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Betti numbers of finite volume orbifolds

IDDO SAMET

We prove that the Betti numbers of a negatively curved orbifold are linearly bounded
by its volume, generalizing a theorem of Gromov that establishes this bound for
manifolds. An immediate corollary is that Betti numbers of a lattice in a rank-one Lie
group are linearly bounded by its co-volume.

53C20

1 Introduction

Let X be a Hadamard manifold, ie, a connected, simply connected, complete Rie-
mannian manifold of non-positive curvature normalized such that �1�K � 0. Let �
be a discrete subgroup of Isom.X /. If � is torsion-free then X=� is a Riemannian
manifold. If � has torsion elements, then X=� has a structure of an orbifold. In both
cases, the Riemannian structure defines the volume of X=� .

An important special case is that of symmetric spaces X D KnG , where G is a
connected semisimple Lie group without center and with no compact factors, and
K is a maximal compact subgroup. Then X is non-positively curved, and G is the
connected component of Isom.X /. In this case, X=� has finite volume iff � is a
lattice in G . The curvature of X is non-positive if rank.G/ � 2, and is negative if
rank.G/D 1.

In many cases, the volume of negatively curved manifold controls the complexity of its
topology. A manifestation of this phenomenon is the celebrated theorem of Gromov
[3; 10] stating that if X has sectional curvature �1�K < 0 then

(1)
nX

iD0

bi.X=�/� Cn � vol.X=�/;

where bi are Betti numbers w.r.t. coefficients in any field, and Cn is a constant depending
only on nD dim.X /. This inequality also holds when �1�K � 0 if X is analytic
and has no Euclidean factors.

It should be noted, that since X is a K.�; 1/, the bi are the Betti number of the
homology of the group � .
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In certain cases, volume imposes much stronger restriction on topology. Namely, it
was proved by Gelander [8] that if X is a symmetric space of non-compact type and
� is a non-uniform torsion-free arithmetic lattice then X=� is homotopy-equivalent
to a simplicial complex whose complexity is restricted: the number of vertices in this
complex is bounded by a constant (depending on X ) times the volume of X=� , and the
valence of each vertex is bounded by a constant depending only on X . This equivalence
immediately implies Gromov’s Theorem. By Margulis’s Arithmeticity Theorem, if
rank.X /� 2 then every lattice � is arithmetic, and thus Gelander’s theorem holds for
all such spaces.

Gelander has also proved that if � torsion-free, then � has a presentation for which
the number of generators and the total length of the relations is bounded linearly
by the volume of X=� (with constants depending on X ). Recently, Gelander [9]
extended this result and proved that even for lattices with torsion, the minimal number
of generators of � is bounded from above by a constant (depending on G ) times the
volume of X=� . In particular, this provides a linear bound to the first Betti number
of � .

The main theorem proved in this paper is a generalization of Gromov’s theorem to the
case where � has torsion, in other words, to orbifolds of the form X=� . We prove:

Theorem 1.1 Let X be a Hadamard manifold of dimension n with sectional curvature
�1�K < 0. Then for every discrete group � < Isom.X /,

(2)
X

i

rk Hi.X=�;A/� Cn � vol.X=�/;

where the coefficient ring A is an integral domain of characteristic 0, and Cn is a
constant depending only on n.

There are several (co)-homology theories for orbifolds that aim at capturing the homol-
ogy of the space, as well as that of the group � . Our technique is mainly geometric; we
therefore treat X=� as a topological quotient space, and the homology is that of this
space. Furthermore, the action of finite subgroups of � introduces torsion to homology
groups, which may depend on the structure of these finite groups. Since we are not
able to bound the size of finite groups by the orbifold volume, our result is restricted to
homology with coefficients in an integral domain with characteristic 0.

The case A D Q is of particular importance. The homology of the stabilizers in
G of points of X is trivial, because stabilizers are finite groups. It follows that
Hi.X=�;Q/DHi.�;Q/ (see eg [6, page 174]). Hence, we can restate (2) as a bound
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on Betti numbers (with rational coefficients) of the group � :X
i

bi.�;Q/� Cn � vol.X=�/:

Theorem 1.1 and Gromov’s theorem can be rephrased as an asymptotic statement: if
�n is a sequence of groups of isometries acting discretely on X (with the appropriate
assumptions) then the growth of bi.�n/ is at most linear in vol.X=�n/.

A theorem of Lück [12] describes the asymptotic behavior of a nested sequence .�n/n�1

of normal finite index subgroups of � , assuming that X=� is compact and
T
�n D 1.

In this case,

(3) lim
n!1

bi.X=�n/

vol.X=�n/
D ˇ

.2/
i .X I�/

where the right-hand side is the L2 –Betti number. Hence, the growth is linear exactly
when ˇ.2/i .X I�/ is non-zero. It was proved by Olbrich [15] that if X is a symmetric
space, then ˇ.2/i is zero unless, perhaps, i D dim.X /=2.

In a recent joint work with Abert, Bergeron, Biringer, Gelander, Nikolov and Raimbault
[2; 1] we prove (3) holds for any sequence of uniform irreducible lattices .�n/n�1

(possibly with torsion) in a semisimple Lie group G , assuming that vol.X=�n/!1

and that G has property (T) and rank� 2. However, one cannot expect (3) to hold for
rank-one locally symmetric spaces (whether manifolds or orbifolds). For instance, if �
is a uniform lattice in Isom.Hn/ that surjects on the free group of rank 2, then finite
index subgroups of � corresponding to subgroups of Z�Z have first Betti numbers
that grow linearly with volume, whereas ˇ.2/

1
D 0.

Characteristic p

It is natural to whether Theorem 1.1 holds for coefficients with positive characteristic,
and particularly for coefficients in the field Fp . The author does not know of any
counterexample in this case. In fact, there is but a single place in the proof that relies
on the characteristic assumption, namely Proposition 4.11. Proving this proposition
for coefficients in Fp boils down to the problem of uniformly bounding the Fp –Betti
numbers of a spherical orbifold, as posed in the following question:

Does there exist a constant D depending on k (and possibly on p?) such
that for every finite group G acting linearly on a sphere Sk , and for
every i , bi.S

k=G;Fp/�D?
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More precisely, an affirmative answer to the question for spheres of dimensions �
n� 1 would imply that Theorem 1.1 holds with coefficients in Fp for manifolds of
dimension n. In particular, we can obtain the following partial results:

(1) The theorem holds with Fp coefficients for manifolds of dimensions 2 or 3 (with
a constant Cn independent of p ). This is because—up to homeomorphism—
there are only finitely many possible quotients of 1–spheres and 2–spheres by
finite groups.1

(2) If p does not divide the order of any finite subgroup of � , then the inequality
(2) holds for AD Fp (with the constant Cn of the characteristic 0 case). This
follows from the fact that bi.S

k=G;Fp/� 1 whenever p is prime to the order
of G (see remark at the end of Section 4).
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2 Preliminaries

2.1 Notation

Let X be an n–dimensional Hadamard manifold, ie, a connected, simply connected
complete Riemannian manifold of non-positive sectional curvature. We assume that
the curvature is bounded and that the metric is normalized such that �1�K � 0. If
K < 0 we say the manifold is negatively curved. Most of our results apply to this case.

2.1.1 We introduce notation and review some facts about isometries of Hadamard
spaces. A standard reference for this is [5, Chapter II.6] or [3, Section 6].

Let  be an isometry of X . The displacement function d W X ! R�0 , d .x/ D

d.x;x/, is a convex function in the sense that for every geodesic cW R!X , d ı c

is a convex function. The set of minimal displacement is defined:

Min. /D fx 2X W d .x/D inf d g

1The underlying space of a 1–dimensional spherical orbifold is 1–sphere or an interval, and the
underlying space of a 2–dimensional spherical orbifold is a 2–sphere, a disc, or a projective plane.
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It is a closed and convex subset of X .

An isometry of X is elliptic if it fixes a point in X , hyperbolic if it does not fix a point
in X but d attains minimum in X , and parabolic otherwise. The first two types are
called semisimple. An isometry is elliptic (resp. hyperbolic, parabolic) iff any a positive
power of it is elliptic (resp. hyperbolic, parabolic).

If  is a non-trivial elliptic isometry then Min. / is a complete totally geodesic
submanifold of lower dimension in X . If  is hyperbolic and K < 0 then Min. / is a
geodesic—the axis of —on which  acts by translations. If  is a parabolic isometry
then it fixes a point in the boundary of points at infinity. Explicitly, there is a geodesic
ray cW RC! X such that c and  c are asymptotic, ie, d.c.t/;  c.t// is uniformly
bounded. If K < 0 then  fixes a unique point at infinity.

Let C be a closed convex subset of X , and let x 2 X . Since X has non-positive
curvature, there is a unique point �C .x/ 2 C that is closest to x in C . This is called
the projection to C . The projection is distance decreasing, ie, d.�C .x/; �C .y// �

d.x;y/. Now suppose C is  –invariant. Then �C .x/D �C .x/. It follows that
d .�C .x//� d .x/. In particular, Min. /\C is non-empty.

If 0; 1 are commuting semisimple isometries, then i keeps Min.1�i/ invariant
(i D 0; 1). It follows that Min.0/ \Min.1/ is non-empty, and kept invariant by
both isometries. More generally, if A is a set of commuting semisimple isometries
then

T
2A Min. / is non-empty and A–invariant. In particular, if K < 0 then two

commuting isometries have the same axis.

2.1.2 Let � be a group of isometries of X acting properly discontinuously, that is, a
subgroup of Isom.X / that is discrete with respect to the compact-open topology. If �
is torsion-free, then X=� has a structure of Riemannian manifold. More generally, �
may have finite point-stabilizers, and X=� is endowed a structure of a Riemannian
orbifold. An orbifold has an atlas of maps locally identifying it with a quotient of an
open set in X by a finite group of isometries. Orbifolds were originally introduced
and studied by Satake [17] who named them V–manifolds.

2.1.3 We have the canonical projection � W X !X=� . Let inj-rad.x/, x 2X=� , be
the local injectivity radius at x . Let us denote d�.x/D inf2�nf1g d .x/. We recall
that inj-rad.x/D 1

2
d�.zx/, with �.zx/D x . The "–thick part of X=� is defined:

.X=�/�" D fx 2X=� W inj-rad.x/� "
2
g

It is the image of the set fx 2X W d�.x/� "g under the canonical projection.

We remark that if X is a point, its injectivity radius is infinity.
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2.1.4 We will make all volume calculations using discrete estimates.

Say a set N � X is ı–discrete if d.x;y/ � ı for x ¤ y 2N . For " > 0 we define
"–ess-vol.X=�/ as the supremal cardinality of a 2"–discrete set of points N in the
2"–thick part of X=� . This is the supremum of the number of disjoint injected balls of
radius ". It is reasonable to set "–ess-vol.point/D 1; this is consistent with definitions
for positive dimension. This definition is introduced in [3, Section 10.4].

Clearly, "–ess-vol.X=�/ is non-decreasing as " decreases. In the case dim X > 0, it
is easy to verify the useful inequality

k � "–ess-vol.X=�/� "

k
–ess-vol.X=�/:

Since curvature is non-positive, a ball of radius " in X has volume � V ."; n/—the
volume of a ball of radius " in Euclidean n–space. Thus we have:

"–ess-vol.X=�/� V ."; n/�1
� vol.X=�/

We will utilize these two inequalities freely without further reference.

2.1.5 For a point x 2X , let �x be the stabilizer of x in � . A subgroup of � is finite
if and only if it is contained in �x , for some x 2X .

For a submanifold Y �X , we denote:

�Y D f 2 � W Y D Y g and �1
Y D f 2 �Y W  jY D 1g

The latter is a finite group.

If �1
Y

is not trivial, then �Y cannot be identified as a subgroup of Isom.Y /. However,
the action of �Y on Y factors through �Y =�

1
Y

. In this case, the terms Y=�Y and
d�Y

, and consequentially inj-rad and "–ess-vol.Y=�Y /, will refer to—by abuse of
notation—the action �Y =�

1
Y

on Y .

2.2 Margulis Lemma

We denote �".x/Df 2� Wd .x/<"g and �".x/Dh�".x/i. The following statement
about groups generated by “small motions” is an amalgamation of the Margulis Lemma
[3] and the Jordan Theorem [11].

Theorem 2.1 Let X be a Hadamard manifold of dimension n with �1 � K � 0.
There are constants depending only on n, "n > 0 and mn 2 N such that for every
discrete subgroup � < Isom.X / and every x 2X , �"n

.x/ contains a normal nilpotent
subgroup N of index �mn . If �"n

.x/ is finite, N is in fact abelian.
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We henceforth refer to the nilpotent subgroup stipulated by this theorem as “the normal
nilpotent subgroup of �".x/”.

Remark The proof of the Margulis Lemma (cf [3, Section 8.3]) is based on the fact
that there are generators of N in a neighborhood of identity in which commutators are
contracting with respect to some norm. It follows from this that for every ı > 0 there is
K DK.ı; n/ such that if  is a k –fold commutator of these generators with k �K

then d .x/ < ı .

The following lemma is proved in [3, Lemma 7.4].

Lemma 2.2 Let N be a nilpotent group of isometries acting on a closed convex subset
of X . Let Ns be the set of semisimple isometries in N . Then Ns is a normal subgroup
of N , and

T
2N Min. / is a non-empty N –invariant set.

Lemma 2.3 Let 0 < " < "n , and let N be the normal nilpotent subgroup of index
�mn in �".x/. Then N is generated by elements in �2mn".x/. If �".x/ is infinite
then there is an element of infinite order in N \�2mn".x/. Furthermore, if �".x/
contains parabolic elements then this element can be taken to be parabolic.

Proof Recall that if G is a group generated by a set of elements S , and H �G is a
subgroup of index r , then H is generated by words of length < 2r in the generators
S . Indeed, if T D ft1; : : : ; tr g is a transversal (ie, a set of representatives of right
cosets) of H in G , then H is generated by TST �1\H . Moreover, if T is a Schreier
transversal (w.r.t. the generating set S ) then its elements have length at most r �1 (for
the last two statements, see eg [13, Section 2.3]). Hence, H is generated by words of
length 2.r � 1/C 1< 2r .

Let N be the normal nilpotent subgroup of �".x/. Since ŒG WN ��mn , N is generated
by words of length <2mn with respect to the generators of �".x/. Hence it is generated
by elements in �2mn".x/.

Let Ns be the set of semisimple elements in N . By Lemma 2.2, Ns is a subgroup,
and K D

T
2Ns

Min. / is non-empty convex and N –invariant. Notice that every
elliptic element in N fixes K . Since N is infinite, it cannot fix K pointwise, and thus
cannot be generated by elliptic elements. Thus, at least one element in N \�2mn".x/

has infinite order. If �".x/ contains a parabolic element, then so does N . In this case,
at least one element in N \�2mn".x/ is parabolic, otherwise N DNs .
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2.3 Elliptic isometries

For an elliptic isometry  we write Fix. / for Min. /. Let � be a group of isometries
acting discretely on X . We say Y is a singular submanifold if it equals

T
2A Fix. /

for a set A� � of elliptic elements. We do not exclude the trivial case Y DX .

Let Y , Y 0 be two totally geodesic submanifolds in X . If there exists  2 � such that
Y D Y 0 we say that Y , Y 0 are conjugate. Clearly, if Y is conjugate to a singular
submanifold, then Y itself is a singular submanifold.

Definition 2.4 An isometry g 2G D SO.n/ of Rn is s–stable (s 2N ) if CG.g
i/D

CG.g/ (centralizer in G ) and Fix.g/D Fix.gi/ for i D 1; : : : ; s . An elliptic isometry
 2 Isom.X / is s–stable if the isometry induced on the tangent bundle of a fixed point
is s–stable.

A singular submanifold Y is s–stable (w.r.t. to � ) if there exists a subset A� � , such
that every  2A is elliptic s–stable, and Y D

T
2A Fix. /.

It is clear that the definition of an s–stable elliptic element does not depend on the
choice of fixed point. Also, if  is an elliptic s–stable isometry then Fix. /D Fix. i/,
and for every elliptic isometry  0 ,  0 commutes with  iff it commutes with  i . This
is easily seen by looking at a point fixed by both commuting isometries.

The notion of stability was originally introduced in [3, Section 12.4] for hyperbolic
isometries. There, a hyperbolic element  is called s–stable if Min. i/ D Min. /
for i D 1; : : : ; s (there is no requirement that centralizers are equal). Although our
requirement is stronger, we still have the following “stabilization” property which is
established in [3, Section 12.5] for hyperbolic elements:

Proposition 2.5 For every s 2 N there exists s� D s�.s; n/ such that for every
isometry  of X there is some j � s� such that  i is s–stable.

Proof Clearly, it suffices to prove the analog statement for g 2 SO.n/. Let us view
SO.n/ as a group of matrices over C . An element h 2 SO.n/ commutes with g iff
there is a basis whose vectors are eigenvectors of both g and h.

It is easy to see that if all eigenvalues of g have argument < �=s then i th (i � s )
powers of distinct eigenvalues remain distinct, thus every eigenvector of gi is an
eigenvector of g . Hence, g commutes with h iff gi commutes with h. Also, under
this assumption, the eigenspace of eigenvalue 1 is the same for g and for gi , and hence
Fix.g/D Fix.gi/.
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Now, partition T D fz 2C W jzj D 1g into 2s intervals Uk D fe
�x=s W k � x < kC 1g

for k D 0; : : : ; 2s � 1, and endow this to a partition of T n into .2s/n parts. By a
pigeonhole principal argument, if .z1; : : : ; zn/2T n then there exists 1� i � .2s/nC1

such that zi
j 2 U0 for all 1� j � n. We set s� D .2s/nC 1.

Considering g 2 SO.n/ again, we identify its eigenvalues as a tuple in T n . Then there
exists 1 � i � s� such that all eigenvalues of g have argument < �=s , and we are
done.

3 Bounding the thin part

In the classical study of manifolds of non-positive curvature, it is usually beneficial to
decompose a manifold into its “thick” and “thin” parts, ie, parts with injectivity radius
bounded from below, and from above, respectively.

Roughly speaking, the topology of the thin part can be complicated and is somewhat
controlled by the Margulis Lemma. When � contains elliptic elements, the thin part
contains all singular submanifolds, and its complexity is even greater. However, the
Margulis Lemma can still be used to show that sufficiently stable singular submanifolds
are more “well-behaved” than general singular submanifolds. The following two
theorems make use of this general idea to make a quantitative statement.

With the exception of Theorem 3.5, the statements of this section hold whenever X is
a Hadamard manifold with sectional curvature normalized such that �1�K � 0. We
will not restate this assumption in any of the statements. Theorem 3.5 holds with the
assumption that �1�K < 0.

We will make use of the following proposition, which is proved in [3, page 128].

Proposition 3.1 For every " > 0 and k 2N there is a ı > 0 such that if j�".x/j � k

then there is a point y 2X , d.x;y/ < "=4, and d�.y/� ı .

The following theorem is motivated by the analogous Theorem 12.11 of [3]. The
proof of the latter deals with (stable) minimal translation sets of hyperbolic elements
in non-positively curved manifolds, and overcomes difficulties that arise from the fact
that they may have Euclidean factors. It relies on the assumption that the group acts
freely. In our setting, the curvature is negative, however elliptic elements create a new
difficulty.
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Theorem 3.2 Let m D mn be the constant of the Margulis Lemma, and let † be a
set of non-conjugate singular m–stable submanifolds in X . For every "1 > 0 there is
an "2 D "2."1; n/ > 0 such that:

(4)
X
Y 2†

"1–ess-vol.Y=�Y /� "2–ess-vol.X=�/

Corollary 3.3 With the notation of the theorem, if "2–ess-vol.X=�/ is finite then
there are only finitely many non-conjugate m–stable singular submanifolds with a
non-empty "1 –thick part.

We first prove:

Lemma 3.4 For ı > 0, there is some " > 0 such that the following holds: Let Y �X

be an m–stable singular submanifold (m D mn ), and let A � � be a set of elliptic
elements such that Y D

T
˛2A Fix.˛/. Let x 2 X be a point having the following

properties:

(1) For every  2 �Y , if d .x/ < ı then  fixes Y pointwise.

(2) A� �".x/.

Then �".x/ is finite, and
T
2�".x/

Fix. /D Y .

Proof Let kDk.ı; n/ be the constant introduced in the remark following the Margulis
Lemma (Theorem 2.1). Take "Dmin."n; ı=.2m4k//. Let N be the normal nilpotent
subgroup of �".x/ of index i �m.

We claim that for every j , there are generators of N such that every j –fold iterated
commutator  in those generators has d .x/ < ı . Indeed, for j � k take those
“commutator contracted” generators used to define k . For j < k , by Lemma 2.3, N is
generated by elements with d .x/ < 2m". Thus if  is a j –fold iterated commutator
of these generators, then d .x/ < 2m4k"D ı .

We have A � �".x/, and thus B D f˛i W ˛ 2 Ag is contained in N . Stability of the
elements of A implies that Y D

T
ˇ2B Fix.ˇ/.

We claim that N fixes Y pointwise, and in particular, is finite. Denote by N .j/ the
j th term in the lower central series of N . The proof is by reverse induction. Suppose
N .jC1/ fixes Y . As we have noted, there are generators of N such that if  is a
j –fold iterated commutator of these generators then d .x/ < ı . For each ˇ 2 B ,
Œ; ˇ�2N .jC1/ fixes Y . It follows that Y � Fix.ˇ/. Therefore,  keeps Y invariant.
But since d .x/ < ı , it follows by our assumptions that  fixes Y pointwise. Finally,
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recall that N .j/ is generated by j –fold iterated commutators of (any set of) generators
of N modulo N .jC1/ . It follows that N .j/ fixes Y pointwise.

Since N fixes Y pointwise and B �N , we have that
T
2N Fix. /D Y . Normality

of N implies that Y is �".x/–invariant. It follows by the same argument as above
that �".x/ fixes Y pointwise.

Remark The proof brings into mind an interesting question: Is there a uniform bound
on the nilpotency degree of a discrete nilpotent group of isometries of X ? This is easily
seen to be true if X is a symmetric space, in which case the group is linear. The answer
is also positive if � is torsion-free; this follows from Schroeder [18] together with
Raghunathan [16, Lemma 2.19].

Before proving Theorem 3.2, let us explain the situation in which the previous lemma
will be used. In the proof of the theorem, we will have a point y 2Y which is in the 2ı–
thick part of Y=�Y , and a point x 2X with d.�Y .x/;y/< ı=2 (xDy being a special
case). Then x satisfies the first assumption because if d .x/ < ı then d .�Y .x// < ı

and consequentially d .y/ < 2ı . Our choice of y implies that if  2 �Y then  fixes
Y pointwise.

Proof of Theorem 3.2 Let us first note that it suffices to prove the theorem assuming
X 62†. Indeed, if "2 < "1 is a constant for which (4) holds whenever X 62†, then (4)
holds for all sets † with "2=2 instead of "2 , because

"1–ess-vol.X=�X /C "2–ess-vol.X=�/�
"2

2
–ess-vol.X=�/:

We will also assume that † is finite. Clearly, if (4) holds whenever † is finite, it also
holds when † is infinite.

We proceed by induction on dimension. Suppose that the theorem holds for manifolds
of dimension < n. Then for every d < n there exists ".d/

2
> 0, such that (4) holds

(with ".d/
2

for "2 ) for manifolds of dimension d . Take:

"3 Dminf".d/
2
W d < ng

Clearly, (4) still holds if we replace ".d/
2

by "3 .

Let Z be an m–stable singular submanifold in X . Denote by †Z � † the set of
m–stable singular submanifolds that are properly contained in Z . Suppose Y 2†Z ,
and let AY (resp. AZ ) be the set of all m–stable elliptic isometries fixing Y (resp. Z )
pointwise. Thus

T
2AY

Fix. /D Y and
T
2AZ

Fix. /DZ . Clearly, AZ ¨ AY .
Pick any y 2 Y . Then �y has a normal abelian subgroup of index i <m and clearly
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AY ��y . We deduce that for every 1; 2 2AY ,  i
1

,  i
2

commute, and by the stability
condition, 1 , 2 commute. It follows that every element of AY keeps Z invariant.
Thus, Y can be considered an m–stable submanifold of Z , with respect to the group
of isometries �Z .

Furthermore, the Margulis constant mn is increasing with the dimension n. Hence Y

is also md –stable, d D dim.Z/. By the induction hypothesis we haveX
Y 2†Z

"1–ess-vol.Y=�Y;Z /� "3–ess-vol.Z=�Z /

where �Y;Z is short for �Y \�Z .

Since our inequality involves "1–ess-vol.Y=�Y /, we have to bound this number by
"1–ess-vol.Y=�Y;Z /. To this end, let y1; : : : ;yk be points in Y whose projection
to Y=�Y is a 2"1 –discrete set, and assume d�Y

.yi/ > 2"1 . Since �Y;Z � �Y , we
have d�Y;Z

.yi/ > 2"1 . Also, the projection of these points to Y=�Y;Z .x/ is 2"1 –
discrete, because the group acting on Y is smaller. Hence "1–ess-vol.Y=�Y / �

"1–ess-vol.Y=�Y;Z /.

Let †0 �† be the set of m–stable submanifolds which are maximal in † n fX g with
respect to inclusion. Then we haveX

Y 2†nfX g

"1–ess-vol.Y=�Y /�
X

Z2†0

X
Z�Y 2†

"1–ess-vol.Y=�Y /

�

X
Z2†0

X
Z�Y 2†

"1–ess-vol.Y=�Y;Z /

�

X
Z2†0

"3–ess-vol.Z=�Z /

and our problem is reduced to the case of maximal submanifolds.

We will henceforth assume † is a set of maximal non-trivial m–stable submanifolds,
and prove that there exists "2 for which (4) holds.

Here is the strategy of the proof: To a point on the 2"1 –thick part of a stable singular
submanifold we assign a ball of radius "2 in the 2"2 –thick part of X=� . We then
show that for a collection of points realizing the sum of "1–ess-vol of all relevant
submanifolds, the assigned balls are pairwise disjoint in X=� .

Take "3 given by Lemma 3.4 for ıD 2"1 . Note that "3 < "1=2. Set "4D "3=.4mm�/,
where m� is the constant of Proposition 2.5.

Let Z 2 †0 , and let z 2 Z be a point whose image in Z=�Z is in the 2"1 –thick
part. Let AZ be the set of all m–stable elements fixing Z . Since Z is not properly
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contained in any other m–stable singular submanifold, we have that Fix. /DZ for
every  2AZ . By Lemma 3.4, �"3

.z/ is finite and every  2 �"3
.z/ fixes Z , and z

in particular.

Let c W Œ0;1/!X be a geodesic ray with c.0/D z and c0.0/?Z . For every  2AZ ,
d is not constant along c , and by convexity it is hence strictly increasing. We fix
y D c.t0/, t0 > 0, such that d .y/ � "3=2 for all  2 AZ , and d˛.y/ D "3=2 for
some ˛ 2AZ .

Since ˛ 2�"3
.y/, and �Z .y/D z , Lemma 3.4 applies again. We deduce that �"3

.y/ is
finite, and its elements fix Z pointwise. This is a fortiori true for �"4

.y/. Let N be the
normal abelian subgroup of �"4

.y/, of index i �m. Let  2N with d .y/ < 2m"4

(recall that N is generated by such elements). By Proposition 2.5,  j is m–stable, for
some j �m� . Since Fix. j /�Z , and Z is maximal, either  j is trivial, or  j 2AZ .
But the latter is impossible, because d j .y/� j �d .y/<m� �2m"4D "3=2. Therefore,
N is generated by elements of order � m� . Since N is abelian, every element of
it has order � m�! . But N is an abelian subgroup of SO.n/, hence it is generated
by at most n elements (not necessarily those taken before), hence jN j � .m�!/n

and j�"4
.y/j �m.m�!/n .

Now, we fix a constant "2 by Proposition 3.1, such that there exists x 2 X with
d.x;y/ < "4=4 and d�.x/� 2"2 . We may assume "2 �min."1=4; "3=8/. Note that
"2 depends on "4 and on m.m�!/n , thus it depends only on "1 and n.

Let B.z/ be the ball of radius "2 centered at x . We claim that every point w 2 B.z/

has the following properties:

(a) d.z; �Z .w// < "1 , and

(b) �"3
.w/ is finite and

T
2�"3

.w/ Fix. /DZ .

Property (a) is immediate, because:

d.z; �Z .w//D d.�Z .y/; �Z .w//� d.y; w/� "2C "4=4< "1

Since d˛.y/D "3=2, and d.w;y/� "2C "4=2, we have:

d˛.w/� d˛.y/C 2d.w;y/ < "3=2C 2"2C "4 < "3

Thus ˛ 2 �"3
.w/, and in light of (a), it follows from Lemma 3.4 that property (b)

holds.

To complete the proof, let †0 D fZ1; : : : ;Zsg and for each 1� i � s choose a set of
points fzi;1; : : : ; zi;ti

g in Zi whose projections to Zi=�Zi
are a 2"1 –discrete set in

the 2"1 –thick part, and such that ti D "1–ess-vol.Zi=�Zi
/.
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Consider the collection of balls fB.zi;j / W 1� i � s; 1� j � tig, and their projections
zB.zi;j / to X=� . Recall that B.zi;j / is centered around a point in the 2"2 –thick part

of X=� . We claim that these balls are pairwise disjoint.

To this end, suppose zB.zi;j / and zB.zi0;j 0/ have non-empty intersection. Then there
exists w 2 B.zi;j / and  2 � such that w 2 B.zi0;j 0/. By property (b), we deduce
that Zi0 DZi . By our assumption on †, we deduce that i D i 0 and  2 �Zi

. Now
property (a) implies that the images of zi;j and zi0;j 0 in Zi=�Zi

have distance < 2"1 .
Thus zi;j D zi0;j 0 .

A second type of minimal sets that arises in the thin part are “short geodesics”. These
are the images of axes of hyperbolic isometries in � with translation length less than
"n=2 (the Margulis constant). In the torsion-free setting, bounding the number short
geodesics is a straightforward consequence of the Margulis Lemma (eg, [3, Lemma
10.4]). The presence of finite order elements introduces new difficulties that are dealt
with in the proof of the following theorem.

Theorem 3.5 Assume that �1�K < 0. Let "D "n , and C be a set of non-conjugate
geodesics in X , such that for each c 2 C there exists a hyperbolic element ˛ 2 � with
C DMin.˛/, and min d˛ < "=2. Then jCj � �–ess-vol.X=�/, where � is a constant
depending on n.

Proof Let C 2 C , and let ˛ be a hyperbolic element with axis C and min d˛ < "=2.
Pick x 2 C , and let N be the nilpotent normal subgroup of �".x/. Denote by Ns

the set of semisimple elements in N . Then, by Lemma 2.2, K D
T
2Ns

Min. / is
a non-empty convex and N –invariant. Now, some power of ˛ is in N , hence in Ns .
Therefore, K is contained in C and is ˛–invariant. It follows that K D C . Thus
�".x/ keeps C invariant.

Let Y be an m–stable (mDmn ) singular manifold containing C that is minimal w.r.t.
inclusion (this exists because X itself is m–stable). Let AY be the set of all elliptic
m–stable elements fixing Y , and AC be the set of all elliptic m–stable elements fixing
C . The minimality of Y implies that for every  2AC nAY , Fix. /\Y D C . Also,
let HC be the set of hyperbolic elements with axis C .

Take a geodesic ray c W Œ0;1/! Y with c.0/D x and c0.0/? C . If  2AC nAY or
 2HC then  keeps C invariant, and c is not contained in Min. /. Thus, d is strictly
increasing along c . Fix y D c.t0/ such that d .y/� "=2 for all  2 .AC nAY /[HC

and d˛.y/D "=2 for some ˛ 2 .AC nAY /[HC .
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Claim Let z 2 Y and d.z;y/ < "=4. If �".z/ is infinite then it contains a hyperbolic
element and every hyperbolic element  2 �".z/ has Min. /D C . If �".z/ is finite
then

T
2�".z/

Fix. /� C . In either case, �".z/ keeps C invariant.

Proof First note that AY � �".z/ because z 2 Y . Also, ˛ 2 �".z/ because d˛.y/ <

"=2 and d.y; z/ < "=4. Let N be the normal nilpotent subgroup of �".z/ with index
i �m.

Suppose �".z/ is infinite. Then N is a finitely generated infinite nilpotent group, and
thus contains a central element ˇ of infinite order (cf [4]). For every  2 AY [ f˛g

we have  i 2N . Since ˇ commutes with  i , ˇ keeps Min. i/DMin. / invariant
(note that the latter equation holds whether  D ˛ is hyperbolic or elliptic, in which
case it is m–stable). Hence, ˇ keeps C D Y \Min.˛/ invariant. Since C is a line,
ˇ is hyperbolic with axis C . It follows that �".z/ keeps C invariant, and that any
hyperbolic element in �".z/ has axis C .

Suppose now that �".z/ is finite. In this case, ˛2AC nAY , because it is not hyperbolic.
Since AY [ f˛g � �".z/, we have that

T
2�".z/

Fix. / � Y \ Fix.˛/D C . To see
that �".z/ keeps C invariant, pick z0 2

T
2�".z/

Fix. /. Then �".z/� �".z0/. Since
�".z

0/ contains a hyperbolic element with axis C , all its elements keep C invariant,
and thus the same is true for �".z/.

We return to the proof of the theorem. Let "1 D "=4m� (m� is the constant of
Proposition 2.5). By the claim, all elements of �"1

.y/ keep C invariant. We prove
that �"1

.y/ is finite. Suppose by contradiction that it is infinite. Then a fortiori �".y/
is infinite. Now, by Lemma 2.3, �"1

.y/ contains an element  of infinite order and
d .y/ < 2m"1 < "=2. Since  keeps C invariant, it must be hyperbolic with axis C .
But this is impossible by the choice of y .

Let N be the normal abelian subgroup of �"1
.y/ \ �Y . Let  2 N . Since  is

elliptic and keeps the line C invariant,  2 fixes C pointwise. For some j � m� ,
 2j is m–stable, thus  2j 2AC . But since d2j .y/ < 2m�"1 D "=2 we deduce that
 2j 2AY , hence  2 �1

Y
. This means that every element in N=.N \�1

Y
/ has order

� 2m� , and since this group is generated at most n elements, jN=N \�1
Y
j � .2m�/n ,

and j�"1
.y/\�Y =�

1
Y
j �m.2m�/n .

We now apply Proposition 3.1 to �"1
.y/ \ �Y =�

1
Y

, regarding it as a subgroup of
isometries of Y . There is a constant "2 > 0 and a point z 2 Y with d.y; z/ < "1=4

and d�Y
.z/ > 2"2 . We denote by B.C / the ball of radius "2 inside Y centered at z .

Now suppose C;C 0 2 C , C ¤ C 0 . Then either B.C /, B.C 0/ are contained in non-
conjugate m–stable submanifolds, or we may assume they are contained in the same
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m–stable submanifold Y . In the latter case, their images in Y=�Y are disjoint. Indeed,
if they are not, then we may assume (by conjugation with an element of �Y ) that
B.C / meets B.C 0/, and this easily leads to a contradiction by the above claim. The
argument is similar to that of the proof of the previous theorem.

We thus have

jCj �
X
Y 2†

"2–ess-vol.Y=�Y /� �–ess-vol.X=�/

where † is a set of non-conjugate m–stable submanifolds that contain the geodesics
in C , and � is a constant obtained by Theorem 3.2.

4 Bounding the quasi-thick part

We now turn to study the “thick” part. The topology of the “thick” part of a manifold
with finite volume can be understood, to some extent, by means of a good cover of balls
whose number is bounded by the volume of the manifold. This is useful if the “thin”
part can be analyzed separately. Yet, in the previous section we have restricted our
attention to a certain part of the “thin” part, namely, the stable singular submanifolds.
To compensate for this shortcoming, we need to extend the standard notion of the
"–thick part.

In this section, X is an n–dimensional Hadamard manifold with non-positive sectional
curvature normalized such that �1�K � 0. As always, � is a discrete subgroup of
Isom.X /. Here we denote by O DX=� the quotient orbifold.

Definition 4.1 For " > 0 and m 2N we define:

X�";m D fx 2X W j�".x/j �mg

Since this set is � –invariant, we can define the .";m/–quasi-thick part of O as
O�";m DX�";m=� .

Our goal is to show that .";m/–quasi-thick part of O can be covered by a collection of
sets with contractible intersections, such that the volume controls the size of the covers
and the degree of intersections. We remark that by “cover” we mean that the union of
the sets contains the quasi-thick part, and may be strictly larger. In precise terms:

Theorem 4.2 There are positive constants ı and r depending on ", n and m, such
that O�";m admits a finite open cover B with the following properties:

(1) The elements of B are metric balls in O of radius � "=4.
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(2) A non-empty intersection of balls in B is contractible.

(3) The cardinality of B is bounded from above by ı–ess-vol.O/.

(4) Each ball in B intersects at most r balls in B .

Note that ı and r depend on the dimension n. However, since any smaller ı and larger
r will do, we may well choose constants that are good for orbifolds of dimension � n

(for given " and m).

Corollary 4.3 If ı–ess-vol.O/ <1 then O�";m is compact.

To prove this theorem, we begin by studying the geometry of singular sets—sets of
points fixed by finite subgroups of � .

4.1 Singular sets

We introduce some ad hoc notation for describing the singular sets of groups of isome-
tries. For a finite group of isometries G < Isom.X / we denote F.G/D\g2G Fix.g/.
For a group of isometries �< Isom.X / we define:

†.�/D fF.G/ WG <� finiteg

†i.�/D fY 2†.�/ W dim.Y /D ig

†<i.�/D fY 2†.�/ W dim.Y / < ig

We set Si.�/D
S

Y 2†i
Y and similarly S<i.�/. We omit reference to the group �

where there is no ambiguity. It should be emphasized that in these notations we do not
exclude the trivial element, or the trivial group. Thus X 2†.�/ for group �.

Note that † and †<i are all closed under intersection.

We study some basic properties of singular sets in the context of the .";m/–quasi-thick
part. All constants stipulated by these proposition may depend on n (the dimension
of X ) and m, but not on any particular group of isometries. We also assume all “"”
constants are smaller than half of the constant of the Margulis Lemma.

Proposition 4.4 Let Y1;Y2 2†.�/, and yj 2 Yj \X�";m (j D 1; 2). If d.y1;y2/ <

"=2 then there exists G < � , jGj � m such that Y1;Y2 2 †.G/ (in particular,
Y1\Y2 ¤∅).

Proof Take G D �".y2/. Trivially, �y2
< G and by the hypothesis, also �y1

< G .
Since Yj 2 †.�/, we have that F.�1

Yj
/ D Yj , and as �1

Yj
� �yj

� G , it follows
that Yj 2†.G/.
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Proposition 4.5 For "1 > 0 there exists "2 D "2."1/ > 0 so that the following holds:
Let G < Isom.X / be a finite group, jGj �m, and let Y1;Y2 2†.G/ such that Y1 6�Y2

and Y2 6� Y1 . If y1 2 Y1 , y2 2 Y2 and d.y1;y2/ < "2 then d.yi ;Y1 \ Y2/ < "1 for
i D 1; 2.

Proof Suppose that d.y1;Y1\Y2/� "1 . We will prove that there exists "2 D "2."1/

such that d.y1;y2/� "2 .

Let x be the projection of y1 onto Y1\Y2 . By our assumption, d.y1;x/� "1 , and
we may proceed with the assumption that x ¤ y2 . Consider the geodesic triangle with
vertices x;y1;y2 , and let ˛ be the angle at x . By replacing y2 with a point in Y2

which is closer to y1 (eg the projection of y1 to Y2 ), we may assume ˛ � �=2. By
comparison to a Euclidean triangle with sides of length d.x;y1/, d.x;y2/ with an
angle ˛ between them, we deduce that d.y1;y2/� "1 sin˛ . Our goal is to show that
the right-hand side can be replaced by a function of "1 that does not depend on ˛ .

Let Y1;Y2 � Tx.X / be the tangent subspaces of Y1;Y2 , respectively. Let a be the
geodesic segment Œx;y1�, and b be the geodesic segment Œx;y2�, and let A;B be the
(unit) tangent vectors at x of a; b , respectively. Since x is the projection of y1 to
Y1 \ Y2 , a is perpendicular to Y1 \ Y2 , and therefore A is orthogonal to Y1 \Y2 .
But since B 2 Y2 , the inner product of A and B is bounded away from 1. Hence, the
angle ˛ is bounded from below by a constant ˛0 D ˛0.Y1;Y2/.

By definition of †.G/, there are subgroups H1;H2 < G such that Yi D F.Hi/,
i D 1; 2. Since both H1 and H2 fix x , we may identify them as subgroups of SO.n/
via their induced action on the tangent plane Tx.X /. Since ˛0.Y1;Y2/ was determined
by the action on the tangent space, it actually depends only on the embedding of H1;H2

in SO.n/. Thus, we may write ˛0.H1;H2/ for ˛0.Y1;Y2/. Moreover, ˛0.H1;H2/ is
invariant under (simultaneous) conjugation of H1 and H2 in SO.n/.

Observe that, up to conjugation, there are finitely many pairs of subgroups H1;H2

in SO.n/ that generate a group of size �m. Therefore, we may fix ˛1 > 0 to be the
minimum of ˛0.H1;H2/ over all possible pairs H1;H2<SO.n/ with F.H1/ 6�F.H2/

and F.H2/ 6� F.H1/ (here, F.Hi/ is the fixed set w.r.t. the linear action). By setting
"2 D "1 sin˛1 , we are done.

Let us state explicitly an immediate consequence. In what follows, we adapt the
convention that d.x;∅/ D1, thus d.x;S<0.�// > c for every c > 0. Hence, the
following propositions are meaningful when i D 0, and in this case assumptions such
as d.x;S<i.�// > "1 are superfluous.
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Proposition 4.6 Let "2 D "2."1/ as in Proposition 4.5. Let Y1;Y2 2†.�/, with i D

dim.Y2/� dim.Y1/. Let yj 2 Yj \X�";m , j D 1; 2. Suppose that d.y1;S<i.�//� "1

or d.y2;S<i.�//� "1 . If d.y1;y2/ < "2 then Y2 � Y1 .

Proof Suppose contrarily that Y2 6�Y1 . Then by considering dimensions, also Y1 6�Y2 .
Since d.y1;y2/ < "2 < "=2, there is, by Proposition 4.4, some finite subgroup G < �

such that Y1;Y2 2 †.G/, with jGj � m. Therefore, Y1 \ Y2 is non-empty, and by
Proposition 4.5, we have that d.yi ;Y1\Y2/ < "1 for both i D 1 and i D 2. But this
contradicts our assumption, since Y1\Y2 � S<i.�/.

Proposition 4.7 Let Y 2 †.�/, y 2 Y \ X�";m , and i D dim.Y /. There exists
"3 D "3."1/ such that if d.y;S<i.�// > "1 then every element of �"3

.y/ fixes Y

pointwise.

Proof Take "2 D "2."1/ given in Proposition 4.5; we may assume "2 < "1 . Fix
"3 D 2 sin.�=m/"2 . Note that "3 < ", hence G D �"3

.y/ is a finite group of order
�m, by the hypothesis.

Assume by contradiction that there are elements in G that do not fix Y pointwise.
Then certainly there is such element g 2 G with dg.y/ < "3 . First, we claim that
d.y;Fix.g//� "2 . We distinguish between two cases:

(1) Fix.g/¨ Y . Then Fix.g/ 2†<i.�/ and this claim follows from the assumption
d.y;S<i.�// > "1 .

(2) Fix.g/ 6� Y . Suppose that d.y;Fix.g// < "2 . Take y0 2 Fix.g/ with d.y;y0/D

d.y;Fix.g//. Applying Proposition 4.5 to the group G and the sets Y and Fix.g/,
we derive that d.y;Y \ Fix.g// < "1 , a contradiction to our assumption that
d.y;S<i.�// > "1 .

Now, combining the facts that the order of g is �m and that d.y;Fix.g//� "2 yields
that dg.y/� 2 sin.�=m/"2 D "3 (cf [3, Section 12.2]), a contradiction.

4.2 Foldable sets

Definition 4.8 Let U � X be a an open set, and Y � X be a totally geodesic
submanifold. We say U is Y –foldable if it has the following properties:

� U is convex and precisely invariant, ie, for every  2 � if U \U ¤∅ then
U D U .

� Y is fixed by �U .
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� �Y .U /� U , �Y being the projection to the closest point in Y .
� The image of U \Y in X=� is convex.

If U is Y –foldable for some Y , we say it is foldable. If U is Y –foldable, we say its
image �.U / is a folded set.

Remark If U is Y –foldable then U \ Y injects to X=� . This follows from the
assumption that Y is fixed by �U .

The notable property of folded sets is:

Proposition 4.9 Folded sets are contractible.

Proof Let U � X be a foldable set. Since U is convex, and �Y .U / � U , there is
a deformation retract of U to U \Y , defined by the flow along the geodesics of the
projection to Y . Since �U fixes Y , this retraction can be taken to be �U –equivariant,
and as U is precisely invariant, it induces a retraction of �.U / to �.U \Y /, which
in turn is contractible.

Foldable sets appear naturally in certain neighborhoods of singular submanifolds. Let
Y 2†i (i � n) and y 2 Y nS<i . Observe that this implies that �y fixes Y . Indeed,
since Y 2†, we have that Y D F.�1

Y
/. Now, �1

Y
� �y , and had this inclusion been

proper, F.�y/ would have dimension less than i , contradicting the choice of y . Thus,
�1

Y
D �y .

Choose � sufficiently small so that �4�.y/ fixes Y . Let U D B.y; �/. Then U is
convex and open. It is precisely invariant, because if U intersects U then d .y/<2�,
and thus yD y and U DU . It remains to check whether U \Y injects to a convex
set in X=� . To this end, we observe that inj-radY .y/�2� and recall that the convexity
radius is half of the injectivity radius. All foldable balls mentioned henceforth are
assumed to be constructed in this manner.

We will also want to consider intersections of such foldable balls. Let B1 be a Y –
foldable ball centered at a point in Y . Suppose that B2; : : : ;Bk are foldable balls
centered at points in Y , and that U D

T
Bi ¤∅. Note that we do not require these

balls to be Y –foldable. The intersection of precisely invariant sets is itself precisely
invariant. Moreover, �U is a subgroup of �B1

, so it fixes Y . For every x 2 U ,
�Y .x/ 2 U , because the projection to Y does not increase distances to the centers of
the balls (which are in Y ). Now, U \ Y is convex because all balls are centered at
points of Y . Since the image of U \Y in X=� is contained in the convex image of
B1\Y , it follows that the image of U \Y is convex. This shows that U is Y –foldable.
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Moreover, we claim that �.U /D
T
�.Bi/, hence the intersection of these folded sets

is itself folded and thus contractible. This is corollary of the following proposition.

Proposition 4.10 Let x1; : : : ;xr 2X and �1; : : : ; �r > 0, such that �4�i
.xi/ fixes

xi for all i . Suppose the intersection of the balls Bi D B.xi ; �i/ is non-empty. Then
�.
T

Bi/D
T
�.Bi/.

Proof The preimage of
T
�.Bi/ is the union of intersections of the form

T
iBi ,

i 2 � . It therefore suffices to show that any such non-empty intersection is a translate
of
T

Bi by an element of � .

Let us assume �1 � �i for all i > 1. Also, by translating the intersection with �1
1

,
we may assume 1 D 1.

For every i � 2, B1 intersects iBi . Thus d.ixi ;x1/ < �1C�i � 2�i . Since also
d.xi ;x1/ < 2�i we obtain di

.xi/ < 4�i . By our assumption i fixes xi and thus
leaves Bi invariant. Thus

T
iBi D

T
Bi .

Proof of Theorem 4.2

Our cover of the .";m/–quasi-thick part will consist of folded balls centered at maximal
discrete subsets of the ."=2;m/–quasi-thick part. We denote O 0 DO�"=2;m .

We fix a sequence �0 > �1 > � � �> �n by taking ��1 D "=2 and

�iC1 Dmin.1
6
"2.�i/;

1
12
"3.�i/;

1
2
�i/;

"2 and "3 being the constants stipulated in Propositions 4.6 and 4.7, respectively.

Let D0 be a maximal �0 –discrete set in O 0 \ �.S0/. For every i > 0, let Di

be a maximal �i –discrete set in O 0 \ �.Si/ n
S

j<i.�.Sj //�j
(inductively). Here,

.�.Sj //�j
denotes the set of points with distance <�j of �.Sj /. Take DD

S
Di . We

claim that the collection of balls B D fB.x; 3�i/ W x 2Dig has the desired properties.
This is proved in the following series of claims:

(1) The balls in B cover O�";m , and their centers constitute a �n –discrete set.

The discreteness is obvious. We show that the balls cover O�";m .

First, let us note that if x 2 O�";m and d.x;y/ < "=4 then y 2 O 0 . Indeed, choose
preimages zx; zy 2 X such that d.zx; zy/ < "=4. Then �"=2.zy/ � �".zx/, whence we
deduce zy 2X�"=2;m and y 2O 0 .

Let x 2O�";m . Take minimal i such that d.x; �.Si// < 2�i (such i exists because
x 2 �.Sn/). Now pick y 2 �.Si/ such that d.x;y/ < 2�i .
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We claim that y 2 �.Si/ n
S

k<i.�.Sk//�k
. Indeed, if there is some k < i and

z 2 �.Sk/ with d.y; z/ < �k then d.x; z/ < 2�i C �k � 2�k , contradicting the
minimality of i . Now, since d.x;y/ < 2�i � "=4, we have noted that y 2 O 0 .
Therefore, there is some z 2Di such that d.y; z/ < �i . Hence x 2 B.z; 3�i/.

(2) Each ball in B is folded; it is the image of a foldable ball.

Let x 2 Di , and choose a preimage zx 2 X�"=2;m of x . Let Y 2 †i be the singular
submanifold containing zx . As d.x; �.S<i// > �i�1 , also d.zx;S<i/ > �i�1 . Bearing
in mind that 12�i � "3.�i�1/, we deduce by Proposition 4.7 that every element of
�12�i

.zx/ fixes Y pointwise. Thus the ball B.zx; 3�i/ is Y –foldable, and its image
B.x; 3�i/ is folded.

(3) A non-empty intersection of balls in B is folded, and thus contractible.

Let x1; : : : ;xk 2D , such that xi 2Dni
and suppose that the balls B.xi ; 3�ni

/ have a
non-empty intersection. We may assume n1 Dmaxfnj g.

Choose lifts zx1; : : : ; zxk 2X�"=2;m such that d.zx1; zxj / < 6�nj
, and let Yj 2†nj

the
singular submanifold containing zxj .

Fix j � 2. Then d.zx1;S<nj
/� �nj�1 and d.zxj ;S<nj

/� �nj�1 . Since d.zx1; zxj / <

6�nj
� "2.�j�1/, we may apply Proposition 4.6, and deduce that Yj � Y1 and hence

xj 2 Y1 .

The results discussed before this proof all apply to this situation. Namely, the intersec-
tion of the balls B.zxi ; 3�ni

/ is Y1 –foldable, because they are all centered in points
on Y1 , and B.zx1; 3�n1

/ is Y1 –foldable. Also, the intersection of the folded balls
B.xi ; 3�n1

/ is folded, and thus contractible.

(4) The cardinality of B is bounded by ı–ess-vol, where ı D ı.";m; n/.

By Proposition 3.1, there exists ı such that if j��n
.x/j �m then there exists a point

y with d.x;y/ < �n=4 and d�.y/� 2ı . Note that �n depends only on ", m and n,
hence ı depends only on those constants. We may assume ı � 4�n .

Let x2Di and let zx2X be a lift. Since zx2O 0 , we have that j��n
.zx/j� j��i

.zx/j�m.
Thus there exists zy , d.zy; zx/ < �n=4 and d�.zy/� 2ı . The projection of zy is a point
in the ı–thick part of O , which we denote yx .

Since the set D is �n –discrete, if x;x0 2 D then the corresponding points yx;yx0

have d.yx;yx0/ � �n=2 � 2ı . The set fyx W x 2 Dg is therefore 2ı–discrete in the
ı–thick part. We deduce that jBj D jDj � ı–ess-vol.O/.

(5) Each ball of B intersects at most r balls, where r D r.";m; n/.
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Let x 2 Di , and suppose B.x; 3�i/ intersects the balls B.yj ; 3�ij /, j D 1; : : : ; k .
Lift the center points to zx , zyj such that d.zx; zyj /� 6�0 . The ball B.zx; 9�0/ contains
the pairwise disjoint balls B.zyj ; �n=2/. Thus the existence of the constant r follows
from a standard volume estimate.

We conclude this section with a proposition about homology of a (orbifold) fibration
over the cover given by Theorem 4.2 (for definitions, see [20, page 318]). The precedent
to this proposition is Lemma 12.12 in [3], that states the analogous result for a cover,
rather than a fibration over it.

Proposition 4.11 Let B be the cover of O�";m obtained in Theorem 4.2, and let r

and ı be the constants defined there. Let U D
S

B2B B , and let E be a fibration over
U with fiber F being a sphere or vector space. There is a function h.r/ (depending
only on r ), such that for coefficients in an integral domain A of characteristic 0:

rkA Hj .E;A/� h.r/ � jBj � h.r/ � ı–ess-vol.O/

Proof Let V be a non-empty intersection of balls in B . Recall that, by the proof of
Theorem 4.2, V is folded; moreover, it is a quotient of a contractible set in X by a
finite group of order �m. Let zV � X be a precisely invariant contractible set such
that V D zV =� zV , and j� zV j �m.

By the definition of a fibration over U , there is a fiber bundle zEj zV with fiber F over
zV , and an action of � zV on zE zV which is compatible with the action on zV , such that
EjV ' zEj zV =� zV .

Since zV is contractible, zEj zV is trivial (cf [19]). Moreover, by the proof of Proposition
4.9, there is a � zV –invariant contraction of zV to a fixed point of � zV . Hence, the
deformation retract of zEj zV to F induces a deformation retract of EjV to F=� zV , with
the action given by the action of the group on the fiber over a fixed point in zV .

If F is a vector space, we conclude that EjV is contractible. If F is a sphere, we will
resort to the following claim, which is a consequence of the transfer homomorphism [7]:

Claim If G is a finite group acting on F then:

(5) rk Hj .F=G;A/� rk Hj .F;A/

Either way, we conclude that rk Hj .EjV / � 1. Thus, E is a union of k open sets,
such that each set intersects at most r other sets, and every intersection has a homology
of rank bounded by 1.
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The existence (and explicit calculation) of the function h.r/ now follows as in the
proof of Lemma 12.12 in [3]; it is assumed there that a non-empty intersection of sets
is diffeomorphic to Rn , but this is used only to imply that the rank of homology is
bounded by 1.

Remark As noted in the introduction, this proposition is the only place throughout
this work where the assumption on characteristic is required. If the coefficients are in,
say, Fp , then the claim cited in the proof is not valid. Nonetheless, the claim still holds
if the order of the finite group is prime to p . It follows at once that the proposition
holds whenever the orders of the finite subgroups of � are all prime to p .

In the general setting, we may still hope for a uniform bound (ie, independent of G )
on the homology of the quotient in lieu of (5). This leads to the question posed in the
introduction, asking whether there exists a constant D depending on k (and possibly
on p ) such that for every finite group G acting linearly on a sphere Sk , and for every i ,
we have bi.S

k=G;Fp/�D .

The fibrations to which this proposition is applied (p. 1145) arise from the action of
� on the tangent space of X . The fibers we are considering are vector spaces and
spheres of dimension � n� 1, and the action of the finite group on these fibers can
be assumed to be linear. Therefore, an affirmative answer to the question above for
k � n� 1 would suffice to prove Theorem 1.1 for spaces of dimension � n.

5 Betti numbers

We can now prove Theorem 1.1. We will prove the following detailed version:

Theorem 5.1 Let X be an n–dimensional Hadamard manifold with negative sectional
curvature normalized such that �1�K < 0. Let � be a discrete subgroup of Isom.X /,
such that "–ess-vol.X=�/ is finite for every "> 0. There exists �D �.n/> 0 such that:X

i

rk Hi.X=�;A/� �–ess-vol.X=�/

where the coefficient ring A is an integral domain of characteristic 0.

For orbifolds of finite volume, it follows thatX
i

rk Hi.X=�;A/� C.n/ � vol.X=�/:
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The proof follows closely the steps of Gromov in [3, Section 13]. Namely, homology
is bounded by using an intricately defined Morse function, studying its critical points,
defining deformation retracts between its sublevel sets and relying on bounds of the
type of Theorem 3.2. Some arguments are identical to those of Gromov, and are brought
here in full for completeness. Others are streamlined for our setting. This is true, in
particular, for Claims 2–5 and for arguments concerning the retracts defined using the
Morse function. The reader is advised to compare these to Gromov’s original work.

The novelty of our proof is the approach used to deal with elliptic elements. We adapt
the Morse function to these elements in a way that takes into account their orders. This
allows us to use the results of Section 4 to prove that the function is proper. Furthermore,
this assures that sets of critical points are either short geodesics, or are contained in the
quasi-thick parts of certain singular submanifolds. Using again the results of Section 4,
we can bound the contribution of the latter sets to homology. The number of these sets
is bounded using Theorems 3.2 and 3.5 (replacing the bound of Theorem 12.11 in [3]).

We will make use of the following lemma, proved in [3, Section 12.6].

Lemma 5.2 There are constants ı > 0 and M1 2N such that for every x;y 2X , if
d.x;y/ < 2"n and  2 Isom.X / with d .x/� ı , then d i .y/� "n for some i �M1 .

Proof of Theorem 5.1 We fix some constants, all of which depend only on n:

"D "n , mDmn , the constants of the Margulis Lemma.

M1 and ı , the constants stipulated in Lemma 5.2. M2 DmM1 .

J DM �
2

(following the notation of Proposition 2.5).

Our first step in the proof is to define a smooth function on X=� through which we
will study the topology of X=� .

We begin by fixing smooth functions

gn WR
�0
!R�0 .n� 2/ and g1 WR

>0
!R�0

with the following properties:

� strictly decreasing on .0; "/,

� identically zero on Œ";1/,

� gn.0/D n and gn.ı/D 1 for n� 2,

� limx!0 g1.x/D1 and g1.ı/D 1.
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We also require g1."=2/ and gn."=2/ to be smaller than some constant (computed
later) that depends on � . We note that this will not affect any of the constants later
defined (which do not depend on � ).

For 1¤  2 � , let o. / 2N [f1g be the order of  . We set g D go. / .

We set

�D f1¤  2 � W inf d < ı and  is M2 –stable if it is ellipticg;

and define

F.x/D
X
2�

M1X
iD0

g .d i .x//:

This sum is locally finite because � is discrete, and thus the set f 2 � W d .x/ < 2"g

is finite for every x 2X . Therefore, F is a smooth function. Clearly, it is � –invariant,
and thus descends to a smooth function (in the orbifold sense) f on X=� .

It will be convenient to have a notation for elements in � that contribute positive values
to the sum defining F at a given point. For x 2X this is the set:

�x D f
i
W  2�; 1� i �M1; d i .x/ < "g

Note that if  0 2 �x and  0 D  i with  2 �, i �M1 , then Min. / D Min. 0/.
Moreover, by the choice of M2 , every elliptic element of �x is m–stable.

Claim 1 f is a proper map.

Proof We show that f�r is compact for every r > 0. Fix r > 0. Let x 2 X

with F.x/ � r . Suppose we have  2 � with d .x/ < ı . If  is not elliptic then
 2 �x , and F.x/ � r implies d .x/ � g�1

1 .r/. Thus, if  has infinite order then
d .x/�min.ı;g�1

1 .r//D �1 .

Set �2 D �1=.2mJ /. We claim that ��2
.x/ is finite. Indeed, if it is not then by

Lemma 2.3, it would contain an element  of infinite order such that d .x/ < 2m�2 <

�1 , a contradiction.

Moreover, we may bound the order of ��2
.x/ by a constant depending on r . Let

N be the normal abelian subgroup of ��2
.x/. Let  be a generator of N with

d .x/ < 2m�2 . By the choice of J , there is some j < J for which  j is M2 –stable.
Then d j .x/ � Jd .x/ < J � 2m�2 � ı . Now, since F.x/ � r , we have by the
definitions of F and of g that

ord. j /D g j .ı/� g j .d j .x//� r
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and thus ord. /� Jr .

Therefore, the generators of N have order bounded by Jr , and since N is abelian, the
order of any element in N is bounded by .Jr/! . Since N is an abelian finite subgroup
of SO.n/, it is generated by at most n elements (not necessarily those taken before),
and hence jN j � ..Jr/!/n and j��2

.x/j �m..Jr/!/n .

Our discussion shows that f�r is contained in the .m..Jr/!/n; �2/–quasi-thick part of
X=� . By the assumption of finite essential volume of X=� , it follows by Corollary 4.3
that this quasi-thick part is compact.

Claim 2 A point x 2X is a critical point of F iff x 2
T
2�x

Min. / (in particular,
if x is critical then �x consists of semisimple elements). Moreover, if x is not
critical, and A��x is a set such that x 2Min. / for each  2A, then grad F is not
perpendicular to

T
2A Min. /.

Proof Assume x 2
T
2�x

Min. /. Let  2�, and 1 � i �M1 . If  i 2�x then
x 2Min. i/ and hence rd i .x/D 0. Otherwise, d i .x/ � " and g0 .d i .x//D 0.
Hence, x is critical because

(6) rF.x/D
X
2�

M1X
iD0

g0 .d i .x//rd i .x/D 0:

To prove the converse, suppose x 62
T
2�x

Min. /. We shall find a geodesic ray
c W Œ0;1/! X with c.0/D x such that d

dt
d .c.t//jtD0 � 0 for every  2 �x and

such that d
dt

d .c.t//jtD0 < 0 for at least one  2�x . Once such a geodesic is found,
we derive by equation (6) that

d

dt
F.a.t//jtD0 > 0

(recall gn ,g1 are strictly decreasing on .0; "/), whence we deduce rF.x/¤ 0. This
will conclude the proof.

Let �.x/D h�xi. Recall that elliptic elements of �x are m–stable. Let N.x/ be the
normal nilpotent subgroup of index i �m in �.x/.

Suppose first that N.x/ does not contain parabolic elements. In this case, take K DT
2N.x/ Min. /. This is a convex �.x/–invariant set, and by Lemma 2.2, it is non-

empty. By our assumption, there exists  2 �x such that x 62 Min. /. Now,  is
hyperbolic or elliptic and m–stable, and in either case, Min. / D Min. i/. Since
 i 2 N.x/, we deduce that x 62 K . Let c be the geodesic ray with c.0/ D x and
c.1/D �K .x/. Clearly, d .c.1// < d .c.0// and since d is convex, it follows that
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d
dt

d .c.t//jtD0 < 0. On the other hand, any other  2 �x keeps K invariant, and
thus d .c.1//� d .c.0// and by convexity of d , d

dt
d .c.t//jtD0 � 0.

If N.x/ does contain a parabolic, we claim that it contains a central parabolic. Indeed,
since N.x/ is infinite, it has an infinite center, and thus has a central element of infinite
order. But this element cannot be hyperbolic, otherwise we would have a parabolic
element keeping a geodesic invariant (the axis of the central hyperbolic). Thus, all
parabolic central elements in N.x/ fix a unique point � 2 @X , the boundary of points
at infinity. It follows that every element of �.x/ fixes � . Let c be the geodesic ray
with c.0/D x , c.1/D � . Each  2 �x keeps � fixed, hence d is bounded on c ,
and by convexity:

d

dt
d .c.t//jtD0 � 0

We claim that for at least one  2�x this inequality is strict. Otherwise, d is constant
on c for all  2�x . This implies that  cjjc , which is only possible if  fixes c . This
contradicts the assumption that there exists  2�x for which x 62Min. /.

To prove the last assertion in the claim, suppose x is not critical, and A��x is a set
such that x 2Min. / for each  2A. The geodesic we defined above has the property
that d

dt
d .c.t//jtD0 � 0 for every  2�x . Thus, c is contained in Min. / for every

 2A. Hence grad F is not perpendicular to
T
2A Min. /.

Let x be a critical point of F . We denote:

Yx D

\
2�x

Min. / and Cx D fy 2 Yx W�y D�xg

By Claim 2, x 2 Cx , and Cx consists of critical points of F . Clearly, F.x/ is the
minimum of F on Yx , and Cx D F�1.F.x//\Yx . Note, also, that if y 2 Cx then
Yy D Yx and Cy DCx . We call .Yx;Cx/ a critical pair. It follows from the above that
the critical pair is independent of a choice of critical point within the critical set. For a
critical pair .Y;C /, we denote �C D�x for some (hence any) x 2 C .

Claim 3 Let .Y;C / be a critical pair, and let x 2X .

(i) If x is a critical point and d.C;x/ < 2", then Yx D Y and x 2 C .

(ii) If d.x;C / < "=2 and d.˛x;C / < 3"=2 for some ˛ 2 � then ˛ keeps Y

invariant.

(iii) If d.x;C / < "=2 then �".x/ keeps Y invariant.
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Proof (i) Take y 2C with d.x;y/ < 2". Let  i 2�y , with  2� and 1� i �M1 .
Then y 2Min. i/DMin. / (stability is used if  is elliptic), hence d .y/ < ı . By
Lemma 5.2, d j .x/ < " for some j �M1 , and thus  j 2 �x . Since x is critical,
we have x 2Min. j /DMin. i/. Thus d i .x/ < " and  i 2 �x . We have proved
�y � �x . The situation is symmetric to exchanging x and y , and so �x D �y .
Hence Yx D Yy D Y and x 2 C .

To prove (ii), take y 2 C with d.x;y/ < "=2. Since d.˛x;C / < 3"=2, we have that
d.˛y;C / < 2". Since ˛y is critical, we derive that ˛Y D Y˛y D Y by (i).

(iii) follows from (ii). Indeed, if  2 �".x/ is a generator with d .x/ < " then
d.x;C / < 3"=2.

Let us state an immediate corollary of this claim. Set:

C 0 D fy 2 Y W d.y;C / < "=2g

Note that C 0 is �Y –invariant. By Claim 3 (ii), if x 2C 0 and x 2C 0 for some  2 �
then  2 �Y . Hence:

Claim 4 C 0=�Y injects into X=� .

Claim 5 For every x 2 Y , x is a critical point of F if and only if it is a critical point
of F jY .

Proof Let x 2 Y . It is trivial that if x is a critical point of F it is a critical point of
F jY . If x is not a critical point of F , then by Claim 2, grad F is not perpendicular to
Y D

T
2�C

Min. /. Hence, x is not a critical point of F jY .

Claim 6 Let x 2 C 0 and let c W Œ0;1/! X be a geodesic ray emanating from x

perpendicularly to Y . Then F.c.t// is strictly decreasing for t close to 0.

Proof By Claim 3 (iii), elements of �x keep Y invariant, and thus for every  2�x ,
d
dt

d .c.t//jtD0 � 0. It follows that d
dt

F.c.t//jtD0 � 0. Since c is not contained in
Y , there exists  2�C for which d

dt
d .c.t//jtD0 > 0. Hence d

dt
F.c.t//jtD0 < 0 for

t close to 0.

At this stage, let us introduce some additional constants (all of which depend only
on n):

ı2 D
ı

2mJC2
.
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ı3 is the constant given by Theorem 4.2 for the .ı2;m.J !/n/–quasi-thick part of an
orbifold of dimension � n (cf the remark following the theorem).

ı4 is the constant given by Theorem 3.2 for ı3 .

M3 Dm.J !/n .

Claim 7 If �C contains a hyperbolic element then C D Y and Y is a geodesic.
Otherwise, Y is an m–stable singular submanifold and there exists a �Y –invariant
neighborhood C 00 � C 0 of C in Y such that C 00=�Y is contained in the .ı2;M3/–
quasi-thick part of Y=�Y .

Proof Suppose first that �C contains a hyperbolic element ˛ , with a geodesic axis
a. Pick x 2 Y (not necessarily in C ). Then ˛ 2 �x , and thus

T
2�x

� a. Let
�.x/Dh�xi and let N be the normal nilpotent subgroup of �.x/ of index i <m. Let
H be the set of semisimple elements in N . Then H is a normal subgroup of N and
Z D

T
2H Min. / is non-empty, convex and is kept invariant by H . Since ˛i 2H ,

we deduce that Z � a, and since Z is ˛i –invariant, this is only possible if ZD a. On
the other hand, for every  2�x ,  is semisimple and  i 2N , thus  i 2H . Hence
a �

T
2�x

Min. / D
T
2�x

Min. i/ � Z . We deduce that
T
2�x

Min. / D a.
Since this is true for every x 2 Y , it follows that C D Y D a.

Suppose now that �C consists only of elliptic elements. Since elements of �C are
m–stable, Y is an m–stable singular submanifold. We take:

C 00 D fy 2 Y W d.y;C / < ı2g

Let y 2 C 00 and pick x 2 C such that d.x;y/ < ı2 .

We first prove that �ı2
.y/ is finite. Suppose not. Then by Lemma 2.3, there is

an element  2 �ı2
.y/ of infinite order with d .y/ < 2mı2 . But then d .x/ <

.2mC 2/ı2 < ı and hence  2�x , contradicting our assumption on �C D�x .

Since �ı2
.y/ is finite, it has a normal abelian subgroup N of index i <m. Let  be

a generator of N with d .y/ < 2mı2 . There exists some j < J such that  j is M2 –
stable, by Proposition 2.5. But d j .y/< 2mJ ı2 , and thus d j .x/< .2mJC2/ı2D ı .
Thus  j D 1 or else  j 2 �x . In either case,  j fixes Y pointwise. Hence, for
every such generator of N we have  J ! 2 N \ �1

Y
. Since N is abelian, we have

that  J ! 2 N \�1
Y

for all  2 N . Since N is finite and abelian, it is generated by
at most n elements, and thus ŒN W N \�Y

1
� < .J !/n . Therefore �ı2

.y/ has at most
m.J !/n DM3 elements.
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We turn now to the critical points of f . Every critical point of f has a preimage in X

which is a critical point of F . Hence, we may choose a maximal collection of non-
conjugate critical pairs f.Yi ;Ci/g such that each critical point of f is in exactly one
projection �.Ci/. A consequence of Claim 7 is that there are only finitely many non-
conjugate critical pairs, hence finitely many critical values of f . Indeed, Theorem 3.5
bounds the number of pairs .Y;C / for which �C contains a hyperbolic element. On
the other hand, if .Y;C / is a critical pair with �C consisting of elliptic elements, then
by Theorem 4.2, ı3–ess-vol.Y=�Y /� 1. Thus by Theorem 3.2, the number of such
pairs is bounded by ı4–ess-vol.X /, and is finite, in particular. By Corollary 4.3, each
of the sets �.Ci/—hence their union—is compact.

We wish to bound the values of F in a neighborhood of C . Let y 2 Y with d.y;C /�

"=4. Pick x 2C such that d.x;y/< "=4. Recall that �x ��y , and that the restriction
of F to Y attains its minimum in x . Consider  2�y . If  2�x then d .y/Dd .x/.
Otherwise, d .x/� ", and hence d .y/� "=2. Therefore,

F.y/�F.x/�K � j�y n�xj

where KDmaxfgi."=2/g (recall the definition of the functions gi ). The set of points of
distance � "=4 from union of the sets �.Ci/ is compact. Let B be a compact preimage
of this union in X . By compactness, there is a uniform upper bound (depending on � )
on the size of �y for every y 2 B . Hence, we may require gi."=2/ to be sufficiently
small so that

(7) F.y/�F.x/� 1
2

for every x 2 C and y 2X with d.y;C / < "=4.

Let 0 D c1 < c2 < � � � < ck be the distinct critical values of f . Let � be small
enough such that for every critical value c , c is the only critical value in the interval
Œc��; cC��, and such that these intervals are disjoint for distinct critical values. Since
f is a proper map, a standard argument of Morse theory [14] shows that the flow along
gradient lines defines a deformation retract of X=� onto f�ckC� and of f�ciC1��

onto f�ciC� . Thus, since the rank of homology is subadditive for triples of spaces,
we have:

(8) rk Hj .X=�/�

kX
iD1

rk Hj .f�ciC�; f�ci��/

We will bound the rank of relative homology groups on the right-hand side of this
inequality. Let c be a critical value. Regarding c as a critical value of F , it may be
the case that there are several non-conjugate critical pairs corresponding to this value.
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However, since distinct critical sets are disjoint (by Claim 3), and since our analysis
is local, we will assume .Y;C / is a unique (up to conjugacy) critical pair with this
critical value.

Denote V Df�cC�\�.Y /. We assume � is sufficiently small such that V is contained
in �.C 00/. To bound rk Hj .f�cC�; f�c��/, we consider the triple:

(9) f�c�� � .f�cC� nV /� f�cC�

By Claim 6, the flow along �.gradf / near �.C 00/ does not approach �.Y /, thus a
flow along �.gradf / starting from a point in f�cC�nV does not reach �.C 00/. Since
there are no critical points in this domain, this flow defines a deformation retract of
f�cC� nV to f�c�� . Therefore:

Hj .f�cC� nV; f�c��/D 0

By the long exact sequence associated to the triple (9), Hj .f�cC�; f�c��/ is thus
isomorphic to Hj .f�cC�; f�cC� nV /. Now, by excision,

Hj .f�cC�; f�cC� nV /'Hj .U;U nV /

where U is some neighborhood of V in f�cC� . By the tubular neighborhood lemma,
N.V /—the (orbifold) normal bundle of V in X=�—is diffeomorphic to a neighbor-
hood of V in f�cC� . Thus we conclude that

Hj .fcC�; fc��/'Hj .N.V /;N.V / nN0.V //

where N0 is the zero section of N .

The remainder of our analysis will be inside Y . Let us denote the restriction of F to Y

by zF , and the restriction of f to Y=� by zf . We are only interested in the behavior
of these functions in C 00 and C 00=�Y , correspondingly. Recall that we have chosen �
such that V � �.C 00/. Also, recall that by Claim 4, C 00=�Y injects into X=� . We
can therefore consider V as a subset of Y=�Y . By Claim 7 there are two possibilities:
(1) V D Y=�Y is 1–dimensional or (2) V is contained in the .ı2;M3/–quasi-thick
part of Y=�Y .

If V is 1–dimensional then it is either contractible, or is a circle. Either way:

rk Hj .N.V //� 1 and rk Hj .N.V / nN0.V //� 2

Thus:
rk Hj .N.V /;N.V / nN0.V //� 3

Otherwise, by Theorem 4.2, we can cover V with a good cover of balls of radius � ı2 ,
where the number of balls does not exceed ı3–ess-vol.Y=�Y /. Let U be the union of
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these balls. Since N.U / nN0.U / is homotopy equivalent to a sphere bundle over U ,
Proposition 4.11 states that

rk Hj .N.U //� h.r/ � ı3–ess-vol.Y=�Y /

and
rk Hj .N.U / nN0.U //� h.r/ � ı3–ess-vol.Y=�Y /

where r is the bound on the number of balls with non-empty intersection in the cover
of V .

Since each ball in the cover has radius � ı2 , it follows that U � C 0 . Thus, by (7)

U � zf
�cC 1

2

We claim that zf , and equivalently zF , has no critical values between cC� and cC 1
2

.
Suppose y 2 Y is a critical point of zF , with f .y/� cC�. Then there exists some
 0 2�x n�C , and  0 D  i for some  2� and 1� i �M1 . By Claim 5, y is also
a critical point of F , hence by Claim 2, x 2Min. 0/, and by stability, x 2Min. /. It
follows that d .x/ < ı , and thus g .d .x// > 1. Therefore, F.x/ � cC 1 and the
claim follows.

We conclude that:
V D zf�cC� � U � zf

�cC 1
2

Since there are no critical values between cC 1
2

and cC�, zf�cC� is a deformation
retract of zf

�cC 1
2

, and induces an isomorphism on homology. Thus the inclusion
induces maps

Hj .V /!Hj .U /!Hj

�
zf
�cC 1

2

�
whose composition is an isomorphism. Hence, rk.Hj .V //� rk.Hj .U //, and similarly,
rk.Hj .N.V / nN0.V ///� rk.Hj .N.U / nN0.U ///. Thus:

rk Hj .N.V /;N.V / nN0.V //� 2h.r/ � ı3–ess-vol.Y=�Y /

Let ı5 be the constant stipulated in Theorem 3.5, used to bound the number of “short
geodesics”. Then pairs .Y;C / such that �C contains a hyperbolic element contribute
at most ı5–ess-vol.X=�/ terms to the sum in (8). Each such term is � 3. The
remaining terms correspond to non-conjugate m–stable singular manifolds. Each such
term contributes 2h.r/ � ı3–ess-vol.Y=�Y /. Hence, by Theorem 3.2, all these terms
contribute

� 2h.r/
X
Y 2†

ı3–ess-vol.Y=�Y /� 2h.r/ � ı4–ess-vol.X=�/
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where † is a set of non-conjugate m–stable singular submanifolds.

Thus, (8) yields:

rk Hj .X=�/� 3 � ı5–ess-vol.X=�/C 2h.r/ � ı4–ess-vol.X=�/

� .3C 2h.r//.min.ı5; ı5//–ess-vol.X=�/

�
3C 2h.r/

min.ı5; ı5/
–ess-vol.X=�/

We take:

� D
3C 2h.r/

.nC 1/min.ı4; ı5/

One easily verifies that all constants depend only on n. We have:

nX
iD0

rk Hi.X=�/� .nC 1/ � ..nC 1/�/–ess-vol.X=�/� �–ess-vol.X=�/
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