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Knot contact homology
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The conormal lift of a link K in R3 is a Legendrian submanifold ƒK in the unit
cotangent bundle U �R3 of R3 with contact structure equal to the kernel of the
Liouville form. Knot contact homology, a topological link invariant of K , is de-
fined as the Legendrian homology of ƒK , the homology of a differential graded
algebra generated by Reeb chords whose differential counts holomorphic disks in the
symplectization R�U �R3 with Lagrangian boundary condition R�ƒK .

We perform an explicit and complete computation of the Legendrian homology
of ƒK for arbitrary links K in terms of a braid presentation of K , confirming a
conjecture that this invariant agrees with a previously defined combinatorial version
of knot contact homology. The computation uses a double degeneration: the braid
degenerates toward a multiple cover of the unknot, which in turn degenerates to a
point. Under the first degeneration, holomorphic disks converge to gradient flow
trees with quantum corrections. The combined degenerations give rise to a new
generalization of flow trees called multiscale flow trees. The theory of multiscale
flow trees is the key tool in our computation and is already proving to be useful for
other computations as well.

53D42; 57R17, 57M27

1 Introduction

1.1 Knot contact homology

Let K � R3 be a link. The conormal lift ƒK � U �R3 of K in the unit cotangent
bundle U �R3 of R3 is the sub-bundle of U �R3 over K consisting of covectors that
vanish on TK . The submanifold ƒK is topologically a union of 2–tori, one for each
component of K . The unit cotangent bundle carries a natural contact 1–form ˛ : if
p dq denotes the Liouville form on T �R3 then ˛ is the restriction of p dq to U �R3 .
The conormal lift ƒK is a Legendrian submanifold with respect to the contact structure
induced by ˛ . Furthermore, if Kt , 0� t � 1, is a smooth isotopy of links then ƒKt
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is a Legendrian isotopy of tori. Consequently, Legendrian isotopy invariants of ƒK

give topological isotopy invariants of K itself.

Contact homology, and Legendrian (contact) homology, is a rich source of deformation
invariants in contact topology. Legendrian homology associates a differential graded
algebra (DGA) to a Legendrian submanifold ƒ � Y of a contact manifold Y , in
which the algebra is generated by the Reeb chords of ƒ and the Reeb orbits in Y ,
and the differential is defined by a count of holomorphic curves in the symplectization
R�Y with Lagrangian boundary condition R�ƒ. The main result of this paper is a
complete description of the DGA of the conormal lift ƒK of a link K in terms of a
braid presentation of K ; see Theorem 1.1 below.

Before presenting Theorem 1.1, we discuss some consequences of it. Theorem 1.1
confirms the conjecture that the combinatorial knot invariant defined and studied by
the third author in [26; 27; 29], called “knot contact homology” in those works, indeed
equals the Legendrian homology of the conormal lift. (In fact, the Legendrian homology
described here is a non-trivial extension of the previously defined version of knot contact
homology; see Section 1.2.) We note that Legendrian homology can be expressed
combinatorially in other circumstances, for example by Chekanov [7] and Eliashberg
[19] for 1–dimensional Legendrian knots in R3 with the standard contact structure.
Also, computations of Legendrian homology in higher dimensions have been carried
out in some circumstances; see eg Dimitroglou Rizell [8], Ekholm, Etnyre and Sullivan
[15], and Ekholm and Kálmán [18].

The results of the present paper constitute one of the first complete and reasonably
involved computations of Legendrian homology in higher dimensions (in the language
of Lagrangian Floer theory, the computation roughly corresponds to the calculation
of the differential and all higher product operations). Extensions of our techniques
have already found applications, see eg Bourgeois, Ekholm and Eliashberg [5], and we
expect that further extensions may be used in other higher-dimensional situations in
the future.

A more concrete consequence of Theorem 1.1 is its application to an interesting general
question in symplectic topology: to what extent do symplectic- and contact-geometric
objects naturally associated to objects in smooth topology remember the underlying
smooth topology? More specifically, how much of the smooth topology is encoded by
holomorphic-curve techniques on the symplectic/contact side? The construction that
associates the (symplectic) cotangent bundle to any (smooth) manifold has been much
studied recently in this regard; see eg Abouzaid [1; 2], Fukaya, Seidel and Smith [21],
and Nadler [24]. In our setting, the general question specializes to the following.
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Question How much does the Legendrian-isotopy class of the conormal ƒK remem-
ber about the smooth-isotopy class of K? In particular, if ƒK1

and ƒK2
are Legendrian

isotopic, are K1 and K2 necessarily smoothly isotopic?

At this writing, it is possible that the answer to the second question is “yes” in general.
One consequence of Theorem 1.1 is that the answer is “yes” if K1 is the unknot: the
conormal lift detects the unknot. See Corollary 1.4 below.

Another geometric application of our techniques is the development of a filtered version
of the Legendrian DGA associated to ƒK when K is a link transverse to the standard
contact structure ker.dz�y dx/ in R3 . This is carried out in Ekholm, Etnyre, Ng and
Sullivan [12], which relies heavily on the computations from the present paper. There is
a related combinatorial treatment in Ng [30], where it is shown that this filtered version
(“transverse homology”) constitutes a very effective invariant of transverse knots. We
remark that although [30] can be read as a stand-alone paper without reference to
Legendrian homology or holomorphic disks, the combinatorial structure of transverse
homology presented in [12; 30] was crucially motivated by the holomorphic-disk
enumerations we present here.

1.2 Main result

We now turn to a more precise description of our main result. To this end we first
need to introduce some notation. Let K be an arbitrary r –component link in R3 ,
given by the closure of a braid B with n strands. Then ƒK is a disjoint union
of r 2–tori, which (after identifying the tangent bundle with the cotangent bundle
and the normal bundle to K with its tubular neighborhood) we may view as the
boundaries of tubular neighborhoods of each component of K . We can then choose
a set of generators �1; �1; : : : ; �r ; �r of H1.ƒK /, with �i and �i corresponding to
the longitude (running along the component of K ) and meridian (running along a fiber
of ƒK over a point in K ) of the i th torus.

We proceed to an algebraic definition of the DGA that computes the Legendrian
homology of ƒK . The DGA is .An; @/, where the algebra An is the unital graded
algebra over Z generated by the group ring ZŒH1.ƒK /�DZŒ�˙1

1
; �˙1

1
; : : : ; �˙1

r ; �˙1
r �

in degree 0, along with the following generators:

faij g1�i;j�nI i¤j in degree 0;

fbij g1�i;j�nI i¤j in degree 1;

fcij g1�i;j�n in degree 1;

feij g1�i;j�n in degree 2:
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Note that in An , the generators aij ; bij ; cij ; eij do not commute with each other or
with non-trivial elements of ZŒH1.ƒK /�.

We next define a differential @ on An . Introduce variables z�1; : : : ; z�n of degree 0,
and write zA0

n for the free unital algebra over Z generated by the ring ZŒz�˙1
1
; : : : ; z�˙1

n �

and the aij . Now if �k is a standard generator of the braid group Bn on n strands,
then define the automorphism ��k

W zA0
n!

zA0
n by:

��k
.aij /D aij i; j ¤ k; kC 1

��k
.ak kC1/D�akC1 k

��k
.akC1 k/D�z�kak kC1 z�

�1
kC1

��k
.ai kC1/D aik i 6D k; kC 1

��k
.akC1 i/D aki i 6D k; kC 1

��k
.aik/D ai kC1� aikak kC1 i < k

��k
.aik/D ai kC1� aik z�kak kC1 z�

�1
kC1 i > kC 1

��k
.aki/D akC1 i � akC1 kaki i ¤ k; kC 1

��k
.z�˙1

k /D z�˙1
kC1

��k
.z�˙1

kC1/D z�
˙1
k

��k
.z�˙1

i /D z�˙1
i i ¤ k; kC 1

The map � induces a homomorphism from Bn to the automorphism group of zA0
n : if

B D �
�1

k1
� � � �

�m

km
2 Bn , with �l D˙1 for l D 1; : : : ;m, then �B D �

�1
�k1
ı � � � ı�

�m
�km

.
See Proposition 2.9.

Now let A0
n denote the subalgebra of An of elements of degree 0, generated by the �j ,

�j and aij . For 1� j � n, let ˛.j / 2 f1; : : : ; rg be the number of the link component
of K corresponding to the j th strand of B . Then �B descends to an automorphism of
A0

n , which we also denote by �B , by setting z�j D �˛.j/ for all j , and having �B act
as the identity on �j for all j .

For convenient notation we assemble the generators of An into n�n matrices. Writing
Mij for the element in position ij in the n�n matrix M, we define the n�n matrices

AW

8<:
Aij D aij if i < j ;

Aij D aij�˛.j/ if i > j ;

Aii D 1C�˛.i/;

BW

8<:
Bij D bij if i < j ;

Bij D bij�˛.j/ if i > j ;

Bii D 0;

CW
˚
Cij D cij ; EW

˚
Eij D eij :
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To the braid B , we now associate two n�n matrices ˆL
B
; ˆR

B
with coefficients in A0

n

as follows. Set yB to be the .nC 1/–strand braid obtained by adding to B an extra
strand labeled 0 that does not interact with the other strands. Then � gives a map � yB
acting on the algebra generated by homology classes and faij g0�i;j�nIi¤j , and we
can define ˆL

B
; ˆR

B
by

� yB.ai0/D

nX
jD1

�
ˆL

B

�
ij

aj0 and � yB.a0j /D

nX
iD1

a0i

�
ˆR

B

�
ij
:

(Note that by the above formula for ��k
, any monomial contributing to �B.ai0/

(respectively �B.a0j /) must begin with a generator of the form al0 (respectively, end
with a generator a0l ). Also, since the 0th strand does not interact with the others, z�0

does not appear anywhere in the expressions for � yB.ai0/; � yB.a0j /, and so ˆL
B
; ˆR

B

have coefficients in A0
n .)

Finally, define a diagonal n� n matrix � as follows. Consider the strands 1; : : : ; n of
the braid. Call a strand leading if it is the first strand in this ordering belonging to its
component. Define

�W

8<:
�ij D 0 if i ¤ j ;

�ii D �˛.i/ if the i th strand is leading;
�ii D 1 otherwise:

We can now state our main result.

Theorem 1.1 Let K �R3 be an oriented link given by the closure of a braid B with
n strands. After Legendrian isotopy, the conormal lift ƒK � U �R3 has Reeb chords
in graded one-to-one correspondence with the generators of An . Consequently, the
Legendrian algebra of

ƒK � J 1.S2/� U �R3

is identified with An . Under this identification, the differential of the Legendrian DGA
is the map @W An!An determined by the following matrix equations:

@AD 0;

@BD���1
�A � �CˆL

B �A �ˆ
R
B ;

@C DA � �CA �ˆR
B ;

@ED B � .ˆR
B/
�1
CB � ��1

�ˆL
B �C � �

�1
C ��1

�C � .ˆR
B/
�1;

where if M is a matrix, the matrix @M is defined by .@M/ij D @.Mij /.

Geometry & Topology, Volume 17 (2013)



980 Tobias Ekholm, John Etnyre, Lenhard Ng and Michael Sullivan

Theorem 1.1 has the following corollary, which establishes a conjecture of the third
author [28; 29].

Corollary 1.2 For a knot K , the combinatorial framed knot DGA of K , as defined in
[29], is isomorphic to the Legendrian DGA of ƒK .

In [29], the framed knot DGA is shown to be a knot invariant via a purely algebraic but
somewhat involved argument that shows its invariance under Markov moves. We note
that Theorem 1.1 provides another proof of invariance. Here the relevant equivalence
relation for invariance is that of stable tame isomorphism of DGAs introduced in [7].

Corollary 1.3 The DGA given in Theorem 1.1, and consequently the framed knot
DGA of [29], is a link invariant: two braids whose closures are isotopic links produce
the same DGA up to stable tame isomorphism.

Proof This is a direct consequence of invariance properties of the Legendrian DGA
under Legendrian isotopy; see Theorem 2.6.

Quite a bit is known about the behavior of combinatorial knot contact homology, and
Corollary 1.2 allows us to use this knowledge to deduce results about the geometry of
conormal lifts. For instance, we have the following results.

Corollary 1.4 A knot K is isotopic to the unknot U if and only if the conormal lift
ƒK of K is Legendrian isotopic to the conormal lift ƒU of U .

Proof The degree–0 homology of the framed knot DGA detects the unknot [29,
Proposition 5.10].

Corollary 1.5 If K1 and K2 are knots such that ƒK1
and ƒK2

are Legendrian
isotopic, then K1 and K2 have the same Alexander polynomial.

Proof The degree–1 linearized homology of the framed knot DGA with respect to a
certain canonical augmentation encodes the Alexander polynomial [29, Corollary 4.5].

We close this subsection by discussing a subtlety hidden in the statement of Corollary 1.2.
The DGA .An; @/ defined in Theorem 1.1 is actually an extension of the combinatorial
knot DGA introduced by the third author in [26; 27; 29], in two significant ways.1 First,

1There are also some inconsequential sign differences between our formulation and the knot DGA of
[26; 27; 29]; see [30] for a proof that the different sign conventions yield isomorphic DGAs.
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the original combinatorial knot DGA assumed that K is a one-component knot, whereas
our .An; @/ works for general links, associating separate homology variables �j ; �j to
each component. Second, in the original combinatorial knot DGA as presented in [29],
and in the filtered version for transverse knots presented in [12], homology variables
commute with the generators aij , etc, while they do not commute here. We may thus
think of the original knot DGA as a “homology-commutative” quotient of our “full”
DGA; see Section 2.3.2 for further discussion.

Although we do not pursue this point here, it seems quite possible that the full DGA
introduced here constitutes a stronger link invariant, or otherwise encodes more in-
formation, than the homology-commutative knot DGA from [29]. For example, the
proof in [29] that the framed knot DGA detects the unknot uses work of Dunfield and
Garoufalidis [9], building on some deep gauge-theoretic results of Kronheimer and
Mrowka [22]. However, if we use the full DGA rather than the homology-commutative
quotient, then there is an alternate proof that knot contact homology detects the unknot,
in unpublished work of the first and third authors along with Cieliebak and Latschev,
which uses nothing more than the Loop Theorem.

1.3 Strategy and outline of paper

We conclude this introduction with a description of the strategy of our proof of
Theorem 1.1. A loose sketch of this approach has previously been summarized in
Ekholm and Etnyre [11].

The unit cotangent bundle U �R3 with contact form the restriction of the Liouville
form p dq is contactomorphic to the 1–jet space J 1.S2/� T �S2 �R of S2 , with
contact form dz � p dq where z is the coordinate along the R–factor. To find the
rigid holomorphic disks that contribute to Legendrian homology for a Legendrian
submanifold of any 1–jet space, one can use gradient flow trees (Ekholm [10]). In
our case, rather than directly examining the gradient flow trees for the conormal lift
ƒK � J 1.S2/ of a link K , we break the computation down into three steps. First,
we compute the differential for the conormal lift ƒ D ƒU of the unknot U , which
we represent as a planar circle. This is done by calculating gradient flow trees for a
particular small perturbation of ƒ.

Second, given an arbitrary link K , let B be a braid whose closure is K . We can view
the closure of B as lying in the solid torus given as a small tubular neighborhood of U ,
and we can thus realize K as a braid that is C 1 –close to U . Then ƒK lies in a small
neighborhood of ƒ, and by the Legendrian neighborhood theorem we can choose this
neighborhood to be contactomorphic to the 1–jet space J 1.ƒ/D J 1.T 2/:

ƒK � J 1.ƒ/D J 1.T 2/� J 1.S2/:

Geometry & Topology, Volume 17 (2013)
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We can use gradient flow trees to find the rigid holomorphic disks in J 1.T 2/ with
boundary on ƒK . This turns out to be easier than directly calculating the analogous
disks in J 1.S2/ because ƒK is everywhere transverse to the fibers of J 1.T 2/ (ie, its
caustic is empty). We can assemble the result, which is computed in terms of the
braid B , as the Legendrian DGA of ƒK � J 1.T 2/, which is a subalgebra of the
Legendrian DGA of ƒK � J 1.S2/.

Finally, we prove that there is a one-to-one correspondence between rigid holomorphic
disks in J 1.S2/ with boundary on ƒK , and certain objects that we call rigid multiscale
flow trees determined by ƒ and ƒK , which arise as follows. As we let K approach
U , ƒK approaches ƒ and each holomorphic disk with boundary on ƒK approaches a
holomorphic disk with boundary on ƒ with partial flow trees of ƒK � J 1.ƒ/ attached
along its boundary. Here the flow trees correspond to the thin parts of the holomorphic
disks before the limit; in these parts, the energy approaches zero. In a multiscale
flow tree we substitute the holomorphic disk with boundary on ƒ in this limit by the
corresponding flow tree computed in the first step, and obtain a flow tree of ƒ�J 1.S2/

with portions of flow trees of ƒK � J 1.ƒ/ attached along its boundary.

Remark 1.6 An alternative proof strategy would be to apply the relation between
flow trees and holomorphic disks directly for the front of ƒK � J 1.S2/ and find the
relation to multiscale flow trees from there. The current approach has advantages over
the direct approach in that it keeps more symmetry, reminiscent of phenomena in Morse
theory in Bott degenerate situations where it is sometimes an advantage to keep the
Bott symmetry rather than perturbing out.

From a more computational perspective, the actual flow trees on the front of ƒK I�

pass through front singularities numerous times and their study is complicated by tree
vertices related to the cusp edge (called Y1 –vertices, ends, and switches in [10]). In
any pure flow tree approach one would have to deal with these. Our current setup, by
contrast, introduces some amount of new technical analytical problems, but allows us
to push all these complications to the study of the front of the unknot, where they are
readily solved. The remaining study of flow trees is then carried out near the conormal
lift ƒ of the unknot; the front of ƒK is non-singular in J 0.ƒ/, and the flow trees in
our approach do not see the singularities of the front of ƒK as a subset of J 0.S2/.
The relative simplicity of the flow trees for this non-singular front and their rather
direct connection to the braid group is what allows us to find a closed formula for the
differential.

Here is the plan for the rest of the paper. In Section 2, we present background material,
including the definitions of the conormal construction, Legendrian homology, and

Geometry & Topology, Volume 17 (2013)



Knot contact homology 983

gradient flow trees. In Section 3, we use gradient flow trees to accomplish the first
two steps in the three-step process outlined above: calculating holomorphic disks for
ƒ� J 1.S2/ and ƒK � J 1.T 2/. We extend these calculations to multiscale flow trees
in Section 4 to count holomorphic disks for ƒK � J 1.S2/, completing the proof of
Theorem 1.1.

The computations in Section 4 rely on some technical results about multiscale flow
trees whose proofs are deferred to the final two sections of the paper. In Section 5, we
establish Theorem 4.3, which gives a one-to-one correspondence between holomorphic
disks and multiscale flow trees. In Section 6, we prove Theorems 4.5 and 4.6, which
deal with combinatorial signs arising from choices of orientations of the relevant moduli
spaces of flow trees and multiscale flow trees.

Acknowledgements

TE was partially supported by the Göran Gustafsson Foundation for Research in Natural
Sciences and Medicine. JBE was partially supported by NSF grant DMS-0804820.
LLN was partially supported by NSF grant DMS-0706777 and NSF CAREER grant
DMS-0846346. MGS was partially supported by NSF grants DMS-0707091 and DMS-
1007260. The authors would also like to thank MSRI for hosting them in spring 2010
during part of this collaboration. Finally, we thank Cecilia Karlsson for useful remarks
on coherent orientations, and the referees for many helpful comments.

2 Conormal lifts, Legendrian homology, and flow trees

In this section we review background material. We begin by discussing the conormal
lift construction for links in R3 in Section 2.1, and place it in the context of 1–jet
spaces of surfaces in Section 2.2. In Section 2.3, we review the definition of Legendrian
homology. For our purposes, the holomorphic disks counted in Legendrian homology
are replaced by flow trees, which we discuss in Section 2.4. Vector splitting along flow
trees, which is needed later when assigning signs to rigid flow trees, is discussed in
Section 2.5. We end with a compilation in Section 2.6 of algebraic results about the
map �B and the matrices ˆL

B
and ˆL

R
that are used in the proof of our main result,

Theorem 1.1.
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2.1 The conormal construction

Fixing the standard flat metric on R3 we consider the unit cotangent bundle U �R3 �

R3 �S2 of R3 . The Liouville form on the cotangent bundle T �R3 is

� D

3X
iD1

pi dqi ;

where q D .q1; q2; q3/ are coordinates on R3 and p D .p1;p2;p3/ are coordinates
in the fibers of T �R3 . The restriction � jU�R3 is a contact 1–form. We denote its
associated contact structure � D ker � .

The standard contact 1–form on the 1–jet space J 1.S2/D T �S2 �R of S2 is given
by

˛ D dz� �;

where z is a coordinate in the R–factor and where � is the Liouville form on T �S2 .
Using the standard inner product h � ; � i on R3 to identify vectors and covectors we
may write T �S2 as follows:

T �S2
D
˚
.x;y/ 2R3

�R3
W jxj D 1; hx;yi D 0

	
:

We define the map �W U �R3! J 1.S2/D T �S2 �R by

(2-1) �.q;p/D .p; q� hq;pip; hq;pi/

and notice that � is a diffeomorphism such that ��˛ D � . Thus U �R3 and J 1.S2/

are contactomorphic.

Let K be a knot or link in R3 . We associate to K its conormal lift

ƒK D
˚
u 2 U �R3

jK W u.v/D 0 for all v 2 TK
	
;

which topologically is a union of tori, one for each component of K . By defini-
tion � jƒK

D 0, ie, ƒK is Legendrian. Furthermore, smooth isotopies of K induce
Legendrian isotopies of ƒK . In particular the Legendrian isotopy class of ƒK (and
consequently any invariant thereof) is an invariant of the isotopy class of K . For more
on this construction, see [11].

2.2 Legendrian submanifolds in the 1–jet space of a surface

In this section we review well-known material on fronts associated to Legendrian
submanifolds in a 1–jet space. For general treatments of this subject, see eg Arnold
and Givental [3], and Arnold, Gusein-Zade and Varchenko [4].
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Let S be a surface and consider a Legendrian submanifold ƒ� J 1.S/D T �S �R.
After a small perturbation of ƒ we can assume that ƒ is in general position with respect
to the Lagrangian projection …W J 1.S/! T �S , the front projection …F W J

1.S/!

S �R and the base projection � W J 1.S/! S .

General position for … means that the self-intersections of the Lagrangian immersion
….L/ consists of transverse double points. General position for …F means that
singularities of …F jƒ are of two types: cusp edges and swallow tails. For a more
precise description we first introduce some notation: the caustic †�ƒ is the critical
set of …F jƒ . General position for …F first implies that † is a closed 1–submanifold
along which the rank of …F jƒ equals 1. The kernel field ker.d…F jƒ/ is then a
line field l along † and general position for …F implies that l has only transverse
tangencies with T† (ie, all tangencies have order one). This gives a stratification of the
caustic: the 1–dimensional top stratum, called the cusp edge, consisting of points where
l is transverse to † and the 0–dimensional complement, called the set of swallow tail
points, where l is tangent to T† of order 1. Finally, general position for � means
that the image of the caustic under � is stratified: �.†/D†1 � .†2[†

sw
2
/, where

†2 is the set of transverse self-intersections of �.†/, and †sw
2

is the image under �
of the swallow tail points around which �.†/ has the form of a semi-cubical cusp.

For ƒ in general position we obtain the following local descriptions:

� If p 2 �.ƒ/�†1 then p has a neighborhood U � S such that ��1.U /\ƒ�

J 1.S/ is the union of a finite number of 1–jet graphs of functions f1; : : : ; fn

on U . We call such functions local defining functions of ƒ.

Figure 1: A local model for the cusp edge is shown on the left and a local
model for the swallow tail singularity is shown on the right.

� If p 2 †1 � .†2 [ †
sw
2
/ then there is a neighborhood U � S of p that is

diffeomorphic to the open unit disk, U D UC [U� , where UC (respectively
U� ) corresponds to the upper (respectively lower) half disk and where �.†/\U
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corresponds to UC \ U� , with the following properties. The intersection
��1.U / \ ƒ � J 1.S/ consists of n � 0 smooth sheets given by the 1–jet
graphs of local defining functions and one cusped sheet given by the 1–jet graph
of two functions h0; h1W UC! R. We can choose coordinates .x1;x2/ near
@UC so that h0 and h1 have the normal form

h0.x1;x2/D
1
3
.2x1/

3=2
Cˇx1C˛x2

h1.x1;x2/D�
1
3
.2x1/

3=2
Cˇx1C˛x2

for some constants ˛ and ˇ ; see [10, Equation (2–1)]. In particular dh0 and
dh1 agree near the boundary; see the left diagram in Figure 1. We also call h0

and h1 local defining functions (for a cusped sheet).

� If p 2†sw
2

then there is a neighborhood U in which n� 0 sheets are smooth
and one sheet is a standard swallow tail sheet; see [10, Remark 2.5] and the right
diagram in Figure 1.

� If p 2 �.†2/ there is a neighborhood U diffeomorphic to the unit disk over
which the Legendrian consists of n� 0 smooth sheets and two cusped sheets,
one defined over the upper half-plane and one over the right half-plane.

The following simple observation concerning double points of … will be important in
the definition of the Legendrian homology algebra.

Lemma 2.1 A point s 2….ƒ/ is a double point if and only if p D �.…�1.s// is a
critical point of the difference of two local defining functions for ƒ at p .

2.3 Legendrian homology in the 1–jet space of a surface

In this subsection we briefly review Legendrian (contact) homology in J 1.S/, where S

is an orientable surface. In fact, for our applications it is sufficient to consider S � S2

and S � T 2 . We refer the reader to Ekholm, Etnyre and Sullivan [14] for details on
the material presented here.

2.3.1 Geometric preliminaries As in Section 2.1, we consider J 1.S/D T �S �R,
with contact form ˛ D dz � � , where z is a coordinate in the R–factor and � is
the Liouville form on T �S . The Reeb vector field R˛ of ˛ is given by R˛ D @z

and thus Reeb flow lines are simply fpg � R for any p 2 T �S . In particular, if
ƒ� J 1.S/ is a Legendrian submanifold then Reeb chords of ƒ (Reeb flow segments
which begin and end on ƒ) correspond to pairs of distinct points y1;y2 2ƒ such that
….y1/D….y2/, where …W J 1.S/! T �S is the Lagrangian projection. As noted in
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Lemma 2.1, for such Legendrian submanifolds there is thus a bijective correspondence
between Reeb chords of ƒ� T �S �R and double points of ….ƒ/ and in this case
we will sometimes use the phrase “Reeb chord” and “double point” interchangeably.
As mentioned in Section 2.2, after small perturbation of ƒ, …jƒ is a selftransverse
Lagrangian immersion with a finite number of double points.

Consider an almost complex structure on T �S that is compatible with d� , by which we
can view T .T �S/ as a complex vector bundle. Since T .T �S/jS is the complexifica-
tion of T �S we find that c1.T .T

�S//D 0 and hence there is a complex trivialization
of T .T �S/. The orientation of S induces a trivialization of the real determinant line
bundle (second exterior power) ƒ2T �M , which in turn gives a trivialization, called the
orientation trivialization, of the complex determinant line bundle ƒ2T .T �S/ (second
exterior power over C ). The complex trivialization of T .T �S/ is determined uniquely
up to homotopy by the condition that it induces a complex trivialization of ƒ2T .T �S/,
which is homotopic to the orientation trivialization. We will work throughout with
complex trivializations of T .T �S/ that satisfy this condition.

Let ƒ � T �S �R be a Legendrian submanifold and let  be a loop in ƒ. Then
the tangent planes of ….ƒ/ along …./ constitute a loop of Lagrangian subspaces.
Using the trivialization of T .T �S/ we get a loop of Lagrangian subspaces in C2 ;
associating to each loop  the Maslov index of this loop of Lagrangian subspaces
gives a cohomology class � 2H 1.ƒIZ/ called the Maslov class of ƒ. We assume
throughout that the Maslov class of ƒ vanishes so that the Maslov index of any such
loop equals 0; this holds in the situation considered by this paper by Lemma 3.1. (Note
that the vanishing Maslov index implies that ƒ is orientable.) In order to orient the
moduli spaces of holomorphic disks with boundary on ƒ we will further assume that
ƒ is spin and equipped with a spin structure. See Ekholm, Etnyre and Sullivan [16] for
more details. For future use, we note that the Maslov index of the loop of Lagrangian
tangent spaces as described can be computed by first making the loop generic with
respect to fibers of T �S and then counting (with signs) the number of instances where
the tangent space has a 1–dimensional intersection with the tangent space of some
fiber. In terms of the front projection, once  is generic (in particular, transverse to the
cusp edges and disjoint from the swallow tail points), one counts the number of times
the curve transversely intersects cusp edges going down (that is, with the R coordinate
of S �R decreasing) minus the number of times it transversely intersects cusp edges
going up.

2.3.2 The Legendrian algebra In the remainder of the present subsection, Section
2.3, we describe the differential graded algebra .LA.ƒ/; @/, which we call the Legen-
drian DGA, associated to a Legendrian submanifold ƒ� J 1.S/, whose homology is
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the Legendrian homology of ƒ. This description is divided into three parts: the algebra,
the grading and the differential.

The algebra LA.ƒ/ is simple to describe; in particular, the Legendrian algebra is
simpler in our setting than for general contact manifolds since J 1.S/ has no closed
Reeb orbits. Assume that ƒ is in general position so that …jƒ is a Lagrangian
immersion with transverse self-intersections. Let Q denote the set of Reeb chords of
ƒ. Then LA.ƒ/ is the non-commutative unital algebra over Z generated by

� elements of Q (Reeb chords) and

� ZŒH1.ƒ/� (homology classes).

Thus a typical generator of LA.ƒ/ viewed as a Z–module is a monomial of the form

0q11q2 � � � qmm;

where qj 2 Q and j 2 H1.ƒ/, and multiplication of generators is the obvious
multiplication (with H1.ƒ/ viewed as a multiplicative group). Note that homology
classes do not commute with Reeb chords; LA.ƒ/ is more precisely defined as the
tensor algebra over Z generated by elements of Q and elements of H1.ƒ/, modulo
the relations given by the relations in H1.ƒ/.

To simplify notation, for the remainder of the paper we will assume that ƒ is a disjoint
union of oriented 2–tori ƒ1; : : : ; ƒr . We will further assume that each component
ƒj is equipped with a fixed symplectic basis .�j ; �j / of H1.ƒj / (for conormal lifts,
these correspond to the longitude and meridian of the link component in R3 ). Then
ZŒH1.ƒ/�D ZŒ�˙1

1
; �˙1

1
; : : : ; �˙1

r ; �˙1
r �.

Remark 2.2 In the subject of Legendrian homology, it is often customary to quotient
by commutators between Reeb chords and homology classes to obtain the homology-
commutative algebra. This quotient can also be described as the tensor algebra over
ZŒH1.ƒ/� freely generated by elements of Q. The homology-commutative algebra
is the version of the Legendrian algebra considered in many sources, in particular the
combinatorial formulation of knot contact homology in [29] and the transverse version
in [12; 30].

From the geometric viewpoint of the present paper, there is no reason to pass to the
homology-commutative quotient, and we will adhere to the rule that homology classes
do not commute with Reeb chords in the Legendrian algebra. There are indications
that the fully non-commutative Legendrian DGA may be a stronger invariant than the
homology-commutative quotient; see the last paragraph of Section 1.2.
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Remark 2.3 When ƒ has more than one component, there is an algebra related to
the Legendrian algebra LA.ƒ/, called the composable algebra, which is sometimes
a more useful object to consider than LA.ƒ/. This was introduced in Bourgeois,
Ekholm and Eliashberg [6; 5]; see also Mishachev [23] and Ng [25] for precursors
to this notion. We do not need the composable algebra in this paper, but we briefly
describe its definition here and note that one can certainly modify our definition of
knot contact homology to the composable setting; that is, the Legendrian DGA for
knot contact homology descends to a differential on the composable algebra.

Suppose ƒ has r components ƒ1; : : : ; ƒr . Let R denote the ring

RD
rM

jD1

ZŒH1.ƒj /�

with multiplication given as follows: if 1 2 ZŒH1.ƒj1
/� and 2 2 ZŒH1.ƒj2

/�, then
1 � 2 is 0 if j1 ¤ j2 , or 12 2ZŒH1.ƒj1

/��R if j1 D j2 . (Note that R is nearly
but not quite a quotient of ZŒH1.ƒ/�: the identity in ZŒH1.ƒj /� is an idempotent in R
distinct from 1.) Let Qij denote the set of Reeb chords beginning on ƒi and ending
on ƒj . A composable monomial in LA.ƒ/ is a monomial of the form

0q11q2 � � � qll

for some l � 0, such that there exist i0; : : : ; il 2 f1; : : : ;mg for which ij 2H1.ƒij /,
viewed as an element of R, and qj 2Qij�1ij for all j .

The composable algebra is the Z–module generated by composable monomials, with
multiplication given in the obvious way; note that the product of two composable
monomials is either 0 or another composable monomial. This algebra, which is
naturally the path algebra of a quiver with vertices given by components of ƒ and
edges given by Reeb chords, is almost but not quite a quotient of LA.ƒ/: if we
replace ZŒH1.ƒ/� by R in the definition of LA.ƒ/, then the composable algebra is
the quotient setting non-composable monomials to 0.

2.3.3 Grading in the Legendrian algebra In order to define the grading on LA.ƒ/

we fix a point pj 2ƒj on each component ƒj of ƒ, and for each Reeb chord endpoint
in ƒj we choose an endpoint path connecting the endpoint to pj . Furthermore, for
j D1; : : : ; r , we choose paths 1j in T �S connecting ….p1/ to ….pj / and symplectic
trivializations of  �

1j
T .T �S/ in which the tangent space ….Tp1

ƒ/ corresponds to the
tangent space ….Tpjƒ/; for j D1, 11 is the trivial path. For any i; j 2f1; : : : ; rg, we
can then define ij to be the path �1i[1j joining ….pi/ to ….pj /, and  �ij T .T �S/

inherits a symplectic trivialization from the trivializations for 1i and 1j .
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The grading j � j in LA.ƒ/ is now the following. First, homology variables have
degree 0:

j�j j D j�j j D 0 for j D 1; : : : ; r:

(Recall that the Maslov class � of ƒ is assumed to vanish; in general a homology
variable � 2 H1.ƒ/ would be graded by ��.�/.) Second, if q is a Reeb chord we
define the grading by associating a path of Lagrangian subspaces to q . We need to
consider two cases according to whether the endpoints of the chord lie on the same
component of ƒ or not. In the case of equal components, both equal to ƒj , consider the
path of tangent planes along the endpoint path from the final point of q to pj followed
by the reverse endpoint path from pj to the initial point of q . The endpoint of this path
is the tangent space of ….ƒ/ at initial point of q . We close this path of Lagrangian
subspaces to a loop yq by a “positive rotation” along the complex angle between the
endpoints of the path (see [15] for details). In the case of different components, we
associate a loop of Lagrangian subspaces yq to q in the same way except that we insert
the path of Lagrangian subspaces induced by the trivialization along the chosen path,
ij , connecting the components of the endpoints in order to connect the two paths from
Reeb chord endpoints to chosen points. The grading of q is then

jqj D �.yq/� 1;

where � denotes the Maslov index.

Remark 2.4 Note that the grading of a pure Reeb chord (a chord whose start and
endpoint lie on the same component of ƒ) is well-defined (ie, independent of choice of
paths to the base point and symplectic trivializations) because the Maslov class vanishes.
The grading of mixed chords however depends on the choice of trivializations along the
paths 1j connecting base points. Changing the trivializations changes the gradings as
follows: for some fixed .n1; : : : ; nr / 2Zr , for all i; j , jqj is replaced by jqjCni �nj

for all Reeb chords q beginning on component i and ending on component j . If we
choose orientations on each component of ƒ, and stipulate that the base points pj are
chosen such that � W ƒ! S is an orientation-preserving local diffeomorphism at each
pj (and that the symplectic trivializations on 1j preserve orientation), then the mod 2

grading of the mixed chords is well-defined, independent of the choice of base points.

For computational purposes we mention that the grading can be computed in terms of
the front projection …F W J

1.S/!S�R; compare [14]. By Lemma 2.1, a Reeb chord
q corresponds to a critical point x of the difference of two local defining functions f1

and f2 for ƒ� J 1.S/. We make the following assumptions, which hold generically:
ƒ is in general position with respect to the front projection, the critical point is non-
degenerate with index denoted by indexx.f1�f2/, where f1 defines the upper local
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sheet (the sheet with the larger z–coordinate) of ƒ, and the base points pj do not lie
on cusp edges.

Lemma 2.5 There is a choice of trivializations for which the following grading formula
holds for all Reeb chords. Let q be a Reeb chord with final point (respectively initial
point) in component ƒj (respectively ƒi/. Let  be the union of the endpoint path
from the chord’s final point to the base point pj , and the reverse endpoint path from
base point pi to the chord’s initial point. Assume  is in general position with respect
to the stratified caustic †�ƒ. Then

(2-2) jqj DD. /�U. /C indexx.f1�f2/� 1;

where D. / (respectively U. /) is the number of cusps that  traverses in the down-
ward (respectively upward) z–direction.

2.3.4 Differential in the Legendrian algebra In general, the Legendrian algebra
differential of a Legendrian submanifold ƒ in a contact manifold Y is defined using
moduli spaces of holomorphic curves in the symplectization R � Y of Y with La-
grangian boundary condition R�ƒ. In our case, Y D J 1.S/, one can instead use
holomorphic disks in T �S with boundary on ….ƒ/. We give a brief description. See
Ekholm, Etnyre and Sullivan [17] for details and [14] for the relation to curves in the
symplectization.

The differential @W LA.ƒ/!LA.ƒ/ is defined on generators and then extended by
linearity over Z and the signed Leibniz rule,

@.vw/D .@v/w C .�1/jvjv.@w/:

We set @�j D @�j D 0 for j D 1; : : : ;m. It thus remains to define the differential on
Reeb chords.

To do this, we begin by fixing an almost complex structure J on T .T �S/ that is
compatible with d� . Let q0; q1; : : : ; qk be Reeb chord generators of LA.ƒ/. Let
DkC1 be the unit disk in C with k C 1 boundary punctures z0; : : : ; zk listed in
counterclockwise order. We consider maps

uW .DkC1; @DkC1�fz0; : : : ; zkg/! .T �S;….ƒ//

such that uj@DkC1�fz0;:::;zmg lifts to a continuous map zu into ƒ�T �S . Call a puncture
z mapping to the double point q positive (respectively negative) if the lift of the arc just
clockwise of z in @DkC1 is a path in ƒ approaching the upper Reeb chord endpoint
qC (respectively the lower endpoint q� ) and the arc just counterclockwise of z lifts to
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a path approaching q� (respectively qC ). For a .kC 1/–tuple of homology classes
xAD .A0; : : : ;Ak/, Aj 2H1.ƒIZ/, j D 0; : : : ; k , we let

M xA.q0I q1; : : : ; qk/

denote the moduli space of J –holomorphic maps

uW .DkC1; @DkC1�fz0; : : : ; zkg/! .T �S;….ƒ//

with the following properties: uj@DkC1�fz0;:::;zkg
lifts to a continuous map zu into ƒ,

z0 is a positive puncture mapping to q0 , zj is a negative puncture mapping to qj ,
j D 1; : : : ; k , and when zuj.zj ;zjC1/ is completed to a loop using the endpoint paths then
it represents the homology class Aj . Here .zj ; zjC1/ denotes the boundary interval
in @DkC1 between zj and zjC1 and we use the convention zkC1 D z0 . Note that
the moduli space is obtained from the space of maps by dividing by the action of the
3–dimensional group of conformal automorphisms of the unit disk D .

For a generic ƒ and J the following holds (see Ekholm, Etnyre and Sabloff [13], and
Ekholm, Etnyre and Sullivan [15] for details):

� M xA.q0I q1; : : : ; qk/ is a manifold of dimension (recall that the Maslov class of
ƒ is assumed to vanish)

dim
�
M xA.q0I q1; : : : ; qk/

�
D jq0j �

kX
iD1

jqi j � 1;

which is transversely cut out by the @J –operator. Furthermore it admits a
compactification as a manifold with boundary with corners in which the boundary
consists of broken disks. Consequently, if the dimension equals 0 then the
manifold is compact.

� The moduli spaces M xA.q0I q1; : : : ; qk/ determined by ƒ and J can be “coher-
ently” oriented; see Section 6. (Note that the assumption that the components
of ƒ are tori and thus admit spin structures is used here. The moduli space
orientations depend on the choice of spin structure on ƒ.)

The differential of a Reeb chord generator q0 is then defined as follows:

@q0 D

X
xAD.A0;:::;Ak/;Pk
jD1 jqj jDjq0j�1

ˇ̌
M xA.q0I q1 : : : qk/

ˇ̌
A0q1A1q2A2 : : :Ak�1qkAk ;

where jMj denotes the algebraic number of points in the oriented compact 0–manifold
M.
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2.3.5 Invariance of Legendrian homology The main properties of LA.ƒ/ are sum-
marized in the following theorem.

Theorem 2.6 (Ekholm, Etnyre and Sullivan [17]) The map @W LA.ƒ/! LA.ƒ/

is a differential, that is, @2 D 0. The stable tame isomorphism class of LA.ƒ/ is
an invariant of ƒ up to Legendrian isotopy; in particular, its homology LH.ƒ/ is a
Legendrian isotopy invariant. (For the notion of stable tame isomorphism in this setting,
see [14].)

This result is stated and proven in [17] for the homology-commutative quotient, but the
proof there extends verbatim to the full non-commutative algebra.

2.4 Flow trees

Consider a Legendrian submanifold ƒ� J 1.S/DT �S�R as in Section 2.2. There is
a Morse-theoretic description of the differential in the Legendrian DGA of ƒ via flow
trees, as developed in [10], which we will describe in this subsection (in less generality
than [10]). The motivation is as follows. For � > 0, the map

�� W T
�S �R! T �S �R; .q;p; z/ 7! .q; �p; �z/;

satisfies ��� .dz��/D�.dz��/. Hence ƒ� D�� .ƒ/ is a Legendrian submanifold that
is Legendrian isotopic to ƒ. For � > 0 small enough there are regular almost complex
structures for which there is a one-to-one correspondence between rigid holomorphic
disks with boundary on ƒ� with one positive puncture and rigid flow trees determined
by ƒ; see [10].

We now define flow trees. Fix a metric g on S . Then two local defining functions f0

and f1 for ƒ defined on the same open set in S define a local vector field on S :

�r.f1�f0/;

where r denotes the g–gradient. The 1–jet lift of a path  W .��; �/! S is a pair of
continuous paths i W .��; �/!ƒ, i D 0; 1 with the following properties: � ı i D 

and either 0.t/ ¤ 1.t/ or 0.t/ D 1.t/ is a point in †. A path  W .a; b/! S is
called a flow line of ƒ if it has a 1–jet lift i ; i D 0; 1, such that for each t 2 .a; b/

there are local defining functions f0; f1 defined near  .t/ such that i lies in the sheet
determined by fi , i D 0; 1, and

P .t/D�r.f1�f0/. .t//:

See Figure 2. If  is a flow line with 1–jet lift 0; 1 we define its cotangent lift
as … ı 0;… ı 1 .
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S �R

�f1

�f0



0

1

s

S

s0

s1

Figure 2: Graphs �fi
of the local defining functions fi for two sheets of

…F .ƒ/ . A flow line  and critical point s in S and their lifts to …F .ƒ/ .
Notice s is a positive puncture.

Let  be a flow line of ƒ with 1–jet lift 0; 1 in sheets with local defining functions
f0; f1 . Then the flow orientation of 0 (respectively 1 ) is given by the lift of the
vector

�r.f0�f1/ (respectively �r.f1�f0/):

If  W .�1; b/! S (respectively  W .a;1/! S ) is a flow line as above such that

lim
t!�1

 .t/D s 2 S .respectively lim
t!1

 .t/D s/

is a critical point of f1 � f0 , then we say s is a puncture of the flow line  . Let
si be the point in the sheet of fi with �.si/D s , i D 0; 1. Choose notation so that
f1.s1/ > f0.s0/; then s is a8̂̂<̂

:̂
positive puncture if the flow orientation of 0 points toward s0

and that of 1 points away from s1;

negative puncture if the flow orientation of 1 points toward s1

and that of 0 points away from s0:

If s is a puncture of a flow tree then the chord at s is the vertical line segment oriented
in the direction of increasing z that connects s0 and s1 .
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A flow tree of ƒ � J 1.S/ is a map into S with domain a finite tree � , which may
have semi-infinite edges, with extra structure consisting of a cyclic ordering of the
edges at each vertex and with the following three properties.

(1) The restriction of the map to each edge is a flow line of ƒ.

(2) If v is a k –valent vertex with cyclically ordered edges e1; : : : ; ek and xe0
j ; xe

1
j is

the cotangent lift of ej , 1� j � k , then there exists a pairing of lift components
such that for every 1� j � k (with kC 1D 1)

xe1
j .v/D xe

0
jC1.v/D p 2….ƒ/� T �S;

and such that the flow orientation of xe1
j at p is directed toward p if and only if

the flow orientation of xe0
jC1

at p is directed away from p . Thus the cotangent
lifts of the edges of � then fit together as an oriented curve x� in ….ƒ/.

(3) This curve x� is closed.

We first notice that vertices may contain punctures. We will be interested in flow trees
with only one positive puncture. Such flow trees can have only one puncture above each
vertex; see [10, Section 2]. Thus for such flow trees � we divide the vertices into three
sets: the set of positive punctures P .�/, the set of negative punctures N.�/ and the
set of other vertices R.�/. Recall at a (non-degenerate) puncture v the corresponding
difference between the local defining functions has a non-degenerate critical point.
Denote its index by I.v/.

If � is a flow tree as above then its formal dimension (see [10, Definition 3.4]), which
measures the dimension of the space of flow trees with 1–jet lift near the 1–jet lift of
� , is

(2-3) dim.�/D
� X
v2P.�/

.I.v/� 1/�
X

v2N.�/

.I.v/� 1/C
X

v2R.�/

�.v/

�
� 1;

where �.v/ is the Maslov content of v and is defined as follows. For a vertex v 2R.�/

let x 2 ��1.v/ be a cusp point that lies in the 1–jet lift of � (if such a point exists).
If 0 and 1 are two 1–jet lifts of an edge of � adjacent to v that contain x and for
which the flow orientation of 0 is pointed towards x and that of 1 is pointed away
from x , then we set z�.x/DC1 (respectively �1) if 0 is on the upper (respectively
lower) local sheet of ƒ near x and 1 is on the lower (respectively upper) local sheet.
Otherwise define z�.x/D 0. We can now define �.v/D

P
z�.x/, where the sum is

taken over all x 2 ��1.v/ that are cusp points in the 1–jet lift of � .

There is also a notion of geometric dimension of � , gdim.�/ (see [10, Definition 3.5]),
which measures the dimension of the space of flow trees near � that have the exact same
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geometric properties as � . In [10, Lemma 3.7] it is shown that gdim.�/� dim.�/ for
any flow tree � , and a characterization of the vertices of trees for which equality holds
is given. In combination with transversality arguments for Morse flows, this leads to
the following result; see [10, Lemma 3.7 and Proposition 3.14].

Theorem 2.7 (Ekholm 2007 [10]) Given a number n> 0, after a small perturbation
of ƒ and the metric g on S we may assume that for any flow tree � having one
positive puncture and dim.�/ � n, the space of flow trees with the same geometric
properties in a neighborhood of � is a transversely cut out manifold of dimension
gdim.�/. In particular, trees � with dim.�/ D 0 form a transversely cut out 0–
manifold. Furthermore, such rigid trees satisfy gdim.�/ D dim.�/ D 0 and have
vertices only of the following types; see Figure 3.

(1) Valency one vertices that
(a) are positive punctures with Morse index ¤ 0,
(b) are negative punctures with Morse index ¤ 2, or
(c) lift to a cusp edge and have Maslov content C1, called a cusp end

(2) Valency two vertices that
(a) are positive punctures with Morse index 0,
(b) are negative punctures with Morse index 2, or
(c) have order one tangencies with a cusp edge and Maslov content �1, called a

switch

(3) Valency three vertices that
(a) are disjoint from the projection �.†/ of the singular locus to S , called a Y0

vertex, or
(b) lie on the image of the cusp locus and have Maslov content �1, called a Y1

vertex

Notice that we may endow a flow tree � that has exactly one positive puncture with
a flow orientation: any edge e is oriented by the negative gradient of the positive
difference of its defining functions.

When working with flow trees it will also be useful to consider the symplectic area
of a flow tree � . Given a flow tree � , let y� denote its 1–jet lift (which, in previous
notation, projects to � �….ƒ/), and define the symplectic area of � to be

A.�/D�

Z
y�

p dq D�

Z
y�

dz:

The name comes from the connection between flow trees and holomorphic curves.
The important features of the symplectic area are summarized in the following lemma.
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SS

S

S

S S

S �R

S �R

S �R

Figure 3: Lifts of neighborhoods, in � , of vertices into the front space S�R .
Dashed lines in S are cusp edges.
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Before stating it we introduce some notation. A puncture a of a flow tree lifts to a
double point in the Lagrangian projection ….ƒ/ and hence corresponds to a Reeb
chord. Thus in the 1–jet lift of � there will be two points that project to a. We denote
them aC and a� where aC has the larger z–coordinate.

Lemma 2.8 (Ekholm 2007 [10]) For any flow tree � the symplectic action is positive:
A.�/ > 0. The symplectic action can be computed by the formula

A.�/D
X
p

�
z.pC/� z.p�/

�
�

X
q

�
z.qC/� z.q�/

�
;

where the first sum is over positive punctures of � , the second sum is over negative
punctures of � and z.a/ denotes the z–coordinate of the point a.

For our applications two further types of flow trees will be needed. First, a partial
flow tree is a flow tree � for which we drop the condition that the cotangent lift x� is
closed and allow � to have 1–valent vertices v such that x� intersects the fiber over v
in two points. We call such vertices special punctures. In the dimension formula (2-3),
I.v/D 3 for a positive special puncture. Theorem 2.7 holds as well for partial flow
trees with at least one special puncture; see [10]. Second, in Section 5.1 we consider
constrained flow trees: if p1; : : : ;pr are points in ƒ then a flow tree constrained by
p1; : : : ;pr is a flow tree � with 1–jet lift which passes through the points p1; : : : ;pr .

2.5 Vector splitting along flow trees

In this subsection we describe a combinatorial algorithm for transporting normal vectors
in a flow tree to all its vertices which will combinatorially determine the sign of a flow
tree; see Section 3.4. Specifically we will be concerned only with flow trees that do
not involve cusp edges and only have punctures at critical points of index 1 and 2.

Suppose ƒ is a Legendrian submanifold in J 1.S/ that does not have cusp edges (see
Remark 1.6) and only has Reeb chords corresponding to critical points of index 1 and 2.
Let � be a partial flow tree with positive special puncture determined by ƒ� J 1.S/.

Consider the local situation at a Y0 –vertex of � at t 2 S . (Note that because of the
lack of cusp edges, � has no Y1 –vertices.) In the flow orientation of � one edge
adjacent to t is pointing toward it (we call this edge incoming) and the other two edges
are pointing away from it (we call them outgoing). Furthermore, the natural orientation
of the 1–jet lift of the tree induces a cyclic order on the three edges adjacent to t and
thus an order of the two outgoing edges. (Specifically, the edge e1 will have the same
upper sheet as the incoming edge while the edge e2 will have the same lower sheet.)
If v0 denotes the negative gradient of the incoming edge at t and v1; v2 the negative
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gradients of the two outgoing edges, all pointing according to the flow orientation of
� , then v1 and v2 are linearly independent and the following balance equation holds:
v0D v1Cv2 . (This follows from the fact that the difference between the local defining
functions along the incoming edge is the sum of the function differences along the
outgoing edges.)

We next define vector splitting. Let p denote the special positive puncture of � ,
let t1; : : : ; tk�1 denote its trivalent vertices, and let q1; : : : ; qk denote its negative
punctures. Vector splitting along � is a function

Np�!

k�1Y
jD1

FtjS �

kY
iD1

Nqj�;

where Nx� denotes the normal bundle of the edge of � containing the point x 2 �

(which is assumed not to be a trivalent vertex) and where FS denotes the frame bundle
of S . It is defined as follows.

Translating n 2 Nx� as a normal vector along the edge in the direction of the flow
orientation of the tree, it eventually arrives at a trivalent vertex t . At this vertex, the
translated vector n.t/ is perpendicular to the incoming edge at t and determines two
unique vectors w1.t/ and w2.t/ in TtS perpendicular to the first and second outgoing
edges at t , respectively, by requiring that n.t/ D w1.t/Cw2.t/; see Figure 4. The
frame at t is .w1.t/; w2.t//.

n

1

2

w1

w2

Figure 4: Vector splitting at a trivalent Y0 –vertex

Regarding w1.t/ and w2.t/ as normal vectors of their respective edges, the above
construction can be applied with n replaced by wj .t/, j D 1; 2, and � replaced by the
partial tree �j that is obtained by cutting � in the j th outgoing edge at t and taking
the component that does not contain t . When a subtree �j contains no trivalent vertex
we translate wj .t/ along its respective edge to the negative puncture at the vertex.
Continuing in this way until the cut-off partial trees do not have any trivalent vertices,
we get:
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� two vectors w1.t/ and w2.t/ perpendicular to the first and second outgoing
edge at t , for each trivalent vertex t , and

� a vector w.q/ perpendicular to the edge ending at q , for each negative puncture
q .

The vector splitting of n along � is

n 7!
�
.w1.t1/; w2.t1//; : : : ; .w1.tk�1/; w2.tk�1//Iw.q1/; : : : ; w.qk/

�
:

2.6 Algebraic results

In this subsection, we collect for convenience some algebraic results about the map
� and the matrices ˆL and ˆR , which were defined in Section 1.2 and play an
essential role in the combinatorial formulation of the Legendrian algebra for knot
contact homology, Theorem 1.1. These results, which will occasionally be needed
in the remainder of the paper, have essentially been established in previous work of
the third author [26; 27; 29; 30]. However, we repeat the caveat from Section 1.2
that in our present context, homology classes (� and �) do not commute with Reeb
chords (aij ), while the previous papers deal with the homology-commutative quotient
(see Section 2.3.2). Nevertheless, all existing proofs extend in an obvious way to the
present setting.

Proposition 2.9 The map �W zA0
n!

zA0
n , defined in Section 1.2 for braid generators �k

of the braid Bn , respects the relations in the Bn and thus extends to a homomorphism
from Bn to Aut zA0

n .

Proof The proof is by direct computation; cf [26, Proposition 2.5].

Proposition 2.10 Let B 2 Bn , and let �B.A/ be the n � n matrix defined by
.�B.A//ij D �B.Aij /. Then we have the matrix identity:

�B.A/Dˆ
L
B �A �ˆ

R
B

Proof The proof is by induction on the length of the braid word representing B ; cf
[26, Proposition 4.7; 30, Lemma 2.8]. The latter reference proves the result stated
here ( yA and LA there correspond to A here once we set U D V D 1), but in the
homology-commutative quotient, for the case of a single-component knot, and with
slightly different sign conventions. Nevertheless, the inductive proof given there works
here as well; we omit the details.
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We remark that Proposition 2.10 can be given a more natural, geometric proof via the
language of “cords” [27]. This approach also provides an explanation for the precise
placement of the homology classes z� in the definition of ��k

from the introduction. We
refer the interested reader to [29, Section 3.2], which treats the homology-commutative
single-component case, and leave the straightforward extension to the general case to
the reader.

One consequence of Proposition 2.10 is that the differential for knot contact homology
presented in Theorem 1.1 is well-defined. More precisely, the differential for the bij

generators is given in matrix form by:

@BD���1
�A � �CˆL

B �A �ˆ
R
B

However, since B has 0’s along the main diagonal, it is necessary that the right hand
side has 0’s along the diagonal as well. This is indeed the case: the .i; i/ entry of
��1 �A�� is 1C�˛.i/ , while the .i; i/ entry of ˆL

B
�A�ˆR

B
is �B.1C�˛.i//D 1C�˛.i/ .

3 The differential and flow trees

In Section 4, we will prove Theorem 1.1 by using multiscale flow trees to compute
the differential of ƒK in J 1.S2/D U �R3 . These multiscale flow trees combine two
types of flow trees, which are the focus of this section. Specifically we will see that
if ƒ is the conormal lift of the unknot U then by thinking of K as a braid about U

we can isotope ƒK into an arbitrarily small neighborhood of ƒDƒU , which can be
identified with a neighborhood of the zero section in J 1.ƒ/. Thus we may think of
ƒK as a subset of J 1.ƒ/.

To use multiscale flow trees to compute the differential of ƒK in J 1.S2/ we will
combine flow trees of ƒ � J 1.S2/ and ƒK � J 1.ƒ/. The content of this section
is a computation of these flow trees; in Section 4, we then combine the flow trees to
complete the computation of the Legendrian DGA for ƒK � J 1.S2/.

Here is a more detailed summary of this section. In Section 3.1, we discuss the
Legendrian torus ƒ and describe a generic front projection for it. In Section 3.2, we
compute the rigid flow trees for ƒ as well as the 1–parameter families of flow trees. In
Section 3.3, we give an explicit identification of a neighborhood of the zero section
in J 1.ƒ/ with a neighborhood of ƒ in J 1.S2/, use this identification to explicitly
describe ƒK in J 1.ƒ/, and find all the Reeb chords of ƒK � J 1.ƒ/. Section 3.4
computes the rigid flow trees of ƒK in J 1.ƒ/ modulo some technical considerations
concerning “twist regions” that are handled in Section 3.5. We comment that Section 3.4
produces an invariant of braids (cf [26]) using only existing flow tree technology and
not multiscale flow trees.
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3.1 A generic front for ƒ

Let U be the round unknot given by the unit circle in the xy –plane in R3 . We give a
description of the conormal lift ƒDƒU in J 1.S2/D U �R3 by describing its front
projection in S2 �R. In the figures below, we draw S2 �R as R3�f0g and identify
the zero section S2 � f0g with the unit sphere. If C is the circle in the conormal
bundle of U lying over a point x 2 U then its image in S2 � f0g � S2 �R is a
great circle running through the north and south poles of S2 . See Figure 5. By the
contactomorphism � between U �R3 and J 1.S2/ from Section 2.1, the image of C

in S2 �R is the graph of hx;yi, where y 2 C . This is shown in the leftmost picture
in Figure 6.

U

p

Figure 5: On the left is the unknot U in the xy –plane with a point p on U

labeled and its unit (co-)normal bundle shown. On the right is the tangent
space R3 D TpR3 at p with the unit sphere indicated along with the image
of the unit (co-)normal bundle to U at p .

c e

Figure 6: The front of the unknot. On the left is the image of the circle shown
in Figure 5 in the front projection in J 0.S2/ D S2 �R D R3 � f0g . The
center image shows the entire front projection (with the unit sphere S2 � f0g

shown in light grey) and the image on the right shows the two Reeb chords
after perturbation.
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By symmetry we get the entire front projection by simply rotating this image of C

about the axis through the north and south pole as shown in the middle picture of
Figure 6. Using Lemma 2.1 we see that this representative of ƒ has an S1 s worth of
Reeb chords over the equator. We perturb ƒ using a Morse function on the equator
with one maximum and one minimum, so that only two Reeb chords c and e , as
indicated in the rightmost picture in Figure 6, remain. Here e and c correspond to the
maximum and minimum, respectively, of the perturbing function, and both correspond
to transverse double points of ….ƒ/.

This perturbation does not suffice to make the front of ƒ generic with respect to
fibers of T �S2 : over the poles of S2 we see that ƒ consists of Lagrangian cones.
We first describe these in local coordinates and then show how to perturb them to
become front generic. Let x D .x1;x2/ be local coordinates near the pole in S2 and
let .x;y/ D .x1;y1;x2;y2/ be corresponding Darboux coordinates in T �S2 , with
symplectic form given by dx ^ dy D dx1 ^ dy1C dx2 ^ dy2 .

Consider S1 D f� 2 R2 W j�j D 1g. The Lagrangian cone is the exact Lagrangian
embedding C W S1 �R!R4 given by

C.�; r/D .r�; �/:

As mentioned above, the Lagrangian cone is not front generic: the front projection
…F ıC is regular for r ¤ 0 but maps all of S1�f0g to the origin. In order to describe
perturbations of C we first find a cotangent neighborhood of it. See Figure 7.

Consider T �.S1 �R/D T �S1 �T �R. Let .�; �; r; �/ be coordinates on this space
where � is dual to r and � is dual to � . Here we think of � as a (co)vector perpendicular
to � 2 S1 �R2 , that is, � 2R2 and � � � D 0. Consider the map

ˆW T �S1
�T �R! T �R2

DR4

given by

ˆ.�; �; r; �/D

�
r� �

1

1C �
�; .1C �/�

�
:

Then ˆ�.dx ^ dy/D d� ^ d�C dr ^ d� . To see this we compute

dx D .dr/ �C r d� �
1

1C �
d�C

d�

.1C �/2
�;

dy D .d�/ �C .1C �/ d�;
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Figure 7: A perturbed Lagrangian cone. Along the top of the figure is an
annular neighborhood of the circle in ƒDƒU that maps to the fiber above
the north pole. On the middle left, we see the image of this annulus near the
north pole in the front projection, a cone whose boundary is two circles. On
the bottom left is the image of this annulus near the north pole in S2 (that is,
the top view of the cone where we have slightly offset the circles so that they
are both visible). On the middle right, we see the top view of the cone after it
has been perturbed to have a generic front projection. More specifically, the
lighter outer curve is the image of the cusp curves, the dotted lines are the
image of double points in the front projection and the darkest inner curve is
the image of the circle that mapped to the cone point before the perturbation.
On the bottom right, we see the image in S2 of the cusp curve and the two
boundary circles on ƒU .

and hence

dx ^ dy D .dr ^ d�/.� � �/C d� ^ d�C ..1C �/dr � rd�/^ .� � d�/

C
d�

1C �
^ .� � d�C � � d�/

D dr ^ d�C d� ^ d�;

since � � � D 1 and � � �D 0.
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Thus ˆ is a symplectic neighborhood map extending the Lagrangian cone. It follows
that exact Lagrangian submanifolds C 1 –near C can be described by ˆ.�df /, where
f is a smooth function on S1�R and where �df denotes the graph of its differential.

We will consider specific functions of the form

f .�; r/D ˛.r/g.�/;

where ˛.r/ is a cut off function equal to 0 for jr j> 2ı and equal to 1 for jr j< ı for
some small ı > 0. Write Cf Dˆ.�df /.

We first give a description of the caustic of Cf . Note that …F ıC is an immersion for
jr j> ı . The same therefore holds true for Cf provided f is small enough. In order to
describe the caustic we thus focus on the region where jr j < ı and hence ˛.r/D 1.
Here

Cf .�; r/D .r�C dg; �/D .C 1
f .�; r/;C

2
f .�; r//:

The caustic is the set where Cf has tangent lines in common with the fiber. Consequently
a point p 2 S1�R belongs to the fiber provided the differential of the first component
C 1
f

of the map Cf has rank less than 2. Write � D .cos �; sin �/ 2 S1 and take
g.�/ D g1.�/ D � cos 2� . The caustic is then the image of the locus r D 4� cos 2�

under the first component of the map

ˆ.�; r/D
�
r.cos �; sin �/� 2� sin �.� sin �; cos �/; .cos �; sin �/

�
I

see Figure 7.

Lemma 3.1 The Maslov class of ƒ vanishes and consequently the grading of any
Reeb chord of ƒ is independent of choice of capping path. Let e and c denote the
Reeb chords of ƒ, as described above; then

jej D 2 and jcj D 1:

Proof To see that the Maslov class vanishes we need to check that the Maslov index
of any generator of H1.ƒ/ vanishes. We compute the Maslov index of a curve as
described at the end of Section 2.3.1. Take one generator as a curve in ƒ over the
equator; since this curve does not intersect any cusp edge its Maslov index vanishes.
Take the other generator as a curve perpendicular to the equator going to the poles and
then back; since such a curve has two cusp edge intersections, one up-cusp and one
down-cusp, its Maslov index vanishes as well.

Finally choose the capping path of e and c which goes up to the north pole and then
back. This capping path has one down-cusp and the Morse indices of e and c are 2

and 1, respectively. The index assertions now follow from Lemma 2.5.
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3.2 Flow trees of ƒ

We next determine all flow trees of ƒ.

Lemma 3.2 There are exactly six rigid flow trees of ƒ: four with positive puncture at
c (IN , YN , IS and YS ) and two with positive puncture at e and negative puncture at
c (E1 and E2 ). Furthermore, if p is a point of ƒ lying over a point where the front
of ƒ has 2 sheets then there are exactly two constrained rigid flow trees with positive
puncture at e with 1–jet lift passing through p .

Before proving Lemma 3.2, we make a couple of remarks.

Remark 3.3 In fact one can show the following: There are exactly four 1–parameter
families of trees with positive puncture at e : zIN , zYN , zIS and zYS . The boundaries of
these 1–parameter families are as follows:

@zIN D .E1 # IN /[ .E2 # IN /; @ zYN D .E1 # YN /[ .E2 # YN /;

@zIS D .E1 # IS /[ .E2 # IS /; @ zYS D .E1 # YS /[ .E2 # YS /:

Here E1 # IN denotes the broken tree obtained by adjoining IN to E1 , etc. See
Figures 8 and 9. Furthermore, the 1–jet lifts of the flow trees in each of these families
sweep the part of the torus lying over the corresponding hemisphere (N or S ) once.

The formal proof of this result about 1–parameter families would require a more
thorough study of flow trees in particular including a description of all vertices of flow
trees that appear in generic 1–parameter family. This is fairly straightforward; see [10,
Section 7]. For the purposes of this paper it suffices to work with constrained rigid
trees rather than 1–parameter families so details about 1–parameter families of flow
trees will be omitted.

IN

c c

YN

c

e

E0

E1

Figure 8: Rigid flow trees for ƒ on the northern hemisphere of S2
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Remark 3.4 We will not need a precise expression of the 1–dimensional families
zIN , zYN , zIS , and zYS in our computations, but we do need a rough understanding
of them. To see the family of disks, start with the symmetric picture of ƒ coming
from the conormal lift of U . Now make a small perturbation of the north and south
poles as shown in Figure 7. Then we see an I and Y flow tree from each point on the
equator into the northern hemisphere and another into the southern hemisphere. Now
perturbing slightly so the equator is no longer a circle of critical points but contains
only the critical points c and e and two flow lines between them, we will see that each
of the I and Y disks will become part of one of the 1–dimensional families of disks
zIN , zYN , zIS , and zYS . See Figure 9.

It is also useful to see these trees as arising from the Bott-degenerate conormal lift of
the round unknot. Here there are four holomorphic disks emanating from each Reeb
chord. The corresponding trees are just flow lines from the equator to the pole. The
1–jet lift of such a flow line can then be completed by one of the two half circles of
the circle in ƒ which is the preimage of the pole. The Bott-degenerate 1–parameter
family then consists of a flow segment starting at the maximum in the Bott-family and
ending at some point where a disk emanating at that point (corresponding to a flow
line from that point to a pole) is attached.

e e e

e e

Figure 9: One of the 1–dimensional flow tree families for ƒ lying over the
northern hemisphere of S2

Proof of Lemma 3.2 We are only considering flow trees with exactly one positive
puncture. First consider a rigid flow tree � with a positive puncture at c . Using
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Lemma 2.8 we see that there can be no negative punctures since the symplectic area
must be positive. Thus all vertices of � are Y0 or Y1 vertices, switches or cusp ends.

We can rule out switches as follows. Since the front is a small perturbation of a
Lagrangian cone, it is possible to arrange the following: along a cusp edge in the image
�.†/ of the caustic, the gradient vector fields for the function difference between a
sheet meeting the cusp edge and a sheet not meeting the cusp edge are transverse to the
caustic except at the swallow tail points, where they are tangent to the caustic (or zero).
This is a non-generic situation, generically tangencies occur only at smooth points of
the caustic, and after small perturbation tangency points lie close to the swallowtails.
Switches of flow trees lie at tangency points in the caustic and thus a switch could only
occur near a swallow tail point. Now, using again that the front is a small perturbation of
a Lagrangian cone, we can also arrange that near a swallow tail, the function difference
between any one of the three sheets involved in the swallow tail and the fourth sheet is
larger than any function difference in the small region bounded by �.†/ away from
swallow tails. Then since the unique flow line that leaves c hits �.†/ away from the
swallow tails, by positivity of symplectic area (in this case, the fact that the function
difference decreases along a flow line), there is a neighborhood of the swallow tail
points that the flow tree cannot reach and in particular it cannot have any switches.

Thus the vertices of � are all Y0 or Y1 vertices or cusp ends. By the dimension formula
(2-3), we see that for the flow tree to be rigid there is some n� 0 such that there are
n type Y1 vertices and nC 1 cusp ends (each with �DC1). To have a Y1 vertex a
flow line must intersect a cusp edge so that when traveling along the flow the number
of sheets used describing ƒ increases (as one passes the cusp). Around the north and
south pole of S2 the cusp edges are arranged so that only flow lines traveling towards
the poles could possibly have a Y1 vertex. Thus for n > 1 one of the edges in the
flow tree will be a flow line that travels from near the north pole to near the south pole.
Since this clearly does not exist, as there are two flow lines connecting e to c along
the equator and ƒ has only two sheets along the equator, we must have nD 0 or 1.

There are only two flow lines leaving c (that is, two flow lines that could have c as a
positive puncture), one heading towards the north pole and one heading towards the
south pole. When nD 0 we clearly get IN and IS from these flow lines when they
do not split at a Y1 vertex and when nD 1 we get YN and YS when they do split at
a Y1 vertex. Conversely, this argument shows that IN , IS , YN , YS are indeed rigid
flow trees with positive puncture at c (refer to Figure 8 for IN and YN ).

Notice for future reference that the above analysis shows that there are no 1–parameter
families of flow trees with c as a positive puncture.
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Now consider a flow tree � with e as a positive puncture. Noting that the Reeb chord
above c is only slightly shorter than the chord above e we see, using Lemma 2.8,
that � can have either no negative punctures or just one negative puncture at c . If
dim.�/D 0, then by the dimension formula there must be a negative puncture at c .
Then, since ƒ is defined by only two functions away from neighborhoods of the poles,
the only vertices of � are the punctures e and c . Thus � is simply a flow line from e

to c and there are precisely two: E1 and E2 .

The argument for constrained rigid trees with positive puncture at e follows from the
argument used for rigid flow trees with positive puncture at c above.

3.3 Conormal lifts of general links

In order to describe the conormal lift of a general link K � R3 we first represent
it as the closure of a braid around the unknot U . More precisely, K lies in a small
neighborhood N D S1 �D2 �R3 of U and is transverse to the fiber disks f�g �D2

for all � 2 S1 . Note that B is a braid on n strands if and only if K intersects any fiber
disk n times. We write B for the closed braid corresponding to K considered as lying
in S1 �D2 .

We represent a closed braid B on n strands as the graph �fB
of a multi-section

fBW S
1!D2 , where fB.s/ consists of n distinct points in D2 varying smoothly with

s , so that �fB
is a smooth submanifold. Representing S1 as Œ0; 2�� with endpoints

identified, we can express fB as a collection of n functions ff1.s/; : : : ; fn.s/g, where
fi W Œ0; 2��!D2 are smooth functions, iD1; : : : ; n. (The sets ff1.0/; : : : ; fn.0/g and
ff1.2�/; : : : ; fn.2�/g are equal but it does not necessarily hold that fi.0/D fi.2�/.)
Note that the distance between ƒ and ƒK is controlled by the C 1 –distance from fB

to the trivial multi-section, which consists of n points at the origin. In particular if N is
a fixed neighborhood of ƒ then ƒK �N provided that fB is sufficiently C 1 –small.

3.3.1 A 1–jet neighborhood of ƒ In order to describe the multiscale flow trees on
ƒ determined by ƒK we need to identify some neighborhood of ƒ with J 1.ƒ/�

T �T 2�R. Thinking of T 2 as S1�S1 we use two different versions of the cotangent
bundle of S1 to describe T �T 2 . First, we think of S1 as Œ0; 2�� with endpoints
identified, we let s be a coordinate on Œ0; 2�� and � 2 R be a fiber coordinate in
T �S1 D S1 �R. We write T �S1

�
for the cotangent bundle with these coordinates:

T �S1
� D f.s; �/ W s 2 Œ0; 2��; � 2Rg:

We denote the second version T �S1
� and define it as

T �S1
� D f.�; �/ 2R2

�R2
W j�j D 1; � � �D 0g:
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Let r.s/D .cos s; sin s; 0/, 0� s � 2� denote a unit vector in the x1x2 –plane at an
angle s from the x1 –axis and �.s/ D .� sin s; cos s; 0/ the vector r.s/ rotated �=2
counter-clockwise in the x1x2 –plane (we can think of it as the standard angular vector
at r.s/ translated back to the origin). Let � be the coordinate on R. Consider the map

ˆW T �S1
� �T �S1

� �R! U �R3
DR3

�S2;

where ˆD .ˆ1; ˆ2/ is defined by

(3-1) ˆ1.s; �; �; �; �/D r.s/C
1

p
1� �2

.�1r.s/C �2.0; 0; 1//

C �
�
���.s/C

p
1� �2 .�1r.s/C �2.0; 0; 1//

�
;

ˆ2.s; �; �; �; �/D���.s/C
p

1� �2 .�1r.s/C �2.0; 0; 1//:

Then ˆjS1
�
�0�S1

��0�0 is a parametrization of ƒ and its restriction to a small neigh-
borhood of the 0–section is an embedding. Furthermore, since � � �D 0, we know that
� � d� D�� � d�. Using this and the fact that r.s/ � �.s/D 0 and r 0.s/D �.s/ we can
compute

ˆ�.p dq/D d� � � ds� � � d��
1

p
1� �2

��1 ds:

We introduce the following notation:

ˇ0 D � dsC � � d�;(3-2)

˛ D
1

p
1� �2

��1 ds;(3-3)

ˇt D ˇ0� t˛; 0� t � 1:(3-4)

Note that dˇt is symplectic in a neighborhood of the 0–section, for all t . Using
Moser’s trick we define a time-dependent vector field Xt by

(3-5) �˛ D dˇt .Xt ; � /

and find that if  t denotes the time t flow of Xt then

 �t dˇt D dˇ0:

In particular,
d. �t ˇt �ˇ0/D 0:

Equation (3-5) and the definition of ˛ imply that Xt D 0 along the 0–section and
thus  �t ˇt � ˇ0 D 0 along the 0–section. By the homotopy invariance of de Rham
cohomology, the closed form  �t ˇt � ˇ0 is exact. Let the function h be such that
ˇ0 D  

�
1
ˇ1C dh and such that hD 0 on the 0–section.
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We can bound the growth of ˛;Xt ; h in terms of distance r WD .j�j2Cj� j2/1=2 from
the origin. From the explicit expression for ˛ in (3-2), we have ˛ DO.r2/ and thus
from (3-5),

(3-6) jXt j DO.j�j2Cj� j2/ and jdXt j DO..j�j2Cj� j2/1=2/:

Then from the definition of h, jdhj DO.r2/ and so

(3-7) jd .k/.h/j DO..j�j2Cj� j2/.3�k/=2/; k D 0; 1; 2:

We will use these estimates in the proof of Lemma 3.6 below.

Finally, if ‰ is the diffeomorphism of T �S1
�
�T �S1

� �R given by

‰..s; �; �; �/; �/D . 1.s; �; �; �/; �C h.s; �; �; �//;

then
‰�ˆ�.p dq/D d� � � ds� � � d�:

The map ‚Dˆ ı‰ is the 1–jet neighborhood map we will use. It is an embedding
from a neighborhood of the 0–section in J 1.T 2/D T �T 2 �R to a neighborhood of
ƒ� U �R3 D J 1.S2/ such that ‚�.p dq/D d� � � , where � is a coordinate in the
R–factor and where � is the Liouville form on T �T 2 .

Remark 3.5 Notice that the contactomorphism ‚ sends the Reeb flow of J 1.T 2/ to
the Reeb flow of J 1.S2/. (Here, as throughout the rest of the paper, we are identifying
J 1.S2/ with U �R3 using the contactomorphism in (2-1).) Thus any Reeb chord of
ƒK in J 1.T 2/ corresponds to a Reeb chord of ƒK in J 1.S2/ and any Reeb chord of
ƒK in J 1.S2/ that lies entirely in N corresponds to a Reeb chord of ƒK in J 1.T 2/.

3.3.2 Conormal lifts of closed braids as multi-sections Consider T 2 D S1
�
�S1

�

as above. A multi-section of J 0.T 2/ is a smooth map F W T 2! J 0.T 2/ such that
� ıF is an immersion (ie, a covering map). In particular, a multi-section can be thought
of as the graph of a multi-function F W T 2!R. (Context will designate whether F

refers to a (multi)function or its graph, a (multi)section.) The 1–jet extension of a
generic multi-section is a Legendrian submanifold. We denote it �j1.F / . Let K �R3

be a link and let B be a closed braid representing K with corresponding multi-section
fB D ff1; : : : ; fng, fj W Œ0; 2��!D2 , as described at the beginning of Section 3.3.

Lemma 3.6 The conormal lift ƒK is Legendrian isotopic to the Legendrian submani-
fold ‚.�j1.FB/

/, where FB is the multi-section given by the functions

Fj W Œ0; 2���S1
�!R; j D 1; : : : ; n; where Fj .s; �/D fj .s/ � �:
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Here we think of S1
�

as Œ0; 2�� with endpoints identified and we identify S1
� with the

unit circle in the plane of the disk where fj W Œ0; 2��!D2 takes values.

Proof Let N � U �R3 denote a ı–neighborhood of ƒ in which ‚ and ˆ give local
coordinates. Take the C 2 –norm of fB sufficiently small so that ƒK will be in N . We
first show that ˆ�1.ƒK / is given by the 1–jet lift of FB . To see this notice that the
image of the braid B is given by the image of the maps

.fj .s//xr.s/C .fj .s//y.0; 0; 1/;

where .fj /x and .fj /y are the x and y–coordinates of fj , and r.s/ is as in (3-1).
Thus the normal component in J 1.S2/D T �S2 �R (ie, the R–component) of the
braid at the point .fj .s//xr.s/C .fj .s//y.0; 0; 1// is given by�

.fj .s//xr.s/C .fj .s//y.0; 0; 1/
�
� .�1r.s/C �2.0; 0; 1//D fj .s/ � �:

According to the definition of ˆ we see that the R–factor of T �T 2 �RD J 1.T 2/

maps to the R–factor in T �S2 �R by � 7! �
p

1� �2 . Thus the multi-section of
J 0.T 2/ corresponding to ˆ�1.ƒK / is given by .1=

p
1� �2/fj .s/ �� , but in J 0.T 2/

the � –coordinate is always equal to zero. Thus the multi-function FB does indeed
describe ˆ�1.ƒK / as claimed.

Now ‚�1.ƒK / is the 1–jet graph �j1.GB/ of some multi-section GB . In general,
Legendrian submanifolds of J 1.T 2/ will be given by cusped multi-sections, but since
each point in ‚�1.ƒK / has a neighborhood in ‚�1.ƒK / that can be made C 1 –close
to the zero section in J 1.T 2/, we see that ‚�1.ƒK / has empty caustic and hence is
the 1–jet extension of a multi-section.

From the above discussion we see that �j1.GB/ is the same as ‰�1.�j1.FB//. The
estimates (3-6) and (3-7) then imply that the C 1 –distance between FB and GB is
O.ı2/. Consequently, for ı > 0 sufficiently small, �j1.GB/ D ƒK and �j1.FB/ are
Legendrian isotopic.

3.3.3 Reeb chords and grading Let K�R3 be a link. We assume that K is braided
around the unknot as a braid on n strands and we represent ƒK as �j1.FB/ � J 1.T 2/

as in Lemma 3.6. Then the Reeb chords of ƒK in J 1.S2/ are of two types: short
chords, which are entirely contained in the neighborhood N of ƒ, and long chords,
which are not. According to Remark 3.5 we see that the short chords of ƒK correspond
to chords of ƒK in J 1.T 2/. As with ƒ, one can use the techniques of Section 2.3.1
to conclude that the Maslov class of ƒK vanishes, and thus the grading of any Reeb
chord of ƒK with both endpoints on the same component is independent of capping
path. For Reeb chords with endpoints on distinct components the grading depends on
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the chosen transport along the paths connecting the components; cf Remark 2.4. Here
we use the following choice throughout. Fix a point x 2ƒ and let the base points of
the components of ƒK all lie in the intersection J 1

x .ƒ/\ƒK of ƒK and the fiber of
J 1.ƒ/ at x . Take the connecting paths as straight lines in T �…ƒ.x/ƒ and use parallel
translation in the flat metric followed by a rotation along the complex angle or the
complementary complex angle, whichever is less than �

2
, as transport. Note that as K

gets closer to U the angle of this rotation approaches 0.

Lemma 3.7 Up to smooth isotopy, we can choose the link K �R3 so that ƒK has
exactly 2n.n� 1/ short Reeb chords,

faij g1�i;j�n; i¤j ; jaij j D 0;

fbij g1�i;j�n; i¤j ; jbij j D 1;

and exactly 2n2 long Reeb chords,

fcij g1�i;j�n; jcij j D 1;

feij g1�i;j�n; jeij j D 2:

Here cij (respectively eij ) lie in small neighborhoods of the Reeb chords c (respectively
e ) of ƒ for all i; j . Furthermore all Reeb chords can be taken to correspond to
transverse intersection points in T �S2 .

Remark 3.8 We will use the following notation for the Reeb chords of ƒK . We say
that the short Reeb chords are of type S and the long of type L. We sometimes specify
further and say that a short (long) Reeb chord of grading j is of type Sj (Lj ).

In a neighborhood of the short chords, the Legendrian consists of the conormal lifts
of n distinct arcs. The notation for short Reeb chords in Lemma 3.7 is chosen so that
aij begins on the conormal lift of the i th strand and ends on that of the j th strand and
similarly for bij .

Proof of Lemma 3.7 The statement in the lemma for long chords is immediate from
the fact that ƒK is the 1–jet graph of a multi-section with n sheets over ƒ which
has two Reeb chords: e with jej D 2 and c with jcj D 1. To prove the statement on
short chords we note that we may choose the multi-section fB so that for any i ¤ j ,
jfi � fj j has a maximum at 2� � ı 2 Œ0; 2��, a minimum at 2� � 2ı , and no other
critical points. Parameterizing S1

� by � D .cos t; sin t/, t 2 Œ0; 2��, we find that the
difference between two local functions of ƒK is

Fij .s; t/D .fi.s/�fj .s// � .cos t; sin t/:
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Now dFij D 0 if and only if

.f 0i .s/�f
0

j .s// � .cos t; sin t/D 0 and(3-8)

.fi.s/�fj .s// � .� sin t; cos t/D 0;(3-9)

which in turn happen if and only if s is critical for jfi.s/� fj .s/j and t takes one
of the two values, say t0 and t0C � , for which (3-9) holds. We take aij to be the
chord corresponding to the minimal distance between strands and bij to the maximal
distance.

In order to compute the gradings of aij and bij we note that the front of ƒK in J 0.ƒ/D

ƒ�R has no singularities and that the chords aij (respectively bij ) correspond to
saddle points (respectively maxima) of positive function differences of local defining
functions. The grading statement then follows from (2-2).

3.4 Counting flow trees of ƒK in J 1.ƒ/

In this subsection we determine all the flow trees for ƒK � J 1.ƒ/. Our enumeration
relies on a particular and fairly technical choice of position for ƒK over the regions
where the braid twists, whose details we defer to Section 3.5. For our current compu-
tational purposes, we only need a few qualitative features of these twist regions, as
described in Sections 3.4.1 through 3.4.3 below, which will serve to motivate the more
technical parts of our discussion of twist regions in Section 3.5.

Given these qualitative features, we perform the actual combinatorial computation of
flow trees in Sections 3.4.5 through 3.4.8 (after first presenting a scheme for calculating
signs for flow trees in Section 3.4.4), culminating in Lemma 3.21, which presents a
purely algebraic formula for the Legendrian DGA of ƒK � J 1.ƒ/. This comprises
an important subalgebra of the Legendrian DGA of ƒK � J 1.S2/, the rest of which
is computed in Section 4.

3.4.1 Basic setup Recall that K is the closure of a braid in S1�D2 given by a col-
lection ff1; : : : ; fng of functions fj W Œ0; 2��!D2 , j D 1; : : : ; n. We use Lemma 3.6
to represent ƒK � J 1.ƒ/ as the 1–jet graph of the functions Fj W Œ0; 2��

2!R given
by

Fj .s; t/D fj .s/ � .cos t; sin t/:

Here .s; t/2 Œ0; 2��2 are coordinates on ƒ, with s corresponding to the parameter along
the unknot (represented by the unit circle in the x1x2 –plane) and t to the parameter
along a unit circle in the normal fiber of the unknot with 0 corresponding to the
positive outward normal of the unit circle in the x1x2 –plane. Furthermore, recall from
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Lemma 3.7 that Reeb chords of ƒK � J 1.ƒ/ correspond to points .s; t/ 2ƒ where s

is a critical point of jfi.s/� fj .s/j and where t is such that the vector .cos t; sin t/ is
parallel to the vector fi.s/�fj .s/.

Let Œs0; s1�� Œ0; 2��. We refer to the part of ƒK lying over an interval Œs0; s1�,

ƒK \J 1.Œs0; s1��S1/� J 1.ƒ/;

as the Œs0; s1�–slice of ƒK . We will represent the braid as follows: the actual twists
will take place in an Œsbr

0
; sbr

1
�–slice, where Œsbr

0
; sbr

1
�� .0; �

2
/. Inside the Œsbr

0
; sbr

1
�–slice

the braid is given by sub-slices where it twists so that two strands are interchanged,
separated by slices where the braid is trivial. Outside the Œsbr

0
; sbr

1
�–slice the braid is

trivial.

We will choose perturbations so that the following holds: Reeb chord endpoints of the
Reeb chords e and c of ƒ have the following coordinates:

eC D .0; 0/; e� D .�; �/; cC D .�; 0/ and c� D .0; �/I

see Lemma 3.1. Consequently, all Reeb chords eij and cij , 1 � i; j � n, of type L
are located near these points. The Reeb chords aij and bij of type S are located near
s D s and s D s , where �

2
< s < s < 2� ; see the proof of Lemma 3.7.

3.4.2 Reeb chords and trivial slices Consider an interval Œs0; s1� where the braid is
trivial. We will describe a model for the Œs0; s1�–slice of the conormal lift of a trivial
braid which we will use in two ways: to control Reeb chords and to define a normal
form of a slice of the trivial braid in which there are no Reeb chords. We first describe
a somewhat degenerate Œs0; s1�–slice of ƒK : we represent the trivial braid by

fj .s/D .0; j  .s//; j D 1; : : : ; n;

where  .s/ is a positive function that has a non-degenerate local minimum at s and a
non-degenerate local maximum at s . Here s0 < s < s < s1 and  has no other critical
points.

We call the 1–jet graph of the function

Fj .s; t/D fj .s/ � .cos t; sin t/

the j th sheet of ƒK and denote it by Sj , j D 1; : : : ; n. Writing

Fij .s; t/D Fi.s; t/�Fj .s; t/D .fi.s/�fj .s// � .cos t; sin t/

D .i � j / .s/ sin t;
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Reeb chords correspond to critical points of Fij and are all located in the fibers over
the following points in ƒ:�

s; �
2

�
;
�
s; 3�

2

�
;
�
s; �

2

�
; and

�
s; 3�

2

�
:

The Reeb chords lying in the fibers over the first (respectively second) two points
correspond to saddle points (respectively extrema) of the functions Fij . We denote
them by aij (respectively bij ). Here the labeling is such that aij and bij begin on Sj

and end on Si . Thus, if i > j then the t –coordinate of aij and bij equals �
2

whereas
if i < j it equals 3�

2
.

The flow trees that we study all have their negative punctures at aij and thus we must
understand the unstable manifold W u.aij / of aij as a critical point of Fij . (Recall that
we are using the positive gradient flow when discussing stable and unstable manifolds.)
It is straightforward to check that

W u.aij /D

�
f.s; t/ W t D �

2
g if i > j ,

f.s; t/ W t D 3�
2
g if i < j .

Note that the Œs0; s1�–slice of ƒK as defined above is degenerate: Reeb chords are not
disjoint, the unstable manifolds W u.aij / are not mutually transverse, and their stable
counterparts are not mutually transverse either. The following lemma describes the
Œs0; s1�–slice of ƒK after a small perturbation which makes it generic. In particular,
the perturbation is so small that there is a natural one-to-one correspondence between
Reeb chords before and after perturbation and we will keep the notation aij and bij

from above. There are of course many perturbations which make ƒK generic. The
particular choice studied here is designed to make counting flow trees as simple as
possible.

Lemma 3.9 For �0 > 0 arbitrarily small, there exist a Legendrian isotopy of ƒK and
a collection of functions �ij ; �

0
ij ; �
00
ij W Œs0; s1�! .0; �0/ for each n� i > j � 1, so that

the following conditions hold:

� �ij are lexicographically ordered in .i; j /: for any s; s0 , �ij .s/ > �i0j 0.s
0/ if

i > i 0 , or if i D i 0 and j > j 0 .

� Similarly, �0ij and �00ij are lexicographically ordered in .i; j /.

� The unstable manifolds W u.aij / are curves of the following form:
– if i > j then W u.aij /D f.s; t/ W t D

�
2
� �0C �ij .s/g and

– if i < j then W u.aij /D f.s; t/ W t D
3�
2
C �0ji.s/g.

� The Reeb chords corresponding to critical points in these unstable manifolds
satisfy the following:
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– if i > j then the s–coordinate of aij (respectively bij ) equals sC �00ij .s/

(respectively sC �00ij .s/),
– if i < j then the s–coordinate of aij (respectively bij ) equals sC �00ji.s/

(respectively sC �00ji.s/).

Remark 3.10 The functions �ij ; �
0
ij ; �
00
ij are chosen so that the unstable manifolds

W u.aij /, i > j , appear in the lexicographical order on f.i; j /g1�j<i�n if read in the
increasing t –direction, so that the W u.aij /, i < j , appear in the lexicographical order
of f.j ; i/g1�i<j�n if read in the positive t –direction, and so that no W u.aij / lies in
the region �

2
� t � 3�

2
; see Figure 10.

aij bij

aij bij

i < j

i > j

t D 3�
2

t D �
2

t

s

lex. order
.j ; i/

lex. order
.i; j /

Figure 10: Ordered unstable manifolds after perturbation

Proof of Lemma 3.9 Throughout the proof we use the notational conventions above
for Reeb chords. We will consider two different perturbations of the braid representative
for the trivial braid given at the beginning of this subsection and then combine them to
give the desired perturbation.

We first choose the scaling function  .s/ from the beginning of this subsection to
additionally satisfy  .s/D M

2
.s � s/2C c in a 2�0 neighborhood of s and  .s/D

�
M
2
.s � s/2C c0 in a 2�0 neighborhood of s , where c and c0 are constants, M is

some large constant and �0 is some small positive constant.

Now choose constants ı1; : : : ; ın so that

0� ı1 < ı2 < 2ı2 < ı3 < 3ı3 < � � �< ın < nın < �0:
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For i > j , define �00ij D .iıi � j ıj /=.i � j /. The above inequalities imply that the �00ij
are positive, less than �0 and lexicographically ordered in .i; j /: indeed, we have

�00ij 2
�

i

i�jC1
ıi ;

i

i�j
ıi

�
� .ıi ; iıi/:

Set  i.s/D  .s� ıi/. Defining the trivial braid by the multi-function determined by
fj .s/D .0; j j .s//, we see that the Reeb chord aij has s–coordinate determined by
the solution near s to

iM.s� ıi � s/D i 0i.s/D j 0j .s/D jM.s� ıj � s/;

which is precisely s D sC �00ij , and similarly for bij and s . Thus the Reeb chords aij

are at ��
s; �

2

�
C .�00ij ; 0/ if i > j ,�

s; 3�
2

�
C .�00ji ; 0/ if i < j ,

and the Reeb chords bij are at��
s; �

2

�
C .�00ij ; 0/ if i > j ,�

s; 3�
2

�
C .�00ji ; 0/ if i < j .

Now consider a different representation of the trivial braid. In particular, returning to
the original representation of the trivial braid given at the beginning of this subsection,
we can replace the curve fx D 0g where the functions fi.s/ take values, with a curve
family fx D ht .y/g where ht W R!R is a smoothly varying family of functions such
that:

� ht is constant in t near t D �
2

and t D 3�
2

,

� h�=2.j /D j .ın� ıj / for j D 1; : : : ; n,

� h3�=2.j /D�j ıj for j D 1; : : : ; n,

where the ıj are as before. (We can assume that the t dependence of ht is supported
in an arbitrarily small neighborhood of � and 0. While this is not necessary here, it
will be important when describing the lift of a non-trivial braid in Section 3.5.) Then
let

Fj .s; t/D  .s/.ht .j /; j / � .cos t; sin t/

be the function of the j th sheet. The critical points for Fij D Fi �Fj are at s D s or
s D s , with t given by

cot.t/D
ht .i/� ht .j /

i � j C .@h=@t/.i/� .@h=@t/.j /
:
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Since ht is small (and can be made arbitrarily small by the appropriate choice of ıi ),
this equation can only hold for t near �=2 or 3�=2, whence

cot.t/D
h�=2.i/� h�=2.j /

i � j
or cot.t/D

h3�=2.i/� h3�=2.j /

i � j
;

respectively.

In the former case, the expression for h�=2 implies that the Reeb chords aij ; bij for
i > j have t –coordinate near �=2 and are given by the solution to cot.t/D ın� �00ij >
0. If t D tij is the solution to this equation, then tij < �=2 and tij is ordered in
lexicographic order on .i; j /, and so we can write tij D�=2��0C�ij with �ij ordered
lexicographically in .i; j /. Similarly, the expression for h3�=2 implies that the Reeb
chords aij ; bij for i < j have t –coordinate near 3�=2 and are given by the solution
to cot.t/D��00ji < 0, which yields t D 3�=2C �0ji with �0ji ordered lexicographically
on .i; j /. Furthermore, the unstable manifolds W u.aij / and W u.aji/ are horizontal
(constant in t ) since the @t component of rFij is zero at t D tij .

Combining the perturbations, we find that the location and ordering of the critical
points and unstable manifolds of

Fj .s; t/D  j .s/.ht .j /; j / � .cos t; sin t/

is as desired.

Remark 3.11 Recall that our notation for (un)stable manifolds refers to the positive
gradient flow of positive function differences and note that the unstable manifolds
W u.aij / can be characterized as the only flow line determined by sheets Si and Sj

along which the local function difference stays positive for all time under the negative
gradient flow: along any other (non-constant) flow lines of the negative gradient, the
local function difference eventually becomes negative.

Remark 3.12 Consider next an Œs0; s00�–slice where the braid is trivial, eg, the slices
mentioned above that separate the slices where twists of the braid occur. In each such
slice we will take the braid to look much like in the Œs0; s0 C ı�–slice of the braid
in Lemma 3.9, where ı > 0 is small enough so that the s–coordinate of any Reeb
chord aij is larger than s0C ı . More precisely, we require that the functions fj .s/,
j D 1; : : : ; n take values in a family of graphical curves fx D ht .y/g (with y D j for
fj ), where ht is a small function which is independent of t near �

2
and 3�

2
. In order

to make sure that the Œs0; s00�–slice does not have any Reeb chords we let the points
fj .s/ move away from each other along the curves fx D ht .y/g as we go through
Œs0; s00� from right to left, so that jfi.s/� fj .s/j decreases with s for all i; j . We call
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a braid with these properties a standard trivial braid and we number the functions
f1; : : : ; fn according to the order in which they appear along the curve fx D ht .y/g

with orientation induced from the positively oriented y –axis.

3.4.3 A model for ƒK , endpoint paths, and homology indicators Here we de-
scribe the qualitative features of the gradient flows associated to ƒK in J 1.ƒ/ that
will be necessary for our computation of the rigid flow trees. Some of these features
have been discussed in Sections 3.4.1 through 3.4.3. For the actual construction of
gradient flows with these properties, see Section 3.5.

For the braid B D �
�1

k1
� � � �

�m

km
, �l D˙1, we can build a braiding slice Œsbr

0
; sbr

1
� where

B lives, by starting with a twist slice corresponding to ��m

im
and then attaching slices

corresponding to the other twists ��l

il
consecutively, working backwards in l . We then

extend B to the complement of the braiding slice by closing it with a trivial braid as in
Lemma 3.9. This is the model of ƒK that we will use below. More precisely, we will
construct the braid model to have the following properties:

� A slice Œs0; 2�� of a trivial braid contains all of the Reeb chords of ƒB � J 1.ƒ/,
as in Lemma 3.9. The Reeb chords aij (respectively bij ) of ƒK lie near
sD2��4ı (respectively sD2��2ı ), which is in the slice that is complementary
to the braiding region. The manifolds W u.aij / in this slice lie just below t D �

2

and are ordered in the t –direction according to the lexicographical order on
f.i; j /g1�j<i�n . The manifolds W u.aji/ lie just above t D 3�

2
and are ordered

in the t –direction according to the lexicographically order on f.i; j /g1�j<i�n .
� All twists of the braid occur in the braiding region 2ı < s < 4ı , where ƒK

looks like twist slices separated by standard trivial braid slices; see Section 3.5.
� There are points s1 D 2ı < s2 < � � � < s2m D 4ı so that the Œs2l�1; s2l �–slice

contains the twist region for ��l

il
. For a slice corresponding to the braid cross-

ing ��l

il
D �˙1

k
, the unstable manifolds for ak kC1 and akC1 k are shown in

Figure 11. The unstable manifolds for the other aij are as for the trivial braid.
� For each i ¤ j and l 2 f1; : : : ;mg, there is an interval neighborhood J 2l

ij �

fs D s2lg of W u.aij /\ fs D s2lg such that the intervals J 2l
ij are disjoint for

fixed l , and if we consider the set of all negative gradient flow lines of Fij in
the Œs2l�1; s2l � slice that start on J 2l

ij for all i; j , then any pair of distinct flow
lines from this set intersect transversely. See Figure 12.

� On each fs D s2l�1g there are two intervals J 2l�1
�=2

and J 2l�1
3�=2

such that

J 2l�1
�=2 �

[
i>j

.W u.aij /\fs D s2l�1g/ and

J 2l�1
3�=2 �

[
i<j

.W u.aij /\fs D s2l�1g/:
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�k ��1
kt D 2�

t D 3�
2

t D �
2

t D 0

W u.akC1;k/

W u.ak;kC1/

W u.akC1;k/

W u.ak;lC1/

s s

Figure 11: Flow lines in positive and negative twist slices
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(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

J 2l�2
ij

J 2l�2
ij

s2l�2 s2l�1 s2l�1 s2l

J 2l
ij

J 2l
ij

J 2l�1
3�=2

J 2l�1
�=2

Figure 12: The intervals J 2l
ij , J 2l�1

�=2
, and J 2l�1

3�=2
, and some representative

gradient flow lines

Moreover, any negative gradient flow line of Fij (i > j ) that intersects J 2l�1
�=2

also intersects J 2l�2
ij , and similarly for J 2l�1

3�=2
for i < j .

Assume that ƒK has r components ƒDƒK I1[ � � � [ƒK Ir . We will keep track of
homology classes of cycles in H1.ƒK / by counting intersections with certain fixed
cycles. On each component ƒK Ij , fix the curve �0j that is the preimage under the base
projection map � W ƒK Ij !ƒ of the curve t D 1

2
� � �1 for �1 positive and extremely

small (for now, the line t D �
2

will suffice; in Section 4, we will need �0j to lie below
t D �

2
but above the unstable manifolds of the aij for all i > j ). Also, fix the curve

�0j which is the preimage of the curve s D 2� � 3ı (a vertical curve between the aij
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and the bij ) in the leading sheet of ƒK Ij , where we recall from the introduction that
“leading” refers to the first of the n sheets of ƒK that belongs to component ƒK Ij .
Intersections of a cycle in H1.ƒK / with �0j and �0j then count the multiplicity of the
j th meridian and longitude class in the cycle. See Figure 13.

2�

3�
2

�

�
2

0
0 2�

aij

aij

bij

bij

 braiding region

�0

�0

s

t

Figure 13: Schematic picture of ƒK , as projected to the torus ƒ� T 2

We choose a base point in each component over .s; t/D
�
�
2
; 9�

8

�
and endpoint paths for

each Reeb chord endpoint which are disjoint from �0j and �0j . (Since the complement
of �0j [�

0
j in ƒK Ij is a disk such paths exist.)

3.4.4 Orientation choices and sign rules for ƒK �J 1.ƒ/ Before we proceed with
the computation of flow trees for ƒK � J 1.ƒ/, we discuss the general method we
use to assign signs to flow trees. These signs come from a fairly elaborate orientation
scheme which depend on certain initial choices, some of which are of global nature
which we call basic orientation choices, and others which are local, more specifically,
the choice of orientations of determinant lines of a capping operator associated to
each Reeb chord. Here we will simply state a combinatorial rule that comes from one
particular set of choices. The derivation of the combinatorial rule and the effect of
orientation choices is discussed in detail in Section 6. (For later computations, we will
also need signs for multiscale flow trees; this is discussed in Section 4.3.)

We will discuss signs of rigid flow trees with one positive puncture or partial flow trees
of dimension 1 with a special positive puncture of ƒK � J 1.ƒ/. Cutting a rigid flow
tree close to its positive puncture we obtain a partial flow tree of dimension 1 with
special positive puncture so it suffices to consider this case.

We first discuss how orientation choices for the “capping operators” corresponding to
the Reeb chords aij and bij of ƒK � J 1.ƒ/ are encoded geometrically:
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� Consider a Reeb chord aij , which is of type S0 (with notation from Remark 3.8).
Let W u.aij / denote the unstable manifold of the positive local function dif-
ference defining aij . Fix a vector vker.aij / perpendicular to W u.aij /; see
Figure 14. (This choice corresponds to the choice of an orientation of the
capping operator of aij .)

� Consider a Reeb chord bij , which is of type S1 and note that bij 2W u.aij /. Fix
vectors vker.bij / parallel to W u.aij / and vcoker.bij / perpendicular to W u.aij /;
see Figure 14. (This choice corresponds to the choice of an orientation of the
capping operator of bij .)

� If t is a trivalent vertex of a partial flow tree � then we let vcon.t/ be a vector
tangent to the incoming edge at t and pointing into this edge; see Figure 15.
(This is a reflection of a chosen orientation on the space of conformal structures
on the disk with boundary punctures.)

W u.aij /

aij bij

vker.aij / vcoker.bij /

vker.bij /

Figure 14: Orientation data at bij and aij . (The unstable manifold W u.aij /

is in grey.)

t

vcon.t/

Figure 15: Orientation data at a trivalent Y0 –vertex. (Gradient flow tree is in grey.)

We next define two functions that are central to our definition of signs of rigid multiscale
flow trees. Let h � ; � i denote a Riemannian metric on S (which we will take to be the
flat metric on the torus) and let

signW R�f0g !R

be the function that maps negative numbers to �1 and positive numbers to 1. First
consider a flow tree � of ƒ� J 1.S/. Let bij be its positive puncture, vflow.�/ denote
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the vector field of the flow orientation of � and define

�pos.�/D sign
�
hvflow.�/; vker.bij /i

�
:

Next consider a partial flow tree � of ƒ� J 1.S/ with positive special puncture p ,
trivalent vertices t1; : : : ; tk�1 , and negative punctures q1; : : : ; qk and let n be a normal
vector of � at p . Denote the result of vector splitting of n along � by�

.w1.t1/; w2.t1//; : : : ; .w1.tk�1/; w2.tk�1//Iw.q1/; : : : ; w.qk/
�

and define

�n;�.t/D sign
�
hw2.t/�w1.t/; v

con.t/i
�
; t 2 ft1; : : : ; tk�1g;(3-10)

�n;�.q/D sign
�
hw.qj /; v

ker.qj /i
�
; q 2 fq1; : : : ; qkg:(3-11)

Finally we define

�.n; �/D

kY
jD1

�n;�.qj /

k�1Y
jD1

�n;�.tj /:

We can now assign orientations to trees according to the following theorem.

Theorem 3.13 There exists a choice of basic orientations and of orientations of
capping operators for all Reeb chords of type L such that for a rigid flow tree � of ƒ
in J 1.S/ with positive puncture at bij of type S1 , the sign of � is

�pos.�/ �.v
coker.bij /; �/:

Proof Theorem 3.13 is a special case of Theorem 4.6, which is proved in Section 6.6.

3.4.5 Partial flow trees in twist slices We now begin our enumeration of flow trees
for ƒK � J 1.ƒ/. Consider a braid whose closure is K , and assume that the braid is in
the form given in Section 3.4.3. Then flow trees for ƒK decompose nicely into pieces in
each twist region Œs2l�2; s2l �, which we call partial flow trees. Using the notation from
Section 3.4.3, we focus on one of these twist regions, an interval Œs2l�2; s2l �� Œ0; 2��

(for fixed l 2 f1; : : : ;mg) containing the l th twist �˙1
k

from the braid. We first define
a special type of partial flow tree in such a slice, which we call a slice tree.

Let n� i > j � 1. Fix symbols xaij and xaji for negative punctures and xbij and xbji for
positive punctures; at the moment, these are just symbols and do not correspond to actual
punctures or special punctures. Now for each i > j choose one point xa0ij 2 fs2lg�J 2l

ij

and think of it as a special puncture connecting the sheet Sj to Si , where the sheets are
numbered by the order of the braid strands at sD s2l . Similarly choose xa0ji 2fs2lg�J 2l

ji
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and think of it as a special puncture connecting the sheet Si to Sj . Once this choice
is made we will frequently conflate the variables xaij and xa0ij . We will only use the
primes when we need to refer to specific special punctures.

Given these choices any flow tree lying entirely in the Œs2l�2; s2l �–slice that has a
positive special puncture connecting sheets Sj to Si at any point in J 2l�2

ij and negative
punctures at the xa0pq will be called a slice tree with positive special puncture at xbij

(think of xbij as the intersection of the flow tree with J 2l�2
ij ). We let T ˙.xbij / denote

the set of slice trees in the Œs0; s1�–slice with positive special puncture at xbij .

Remark 3.14 Note that the formal dimension of slice trees T ˙.xbij / is 0 (recall we
have fixed the locations of all the xapq ). Note also that the set T ˙.xbij / is independent
of the specific choice of the xa0pq , ie, a different choice of the xa0pq induces a one-to-one
correspondence of T ˙.xbij /. This follows from the choice of the intervals J 2l

ij , J 2l�1
�=2

,
J 2l�1

3�=2
in Section 3.4.3.

In order to keep track of orientation signs of flow trees, we will decorate the special
punctures with arrows which should be thought of as normal vectors to flow lines
through the special punctures. We write xa"

kl
and xb "

kl
for the relevant special puncture

decorated with a vector � normal to the slice tree at that point with h�; @t i>0; similarly,
we write xa#

kl
and xb #

kl
for the same special puncture decorated with a normal vector �0

such that h�0; @t i< 0.

Furthermore, as the twist is part of a larger braid, each strand belongs to a link component
and we need to keep track of the corresponding homology coefficients. We write �A

(respectively �B ) for the homology variable of the meridian of the component of ƒK

associated to sheet A (respectively B ), which is the sheet numbered by k (respectively
kC 1) at s D s2l and by kC 1 (respectively k ) at s D s2l�2 .

Let xB denote the set of decorated special chords at s D s2l�2 :

xB D
˚
xb
"

ij ;
xb
#

ij

	
1�i;j�n; i¤j

;

and let xA denote the Z–algebra generated by �˙1
A

, �˙1
B

, and decorated special chords
at s D s2l :

xAD Z
˝
�˙1

A ; �˙1
B ; xa

"

ij ; xa
#

ij

˛
1�i;j�n; i¤j

:

Given a tree � 2 T ˙.xbij / and a normal � for xbij , the 1–jet lift of � determines a
word in xA, in a manner that we now describe. Orient the 1–jet lift of � by the flow
orientation (see Section 2.4). This orientation induces an ordering ai1j1

; : : : ; aiqjq
of

the negative punctures of � so that the 1–jet lift of � consists of a union of oriented
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paths 0; : : : ; q �ƒK , with the beginning point of 0 and the end point of q equal
to the ends of xbij (the points in ƒK lying over xbij on sheets i and j ), and with
the beginning point of r and the end point of r�1 equal to the ends of xair jr

for
r D 1; : : : ; q .

For 0 � r � q , define nr
A
; nr

B
2 Z to be the intersection numbers of r with the

preimage of t D �
2

in sheets A;B , respectively. (In the notation of Section 3.4.3,
these numbers count intersections with �0A and �0B .) Also, use vector splitting (see
Section 4.3) from the normal vector � at xbij to obtain normal vectors �r at each xair jr

.
Finally, define the word

q.�; �/ WD
�
�

n0
A

A
�

n0
B

B

�
xa
�1

i1j1

�
�

n1
A

A
�

n1
B

B

�
xa
�2

i2j2
� � � xa

�q

iqjq

�
�

n
q

A

A
�

n
q

B

B

�
:

We can now define maps �
�˙1

k

W xB! xA as follows, with � 2 f";#g:

�
�˙1

k

.xb �ij /D
X

�2T ˙.xbij /

�.�/q.�; �/;

where �.�/D
Q

t �n;�.t/2f1;�1g with the product running over all trivalent punctures
of � ; see (3-10).

If b 2 xB then define b| as the same chord but with the decorating normal reversed.
Similarly, for a monomial q 2 xA define q| as the same monomial of chords but with
all decorating normals reversed. Write

�
�˙1

k

.b/D �odd
�˙1

k

.b/C �even
�˙1

k

.b/;

where the two terms on the right hand side are summands containing all monomials
with an odd and even number of variables, respectively.

Lemma 3.15 For any b 2 xB , the map �
�˙1

k

satisfies

�
�˙1

k

�
b|
�
D

�
�odd
�˙1

k

.b/
�|
�

�
�even
�˙1

k

.b/
�|
:

Proof Let n be a normal at the positive puncture. Then the vector splittings of �n

and n along � differs by an over all sign. Since the number of trivalent vertices in �
is one less than the number of negative punctures of � , the lemma follows.

We next turn to the actual calculation of the maps ��k
and ���1

k
. By Lemma 3.15, it

is sufficient to compute for xb "ij , 1� i; j � n, i ¤ j .
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Lemma 3.16 Let �
�˙1

k

W xB! xA denote the maps associated to a twist representing
the braid group generator �˙1

k
in an Œs0; s1�–slice, as described above. Then

��k
.xb
"

ij /D xa
"

ij i; j 6D k; kC 1

��k
.xb
"

k kC1
/D xa

"

kC1 k

��k
.xb
"

kC1 k
/D �Axa

"

k kC1
��1

B

��k
.xb
"

i kC1
/D xa

"

ik
i 6D k; kC 1

��k
.xb
"

kC1 i
/D xa

"

ki
i 6D k; kC 1

��k
.xb
"

ik
/D xa

"

i kC1
Cxa
"

ik
xa
"

k kC1
i < k

��k
.xb
"

ik
/D xa

"

i kC1
Cxa
"

ik
�Axa

"

k kC1
��1

B i > kC 1

��k
.xb
"

ki
/D xa

"

kC1 i
�xa
"

kC1 k
xa
"

ki
i ¤ k; kC 1

and
���1

k
.xb
"

ij /D xa
"

ij i; j 6D k; kC 1

���1
k
.xb
"

k kC1
/D ��1

B xa
"

kC1 k
�A

���1
k
.xb
"

kC1 k
/D xa

"

k kC1

���1
k
.xb
"

ik
/D xa

"

i kC1
i 6D k; kC 1

���1
k
.xb
"

ki
/D xa

"

kC1 i
i 6D k; kC 1

���1
k
.xb
"

i kC1
/D xa

"

ik
�xa
"

i kC1
��1

B xa
"

kC1 k
�A i < k

���1
k
.xb
"

i kC1
/D xa

"

ik
�xa
"

i kC1
xa
"

kC1 k
i > kC 1

���1
k
.xb
"

kC1 i
/D xa

"

ki
Cxa
"

k kC1
xa
"

kC1 i
i 6D k; kC 1:

Proof We label the sheets of ƒK in the slice under consideration by

S1; : : : ;Sk�1;A;B;SkC2; : : : ;Sn:

Here the sheet Sj corresponds to the j th strand of the standard trivial braid, and sheets
A and B are defined as before.

Consider first the linear terms in the expressions for ��k
and ���1

k
. The trees that give

these contributions are simply the (negative) gradient flow lines of positive function
differences that end at xaij . They obviously exist, are unique, and transport normal
vectors as claimed. This proves that the linear terms of the equations are correct except
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for homology coefficients. To see these, note that only the flow lines between sheets A

and B intersect t D �
2

. Further, a flow line between sheets A and B intersects this
curve only if the twist is positive and it ends at xak kC1 or if the twist is negative and it
ends at xakC1 k . Finally, noting that the component in the upper sheet of the 1–jet lift
is oriented according to the flow orientation and that the component in the lower sheet
is oriented opposite to the flow orientation, it follows that the coefficients are as stated.

We next study higher order terms arising from trees with trivalent vertices. Such a
vertex arises as follows: a flow line determined by sheets X and Y splits into two flow
lines determined by sheets X and Z , and by Z and Y . Furthermore, since we consider
only trees with one positive puncture it is required that all flow lines correspond to
positive function differences. In other words, the z–coordinate of the sheet Z must lie
between the z–coordinates of the sheets X and Y at the splitting point.

Given a slice tree � suppose that xaij is a negative special puncture of � with i; j ¤

k; kC 1. Then the negative gradient flow ij of Fij ending at xa0ij in Œs2l�1; s2l � is
disjoint from all the flow lines starting at all the other xa0i0j 0 , except the flow line of
Fk kC1 ending at xa0

k kC1
or of FkC1 k ending at xa0

kC1 k
. However we cannot have a

Y0 vertex here since i; j ¤ k; kC 1. Also, ij is disjoint from the other flow lines in
the interval Œs2l�2; s2l�1�. Thus if xa0ij is a negative special puncture of � then � has
just one edge.

If xa0
i kC1

is a negative puncture of � and i < k then the negative gradient flow line of
Fi kC1 starting at xa0

i kC1
intersects only the flow line of Fk kC1 , but since they have

the same upper sheets these flow lines cannot merge at a Y0 vertex. Thus again � just
has one edge. Similarly � will only have one edge if i > kC 1. The same argument
shows that a slice tree with negative puncture at xa0

kC1 i
must have only one edge.

It remains to consider slice trees with negative punctures among xa0
k kC1

, xa0
kC1 k

, and
xa0

ik
, xa0

ki
for i ¤ k; kC 1. Besides the flow lines ending at xa0

k kC1
or xa0

kC1 k
, all such

slice trees must have some xa0
ik

or xa0
ki

, i ¤ k; kC 1, as a negative puncture.

If xa0
ik

is a negative puncture of � then the negative gradient flow line ik of Fik

ending at xa0
ik

intersects the flow line k kC1 of Fk kC1 ending at xa0
k kC1

. Thus we
can have a Y0 splitting of the flow line from Fi kC1 into these flow lines; see Figure 16
for an illustration when i > kC 1. Thus there is a point c in J 2l�1

�=2
or J 2l�1

3�=2
and a

flow line  of Fi kC1 starting at c so that  [ k kC1[ ik forms a flow tree. Notice
assuming the twist interval is small enough it is clear that  does not intersect any
unstable manifolds of the aij in Œs2l�1; s2l �. We can extend  through the interval
Œs2l�2; s2l�1� and see that there is a unique point xb0

i k
in J 2l�2

i k
that  runs through.

(Recall our labeling conventions from the beginning of the subsection: the sheets on
the left side of the interval Œs2l�2; s2l � are labeled just as on the right, but with the role
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a′k k+1

s2l−2 s2l−1 s2l

J2l−2
ik

b
′
ik

J2l−1
3π/2

γk k+1

γik
a′ikcγ γ

(γk k+1)

Figure 16: A flow tree with one Y0 vertex and negative punctures at xa0
ik

and
xa0

k kC1
. The case i < k is shown here.

of k and kC1 switched.) Moreover notice that by the lexicographical ordering on the
unstable manifolds,  will not intersect any of the unstable manifolds of the xa0i0j 0 over
the interval Œs2l�2; s2l�1�.

Thus we see that if xa0
ik

is a negative puncture of � then � either has one edge (this is
the trivial flow line mentioned above) or exactly one Y0 vertex. A similar argument
says the same for � having a negative puncture at xa0

ki
. See Figure 17 for an illustration

of all slice trees with a Y0 vertex and a negative puncture at xa0
ik

or xa0
ki

for some
i ¤ k; kC 1.

We conclude that all slice trees in Œs2l�2; s2l � either have one edge or, if the positive
puncture is xbik or xbki , are of the type described above (and shown in Figure 17) with
three edges and one Y0 vertex. This shows that the quadratic terms of the equations
are correct except for homology coefficients and vector splittings. To see the homology
coefficients simply notice that the only flow trees that intersect t D �

2
are the ones

containing a flow line of Fk kC1 and having i > kC 1. Since such a flow tree crosses
�0

A
positively between xa0

ik
and xa0

k kC1
, and crosses �0

B
negatively after xa0

k kC1
, it

contributes the word xa0
ik
�Axa

0
k kC1

��1
B

to ��k
.xbik/.

As for vector splittings for the Y0 trees, note that the upward normal at xb0
ik

or xb0
ki

is
split into upward normals at each of the negative punctures (xa0

ik
and xa0

k kC1
, or xa0

ki

and a0
kC1 k

). For a Y0 tree � , an easy application of the definitions from Section 3.4.4
shows that �.�/ is C1 for the top two trees in Figure 17 and �1 for the bottom two
trees. (The difference between these pairs is the relative placement at the trivalent
vertex of the flows labeled 1 and 2 from Figure 4.) Thus the arrow decorations and
signs are as given in the statement of the lemma.
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s2l−2 s2l−1 s2l

i < k:

µ′
γk k+1

γik ā′k k+1

ā′ikb̄′ik
3π/2

π/2

ā′k k+1 ā′k k+1

i > k + 1: µ′

ā′ikā′ik

γk k+1

γik
b̄′ik

i > k + 1:

ā′ki

ā′k+1 kā′k+1 k

γk+1k

γki

µ′

b̄′ki

i < k:

ā′ki

ā′k+1 kā′k+1 k

ā′ki b̄′ki

µ′
γk+1k

γk i

ā′k k+1

ā′ki

ā′ik

Figure 17: The four slice trees that consist of more than one edge (right),
resulting from the four configurations of intersecting flow lines (left). The
cycle �0 is also shown on the right, and intersects only the second slice tree.
Up to sign, we can read off the words associated to these four slice trees, from
top to bottom: xa0

ik
xa0

k kC1
, xa0

ik
�Axa

0
k kC1

��1
B

, xa0
kC1 k

xa0
ki

, xa0
kC1 k

xa0
ki

.

The case for ��1
k

can be handled similarly.

3.4.6 Decomposing flow trees Our expression for the differential derives from the
following geometric decomposition of flow trees. Consider a braid B D �

�1

k1
� � � �

�m

km
,

�l D˙1, on n strands. Let K denote the closure of B and consider ƒK . We represent
ƒK as described above as a sequence of twists slices separated by trivial braid slices in
the braiding region, one small slice containing all Reeb chords, and the remaining trivial
braid slice, which is the complement of these two slices. Consider an Œs0; s00�–slice as
just described in which there are no Reeb chords.
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Lemma 3.17 Any rigid flow tree or 1–dimensional partial flow tree of ƒK with one
positive puncture intersects the Œs0; s00�–slice in a union of slice trees (for appropriately
chosen xa0ij ).

Proof Suppose � is a flow tree for ƒK . We see that � will intersect the slice
immediately preceding the aij –chords of ƒK in a union of slice trees, where the
xa0ij D aij , by definition. Notice that the slice trees in this slice define xa0ij for the next
slice. Using the new xa0ij we see again that � will intersect this next slice in a union of
slice trees. Continuing by induction we see that � will intersect each slice in a union
of slice trees determined by appropriately chosen xa0ij .

Remark 3.18 We note that any partial flow tree � 0 of ƒK , with only the positive
puncture p special, can be completed in a unique way to a flow tree � by appending a
flow line connecting p to a Reeb chord bij .

3.4.7 Twist morphisms The following algebraic construction makes it possible to
apply the result in Lemma 3.16 inductively. Let K be a link with r components and
let ƒK DƒK I1[ � � � [ƒK Ir be the subdivision of its conormal lift into components.
Let �j ; �j 2 H1.ƒK Ij IZ/ be as described above. As in the introduction, consider
the algebra A0

n over Z generated by ZŒH1.ƒK /� along with the Reeb chords aij ,
1� i; j � n, i ¤ j . We will define morphisms �

�˙1
k

W A0
n!A0

n associated to braid
group generators.

Consider a twist corresponding to �˙1
k

. We use the notation �A and �B for homology
variables exactly like in Lemma 3.16 and in order to connect to that result we make the
following identifications:

(3-12)

xb
"

ij DCaij if i > j ;

xb
#

ij D�aij if i > j ;

xb
"

ij D�aij if i < j ;

xb
#

ij DCaij if i < j

in the source A0
n , and

(3-13)

xa
"

ij DCaij if i > j ;

xa
#

ij D�aij if i > j ;

xa
"

ij D�aij if i < j ;

xa
#

ij DCaij if i < j

Geometry & Topology, Volume 17 (2013)



1032 Tobias Ekholm, John Etnyre, Lenhard Ng and Michael Sullivan

in the target A0
n . We define a homomorphism ��k

W A0
n!A0

n using this identification in
combination with Lemmas 3.16 and 3.15. That is, we define it as follows on generators:

��k
.aij /D aij i; j 6D k; kC 1;

��k
.ak kC1/D�akC1 k

��k
.akC1 k/D��Aak kC1�

�1
B

��k
.ai kC1/D aik i 6D k; kC 1;

��k
.akC1 i/D aki i 6D k; kC 1;

��k
.aik/D ai kC1� aikak kC1 i < k;

��k
.aik/D ai kC1� aik�Aak kC1�

�1
B i > kC 1;

��k
.aki/D akC1 i � akC1 kaki i 6D k; kC 1:

Similarly, we define ���1
k
W A0!A0 as follows on generators:

���1
k
.aij /D aij i; j 6D k; kC 1;

���1
k
.ak kC1/D��

�1
B akC1 k�A

���1
k
.akC1 k/D�ak kC1

���1
k
.aik/D ai kC1 i 6D k; kC 1;

���1
k
.aki/D akC1 i i 6D k; kC 1;

���1
k
.ai kC1/D aik � ai kC1�

�1
B akC1 k�A i < k;

���1
k
.ai kC1/D aik � ai kC1akC1 k i > kC 1;

���1
k
.akC1 i/D aki � ak kC1akC1 i i 6D k; kC 1:

Note that ���1
k
ı ��k

D ��k
ı ���1

k
D id, since A;B switch places between the �k

and ��1
k

twists.

Remark 3.19 In any equation above where the sign differs from that of the corre-
sponding equation of the formulas in Lemma 3.16 the following holds. If we use (3-12)
and (3-13) to substitute decorated variables xb "ij etc, exactly one arrow of a decorated
chord in the target monomial is oriented differently than all other arrows in the equation.

For the braid B D �˙1
k1
� � � �˙1

km
, define

�B D ��˙1
k1

ı � � � ı�
�˙1

km

:
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Note that � then gives a representation of the braid group into the group of automor-
phisms of A0

n .

Remark 3.20 In order for �B to respect the order of composition we think of the
braid as written in the “operator order,” so that B above should be interpreted as: apply
�˙1

km
first and �˙1

k1
last. Thinking of the braid in the opposite order, B 7! �B would

be an anti-homomorphism. See Figure 18.

3.4.8 Flow trees for ƒK in J 1.ƒ/ Since there are no cusps of ƒK in J 1.ƒ/, we
know for grading reasons that any rigid flow tree must have its positive puncture at
some Reeb chord bij and its negative punctures at Reeb chords aij . Consequently,
Theorem 2.7 implies that the differential of the Legendrian algebra can be computed as

@.bij /D
X

�2T .bij /

�.�/q.�/;

where T .bij / denotes the set of all flow trees with positive puncture at bij and where,
if � is such a tree, q.�/ denotes the monomial of its negative punctures and �.�/ its
sign. To compute this differential we fix orientation choices as follows, see Figure 18:

(3-14) vker.bij /D @s; for all 1� i; j � n, i ¤ j

and

(3-15) vcoker.bij /D v
ker.aij /D

�
@t if i > j ;

�@t if i < j:

s

�i2�i1

��i2
ı��i1

vker.aij / bcoker.bij /

bker.bij /aij bij

�0

Figure 18: Flow trees contributing to @B
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The following lemma, where we use the matrix notation from Theorem 1.1, determines
the differential discussed above.

Lemma 3.21 With orientation data as in (3-14) and (3-15), the following equation
holds:

@BD���1
�A � �C�B.A/D���1

�A � �CˆL
B �A �ˆ

R
B :

Proof We will prove the left equality, as the right equality follows from Proposition
2.10. The first term in the right hand side of the left equality comes from the short
flow lines connecting bij to aij , with flow orientation given by �@s . These flow lines
clearly exist and are unique. The sign � of one of these flow lines � is given, according
to Theorem 3.13, by

�.�/D sign
�
hvcoker.bij /; v

flow.�/i
�

sign
�
hvcoker.bij /; v

ker.aij /i
�

D .�1/ � 1D�1:

Consider their homology coefficients. Since no endpoint path intersects �0j or �0j it
is sufficient to consider the intersection between �0j and �0j and the 1–jet lift of the
trees. Clearly, all flow lines under consideration are disjoint from �0j , j D 1; : : : ; r .
Furthermore, the 1–jet lift in the upper (respectively lower) sheet of flow line passes
�0 in the negative (respectively positive) direction. Consequently aij comes with
homology coefficients if and only if either the sheet Si or the sheet Sj is the leading
sheet for that link component. If Si (respectively Sj ) is the leading sheet, then the
intersection with �0

.i/
(respectively �.j/ ) in that sheet contributes the coefficient ��1

.i/

on the left of aij (respectively �.j/ on the right). This corresponds to multiplication
by the matrix ��1 from the right and � from the left as claimed. See the leftmost
picture in Figure 18.

The second term in the right hand side comes from the flow trees that end as flow lines
in W u.aij / flowing in the C@s direction. By Lemma 3.17 we find that the intersection
of such a flow tree with any twist slice is a twist tree and thus any flow tree starting
at bij and ending at the aij along unstable manifolds oriented in the @s direction
will contribute a term from �B.aij /. Moreover any term in �B.aij / gives a flow tree
starting at bij . See the rightmost picture in Figure 18. Note also that no such tree
passes �0 . Lemma 3.16 in combination with the composition formula for �B and the
sign rule in Theorem 3.13 then shows that the second term is �B.A/ (since all the
non-trivial terms in the sign rule appear at the Y0 vertices, which were accounted for
in the formula for � ).
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3.5 Negative gradient flows in twist slices

Our goal in this subsection is to construct a braid B D �
�1

k1
� � � �

�m

km
, �l D ˙1, in a

braiding slice Œsbr
0
; sbr

1
�, in such a way that the properties of unstable manifolds detailed

in Section 3.4.3 are satisfied. We perform this construction twist by twist going from
right (larger s ) to left (smaller s ). To facilitate the formulas we will change coordinates
from .s; t/ to .u; t/ where uD sbr

1
� s . So the braid region happens over u 2 Œ0;U �

where U D sbr
1
� sbr

0
. Throughout the computation we will also change u by translations,

but the key is that u is always �s up to translations. In .u; t/ coordinates we will
build up the braid region, twist by twist, going from left (smaller u) to right (larger u);
moreover in the u coordinates we consider the reversed word ��m

km
� � � �

�1

k1
so that when

we switch back to the s coordinates it is K that is represented.

More specifically we will break Œ0;U � into 3m subintervals I1; : : : ; I3m , ordered from
left to right. For l D 1; : : : ;m, the union of the three intervals I3l�2 [ I3l�1 [ I3l

is associated to the braid generator ��m�lC1

km�lC1
and will be called the braid interval

associated to ��m�lC1

km�lC1
.

The intervals I3l�2 , lD1; : : : ; n, will contain trivial braids as discussed in Remark 3.12
and are used to adjust the braid to prepare for a twist between two strands of the braid.
These will be called preparatory intervals. The intervals I3l�1 , l D 1; : : : ; n, will be
the intervals over which two strands of the braid will actually twist. These will be
called twist intervals. The intervals I3l , l D 1; : : : ; n, will contain the trivial braid and
will be used to adjust the braid so that we can more easily count the flow trees. These
will be called concentration intervals.

For comparison with Section 3.4.3, we set s2l�2 and s2l�1 to be the endpoints (in
reverse order) of the concentration intervals I3.m�lC1/ for lD 1; : : : ;m, and s2m to be
the leftmost (in u) endpoint of I1 . Then s0; : : : ; s2m are arranged in increasing order
and B is trivial in each s 2 Œs2l�2; s2l�1� slice (which corresponds to a concentration
interval) and comprises the braid generator ��l

kl
in each s 2 Œs2l�1; s2l � slice (the union

of a preparatory and a twist interval).

In the rest of this subsection we will describe the braid interval corresponding to the
twist ��l

kl
, but before focusing on this we make an observation and some conventions.

First, for convenience, we will think of the function fj describing the braid as maps
Œ0;C �! R2 , for some arbitrarily large constant C , rather than Œ0;U �!D2 . Since
scaling the variable u and multiplying all the functions by a small constant will not
affect the discussion below we will be able to return to the appropriate braid setup
once we have constructed our desired functions Œ0;C �! R2 . (This step could be
avoided by choosing appropriate scaling constants throughout the argument, but as
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these constants would depend on the entire braid it is considerably simpler to proceed
as we do.) Moreover we will start by considering the trivial braid over R�0 , that is, our
functions fj will be maps Œ0;1/!R2 . We will then alter the fj over some interval
Œ0; c1�, which we call I1 , then over Œc1; c2�, which we call I2 , and so on. Once we
finish with the interval I3m we let Œ0;C � be the union of these intervals and our braid
will be described by the functions fj restricted to this interval.

Just as in the proof of Lemma 3.9 we will describe our Legendrian ƒK in two steps.
We begin, using the notation from Lemma 3.9 and its proof, by considering the standard
trivial braid ff1; : : : ; fng given by

fi.u/D  i.u/.ht .i/; i/;

where  i.u/ D uC ki for some constant ki > 0. Throughout our construction, as
we alter the functions  i , we will always assume that i i has slope in the interval
Œi � 1=2; i C 1=2/. We will also assume the fi are exactly equal to .uC ki/.ht .i/; i/

near the endpoints of each of the braid intervals, though the ki will depend on the
particular braid interval. Before we perform any braiding the unstable manifolds
W u.aij / of any Reeb chord aij intersect fug �S1 near t D �

2
if i > j or t D 3�

2
if

i < j and are lexicographically ordered as in Lemma 3.9. As we inductively build up
our braid we will assume that these unstable manifolds have this same property at the
boundary of all the Il . (We will see in the construction that we can make them as near
as we like.)

We will now focus on the braid interval associated to the braid generator �k ; the case
of ��1

k
is completely similar and is treated at the end of this subsection. We reset

our coordinate u so that the braid interval for �k is Œ0;U �. Recall the braid interval
consists of three subintervals: the preparatory interval Ip , the twist interval It and
the concentration interval Ic . In the interval Ip we will alter the slopes of the curves
i�i.u/. In particular, we alter the slopes of the strands over the interval so that near the
upper endpoint of the interval we have that the difference of the slopes of the k th and
.kC1/st strands is constant and very small (that is each slope is near kC1=2) and the
slope of the i th strand is i . Thus the difference in the slopes of the functions fi and fk

is greater than 1 whereas the slope of the difference function fkC1� fk is arbitrarily
small. Allowing u to increase sufficiently, we can assume that jfj .u/� fk.u/j and
jfj .u/ � fkC1.u/j are sufficiently large compared to jfkC1.u/ � fk.u/j for each
j ¤ k; kC 1 so that a certain approximation described below is valid. This completes
the description of the braid in Ip . Notice that none of these alterations affect the
unstable manifold of the aij .

(Here, as below, it might be useful to consider the situation when ht .y/ is zero or
constant in y , and then notice that perturbing it slightly to another function ht .y/ does

Geometry & Topology, Volume 17 (2013)



Knot contact homology 1037

not affect the qualitative behavior of the flow. Here this is clear since the unstable
manifolds stay far away from the regions near t D 0 and � where ht .y/ actually
depends on t . Also keep in mind that ht .y/ can be taken to be arbitrarily small.)

Now consider the twist region It for a braid generator �k that interchanges the k th

and .k C 1/st strands by a � rotation of the line segment between them around its
midpoint in the positive direction as s increases. This means that the strands are also
interchanged by a rotation in the positive direction as u increases. For the standard
trivial braid under consideration we let fk.u/ and fkC1.u/ rotate at a fast rate around
the midpoint between fk.u/ and fkC1.u/ while still moving slowly away from each
other.

For the functions fk and fkC1 we begin by replacing ht .k/ and ht .k C 1/ by 0,
though we leave the other fi as they were. Specifically before we perform the twist we
can assume (after possible translations) that there are constants c< c0 such that fk.u/D

f 0
k
.u/ WD .0; .kC1=2��/uCc/ and fkC1.u/D f

0
kC1

.u/ WD .0; .kC1=2C�/uCc0/

for some very small � . Now to perform the twist over the interval Œu0;u00�, choose an
increasing surjective function ˇW Œu0;u00�! Œ0; �� that is constant near the endpoints,
and let

fk.u/D
f 0

k
.u/Cf 0

kC1
.u/

2
C

ˇ̌̌̌
f 0

kC1
.u/�f 0

k
.u/

2

ˇ̌̌̌
.sinˇ.u/;� cosˇ.u//

fkC1.u/D
f 0

k
.u/Cf 0

kC1
.u/

2
�

ˇ̌̌̌
f 0

kC1
.u/�f 0

k
.u/

2

ˇ̌̌̌
.sinˇ.u/;� cosˇ.u//:

This describes the half twist between the two strands.

Note that if the distances jfj .u/� fk.u/j and jfj .u/� fkC1.u/j, j ¤ k; kC 1, are
sufficiently large compared to jfk.u/� fkC1.u/j then the gradient flows of ˙Fjk

and ˙Fj kC1 can be made arbitrarily close to the corresponding flows for the standard
trivial braid, ie, the same braid but with non-rotating fk.u/ and fkC1.u/. We assume
that in the interval Ip we arranged that the other points are sufficiently far away from
fk.u/ and fkC1.u/ so that these approximations of the gradient flows of ˙Fjk and
˙Fj kC1 are valid.

Consider next the gradient flow of ˙FkC1 k , which, in contrast to the flows just
discussed, changes drastically. We take the rotation to be supported in a small subinterval
Œu0;u00� of Œ0;U �. We have

FkC1 k.u; t/D .2�uC c0� c/
�
sin.ˇ.u//; cos.ˇ.u//

�
� .cos t; sin t/

D .2�uC c0� c/ sin.t Cˇ.u//:
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The gradient is

rFkC1 k D .2� sin.t Cˇ.u//C .2�uC c0� c/
dˇ

du
cos.t Cˇ.u/// @u

C.2�uC c0� c/ cos.t Cˇ.u// @t :

In order to understand relevant negative gradient flow lines of this vector field we
first note that FkC1 k is positive for �ˇ.u/ < t < � � ˇ.u/ and negative in the
complementary region. Moreover, in the limit where � D 0, the gradient flow of
FkC1 k is perpendicular to the level sets ftCˇ.u/D ag and flowing towards the curve
of critical points ft Cˇ.u/D �=2g.

Now instead let � > 0 be small, and choose am <�=2< aM so that aM �am is small.
Notice rFkC1 k is still transverse to ft C ˇ.u/ D amg and ft C ˇ.u/ D aM g and
pointing into the region R bounded by these level sets and containing ftCˇ.u/D�=2g.
Along the curve I D R\ fu D u0g, the u–component of rFkC1 k is positive and
the flow is into R, while along the curve I 0 D R\ fu D u00g, the u–component of
rFkC1 k is also positive but now flows out of R. Thus since there are no critical points
of rFkC1 k inside R, we see that any flow line starting on I will exit R along I 0 . It
follows that the flow lines in R are approximately equal to the level sets ftCˇ.u/D ag

inside R.

From this we see that the unstable manifold W u.akC1 k/ exits the twist region near
3�=2 and by choosing � small in the region Ip (which can be done without affect-
ing any essential feature mentioned above) we can arrange that the t –coordinate
of W u.akC1 k/ \ fu D u00g is as close to 3�=2 as we like. Furthermore, we can
choose small intervals J 00 and J 0 in the slices fu D u00g and fu D u0g, containing
the respective intersection points of W u.akC1 k/ with these slices, such that any flow
line of �rFkC1 k that starts in J 00 leaves through J 0 and is transverse to the flow
lines of the other Fij . We can also then choose intervals J 00ij and J 0ij in the slices
fuD u00g and fuD u0g, containing the respective intersection points of W u.aij / with
these slices, so that all of these intervals are disjoint from each other and from J 00 and
J 0 , and so that all flow lines of �rFij that start in J 00ij are disjoint from each other
and transversely intersect the flow lines of �rFkC1 k that begin in J 00 .

The above discussion assumes that ht .k/D ht .kC 1/D 0, whereas in fact ht .y/ is a
small function that is constant in t outside of small neighborhoods of 0 and � (see the
proof of Lemma 3.9). In the argument above, the same qualitative features of the flow
hold if we change ht .k/ and ht .kC 1/ from 0 to constants in t , since the level sets
of FkC1 k only change slightly. If now we choose ht .y/ to be the function from the
proof of Lemma 3.9, as is needed to define the trivial braid, then the flow only changes
near t D 0 and t D � . But here by taking ˇ to have very large derivative over most
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t D 2�

t D 3�
2

t D �
2

t D 0

Figure 19: The twist interval. The shaded regions are where FkC1 k is
negative. The dark lines are level curves of t Cˇ.u/ and the thinner lines are
approximate flow lines of the negative gradient flow of FkC1 k . The left-hand
end is uD u0 and the right-hand end is uD u00 .

of its support we see that the alteration to the gradient of FkC1 k in the t –support of
ht .y/ can be thought of as arbitrarily small. Thus again we see that the qualitative
features of the flow are unchanged.

Analogously, W u.ak kC1/ lies close to the curve ft D 3�
2
�ˇ.u/g and we can argue

for the same intervals J 0 and J 00 here too. This completes the discussion of the twist
interval It for �k .

Now for the concentration interval Ic . The purpose of this interval is to concentrate
gradient flow lines near the unstable manifolds. Specifically, in the first part of Ic we
alter our  i so they are the standard affine functions again. Notice that in the region
where Fij is positive all the flow lines of rFij converge towards a constant t line
near t D �=2 if i > j or 3�=2 if i < j . Thus choosing the interval Ic D Œa; b� large
enough we can find intervals J�=2 and J3�=2 on fuD ag and for each .i; j / intervals
Jij on fuD bg that are an arbitrarily small neighborhood of W u.aij /\fuD bg, so
that all the unstable manifolds intersect J�=2 or J3�=2 and any flow line of rFij ,
i > j , that starts on J�=2 intersects Jij and if i < j then a flow line that starts in
J3�=2 intersects Jij .

Similarly, we consider the inverse ��1
k

of the braid generator �k that interchanges the
k th and .kC 1/th strands by a rotation of magnitude � of the line segment between
them around its midpoint in the negative direction as s increases. The analysis of this
situation is exactly as above, except the unstable manifolds veer up instead of down.
See Figure 11 above (where we have returned to s coordinates).
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4 Combinatorial computation of the differential

In this section we compute the differential in the Legendrian algebra of ƒK , where
K �R3 is a link braided around the unknot. Our computation heavily uses the results
of Section 3, where we determined all flow trees of ƒK viewed as a Legendrian
submanifold of J 1.ƒ/, where ƒ� T 2 is the conormal lift of the unknot. These flow
trees give the differential for a subalgebra of the Legendrian DGA of ƒK � J 1.S2/.

In Section 4.1, we introduce the notion of a multiscale flow tree of ƒK � J 1.S2/,
which is essentially a collection of partial flow trees for ƒK � J 1.ƒ/, glued to a
flow tree of ƒ � J 1.S2/. By a result (Theorem 4.3) whose proof is deferred to
Section 5, there is a one-to-one correspondence between rigid multiscale flow trees
and rigid holomorphic disks with boundary on ƒK and one positive puncture. This
allows us to reduce the computation of the Legendrian DGA of ƒK � J 1.S2/ to
a combinatorial enumeration of all rigid multiscale flow trees. The enumeration is
performed in Sections 4.2 through 4.4 (for signs associated to multiscale flow trees, we
use some results whose proofs are postponed to Section 6) and completes the proof of
the main theorem of this paper, Theorem 1.1.

4.1 Multiscale flow trees

We begin by discussing multiscale trees. We first recall the basic notation that will be
used in this section. Let U � R3 denote the unknot and write ƒ D ƒU � J 1.S2/.
Let K be a link given by the closure of an n–strand braid around U such that each
(local) strand is C 2 –close to U . Then ƒK � J 1.ƒ/� J 1.S2/, and we have the front
projection …ƒ

F
W J 1.ƒ/!ƒ�R and the base projection �ƒW J 1.ƒ/!ƒ. The latter

induces an n–fold cover ƒK !ƒ; if  is a path in ƒ, then there are n distinct lifts
z of  with �ƒ ı z D  , which we call neighborhood lifts of  .

If � is a flow tree of ƒ� J 1.S2/, let z� denote its 1–jet lift.

Definition 4.1 A multiscale flow tree �� on ƒ determined by ƒK is a flow tree � of
ƒ� J 1.S2/ and a finite set of partial flow trees �D f�j g

m
jD1

of ƒK � J 1.ƒ/ each
with exactly one special puncture xj , j D 1; : : : ;m, such that the following holds.

� xj 2 z , j D 1; : : : ;m.
� For each component of z �fx1; : : : ;xmg a neighborhood lift to ƒK in J 1.T 2/

is specified.
� The union of the 1–jet lifts of the flow trees �j , j D 1; : : : ;m, and the specified

neighborhood lifts, together with their flow orientation, gives a collection of
consistently oriented curves y� �ƒK .
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� The curve y� is such that …ƒ.y�/ is closed, where …ƒW J 1.ƒ/! T �ƒ is the
Lagrangian projection.

� is called the big tree and � the small tree part of �� .

Remark 4.2 As we shall see, cf Section 4.2, the partial trees �j of �� are of two
types: either �j is constant at one critical point b of Morse index 2, with both its
positive special puncture xj and its negative puncture lying at b , or �j is non-constant
with positive special puncture at xj .

The punctures of a multiscale flow tree �� are the punctures of the flow trees �j (not
including the special punctures) and the punctures of the tree � . We say that the chord
at a positive (respectively negative) puncture of � connects the sheets determined by the
neighborhood lift of the arc oriented toward (respectively away from) the puncture, to
the sheet determined by the neighborhood lift of the arc oriented away from (respectively
toward) the puncture. A puncture of a multiscale flow tree is positive (respectively
negative) if the corresponding puncture of the flow tree � or �j is positive (respectively
negative). A straightforward application of Stokes’ theorem shows that every multiscale
flow tree has at least one positive puncture.

Define the formal dimension of a multiscale flow tree �� as

dim.��/D dim.�/C
X
�j2�

.dim.�j /� 1/;

where the (formal) dimension of a (partial) flow tree is given in (2-3); see also [10,
Definition 3.4].

We say that a multiscale flow tree �� is rigid if dim.��/D 0 and if it is transversely
cut out by its defining equation.

As discussed above in Lemma 3.7, the set of Reeb chords Q.ƒK / of ƒK � J 1.S2/

can be written as follows:

Q.ƒK /DQƒ.ƒK /[
[

1�i;j�n

Q.ƒ/ij ;

where Qƒ.ƒK / is the set of short Reeb chords (contained in J 1.ƒ/� J 1.S2/) and
Q.ƒ/ij denotes the set of long Reeb chords of ƒ� J 1.S2/ with endpoint on the i th

sheet of ƒK and beginning point on the j th sheet.

Theorem 4.3 For any � > 0, there exists an almost complex structure J on T �S2 ,
regular with respect to holomorphic disks with one positive puncture of dimension at
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most 1, such that: there is a one-to-one correspondence between rigid holomorphic
disks with one positive puncture and boundary on ƒK , and rigid multiscale flow trees on
ƒ determined by ƒK with one positive puncture, and the 1–jet lift of a multiscale flow
tree lies in an �–neighborhood of the boundary lift of the corresponding holomorphic
disk.

Theorem 4.3 is proved in Section 5, and constitutes the basic tool in our calculation of
the differential in LA.ƒK /.

Above we described the front of ƒ, the conormal lift of the unknot, and its flow trees.
With this established we will next classify possible multiscale flow trees determined
by a braid closure (Section 4.2) and give an algorithm for the sign of such a tree
(Section 4.3). In Section 4.4 we then turn to the actual calculation of the Legendrian
DGA of ƒK by explicitly computing all multiscale flow trees for ƒK with signs.

4.2 Classification of rigid multiscale flow trees of ƒK

To apply Theorem 4.3 to calculate the Legendrian DGA of ƒK , we need to classify all
possible rigid multiscale flow trees of ƒK � J 1.S2/. We give a rough characterization
of such trees in this subsection, examine the signs associated to the trees in Section 4.3,
and present the full classification in Section 4.4.

Let K be a link and assume that ƒK satisfies Lemma 3.7. We first consider flow
trees and partial flow trees for ƒK in J 1.ƒ/. Since the front of ƒK in J 0.ƒ/ does
not have any singularities and since all critical points of positive differences of local
defining functions are either maxima or saddle points it follows from Section 2.4 that
for generic functions a rigid tree for ƒK � J 1.ƒ/ must have

(1) a positive puncture at a Reeb chord bij of type S1 ,

(2) k � 1 Y0 –vertices (trivalent vertices away from (non-existent) cusps of ƒ) and

(3) k negative punctures at Reeb chords aij of type S0 .

Likewise, a partial flow tree of dimension 1 has the same vertices and punctures, except
its positive puncture is a special puncture instead of a maximum. Also the constant
partial flow tree with both special positive and negative puncture at bij of type S1 will
be of importance.

Since the 1–jet lift of any flow tree of ƒ � J 1.S2/ has codimension 1 in ƒ, it
follows that any tree in the small tree part of any rigid multiscale flow tree is either a
1–dimensional partial flow tree with positive puncture on the 1–jet lift of the big tree
on ƒ or it is a constant tree at some bij of type S1 . Furthermore, the flow tree on
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ƒ corresponding to the big tree part must either be rigid, or rigidified by a constant
tree (a point condition at some �.bij /). In the case where the big tree is rigidified by
point conditions, its dimension must be equal to the number of point conditions, ie, the
number of constant trees in the multiscale flow tree. Combining this discussion with
Lemma 3.2 we find that (after small perturbation) there are the following types of rigid
multiscale flow trees for ƒ determined by ƒK :

MT0 A rigid flow tree � of ƒ with constrained rigid partial flow trees of ƒK

attached. Here the constraint says that the special positive puncture of each
partial flow tree must lie on the 1–jet lift of � .

MT1 A constrained rigid flow tree �� with constrained rigid partial flow trees of
ƒK attached. Here the constraint of �� is the requirement that the 1–jet lift
passes a point in ƒ in the fiber where a Reeb chord bij lies, and the constraint
of the partial flow trees is as above.

MT¿ A rigid flow tree of ƒK .

Remark 4.4 In our setting, we can rule out one other ostensible possibility for a rigid
multiscale tree: those with big tree a constant rigid flow tree � of ƒ and with small
tree a constrained rigid flow tree of ƒK . Here � would correspond to a Reeb chord
and the constraint would say that the special positive puncture of the partial flow tree
must lie on the Reeb chord on the 1–jet lift of � . If the location of the Reeb chord is
generic with respect to the flow determined by ƒK then its endpoints do not lie on
W u.aij / for any aij or on bij and such a configuration is rigid only if the flow line
ends at a minimum. As there are no positive local function differences of ƒK that are
local minima no such trees correspond to disks with one positive puncture. (The rigid
configurations with flow lines that end at a negative local minimum correspond to disks
with two positive punctures.)

4.3 Signs of rigid multiscale flow trees

In this subsection we describe a combinatorial algorithm for computing the sign
of a rigid multiscale flow tree, which determines its contribution to the Legendrian
algebra differential. This is the analogue for multiscale flow trees in the discussion in
Section 3.4.4. We will discuss the derivation of the combinatorial rule as well as the
effect of orientation choices in detail in Section 6.

We will use the notation established in Section 2.5 for vector splitting along flow trees
and signs associated to rigid flow trees of ƒK as well as partial flow trees of ƒK of
dimension 1 with special positive puncture.
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Before we can state the combinatorial rule for orienting rigid multiscale flow trees, we
need to discuss signs of rigid trees determined by ƒ; see Sections 3.1 and 3.2 for the
notation for these rigid trees. Except for basic orientation choices the signs depend
on orientations of determinants of capping operators. We call such choices capping
orientations. Recall that there are two Reeb chords of ƒ, e and c , and that if K �R3

is a link represented as a closed braid on n strands, then the long Reeb chords of ƒK

are eij and cij , 1� i; j � n, where cij lies very close to c and eij lies very close to
e . In particular, capping orientations for c and e induce capping orientations for cij

and eij , respectively.

Theorem 4.5 There is a basic orientation choice and choice of capping orientation for
c so that the sign �.T /, for T a rigid flow tree of ƒ, satisfies

�.IN /D �.YN /D �.IS /D �.YS /D 1 and �.E1/D��.E2/:

Proof This is a consequence of Theorem 6.4 below.

Furthermore, the choice of capping orientation of e induces an orientation of the
1–dimensional moduli spaces of flow trees such that the induced orientation at the
broken disk Ej # T is �.Ej /�.T / for T 2 fIN ;YN ; IS ;YSg. If � is a flow tree in
such a 1–dimensional moduli space we consider the orientation as a normal vector
field � along the 1–jet lift of � .

In order to state the sign rule for multiscale flow trees, we first make some definitions.
MT1 Consider a multiscale rigid flow tree ‚ of type MT1 with 1–dimensional big

tree � and a negative puncture at bij . Let vflow.�/ denote the vector field
along the 1–jet lift oriented in the positive direction (ie, the 1–jet lift of each
edge is equipped with the flow-orientation, defined in Section 2.4). The sign
�.‚/ of the rigid tree constrained by bij of type S1 is defined to be

�.‚/D sign
�
h�; vker.bij /ihv

flow.�/; vcoker.bij /i
�
:

If non-constant flow trees �1; : : : ; �k are attached to ‚ then define nj to be
the normal vector at the special puncture of �j with positive inner product
with vflow.�/.

MT0 Consider a multiscale rigid flow tree ‚ of type MT0 with big tree � . Let
�.‚/ equal the sign of � . If � has two punctures (positive at e , negative at c ),
then we define vflow.�/ as the vector field along the boundary pointing toward
the positive puncture. If � has only one puncture (positive at c ), let vflow.�/

point in the positive direction along the boundary. Then take nj as in MT1 .
MT¿ Consider a flow tree � of ƒK in J 1.ƒ/. Let nD vcoker.bij / be the normal

vector of � at its positive puncture.
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Theorem 4.6 There exists a choice of basic orientations and of orientations of capping
operators for all long Reeb chords such that Theorem 4.5 holds and such that the sign
of a rigid multiscale flow tree is as follows.

MT1 Let � be a multiscale rigid flow tree of type MT1 with constrained rigid flow
tree ‚ (ie, ‚ has only one negative puncture at some bij ) and attached flow
trees �1; : : : ; �k . Then the sign of � is

�.�/D �.‚/

kY
jD1

�.nj ; �j /:

MT0 Let � be a multiscale rigid flow tree of type MT0 with rigid flow tree ‚ and
attached flow trees �1; : : : ; �k . Then the sign of � is

�.�/D �.‚/

kY
jD1

�.nj ; �j /:

MT¿ Let � be a flow tree of type MT¿ . Then the sign of � is

�pos.�/ �.n; �/:

Proof Theorem 4.6 is proved in Section 6.6.

4.4 Counting multiscale flow trees

In this section we complete the computation of the Legendrian algebra differential of
ƒK � J 1.S2/, and thereby obtain a proof of Theorem 1.1, by counting all multiscale
flow trees determined by ƒK and ƒ. In Section 3, we counted flow trees of ƒK �

J 1.ƒ/. This leads to the expression for @B in Theorem 1.1. In this subsection we
derive the expression for @C and @E in Theorem 1.1 by counting multiscale flow trees
with non-empty big tree part. Our technique relates these multiscale trees to ordinary
flow trees of a stabilized braid obtained by adding a trivial non-interacting strand to
the given braid.

For notation used throughout this section, see Section 3.4.

4.4.1 Multiscale flow trees of type MT¿ We first consider the part of the differential
in the Legendrian algebra of ƒK that accounts for multiscale flow trees of type MT¿ ,
ie, the parts which count only trees of the braid localized near ƒ. Such a tree has its
positive puncture at some Reeb chord bij and its negative punctures at Reeb chords aij .
Furthermore, a straightforward action argument shows that any multiscale flow tree
with its positive puncture at a Reeb chord bij must lie inside the 1–jet neighborhood
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of ƒ. Consequently, flow trees of type MT¿ account for the boundary of the Reeb
chords bij of type S1 :

@.bij /D
X

�2T .bij /

�.�/q.�/;

where T .bij / denotes the set of all flow trees with positive puncture at bij and where,
if � is such a tree, q.�/ denotes the monomial of its negative punctures and �.�/ its
sign.

In Section 3.4.8 above, orientation conventions were picked for the Reeb chords aij

and bij and the differential was computed in Lemma 3.21.

4.4.2 Multiscale flow trees with positive puncture at cij of type L1 In this section,
we compute the differentials of the cij Reeb chords. This involves counting rigid
multiscale flow trees of type MT0 , with big-tree component given by one of the four
rigid big trees with positive puncture at c .

We introduce the following notation for 1–jet lifts of flow trees with one positive
puncture. Each point in the 1–jet lift that is neither a 1–valent vertex nor a trivalent
vertex belongs to either the upper or the lower sheet of its flow line. We call points
on the 1–jet lift head-points if they belong to the upper sheet and tail-points if they
belong to the lower. Because of positivity of local function differences of trees with one
positive puncture, points in a component of the complement of preimages of 1–valent
and trivalent vertices in the 1–jet lifts are either all head-points or all tail-points.

There are four rigid flow trees with positive puncture at c , denoted in Section 3.2 by
IN ;YN ; IS ;YS . When we project the 1–jet lifts of these trees to the torus ƒ, we
obtain the four curves �˛ˇ.c/, ˛; ˇ 2 f0; 1g, shown in Figure 20. We decompose
�˛ˇ.c/ as follows:

�˛ˇ.c/D �
vC
˛ˇ
.c/[�h

˛ˇ.c/[�
v�
˛ˇ .c/

See Figure 20 for �00.c/. More precisely, �vC
˛ˇ
.c/ consists of head-points, �v�

˛ˇ
.c/

consists of tail-points, and �h
˛ˇ
.c/ is the portion near the cusp edge. For our purposes,

we will assume that �h
˛ˇ
.c/ lies at t D �

2
(for ˇ D 0) or t D 3�

2
(for ˇ D 1), as

is the case in the degenerate picture where U is the unperturbed round unknot (see
Section 3.1).

The following lemma determines the differential acting on Reeb chords cij . We use
the matrix notation of Theorem 1.1.

Lemma 4.7 With capping operator of Reeb chord c of ƒ as in Theorem 4.6 and with
orientation choices as in (3-14) and (3-15), the following equation holds:

@C DA � �CA �ˆR
B :
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2�

3�
2

�

�
2

0

t

0 2�

s

braiding region aij and bij

e� c�c�

cCeC

cC

�01.c/

�00.c/

�11.c/

�10.c/

�vC
00 .c/

�h
00.c/

�v�
00 .c/

Figure 20: The 1–jet lifts of flow trees with positive puncture at c

Proof We count multiscale flow trees contributing to @cij , divided into four cases
based on their big tree part, which must be one of the �˛ˇ.c/. For ease of reference,
all of these flow trees are pictorially represented in Table 1.

Before we proceed, note that the braiding region is disjoint from �10.c/ and from
�11.c/ and intersects �00.c/ and �01.c/ in tail-points, since the braiding region has
small s–coordinate values. Also, from Section 3.4, the unstable manifolds W u.aij /

are essentially horizontal and have t –coordinate as follows: just less than �
2

for
i > j , ordered lexicographically by .i; j /, and just over 3�

2
for i < j , ordered

lexicographically by .j ; i/. Finally, we recall from Section 3.4.3 and Figure 13 that
we have cycles �0 and �0 in ƒ for the purposes of counting homology classes, where
�0 is a vertical line between the aij and the bij , and �0 is a horizontal line just below
t D �

2
. We can in particular choose �0 to lie above all of the W u.aij / for i > j .

Case 1 Big tree �10.c/.

If i D j , there is a “trivial” multiscale flow tree with boundary on sheet Si that projects
to �10.c/. To count other multiscale flow trees corresponding to �10.c/, note that the
curve �vC

10
.c/ intersects W u.aij / for all i > j , while the curves �h

10
.c/ and �v�

10
.c/

are disjoint from W u.aij / for all i; j . As we move along �vC
10
.c/ in the sheet Si , at

the intersection between �vC
10
.c/ and W u.aij /, i > j , a flow line to aij can split off

and the 1–jet lift of �10.c/ continues to move along sheet Sj . Note that no other flow
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Big tree Multiscale flow tree Term

�10.c/
i

j

.i D j / �˛.i/

aij
i

j

.i > j / aij�˛.j/

�11.c/

i

j

.i D j / 1

i

j

aij
.i < j / aij

�00.c/

j

i

(ΦR
B)ij

�˛.i/.ˆ
R
B
/ij

j

i
k aik

(ΦR
B)kj X

k<i

aik�˛.k/.ˆ
R
B/kj

�01.c/
j

(ΦR
B)ij

i

.ˆR
B
/ij

k
j

aik(ΦR
B)kj

i X
k>i

aik.ˆ
R
B/kj

Table 1: Contributions to @cij . For each of the four big disks, schematic
diagrams for corresponding multiscale flow trees are shown, along with the
algebraic contribution to @cij (with powers of the longitudinal homology
classes � suppressed for simplicity). In the diagrams, along the boundary of
the big disk, the index of the sheet (one of i; j ; k ) is labeled.

line can split off after this event since, according to the orientation requirement in the
definition of multiscale flow tree, such a flow line could split off only at an intersection
with W u.ajk/, j > k ; however, by our choice of ordering, such an intersection
precedes the intersection with W u.aij / and hence no further splitting is possible.

Thus for each cij with i � j , there is a multiscale flow tree with big tree �10.c/ and
a single negative puncture at aij (or no negative puncture if i D j ). We next consider
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homology coefficients and signs. Note that each tree which is lifted to a leading sheet
S.i/ intersects �0.i/ once positively and that each lifted tree intersects �0˛.i/ , where
 .i/ and ˛.i/ are the indices of the components of the sheets considered. Furthermore,
by Theorem 4.6, each tree has sign C1: at the splitting point (for i > j ), the tangent
vector to the positively oriented 1–jet lift is @t , which transports to @t D v

ker.aij / at
aij , i > j , and the big tree has sign C1. Finally, we conclude that the contribution to
@cij of Case 1 is: 8̂̂̂<̂

ˆ̂:
�.i/�˛.i/ if i D j and Si is leading;
�˛.i/ if i D j and Si is not leading;
aij�.j/�˛.j/ if i > j and Sj is leading;
aij�˛.j/ if i > j and Sj is not leading:

Case 2 Big tree �11.c/.

As with �10.c/, if i D j then there is a trivial multiscale tree with boundary on
sheet Si that projects to �10.c/. To count other multiscale trees, notice that �vC

11
.c/

intersects W u.aji/, for all i > j . As above we find that a 1–jet lift in sheet Sj can
split off a flow line to ajk for k > j , then continue along Sk , and that no further
splittings are possible. We thus find multiscale flow trees with positive puncture at cji

and negative puncture at aji for all i > j . As above the (signed) coefficient equals
C1 since the normal at the special puncture of the partial tree attached is �@t , which
agrees with vker.aij /, i < j . To see homology coefficients, we note that all 1–jet lifts
are disjoint from �0 and calculate as above. We conclude that the contribution to @cij

from Case 2 is: 8̂̂̂<̂
ˆ̂:
�.j/ if i D j and Sj is leading;
1 if i D j and Sj is not leading;
aij�.j/ if i < j and Sj is leading;
aij if i < j and Sj is not leading:

When we combine the contributions of Cases 1 and 2 to @cij , we obtain precisely the
.i; j / entry of the matrix A � �.

Case 3 Big tree �00.c/.

Here we will make use of the stabilized braid yB , which is B along with one non-
interacting strand labeled 0. Any multiscale flow tree begins on sheet Si along �vC

00
.c/.

As above it is possible to split off either no flows and arrive on Si at the initial point
of �h

00
.c/, or one flow to aik (for any k < i ) and arrive on Sk at the initial point of

�h
00
.c/. Note further that �h

00
.c/ intersects the braiding region in tail-points since the
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braiding region is to the left of s D �=2; thus, its flow orientation is the same as the
oriented lift of the flow line of yB in W u.a0k/ for any k . Consequently, the flow trees
that can split off from �h

00
.c/ on sheet Sk as it passes the braiding region agree with

the flow trees that can split off from W u.a0k/. It follows that the contribution to @cij

from Case 3, up to sign and homology coefficients, isX
k<i

aik.ˆ
R
B/kj :

We next consider the homology coefficients and signs of these trees. For homology,
note that �0 is a horizontal line that lies just below t D �

2
, where �h

00
.c/ sits, but just

above W u.aik/, where a flow line to aik can split off. Thus none of the trees pass �0 ;
a tree that splits off a flow to aik intersects �0˛.k/ once positively, and a tree that does
not split off such a flow intersects �0˛.j/ once positively.

In order to compute the sign we first note that the sign contribution from the flow line
splitting off to aik is positive: @t is the vector of the boundary orientation as well as
vker.aik/. Second, we consider sign contributions from trees in the braiding region.
At a positive twist the induced normal is �@s , which corresponds to a vector splitting
of the normal @t along the incoming edge and the sign at the corresponding trivalent
vertex of the tree of yB is C1. At a negative twist the induced normal is still �@s ,
which now corresponds to a splitting of the normal �@t along the incoming edge and
the sign at the trivalent vertex of the tree of yB equals �1. Thus also in the case of a
negative twist the total sign contribution is .�1/2 D 1, which shows that all multiscale
flow trees from �00.c/ have sign C1.

In sum, we find that the total contribution to @cij from Case 3 is

�˛.j/.ˆ
R
B/ij C

X
k<i

aik�˛.k/.ˆ
R
B/kj :

Case 4 Big tree �01.c/.

As in Case 3, we find that either one or zero flow lines split off along �vC
01
.c/. Again

�h
01

intersects the braiding region in tail points and is oriented isotopic to W u.a0i/.
An argument similar to Case 3 shows that the contribution to @cij from Case 4 is

.ˆR
B/ij C

X
k>i

aik.ˆ
R
B/kj ;

where the difference from the previous case arises because the 1–jet lift of �01.c/ is
disjoint from �0j .
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When we combine the contributions of Cases 3 and 4 to @cij , we obtain precisely the
.i; j / entry of the matrix A �ˆR

B
. The lemma follows.

4.4.3 Multiscale flow trees of type MT0 with positive puncture at eij of type L2

To complete the computation of the Legendrian homology of ƒK , we need to compute
the differentials of the eij Reeb chords. These have contributions from two types of
multiscale rigid flow trees: trees of type MT0 and trees of type MT1 . In this subsection,
we compute the first type; the second type is computed in the following subsection,
Section 4.4.4.

There are two rigid flow trees with positive puncture at e and negative puncture at c ,
corresponding to E1 and E2 in the language of Section 3.2. Denote their 1–jet lifts
by �˛.eI c/, ˛ 2 f0; 1g. We decompose �˛.c/ as follows:

�˛.eI c/D �
he
˛ .eI c/[�

ta
˛ .eI c/;

where �he
˛ .eI c/ consists of head-points and � ta

˛ .eI c/ of tail-points; see Figure 21.

2�

�

0

t

0 2�
s

braiding region aij and bij

e� c�c�

cCeC �he
0
.eI c/

� ta
1
.eI c/ � ta

0
.eI c/

�he
1
.eI c/

Figure 21: The 1–jet lifts of flow trees with positive puncture at e and
negative puncture at c

Writing the contribution to @eij from trees of type MT0 as @0eij and using the matrix
notation of Theorem 1.1, we have the following result.

Lemma 4.8 With capping operator of c so that Theorem 4.6 holds and with orientation
choices as in (3-14) and (3-15), there is a choice of capping operator for e so that the
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following equation holds:

@0ED�ˆL
B �C � �

�1
C ��1

�C � .ˆR
B/
�1:

Proof First consider the contributions from �0.e; c/: � ta
0
.eI c/ is disjoint from the

braiding region and from all W u.aij /. Consequently, no flow tree can split off from
� ta

0
.eI c/. Also, if � ta

0
.eI c/ is lifted to Si then it intersects �0.i/ once negatively if

Si is leading and not at all otherwise. The curve of head-points �he
0
.eI c/, oriented as

in Figure 21, is isotopic without crossing the cycle �0 to the oriented lift of the flow
line W u.ai0/ of the stabilized braid yB which lies in the sheet Si . As in the proof of
Lemma 4.7 we conclude that the trees that split off along � correspond to the trees
which split off from W u.a0i/. As with �00.c/ (Case 3) in the proof of Lemma 4.7,
we find that the sign contribution from the split-off trees agrees with the sign of �B .
Thus the contribution from �0.e; c/ to @0E is

�.�0.eI c//ˆ
L
B �C � �

�1:

Choose the capping operator of e so that �.�0.eI c//D�1, and note that by Theorem 4.5
this implies �.�1.eI c//DC1.

Next consider the contributions from �1.e; c/: �he
1
.eI c/ is disjoint from the braiding

region and from all W u.aij /. Consequently, no flow tree can split off from �he
1
.eI c/.

Also, if �he
1
.eI c/ is lifted to Si then it intersects �0.i/ once with negative intersection

number if Si is leading and not at all otherwise. The tail-points curve � ta
1
.eI c/ is

isotopic to the lift of the flow line W u.ai0/ of the stabilized braid yB with orientation
reversed. Switching the roles of e and c in the Morse–Bott perturbation we would get
the following contribution to @0

0
C from this disk:

� �E �ˆR
B ;

where @0
0

denotes the analogue of @0 with the alternative Morse–Bott perturbation, by
a repetition of the argument above for �0.eI c/.

Observing that the multiscale flow trees we are interested in are exactly the same as
those for the alternative Morse–Bott perturbation except for the big disk having the
opposite orientation, we can view the equation above as a linear system of equations
with coefficients in A0

n and invert it to get the contribution to @0E. Thus we find that
the contribution from �1.e; c/ is

�.�0.eI c//�
�1
�C � .ˆR

B/
�1
D ��1

�C � .ˆR
B/
�1

and the lemma holds.
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4.4.4 Multiscale flow trees of type MT1 with positive puncture at eij Finally, we
enumerate multiscale flow trees of type MT1 . Recalling Lemma 3.2 and Remark 3.4,
we see there are four constrained rigid flow trees with positive puncture at e and no
negative punctures that are constrained to pass through some bij . We denote their
1–jet lifts �˛ˇ.e/, ˛; ˇ 2 f0; 1g; see Figures 22 and 23. We note that each constrained
tree is a deformation of a broken tree, with �˛ˇ.c/ as defined in Section 4.4.2 and
�˛.eI c/ as defined in Section 4.4.3:

�00.e/' �1.eI c/ #�00.c/;

�10.e/' �1.eI c/ #�10.c/;

�01.e/' �1.eI c/ #�01.c/;

�11.e/' �1.eI c/ #�11.c/:

eC

braiding region

e�

bij

bij

�00.e/

�01.e/

eC

Figure 22: 1–jet lifts of constrained flow trees with positive puncture at e

that are disjoint from the braiding region

Writing the contribution to @eij from trees of type MT1 as @1eij and using the matrix
notation of Theorem 1.1, we have the following result.

Lemma 4.9 With capping operators and orientation data as in Lemma 4.8, the follow-
ing equation holds:

@1ED B � .ˆR
B/
�1
CB � ��1:
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eC

braiding region

e�

bij

bij

�10.e/

�11.e/

eC

Figure 23: 1–jet lifts of constrained flow trees with positive puncture at e

that intersect the braiding region. As with �˛ˇ.c/ , the horizontal segments in
the middle of �10.e/ and �11.e/ are at t D �=2 and t D 3�=2 , respectively.

Proof Consider first the contributions of the big trees �00.e/ and �01.c/. Note that
these trees do not intersect the braiding region and that because of the lexicographic
order, exactly as in the proof of Lemma 4.7, a disk that is constrained at bij cannot split
off flow lines to any aik . Thus there is exactly one multiscale flow tree contributing
to @1eij that arises from �00.e/ or �01.e/ if i ¤ j (from �00.e/ if i > j or �01.e/

if i < j ), and it begins at eC on sheet i , jumps at bij to sheet j , and remains there
until e� . (If i D j , then there is no such multiscale tree.) Up to sign and homology
classes, we conclude that �00.e/ and �01.c/ combined contribute the term bij (or 0

if i D j ) to @eij .

As for homology classes, the 1–jet lift of this multiscale tree is disjoint from all
�0 cycles, with the exception of �0˛.j/ (one negative intersection) if j is leading;
furthermore, it is disjoint from all �0 cycles, with the exception of �0˛.j/ (one positive
intersection) if i > j . Next we determine the signs. The sign of the endpoints of the
moduli spaces of �00.e/ and �01.e/ listed above are both C1 by our choice of capping
operators. Thus the orienting vector field � of the moduli space at bij satisfies � D @s

in both cases. Furthermore, vker.�00.e// equals @t at bij , i > j , and vker.�01.e//

equals �@t at bij , i < j . This shows that the signs are positive. Collecting homology
classes and signs, we conclude that the big trees �00.e/ and �01.e/ contribute B � ��1

to @1E (recall that the .i; j / entry of B is bij�j if i > j , 0 if i D j , and bij if
i < j ).
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Next consider the contributions to @eij from big trees �10.e/ and �11.e/. The 1–
jet lifts of the multiscale flow trees corresponding to these big trees begin at eC on
sheet i , switch to sheet k for some k < i (for �10.e/) or k > i (for �11.e/) at the
constraint bik , and then pass through the braiding region and end at e� on sheet j .
The (horizontal) portion passing through the braiding region is located at t D �

2
or

t D 3�
2

and is thus isotopic to � ta
1
.eI c/ (which is at t D � ) in the complement of all

the unstable manifolds W u.aij / (which are below t D �
2

or above t D 3�
2

) and the
cycles �0 (which is below t D �

2
). Thus repeating the computation in Lemma 4.8, we

find that �10.e/ and �11.e/ combined give a contribution to @1E of

B � .ˆR
B/
�1:

Here we find that the sign of this term is C1 after observing that the sign of the
underlying restricted rigid disk is again C1 by repeating the calculation above. The
lemma follows.

4.4.5 Proof of Theorem 1.1 By Theorem 4.3, the differential for the Legendrian
DGA LA.ƒK / can be computed in terms of multiscale flow trees determined by ƒK

and ƒ. The contribution from multiscale flow trees of types MT¿ , MT0 and MT1

are calculated in Lemma 3.21, 4.7, 4.8 and 4.9.

5 Multiscale flow trees and holomorphic disks

The main purpose of this section is to establish Theorem 4.3. The proof has several
steps. In Section 5.1 we establish the connection between holomorphic disks and flow
trees for ƒU following [10]. In Section 5.2 we discuss the slightly stronger disk/flow
tree correspondence needed here. Finally, in Sections 5.3 and 5.4 we establish the
correspondence between holomorphic disks of ƒK in J 1.S2/ and multiscale flow
trees, ie, holomorphic disks with boundary on ƒU with flow trees of ƒK � J 1.ƒU /

attached along its boundary.

5.1 Basic results on constrained flow trees and disks

In this subsection we give a slight modification of results from [10] in the case of a
Legendrian surface ƒ in the 1–jet space of a surface S , ƒ� J 1.S/. We will apply
these results in two cases relevant to this paper; namely when ƒDƒU and S D S2 ,
and ƒDƒK and S DƒU .

For the notion of a flow tree of ƒ we refer to Section 2.4 and for a more thorough
account [10, Section 2.2]. As explained in [10, Section 3.1], associated to each flow
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tree � is its formal dimension dim.�/, see (2-3), which is the dimension of the
manifold of nearby flow trees for sufficiently generic ƒ. The main result of [10]
is concerned with the relation between rigid holomorphic disks and rigid flow trees.
Here we will need a slight generalization. To this end we introduce constrained rigid
holomorphic disks and constrained flow trees. If p1; : : : ;pr are distinct points in ƒ
then a holomorphic disk constrained by p1; : : : ;pr is a holomorphic disk with r extra
boundary punctures at which the evaluation map hits p1; : : : ;pr . Similarly, a flow
tree of ƒ constrained by p1; : : : ;pr is a flow tree with 1–jet lift with r extra marked
points where the evaluation map hits p1; : : : ;pr . If � 0 is a flow tree (or holomorphic
disk) constrained by p1; : : : ;pr 2ƒ and if � is that flow tree (or holomorphic disk)
with the constraining conditions forgotten then the formal dimension of the constrained
flow tree (or holomorphic disk) � 0 satisfies

dim.� 0/D dim.�/� r;

where dim.�/ is the formal dimension of � . We say that a flow tree (or holomorphic
disk) is constrained rigid if its formal dimension equals 0 and it is transversely cut out
by its defining equations.

For 0< � � 1 consider the map

s� W J
1.S/! J 1.S/; s� .q;p; z/D .q; �p; �z/

where q 2 S , p 2 T �q S and z 2R and write

ƒ� D s� .ƒ/:

Notice that since s� preserves the contact structure, ƒ� is still Legendrian and clearly
Legendrian isotopic to ƒ. In order to state the correspondence theorem relating
constrained rigid disks and trees we recall the following notation: Dm denotes the
unit disk with m boundary punctures and …W J 1.S/! T �S denotes the Lagrangian
projection.

Theorem 5.1 Given ƒ�J 1.S/ as above there is a small perturbation of ƒ so that for
a generic metric g on S there exist �0 > 0, almost complex structures J� , 0< � < �0 ,
and perturbations zƒ� of ƒ� with the following properties.

� The Legendrian submanifold zƒ� is obtained from ƒ� by a C 0 –deformation
supported near the cusp edges of ƒ� .

� The constrained rigid flow trees defined by zƒ� have well-defined limits as
� ! 0.

Geometry & Topology, Volume 17 (2013)



Knot contact homology 1057

� The (constrained) rigid J� –holomorphic disks with boundary on zƒ� with one
positive puncture are in one-to-one correspondence with the (constrained) rigid
flow trees of zƒ� with one positive puncture. In particular, the following holds
for all sufficiently small � > 0: if u� W Dm! T �S is a (constrained) rigid J� –
holomorphic disk then there exists a (constrained) rigid flow tree � of zƒ� such
that u� .@Dm/ lies in an O.� log.��1// neighborhood of the Lagrangian lift x�
of � . Moreover, outside O.� log.��1//–neighborhoods of the Y0;Y1 –vertices
and switches of � , the curve u� .@Dm/ lies at C 1 –distance O.� log.��1//

from x� .

Proof The proof is an adaption of results from [10], where Theorems 1.2 and 1.3 give
a version of Theorem 5.1 for unconstrained rigid disks and trees. (See the proof of
Theorem 1.3 and Lemma 5.13 in [10] for the O.� log.��1//–estimate). We briefly
recall the construction in order to adapt it to the constrained rigid case.

The first step is to fix a Riemannian metric on S such that there are only a finite
number of (constrained) flow trees of formal dimension 0 determined by ƒ and such
that all such flow trees are transversely cut out. A straightforward modification of the
unconstrained case, [10, Proposition 3.14], shows that the set of such metrics is open
and dense.

The second step is to change the metric to g , to introduce almost complex structures
J� , and to isotope the Legendrian ƒ� to a new Legendrian zƒ� . The main features
of these objects are the following. The rigid flow trees determined by g and zƒ� are
in one-to-one correspondence with the rigid flow trees of ƒ and corresponding trees
lie very close to each other; see [10, Lemma 4.4]. The submanifold zƒ� is rounded
near its cusps and changed accordingly near its swallowtails. The metric g is flat in a
neighborhood of any rigid flow tree and ….zƒ� / is affine in this neighborhood outside
a finite number of regions of diameter O.�/ where it is curved in only one direction;
see [10, Subsection 4.2] and Remark 5.2 below for details. The almost complex
structure J� agrees with the almost complex structure Jg induced by the metric in a
neighborhood of all rigid flow trees and swallowtails and outside a neighborhood of
the caustic (the locus of fiber tangencies) of ….zƒ� /. Near the points in the caustic
outside a neighborhood of the swallowtails, J� is constructed so that both J� itself
and the Lagrangian boundary condition given by ….ƒ/ splits as products with one
direction along the cusp edge and one perpendicular to it; see [10, Section 4.2.3].

In fact, ….zƒ� /Dˆ�1
� . yL� / where yL� is a totally real immersed submanifold and where

ˆ� is a diffeomorphism with dC 0.ˆ� ; id/DO.�/ and with dC 1.ˆ� ; id/ arbitrarily
small (but finite), which is supported in a small neighborhood of the caustic of ….zƒ� /
and which is equal to the identity in a neighborhood of all rigid flow trees of zƒ� . We
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use the almost complex structure J� D dˆ� ı J ı dˆ�1
� on T �S , where J is the

almost complex structure induced by a metric on S . Then J� –holomorphic disks with
boundary on zƒ� correspond to J –holomorphic disks with boundary on yL� .

We modify the deformations of the metric and of the Legendrian discussed above, in
order to deal also with constrained rigid trees. In the presence of point conditions,
repeat the construction in [10, Section 4.2], deforming the metric to g and constructing
yL� in the exact same way as along rigid flow trees. Furthermore, this should be done
in such a way that no constraining point is an edge point; see [10, Section 4.2.H]. Then
take J� D dˆ� ıJ ıdˆ�1

� , and let zƒ� be such that ˆ� .…zƒ� /D yL� , where J is the
almost complex structure on T �S induced by the special metric. We use the notation
from [10, Remark 3.8] for vertices of (constrained) rigid flow trees.

After the modifications of the constructions in [10, Section 4] (first and second steps)
described above, the theorem follows from [10, Theorem 1.2, Theorem 1.3] with the
following additions. Theorem 1.2 shows that any rigid holomorphic disk with one
positive puncture converges to a flow tree. Since the condition that the boundary
of a disk passes through a constraining point is closed, it follows that constrained
disks converge to constrained trees. In Theorem 1.3, rigid J� –holomorphic disks with
boundary on yL� near any rigid flow tree are constructed and proved to be unique.
The corresponding construction and uniqueness proof in the case of constrained rigid
flow trees is completely analogous after the following alteration. If � is a constrained
rigid flow tree with constraining point m then take the preimage of m (which is not
an edge point) to be a marked point in the domain �.0;0/p;m .�; �/ of the approximately
holomorphic disks; see [10, Section 6.2.A], and let Vsol.m/D 0 instead of Vsol.m/�R,
and see [10, Section 6.3.B, Definition 6.15].

Remark 5.2 Below we will use the following special features of the metric g and the
Legendrian submanifold zƒ� in Theorem 5.1. (For the construction of the metric and
zƒ� with these properties we refer to [10, Section 4].)

(1) There exists a neighborhood X � S that contains all (constrained) rigid flow
trees in which the metric g on S is flat. We write X zƒ�

�…�1
F
.X /\ zƒ� .

(2) The image of any flow segment in a (constrained) rigid flow tree is a geodesic
of the metric g .

(3) The two sheets of the Lagrangian projection ….zƒ� / near each double point
consist of two transverse affine Lagrangian subspaces. The Lagrangian projection
….zƒ� / is parallel to the 0–section (ie the graph of a polynomial function in flat
local coordinates of degree at most 1) in neighborhoods of the following points:
trivalent vertices of any (constrained) rigid flow tree, and intersection points of
any (constrained) rigid flow tree.
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(4) In Fermi coordinates along any edge the Lagrangian is parallel to the 0–section
in the coordinate perpendicular to the edge (ie the Lagrangian is the differential
of the graph of a function of the form f .x1/C cx2 , where x1 is the coordinate
along the edge, x2 perpendicular to it, and c a constant).

(5) Outside O.�/–neighborhoods of a finite number of edge points in each (con-
strained) rigid flow tree the Lagrangian projection ….zƒ� / is affine (ie the
function f in .4/ has the form f .x1/ D a2x2

1
C a1x1 C a0 ). For our study

of multiscale flow trees below we will also assume that the edge point regions
are disjoint from the junction points (ie, the points where, using the notation of
Definition 4.1, small trees are attached to the big tree).

(6) We will also assume that the following extra condition is met: at a finite number
of fixed extra points the Lagrangian projection has the form mentioned in .3/.
(These extra points are the junction points mentioned above and points where
two distinct rigid multiscale flow trees intersect or one such tree self-intersects
transversely.)

5.2 Refined results on constrained flow trees and disks

Recall that Theorem 4.3 relates holomorphic disks to multiscale flow trees. This relation
is the result of a double degeneration: first the conormal lift of the unknot is pushed
to the 0–section in J 1.S2/ and then the conormal lift of a more general closed braid
is pushed toward the almost degenerate conormal lift of the unknot. To deal with this
we will stop the first degeneration close to the limit where actual holomorphic disks
on the almost degenerate conormal lift of the unknot are close to flow trees. Then we
degenerate the conormal lift of a general braid toward the almost degenerate conormal
lift of the unknot and show that holomorphic disks near the limit admit a description
in terms of quantum flow trees, ie, holomorphic disks with flow trees attached along
their boundaries. Since both quantum flow trees and multiscale trees are defined as
intersection loci of evaluation maps of holomorphic disks and flow trees, respectively,
we need to show that the disks and the flow trees are arbitrarily C 1 –close in order to get
the desired relation between quantum flow trees and multiscale flow trees. However the
relation between quantum trees and holomorphic disks holds only for almost complex
structures with special properties near ….ƒU /. In this section we show that there exist
almost complex structures with these special properties for which the holomorphic
disks are still close to flow trees.

5.2.1 Definition of quantum flow trees As already mentioned quantum flow trees
will be central to establishing the relation between multiscale flow trees and holomorphic
disks. We define them as follows. Consider ƒK � J 1.ƒU / as above. A quantum flow
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tree „ of ƒK is a holomorphic disk uW Dm!T �S2 with boundary on ….ƒU / and a
collection � of partial flow trees � D f�1; : : : ; �mg with one special positive puncture
on the lift zuW @Dm ! ƒU of the boundary of u. Note that �j could be a constant
flow tree at a Reeb chord of ƒK . Then the positive special punctures subdivide the
boundary of Dm into arcs and we require that there is a lift of these arcs to ƒK which
together with the 1–jet lifts of the trees in � from a closed curve when projected to
T �S2 . As for multiscale flow trees we call the points where flow trees are attached to
u junction points.

5.2.2 Modifying the almost complex structure — metric around flow trees Con-
sider the degeneration � ! 0 in Theorem 5.1. Fix a small � D �0 > 0 so that the
boundaries of all (constrained) rigid holomorphic disks are close to the cotangent lifts
of their corresponding (constrained) rigid flow trees. More precisely, we take �0 so
that the boundaries of all (constrained) rigid J�0

–holomorphic disks lie well inside
the finite neighborhood X of the tree where the metric is flat and where zƒ�0

is as
described in Remark 5.2. For simpler notation we write

ƒD zƒ�0
DƒU ;

where U is the unknot. We continue to use the subscript �0 in J�0
from Theorem 5.1

since we will modify the almost complex structure some more.

Consider an arbitrary closed braid K �R3 lying in a tubular neighborhood of U . If
K is sufficiently close to U then ƒK lies in a tubular neighborhood of ƒDƒU that
is symplectomorphic to J 1.ƒ/. Furthermore, the front projection …ƒ

F
W ƒK !ƒ is

an immersion. Since these properties are preserved under the global scaling by � we
consider ƒK �N � J 1.ƒ/, where the neighborhood N of the 0–section in J 1.ƒ/

is identified with a neighborhood of ƒ in J 1.S2/.

When we compute the Legendrian homology of ƒK , we will use an almost complex
structure J� (to be defined after Lemma 5.3 for small � > 0) on T �S2 , which differs
from J�0

. In particular, to relate holomorphic disks with boundary on ƒK with
quantum flow trees of ƒK , it will be important that J� agrees with the almost complex
structure induced by a metric on ƒ in a neighborhood N� of ….ƒ/�T �S2 . Here N�
is the image under a symplectic immersion of a small neighborhood of the 0–section in
T �ƒ that extends …jƒ . Lemma 5.3, below, establishes the existence of such a metric
on ƒ. Specifically, the metric induces an almost complex structure on N� , which (has
a push-forward under an immersion which) agrees up to first order with J�0

in the fixed
size neighborhood ….Xƒ/�….ƒ/ of the union of all boundaries of constrained rigid
flow trees in ƒ. Our desired almost complex structure J� will interpolate between this
push-forward and J�0

.
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Recall the special form of ….ƒ/ near its double points; see Remark 5.2.3/. Choose
a metric g on ƒ flat near its Reeb chord endpoints. Let Jg be the almost complex
structure induced by g . Note that for such a metric we can find an immersion �
defined on the cotangent bundle of the neighborhood of the Reeb chord endpoint that is
.Jg;J�0

/ holomorphic. In particular, if �W T �ƒ!T �S2 is an immersion that extends
…jƒ and that has these properties near Reeb chord endpoints, then the push-forward of
Jg , ��Jg , is well-defined. Furthermore, we assume that .g; �/ satisfies this .Jg;J�0

/–
holomorphicity condition also near the other points mentioned in Remark 5.2.3/ and
.6/, where we take the extra points to be the junction points of the multiscale trees.
We call the points in .3/ and the extra points the distinguished points. We call a pair
consisting of a metric and a symplectic immersion .g; �/ with properties as above
adapted to ƒ.

Lemma 5.3 There exists a neighborhood N of the 0–section in T �ƒ and a pair
.g; �/, consisting of a metric g and an immersion �W N ! T �S2 that extends …jƒ ,
that is adapted to ƒ and such that the following hold on �.N /.

(1) J�0
and ��Jg agree along ….ƒ/.

(2) J�0
and ��Jg agree in neighborhoods of distinguished points.

(3) J�0
and ��Jg agree to first order in ….Xƒ/.

Proof It is straightforward to check that statement .1/ can be achieved and statement
.2/ follows by the definition of adapted pair (where the fact that the metric is flat and
the Lagrangian affine near distinguished points readily implies existence).

We turn our attention to statement .3/. Let p be a point on the 1–jet lift of a rigid
flow tree. Pick normal coordinates x D .x1;x2/ on ƒ around p with the 1–jet lift
corresponding to fx2 D 0g. Since the metric on S2 is flat we can identify it locally
with C2 with coordinates .u1; v1;u2; v2/ and we can choose these coordinates so that
the flow tree under consideration lies along fu2 D 0g.

Since ….ƒ/ is a product of a curve in the u1 –direction and a line segment parallel
to the 0–section in the u2 –direction we have the following local parametrization of
….ƒ/:

f .x1;x2/D .x1; f .x1/;x2; c2/:

Let y D .y1;y2/ denote the fiber coordinate. Defining the local immersion

 .x;y/D f .x1;x2/Cy1.�f
0.x1/@x1

C @y1
/Cy2@y2
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we find that condition .1/ holds and that the Taylor expansion of  �J (ie, the complex
structure of the flat metric on S2 that corresponds to the standard complex structure in
uC iv–coordinates pulled back by  ) with respect to y is

. �J /.x;y/D J0CB.x1/y1CO.2/;
where J0 is the standard complex structure on C2 with xCiy –coordinates which is the
complex structure induced by the flat metric on ƒ. Here B.x1/J0CJ0B.x1/D 0, and
B.x1/@x2

D 0. A straightforward calculation shows that if we change the immersion
 by pre-composing with a diffeomorphism ˆ with the Taylor expansion

ˆ.x;y/D .x;y/C 1
2

�
B1.x1/@x1

�
y2

1 ;

then the almost complex structures agree to first order, ie, if � D  ıˆ then ��J�0

and J0 agree to first order along fy1 D y2 D 0g.

Remark 5.4 For a general ambient almost complex structure J it is not possible to
make the push forward agree up to first order. The Taylor expansion above with respect
to .y1;y2/ for a general J is

. �J�0
/.x;y/D J0CB1.x/y1CB2.x/y2CO.2/;

where Bj anti-commutes with J0 . One would then look for a map with Taylor
expansion of the form

ˆ.x;y/D .x;y/C 1
2

�
B1@x1

�
y2

1 C
1
2

�
B2@x2

�
y2

2 CCy1y2:

However, in order for the almost complex structures to agree up to first order one needs
both C DB1@x2

and C DB2@x1
. In general B1@x2

¤B2@x1
so no solution ˆ exists.

Let .g; �/ be as in Lemma 5.3. For small � > 0, write N� for the image under �
of an �–neighborhood of the 0–section in T �ƒ and let „� denote the image of an
�–neighborhood of T �Xƒ . Theorem 5.1 implies that (for �0 small enough) every
(constrained) rigid J�0

–holomorphic disk intersects a neighborhood of ….ƒ/ inside
„�0 for some �0 > 0. Write M� for a �–neighborhood of all (constrained) rigid
holomorphic disks. Let J� denote an almost complex structure on T �S2 that equals
��Jg on N� , equals J�0

outside N2� , and that interpolates between the two in the
remaining region in such a way that the following hold:

jJ�0
�J�jC 0 ! 0 as �! 0(5-1)

jJ�0
�J�jC 1 ! 0 in „�0

[M�0
as �! 0, for fixed �0 > 0(5-2)

jJ�0
�J�jC 2 �K1 in „�0

[M�0
, for fixed �0;K1, and � < �0(5-3)

jJ�0
�J�jC 1 �K2; for fixed �0;K2, and for � < �0(5-4)
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We make two remarks. As a consequence of the fact that in general J�0
and ��Jg do

not agree up to first order outside X we typically have jJ�0
�J�jC 2 !1 as �! 0.

As shown in the C 0 –convergence portion of the proof of Lemma 5.5 below, we may
assume that for sufficiently small �, any rigid J�–holomorphic disk lies in M�0

.

We next show that rigid J�–holomorphic disks are C 1 –close to rigid J�0
–holomorphic

disks. Note that it follows from Theorem 5.1 that (for �0 sufficiently small) the almost
complex structure J�0

is regular in the sense that all (constrained) J�0
–holomorphic

disks in T �S2 with boundary on ….ƒ/ of formal dimension at most 0 are transversely
cut out.

Lemma 5.5 Let u�W Dm! T �S2 , �! 0 be a sequence of (constrained) rigid J�–
holomorphic disks with boundary on ƒ. Then some subsequence of u� C 1 –converges
on compact subsets of Dm to a (constrained) rigid J�0

–holomorphic disk. Moreover,
for all � > 0 small enough there is a unique (constrained) rigid J�–holomorphic disk
in a neighborhood of each (constrained) rigid J�0

–holomorphic disk.

Proof For the first statement we use Gromov compactness (for jJ� � J�0
jC 0 ! 0)

to conclude that either jDu�j is uniformly bounded or there is bubbling in the limit,
see eg Sikorav [32], and the fact that point constraints are closed. The case that u�
is a sequence of rigid disks bubbling is not possible: all bubbles of the limit have
dimension at least 0, since J�0

is regular. This implies dim.u�/ > 0 in contradiction
to u� being (constrained) rigid. We conclude thus that jDu�j is uniformly bounded;
thus u� converges uniformly to a (constrained) rigid J�0

–holomorphic disk u. We
must show that it converges with one derivative as well.

Consider a point z 2D and its image u.z/ under u. Since u�.z/! u.z/ and since
jDu�j and jDuj are bounded we can find a coordinate neighborhood W �M�0

of u.z/

and a small disk E around z in D so that u�.E/�W for all � > 0 and u.E/�W .

We pick C2 –coordinates on W so that ….ƒ/ corresponds to the totally real R2 �C2 .
The neighborhood E is either a disk or a half disk, with complex structure j . We find
as in [32, Section 2.3] that in local coordinates u and u� satisfy the equations

x@uC q @uD 0;(5-5)

x@u�C q� @u� D 0;(5-6)

where

q.z/D .i CJ�0
.u//�1.i �J�0

.u//;(5-7)

q�.z/D .i CJ�.u�//
�1.i �J�.u�//:(5-8)
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Letting u�u� D h� we conclude that

(5-9) x@h�C q� @h� D .q� q�/@u:

By scaling we may take jq�jC 2 � �� 1; see [32]. Moreover, by C 0 –convergence u�
lies in M�0

an therefore jq� q�jC 1 ! 0. A standard bootstrap argument for h� now
shows that jh�jC 1 ! 0 as �! 0.

Uniqueness of u� near u�0
for small � follows from transversality at u� and the

C 1 –convergence (5-3) of complex structures near u�0
.

Remark 5.6 A general sequence of J�–holomorphic disks that does not blow up
would C 0 –converge to a J�0

–holomorphic disk but not necessarily C 1 –converge.

5.2.3 Metric and perturbations — metric near flow trees of ƒK Note that the
metric g in Lemma 5.3 has arbitrary form outside a small neighborhood of the 1–
jet lifts of constrained rigid flow trees of ƒ and that furthermore it is flat near all
distinguished points. In this section we will impose further conditions on g outside
this region in order to adapt it to the (partial) flow trees of ƒK � J 1.ƒ/ that are parts
of rigid multiscale flow trees of ƒK . Furthermore, we will also deform ƒK itself in
a way analogous to how ƒ� was deformed into zƒ� . The construction is completely
analogous to the construction in [10, Section 4], although it is simpler in the present
situation since ƒK has no front singularities. The construction in Section 5.2.2 gives
a metric in ƒ, which is flat in a neighborhood of the 1–jet lifts of all (constrained)
rigid flow trees whose …–projections contain the boundaries of all (constrained) rigid
holomorphic disks. Furthermore, we take the distinguished points to include all junction
points as well as points where multiscale flow trees intersect constrained rigid disks.
We next extend the region where the metric is flat to contain all rigid flow trees of
ƒK � J 1.ƒ/ as well as all partial flow trees of ƒK that are parts of rigid generalized
disks. Note that these regions include the projection of any Reeb chord of ƒK �J 1.ƒ/.
We next deform ƒK slightly so that it has the form described in Remark 5.2 over all
the flow trees just mentioned; see [10, Section 4.2]. (Here we treat junction points
corresponding to positive punctures of special trees like the 3–valent vertices of flow
trees in [10] and treat the other junction points like the 2–valent punctures in [10].) In
particular, ƒK is affine at Reeb chord endpoints, lifts of flow trees are geodesics in
the flat metric, and the sheets of ƒK near a junction point that is a special Reeb chord
will be parallel to the 0–section in J 1.ƒ/ (which in turn is parallel to the 0–section in
J 1.S2/ over a subset U � S2 where the metric on S2 is flat). Similarly, the metric
on S2 is flat near junction points that are Reeb chords, where the sheet of ƒ is parallel
to the 0 section, and where the sheets of ƒK are affine (and almost parallel to the
0–section).
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Let 0� �� 1 and define ƒK I� D s�.ƒK / to be the image under fiber scaling by � in
J 1.ƒ/. Then as above, along 1–jet lifts of flow lines that are part of rigid generalized
disks, the Lagrangian ….ƒK I�/ is a product of a horizontal line segment and a curve
over the distinguished curve. Thus, as in [10] and [13], the regions where this curve is
not affine have diameters O.�/ as �! 0. With this metric we construct the almost
complex structure J� of Lemma 5.5 for some sufficiently small but fixed � > 0. Note
that J� then agrees with the complex structure induced by the metric on ƒ in a
neighborhood of ….ƒ/ that is the image under an immersion of a small neighborhood
of the 0–section in T �ƒ.

5.3 From disks to quantum flow trees

Now that we have finished modifying our almost complex structures to achieve J�
with the desired properties from the previous subsection, we simplify notation and let

J D J�:

The main result of this section is that any sequence of rigid J –holomorphic disks with
boundary on ƒK ;�D s�.ƒK / has a subsequence that converges to a rigid quantum flow
tree of ƒK and ƒ. In Section 5.3.2 we characterize certain subsets of the domains of
any sequence of J –holomorphic disks with boundary on ƒK ;� such that the restrictions
of the maps to these subsets converge to a (partial) flow tree of ƒK � J 1.ƒ/. In
particular, in case these subsets constitute the whole domains of the members in the
sequence we find that the J –holomorphic disks converge to a flow tree. In Section 5.3.3
we show that there can be at most one disk bubbling off in the limit of a sequence of
rigid J –holomorphic disks with boundary on ƒK ;� as �! 0 and that by adding a
puncture in the domain near the point where the bubble forms we ensure that the maps
in the sequence satisfy a uniform derivative bound. In Section 5.3.4 we prove the main
result of the section. After the previous subsections there are two main points that must
be demonstrated. First, we show that the limit has only one holomorphic disk part,
which must be a (constrained) rigid disk. Second, we show that our analysis of the two
separate parts (the flow tree- and the disk part) gives a complete description of the limit
objects.

5.3.1 Notation Consider ƒK � N � J 1.ƒ/ where N is a neighborhood of the
0–section that is identified with a neighborhood of ƒ � J 1.S2/. In particular, if
0 < � < 1 and s�W J

1.ƒ/! J 1.ƒ/ denotes the fiber scaling then s�.N / � N and
hence ƒK ;� is a Legendrian submanifold in N that is Legendrian isotopic to ƒK .

Consider the Reeb chords of ƒK I� . Recall that these are of two types: short and long
chords. We will use the notation for chords introduced in Remark 3.8. The action a.c/
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of a Reeb chord c is the positive difference of the z–coordinates of its two endpoints.
Stokes’ Theorem implies the area of a holomorphic disk is the signed sum of the actions
of the Reeb chords at its punctures; see [15, Lemma 2.1], for example. Recall the two
Reeb chords e and c of ƒDƒU introduced in Section 3.1. Chords of ƒK I� satisfy
the following: chords of type L2 lie close to e and have action a.e/CO.�/, chords
of type L1 lie close to c and have action a.c/CO.�/, and chords of types S0 and S1

have action O.�/.

For the fixed almost complex structure J D J� , Lemma 5.5 holds and J has properties
as in Section 5.2.3. Then, in particular, boundaries of (constrained) rigid disks of ƒ
lie C 1 –close to 1–jet lifts of its corresponding (constrained) rigid trees. It follows, in
particular, that there is a natural one-to-one correspondence between rigid quantum
trees of ƒK and rigid generalized trees of ƒK . Furthermore, in a neighborhood of
….ƒ/ the almost complex structure J agrees with the one induced by the metric on ƒ
by Lemma 5.3.

Below we will discuss J –holomorphic disks in T �S2 with boundary punctures.
Throughout we will think of these as maps uW �m ! T �S2 , where the source is
a standard domain. For details on standard domains we refer to [10, Section 2.2.1];
here we give a brief description. Consider Rm�2 with coordinates � D .�1; : : : ; �m�2/.
Let t 2R act on Rm�2 by t �� D .�1C t; : : : ; �m�2C t/. The orbit space of this action
is the space of conformal structures of the disk with m boundary punctures, one of
which is distinguished, Cm�Rm�3 . Define a standard domain �m.�/ as the subset of
R� Œ0;m� obtained by removing m�2 horizontal slits of width � , 0< �� 1, starting
at .�j ; j /, j D 1; : : : ;m� 2 and going to C1. All slits have the same shape, ending
in a half-circle; see Figure 24. The points .�j ; j / are called the boundary minima.

�1 �2 �3 x

y

Figure 24: The standard domain �5.�1; �2; �3/ with three boundary minima
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In the case that u has less than two negative punctures we add marked points at
intersections with a small circle around the positive Reeb chord endpoint and puncture
the domain there, so that it admits a description as a standard domain. We will often
write �m dropping the precise information about the conformal structure from the
notation.

Consider a standard domain �m � C . Let Vˇ D fx C iy W x D ˇg. A connected
component of the closure of Vˇ\.�m�@�m/ in �m will be called a vertical segment
in �m .

5.3.2 Flow tree convergence Consider a sequence u�W �m ! T �S2 of rigid J –
holomorphic disks with boundary on ƒK I� , �! 0. As �! 0, the actions of Reeb
chords of ƒK I� of type S satisfy a O.�/ bound. Hence, by Stokes’ Theorem and the
dimension formula for holomorphic disks, if � > 0 is sufficiently small then a moduli
space of J –holomorphic disks with one positive puncture, with boundary on ƒK ;� ,
and of formal dimension 0 can be non-empty only if it contains disks with punctures
of the following types:

.QT¿/ The positive puncture is of type S1 and all negative punctures are type S0 .

.QT0/ The positive puncture is of type L1 and all negative punctures are of type S0 .

.QT00/ The positive puncture is of type L2 , one negative puncture is of type L1 , and
all other negative punctures are of type S0 .

.QT1/ The positive puncture is of type L2 , one negative puncture is of type S1 , and
all other negative punctures are of type S0 .

Lemma 5.7 If u�W �m ! T �S2 is a sequence of J –holomorphic disks of type
.QT¿/ then u� has a subsequence that converges to a flow tree of ƒK �N � J 1.ƒ/

as �! 0.

Proof The actions of Reeb chords in S1 are O.�/. Thus the area of u� is O.�/ as well.
Monotonicity then implies that u�.�m/ must stay inside an O.�1=2/–neighborhood
of ….ƒ/. Since J agrees with the complex structure coming from the metric on ƒ in
a finite neighborhood of ….ƒ/ and since disks lift to the symplectization of J 1.S2/

where ƒ�R is embedded, the lemma follows from [10, Theorem 1.2].

We next show that for any sequence of J –holomorphic disks u�W �m! T �S2 there
are neighborhoods of each negative puncture of type S, where the disk converges to
a flow tree (which may be constant). The key to establishing this convergence is an
O.�/ derivative bound on neighborhoods of the punctures. Consider the inclusion
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ƒK I� � N � J 1.ƒ/ and let z denote a coordinate in the R–direction of J 1.ƒ/ �

T �ƒ�R. If  is a curve in T �S2 then let `. / denote the length of  in the metric
induced by ! and J . Fix M > 0 larger than the maximum of the function jzj on
ƒK DƒK I1 . A vertical segment l� � Œ0; 1� in the domain �m of u� such that

`.u�.l�//�M�;(5-10) ˇ̌
z.u�jl�.1//� z.u�jl�.0//

ˇ̌
�M�;(5-11)

will be called an �–short vertical segment.

By elementary Fourier analysis, near punctures, holomorphic disks u� have expansions
of the form

(5-12) u�.� C i t/D ei�0.�/
X
n>0

cne�.�/.�Cit/; � C i t 2 Œ0;1/� Œ0; 1�;

(see [14, Section 6], and Robbin and Salamon [31]), where �.�/DO.�/ is the angle
between two sheets of the double point. This implies that there exist �–short vertical
segments in a neighborhood of each puncture of u� of type S. Note that a vertical
segment l� subdivides �m into two components: �m D �

C
m.l�/[�

�
m.l�/, where

�C.l�/ contains the positive puncture of u� . For d > 0, let �˙.l�; d/ denote the
subset of points in �˙.l�/ that are at a distance at least d from l� .

Lemma 5.8 For all sufficiently small � > 0 the following derivative bound holds: if
l� is an �–short vertical segment in the domain of u�W �m! T �S2 then

jdu�.z/j DO.�/; z 2��.l�; 1/:

Proof Let b1; : : : ; br denote the negative punctures of u� that lie in ��m.l�/. Then
the area A�� of u�.�

�.l�// satisfies

0�A�� D

Z
u�.@��.l�//

p dq

D

Z
u�.l�/

p dqC .z.u�jl�.1//� z.u�jl�.0///�

rX
jD1

`.bj /DO.�/:

We conclude by monotonicity that u�.�
�.l�// must lie in an O.�1=2/–neighborhood

of ƒ (in particular all chords bj are of type S). Since J agrees with the almost complex
structure induced by the metric on ƒ in such a neighborhood, [10, Lemma 5.4] shows
that the function jpj2 , where p is the fiber coordinate in T �ƒ, composed with u�
is subharmonic on ��.l�/ and therefore attains its maximum on the boundary. The
lemma then follows from [10, Lemma 5.6].
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The derivative bound of Lemma 5.8 leads to flow tree convergence on ��.l�/. Consider
a sequence of �–short vertical segments l� such that each domain ��.l�/ contains a
puncture mapping to a Reeb chord � � b of ƒK I� for some Reeb chord b of ƒK with
….b/ 2N .

Corollary 5.9 There exists a constant C > 0 such that the sequence of restrictions
u�j��.l�;C log.��1// has a subsequence that converges to a flow tree of ƒK � J 1.ƒ/.
(Note that the flow tree in the limit may be constant.)

Proof By Lemma 5.8, the image under u� of any region in ��m.l�; 1/ of diameter
log.��1/ lies inside a disk of radius O.� log.��1//. Furthermore, along any strip
region in ��.l�; log.��1// outside an O.log.��1//–neighborhood of the boundary
minima in ��.l�/, the map converges to a flow tree by the proof of [10, Theorem 1.2];
see in particular Lemmas 5.12, 5.16 and 5.17 in [10].

Remark 5.10 If the limiting flow tree in Corollary 5.9 is constant then it lies at ….b/2
N , where b is the Reeb chord of ƒK above. To see this note that ��m.l�;C log.��1//

always contains a half infinite strip that is a neighborhood of the puncture mapping
to b . If the vertical segment bounding this strip does not converge to ….c/ for some
Reeb chord c , then the limiting tree would be non-constant. Thus, each such segment
converges to the projection of the Reeb chord and since ….b/ is in the image we find
that the whole tree must lie at ….b/.

5.3.3 Blow-up analysis We next show that the limit of any sequence of J –holomor-
phic disks u�W �m! T �S2 with boundary on ƒK I� can contain at most one bubble.
We also show how to add one puncture consistently to each domain so that this forming
bubble corresponds to some coordinate of the domains of u� , which give points in the
space of conformal structures on the disk with m boundary punctures, one distinguished,
Cm �Rm�3 , approaching 1 (rather than the derivative of u� blowing up).

Lemma 5.11 If u�W �m! T �S2 is a sequence of J –holomorphic disks with bound-
ary on ƒK I� and with one positive puncture such that sup�m

jdu�j is unbounded as
�! 0 then, after adding one puncture in the domains �m of u� , we get an induced
sequence u�W �mC1! T �S2 for which jdu�j is uniformly bounded from above.

Proof The proof uses standard blow-up arguments; see eg [32]. Assume that M� D

sup�m
jdu�j is not bounded as �! 0. Using asymptotic properties of J –holomorphic

disks near the punctures of u� , see (5-12), we find that for � > 0 there exist points
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p� 2 �m such that jdu�.p�/j DM� . View �m as a subset of C and consider the
sequence of maps

g�.z/D u�

�
p�C

z

M�

�
defined on U D

n
z 2C W p�C

z

M�
2�m

o
;

where �m refers to the domain of u� . Note that the derivative jdg�j of g� is uniformly
bounded as �! 0. We can thus extract a convergent subsequence, which in the limit
�D 0 gives a non-constant holomorphic disk vW H ! T �S2 , where H is the upper
half plane, with boundary on ƒ, with a positive puncture at infinity, and no other
puncture. (There may be other bubble disks in the limiting bubble tree, but since there
are no bubbles forming near punctures and since the total topology of the domain
is recoverable from the limit, at least one of them has a single puncture. Note also
that in the limit, only the chords of type L exist.) Fix an arc A in ƒ that intersects
v.@H / transversely at a point far from all Reeb chord endpoints. It follows from
the convergence g�! v that there exists a point q� in the domain �m for u� with
jp� � q�j ! 0 as �! 0 such that u�.q�/ 2….ƒ/. Adding a puncture at q� in the
domain �m of u� gives a new sequence of maps u1

�W �mC1! T �S2 . Assume now
that sup�mC1

jdu1
�j is unbounded. Repeating the blow up argument sketched above,

we would again find a bubble disk v1W H ! T �S2 in the limit with one positive
puncture and no other punctures.

Since the area contributions of u1
� in a neighborhood of the added puncture q� are

uniformly bounded from below and since this neighborhood can be taken to map to
a region far from all Reeb chords, it follows that there are at least two non-constant
disks in the limit, both with one positive puncture and no other punctures. The sum of
the areas of these two disks is bounded from below by 2a.c/CO.�/, where c is the
shorter of the two Reeb chords of ƒ. This however contradicts u� having one positive
puncture since the lengths of Reeb chords then imply Area.u�/ � a.e/CO.�/ and
2a.c/ > a.e/. The lemma follows.

5.3.4 Quantum flow tree convergence Consider a sequence u�W �m! T �S2 of
rigid J –holomorphic disks with boundary on ƒK ;� . Assume, without loss of generality
(see Lemma 5.11), that jdu�j is uniformly bounded.

Lemma 5.12 If each of the disks u� has a positive puncture at a Reeb chord of type
L then sup�m

jdu�j is uniformly bounded from below.

Proof Consider the neighborhood N of ….ƒ/ where J is induced by the metric on
ƒ. Since u� maps @�m to an O.�/–neighborhood of ….ƒ/ there exists � > 0 such
that if jdu�j � � then u�.�m/�N for all sufficiently small � > 0. [10, Lemma 5.4]
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then shows that the function jp ı u�j
2 is subharmonic and, consequently, that the

sequence u� has a subsequence u�0 that converges to a flow tree; see [10, Lemma 5.6].
In particular the area of u�0 is O.�0/. But since u�0 has a positive puncture of type L,
there is a uniform bound from below on the area of u�0 restricted to a neighborhood of
this puncture. See the proof of [14, Lemma 9.3], for example.

Lemma 5.12 leads to a description of the J –holomorphic components in the limit of
the sequence u� with positive puncture at a chord of type L as follows. Consider a
sequence of points p� in the domains �m of u� such that jdu�.p�/j � � > 0 for
all � > 0. After passing to a subsequence, we may assume that u�.p�/ converges in
T �S2 . Consider coordinates � C i t on C and represent the domain �m �C of u�
by letting the � –coordinate of p� equal 0. Then as �! 0 in the sequence of domains
of u� , some boundary minima of �m stay at finite distance from p� and others do
not. After passing to a subsequence we may assume that every sequence of boundary
minima on a fixed height has a limit, which may be finite or infinite, and we find a
limiting conformal structure on a domain �m0

that contains p0 D lim� p� . It follows
in a straightforward way that u� converges (uniformly on compacts) to a non-constant
J –holomorphic disk vW �m0

! T �S2 with boundary on ƒ. We say that such a disk
is a non-constant J –holomorphic component of the limit.

We next consider the role of the choice of p� . If the sequence of domains �m converges
and if they contain some point q� such that jdu�.q�/j � ı > 0 and if jp� � q�j !1

as �! 0 then, repeating the above argument, we extract another non-constant J –
holomorphic component v0 containing q0 D lim�!0 q� of the limit, which is distinct
from the component v that contains p0 . Furthermore, if the � –coordinate of q�
approaches ˙1 in coordinates where the � –coordinate of p� equals 0 and if a is the
Reeb chord at the positive puncture of v0 then a is also the negative puncture of some
non-constant J –holomorphic component in the limit. Arguing by action it is easy to
see that the number of non-constant components in the limiting configuration is finite.
And since ƒ has only two Reeb chords of almost equal actions the number of such
components is at most two.

We next show that the flow trees in Lemma 5.8 fit together with the non-constant
components to form a quantum flow tree. Consider a puncture �r at C1 in the
domains �m of u� that maps to a Reeb chord r of ƒK I� . By asymptotic properties
of holomorphic disks at punctures there are �–short vertical segments that separate
�r from the positive puncture �C at �1 of �m . In particular, there is an �–short
vertical segment l�.�r / of minimal � –coordinate that separates �r from �C ; we call
it the extremal �–small vertical segment of �r . If vW �m0 ! T �S2 is a non-constant
J –holomorphic component in the limit configuration then we write @v D v.@�m0/ for
the image of v restricted to the boundary.
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Lemma 5.13 If �r is any puncture at C1 in the domains �m of u� that maps to a
Reeb chord r and if l� is the extremal �–small vertical segment of � then there exists
a non-constant component v of the limit such that u�.l�/ converges to a point in @v .

Proof We prove this lemma by contradiction: if the statement of the lemma does
not hold, then the area difference between a limit disk and the disks before the limit
violates an O.�/ area bound. In this proof we let Area refer to area defined by the
Riemannian metrics !.J�; 0/, � > 0.

Assume the lemma does not hold. Then there exists � > 0 such that for any sequence of
l� which satisfies the inequalities (5-10) and (5-11), some point on l� maps a distance
at least � > 0 from @v . Consider a strip region between two slits, Œ�d; d �� Œ0; 1���m ,
for which some point converges to a point at distance ı from @v , where �

4
< ı < �

2
.

Let supŒ�d;d ��Œ0;1� jdu�j D K . Then K is not bounded by M� for any M > 0.
Since the difference between the sum of areas of the non-constant components in
the limit and that of u� is O.�/, it follows that jdu�j D O.�1=2/ (by monotonicity
and a standard bootstrap estimate). Thus K D O.�1=2/. Consider next the scaling
of the target by K�1 at the image of .0; 0/ 2 Œ�d; d � � Œ0; 1�. We get a sequence
of maps yu� from Œ�d; d � � Œ0; 1� with bounded derivative. Note moreover that the
scaled boundary condition is O.�1=2/ from the 0–section. Changing coordinates to
the standard .Cn;Rn/ respecting the complex structure at the limit point, we find that
there are maps f�W Œ�d; d �� Œ0; 1�!Cn with the following properties:

� supŒ�d;d ��Œ0;1� jD
kf�j DO.�1=2/, k D 0; 1,

� yu�Cf� satisfies Rn boundary conditions, and

� x@.yu�Cf�/DO.�1=2/.

It follows that yu�C f� converges to a holomorphic map with boundary on Rn , which
takes 0 to 0 and which has derivative of magnitude 1 at 0. Using solvability of the
x@–equation in combination with L2 –estimates in terms of area we find that the area of
yu� must be uniformly bounded from below by a constant C . The area contribution to
the original disks near the limit is thus at least K2C . Since the image of Œ�d; d �� Œ0; 1�

in ….ƒ/ has diameter at most 2Kd , we may repeat the argument with many disjoint
finite strips with maximal derivatives Kj and with the sum of diameters bounded below
by �

100
. We find that the area contribution is bounded from below by C

P
K2

j . Since
the length contribution is bounded below, we get:

2d
X

Kj �
�

100
:

Now,
C
X

K2
j � C inf

j
fKj g

X
Kj � C 0 inf

j
fKj g:
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For any M > 0, infj fKj g �M�. To see this assume that it does not hold true. Then
there is a sequence of vertical segments l� such that jdu�j � 2M� with the property
that the distance between u.l�/ and @v is at most 3

4
� . This however contradicts our

hypothesis. Consequently, the area contribution from the remaining part of the disk is
not O.�/.
Consider now the limit disk v . (For simplicity we explain how to deal with the case
of one extremal vertical segment, the case of many is completely analogous.) On its
boundary there is a point p such that for all � sufficiently small there are points on the
boundary of u� lying on different sheets of ….ƒK I�/ near v.p/, such that both limit
to p , and which in the boundary of the domain of u� separate the positive puncture
from the strips considered above. Fix a small sphere of radius of order of magnitude
T � around p , where T is a large constant. Then for generic spheres there is an arc �
in the intersection of this sphere and the image of u� that connects the two sheets of
….ƒƒKI�

/. Write E� and I� for the two components of the complement of u�1
� .�/

in the domain of u� , where I� contains the positive puncture.

By the above area estimate we have

Area.u�.E�//D
Z
�

p dq�O.�/

by Stokes’ Theorem, since u� is J�–holomorphic. Now consider the shortest geodesic
arc  0

� in the sphere connecting the two endpoints of � . Then there is a 2–chain in
the sphere with boundary  0

� [ � of area O.�2/, and clearly j
R
0
�

pdqj DO.�/.

We next construct a 2–chain A with boundary on ….ƒK I�/ as follows. The first piece
is the union of u�.I�/ and the above 2–chain in the sphere. The resulting chain has
area such that

��1.Area.u�/�Area.A//� ��1.Area.E�/CO.�//!1 as �! 0:

Now connect p to the start point of the flow tree corresponding to the extremal �–small
vertical segments (that converge to a point at distance � from p ). Take the chain that
has boundary the cotangent lift of this curve and that consists of vertical fiber segments.
This chain has area O.�/. Finally, consider the analogous chain associated to the flow
tree starting at the end point of this arc. We interpolate between these chains and have
constructed a 2–chain A0 with boundary homotopic to the boundary of u� and such
that

Area.A0/ < Area.u�/:

This, however, contradicts the fact that holomorphic curves minimize area in their
homology class. The lemma follows.
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As a consequence of the preceding lemmas, we get the following result.

Corollary 5.14 Any sequence of rigid holomorphic disks u� with boundary on ƒK I�

has a subsequence that converges to a quantum flow tree. The quantum flow trees that
arise as limits of rigid disks are of the following types:

.QT¿/ No non-constant J –holomorphic components (ie, flow trees), positive punc-
ture of type S1 and negative punctures of type S0 .

.QT0/ Rigid non-constant J –holomorphic component, positive puncture of type L1

and negative punctures of type S0 .

.QT00/ Rigid non-constant J –holomorphic component, positive puncture of type L2 ,
one negative puncture is of type L1 and all other negative punctures are of
type S0 .

.QT1/ Constrained rigid non-constant J –holomorphic component, positive puncture
of type L2 , one negative puncture of type S1 and remaining negative punctures
of type S0 .

Proof Consider .QT¿/: if the positive puncture of u� is of type S1 , flow tree
convergence was established in Lemma 5.7. For .QT0/ and .QT1/, assume that the
positive puncture has type L. Convergence to a quantum flow tree follows from the
above: Lemma 5.12 implies that there is some non-constant component in the limit and
the discussion following that lemma shows that the non-constant component is a broken
disk with at most two levels, and Lemma 5.13 then implies that the flow tree pieces of
Corollary 5.9 are attached to the non-constant components. If the positive puncture is of
type L1 then by the dimension formula there can be only one non-constant component
in the limit, and this component must be rigid. Since no rigid disk passes through any
chord of type S and since flow trees with negative punctures at chords of type S1 are
constant we conclude that .QT0/ holds in this case. A similar argument shows that
.QT00/ holds also when the positive puncture is of type L2 and there is a negative
puncture of type L1 . In the case that the positive puncture is of type L2 and all negative
punctures are of type S it follows from the dimension formula that exactly one negative
puncture maps to a chord b of type S1 . Since all flow trees with a negative puncture at
b are constant it follows that some non-constant component in the limit passes ….b/.
Since no rigid disk passes through ….b/ it follows that the non-constant component is
un-broken and hence constrained rigid. We conclude that .QT1/ holds in this case.

Remark 5.15 As in [10], the proof of Corollary 5.14 allows us to control the conformal
structures of the sources of a sequence of rigid disks u�W �m! T �S2 with boundary
on ƒK I� in the following way. The distance from a boundary minimum that maps
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near a trivalent puncture of the tree to its nearest boundary minimum equals c��1C

O.log.��1//, where c is a constant determined by the quantum flow tree. The distance
between other boundary minima equals c0C o.1/, where c0 depends only on the disk
component (and its marked points) of the quantum limit tree. Thus, the conformal
structure of the big disk part converges to that of the limiting disk and the conformal
structures (represented as truncated standard domains) of the flow tree parts converge
after rescaling by ��1 .

5.4 From quantum flow trees to disks

In this section we construct rigid J –holomorphic disks near any rigid quantum flow
tree. Technical results needed for this were already developed in [10] and [13]. Here
we will thus present the main steps together with detailed references to these two
papers. The construction follows the standard gluing scheme often used in Floer theory:
we associate an approximately holomorphic disk to each rigid quantum flow tree and
use Floer’s Picard Lemma to show that near each such disk there is a unique actual
holomorphic disk. We begin with the following observations.

5.4.1 Properties of rigid quantum flow trees We start by recalling some of the
properties of rigid quantum flow trees of ƒK �N � T �.S2/ that will be used below.
We will write .u; �/ for a quantum flow tree where uW �m!T �S2 is the holomorphic
disk with boundary on ƒ part of the quantum flow tree and where � denotes the flow
tree part.

� Rigid quantum flow trees .u; �/ of ƒK are of two main types: those with u

constant and those with u non-constant.

� If .u; �/ is a rigid quantum flow tree with u non-constant then u is either rigid
or constrained rigid.

� If .u; �/ is a rigid quantum flow tree then it consists of a (constrained) rigid
disk with a finite number of partial flow trees � attached along its boundary at
junction points. In the case that u is constrained rigid then the constraint is at
the image in ….ƒ/ of a Reeb chord of type S1 . The partial flow trees attached
to the holomorphic disk have trivalent Y0 –vertices, 1–valent vertices at critical
points of index 1, and no other vertices.

Rigid quantum flow trees .u; �/ with u constant are rigid flow trees of ƒK I� � J 1.ƒ/

in the sense of [10]. By Lemma 5.7, holomorphic disks with positive puncture at a
Reeb chord of type S lie in an O.�/–neighborhood of ….ƒ/. Consequently existence
and uniqueness of rigid holomorphic disks near each local rigid quantum flow tree
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follows from [10, Theorem 1.2]. (In fact, the convergence rate is O.� log.��1//; see
[10].) Because of this we will mainly focus on quantum flow trees with non-constant
u below.

Consider a rigid quantum flow tree .u; �/ and let � 0 denote one of the partial flow
trees attached to u at the junction point p , which is then also the special puncture of
� 0 . Recall that we choose a metric g on ƒ and an almost complex structure on T �S2

that agrees with that in a neighborhood of ….ƒ/ and that has the following additional
properties:
� The metric is flat in a neighborhood of � 0 .
� ….ƒK I�/ � T �ƒ is affine outside neighborhoods of a finite number of edge

points, which are points on the edges of � 0 , at least one on each edge. We call
these neighborhoods edge point regions. Furthermore, along any edge ….ƒK I�/

is a product of a curve in the direction of the edge and horizontal line segments
perpendicular to it.

� Near each trivalent vertex ….ƒK I�/ � T �ƒ is parallel to the 0–section, and
near each critical point ….ƒK I�/� T �ƒ is affine.

5.4.2 Local solutions The approximately holomorphic disks near the rigid quantum
flow tree .u; �/ will be constructed by patching local solutions. The local solutions
are as follows:
� The map uW �m! T �S2 . Here the standard domain has punctures mapping

to double points of ….ƒ/ as well as to each junction point and constraining
critical points. See [13, Equations (6.9) and (6.10)] for explicit forms of u near
junction points and double points. The normal form at a constraining puncture
is the same as that at a junction point; see [13, Section 6.5.1 (gd.2)].

� Along each part of an edge between edge points where ….ƒK / is affine we
have a local solution s�W ŒT1;T2�� Œ0; 1�! T �S2 , which is a holomorphic strip
with image in the strip region that consists of straight line segments in the fibers
connecting the two sheets of the tree. See [10, Section 6.1.1] for details.

� At each 1–valent puncture we choose coordinates .x1;x2/ along ….ƒ/ with
the critical point at 0 and corresponding holomorphic coordinates .z1; z2/ D

.x1C iy1;x2C iy2/ so that the flow line of the tree lies along the x1 –direction.
The local solution s�W Œ0;1/� Œ0; 1� is then

s�.� C i t/D .�ic1C c�e
���.�Cit/; 0/;

where � � �� is the largest complex (Kähler) angle of the intersection point and
where c� is chosen so that the distance from s�.0C i t/ to the nearest edge point
is O.�/. See [10, Section 6.1.2] for details.

Geometry & Topology, Volume 17 (2013)



Knot contact homology 1077

� At each trivalent vertex we chose C2 –coordinates as above with the three sheets
corresponding to constant sections with values ivj , j D 1; 2; 3, where a flow
line of v1 � v2 breaks into flow lines of v1 � v3 and v3 � v2 . Let p1;p2;p3

denote the punctures of a standard domain �3 . Consider the biholomorphic
maps

Uj W �3!R� Œ0; 1�; j D 2; 3;

with U2.p1/D�1, U2.p3/D i , U2.p2/D1, U3.p1/D�1, U3.p2/D 0

and U3.p3/ D 1. Let aj W R � Œ0; 1�! C2 , j D 2; 3 be the maps a2.z/ D

.v3� v2/zC iv2 , a3.z/D .v1� v2/z . Then s� is a restriction to a subdomain
of �3 cut off by vertical segments of the map

zs� D �.a2 ıU2C a3 ıU3/

such that the vertical segments lie at distance O.� log.��1// from an �–sphere
around 0. See [10, Section 6.1.5] for details.

� At each junction point we choose C2 –coordinates so that the two sheets of
….ƒK I�/ correspond to R2 , and to the section .i�; 0/, respectively. We take

w
jun
� .z/D .�z; 0/C

X
n

cnen�z; cn 2R2;

where the latter sum agrees with the Fourier expansion of u in the strip neigh-
borhood of the junction point.

5.4.3 The domain of a rigid quantum flow tree and approximately holomorphic
disks Consider a rigid flow tree .u; �/. The local solutions discussed above are
associated with domains that are determined by requiring that their vertical boundary
segments map close to edge points. There are in particular finite strip regions of length
bounded below by c��1 and above by C��1 associated to each segment of an edge
between edge points, finite neighborhoods of the boundary minimum in �3 of the
same size around each trivalent vertex, as well as half-infinite strips associated to
critical points. These regions are patched together over uniformly finite size rectangles
corresponding to the edge points where we also interpolate between local solutions.
We thus get a domain x�p;m.�

0; �/ for each tree � 0 in � . We construct the domains
�p;m.u; �; �/ by gluing the tree domains to the disk domain in the strip regions
corresponding to the junction points; see Figure 25.

In this way we obtain the desired domain with a map w�W �p;m.u; �; �/! T �S2

obtained by patching local solutions, which is approximately holomorphic in a sense
that we will next make precise.
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�

� 0
1

� 02

Junction region

Figure 25: The domain �p;m.u; �; �/ for a quantum flow tree. The light
shaded region is the domain for the disk � with boundary on ƒ , while the
regions � 01 and � 02 are domains for two gradient flow trees that are glued to
the disk � .

In order to prove existence and uniqueness of holomorphic disks near rigid flow trees
we need an appropriate functional analytic setting for Fredholm theory. Here one cannot
use standard Sobolev spaces because the domains are degenerating near the limit and
derivatives of maps go to 0 accordingly. For this reason we use weighted Sobolev
spaces. The norms of the natural vector fields associated to shifting the local solutions
are then unbounded as �! 0. To correct this we use instead a subspace of the Sobolev
space determined by a vanishing condition at a marked point in the middle of each
strip region between edge points and add a finite-dimensional space of shifts endowed
with the supremum norm. The total configuration space is then obtained by adding
conformal variations of the target, which corresponds to moving boundary minima and
the marked points of the above mentioned vanishing conditions. More precisely, the
functional analytic spaces are constructed as follows:

� The domain �p;m of u is cut off as described in [13, Section 6.5.1], at vertical
segments corresponding to junction points and to punctures. In the finite strip
regions near the cut-offs corresponding to junction points of the form Œ0; d��1��

Œ0; 1� we use an exponential weight peaked in the middle of this strip; see [13,
Equation (6.12)].

� For each flow tree � 0 in � we take the domain �p0;m0.�
0; �/ associated to

a partial flow tree as in [10, Section 6.4.1], cut off at a vertical segment cor-
responding to the edge point closest to its special puncture, with the weight
function constructed there. We attach these domains at the vertical segments of
the corresponding junction points. Note that the weight functions match.
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We denote the resulting standard domain ��p;m and the weight function hW �
�
p;m!

Œ1;1/. Associated to the junction points are spaces of cut off local solutions. We
denote the direct sum of these spaces with the supremum norm

V
jun

sol :

See [13, Section 6.5.1, page 66]. Associated to each partial flow tree there is a space of
cut off solutions; we denote the sum of these spaces with the supremum norm

V �
sol:

See [10, Section 5.4.1, page 1209]. Furthermore, conformal variations corresponding
to moving boundary minima in the domain of u give conformal variations of �p;m ;
we denote the sum of these spaces with the supremum norm

V u
con:

See [10, Sections 6.2.3 and 6.3.5]. Finally there are also conformal variations in the
domains of the trees corresponding to moving boundary minima and marked points.
They form a space Vcon.�

0; �/ and we denote the sum over all trees in �

V �
con:

Finally, we denote the space of vector fields that vanish at the marked points in ��p;m and
that satisfy Lagrangian boundary conditions and are holomorphic along the boundary,
and that have two derivatives in L2 weighted by h

H2;ı;

where ı denotes the small positive exponential weight that controls the size of h.
Then, as in [13], we view the x@–operator on function in a neighborhood of a tree as a
Fredholm map

x@J W H2;ı˚Vsol˚Vcon!H1;ı;

where H1;ı is the Sobolev space of vector fields with one derivative in L2 weighted by
h. We denote the norm in H1;ı by k � k1;ı and that in H2;ı˚Vsol˚Vcon by k � k2;ı .

The proof now follows the same steps as in [13]. First we estimate the approximate
solution:

Lemma 5.16 The function w� satisfies

kx@Jw�k1;ı DO.�3=4�ı log.��1//:
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Proof The restriction of x@Jw� to the part of the domain corresponding to flow trees
is controlled by [10, Remark 6.16]. The proof is then a repetition of the proof of [13,
Lemma 6.20].

Second we show that the differential of x@J is invertible.

Lemma 5.17 The differential

Lx@W H2;ı˚Vsol˚Vcon!H1;ı

is uniformly invertible.

Proof After replacing the vector field vmo
� in the proof of [13, Lemma 6.21] with

a sum vmo D a� C b� where a� is a vector field in H2;ı supported in the part
of the domain corresponding to � and b� 2 V �

sol ˚ V �
con , and using the inductive

procedure for obtaining estimates in rigid flow trees from corresponding flow subtrees
[10, Proposition 6.20, pages 1211–1213] to control vmo , the proof is a word by word
repetition of the proof of [13, Lemma 6.21].

Third we establish a quadratic estimate for the x@J –map. We let w� correspond to
0 2H2;ı˚Vsol˚Vcon .

Lemma 5.18 There exists a constant C so that

x@J .v/D x@J .0/CLx@J .v/CN.v/;

where
kN.v1/�N.v2/k2;ı D C.kv1k2;ıCkv2k2;ı/kv1� v2k2;ı:

Proof See [13, Lemma 6.22].

With these results established we get the following result as a consequence of Floer’s
Picard Lemma:

Corollary 5.19 For all sufficiently small �> 0 there exists a unique rigid holomorphic
disk in a finite k � k2;ı–neighborhood of w� .

The last lemma needed to show the correspondence is the following.

Lemma 5.20 For sufficiently small � > 0, if a holomorphic disk lies in a sufficiently
small C 0 –neighborhood of w� , then it lies in a O.�1=2/ k � k2;ı–neighborhood of it.

Proof See [13, Lemma 6.24].
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5.5 Proof of Theorem 4.3

Consider a rigid holomorphic disk with boundary on ƒK I� . By Corollary 5.14, for all
sufficiently small �, u� lies in a neighborhood of a rigid quantum flow tree and we map
u� to that tree. Consider next a rigid quantum flow tree. By Corollary 5.19, there exists
a holomorphic disk u� in a small functional analytic neighborhood of its approximately
holomorphic map w� and we map the quantum flow tree to u� . Composing these maps
starting with a quantum tree it is clear that we get the identity. Composing them starting
with a holomorphic disk we also get the identity, by Lemma 5.20: the disk being
C 0 –close to the approximate solution w� , which follows by definition, in fact implies
that it is also close functional analytically, and therefore unique by Corollary 5.19.

Finally, applying the correspondence between (constrained) rigid flow trees and holo-
morphic disks for the conormal of the unknot in Theorem 5.1 we get a one-to-one
correspondence between rigid quantum flow trees and rigid multiscale trees.

6 Orientations

The main purpose of this section is to prove Theorems 4.5 and 4.6. To this end we
first give an overview of the general orientation scheme constructed in [16] and then
interpret this scheme in geometric terms for rigid holomorphic disks near quantum flow
trees of ƒK .

6.1 The general orientation scheme

We first give a rough outline of the orientation scheme that we will employ below. For
simplicity we restrict attention to closed orientable Legendrian surfaces ƒ inside the
1–jet space J 1.S/ of some orientable surface S . Let x@ be the operator on functions
vW D ! Cn , where D is the unit disk in C , such that v.ei� / 2 L.�/, where L.�/

is a trivialized Lagrangian boundary condition. The starting point for constructing
orientations of moduli spaces of holomorphic disks with boundary on ƒ is the fact that
the index bundle of x@ is orientable, and that a choice of orientation on C and on Rn

determines an orientation on this index bundle. We call this induced orientation the
canonical orientation; see [20, Proposition 8.1.4] (or [16, Section 3.3]).

Consider now a holomorphic disk uW �m! T �S with boundary on ƒ. In order to
parameterize the moduli space of holomorphic disks near u, we look at the x@J –operator
as a section of the bundle of complex anti-linear maps over the configuration space
with local chart at u given by H˚ Cm , where H is a Sobolev space of vector fields
along u and where Cm denotes the space of conformal structures on the source �m
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of u. In this setting the tangent space of the moduli space can be identified with the
kernel of the linearized operator Lx@J acting on H˚Cm . In order to orient the moduli
space we choose capping operators at all Reeb chords of u with oriented determinant
bundles. Then closing up the boundary condition of u by these capping operators gives
a Lagrangian boundary condition on the closed disk and, provided the Lagrangian
boundary conditions are compatibly trivialized, we may use the canonical orientation
to orient the determinant of the resulting operator. The orientation of the glued problem
and orientations on all capping operators induce an orientation of the determinant
of the original linearized problem. For Legendrian homology in general, the exact
sequence which relates all the orientations of the different operators was introduced in
[16, Equation 3.17]. Together with an orientation of the space of conformal structures
this then gives an orientation on the tangent space to the moduli spaces, as described in
[16, Remark 3.18].

Appropriate trivializations on the boundary condition of u can be defined provided ƒ is
spin. In order to have the above scheme compatible with disk breaking at the boundary
of the compactified moduli space one must choose oriented capping operators at Reeb
chords as positive and negative punctures that add to the trivialized boundary condition
with the canonical orientation. We note also that when discussing orientations we can
stabilize the operator and add oriented finite-dimensional spaces to the source or target
of an operator or take direct sums with other oriented Fredholm problems as long as
we keep track of the orientations that these extra directions carry.

6.2 Basic choices for the canonical orientation

As mentioned in Section 6.1 the orientation scheme that we use derives from orientation
properties of the index bundle over trivialized Lagrangian boundary conditions on the
disk. In this section we study some of the details of this construction. Let L be an
n–dimensional Lagrangian boundary condition on the unit disk D � C , which is
trivialized. Consider the x@–operator acting on vector fields vW D!Cn that satisfy the
boundary condition given by L, v.ei� / 2L.ei� /. Denote this operator x@L . Then x@L

is a Fredholm operator of index

index.x@L/D nC�.L/;

where � is the Maslov index. Since the boundary condition is trivialized, the mon-
odromy of L is orientation-preserving and �.L/ is even.

As mentioned above, an orientation of Rn together with a choice of complex orientation
in C induces a canonical orientation on the determinant of the operator x@L . This
canonical orientation is obtained by trivializing the complex bundle over almost all
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of D , splitting off a complex vector bundle over CP1 at the center of the disk in the
limit. The split problem in the limit consists of the operator x@Rn on D , where Rn

denotes the constant trivialized Lagrangian boundary condition given by Rn � Cn

with the standard basis, and the x@–operator on a complex vector bundle over CP1 .
The determinant of the latter operator is a wedge product of complex vector spaces
and hence has an orientation induced from the choice of complex orientation on C .
The former operator has trivial cokernel and kernel spanned by constant sections with
values in Rn ; hence, the orientation of Rn gives an orientation on its determinant.
For operators near the split limit the kernel and cokernel are isomorphic to the sum of
kernel and cokernels of the split problem and we get an induced canonical orientation of
the determinant of the original problem by transporting this orientation along the path
of the deformation. We call the choice of orientation of Rn and C basic orientation
choices.

Remark 6.1 Changing the choice of basic orientation on Rn clearly changes the
canonical orientation of det.x@L/ for every L. Changing the choice of basic orientation
of C preserves the canonical orientation of det.x@L/ for all L with index.x@L/� nD

�.L/ divisible by 4 and reverses the canonical orientation of det.x@L/ for all L with
index.x@L/� nD �.L/ not divisible by 4.

In our calculations below the orientation on Rn above will correspond to the choice of
an orientation on the conormal lift of the unknot, which we take as fixed once and for
all. We will denote the chosen basic orientation on C by oC .

Furthermore, the trivialization of the boundary conditions of the linearized operators
at holomorphic disks with boundary on ƒK are induced from a trivialization of the
tangent bundle TƒK . Note that the orientation above depends only on the trivialization
modulo 2, ie, on the corresponding spin structure. In the calculations below we will
fix a spin structure on the conormal lift ƒ of the unknot and pull it back to ƒK under
the natural projection in the 1–jet neighborhood of ƒ.

6.3 Capping operators and orientation data at Reeb chords

As mentioned in Section 6.1 orientations of moduli spaces are constructed using
capping operators at Reeb chords. In this section we discuss capping operators and their
orientations for the conormal lift ƒK of a closed braid K by applying [16, Section 3.3]
to ƒK .

6.3.1 Auxiliary directions Before we start this discussion we note that the construc-
tion of coherent orientations in [16] uses auxiliary directions. More precisely, the
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boundary condition of a punctured disk with boundary on ƒ is stabilized, ie, multiplied
by boundary conditions for vector fields in C2 with boundary conditions close to
constant R2 boundary conditions; see [16, Section 3.4.2]. The resulting problem
is split and the operator in the auxiliary direction is an isomorphism. The reason
for introducing these auxiliary directions is that they enable a continuous choice of
capping operators for varying Legendrian submanifolds and thereby simplify the proof
of invariance. When studying kernels and cokernels of linearized operators below we
need not consider the auxiliary directions. We do include the auxiliary directions in
order to use the capping operators in [16], which we discuss next.

We first describe capping operators of the Reeb chords of ƒK and then connect the
operators to geometry. In Tables 2–5 below we represent the Legendrian submanifold
near its Reeb chords. For detailed properties of the capping operators, we refer to [16,
Section 3.3.6]. The actual Legendrian ƒK � J 1.S2/ is stabilized and appears as the
restriction of an embedding ƒK � .��; �/

2! J 1.S2 � .��; �/2/ to .0; 0/ 2 .��; �/2 .
Reeb chords are generic and hence locally their fronts are determined by the Hessian
for the function difference of the local sheets of Reeb chord endpoints. In [16], the
stabilization is constructed in such a way that the two eigenvalues of the Hessian
of smallest norm are positive and lie in the auxiliary direction. Here we take these
eigenvalues to be of largest norm for simpler combinatorics; see Remark 6.2. In Tables
2–5 the corresponding eigendirections are denoted Auxj , j D 1; 2, the two remaining
eigendirections are denoted Realj , j D 1; 2, and we will use the following notation:

� ı , ı0 , ı00 , ı0 are numbers such that 0< ı0 < ı00 < ı < ı0 , and such that ı0 , ı00 ,
and ı all approach 0 as the conormal lift of the link approaches the 0–section.

� If �D .�1; : : : ; �m/ is a collection of paths of Lagrangian subspaces such that
the endpoint of �j is transverse to the start point of �jC1 then y�.�/ denotes
the Maslov index of the loop of Lagrangian subspaces obtained by closing up
the collection of paths by rotating the incoming subspace to the outgoing one
in the negative direction. Thus nC y�.�/ is the index of the x@–operator on the
.mC 1/–punctured disk with boundary conditions given by �, where n is the
dimension of the Lagrangian subspaces.

� The expressions “Coker, const” and “Ker, const” indicate that the cokernel and
the kernel of some operator can be represented by constant functions, ie, the
actual kernel or cokernel functions are approximately constant in the sense that
they converge to constant functions on any compact subset as the conormal of
the link approaches the 0–section.

Remark 6.2 As mentioned above, our choice of eigenvalues in the auxiliary directions
differs from that in [16] and therefore the capping operators differ as well. It is easy to
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see that this does not affect the DGA: there is a DGA isomorphism relating the two
choices that take each Reeb chord generator c of the algebra to ˙c , where the sign
depends on the choice of orientation of the capping operator. In fact, the same argument
shows that any capping operator would do as long as the negative and positive capping
operators glue to an operator with the canonical orientation. Our particular choice of
auxiliary directions here was made in order to allow for a uniform treatment of all
kernel and cokernel elements in the auxiliary directions; see Remark 6.3.

Remark 6.3 As mentioned above, after the capping operators have been defined, we
may disregard the auxiliary directions when studying orientations. The reason for this
is that the stabilized boundary conditions of the linearized operator split into real and
auxiliary directions. Here the boundary conditions in the auxiliary directions give an
operator that is an isomorphism over any disk with one positive puncture and boundary
on ƒK , the capping operators in the auxiliary directions at all negative punctures are
isomorphisms as well, and the capping operator in the auxiliary directions at the positive
puncture is independent of the particular puncture and has index �2 and trivial kernel.
Thus using the canonical orientation for the isomorphisms and fixing an oriented basis
in the cokernel in the auxiliary directions of the capping operators at positive punctures
we get induced orientations of moduli spaces of holomorphic disks with boundary on
ƒK . If the orientation of the cokernel of the positive capping operator is changed then
the orientations of moduli spaces change by an overall sign. Thus, auxiliary directions
affect the differential in the Legendrian contact homology algebra of ƒK only by an
overall sign. We therefore suppress auxiliary directions in our calculations below.

6.3.2 Details for the orientation data at a chord of type S1 As indicated in Corol-
lary 5.14 a Reeb chord b of ƒK of type S1 can appear as a positive puncture for
a disk of type .QT¿/ and a negative puncture for a disk of type .QT1/. Let x@bC

(respectively, x@b� ) denote the capping operator associated to the Reeb chord b of ƒK

when it appears as a positive (respectively, negative) puncture of the J�–holomorphic
(see (5-1)) disk u� . Although as Lemma 3.7 indicates, there are many such chords of
type S1 , each is a parallel translate of the other; thus, we can consider their capping
operators simultaneously.

At a Reeb chord b of ƒK of type S1 , x@b� splits into two 1–dimensional problems.
Recall that auxiliary directions are disregarded. Because the grading of b is odd, the
conventions set in [16, Section 3.3.6] imply one 1–dimensional problem has index 1

with 1–dimensional kernel and the other has index �1 with 1–dimensional cokernel.
This is indicated in the two left “Real” columns at the bottom row of Table 2.

Consider first the index 1 component. This operator is an operator on a Sobolev space
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Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
positive puncture ı ı � � ı0 � � ı00

Complex angle,
negative puncture

� � ı � � ı ı0 ı00

Closing rotation,
positive puncture

�.� � ı/ �.� � ı/ �ı0 �ı00

Closing rotation,
negative puncture

�ı �ı �.� � ı0/ �.� � ı00/

Capping operator, e�i.2��ı/s e�i.2��ı/s e�iı0s e�iı00s

positive puncture y�D�2 y�D�2 y�D�1 y�D�1

indexD�1 indexD�1 indexD 0 indexD 0

Coker, const Coker, const Isomorphism Isomorphism

Capping operator, e�iıs e�iıs eiı0s e�i.2��ı00/s

negative puncture y�D�1 y�D�1 y�D 0 y�D�2

indexD 0 indexD 0 indexD 1 indexD�1

Isomorphism Isomorphism Ker, const Coker, const

Table 2: Capping operator at a chord of type S1 . The direction corresponding
to the angle ı0 is along the flow line in the direction of the unknot parameter.
The direction corresponding to the angle ı00 is the direction of the fiber of the
conormal bundle.
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Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
negative puncture � � ı � � ı � � ı0 ı00

Closing rotation,
negative puncture

�ı �ı �ı0 �.� � ı00/

Capping operator, e�iıs e�iıs e�iı0s eiı00s

negative puncture y�D�1 y�D�1 y�D�1 y�D 0

indexD 0 indexD 0 indexD 0 indexD 1

Isomorphism Isomorphism Isomorphism Ker, const

Table 3: Local data at a chord of type S0

of complex-valued functions on the disk with one boundary puncture. As the parameter
ı0! 0 in Table 2 we continue the operator family continuously to the limit by intro-
ducing a small negative exponential weight in a strip neighborhood of the puncture. In
the limit, the kernel is spanned by a constant real-valued function. By continuity, it
follows that solutions near the limit are close to constant functions, and in particular,
the L2 –pairing with a kernel function is close to the L2 –pairing of the corresponding
constant function in the limit. We thus fix an orientation of the kernel of the index 1

component of the capping operator at b by fixing a vector

vker.b/ 2 Tbƒ

parallel to the direction of the knot. To see that vker.b/ should be chosen parallel to
the knot, note that the direction of the knot is the direction of the Bott manifold of
Reeb chords of ƒU and hence corresponds to the smaller of the two eigenvalues of the
Hessian.

Similarly, elements in the cokernel of the index �1 component are solutions to a
dual boundary value problem for the @–operator. The cokernel functions converge to
constant real valued functions as ı00! 0 and we fix an orientation in the cokernel by

Geometry & Topology, Volume 17 (2013)



1088 Tobias Ekholm, John Etnyre, Lenhard Ng and Michael Sullivan

Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
positive puncture ı ı ı0 � � ı0

Complex angle,
negative puncture � � ı � � ı � � ı0 ı0

Closing rotation,
positive puncture

�.� � ı/ �.� � ı/ �.� � ı0/ �ı0

Closing rotation,
negative puncture

�ı �ı �ı0 �.� � ı0/

Capping operator, e�i.2��ı/s e�i.2��ı/s e�i.��ı0/s e�iı0s

positive puncture y�D�2 y�D�2 y�D�1 y�D�1

indexD�1 indexD�1 indexD 0 indexD 0

Coker, const Coker, const Isomorphism Isomorphism

Capping operator, e�iıs e�iıs e�i.�Cı0/s eiı0s

negative puncture y�D�1 y�D�1 y�D�2 y�D 0

indexD 0 indexD 0 indexD�1 indexD 1

Isomorphism Isomorphism Coker, const Ker, const

Table 4: Capping operator at a chord of type L1 . The direction corresponding
to ı0 is along the equator (along the parameter of the unknot). The direction
corresponding to ı0 is perpendicular to the equator (along the fiber).

fixing a vector
vcoker.b/ 2 Tbƒ;

perpendicular to the direction of the knot, which is the direction corresponding to the
positive eigenvalue of the Hessian along the Bott manifold of Reeb chords of ƒU and
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Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
positive puncture ı ı � � ı0 � � ı0

Closing rotation,
positive puncture

�.� � ı/ �.� � ı/ �ı0 �ı0

Capping operator, e�i.2��ı/s e�i.2��ı/s e�iı0s e�i.�Cı0/s

positive puncture y�D�2 y�D�2 y�D�1 y�D�2

indexD�1 indexD�1 indexD 0 indexD�1

Coker, const Coker, const Isomorphism Coker, const

Table 5: Capping operator at a chord of type L2 . The direction of ı0 is along
the equator. The direction of ı0 perpendicular to it.

hence corresponds to the largest eigenvalue after perturbation. The basis�
vcoker.b/; vker.b/

�
determines the orientation of the operator x@b� , and constant functions with values in
the lines spanned by the basis vectors are approximate solutions.

When b appears as a negative puncture, we see from its parity and the conventions of
[16, Section 3.3.6] that both the kernel and cokernel are trivial.

6.3.3 Orientation data at a chord of type S0;L1 or L2 The discussion for the
other types of chords is similar to that of chords of type S1 in Section 6.3.2, so we
discuss them only briefly here. Recall that while a chord of type L1 can appear as a
positive or negative puncture, chords of the other two types only occur as punctures of
one sign.

A Reeb chord a of ƒK of type S0 has even parity and only appears as a negative
puncture. Thus, as indicated in Table 3, the capping operator x@a� splits into two
1–dimensional problems, one of index 0, which is an isomorphism and one of index
1 with 1–dimensional kernel. As in Section 6.3.2 the kernel functions of the index 1
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component are approximately constant and we fix an orientation of the capping operator
by fixing a vector

vker.a/ 2 Taƒ

perpendicular to the direction of the knot. We can assume vker.a/ is perpendicular to
the knot because the second real coordinate (the last column in Table 3) represents the
unstable manifold of a, thought of as a braid saddle point. Constant functions with
values in the line spanned by this vector are approximate solutions of x@a� .

Noting the parity of the grading of a chord c of type L1 and a chord e of type L2 , the
conventions of [16, Section 3.3.6] imply the two capping operators each split into two
1–dimensional problems with kernels and cokernels as indicated in Tables 4 and 5. As
above, we fix orientations on these problems by fixing vectors vker.c/, vcoker.c/ and
vcoker.e/.

6.4 Signs in the unknot differential — proof of Theorem 4.6

Fix the Lie group spin structure on ƒ. The corresponding trivialization of Tƒ is
then the canonical trivialization of the tangent bundle of the 2–torus coming from the
identification T 2DR2=Z2 . Here, we take coordinates on ƒ as described in Section 4.

Recall for the unknot there are four rigid flow trees IN , IS , YN and YS with one
puncture, which is at c , that contribute to @c , and there are two rigid strips with positive
puncture at e and negative puncture at c . Consequently, by Theorem 5.1, for � > 0

sufficiently small there are four corresponding rigid holomorphic disks with positive
puncture at c and two corresponding rigid holomorphic strips E1 and E2 connecting
e to c . We next compute their signs.

Theorem 6.4 For any choice of basic orientations there is a choice of capping operator
at c such that the signs of the rigid disks satisfy

�.IS /D �.IN /D �.YS /D �.YN /D 1;

�.E1/D��.E2/:

Proof We first show that �.IS /D �.IN /. To this end consider a geodesic arc in S2

that passes through ….c/ and that contains both poles. Let x1 be a coordinate along
this arc with ….c/ corresponding to 0 and let x2 be a coordinate perpendicular to the
arc. Then fx D .x1;x2/ W jx1j � � C ı; jx2j < ıg parametrizes a disk D in S2 and
we find a complex trivialization of the tangent bundle of T .T �S2/ over D by noting
that the metric is flat and using coordinates .xC iy/.
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Let x@c denote the positive capping operator at c , let x@I denote the linearized boundary
condition of any one of the four disks with positive puncture at c , and let yI denote the
problem on the closed disk obtained by gluing these two. Then the following gluing
sequence is used to orient moduli spaces:

0! ker.@yI /! ker.x@I /! 0

See [16, Equation (3.17)] and Table 4. Note first that the trivialized boundary conditions
of IN and IS agree. The signs of the disks are then obtained by comparing the oriented
kernel of x@I with the orientation induced by conformal automorphism. Note furthermore
that if uW �1! T �S2 is a parametrization of IN then �u parametrizes IS , where
�.xC iy/D .�x� iy/ in the coordinates discussed above. Since the automorphism
group of �1 is 2–dimensional the signs of the two disks agree, �.IN /D �.IS /. An
identical argument shows that �.YN /D �.YS /.

After noting that the orientation of the capping operator at c determines the sign in the
orienting isomorphism above, it remains only to show that �.IN /D �.YN / to complete
the proof of the first equation. To this end we compare the boundary conditions of
x@IN

and x@YN
. Note that the boundary conditions of the disks are arbitrarily close to

the boundary conditions of the corresponding trees and that the trees IN and YN are
identical except near the north pole, .x1;x2/D .�; 0/. Using the trivialization (over
the disk D above) of the .xC iy/–coordinates around the north pole, the Lie group
spin of the torus ƒ is .@s; @t / and induces the trivialized boundary condition

.cos t @x1
C sin t @x2

;� sin t @y1
C cos t @y2

/

on the IN –disk and

.cos t @x1
� sin t @x2

; sin t @y1
C cos t @y1

/

on the YN –disk.

Now, the homotopy of Lagrangian boundary conditions that are given by acting by the
complex matrix �

1 0

0 ei�

�
; 0� � � �;

takes one trivialization to the other and we conclude that multiplication by the matrix
at � D � takes the positively oriented kernel of x@IN

to that of x@YN
. Comparing

this orientation to the orientation induced by source isomorphisms, for example by
evaluation at a point where the disks agree, we find that the signs of the two disks
agree.
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The argument for finding the signs of the two disks E1 and E2 is similar to the
above arguments: both disks come from flow lines and their boundary conditions are
identical. Again the disks are related by multiplication by �1 in suitable coordinates.
Here however, the kernel of the linearized operator and the automorphism group are
both 1–dimensional and it follows that multiplication by �1 reverses orientation. The
lemma follows.

In our computations of the signs for the differential in the Legendrian algebra of ƒK

we will use the capping operators of chords of type L2 and L1 , which correspond to
the capping operators of e and c , respectively, for which Theorem 6.4 holds.

6.5 Conformal structures

Conformal parameters for flow trees are best represented as moving boundary minima
in standard domains; see Section 5.3.1. In the general orientation scheme of [16] the
space of conformal structures was represented as the location of boundary punctures
on the unit disk in the complex plane. The main purpose of this section is to relate
these two representations in order to allow for the representation best adapted to trees
to be used in computations.

Consider first the representation of conformal structures Cm , used in [16], on the (unit)
disk Dm in C with m� 3 boundary punctures p0; : : : ;pm�1 . Recall punctures are
ordered counter-clockwise. Fix the (distinguished) puncture p0 at 1, p1 at i , and
pm�1 at �i . Then the locations of the remaining punctures in the boundary arc between
i and �i determine the conformal structure uniquely. Thus the space Cm of conformal
structures on the disk with m boundary punctures, one of which is distinguished, is an
.m� 3/–dimensional simplex. We write bj for the tangent vector that corresponds to
moving the j th puncture pj in the positive direction and keeping all other punctures
fixed. Then b2; : : : ; bm�2 is a basis in T Cm .

Consider second the representation of Cm using standard domains �m . Recall that a
standard domain is a strip with slits of fixed width, that a standard domain determines
a conformal structure on the disk with m boundary punctures, and that two standard
domains determine the same conformal structure if and only if they differ by an overall
translation. Assume that m> 3 and let tj 2 T Cm denote the tangent vector that is the
first order variation that corresponds to moving the j th boundary minimum toward
�1 and keeping all other boundary minima fixed.

Lemma 6.5 Let m> 3. Then

tj D

jX
kD2

�kbk C

m�2X
kDjC1

�kbk 2 T Cm;
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where �k > 0, k D 2; : : : ; j and �k < 0, k D j C 1; : : : ;m� 2. In particular, we
can represent T Cm as the vector space generated by t1; : : : ; tm�2 divided by the 1–
dimensional subspace generated by the vector

t1C t2C � � �C tm�2;

and the orientation given by the basis b2; : : : ; bm agrees with that induced by t2; : : : ; tm .

Proof Consider the map which takes a neighborhood of C1 in an infinite strip to a
neighborhood of the origin in the upper half plane:

w D�e��z :

Under such a change of coordinates the vector field 1 on the w–plane corresponds to
the vector field ��1e�z on the strip since

1D
�

dw

dz

�
��1e�z :

Let H�ıIk denote the Sobolev space of vector fields along �m that are tangent to �m

along the boundary and with a small negative weight at each puncture, ie, a weight
function of the form e�ıj� j in a strip region, � C i t 2 Œ0;1/ � Œ0; 1� or � C i t 2

.�1; 0�� Œ0; 1�, and with k derivatives in L2 . The x@–operator x@W H�ıIk !H�ıIk�1

has index

1� .m� 2/D�.m� 3/;

where 1D dim.R/ and �.m� 2/ is the Maslov index of the boundary condition with
a negative half turn at each boundary minimum. The exact degree of regularity of the
vector fields we use will be of no importance and will be dropped from the notation.
Let b0j denote cut-off versions of the vector fields e�z supported in the j th strip end.
Then we can think of T Cm as the quotient space

x@.H�ı˚hb02; : : : ; b0m�2i/=
x@.H�ı/:

In this setting, we can interpret tj as follows; see [10, Section 2.1.1]. Consider �m�C
and let z D xC iy be the standard complex coordinate on C . Let Tj denote a vector
field on C supported in a small ball Br centered at the j th boundary minimum and
equal to �@x in Br=2 and tangent to the boundary of �m in Br�Br=2 . The conformal
variation tj is then represented by x@Tj 2H�ı . (To see this, linearize the comparison of
conformal structures � and d��1� d� , where �W �m!�m is a small diffeomorphism
associated to the vector field Tj , To first order, d��1�d���C�x@Tj .) Because fx@b0

k
gk
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spans the cokernel of the operator x@,

x@Tj D

m�2X
kD2

˛k.x@b
0
k/C
x@v;

for some v 2 H�ı and real constants ˛2; : : : ; ˛m�2 . We first show that ˛k ¤ 0,
k D 2; : : : ;m� 2. Define the vector field wW �m! C as w D Tj �

P
k ˛kb0

k
� v .

Then w satisfies a Lagrangian boundary condition of Maslov index �.m� 3/ and
lies in a Sobolev space with exponential weights as follows. The weight is �ı in the
strip-like end around the puncture at �1, at the first and last punctures at C1, and at
all punctures for which ˛k D 0. It is ���ı at punctures where ˛k ¤ 0. If the number
of punctures with ˛k D 0 is N then the index of the x@–operator on the Sobolev space
with Lagrangian boundary condition and weights as just explained equals

index.x@/D 1� .m� 3/C .m� 3�N /D 1�N:

Note that w ¤ 0 since Tj is not tangent at the boundary while vC
Pm�2

kD2 ˛kb0
k

is
tangent. Since x@w D 0 and w ¤ 0, it follows by automatic transversality in dimension
1 (ie, the argument principle) that N D 0, ie, ˛k ¤ 0, for all k .

To determine the signs in the expression for tj , consider the limit as the shift of the
boundary minimum goes to �1. In this limit the disk �m splits into three components:
a three punctured disk containing the puncture at �1 and two punctures at C1 where
two standard domains �m0 and �m00 are attached. We choose notation so that the
punctures in �m at C1 below the moving slit end up in �m0 and those above in �m00 .
From the point of view of the representations of conformal structures via boundary
punctures on the closed disk, the punctures in �m0 collide at i and those in �m00 collide
at �i . As the coefficients ˛k , k D 2; : : : ;m� 2 are non-zero for the infinitesimal
deformation tj at each instance of this total deformation, it follows that ˛k > 0 for
k < j and ˛k < 0 for k � j .

Remark 6.6 Lemma 6.5 also has an intuitive justification using harmonic measure.
Suppose the conformal structure changes by slightly decreasing the j th boundary
minimum. Then the harmonic measure of the j th slit (the probability of a Brownian
motion particle first hitting the boundary of �m at that slit) increases while the measures
of all other boundary components decrease. Harmonic measure is preserved under a
conformal map from �m to Dm . Thus, the corresponding changes in measures of the
boundary arcs of Dm can only occur if puncture pi moves in the negative direction
for i D 2; : : : ; j and the positive direction for i D j C 1; : : : ;m� 2.
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6.6 Signs of rigid quantum flow trees — proof of Theorem 4.6

In this subsection we compute the signs of rigid quantum flow trees determined by
ƒK � J 1.S2/ and thereby prove Theorem 4.6. Recall from Corollary 5.14 that there
are four types of rigid quantum flow trees: .QT¿/; .QT0/; .QT00/ and .QT1/. We will
consider each case separately.

Let A denote the Lagrangian boundary condition, suppressing auxiliary directions, on
the domain �m of the linearized x@–problem corresponding to the J�–holomorphic
disk u� . Recall that we think of � > 0 as small; see (5-1). As in [14, Section 6], we
must close up the boundary conditions at each puncture using a “negative J –twist.”
This is illustrated in Tables 2–5 under the “Closing rotation” row(s). Note that this may
contribute to the index of x@A . Let x@A denote the linearized problem with this boundary.
Let yA denote the boundary condition after adding the appropriate capping operators.
Define x@ yA similarly. For each of the four cases above, we must compute the exact
sequence [16, Equation 3.17].

6.6.1 The sign of a quantum flow tree of type .QT¿/ A rigid holomorphic disk
near the limit in a neighborhood of a quantum flow tree of type .QT¿/ lies in a small
neighborhood of a rigid flow tree in ƒ � J 1.S2/ determined by ƒK . Let � be
such a rigid flow tree with positive puncture b and negative punctures a1; : : : ; am�1 .
Recall that, since the front of ƒK � J 1.ƒ/ has no singularities, all vertices of such
a rigid tree are trivalent Y0 –vertices except for 1–valent vertices at Reeb chords.
Let t1; : : : ; tm�2 denote the trivalent vertices of � . Note that each trivalent vertex
corresponds to a boundary minimum in the domain �m of the holomorphic disks u� ,
which corresponds to � for small �. We number the trivalent vertices according to the
order of the corresponding boundary minima in the vertical direction of the complex
plane. We write �j for the boundary minimum corresponding to the trivalent vertex tj .

Lemma 6.7 There exists a choice of basic complex orientation oC such that if � > 0

is sufficiently small and if u� is a rigid holomorphic disk in a neighborhood of the rigid
flow tree � then the sign of u� is given by

�.u�/D �.�/D �pos.�/�.n; �/;

where nD vcoker.b/; see Section 3.4.4 for notation.

Proof Since � is small, u� lies close to � . Using the trivialization of T .T �S2/ in a
neighborhood of ƒ induced by the trivialization of T .T �ƒ/, the boundary condition
A is very close to constant R2 boundary conditions (for C2 –valued vector fields) on
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�m . For such disks with m punctures, using closing rotation angles from Tables 2
and 3, we compute

index.x@A/D �.A/C 2D .m� 1/� .�1/C 1� 0C 2D�.m� 3/:

Adding capping operators at the punctures to A — see Table 2 for the positive puncture
and Table 3 for the negative punctures — we get a boundary condition yA on the closed
disk, which also has boundary conditions very close to constant. It follows that ker.x@ yA/
is 2–dimensional with kernel spanned by almost constant sections, and that coker.x@ yA/
is 0–dimensional. By definition of the canonical orientation, see Section 6.2, the
positive orientation of the determinant of x@ yA is represented by a basis of its kernel,
which converges to constant solutions that form a positively oriented basis of Tƒ (and
a positive sign on its 0–dimensional cokernel).

Consider first the case m D 2. In this case the tree is simply a flow line, and the
operator x@A has index 1 and a 1–dimensional kernel spanned by an almost constant
solution that converges to vflow.�/ as �! 0; see Section 3.4.4 for notation. The exact
gluing sequence that determines the orientation is then (see [16, Equation (3.17)]):

0! ker.x@ yA/! ker.x@a1�/˚ ker.x@A/! 0

Here ker.x@a1�/ is spanned by an approximately constant section that converges to
vker.a1/, which is perpendicular to � ; see Table 3. It follows that the sign of the
disk agrees with the orientation sign of the basis .vker.a1/; v

flow.�// of Tƒ, where
vflow.�/ is the vector field induced by the automorphism of the strip, times the sign
of the determinant of the capping operator of a positive puncture at b , which is an
isomorphism.

Gluing the positive and negative capping operators x@bC and x@b� at b gives an operator
x@b0 of index 0 with dim.ker x@b0/D dim.coker.x@b0//D 1. Here the kernel is spanned
by the constant solution vker.b/ and the cokernel by the constant solution vcoker.b/ of
the dual problem. Note that the canonical orientation of det.x@b0/ changes with oC .
Choose oC so that vker.b/^vcoker.b/ represents the positive orientation of det.x@b0/ if
.vcoker.b/; vker.b// is a positively oriented basis of Tƒ. Then the sign of the disk can
be expressed as

sign
�
hvflow.�/; vker.b/i � hvker.a/; vcoker.b/i

�
D �pos.�/�.n; �/

as claimed.

Consider the case m� 3. Here the exact gluing sequence that gives the orientation is

(6-1) 0! ker.x@ yA/
˛
�! ker.x@�/

ˇ
�! coker.x@A/! 0;
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where we write:

x@� D

m�1M
jD1

x@aj�

Since u� is a rigid disk and index.x@A/D�.m�3/, we get that dim.coker.x@A//Dm�3,
and that coker.x@A/ is spanned by linearized conformal variations which we represent
as motion of the boundary minima in the domain; see Lemma 6.5. Here ker.x@ yA/ is
endowed with the canonical orientation and ker.x@�/ with the orientation from capping
operators. The sequence then induces an orientation on coker.x@A/, which gives a sign
when compared to the orientation induced from the space of conformal variations, as
indicated in [16, Remark 3.18].

Applying Lemma 3.1 and Remark 3.3 of [16], the map ˛ is defined as follows. An
element in ker.x@aj�/ is a solution of the x@–equation with boundary condition given
by the negative capping operator at aj . This solution is cut off and thereby defines an
element in the space of sections over the closed disk. In this way, we identify ker.x@�/
with an .m� 1/–dimensional subspace of the domain of the operator x@ yA . The map
˛ is then given by L2 –projection of ker.x@ yA/ to this subspace. Likewise, we identify
coker.x@A/ with a subspace of the target space of x@ yA by cutting off solutions of the
dual problem and define the map ˇ as x@ yA followed by L2 –projection.

The boundary condition of u� is very close to constant R2 boundary conditions and
the complex (Kähler) angles at the punctures are close to either 0 or � . Thus there
is a deformation of x@A that takes the boundary conditions to constant R2 boundary
conditions and that introduces a small negative exponential weight where the complex
angle is close to 0 and a small positive exponential weight where it is close to � ,
which is sufficiently small so that the kernel and cokernel of x@A undergoes a continuous
deformation (in particular dimensions of kernel and cokernel do not change). The
capping operators can be deformed accordingly. We will use these deformed operators
to determine the sign in the gluing sequence above. For simplicity, we will keep the
notation x@A and x@ yA for the deformed operators.

We next introduce notation for parts of the tree � as well as for corresponding parts of
the domain �m . See Figure 26.

We write Eij for the edge connecting the i th trivalent vertex ti to the j th , tj , and
Rij for the (finite) strip region in �m corresponding to Eij , where we think of the
boundary of Rij as vertical line segments located to the right of the i th boundary
minimum �i and to the left of the j th , �j . We write E0 for the edge ending at the
positive puncture and we take R0 to be the half strip with a slit in �m with boundary
given by the two vertical segments bounding Rji and Rji0 , where �j is the minimal
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Rji

Rji0

R2

R4

R1

R3
R0 �j

�i

�i0

E0
Eji

Eji0

E1

E2

E3

E4

Figure 26: The graph � and domain �m

boundary minimum. We write El , l D 1; : : : ;m� 1 for edges that end at negative
punctures and Rl for the corresponding half infinite strip which is a neighborhood of
the l th negative puncture in �m .

Then

�m�

� [
Ei��

Ri [

[
Eik��;i<k

Rik

�
is a disjoint union [

1�i�m�2;i¤j

Vi ;

where Vi is a neighborhood of �i . Consider the vertical segment l through �i . The
boundary @l of l lies in the boundary of �m ; if the boundary segment containing
the lower endpoint of l lies in the lower boundary on �m we define i� D 0 and if it
lies on a boundary segment containing �k we define i� D k . Likewise, if the upper
endpoint lies in the upper boundary segment of �m then we define iC Dm� 1 and if
it lies in a boundary segment containing �k0 we define iCD k 0 . Note that i� < i < iC .

In order to deal with coker.x@A/, we introduce below the space Vcon of conformal
variations of �m . Write zv con

i for the conformal variation supported in Vi . Then
x@A.zv

con
i /D du�.x@.z@� //, where z@� is a cut-off of the constant vector field @� supported

in Vi . See Section 6.5. Thus, as �! 0, x@A.zv con
i / is supported in three rectangular

regions Ri
s , sD 0; 1; 2, containing the vertical segments in the boundary @Vi and lying

in the strip regions corresponding to the incoming edge Ei
0 and the outgoing edges Ei

1

and Ei
2 , respectively, at ti . Then in Ri

s , s D 0; 1; 2, x@A.zv con
i / approaches x@T i

s , where
x@T i

s is a cut-off constant vector field tangent to Ei
s , s D 0; 1; 2, directed towards the

positive puncture. For the purpose of calculating signs we thus replace zv con
i with v con

i ,
where x@Av con

i D x@.T i
0
CT i

1
CT i

2
/ and think of Vcon as the vector space spanned by

the m� 3 conformal variations v con
i , i ¤ j .

Let HA and H0A (respectively H yA and H0yA ) denote the spaces of vector fields on the
closed disk D (respectively the punctured disk �m ), which are the domain and target,
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respectively, of x@A (respectively of x@ yA ). Recall that

x@AW HA˚Vcon!H0A

is an isomorphism because ker.x@A/ is trivial and coker.x@A/ is mapped onto by x@A.Vcon/.
Viewing �m as a subset of D , we define x@ yA.v

con
i / D x@A.v

con
i / for v con

i 2 Vcon and
write

x@ yA; conW H yA˚Vcon!H0
yA

for the operator with extended domain. Then x@ yA; con is an operator of index 2C.m�3/

which has a .m� 1/–dimensional kernel.

We will define a map  W Vcon! ker.x@�/ such that ˇı W Vcon! coker.x@A/ (see (6-1))
is an isomorphism that induces the same orientation on coker.x@A/ as the isomorphism
x@AW Vcon! coker.x@A/. It then follows that the sign of the disk u� equals the sign of
the determinant of the isomorphism

ker.x@ yA; con/� ker.x@ yA/˚Vcon
˛C 
���! ker.x@�/

between oriented vector spaces, where ˛ is as in (6-1). To finish the proof we must
thus first define  and then compute ˛ and the resulting determinant.

We introduce certain vector fields on �m that are supported in neighborhoods of the
strip regions of the form Rl or Rlk in �m associated to edges in � as explained
above. We will call these vector fields edge solutions. More precisely, we take n1

0
and

n2
0

to be constant sections supported in R0 , cut off in a neighborhood of its boundary
where n1

0
is tangent to the second outgoing edge at tj and n2

0
tangent to the first; see

Figure 27.

Along edges Eik (respectively Ei ) we define two cut-off constant vector fields: �ik

(respectively wi ) perpendicular to the edge and �ik (respectively �i ) tangent to the edge.
Here �ik (respectively �i ) has support in a neighborhood of Rik (respectively Ri ),
whereas �ik (respectively wi ) has support in a neighborhood of Ri[Vi ; see Figure 28.
We call �ik , �ik and �i interior edge solutions and wi exterior edge solutions.

Furthermore, we assume that the elements v con
i 2 Vcon are chosen in such a way that

the following holds: in any component C of the support of x@Av con
i lying in an edge

region Rlk or Rl the corresponding edge solution �lk (or �l ) satisfies the matching
condition x@A�lk D

x@Av
con
i (or x@A�l D x@Av con

i ).
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�j

supp.nk
0/; k D 1; 2

tj
n2

0

n1
0

�2

�1

�

Figure 27: Vector fields supported in R0

We can now say that the .mC 1/–dimensional kernel of x@ yA; con is spanned by mC 1

linearly independent sections

�1
0 D n1

0C .w1C � � �Cwj /CE1
j ;

�2
0 D n2

0C .wjC1C � � �Cwm/CE2
j ;

�i D .�.wi�C1C � � �Cwi/C .wiC1C � � �CwiC//

� �n1
0
;�1.ti/v

con
i CEi ; 1� i � j � 1;

�i D .�.wi�C1C � � �Cwi/C .wiC1C � � �CwiC//

� �n2
0
;�2.ti/v

con
i CEi ; j C 1� i �m� 1;

where �1 and �2 are the partial flow trees obtained by cutting � at the first and second
outgoing edge at tj , respectively, and where �n;� is as in (3-10). Here Ei , i ¤ j (resp.
E˛j , ˛ D 1; 2) are some linear combinations of interior edge solutions and conformal
variations, respectively, that are supported in the component of �m� s , where s the
vertical segment through �i (resp. �j ), that contains punctures at C1; see Figure 29.
(The matching conditions for edge solutions imply that linear combinations Ei and
E˛j , ˛ D 1; 2, exists so that the sections indeed lie in ker.x@ yA; con/.

Using these equations we define the map  as follows:

 .vi/D �ns
0
;�s .ti/.�.wi�C1C � � �Cwi/C .wiC1C � � �CwiC/CEi/;
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supp.�ik/

supp.wi/

�i

�k

ai

Figure 28: Supports of edge solutions

tk

supp.Ek/

�k

Ek supported here

Figure 29: Support of additional interior edge solutions

where s D 1 if i < j and s D 2 if i > j . Since x@�i D 0 we have, by construction of
�i , x@ .vi/D x@vi . By definition, the orientation on coker.x@A/ induced by conformal
variations is given by L2 –projection of x@A.Vcon/ (with orientation on Vcon as in
Section 6.5). Thus ˇ ı induces the correct orientation on coker.x@A/.
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In order to compute the sign we first note that the projection of the subspace spanned
by �1; : : : �j�1; �jC1; : : : ; �m�3 to Vcon is an isomorphism and that the map from its
complement spanned by �1

0
; �2

0
given by evaluation at the positive puncture gives an

isomorphism to ker.x@ yA/, which consists of constant solutions. It follows that the sign
of the rigid disk u� is given by

�.u�/D s1s2s3;

where sk , k D 1; 2; 3 are as follows. First, s1 equals the sign of the orientation given
by

�1
0 ^ �

2
0 ^ �1 ^ � � � ^ �j�1 ^ �jC1 ^ �m�2

on ker.x@�/ where

�1
0 D w1C � � �Cwj ;

�2
0 D wjC1C � � �Cwm�1;

�1 D�w1C .w2C � � �Cw1C/;

�2 D�.w2�C1Cw2/C .w3C � � �Cw2C/;

:::

�j�1 D�.w.j�1/�C1C � � �Cwj�1/Cwj ;

�jC1 D�.wjC1/C .wjC2C � � �Cw.jC1/C/;

:::

�m�1 D�.w.m�2/�C1C � � �Cwm�2/Cwm�1:

Second, s2 equals the sign of the orientation on Vcon given by

.�n1
0
;�1.t1/v

con
1 /^ � � � ^ .�n1

0
;�1.tj�1/v

con
j�1/

^ .�n2
0
;�2.tjC1/v

con
jC1/^ � � � ^ .�n2

0
;�2.tm�2/v

con
m�2/:

Third, s3 equals the sign of the orientation on ker.@ yA/ given by

xn1
0 ^ xn

2
0;

where xns
0

is a constant solution agreeing with ns
0

in the region where ns
0

is constant,
s D 1; 2.
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We have

�1
0 ^ �

2
0 ^ �1 ^ � � � ^ �j�1 ^ �jC1 ^ �m�2

D .�1/j�1�1
0 ^ �1 ^ � � � ^ �j�1 ^ �

2
0 ^ �jC1 ^ �m�2

D .�1/j�1w1 ^ � � � ^wm�1

D .�1/j�1
m�1Y
sD1

hws; v
ker.as/i v

ker.a1/^ � � � ^ v
ker.am�1/;

and thus

s1 D .�1/j�1
m�1Y
sD1

hws; v
ker.as/i:

Next,
v1 ^ � � � ^ vj�1 ^ vjC1 ^ � � � ^ vm�2 D .�1/j�1@q3

^ � � � ^ @qm
;

by Lemma 6.5, where @q3
^ � � � ^ @qm

is the standard orientation of Cm corresponding
to moving the last m� 3 punctures counter clockwise along the boundary of the disk,
and thus

s2 D .�1/j�1

j�1Y
sD1

�n1
0
;�1.ts/

m�1Y
sDjC1

�n2
0
;�2.ts/:

Finally, recall that oC was chosen so that vcoker.b/^ vker.b/ represents the positive
orientation on Tƒ. Since vker.b/ is parallel to the vector v con.tj / related to the
conformal variation at �j , we find that

xn1
0 ^ xn

2
0 D .n

1
0C n2

0/^ .�n1
0C n2

0/

D h.n1
0C n2

0/; v
coker.b/ih.�n1

0C n2
0/; v

ker.b/i vcoker.b/^ vker.b/

D h.n1
0C n2

0/; v
coker.b/i�.tj /hv

flow
� ; vker.b/i vcoker.b/^ vker.b/:

Thus, if n1
0

and n2
0

are the vector splittings of vcoker.b/ then s3 D �.tj /, and

s1s2s3 D �pos.�/�.n; �/:

6.6.2 The sign of a quantum flow tree of type .QT00/ Let „ be a quantum flow
tree whose big disk part is a rigid strip ‚. Assume that „ has m punctures. Let
e denote its positive puncture (a Reeb chord of type L2 ), let c denote its negative
puncture (of type L1 ) and denote the remaining punctures by a1; : : : ; am�2 (all of
type S0 ). It then follows that ‚ is a strip with positive puncture at a Reeb chord of ƒ
close to e and negative puncture at a Reeb chord of ƒ close to c . Let t1; : : : ; tm�1

denote the junction points (ie, the points on the boundary of ‚ where trees are attached)
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and the trivalent vertices in the trees attached. Then each tj corresponds to a unique
boundary minimum �j in the domain �m of a holomorphic disk u� corresponding to
� and we number the points tj according to the vertical coordinate of the boundary
minima �j in �m . We write I for the set of junction points of „ and for tj 2 I we
write �j for the tree attached at tj and nj for the vector at tj that is tangent to the
boundary of ‚ and points toward the positive puncture e .

Lemma 6.8 The sign of the rigid disk u� corresponding to „ is given by

�.u�/D �.„/D �.‚/
Y
tj2I

�.nj ; �j /I

see Sections 3.4.4 and 4.3 for notation.

Proof Consider first the case mD 2, ie, when there are no flow trees attached to the
disk. In this case the linearized operator x@A as well as the capping operators are small
deformations of the linearized operator and capping operators of the corresponding
disk with boundary on ƒ. It follows that the signs of the two disks agree and hence
�.u�/D �.‚/ as claimed.

In order to prepare for the case m> 2 we write down the gluing sequence for mD 2,
see [16, Equation (3.17)], that gives the sign explicitly. Using Tables 3, 4 (as a negative
puncture) and 5 we have

0! ker.x@c�/˚ ker.x@A/
ˇ
�! coker.x@eC/˚ coker.x@c�/! 0;

where we use the fact that the glued operator x@ yA is an isomorphism. (To see this note
that @ yA splits into a direct sum of two 1–dimensional operators both of index 0.)

Noting that the boundary conditions of x@A are close to R2 conditions we deform them
to constant R2 boundary conditions inserting weights as determined by the complex
angles, exactly as in the proof of Lemma 6.7. The solutions in the above sequence
can then be thought of as cut-off constant solutions (which may be extended on a
sufficiently large domain so that the supports of vker.c�/ and vcoker.eC/ overlap in
order for the sequence to be exact) and the sign is given by

�.u�/D �.�/D hv
ker.c/; vcoker.e/i hvflow.�/; vcoker.c/i:

Consider next the case m > 2. As above we use the associated weighted problem
corresponding to A with constant boundary conditions and exponential weights. Again
x@ yA is an isomorphism and the gluing sequence which determines the sign is

0! ker.x@�/˚ ker.x@c�/! coker.x@eC/˚ coker.x@c�/˚ coker.x@A/! 0;
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where ker.x@�/D
Lm�2

jD1 ker.x@aj�/ is spanned by cut off (constant) solutions of the cap-
ping operators at the negative punctures a1; : : : ; am�2 , where ker.x@c�/ and coker.x@eC/

are as above, where the orientation of ker.x@�/˚ ker.x@c�/ is induced by the order of
the punctures, and where coker.x@A/ is equipped with the orientation induced by the
space of conformal variations of �m .

As in the proof of Lemma 6.7 we stabilize the operator x@ yA by adding the finite-
dimensional space Vcon spanned by conformal variations supported near all boundary
minima except �r , where we take �r to be the boundary minimum corresponding to
the junction point tr immediately following the negative puncture c , or if there is
no junction point after c , the junction point tr immediately preceding c . Here the
conformal variation v con

j near a boundary minimum �j such that tj … I is defined
exactly as the elements of Vcon in the proof of Lemma 6.7. Conformal variations
supported near boundary minima �i with ti 2 I have the form x@A.zv con

i /D du�.x@.z@� //,
where z@� is a cut-off of the vector field @� in the domain of the holomorphic disk part
of � that is tangent to the boundary and directed towards the positive puncture and
continued constantly into the domain corresponding to the tree attached; see Figure 30.

�j

tj

‚

supp.vcon
j /

�j

Figure 30: Support of conformal variation at junction point

As �! 0, x@Azv con
j converges to a x@zvflow in the part of the domain corresponding to the

holomorphic disk part of � , where zvflow is a cut-off of the constant vector field vflow

pointing toward the positive puncture, and to zni in the part of the domain corresponding
to the tree (near the junction point), where zni is a cut-off of the constant vector field ni .
In analogy with v con

j for tj … I , we define v con
i for the deformed boundary conditions

so that x@Av con
i agrees with the operator acting on these cut off constant vector fields in

the two components of its support. This gives the stabilized operator

x@ yA; conW H yA˚Vcon!H0
yA

and the new sequence

0! ker.x@ yA; con/! ker.x@�/˚ ker.x@c�/! coker.x@eC/˚ coker.x@c�/! 0;
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which by an argument similar to that used for the stabilized sequence in Lemma 6.7
gives the correct sign.

In addition to conformal variations we also introduce internal and external edge so-
lutions corresponding to edges of the flow trees �j , tj 2 I attached exactly as in
Lemma 6.7, where we start the construction for the tree �j with the vector nj at
tj 2 I . We also introduce an extra cut-off solution, which compensates for the lack
of conformal variation at �r : let vsol D vflowC vr where vflow is the constant vector
field along ‚ cut off near each junction point and near c , and where vr is a conformal
variation of the usual type supported near �r ; see Figure 31.

‚supp.vsol/

�1
�2

�3�4

ce

Figure 31: The support of vsol . Here �3 is the first partial tree to follow the
puncture c in the positive direction of the boundary of the domain.

As in the proof of Lemma 6.7 we assume that cut-off tangential edge solutions and
vsol agree with conformal variations on intersections of supports of their derivatives.

Define Vsol as the 1–dimensional space spanned by vsol and stabilize the operator one
more time:

x@ yA; con; solW H yA˚Vcon˚Vsol!H0
yA

Noting that the projection of x@vsol to coker.x@c�/ equals the corresponding projection
of x@vflow to coker.x@c�/ for the disk ‚ we can determine the sign in the exact sequence
for the stabilized operator x@ yA; con; sol , which reads

0! ker.x@ yA; con;sol/! ker.x@�/˚ ker.x@c�/! coker.x@eC/! 0;

in combination with the sign of hvsol; vcoker.c�/i.
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In analogy with the sign calculation in Lemma 6.7, we find a basis in the .m� 2/–
dimensional kernel of x@ yA; con; sol given by �1; : : : ; �m�2 , where

�i D�.wi�C1C � � �Cwi/C .wiC1C : : : wiC/� �ns.i/;�s.i/
.ti/v

con
i CEi if ti … I,

�j D .wj�C1C � � �Cwj /� v
con
j CEj if tj 2 I and j ¤ r ;

�r D .wr�C1C � � �Cwr /� v
sol
�

X
j¤r

v con
j CEj ;

where �s.i/ is the attached flow tree in which ti … I lies, and where Ej denotes linear
combinations of interior edge solutions of edges below tj , exactly as in the proof of
Lemma 6.7.

It follows that �.u�/D s1s2s3 , where the signs sj , j D 1; 2; 3 are as follows. First,
s1 equals the orientation on ker.x@�/ given by

.�1/r�1

�Y
ti…I

�ns.i/;�s.i/
.ti/

�
�1 ^ �r�1 ^ �rC1 ^ � � � ^ �m�1;

where
�i D�.wi�C1C � � �Cwj /C .wiC1C : : : wiC/ if ti … I,

�j D .wj�C1C � � �Cwj / if tj 2 I:
Second, up to a positive factor,

s2 D hv
sol; vcoker.c�/i D hvr C v

flow; vcoker.c�/i D hvflow; vcoker.c�/i:

Third, s3 D .�1/r�1hvker.c/; vcoker.e/i, by the orientation conventions for sequences;
see [16, Section 3.2.1]. We conclude that, with notation as in Theorem 4.6,

�.u�/D �.„/D �.‚/
Yl

jD1
�.nj ; �j /:

6.6.3 The sign of a quantum flow tree of type .QT0/ Let „ be a quantum flow
tree with holomorphic component ‚, a rigid disk with one puncture. Assume that
„ has m punctures. Let c denote its positive puncture (a Reeb chord of type L1 )
and a1; : : : ; am�1 denote its negative punctures (all Reeb chords of type S0 ). We use
notation as in Section 6.6.2 for junction points and trivalent vertices of „.

We mark two points q0
0

and q0 on the boundary of the rigid disk ‚ right after the
positive puncture using two parallel oriented hypersurfaces near the positive puncture.
Let zvflow denote the holomorphic vector field along the disk that vanishes at the
positive puncture and at the second marked point, and that is directed toward the
positive puncture along the boundary. At each junction point tj 2 I , let nj denote the
value of zvflow at tj .
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Lemma 6.9 The sign of the rigid disk u� corresponding to „ is given by:

�.u�/D �.„/D �.‚/

lY
jD1

�.nj ; �j /

See Sections 3.4.4 and 4.3 for notation.

Proof Let x@A denote the linearized operator corresponding to the rigid disk ‚ with
domain thought of as a strip with punctures at the positive puncture and at q0 . Then
the linearized operator

x@AW HA!H0A
with m� 1 D 0 negative punctures has index 1. The 1–dimensional kernel for an
appropriate choice of orientation of the hypersurface makes zvflow give the positive
orientation to the moduli space. The proof then follows from an argument similar to
the proof of Lemma 6.8 so we just sketch the details.

Assume that u� has m punctures. Adding capping operators we get an operator x@ yA
on the closed disk of index 2 with two-dimensional kernel corresponding to linearized
conformal automorphism. Adding the vanishing condition at the marked point q0 for
the vector fields in H yA we get a new operator x@ yA� with domain a codimension-one
subspace H yA� �H yA . The restriction of the operator gives an operator

x@ yA� W H yA� !H0
yA

of index 1 with 1–dimensional kernel. We then consider the stabilized problem

x@ yA�; conW H yA� ˚Vcon!H0
yA

which has index .m� 1/ and find that the sign of u� is given by the sign of the map

0! ker.x@ yA�; con/! ker.@�/! 0;

where ker.@�/D
Lm�1

jD1 ker.x@aj�/ is the sum of cut off kernel functions of the capping
operators at all the negative punctures of u� . The equation

�.u�/D �.‚/

lY
jD1

�.nj ; �j /

then follows from a slightly simpler version of the analogous calculation in the proof
of Lemma 6.9.
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6.6.4 The sign of quantum flow tree of type .QT1/ Consider a quantum flow tree
„ with m punctures and with big disk part a once punctured constrained rigid disk
‚ that is constrained to pass through ….b/ where b is a Reeb chord of type S1 . Let
the positive puncture of „ be e (a Reeb chord of type L2 ), let the negative punctures
be b (a Reeb chord of type S1 ), and a1; : : : ; am�2 (Reeb chords of type S0 ). We
use notation for trivalent vertices and junction points of „ as in Section 6.6.2. Let
zvflow denote the holomorphic vector field along ‚ that vanishes at e and b and that
is directed toward the positive puncture e along the boundary. Let nj be the value of
zvflow at tj 2 I .

Lemma 6.10 The sign of the rigid disk u� corresponding to „ is given by

�.u�/D �.„/D �.‚/

lY
jD1

�.nj ; �j /:

See Sections 3.4.4 and 4.3 for notation.

Proof The proof follows along the lines of previous lemmas in the section and detailed
calculations will be omitted. We use notation as before. Start with the case of no negative
punctures. Consider first the orientation sequence for the moduli space containing
the 1–dimensional disk. We write x@E for the corresponding operator. Then x@E has
3–dimensional kernel whereas the capped off operator x@ yE has 2–dimensional kernel
corresponding to linearized automorphism of the disk with one puncture and we get
the gluing sequence

0! ker.x@ yE/! ker.x@E/! coker.x@eC/! 0;

thus coker.x@eC/ together with conformal automorphisms orient the moduli space and
we can identify coker.@eC/ with the vector field � that is the positively oriented tangent
vector of the 1–dimensional moduli space; see Section 4.3.

Consider first the case m D 2. The operator x@ yA is an isomorphism and the gluing
sequence is

0! ker.x@b�/˚ ker.x@A/! coker.x@eC/˚ coker.x@b�/! 0

and we find that

�.u�/D h�; v
ker.b/ihvflow.�/; vcoker.b/i D �.‚/

as claimed. In the case m> 2 the gluing sequence is

0! ker.x@�/˚ ker.x@b�/! coker.x@b�/˚ coker.x@eC/˚ coker.x@A/! 0:
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As in Lemma 6.8 we stabilize to an operator

x@ yA; con; solW H yA˚Vcon˚Vsol!H0
yA

of index m� 2, where Vcon is spanned by conformal variations and where Vsol is a
1–dimensional space spanned by vsol , which is a sum of an extra conformal variation at
the fixed boundary minimum and a cut-off zvflow of vflow , and which maps non-trivially
to vcoker.b/. The resulting map which determines the sign is then

0! ker.x@ yA; con; sol/! ker.x@�/˚ ker.x@b�/! coker.x@eC/! 0;

and the lemma follows from computation similar to those in the proof of Lemma 6.7.
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