2
1
; : : : ;p2

ng/.
If K1 and K2 are transversely isotopic in .Y; �/, then there is an isomorphism of
graded F ŒU1; : : : ;Ul �–modules,

 W HFK�.H1/! HFK�.H2/;
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S S

p1
p2p1

p2

x




S1=2

�S0

z1
z2

w1
w2

Figure 7: An example in which S is the genus one surface with one bound-
ary component and n D 2 . The diagram in the middle shows a basis for
.S; fp1;p2g/ . The diagram on the right is the Heegaard diagram H associ-
ated to this basis and the pointed open book .S; fp1;p2g;Dx ı d�1


 / , where
Dx is a right-handed Dehn twist around the curve x shown on the left and
d�1

 is a left-handed half-twist along the arc 
 . The orange boxes represent

the generator x.H/ .

which sends Œx.H1/� to Œx.H2/�.6 Likewise, there is an isomorphism of graded F –
modules,

y W 1HFK .H1/! 1HFK .H2/;

which sends Œx.H1/� to Œx.H2/�.

Proof of Theorem 3.1 From the discussion at the end of Section 2.5, it suffices to
show that for a pointed open book .S; fp1; : : : ;png; y' / and basis fa1; : : : ; akg for
.S; fp1; : : : ;png/, each of the five operations

(1) change of the basis fa1; : : : ; akg,

(2) isotopy of y' fixing fp1; : : : ;png point-wise,

(3) positive open book stabilization,

(4) conjugation of y' ,

(5) positive Markov stabilization,

6Here, we are assuming that the smooth link type represented by K1 and K2 has l –components and
that Ui is the formal variable associated to the i th component.
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gives rise to an isomorphism on knot Floer homology that sends t to t . For (1), (2)
and (3), this follows from the proofs of Honda, Kazez and Matić [18, Proposition 3.4,
Lemma 3.3], and Lisca, Ozsváth, Stipsicz and Szabó [21, Theorem 2.11], respectively.
We first remind the reader of the basic ideas in these proofs before proving invariance
of t under (4) and (5).

(1) After relabeling the ai , we can assume a1 and a2 have adjacent endpoints on
@S ; that is, there exists an arc � � @S with endpoints on a1 and a2 whose interior is
disjoint from all ai . We define a1C a2 to be the isotopy class (rel. endpoints) of the
union a1[ � [ a2 , as shown on the left in Figure 8. The modification

fa1; a2; : : : ; akg ! fa1C a2; a2; : : : ; akg

is called an arc slide. Any two bases for .S; fp1; : : : ;png/ are related by a sequence
of arc slides by a trivial extension of [18, Lemma 3.6]. Thus, we need only show
that a single arc slide gives rise to an isomorphism on knot Floer homology sending
Œx.H/� to Œx.H0/�, where H and H0 are the Heegaard diagrams associated to the bases
fa1; : : : ; akg and fa1C a2; : : : ; akg respectively. The Heegaard diagrams H and H0
are related by two handleslides: a handleslide of ˇ1 over ˇ2 , followed by a handleslide
of ˛1 over ˛2 . The middle and rightmost portions of Figure 8 show parts of the
Heegaard triple diagrams associated to these two handleslides. Let g and f denote the
corresponding quasi-isomorphisms. There are unique pseudo-holomorphic triangles
contributing to g.x.H// and f .g.x.H/// whose domains are unions of small triangles,
as shown in Figure 8. From this, it is easy to see that the composition f� ıg� sends
Œx.H/� to Œx.H0/�.

a2a1C a2a1

S S1=2

�S0

S1=2

�S0

Figure 8: On the left, a1C a2 is the result of arc sliding a1 over a2 . This
move corresponds to two handleslides whose associated triple diagrams are
shown in the middle and right. The small shaded triangles in these diagrams
are parts of the two domains contributing to g.x.H// and f .g.x.H/// ,
respectively. The generators x.H/ and x.H0/ are represented by the orange
and red boxes in the middle and right figures, respectively.

(2) Let H and H0 be the Heegaard associated to the basis fa1; : : : ; akg and the pointed
open books .S; fp1; : : : ;png; y' / and .S; fp1; : : : ;png; y'

0/, respectively, where y'0 is
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obtained from y' by an isotopy fixing fp1; : : : ;png point-wise. Figure 9 shows a
portion of the Heegaard triple diagram associated to this isotopy. Let f denote the
corresponding quasi-isomorphism. There is a unique pseudo-holomorphic triangle
contributing to f .x.H// whose domain is a union of small triangles of the sort shown
in the figure. It follows that f� sends Œx.H/� to Œx.H0/�.

S1=2

�S0

Figure 9: Part of the Heegaard triple diagram associated to an isotopy. The
generators x.H/ and x.H0/ are represented by the orange and red boxes. The
domain contributing to f .x.H// is a union of small shaded triangles of the
kind shown in this figure.

(3) Let .S 0; '0 D D
 ı '/ be a positive open book stabilization of .S; '/. We can
choose a basis fa1; : : : ; akg for .S; fp1; : : : ;png/ that is disjoint from the curve 
 (a
trivial extension of [21, Section 2.4]). Let akC1 be the co-core of the 1–handle attached
in forming S 0 . Let H and H0 be the Heegaard diagrams associated to the bases
fa1; : : : ; akg and fa1; : : : ; akC1g and the pointed open books .S; fp1; : : : ;png; y' /

and .S 0; fp1; : : : ;png; y'
0/, respectively. Then H0 is an index 1/2 stabilization of H , as

indicated in Figure 10. Moreover, the isomorphism between CFK�.H/ and CFK�.H0/
clearly identifies x.H/ with x.H0/.

S1=2 �S0 S 0
1=2 �S 0

0

Figure 10: On the left, the Heegaard diagram H . On the right, the Heegaard
diagram H0 . This shows that positive open book stabilization corresponds to
an index 1/2 stabilization. The orange boxes represent components of x.H/
and x.H0/ .
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Below, we show that the moves in (4) and (5) also give rise to isomorphisms of knot
Floer homology which send t to t .

(4) Let H D .†; fˇ1; : : : ; ˇkg; f˛1; : : : ; ˛kg;wK ; zK / be the Heegaard diagram as-
sociated to the basis fa1; : : : ; akg for .S; fp1; : : : ;png/ and the pointed open book
.S; fp1; : : : ;png; y' /. Likewise, let

H0 D .†; fˇ01; : : : ; ˇ
0
kg; f˛

0
1; : : : ; ˛

0
kg;w

0
K ; z

0
K /

be the Heegaard diagram associated to the basis fh.a1/; : : : ; h.ak/g for
.S; fh.p1/; : : : ; h.pn/g/ and the pointed open book .S; fh.p1/; : : : ; h.pn/g; h ı y' ı

h�1/. Recall that ˛i D ai � f1=2g [ ai � f0g and ˇi D bi � f1=2g [ y'.bi/ � f0g.
Likewise,

and

˛0i D h.ai/� f1=2g[ h.ai/� f0g

ˇ0i D h.bi/� f1=2g[ h ı y' ı h�1.h.bi//� f0g

D h.bi/� f1=2g[ h.y'.bi//� f0g:

In addition, w0
K
D h.wK / and z0

K
D h.zK /. The Heegaard diagram H0 is therefore

homeomorphic to H , so there is a canonical isomorphism of complexes CFK�.H/Š
CFK�.H0/. Moreover, this isomorphism clearly identifies x.H/ with x.H0/.

(5) Let HD .†; fˇ1; : : : ; ˇkg; f˛1; : : : ; ˛kg;wK ; zK / be the Heegaard diagram asso-
ciated to the basis fa1; : : : ; akg and the pointed open book .S; fp1; : : : ;png; y' /. Let
.S; fp1; : : : ;pnC1g; d
 ı y' / be a positive Markov stabilization of .S; fp1; : : : ;png; y' /,
and let akC1 be a boundary parallel arc that splits off a disk containing only the point
pnC1 , so that fa1; : : : ; akC1g is a basis for .S; fp1; : : : ;pnC1g/. Let wi Dpi�f1=2g

and zi Dpi�f0g. Let H0D .†; fˇ1; : : : ; ˇkC1g; f˛1; : : : ; ˛kC1g;wK[fwnC1g; zK [

fznC1g/ be the Heegaard diagram associated to the basis fa1; : : : ; akC1g and the
pointed open book .S; fp1; : : : ;pnC1g; d
 ı y' /. Note that ˇkC1 only intersects ˛kC1

and in exactly two points, x0 and y0 , as indicated in Figure 11. The diagram H0 is
therefore obtained from H by linked index 0/3 stabilization. As explained in Section 2.1,
the chain map from CFK�.H/ to CFK�.H0/, which sends a generator x to x[fy0g,
induces an isomorphism on homology. Now, just observe that x.H/[fy0g D x.H0/.

This completes the proof of Theorem 3.1.

4 Right-veering braids and t

In this section, we discuss the relationship between our invariant and right-veering
braids. Suppose K is a braid with respect to the open book .B; �/. Let .S; '/
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S x0

y0 S1=2

�S0

pn

pnC1

zn
znC1

wn

wnC1

akC1


Figure 11: On the left, the arcs akC1 and 
 . On the right, the corresponding
portion of the Heegaard diagram H0 ; ˇkC1 is obtained by applying the
half-twist d
�f0g to ˛kC1 . This shows that positive Markov stabilization
corresponds to a linked index 0/3 stabilization.

be an abstract open book corresponding to .B; �/ and let .S; fp1; : : : ;png; y' / be a
pointed open book encoding K . Suppose a; b W Œ0; 1�! S �fp1; : : : ;png are properly
embedded arcs on S such that a.0/D b.0/ and a.1/D b.1/. We say that b is to the
right of a if either b is isotopic to a in S �fp1; : : : ;png or, after isotoping a and b

in S � fp1; : : : ;png so that they intersect efficiently (while keeping their endpoints
fixed), the ordered pair . Pb.0/; Pa.0// specifies the orientation of S .7 Following [17],
we call the pointed open book .S; fp1; : : : ;png; y' / right-veering if, for every properly
embedded arc a in S � fp1; : : : ;png, y'.a/ is to the right of a. The lemma below
follows easily from the discussion in Section 2.5; one simply observes that conjugation
does not affect right-veering-ness.

Lemma 4.1 Let K be braided with respect to a fixed open book. A pointed open book
encoding the braid K is right-veering if and only if all pointed open books encoding K

are right-veering.

This leads us to the following natural definition.

Definition 4.1 A braid K with respect to .B; �/ is right-veering if all pointed open
books encoding K are right-veering.

Recall that Theorem 1.4 claims that if K is not right-veering as a braid with respect to
some .B; �/, then yt.K/D 0.

Proof of Theorem 1.4 Suppose K is an n–braid with respect to .B; �/ that is not
right-veering. Let .S; fp1; : : : ;png; y' / be a pointed open book encoding K . Then

7Here, we are also using a and b to denote the arcs resulting from these isotopies.
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there exists some properly embedded arc a on S �fp1; : : : ;png such that y'.a/ is not
to the right of a. Let us first consider the case where a is either non-separating or
separates S into two pieces which both contain a point of fp1; : : : ;png. In this case,
we may incorporate a into a basis faD a1; a2; : : : ; akg for .S; fp1; : : : ;png/.

Let HD .†; fˇ1; : : : ; ˇkg; f˛1; : : : ; ˛kg;wK ; zK / be the Heegaard diagram for K �

�Y associated to this basis and the data .S; fp1; : : : ;png; y' /, as described in the
beginning of this section. We may assume that ˛1 and ˇ1 intersect efficiently in
�S0 � fp1 � f0g; : : : ;pn � f0gg. The fact that y'.a/ is not to the right of a means
that an arc of ˇ1 forms a half-bigon with an arc of ˛1 and an arc of the curve
@.�S0/ D �@.S1=2/, as shown in Figure 12. Let x0

1
denote the intersection point

between ˛1 and ˇ1 on �S0 that is a corner of this half-bigon and, for i D 1; : : : ; k ,
let xi denote the unique intersection point between ˛i and ˇi on S1=2 .

ww

z

�S0

S1=2

�S0

S1=2x1

x0
1

x1

x0
1

y

Figure 12: A portion of H near ˛1 , ˇ1 and @.�S0/ D �@.S1=2/ . Either
@�.x0/D x as on the left, or @�.x0/D xCUzy as on the right.

The obvious bigon in † with corners at x0
1

and x1 is the domain of a class �0 2

�2.x0; x/, where x0 is the generator fx0
1
;x2; : : : ;xng and x is the generator

fx1;x2; : : : ;xng. This class avoids all basepoints, has Maslov index one and supports
a unique pseudo-holomorphic representative. Now, suppose � 2 �2.x0; y/ is a class
with a pseudo-holomorphic representative for some y ¤ x ¤ x0 . Since its domain
D.�/ has no negative multiplicities, D.�/ cannot have corners at any of x2; : : : ;xn .
D.�/ is therefore a bigon with corners at x0

1
and y for some other intersection point

y 2 ˛1 \ ˇ1 \�S0 . In particular, this shows that there can be at most one such y.
Since ˛1 and ˇ1 intersect efficiently in �S0 , such a bigon exists only if it contains
some point z 2 zK . It follows from this discussion that either no such � exists, in
which case @�.x0/D x, or that @�.x0/D xCUzy. In either case, t.K/D Œx� is in the
image of multiplication by Uz , from which it follows that yt.K/D 0.

Next, we consider the case where the arc a separates S into two regions, R and T ,
where T does not contain any of the pi . Let pnC1 be a point in a neighborhood N
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of @S \T on which y' is the identity, and let K0 be the braid with respect to .B; �/
encoded by the pointed open book .S; fp1; : : : ;pnC1g; y' /. Note that K0 is the union
of K with an unknot. We can now extend a to a basis for .S; fp1; : : : ;pnC1g/, and
it follows from the preceding discussion that yt.K0/ D 0. But it is easy to see that
yt.K0/D 0 if and only if yt.K/D 0.

To prove this, we first pick a basis fa1; : : : ; akg for .S; fp1; : : : ;png/ and we let
H D .†; fˇ1; : : : ; ˇkg; f˛1; : : : ; ˛kg;wK ; zK / be the associated Heegaard diagram.
Now, let akC1 be a boundary-parallel arc in S that splits off a disk containing just pnC1 ,
so that fa1; : : : ; akC1g is a basis for .S; fp1; : : : ;pnC1g/. Let wnC1 D pnC1�f1=2g

and znC1 D pnC1 � f0g. Then,

H0 D .†; fˇ1; : : : ; ˇkC1g; f˛1; : : : ; ˛kC1g;wK [fwnC1g; zK [fznC1g/

is the Heegaard diagram for K0 � �Y associated to this basis and the pointed open
book .S; fp1; : : : ;pnC1g; y' /; see Figure 13. Let x be the intersection point x 2

˛kC1\ˇkC1\S1=2 . It is clear that the inclusion

�W 1CFK .H/!1CFK .H0/;

which sends a generator x to x[ fxg, induces an injection �� on homology, which
sends yt.K/ to yt.K0/. This completes the proof of Theorem 1.4.

�S0

S1=2 w
wnC1

znC1

x

x0

Figure 13: A portion of H0 near ˛kC1 , ˇkC1 and @.�S0/ D �@.S1=2/ .
Disks cannot leave the intersection point x due to the presence of the base-
points in wK [fwnC1g . The only disks that can enter x are the two canceling
bigons from x0 . It follows that �� is an inclusion.

5 LOSS = BRAID

In this short section, we identify the LOSS invariant T with our BRAID invariant t .
Our main theorem is the following:
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Theorem 5.1 Let K be a transverse knot in .Y; �/. There exists an isomorphism of
bigraded F ŒU �–modules,

 W HFK�.�Y;K/! HFK�.�Y;K/;

which sends T.K/ to t.K/.

We later combine this with Theorem 8.1 to prove Theorem 1.1.

Proof of Theorem 5.1 Suppose K is a transverse knot in .Y; �/. Then K is trans-
versely isotopic to a binding component K0 of some open book decomposition .B; �/
for .Y; �/ Baker, Etnyre and Van Horn-Morris [2, Lemma 6.5]. Let .B0; � 0/ be the
result of positively stabilizing .B; �/ in a neighborhood of a point contained in the
binding component K0 . Abstractly, this corresponds to performing a positive Hopf
plumbing along a disk region that is boundary parallel to K0 in a page of .B; �/ (see
Vela-Vick [40, Section 3.1] for a more detailed discussion). As shown in [40, Lemma
3.1], and illustrated on the right side of Figure 14, this neighborhood contains both a
Legendrian approximation L of K0 sitting as a homologically nontrivial curve on a
page of .B0; � 0/, as well as a knot K00 which is a 1–braid with respect to .B0; � 0/ and
transversely isotopic to K0 .

K0
K0 LK00

Figure 14: On the left, a page of .B; �/ in a neighborhood of the binding
component K0 . On the right, a page of the stabilized open book .B0; � 0/ near
K0 . L is a Legendrian approximation of K0 and K00 intersects each fiber of
� 0 in exactly one point.
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Since K is transversely isotopic to K0 , there are isomorphisms of knot Floer homology
identifying t.K/ with t.K0/ and T.K/ with T.K0/. It therefore suffices to show that
there is an isomorphism of knot Floer homology that identifies t.K0/ with T.K0/.
But T.K0/ is defined to be L.L/, and t.K0/ is defined to be t.K00/ as a 1–braid with
respect to .B0; � 0/. Thus, to prove Theorem 5.1, it is enough to show that there is an
isomorphism of knot Floer homology which identifies L.L/ with t.K00/.

K0

S

K0L

S 0 a1ai

Figure 15: On the left, the surface S near the binding component K0 . In the
middle, the stabilized surface S 0 with the Legendrian approximation L of
K0 . On the right, our choice of basis. We let a1 be the co-core of the attached
1–handle and require that no other ai intersects the boundary component of
S 0 corresponding to K0 .

Let .S; '/ be the abstract open book correponding to .B; �/, and let .S 0; '0/ be the
abstract open book corresponding to the positive stabilization .B0; � 0/. Figure 15
shows a portion of S 0 near the region in which the stabilization occurred. As illustrated
in that figure, we let a1 be the co-core of the 1–handle attached in the stabilization,
and we require that no other basis arc intersects the outermost boundary component.
The left side of Figure 16 shows the corresponding portion of the Heegaard diagram
associated to .S 0; '0/ and this choice of basis, as defined in Section 2.4.

Now, observe that if we isotope the basepoint z to the �S 0
0

portion of †, as shown in
Figure 16, then we obtain the Heegaard diagram associated to a transverse 1–braid. To
see that this transverse 1–braid is precisely K00 , simply include the pair of basepoints
.w; z/ corresponding to the Legendrian L in the right-hand portion of Figure 14 and
perform the above described isotopy of the basepoint z . If we follow L thorough this
isotopy, the result is precisely the transverse 1–braid K00 .

To summarize, the Heegaard diagrams defining the invariants L.L/ and t.K00/ are
exactly the same (well, isotopic). Moreover, the generators representing L.L/ and
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S 0
1=2 �S 00 S 0

1=2 �S 0
0

z
w

zw

Figure 16: On the left, the Heegaard diagram associated to .S 0; '0/ and
our choice of basis, as used to define the invariant L.L/ . On the right, the
Heegaard diagram associated to the 1–braid K00 and the same basis, as used
to define the invariant t.K00/ . The arrows on the boundaries of S 0

1=2
and

�S 0
0

in each case indicate how the surfaces are glued together to form the
Heegaard surface. These two Heegaard diagrams only differ in that z and
w have been moved slightly. The orange boxes on the left and the right
correspond to the generators representing L.L/ and t.K00/ , respectively.

t.K00/ correspond to the same sets of intersection points. This completes the proof of
Theorem 5.1.

6 A reformulation of the BRAID invariant t

Suppose that K is a transverse knot in .S3; �std/, braided with respect to the standard
disk open book decomposition .U; �/, where U is an unknot and the fibers ��1.t/ are
open disks. In this section, we give an alternate characterization of t.K/ in terms of a
filtration induced by �U ��S3 on the complex CFK�;2.�S3;K/, defined Section 2.1.
In Section 7, we show that the invariant �.K/ admits an identical formulation. We will
use these reformulations in Section 8 to establish an equivalence between the invariants
t and � .

To define this filtration, we first build a special multi-pointed Heegaard diagram for the
link K[U � S3 . Let .S DD2; ' D id/ be the abstract open book corresponding to
.U; �/. As in Section 2.5, the braid K is specified by the data .S; fp1; : : : ;png; y' /, for
some lift y' of ' . Let a1; : : : ; an�1 be basis arcs for .S; fp1; : : : ;png/ such that, for
i D 1; : : : ; n�1, the arc ai separates S into two disks, one of which contains the points
p1; : : : ;pi . Recall from Section 3 that this basis and the data .S; fp1; : : : ;png; y' /
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together specify a multi-pointed Heegaard diagram,

.†; fˇ1; : : : ; ˇn�1g; f˛1; : : : ; ˛n�1g;wK ; zK /;

for K ��S3 , where †D S1=2[�S0 , ˛i D ai �f1=2g[ai �f0g, ˇi D bi �f1=2g[

y'.bi/� f0g for a small pushoff bi of ai , and zK and wK consist of all points of the
form fpig � f1=2g and fpig � f0g, respectively. See Figure 17 for an example in the
case that nD 4.

S1=2

�S0

w

w

w

w

p1

p2

p3

p4

a1
a2

a3
U

Figure 17: On the left, the disk S together with the points pi and the basis
arcs ai in the case that nD 4 . On the right, a piece of the associated Heegaard
diagram near the S1=2 portion of † . The ˛i are in red, the ǰ in blue. The
set wK consists of the points marked w .

We may think of U as sitting on † as the oriented boundary of S1=2 . Push the curves
ˇ1; : : : ; ˇn�1 along U (in the direction specified by its orientation) via a finger move
in such a way that U is the union of two segments, s1; s2 , where s1 only intersects
these pushed curves and s2 only intersects the ˛ curves. In an abuse of notation, we
denote these pushed curves also by ˇ1; : : : ; ˇn�1 ; see Figure 18. Let

H1 D .†; fˇ1; : : : ; ˇn�1g; f˛1; : : : ; ˛n�1g;wK ; zK /

denote the resulting Heegaard diagram.

The above finger move can alternatively be performed just inside the �S0 portion of
†. The result is the isotopic Heegaard diagram H0

1
shown on the right in Figure 18.

Note that H0
1

is the diagram associated, in the manner of Section 3, to the above basis
and the data .S; fp1; : : : ;png; y'

0/, where y'0 is a lift of ' that differs from y' by an
isotopy. The generator x0

1
of CFK�.H0

1
/ whose components are all contained in S1=2

therefore represents the transverse invariant t.K/ by Theorem 3.1. Let x1 denote the
corresponding generator of CFK�.H1/. It follows that Œx1�D t.K/ 2 HFK�.H1/.

To encode the binding U , we place basepoints z1; w1; z2; w2 along U 0 in that or-
der so that z1; w1 are the common endpoints of s1; s2 and z2; w2 are contained in
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w

w

w

w

U

w

w

w

w

S1=2

�S0

Figure 18: On the left, a portion of the diagram H1 . The solid segment of
U is meant to indicate s1 . On the right, a portion of the diagram H01 . The
orange boxes on the left and right are the components of the generators x1

and x01 , respectively.

s2 . Let ˛n; ˇn; ˛nC1; ˇnC1 be curves such that ˛n encircles z1; w1 , ˇn encircles
w1; z2 , ˛nC1 encircles z2; w2 , and ˇnC1 encircles w2; z1 , as shown in Figure 19.
Let ˛ D f˛1; : : : ; ˛nC1g, ˇ D fˇ1; : : : ; ˇnC1g, zU D fz1; z2g and wU D fw1; w2g.
Then .†; ˇ ; ˛;wK [ zU ; zK [ wU / encodes the link K [�U � �S3 and H3 D

.†; ˇ ; ˛;wK ; zK [wU / is a multi-pointed Heegaard diagram for K ��S3 with free
basepoints w1; w2 2 wU .

Remark 6.1 We have chosen to use two pairs of basepoints z1; w1; z2; w2 for �U to
fit more naturally with the corresponding story for the GRID invariant and to simplify
our proof of Theorem 8.1. In fact, we could have used any number of pairs of basepoints
and achieved completely analogous results.

As discussed in Section 2.1, the Alexander grading A�U on CFK�;2.H3/ is specified,
up to an overall shift, by the fact that

A�U .x/�A�U .y/D nzU
.�/� nwU

.�/

for any two generators x; y and any � 2 �2.x; y/. This grading induces a filtration

(2) ∅D F�U
m .H3/� F�U

mC1.H3/� � � � � F�U
` .H3/D CFK�;2.H3/;

where F�U
k
.H3/ is generated over F ŒUz3

; : : : ;UznC2
� by fx2T˛[Tˇ jA�U .x/�kg.

The bottommost nontrivial filtration level F�U
bot .H3/ may be characterized as follows.

Lemma 6.2 A generator of CFK�;2.H3/ is in F�U
bot .H3/ if and only all of its com-

ponents are contained in the region S1=2 .
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z1 w1 z2 w2

w

w

w

w

S1=2

�S0

Figure 19: A portion of the diagram H3 . The orange boxes are the compo-
nents of the generator x3 .

Proof of Lemma 6.2 We will prove that the A�U grading of a generator is, up to an
overall shift, the number of its components contained in �S0 , from which Lemma 6.2
will follow. First, we show that if x and y are generators whose components are all
contained in �S0 , then A�U .x/DA�U .y/.

Suppose x and y are as in the previous sentence. Since the ˛ and ˇ curves each
intersect �S0 in a single arc, we can connect every component of x to exactly one
component of y along an ˛ arc contained in �S0 ; likewise, we can connect every
component of x to exactly one component of y along a ˇ arc contained in �S0 . The
union of these arcs is a collection of closed curves in �S0 . Since �S0 is just a disk,
this collection of curves bounds a domain contained entirely in �S0 . By construction,
this domain connects x and y and is disjoint from the basepoints in zU [wU . It follows
that A�U .x/DA�U .y/.

Let Amax denote the A�U grading of generators whose components are all contained
in �S0 , and suppose we know that for any generator y with exactly k components
in S1=2 , A�U .y/DAmax� k . Now, suppose that x has exactly kC 1 components in
S1=2 . Let x be one such component, and suppose that it lies on ˛i and ǰ . Let x0 be
the intersection point on �S0 between the same two curves that is the reflection of
x across U . Let y be the generator obtained from x by replacing x with x0 . Then
A�U .y/ D Amax � k by the above hypothesis. There is a bigon from y to x that
passes once through either z1 or z2 and avoids the remaining basepoints in zU [wU ;
see Figure 20 for an example. This implies that A�U .y/ D A�U .x/C 1. Hence,
A�U .x/DAmax�.kC1/. By induction, we have shown that if a generator has exactly
j components in S1=2 , then its A�U grading is Amax�j for any j . It follows that if a
generator has exactly j components in �S0 , then its A�U grading is Amax�n�1Cj ,
which is what we set out to prove.
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S1=2

�S0

Figure 20: A portion of H3 near U . The components x0 and x of y and x
are shown in pink and green, respectively. The shaded region is the domain
of a bigon from y to x .

Let x3 denote the generator of CFK�;2.H3/ consisting of the components of x1

together with the intersection points on ˛n\ˇn and ˛nC1\ˇnC1 with the smallest
Maslov grading contributions. Since the components of x3 are all contained in S1=2 ,
Lemma 6.2 implies that x3 is in F�U

bot .H3/.

Lemma 6.3 The Maslov grading of x3 is greater than that of any other generator in
F�U

bot .H3/.

Proof of Lemma 6.3 Suppose y is a generator in F�U
bot .H3/. Let .y/j and .y/j

denote the components of y on j̨ and ǰ , respectively. We recursively construct a
sequence

yD ynC1; yn; : : : ; y1 D x3

of generators in F�U
bot .H3/ such that

� .yi/j D .x3/j for i D n; n� 1; : : : ; 1 and j D nC 1; n; : : : ; i ,

� M.yiC1/�M.yi/, with equality if and only if yi D yiC1 .

This will prove Lemma 6.3.

We first construct yn from y D ynC1 . If .y/n D .x3/n , then it must also be that
.y/nC1 D .x3/nC1 , and we simply let yn D y. Otherwise, there are two cases. For
the first, suppose .y/n D .y/nC1 . It follows that .y/nC1 D .y/n . Thus, we let yn be
the generator obtained from y by replacing the components .y/n and .y/nC1 with
.x3/n and .x3/nC1 . Note that there is a disk � 2 �2.yn; y/ whose domain is a square
as indicated on the left in Figure 21. This disk has Maslov index one if no other
components of y are contained in its domain, and greater than one otherwise (see
Lipshitz’s formula for the Maslov index in [20]). Since � avoids the basepoints in
zK [wU , M.yn/�M.y/D �.�/� 2nzK[wU

.�/� 1. For the second case, suppose
.y/n D .y/i for some i ¤ n; nC 1. Then .y/n D .y/j for some j ¤ n. Let y be
the intersection point on j̨ \ ˇi nearest .y/n along j̨ . Let yn be the generator
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obtained from y by replacing the components .y/n , .y/n and .y/nC1 with y , .x3/n
and .x3/nC1 . There is a disk � 2 �2.yn; y/ whose domain is a hexagon as indicated
on the right in Figure 21. This disk has Maslov index at least one, as above, and avoids
the basepoints in zK [wU , which implies that M.yn/�M.y/� 1. Observe that yn

satisfies the desired properties.

w

w

w

w

w

w

w

w

S1=2 S1=2

Figure 21: On the left, a rectangle connecting yn to y . On the right, a
hexagon connecting yn to y . The pink and green dots reflect the components
of yn and y , respectively, where these generators differ.

Suppose we have constructed ynC1; yn; : : : ; yiC1 with the desired properties. We
define yi from yiC1 in a manner very similar to the way we defined yn from y. If
.yiC1/i D .x3/i , then we set yi D yiC1 . Otherwise, there are two cases to consider. For
the first, suppose .yiC1/i D .yiC1/

i . Let yi be the generator obtained from yiC1 by
replacing the component .yiC1/i with .x3/i . There is a disk � 2 �2.yi ; yiC1/ whose
domain is a bigon as indicated on the left in Figure 22. This disk has Maslov index at
least one and avoids the basepoints in zK [wU , so M.yi/�M.yiC1/ � 1. For the
second case, suppose .yiC1/i D .yiC1/

k for some k ¤ i . Then .yiC1/
i D .yiC1/`

for some `¤ i . Let y be the intersection point on ˛` \ˇk nearest .yiC1/
i along ˛` .

Let yi be the generator obtained from yiC1 by replacing the components .yiC1/
i and

.yiC1/i with y and .x3/i . There is a disk � 2 �2.yi ; yiC1/ whose domain is a square
as indicated on the right in Figure 22. This disk has Maslov index at least one and
avoids the basepoints in zK [wU , which implies that M.yi/�M.yiC1/� 1. Then yi

has the desired properties. We proceed in this manner to construct the above sequence
from y to x3 .

In particular, Œx3� generates the summand Htop.F
�U
bot .H3// of H�.F

�U
bot .H3// in the

top Maslov grading. We may therefore characterize the class Œx3� more invariantly as
follows.
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w

w

w

w

w

w

w

w

S1=2 S1=2

Figure 22: On the left, a bigon connecting yi to yiC1 . On the right, a rectan-
gle connecting yi to yiC1 . The pink and green dots reflect the components
of yi and yiC1 , respectively, where these generators differ.

Proposition 6.4 Let bDminfj jH�.F�U
j .H3//¤0g, and let Ht .F

�U
b
.H3// denote

the summand of H�.F
�U
b
.H3// in the top Maslov grading. Then Ht .F

�U
b
.H3// has

rank one and is generated by Œx3�.

Remark 6.5 Though we do not prove it here, one can actually show that

H�.F
�U
b .H3//Š F ŒU1; : : : ;Ul �˝V ˝2;

where U1; : : : ;Ul are formal variables corresponding to the l components of the link
K , and V D F.0;0/˚F.�1;0/ , where the subscripts indicate the .M;A/ gradings of
the summands.

Below, we relate the class Œx3� to t.K/ in two steps.

Let H2 D .†; ˇ
0; ˛ 0;wK ; zK [wU / be the diagram obtained from H3 by isotoping

˛n , ˇn , ˛nC1 and ˇnC1 across z1 , z2 , z2 and z1 , respectively, so that the resulting
curves ˛0n; ˇ

0
n form a small configuration around w1 and ˛0

nC1
; ˇ0

nC1
form a small

configuration around w2 , in the sense of Section 2.1. We will assume that ˛0i and
˛i are related by a small Hamiltonian isotopy for i ¤ n; nC 1, and likewise for ˇ0i
and ˇi . Let x2 be the generator of CFK�;2.H2/ obtained from x3 by replacing the
components of x3 on ˛n\ˇn and ˛nC1\ˇnC1 by the intersection points on ˛0n\ˇ

0
n

and ˛0
nC1
\ ˇ0

nC1
with the smallest Maslov grading contributions and replacing all

other components of x3 by the corresponding intersection points between the ˛ 0 and
ˇ 0 curves, as shown in Figure 23.

Proposition 6.6 The isomorphism

F3;2W HFK�;2.H3/! HFK�;2.H2/

associated to the above sequence of isotopies sends Œx3� to Œx2�.
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w

w

w

w

S1=2

Figure 23: A portion of H2 near S1=2 . The orange boxes are the components
of x2 .

Proof of Proposition 6.6 Let H2:5 D .†; ˇ
0; ˛;wK ; zK [wU /. The map F3;2 is

induced by the composition fˇ0;˛;˛0 ıfˇ0;ˇ;˛ , where

fˇ0;ˇ;˛W CFK�;2.H3/! CFK�;2.H2:5/;

fˇ0;˛;˛0 W CFK�;2.H2:5/! CFK�;2.H2/

are the pseudo-holomorphic triangle-counting maps associated to the multi-pointed
Heegaard triple diagrams .†; ˇ 0; ˇ ; ˛;wK ; zK [wU / and .†; ˇ 0; ˛; ˛ 0;wK ; zK [

wU /, respectively. Let x2:5 be the generator of CFK�;2.H2:5/ obtained from x3 by
replacing the components of x3 on ˛n \ ˇn and ˛nC1 \ ˇnC1 by the intersection
points on ˛n\ˇ

0
n and ˛nC1\ˇ

0
nC1

with the smallest Maslov grading contributions,
and replacing all other components of x3 by the corresponding intersection points
between the ˛ and ˇ 0 curves. It is not hard to show that fˇ0;ˇ;˛ sends x3 to x2:5

and fˇ0;˛;˛0 sends x2:5 to x2 . Below, we illustrate the proof of the first statement; the
second follows by a similar argument. These two statements prove Proposition 7.1.

Let ‚ denote the generator of the complex CFK�;2.†; ˇ 0; ˇ ;wK ; zK [wU / in its top
Maslov grading, let y be a generator of CFK�;2.H2:5/ and suppose u 2 �2.‚; x3; y/
is a Whitney triangle (of the sort that would count for fˇ0;ˇ;˛ ) that admits a pseudo-
holomorphic representative. We claim that yD x2:5 and that the domain D.u/ must
be a disjoint union of the small triangles near the components of ‚, x3 and x2:5 as
shown in Figure 24. In this case, u has a unique pseudo-holomorphic representative,
which implies that fˇ0;ˇ;˛.x3/D x2:5 , proving the proposition. To prove this claim,
we analyze the multiplicities of D.u/ near these small triangles on †.

The diagram in the upper right of Figure 24 shows said multiplicities near one of these
small triangles. Since the region just outside of the triangle but adjacent to the ˇ 0 curve
contains a wK basepoint, the multiplicity of D.u/ in that region is 0, as indicated in
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the figure. The same goes for the region just outside of the triangle and sandwiched
between the ˛ and ˇ curves. The fact that ‚ and x3 are corners of D.u/ implies
that aD bC cC 1 and aC d D bC 1. Subtracting the second equation from the first,
we have that �d D c . The fact that u admits a pseudo-holomorphic representative
means that all multiplicities of D.u/ are non-negative; therefore, d D c D 0, which
implies that aD bC1. If D.u/ does not have a corner at the component of x2:5 at the
vertex of this small triangle, then aD�e , which implies that aD 0. But this implies
that b D �1, a contradiction. Therefore, yD x2:5 . But this implies that aC e D 1,
which implies that a D 1, e D 0 and b D 0. In summary, we have shown that the
multiplicities of D.u/ near these triangles are aD 1 and b D c D d D e D 0.

a
b c

d e0

0

w

w

w

w
S1=2

Figure 24: A portion of the triple diagram .†; ˇ 0; ˇ ; ˛;wK ; zK [wU / . The
ˇ 0 curves are in green. The generators ‚ , x3 and x2:5 are represented by
the black, orange and pink dots, respectively. The union of the small shaded
triangles is the domain of the class u 2 �2.‚; x3; x2:5/ .

Observe that H1 is the diagram obtained from H2 by performing two free index 0/3
destabilizations to remove the basepoints w1; w2 . It is clear that the projection and
inclusion maps

j 2
2;1W CFK�;2.H2/! CFK�.H1/;

i2
1;2W CFK�.H1/! CFK�;2.H2/;

defined in Section 2.1, send x2 to x1 and x1 to x2 , respectively. Combining this with
Proposition 6.6, we have the following.

Proposition 6.7 The compositions

.j 2
2;1/� ıF3;2W HFK�;2.H3/! HFK�.H1/;

F�1
3;2 ı .i

2
1;2/�W HFK�.H1/! HFK�;2.H3/;

send Œx3� to t.K/ and t.K/ to Œx3�, respectively.
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From the identification of t.K/ with the LOSS invariant T.K/ in the previous section,
we know that M.t.K// D sl.K/C 1. Recall from Section 2.1 that the maps i2

1;2

and j 2
2;1

increase Maslov grading by 2. It follows that the Maslov grading of x3 is
M.x3/D sl.K/� 1. In particular, t D topD sl.K/� 1. We will use this last fact in
the next section to prove an analogue of Proposition 6.4.

Remark 6.8 If we work with the theory CFKy;2 (see Section 2.1) rather than CFK�;2 ,
then we have an analogous filtration

(3) ∅D�F�U
m .H3/��F�U

mC1.H3/� � � � ��F�U
` .H3/D CFKy;2.H3/;

and can show just as in Proposition 6.4 that Œx3� generates the summand
Htop.�F�U

bot .H3// of H�.�F�U
bot .H3// in the top Maslov grading. Let W D F.0;0;0/˚

F.�1;0;�1/ , where the subscripts denote the M , AK , A�U gradings, respectively. Since
the associated graded object of the above filtration has homology 1HFK .�S3;K [

�U /˝W ,8 it follows that

Œx3� 2H�.CFKy;2/D 1HFK .�S3;K/˝V ˝2

can be interpreted as the image of the generator of the top Maslov graded piece of
the lowest A�U graded summand of 1HFK .�S3;K[�U /˝W under the spectral
sequence from 1HFK .�S3;K[�U /˝W to 1HFK .�S3;K/˝V ˝2 . In particular,
if we use one pair of basepoints for �U instead of two, as discussed in Remark 6.1,
then the relationship between Œx3� and yt.K/ extracted from Proposition 6.7 implies
the corollary below.

Corollary 6.9 The invariant yt.K/ is non-zero if and only if the generator of the top
Maslov graded piece of the lowest A�U graded summand of 1HFK .�S3;K[�U / sur-
vives under the spectral sequence from 1HFK .�S3;K[�U / to 1HFK .�S3;K/˝V .

7 A reformulation of the GRID invariant �

In this section, we give an alternate formulation of the GRID invariant � in terms
of the filtration on the knot Floer complex of a transverse braid that is induced by
its braid axis. This reformulation is identical to that described in Section 6 for our
BRAID invariant t . As mentioned in the previous section, our plan is to combine these
reformulations in Section 8 to establish an equivalence between t and � .

8It would have homology bHFK .�S3;K [ �U / were it not for the fact that we are using two
basepoint pairs to encode �U rather than one.
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Suppose K is a transverse link in .S3; �std/. As in Section 2.3, we may think of K as
a transverse link in .R3; �std/. Let �rot denote the contact structure on R3 , given in
cylindrical coordinates by

�rot D ker.dzC r2d�/:

The map �W .R3; �rot/! .R3; �std/ defined by

�.x;y; z/D .x; 2y;xyC z/

is a contactomorphism [19]. A result of Bennequin states that ��1.K/ is transversely
isotopic in .R3; �rot/ to a transverse braid Tˇ about the z–axis [6], as shown in
Figure 25. It follows from that K is transversely isotopic to �.Tˇ/, which is the
positive transverse pushoff of the Legendrian braid Lˇ shown in Figure 25 [19] (see
also Ng and Thurston [27]). Therefore, �.K/D �.Lˇ/.

ˇ

ˇ ˇ

z z z

x x

Figure 25: The top row shows Tˇ , �.Tˇ/ and Lˇ from left to right (we
have drawn Tˇ as a 3–strand braid). The next row shows how positive and
negative crossings in Tˇ are converted to crossings in Lˇ . The bottom row
shows an example of this conversion when ˇ is given by the braid word
�1�

�1
2
��1

1
�2 .

Let Z denote the oriented z–axis, and consider the open book decomposition .Z; �/
of R3 , where � W R3 nZ! S1 is the map given by

�.z; r; �/D �:

Since the open book .Z; �/ is compatible with .R3; �rot/, it gives rise to an open book
ob compatible with .S3; �std/ via the contactomorphism � and the identification of
S3 with R3[f1g. The binding of ob is an unknot, U D �.Z/[f1g, and its pages
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are disks. Note that �.Tˇ/ is braided with respect to ob since Tˇ was braided with
respect to .Z; �/. The leftmost diagram in Figure 26 shows the link �.Tˇ/ together
with its braid axis U .

In a slight abuse of notation, we will denote transverse link �.Tˇ/ simply by K . The
remainder of this section is devoted to studying the filtration induced by �U ��S3

on the knot Floer chain complex for K � �S3 , and the relationship between this
filtration and the invariant �.K/D �.Lˇ/. We start with a special grid diagram G for
K[�U � S3 such that the front projection specified by G is isotopic through front
projections to the front projection shown on the right in Figure 26.

ˇ

�.Tˇ/U

ˇ

Lˇ�U

Figure 26: On the left, the link �.Tˇ/[U . On the right, a Legendrian front
projection for Lˇ [�U , where �U is the tb D �1 representative of �U .
This Legendrian link is smoothly isotopic to K[�U .

Let .T 2; ˛; ˇ ; zK [ z�U ;wK [w�U / be the multi-pointed Heegaard diagram asso-
ciated to G , with vertical circles labeled ˛1; : : : ; ˛k from left to right and horizontal
circles labeled ˇ1; : : : ; ˇk from bottom to top. We require that w�U D fw1; w2g,
where w1 lies between ˛1 and ˛2 and between ˇ1 and ˇ2 , and w2 lies between some
˛m and ˛mC1 and between ˇm and ˇmC1 . This condition on w�U implies that �U

divides T 2 into four rectangular regions, R1;R2;R3;R4 , with corners at the four
points of z�U [w�U . Here, R1 is the square region bounded by �U and R2 is the
square region diagonal to R1 . The regions R3 and R4 are then the rectangular regions
above and to the right of R1 , respectively. We require that all crossings of K are
contained within R1[R2 . See Figure 27 for an example of (the Heegaard diagram
associated to) a grid diagram G with these properties.

Note that .�T 2; ˛; ˇ ; zK [ z�U ;wK [w�U / is a multi-pointed Heegaard diagram
for the link K [ �U � �S3 . Likewise, H4 D .�T 2; ˛; ˇ ; zK ;wK [ w�U / is a
multi-pointed Heegaard diagram for K ��S3 with free basepoints w1; w2 2 w�U .9

As discussed in Section 6, the Alexander grading A�U induces a filtration

(4) ∅D F�U
m .H4/� F�U

mC1.H4/� � � � � F�U
n .H4/D CFK�;2.H4/;

9We defined Heegaard diagrams H1;H2;H3 in the previous section; hence, our notation H4 for this
diagram.
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z
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Figure 27: The Heegaard diagram associated to a special grid diagram for
K [�U in the case that ˇ is given by the braid word �1�

�1
2 ��1

1 �2 . The
shaded regions are R1; : : : ;R4 from darkest to lightest. The black dots
indicate the components of the generator x4 .

where F�U
k
.H4/ is generated by fx 2 T˛ [ Tˇ j A�U .x/ � kg. It is not hard to

see that A�U .x/ is equal, up to an overall shift, to the sum of the winding numbers
of �U around the components of x (cf Manolescu, Ozsváth and Sarkar [23], and
Manolescu, Ozsváth, Szabó and Thurston [24]) in the grid. It follows that generators
in the bottommost nontrivial filtration level F�U

bot .H4/ are precisely those whose
components are contained within the regions R1[R2 in the grid.

Let x4 denote the generator of CFK�;2.H4/ consisting of the intersection points
at the upper right-hand corners of the squares containing the basepoints in zK [

w�U . The components of x4 are contained in R1 [R2 , which implies that x4 2

F�U
bot .H4/. Moreover, x4 is a cycle in CFK�;2.H4/. We show in Proposition 7.3 that

Œx4� generates the summand Htop.F
�U
bot .H4// of H�.F

�U
bot .H4// in the top Maslov

grading. Below, we describe in two steps the relationship between the x4 and the
transverse invariant �.K/.

Let H5 D .�T 2; ˛ 0; ˇ 0; zK [ z�U ;wK [w�U / be the Heegaard diagram obtained
from H4 by handlesliding ˛2 , ˇ2 , ˛nC2 and ˇnC2 over ˛1 , ˇ1 , ˛nC3 and ˇnC3 ,
respectively, and then isotoping so that the new curves ˛0

2
, ˇ0

2
form a small configuration

around w1 and ˛0
nC2

, ˇ0
nC2

form a small configuration around w2 . We will assume
that ˛0i and ˛i are related by a small Hamiltonian isotopy for i ¤ 2; nC2, and likewise
for ˇ0i and ˇi . Let x5 be the generator of CFK�;2.H5/ obtained from x4 by replacing
the components of x4 on ˛2\ˇ2 and ˛nC2\ˇnC2 by the intersection points on ˛0

2
\ˇ0

2

and ˛0
nC2
\ˇ0

nC2
with the smallest Maslov grading contributions (see Figure 28 for an
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example), and replacing all other components of x4 by the corresponding intersection
points between the ˛ 0 and ˇ 0 curves.

z
z

z

z
z

z

z
z

w2

z
z

z
w1

w

w
w

w

w

w

w

w

w

w

w

Figure 28: The Heegaard diagram H5 for the example in Figure 27. The
black dots represent the generator x5 .

Proposition 7.1 The isomorphism

F4;5W HFK�;2.H4/! HFK�;2.H5/

associated to the above sequence of handleslides and isotopies sends Œx4� to Œx5�.

Proof of Proposition 7.1 Let H4:5 D .�T 2; ˛; ˇ 0; zK ;wK [w�U /. The map F4;5

is induced by the composition f˛0;˛;ˇ0 ıf˛;ˇ;ˇ0 , where

f˛;ˇ;ˇ0 W CFK�;2.H4/! CFK�;2.H4:5/;

f˛0;˛;ˇ0 W CFK�;2.H4:5/! CFK�;2.H5/

are the pseudo-holomorphic triangle-counting maps associated to the multi-pointed
Heegaard triple diagrams

.�T 2; ˛; ˇ ; ˇ 0; zK ;wK [w�U / and .�T 2; ˛ 0; ˛; ˇ 0; zK ;wK [w�U /;

respectively.

Let x4:5 be the generator of CFK�;2.H4:5/ obtained from x4 by replacing the com-
ponents of x4 on ˛2 \ ˇ2 and ˛nC2 \ ˇnC2 by the intersection points on ˛2 \ ˇ

0
2

and ˛nC2 \ˇ
0
nC2

with the smallest Maslov grading contributions, and replacing all
other components of x4 by the corresponding intersection points between the ˛ and
ˇ 0 curves. It is not hard to show that f˛;ˇ;ˇ0 sends x4 to x4:5 and f˛0;˛;ˇ0 sends x4:5
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to x5 . Below, we illustrate the proof of the first statement (our proof mimics that of
[41, Lemma 3.4]); the second follows by a similar argument. These two statements
prove Proposition 7.1.

We begin by showing that the triple Heegaard diagram .�T 2; ˛; ˇ ; ˇ 0; zK ;wK [

w�U / is weakly admissible. First, observe that the set of all periodic domains of
.�T 2; ˇ ; ˇ 0; zK ;wK [w�U / is generated by the collection of unique domains Pi

that are disjoint from zK ;wK [w�U and that are bounded by ˇi and ˇ0i for i ¤ 2

or nC 2, by ˇ1; ˇ2 and ˇ0
2

for i D 2, and by ˇnC2; ˇnC3 and ˇ0
nC2

for i D nC 2.
Since each of the Pi must contain both positive and negative coefficients, the same
must be true for all periodic domains of .�T 2; ˇ ; ˇ 0; zK ;wK [w�U /, implying weak
admissibility. More generally, a periodic domain of .�T 2; ˛; ˇ ; ˇ 0; zK ;wK [w�U /

comes in one of two flavors; either it contains some ˛ –curve in its boundary or it
does not. In the latter case, the periodic in question is also a periodic domain of
.�T 2; ˇ ; ˇ 0; zK ;wK [w�U /, and, hence, has both positive and negative coefficients.
In the former case, the periodic domain contains an ˛ –curve and some ˇ or ˇ 0–curve
intersecting it in its boundary. At this intersection, the domain must change sign,
concluding our claim.

Let ‚ denote the generator of the complex CFK�;2.�T 2; ˇ ; ˇ 0; zK ;wK [w�U / in
its top Maslov grading, and let u0 2�2.x4; ‚; x4:5/ denote the Whitney triangle whose
domain D.u0/ is the union of the small triangles, as shown in the example in Figure 29.
Observe that u0 admits a unique pseudo-holomorphic representative. Now, suppose y
is another generator of CFK�;2.H4:5/, and let u 2 �2.x4; ‚; y/ be a Whitney triangle
that avoids the basepoints in zK [w�U . The boundary of D.u/�D.u0/ then consists
of arcs along the ˛ and ˇ 0 curves together with complete ˇ curves. Let P0 be a
sum of the periodic domains Pi for which the boundary of D DD.u/�D.u0/�P0

consists only of arcs along the ˛ and ˇ 0 curves.

It follows that D is a domain of .�T 2; ˛; ˇ 0; zK ;wK [w�U / connecting x4:5 to y.
Note also that D avoids the basepoints in zK [w�U . Since any nontrivial positive
domain leaving x4:5 would contain points of zK [w�U , if D is not identically zero,
it must have negative multiplicities. Observe that D.u0/CP does not fully cover any
region of †� ˛ � ˇ 0 for any periodic domain P of .�T 2; ˇ ; ˇ 0; zK ;wK [w�U /.
Indeed, any such periodic domain is a linear combination of P1; : : : ;Pm , and in each
region of †�˛�ˇ 0 there are points missed simultaneously by D.u0/ and each of the
Pi . Therefore, if u¤ u0 , then D is not identically zero and must have some negative
coefficients. The domain D.u/DDC .D.u0/CP0/ and D.u0/CP0 does not fully
cover any region of †� ˛ � ˇ 0 ; in particular, it does not cover the region with the
negative coefficient. Thus D.u/ must have some negative multiplicities, implying
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Figure 29: The Heegaard triple diagram .�T 2; ˛; ˇ ; ˇ 0; zK ;wK [w�U /

for the example in Figure 27. The black dots represent the generator x4 , the
white dots represent x4:5 and the squares represent ‚ . The union of the small
shaded triangles represents u0 2 �2.x4; ‚; x4:5/ .

that u does not admit a holomorphic representative. In summary, the only pseudo-
holomorphic triangle that contributes to f˛;ˇ;ˇ0.x4/ is the unique pseudo-holomorphic
representative of u0 . This implies that f˛;ˇ;ˇ0.x4/D x4:5 .

Let H6 be the diagram obtained from H5 by performing two free index 0/3 desta-
bilizations to remove the basepoints w1; w2 . By construction, H6 is the Heegaard
diagram corresponding to a grid diagram whose associated front projection is isotopic
to the front projection of Lˇ shown in Figure 3. Let x6 denote the generator of
CFK�.H6/ consisting of intersection points at the upper right-hand corners of the
squares containing the basepoints in zK . Recall that �.K/ WD Œx6� 2 HFK�.H6/. It is
clear that the projection and inclusion maps

j 2
5;6W CFK�;2.H5/! CFK�.H6/;

i2
6;5W CFK�.H6/! CFK�;2.H5/;

defined in Section 2.1, send x5 to x6 and x6 to x5 , respectively. Combining this with
Proposition 7.1, we have the following.
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Proposition 7.2 The compositions

.j 2
5;6/� ıF4;5W HFK�;2.H4/! HFK�.H6/;

F�1
4;5 ı .i

2
6;5/�W HFK�.H6/! HFK�;2.H4/;

send Œx4� to �.K/ and �.K/ to Œx4�, respectively.

Since the class �.K/ is always nonzero [33], the same is true of Œx4�. Recall from
Section 2.1 that the maps i2

6;5
and j 2

5;6
increase Maslov grading by 2. Therefore, since

M.�.K//D sl.K/C1, the Maslov grading of x4 is given by M.x4/D sl.K/�1. We
conclude with the following characterization of Œx4�.

Proposition 7.3 Let bDminfj jH�.F�U
j .H4//¤0g, and let Ht .F

�U
b
.H4// denote

the summand of H�.F
�U
b
.H4// in the top Maslov grading. Then Ht .F

�U
b
.H4// has

rank one and is generated by Œx4�.

Proof of Proposition 7.3 Since H�.F
�U
bot .H4// is nontrivial (it contains the nonzero

class Œx4�), it follows that b D bot and t D top. Since the filtered quasi-isomorphism
type of F�U .H4/ is an invariant of the link K [ �U � �S3 , we know from the
analogous result in the previous section that Htop.F

�U
bot .H4// has rank one. Moreover,

we proved in that section that t D top D sl.K/� 1. Therefore, Htop.F
�U
bot .H4// is

generated by Œx4�.

8 BRAID = GRID

In this short section, we make precise the correspondence between our BRAID invariant
t and the GRID invariant � , using the results of Sections 6 and 7.

Suppose K is a transverse knot in .S3; �std/ that is braided with respect to the standard
disk open book decomposition .U; �/ of S3 . Let H1; : : : ;H6 and x1; : : : ; x6 be the
Heegaard diagrams and generators defined in Sections 6 and 7. If we include the zU

and z�U basepoints in the Heegaard diagrams H3 and H4 , respectively, then each
encodes the link K[�U ��S3 . It follows that H4 may be obtained from H3 by a
sequence of isotopies and handleslides avoiding all basepoints, together with index 1/2
(de)stabilizations and linked index 0/3 (de)stabilizations involving only the basepoints
in zK [wK . The sets zK , wK , zU and wU are identified, respectively, with wK , zK ,
z�U and w�U via these moves. Associated to this sequence of Heegaard moves is a
chain map

f3;4W CFK�;2.H3/! CFK�;2.H4/;
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which induces an isomorphism

F3;4W HFK�;2.H3/! HFK�;2.H4/:

Since f3;4 respects the filtrations of CFK�;2.H3/ and CFK�;2.H4/ induced by A�U ,
it follows from Propositions 6.4 and 7.3 that F3;4 sends Œx3� to Œx4�.

Recall from Section 2.1 that the inclusion map

.i2
1;2/�W HFK�.H1/! HFK�;2.H2/

from Section 6 induces an isomorphism from HFK�.H1/ to the summand
.\2

iD1
coker wi

/Œ2� of HFK�;2.H2/Œ2�, where w1; w2 are the basepoints in w�U .
Since the basepoints actions  w1

;  w2
commute with the maps associated to Heegaard

moves, the composition

F4;5 ıF3;4 ıF�1
3;2W HFK�;2.H2/! HFK�;2.H5/

restricts to an isomorphism from this summand to the analogous summand of
HFK�;2.H5/Œ2�. Finally, the projection map

.j 2
5;6/�W HFK�;2.H5/! HFK�.H6/

defined in Section 7 restricts to an isomorphism from the summand .\2
iD1

coker wi
/Œ2�

of HFK�;2.H5/Œ2� to HFK�.H6/. This proves that the composition

.j 2
5;6/� ıF4;5 ıF3;4 ıF�1

3;2 ı .i
2
1;2/�W HFK�.H1/! HFK�.H6/

is an isomorphism. By Propositions 6.7 and 7.2 and the discussion about F3;4 above,
this composition also sends t.K/ WD Œx1� to �.K/ WD Œx6�. In other words, we have
shown the following.

Theorem 8.1 Let K be a transverse knot in .S3; �std/. There exists an isomorphism
of bigraded F ŒU �–modules,

 W HFK�.�S3;K/! HFK�.�S3;K/;

which sends t.K/ to �.K/.10

Combined with Theorem 5.1, this completes the proof of Theorem 1.1.

10An analogous statement holds for transverse links in .S3; �std/ .
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