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Characteristic classes of Hilbert schemes of
points via symmetric products
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We obtain a formula for the generating series of (the push-forward under the Hilbert–
Chow morphism of) the Hirzebruch homology characteristic classes of the Hilbert
schemes of points for a smooth quasi-projective variety of arbitrary pure dimension.
This result is based on a geometric construction of a motivic exponentiation general-
izing the notion of motivic power structure, as well as on a formula for the generating
series of the Hirzebruch homology characteristic classes of symmetric products. We
apply the same methods for the calculation of generating series formulae for the
Hirzebruch classes of the push-forwards of “virtual motives” of Hilbert schemes of
a threefold. As corollaries, we obtain counterparts for the MacPherson (and Aluffi)
Chern classes of Hilbert schemes of a smooth quasi-projective variety (resp. for
threefolds). For a projective Calabi–Yau threefold, the latter yields a Chern class
version of the dimension zero MNOP conjecture.

14C05, 55S15, 20C30; 13D15, 32S35

1 Introduction

Moduli spaces of objects associated with a given space X carry many interesting and
surprising structures. While they reflect back some of the properties of X , it is often the
case that these moduli spaces carry more geometric structures and bring out seemingly
hidden aspects of the geometry and topology of X . One convincing example of this
philosophy is that of the Hilbert schemes of points on a quasi-projective manifold.
These objects, originally studied in algebraic geometry, are closely related to several
branches of mathematics, such as singularities, symplectic geometry, representation
theory and even theoretical physics.

The Hilbert scheme X Œn� of a quasi-projective manifold X describes collections of
n (not necessarily distinct) points on X . It is the moduli space of zero-dimensional
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subschemes of X of length n. (Here X Œn� already denotes the reduced scheme structure,
which suffices for our applications.) It comes equipped with a natural proper morphism
�nW X

Œn�! X .n/ to the nth symmetric product of X , the Hilbert–Chow morphism,
taking a zero-dimensional subschemes to its associated zero-cycle. This morphism
is birational for X of dimension at most two, but otherwise for large n the Hilbert
scheme is in general reducible and has components of dimension much larger than that
of the symmetric product.

The Hilbert schemes of points on a smooth curve C are isomorphic to the corre-
sponding symmetric products of C , and they are all smooth. Hilbert schemes of
points on a smooth algebraic surface S are also smooth, and their topology is fairly
well understood: there exist generating series formulae for their Betti numbers (see
Göttsche [17]), Hodge numbers and Hirzebruch genus (see Göttsche and Soergel [18]),
elliptic genus (see Borisov and Libgober [7]), characteristic classes (see Boissière
and Nieper-Wisskirchen [6; 28] etc). Already in this case, there are relations to the
enumerative geometry of curves, to moduli spaces of sheaves, to infinite dimensional Lie
algebras, to the combinatorics of the symmetric group, and for a K2 (or abelian) surface
they provide (some of the very few) examples of compact hyperkähler manifolds.

Hilbert schemes of points on a smooth variety X of dimension d � 3 are usually not
smooth, and much less is known about their properties. It is therefore important to find
ways to compute their topological and analytical invariants.

In [12] Cheah finds a generating function which expresses the Hodge–Deligne polyno-
mials of Hilbert schemes in terms of the Hodge–Deligne polynomial of X and those
of the punctual Hilbert schemes Hilbn

Cd ;0
parametrizing zero-dimensional subschemes

of length n of Cd concentrated at the origin. Known properties of the latter yield (for
example, by using Ellingsrud and Strømme [13]) explicit formulae (that is, depending
only on the Hodge–Deligne polynomial of X ) when the Hilbert scheme X Œn� is smooth
(for example, if n� 3 or d � 2). Cheah’s result is refined in Gusein-Zade, Luengo and
Melle-Hernández [20], where the notion of power structure over a (semi)ring is used
to express the generating series of classes (in the Grothendieck ring K0.var=C/ of
varieties) of Hilbert schemes of points on a quasi-projective manifold of dimension d as
an exponent of that for the affine space Cd . (Recall that by using a power structure over
a (semi)ring R, one can make sense of an expression of the form

�
1C

P
i�1 ai t

i
�m ,

for ai and m in R.) The main result of [20] is the motivic identity

(1) 1C
X
n�1

ŒX Œn�� � tn
D

�
1C

X
n�1

�
Hilbn

Cd ;0

�
� tn

�ŒX �
2K0.var=C/JtK:
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Cheah’s formula in [12] is obtained from (1) by applying the pre-lambda ring homo-
morphism e.�Iu; v/ defined by the Hodge–Deligne polynomial, that is,

e.�Iu; v/W K0.var=C/! ZŒu; v�I

e.ŒX �Iu; v/ WD
X
p;q

�X
i

.�1/ihp;q.H i
c .X IC//

�
�upvq;

with hp;q denoting the Hodge numbers of Deligne’s mixed Hodge structure on the
cohomology groups H i

c .X IQ/.

The aim of this paper is to compute a generating series formula for (the push-forward
under the Hilbert–Chow morphism of) the motivic Hirzebruch classes Ty�

�
X Œn�

�
of

Hilbert schemes of points on a d –dimensional quasi-projective manifold. Recall
here that the motivic Hirzebruch classes Ty�.Z/ of a complex algebraic variety Z

were defined by Brasselet, Schürmann and Yokura [8] as an extension to the singular
setting of Hirzebruch’s cohomology characteristic classes appearing in the generalized
Hirzebruch–Riemann–Roch theorem (see Hirzebruch [21]). The motivic Hirzebruch
classes are defined in [8] via a motivic Hirzebruch class transformation

Ty�W K0.var=Z/!H�.Z/ WDH BM
even .Z/˝QŒy�;

whose normalization (in the sense of Section 4.1 below) provides a functorial unification
of the Chern class transformation of MacPherson [24], Todd class transformation of
Baum–Fulton–MacPherson [1] and L–class transformation of Cappell–Shaneson [11],
respectively, thus answering positively an old question of MacPherson about the ex-
istence of such a unifying theory [25] (see Yokura [31]). Over a point space this
transformation Ty�.�/ becomes the �y –genus given by the specialization of the
Hodge–Deligne polynomial at .u; v/D .�y; 1/, that is,

�y.�/D e.�I�y; 1/W K0.var=C/! ZŒy�:

The main result of this paper is the following computation of the generating series for
the push-forward of Hirzebruch classes of Hilbert schemes in terms of a homological
exponentiation which will be explained later on in this introduction:

Theorem 1.1 Let X be a smooth complex quasi-projective variety of pure dimension
d . Denote by X Œn� the Hilbert scheme of zero-dimensional subschemes of X of length
n, and by �nW X

Œn�!X .n/ the Hilbert–Chow morphism to the nth symmetric product
of X . Let Hilbn

Cd ;0
be the punctual Hilbert scheme of zero-dimension subschemes of
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length n supported at the origin in Cd . Let

PH�.X / WD

1Y
nD0

�
H BM

even .X
.n//˝QŒy�

�
be the Pontrjagin ring, whose elements will be denoted by power series in the variable
t with coefficients in H BM

even .X
.n//˝QŒy� (n 2Z�0 ), that is, we use the identification

PH�.X / WD

1X
n�0

�
H BM

even .X
.n//˝QŒy�

�
� tn:

Then the following generating series formula for the push-forwards under the Hilbert–
Chow morphisms of the un-normalized Hirzebruch classes T.�y/�.X

Œn�/ of Hilbert
schemes holds in the Pontrjagin ring PH�.X /:

1X
nD0

�n�T.�y/�.X
Œn�/ � tn

D

�
1C

1X
nD1

��y.Hilbn
Cd ;0

/ � tn
� dn
�

�T.�y/�.X /

WD

� 1Y
kD1

.1� tk
� dk
� /
���y.˛k/

�T.�y/�.X /

WD

1Y
kD1

.1� tk
� dk
� /
���y.˛k/�T.�y/�.X /;

where the ˛k 2K0.var=C/ are the coefficients appearing in the Euler product for the
geometric power structure on the pre-lambda ring K0.var=C/, that is,

(2) 1C
X
n�1

�
Hilbn

Cd ;0

�
� tn
D

1Y
kD1

.1� tk/�˛k :

If X is projective, by identifying the degrees in the above formula, we recover Cheah’s
generating series formula for the Hodge polynomials ��y

�
X Œn�

�
of Hilbert schemes.

Theorem 1.1 implies that the classes �n�T.�y/�

�
X Œn�

�
in the homology of the sym-

metric product X .n/ can be calculated in terms of the class T.�y/�.X / of X , by using
the universal geometric constants ��y

�
Hilbn

Cd ;0

�
(and respectively, ��y.˛k/) coming

from the punctual Hilbert schemes, as well as some universal algebraic constants
related to the combinatorics of the symmetric groups, codified in the definition of the
exponentiation on the right hand side. Moreover, these parts are completely separated
into the base and exponent of the exponentiation. Of course, the combinatorics of the
symmetric groups only appear after pushing down from the Hilbert schemes to the
symmetric products, so that we do not get formulas for the classes T.�y/�

�
X Œn�

�
in
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the homology of the Hilbert schemes (as done by Boissière and Nieper-Wisskirchen [6;
28] for X a smooth surface).

For a surface X , it is known by Ellingsrud and Strømme [13] that ˛k D ŒC�
k�1 , so

in this case all of the appearing geometric invariants can be explicitly computed. We
therefore obtain the following:

Corollary 1.2 If X is a smooth surface, then in the notations of the above theorem
we obtain the following closed formula:

1X
nD0

�n�T.�y/�.X
Œn�/ � tn

D

1Y
kD1

.1� tk
� dk
� /
�yk�1�T.�y/�.X /:(3)

While the proof of formula (3) uses a generalized (motivic) exponentiation (see
Section 3.3), another proof of Corollary 1.2 can be given by using the BBDG decom-
position theorem of Beı̆linson, Bernstein and Deligne [5] along the lines of Göttsche
and Soergel [18].

For the following specializations of the (un-normalized) Hirzebruch classes at the
parameters y D�1; 0; 1, see also Section 4.1. For y D�1, formula (3) specializes to
a generating series for the homology L–classes

zL�
�
X Œn�

�
WD zL�

�
TX Œn�

�
\
�
X Œn�

�
;

with zL� the Atiyah–Singer L–class of the tangent bundle (which agrees up to powers
of 2 with the Hirzebruch L–class):

1X
nD0

�n�
zL�.X

Œn�/ � tn
D

1Y
kD1

.1� tk
� dk
� /
.�1/k � zL�.X /:(4)

Similarly, for y D 0, formula (3) yields a generating series for the homology Todd
classes

Td�.X Œn�/ WD Td�.TX Œn�/\ ŒX Œn��;

with Td� the Todd class of the tangent bundle:
1X

nD0

�n�Td�.X Œn�/ � tn
D .1� t � d�/

�Td�.X / D

1X
nD0

TdBFM
� .X .n// � tn;(5)

where the last equality follows from the generating series formula for Hirzebruch
classes (or Baum–Fulton–MacPherson Todd classes) of symmetric products (see the
authors’ paper [10] and Moonen [27]), as recalled in Corollary 4.4. Formula (5) fits
with the birational invariance of the Baum–Fulton–MacPherson Todd classes for spaces
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with at most rational singularities, like quotient singularities, as �n is in this case a
resolution of singularities.

These specializations of the homology Hirzebruch classes of Hilbert schemes are valid
only for smooth Hilbert schemes, whereas the specialization to y D 1 in relation to
MacPherson Chern classes also holds for singular Hilbert schemes, as explained later
on in Corollary 1.3.

In general, for a quasi-projective manifold X of arbitrary dimension d , Theorem 1.1
implies that for the computation of the characteristic classes of Hilbert schemes X Œn� ,
for n�N and N 2N a fixed integer, we only need to know the exponents ˛1; : : : ; ˛N

in the Euler product decomposition (2), or more precisely only the Hodge polynomials
��y of these exponents. Such Euler exponents can in general be computed inductively
in terms of the coefficients of the given power series by using Gorsky’s inversion
formula [16, Theorem 1].

As an example, let us assume that n� 3 (and d � 1 arbitrary). In this case, the Hilbert
scheme X Œn� is smooth. Moreover, the Grothendieck class

�
Hilbn

Cd ;0

�
of the punctual

Hilbert scheme for n � 3 is given by the formula (for example, see Behrend, Bryan
and Szendrői [3, Remark 3.5], and compare also with Cheah [12, Section 4]):

(6)
3X

nD0

�
Hilbn

Cd ;0

�
� tn
D 1C t C

�
d

1

�
L

t2
C

�
d C 1

2

�
L

t3;

where �
n

k

�
L

WD
Œn�L!

Œn� k�L!Œk�L!

and
Œn�L! WD .Ln

� 1/.Ln�1
� 1/ : : : .L� 1/:

(Here we use the notation L WD ŒC�.) This information is sufficient for computing the
exponents ˛1 , ˛2 and ˛3 in (2) by making use of the inversion formula of Gorsky [16].
More precisely, we obtain in this case that

˛1 D 1; ˛2 D
Ld � 1

L� 1
� 1; ˛3 D

.LdC1� 1/.Ld � 1/

.L2� 1/.L� 1/
�

Ld � 1

L� 1
:(7)

In particular, for d D 1, we get that ˛2 D 0 and ˛3 D 0, as one expects since the
Hilbert schemes coincide with the symmetric products in this case. Similarly, for d D 2,
formula (7) reduces to ˛2DL and ˛3DL2 , which are just special cases of the above-
mentioned general formula ˛k D Lk�1 , which holds for surfaces. Finally, note that
��y.˛2/ and ��y.˛3/ vanish for y D 0, fitting with the birational invariance of the
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Baum–Fulton–MacPherson Todd classes for spaces with at most rational singularities,
like quotient singularities (as in the surface case).

Let us come back to the general situation and explain the notations used in Theorem 1.1.
First,

PH�.X / WD

1X
nD0

�
H BM

even
�
X .n/

�
˝QŒy�

�
� tn
WD

1Y
nD0

�
H BM

even
�
X .n/

�
˝QŒy�

�
is a commutative ring with unit 1 2H BM

even .X
.0//˝QŒy� (where X .0/ WD fptg), with

respect to the usual Pontrjagin product ˇ induced by�
H BM

even .X
.n//˝QŒy�

�
�
�
H BM

even
�
X .m/

�
˝QŒy�

�
!H BM

even
�
X .nCm/

�
˝QŒy�:

Also, dnW X !X .n/ is the composition of the diagonal embedding X !X n with the
natural projection X n!X .n/ , so that (for d1 D idX )

dn
� D dˇn

� W H
BM
even .X /˝QŒy�!H BM

even
�
X .n/

�
˝QŒy�:

Note that the maps dn are needed to transport homology classes like T.�y/�.X / from
X to X .n/ . Let us denote by

‰r W H
BM
2k .�/˝QŒy�!H BM

2k .�/˝QŒy�

the r th homological Adams operation defined by multiplying by 1=rk on H BM
2k

.�IQ/
together with ‰r .y/D yr (r; k 2N ). By analogy with the classical formula

.1� t/�. � / WD �t . � /D exp
� 1X

rD1

‰r . � /
tr

r

�
relating a pre-lambda structure to the Adams operations (see Fulton and Lang [14]),
we define the group homomorphism
(8)

.1�t � d�/
�. � /
WD exp

� 1X
rD1

‰r dr
�. � /

tr

r

�
W
�
H BM

even .X /˝QŒy�;C
�
!
�
PH�.X /;ˇ

�
:

In analogy with the relation

.1� tk/�. � / D .1� t/�. � /
ˇ̌
t 7!tk

between a pre-lambda structure and the corresponding power structure, we define for
k � 1 the group homomorphism

(9) .1�tk
�dk
� /
�. � /
WDPkı

�
.1�t �d�/

�. � /
�
W
�
H BM

even .X /˝QŒy�;C
�
!
�
PH�.X /;ˇ

�
;
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with
Pk W PH�.X /! PH�.X /

the k th power operation on the Pontrjagin ring PH�.X / defined by the push forwards
p
.n/

k�
for the natural maps p

.n/

k
W X .n/ ! X .nk/ , n � 0, which are induced by the

diagonal embeddings X n ! .X n/k . Note that Pk is a ring homomorphism with
respect to the Pontrjagin product ˇ, with Pk ı Pm D Pkm , P1 the identity and
Pk ı dr

� D drk
� . Hence,

.1� tk
� dk
� /
�. � /
D exp

� 1X
rD1

‰r drk
� . � /

trk

r

�
D exp

� 1X
rD1

drk
� .‰r . � //

trk

r

�
:

Finally, the homological exponentiation

(10)
�

1C

1X
nD1

an � t
n
� dn
�

��. � /
WD

1Y
kD1

.1�tk
� dk
� /
�.bk �/W

�
H BM

even .X /˝QŒy�;C
�
!
�
PH�.X /;ˇ

�
is defined by using the unique Euler product decomposition

1C

1X
nD1

an � t
n
D

1Y
kD1

.1� tk/�bk

with coefficients an; bk in the pre-lambda ring H BM
even .pt/ ˝QŒy� D QŒy�, whose

Adams operation corresponds to ‰r .a �y
n/D a �ynr for a 2Q.

After a suitable re-normalization, and by specializing to y D 1 (compare with the
authors’ paper [10]), our Theorem 1.1 yields a generating series formula for the push-
forwards (under the Hilbert–Chow morphisms) of the rationalized MacPherson–Chern
classes c�.X

Œn�/ of Hilbert schemes, namely:

Corollary 1.3 Under the notations and hypotheses of Theorem 1.1, we have the
following generating series formula:
1X

nD0

�n�c�
�
X Œn�

�
� tn
D

�
1C

1X
nD1

�.Hilbn
Cd ;0

/ � tn
� dn
�

�c�.X /

WD

� 1Y
kD1

.1� tk
� dk
� /
��.˛k/

�c�.X /

WD

1Y
kD1

.1� tk
� dk
� /
��.˛k/�c�.X / 2

1X
nD0

H BM
even .X

.n/
IQ/ � tn:
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where the operation .1� t � d�/
�. � / is defined here by

(11) .1� t � d�/
�. � /
WD exp

� 1X
rD1

dr
�. � /

tr

r

�
:

In particular, for a smooth surface X , we have �.˛k/D �.ŒC�
k�1/D 1, so that

(12)
1X

nD0

�n�c�
�
X Œn�

�
� tn
D

1Y
kD1

.1� tk
� dk
� /
�c�.X /:

This recovers Ohmoto’s formula [29] for the generating series of the orbifold Chern
classes of symmetric products (used in Boissière and Nieper-Wisskirchen [6]), via the
identification

�n�c�
�
X Œn�

�
D corb
� .X

.n//

given by the crepant resolution �nW X
Œn�!X .n/ .

Moreover, for a smooth 3–fold X , although the coefficients ˛k are unknown so far,
their Euler characteristics can be deduced from Cheah [12] or Behrend–Fantechi [4],
�.˛k/D k , that is, a MacMahon type Chern class formula simply arises:

(13)
1X

nD0

�n�c�
�
X Œn�

�
� tn
D

1Y
kD1

.1� tk
� dk
� /
�k�c�.X /:

Our strategy for proving the generating series formula of Theorem 1.1 is based on a nice
interplay between our geometric definition of a motivic exponentiation (generalizing
the power structure of Gusein-Zade, Luengo and Melle-Hernández [19; 20]) and a
motivic Pontrjagin ring of the symmetric products, as well as on our generating series
formula [10] for the motivic Hirzebruch classes of symmetric products.

The same method applies to the calculation of generating series formulae for the
Hirzebruch classes of the push-forwards of “virtual motives” �n�

�
X Œn�

�
relvir of Hilbert

schemes of a threefold X in terms of virtual motives
�
Hilbn

C3;0

�
vir of punctual Hilbert

schemes, as introduced and studied by Behrend, Bryan and Szendrői [3]. We prove the
following result:

Theorem 1.4 For any smooth quasi-projective threefold X the following formula
holds:

(14)
1X

nD0

T.�y/�

�
�n�

�
X Œn�

�
relvir

�
�tn
D

�
1C

1X
nD1

��y

��
Hilbn

C3;0

�
vir

�
�tn
�dn
�

�T.�y/�.X /
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Moreover,

(15)
1X

nD0

T.�y/�

�
�n�

�
X Œn�

�
relvir

�
� .�t/n D

1Y
kD1

.1� tk
� dk
� /
���y.˛k/�T.�y/�.X /;

with coefficients ˛k 2K0.var=C/ŒL�1=2� given by

˛k D
.�L1=2/�k � .�L1=2/k

L.1�L/
:

Here we use the convention ��y.�L1=2/ WD y1=2 and ‰r .y
1=2/ WD yr=2 , fitting with

the convention �.L1=2/ WD �1 used in [3]. After a suitable re-normalization, and by
specializing to y D 1, we get the following virtual counterpart of Corollary 1.3 for the
Aluffi classes cA

� .X
Œn�/ of the Hilbert schemes, as introduced by Behrend [2].

Corollary 1.5 For any smooth quasi-projective threefold X the following formula
holds:

(16)
1X

nD0

�n�

�
cA
�

�
X Œn�

��
� .�t/n D

1Y
kD1

.1� tk
� dk
� /
�k�c�.X /:

This is a class version of the following degree formula:

(17)

1X
nD0

deg.cA
0 .X

Œn�// � .�t/n D

1Y
kD1

.1� tk/�k��.X /

D

� 1Y
kD1

.1� tk/�k

��.X /
DWM.t/�.X /;

which we obtain for a smooth projective variety X by pushing formula (16) down
to a point. Here M.t/ denotes the classical MacMahon function. For a projective
Calabi–Yau threefold X , formula (17) is nothing else but the famous dimension zero
MNOP conjecture of Maulik, Nekrasov, Okounkov and Pandharipande [26], because in
this case the perfect obstruction theory of the Hilbert scheme X Œn� is symmetric, so that
the virtual Euler characteristic is exactly the degree of the Aluffi class, see Behrend [2]:

�vir�X Œn�
�
D deg

�
cA

0

�
X Œn�

��
:

The dimension zero MNOP conjecture was already proved by different groups of authors
by different methods, for example, see Behrend, Bryan and Szendrői [3], Behrend and
Fantechi [4] and the references therein.
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2 Power structures

The proof of our main result, Theorem 1.1, is based on a refinement of the geometric
power structure over the Grothendieck (semi)ring of complex algebraic varieties, which
was introduced by Gusein-Zade, Luengo and Melle-Hernández [19; 20]. We recall here
the relevant facts about power structures on (semi)rings.

Definition 2.1 A power structure over a (semi)ring R is a map�
1C tRJtK

�
�R! 1C tRJtK; .A.t/;m/ 7! .A.t//m

satisfying the following properties:

(i) .A.t//0 D 1,

(ii) .A.t//1 DA.t/,

(iii) .A.t/ �B.t//m D .A.t//m � .B.t//m ,

(iv) .A.t//mCn D .A.t//m � .A.t//n ,

(v) .A.t//mn D ..A.t//n/m ,

(vi) .1C t/m D 1Cmt C higher order terms,

(vii) .A.tk//m D .A.t//m
ˇ̌
t 7!tk .

The geometric definition of a motivic power structure is given by the following result.

Theorem 2.2 (Gusein-Zade, Luengo, Melle-Hernández [19; 20]) Let K0.var=C/
(and resp. S0.var=C/) be the Grothendieck (semi)ring of complex quasi-projective
varieties, that is, the (semi)group generated by the isomorphism classes ŒX � of such
varieties modulo the relation ŒX �D ŒY �C ŒX nY � for a Zariski closed subvariety Y �X ,
and with the multiplication defined by the cartesian product: ŒX1� � ŒX2� WD ŒX1 �X2�.
Then for a power series

A.t/D 1C

1X
iD1

ŒAi �t
i
2 S0.var=C/JtK
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and ŒX �2S0.var=C/, the following expression defines a power structure on S0.var=C/:

(18) .A.t//ŒX � WD 1C

1X
nD1

� X
k WP ikiDn

��Y
i

X ki

�
n�

�
�

Y
i

A
ki

i =
Y

i

Ski

�
� tn;

where kDfki W i 2Z>0; ki 2Z�0g and � is the large diagonal in X
P

i ki consisting of�P
i ki

�
–tuples of points of X with at least two coinciding ones. Here the symmetric

group Ski
acts by permuting the corresponding ki factors in

Q
i X ki �

�Q
i X ki

�
n�

and the spaces Ai simultaneously.

This power structure on S0.var=C/ can be uniquely extended to power structures on
K0.var=C/, as well as on the localization M WDK0.var=C/ŒL�1� of K0.var=C/ with
respect to the affine line L WD ŒC�.

Example 2.3 Let X .n/ WD X n=Sn denote the nth symmetric product of a quasi-
projective variety X . Then

(19) .1C t C t2
C � � � /ŒX � D 1C

1X
nD1

�
X .n/

�
� tn

Example 2.4 Let X fng WD .X n n�/=Sn denote the configuration space of n distinct
unlabeled points on a quasi-projective variety X (where � is the large diagonal in
X n ). Then:

(20) .1C t/ŒX � D 1C

1X
nD1

�
X fng

�
� tn

Definition 2.5 A pre-lambda structure on a commutative ring R is a group homomor-
phism

�t W .R;C/! .1C tRJtK; �/

so that �t .m/D 1Cmt .mod t2/. A pre-lambda ring homomorphism is a ring homo-
morphism between pre-lambda rings which commutes with the pre-lambda structures.

Example 2.6 The Kapranov zeta function [22]

�t .X / WD 1C

1X
nD1

�
X .n/

�
� tn

defines a pre-lambda structure on K0.var=C/.
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Remark 2.7 A pre-lambda structure �t . � / DW .1� t/�. � / on a ring R determines
algebraically a power structure .A.t//m on R via the Euler product decomposition.
More precisely, a power series A.t/D 1C

P1
iD1 ai t

i 2RJtK admits a unique Euler
product decomposition

(21) A.t/D

1Y
kD1

.1� tk/�bk D

1Y
kD1

�
.1� t/�bk

ˇ̌
t 7!tk

�
DW Exp

�X
i�1

bi t
i

�
;

with bk 2R. In fact,

ExpW .tRJtK;C/
Š
�! .1C tRJtK; �/

defines a group isomorphism. A power structure on R can now be uniquely defined by
using (iii) and (vii) by:

(22) .A.t//m WD

1Y
kD1

.1� tk/�m�bk :

From this point of view, the Kapranov zeta function is just (compare with Example 2.3):

�t .X /D .1� t/�ŒX �;

so that the geometric power structure on K0.var=C/ of Theorem 2.2 agrees with the
algebraically defined power structure associated to the pre-lambda structure defined by
the Kapranov zeta function.

A ring homomorphism �W R1!R2 induces a natural ring homomorphism

�W R1JtK!R2JtK

defined by �
�P

i ai t
i
�
WD
P

i �.ai/t
i . Then Remark 2.7 yields the following:

Proposition 2.8 A pre-lambda ring homomorphism �W R1!R2 respects the corre-
sponding power structures, that is,

(23) �
�
A.t/m

�
D .�.A.t///�.m/:

As an application of power structures Gusein-Zade, Luengo and Melle-Hernández [20]
prove the following result:

Theorem 2.9 (Gusein-Zade, Luengo, Melle-Hernández [20]) For a quasi-projective
manifold X of pure dimension d the following identity holds in K0.var=C/JtK:

(24) 1C
X
n�1

ŒX Œn�� � tn
D

�
1C

X
n�1

�
Hilbn

Cd ;0

�
� tn

�ŒX �
;
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where, as before, X Œn� D Hilbn
X is the Hilbert scheme of n points on X , and Hilbn

Cd ;0
denotes the punctual Hilbert scheme of zero-dimensional subschemes of length n

supported at the origin of Cd .

By Proposition 2.8 one can derive specializations of formula (24) by applying various
homomorphisms of pre-lambda rings. For example, Cheah’s formula [12] is obtained
from (24) by applying the pre-lambda ring homomorphism defined as the Hodge–
Deligne polynomials, that is,

e.�Iu; v/W K0.var=C/! ZŒu; v�

e.ŒX �Iu; v/ WD
X
p;q

�X
i

.�1/ihp;q.H i
c .X IC//

�
�upvq:

Note that a special case of this is the �y –genus

�y D e.�I�y; 1/W K0.var=C/! ZŒy�

defined only in terms of the Hodge filtration by

�y.ŒX �/ WD
X
i;p

.�1/i dimC Grp
F

H i
c .X IC/ � .�y/p:

Here the pre-lambda structure on the polynomial ring ZŒu1; : : : ;ur � in r variables
(r � 1) is defined by:

(25) �t

� X
Ek2Zr
�0

a Ek � Eu
Ek

�
WD

Y
Ek2Zr
�0

�
1� Eu

Ek
� t
��aEk

;

with Ek WD .k1; : : : ; kr /2Zr
�0

, a Ek 2Z, and Eu Ek WDu
k1

1
: : :u

kr
r , so that the corresponding

Adams operation ‰r for r 2N is given by

‰r

�
a Ek � Eu

Ek
�
WD a Ek � Eu

r � Ek :

By using the Euler product decomposition for the geometric power structure on the
pre-lambda ring K0.var=C/, that is,

(26) 1C
X
n�1

�
Hilbn

Cd ;0

�
� tn
D

1Y
kD1

.1� tk/�˛k ;

we can rewrite formula (24) in term of the exponents ˛k 2K0.var=C/ as

(27) 1C
X
n�1

�
X Œn�

�
� tn
D

� 1Y
kD1

.1� tk/�˛k

�ŒX �
:
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For a smooth surface X it is known that ˛k D Lk�1 , where, as above, L WD ŒC�. So,
(24) becomes in this case (see Gusein-Zade, Luengo and Melle-Hernández [19]) the
following:

(28) 1C
X
n�1

�
X Œn�

�
� tn
D

Y
k�1

.1� tk/�Lk�1ŒX �:

3 (Motivic) Pontrjagin (semi)rings

3.1 Relative motivic Grothendieck (semi)group

Let K0.var=X / be the relative motivic Grothendieck group of algebraic varieties over
X , as introduced by Looijenga [23] in relation to motivic integration. K0.var=X / is
the quotient of the free abelian group of isomorphism classes of algebraic morphisms
Y !X by the “scissor” relation:

ŒY !X �D ŒZ! Y !X �C ŒY nZ! Y !X �

for Z � Y a closed algebraic subvariety of Y . If we let Z D Yred we deduce that
these classes ŒY !X � depend only on the underlying reduced spaces. By resolution
of singularities, K0.var=X / is generated by classes ŒY ! X � with Y smooth, pure
dimensional, and proper over X . Of course, if X is a point space, we get back the
motivic Grothendieck group K0.var=C/ discussed earlier.

For any morphism f W X 0!X we have a functorial push-forward

f!W K0.var=X 0/!K0.var=X /;
�
Z

h
�!X 0

�
7!
�
Z
f ıh
�!X

�
:

Moreover, an external product

�W K0.var=X /�K0.var=X 0/!K0.var=X �X 0/

is defined by the formula:

ŒZ!X �� ŒZ0!X 0�D ŒZ �Z0!X �X 0�:

Similar results apply to the corresponding relative Grothendieck semigroups S0.var=X /
as studied by Gusein-Zade, Luengo and Melle-Hernández [19; 20].

3.2 Pontrjagin rings and operations

Let F be a functor to the category of abelian (semi)groups with unit 0 defined on
complex quasi-projective varieties, covariantly functorial for all (proper) morphisms.
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Assume F is also endowed with a commutative, associative and bilinear cross-product
� commuting with (proper) push-forwards .�/� , with a unit 1 2 F.pt/. Our main
examples for F.X / are: the relative motivic Grothendieck (semi)group K0.var=X /
resp. S0.var=X /, or suitable localizations of it like M, the Borel–Moore homology
H�.X / WDH BM

even .X /˝R with RDQ;QŒy�, or the group CF.X / of (algebraically)
constructible functions on X .

Definition 3.1 For a fixed complex quasi-projective variety X we define the commu-
tative Pontrjagin (semi)ring .PF.X /;ˇ/ by

PF.X / WD

1X
nD0

F.X .n// � tn
WD

1Y
nD0

F.X .n//;

with product ˇ induced via

ˇW F.X .n//�F.X .m//
�
�! F.X .n/

�X .m//
.�/�
�! F.X .nCm//;

and unit 1 2 F.X .0//D F.pt/.

It is easy to see that, if f W X ! Y is a (proper) morphism, then we get an induced
(semi)ring homomorphism

f� WD .f
.n/
� /nW PF.X /! PF.Y /;

with f .n/W X .n/! Y .n/ the corresponding (proper) morphism on the nth symmetric
products.

Definition 3.2 The k th power operation Pk W PF.X /! PF.X / for k � 1 is the
(semi)ring homomorphism

Pk WD
�
p
.n/

k�
W F

�
X .n/

�
! F

�
X .nk/

��
n

defined by the push forwards p
.n/

k�
for the natural maps p

.n/

k
W X .n/!X .nk/ induced

by the diagonal embeddings X n! .X n/k ŠX nk , n� 0, with Pk ıPm D Pkm and
P1 the identity.

3.3 Motivic exponentiation

Given a quasi-projective variety X , we extend the notion of power structure .A.t//ŒX �2
K0.var=C/JtK from [19; 20] to an operation .A.t//X associating to a normalized power
series A.t/D 1C

P
i ŒAi �t

i 2K0.var=C/JtK an element

.A.t//X 2
X
n�0

K0.var=X .n// � tn
DW PK0.var=X /
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in the Pontrjagin ring PK0.var=X / of the symmetric products of X associated to the
relative motivic Grothendieck groups (and similarly for the corresponding Grothendieck
semigroups). This extension is based on the geometric formula (18)

.A.t//ŒX � WD 1C

1X
nD1

� X
k WP ikiDn

��Y
i

X ki

�
n�

�
�

Y
i

A
ki

i =
Y

i

Ski

�
� tn

for the power structure of [19; 20] on the semiring S0.var=C/, as it will be explained
below.

The nth symmetric product X .n/ WDX n=Sn of X parametrizes effective zero-cycles
of degree n on X , that is, formal linear combinations

Pl
iD1ni Œxi � of points xi in X

with non-negative integer coefficients ni , so that
Pl

iD1ni D n. X .n/ has a natural
stratification into locally closed subschemes defined in terms of the partitions of n.
More precisely, to any partition � WD .n1; : : : ; nl/ of n one associates a sequence
k WD .k1; : : : ; kn/, with ki denoting the number of times i appears among the nj ’s.
The length of such a partition is defined by l.�/ WD l D

P
i ki , and we have that

nD
Pn

iD1 iki . Then the symmetric product X .n/ admits a stratification with strata
X
.n/
� in one-to-one correspondence to such partitions � D .n1; : : : ; nl/ of n, defined

by

X .n/
� WD

� lX
iD1

ni Œxi �

ˇ̌̌̌
xi ¤ xj ; if i ¤ j

�
;

or, in terms of the sequence k associated to the given partition � ,

X .n/
� Š

�� nY
iD1

X ki

�
n�

�.
Sk1
� � � � �Skn

;

with � denoting the large diagonal in X
P

ki , as before.

Let us now consider the summand��Y
i

X ki

�
n�

�
�

Y
i

A
ki

i =
Y

i

Ski

of the coefficient of tn in the power structure (18), corresponding to a sequence k of non-
negative integers fkigi>0 so that

P
i ikiDn. If � denotes the associated partition of n,

let �� be the projection from the above summand onto
��Q

i X ki
�
n�
�
=
Q

i Ski
DX

.n/
� .

Composing �� with the inclusion i� W X
.n/
� ,!X .n/ of the stratum into the symmetric

product X .n/ , we get a morphism

(29) �k WD i� ı�� W

��Y
i

X ki

�
n�

�
�

Y
i

A
ki

i =
Y

i

Ski
!X .n/:
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The corresponding isomorphism class (up to decomposition) over X .n/ depends only on
the isomorphism classes (up to decomposition) of the Ai . Finally, putting all partitions
of n together, the coefficient of tn in (18) can be now regarded as a well-defined
element in S0.var=X .n//.

Therefore, for a fixed variety X , we can now make sense of a motivic exponentiation:

(30) .�/X W 1C tS0.var=C/JtK! PS0.var=X / WD
X
n�0

S0

�
var=X .n/

�
� tn;

defined by the same formula as (18), but keeping track of the strata of symmetric
products corresponding to each partition. This is a refinement of the corresponding
geometric definition of the motivic power structure on S0.var=C/, which one gets
back by

k!

�
.�/X

�
D .�/ŒX �;

with kW X ! pt the constant map, using the identifications pt.n/ D pt .

The exponentiation defined in (30) has the following properties, which can be directly
deduced from the proof of [19; 20] for the corresponding properties of the geometric
power structure of the motivic Grothendieck semigroup:

(i 0 ) .A.t//∅ D 1 2 PS0.∅/,
(ii 0 ) .A.t//pt DA.t/, using the identifications pt.n/ D pt ,

(iii 0 ) .A.t/ �B.t//X D .A.t//X ˇ .B.t//X ,

(iv 0 ) .A.t//X D i!.A.t//
Y ˇ j!.A.t//

U , with i W Y ,! X a closed inclusion and
j W U ,!X the inclusion of the open complement U WDX nY .

(v 0 ) �!

�
.A.t//X

0�X
�
D
�
.A.t//ŒX

0�
�X , for � W X 0 �X !X the projection,

(vi 0 ) .1C t/X D 1C ŒidX �t C higher order terms,

(vii 0 ) .A.tk//X D Pk

�
.A.t//X

�
, with Pk the k th power operation.

In the following we only use the properties (iii 0 ), (v 0 ) and (vii 0 ) above.

Finally, to extend the above definition and properties to a motivic exponentiation on
the Grothendieck group level:

(31) .�/X W 1C tK0.var=C/JtK! PK0.var=X / WD
X
n�0

K0

�
var=X .n/

�
� tn;

we just use as in [19; 20] the fact that any normalized power series A.t/ 2 1 C

tK0.var=C/JtK can be factored as a quotient ADB �C�1 , with B and C in the image
of the canonical semiring map

canW .1C tS0.var=C/JtK; �/! .1C tK0.var=C/JtK; �/
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so that
.A.t//X WD .B.t//X �

�
.C.t//X

��1

gives a well-defined exponentiaton on the Grothendieck group level. Here we use that
.C.t//X is by definition a normalized power series in the Pontrjagin ring PK0.var=X /,
so it can be inverted. More precisely, this method shows that there exists at most one such
exponentiation on the Grothendieck group level. The existence of this exponentiation
can be translated into the existence of a group homomorphism

.�/X W .1C tK0.var=C/JtK; �/! .PK0.var=X /;ˇ/

making the following diagram commutative:

(32) .1C tS0.var=C/JtK; �/ .1C tK0.var=C/JtK; �/can //

.tS0.var=C/JtK;C/

.1C tS0.var=C/JtK; �/

Exp
��

.tS0.var=C/JtK;C/ .tK0.var=C/JtK;C/can // .tK0.var=C/JtK;C/

.1C tK0.var=C/JtK; �/

Exp
��

.PS0.var=X /;ˇ/ .PK0.var=X /;ˇ/:can //.PS0.var=X /;ˇ/

.�/X

��

//

.PK0.var=X /;ˇ/:

.�/X

��

o

��

The semigroup homomorphism Exp on the left hand side of the diagram is defined
as in (21), but using the geometric definition of the motivic power structure (instead
of the pre-lambda ring structure). The left motivic exponentiation .�/X is already
defined as a semigroup homomorphism. The commutativity of the upper square
of the diagram follows from the geometric interpretation of the pre-lambda ring
structure in terms of Kapranov zeta function. So the claim follows now from the
fact that .tK0.var=C/JtK;C/ is the Grothendieck group completion of the semigroup
.tS0.var=C/JtK;C/. Properties (i 0 )–(vii 0 ) for this extended exponentiation follow
directly from the corresponding properties on the semigroup level.

We conclude this section with the following examples:

Example 3.3 The following identity refines the one from Example 2.3:

(33) .1� t/�X
WD ..1� t/�1/X D 1C

1X
nD1

�
idX .n/

�
� tn

Indeed, in this case AiD Œpt�, for all i , and each projection �� in the above construction
can be identified with id

X
.n/
�

. It follows that
�
�k
�
D Œi� �, and the result follows by

summing up over all the partitions � of n.
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Example 3.4 The following identity refines the one from Example 2.4:

(34) .1C t/X D 1C

1X
nD1

�
X fng

in
�!X .n/

�
� tn
D 1C

1X
nD1

.in/!
�
idX fng

�
� tn;

with inW X
fng ,!X .n/ the inclusion of the configuration space X fng of n unlabeled

points on X into the symmetric product X .n/ . Note that in corresponds to the partition
� D .1; : : : ; 1/ of n.

Example 3.5 For � W X 0 �X ! X the projection, property .v0/ and Example 3.3
yield:

(35) 1C

1X
nD1

Œ.X 0 �X /.n/!X .n/� � tn
D �!

�
.1� t/�X 0�X

�
D
�
.1� t/�ŒX

0�
�X

The following refinement of Theorem 2.9 is just a reformulation of Behrend, Bryan
and Szendrői [3, Section 2.1] in terms of our new motivic exponentiation. It will be
the starting point for the proof of Theorem 1.1.

Theorem 3.6 (Behrend, Bryan, Szendröi [3]) Let X be a smooth and pure d –
dimensional complex quasi-projective variety. Then

(36) 1C
X
n�1

ŒX Œn� �n
�!X .n/� � tn

D

�
1C

X
n�1

�
Hilbn

Cd ;0

�
� tn

�X

:

4 Proof of the main result

4.1 Motivic Hirzebruch classes

The un-normalized Hirzebruch class transformation

Ty�W K0.var=X /!H�.X / WDH BM
even .X /˝QŒy�

was introduced by Brasselet, Schürmann and Yokura [8] as a class version of the
virtual Hodge polynomial �y . Its normalization, denoted here by yTy� , provides a
functorial unification of the Chern class transformation of MacPherson [24], Todd class
transformation of Baum–Fulton–MacPherson [1] and L-class transformation of Cappell–
Shaneson [11], respectively. This normalization yTy� is obtained by pre-composition
the transformation Ty� with the normalization transformation

‰.1Cy/W H
BM
even .X /˝QŒy�!H BM

even .X /˝Q
�
y; .1Cy/�1

�
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given in degree 2k by multiplication by .1Cy/�k . And it follows from [8, Theorem
3.1] that yTy� WD ‰.1Cy/ ı Ty� takes in fact values in H BM

even .X /˝QŒy�, so one is
allowed to specialize the parameter y to the value y D�1.

The transformations Ty� and yTy� are functorial for proper push-forwards, and they
commute with exterior products. If X is a point, these transformations reduce to the
pre-lambda ring homomorphism

�y W K0.var=C/! ZŒy�:

Recall that a pre-lambda ring homomorphism commutes with the corresponding Euler
products.

The un-normalized motivic Hirzebruch class of a complex algebraic variety X is
defined by:

Ty�.X / WD Ty�.ŒidX �/:

Similarly, we define the normalized motivic Hirzebruch class of X by using instead
the transformation yTy� . If X is smooth, then Ty�.X / is Poincaré dual to the Hirze-
bruch cohomology class T �y .TX / appearing in the generalized Hirzebruch–Riemann–
Roch theorem [21], and which in Hirzebruch’s philosophy corresponds to the non-
characteristic power series:

(37) Qy.˛/ WD
˛.1Cye�˛/

1� e�˛
2QŒy�J˛K;

with Qy.0/D 1Cy . More precisely,

(38) T �y .TX / WD

dim XY
iD1

Qy.˛i/;

with f˛ig the formal Chern roots of the holomorphic tangent bundle TX of X . The
associated normalized (or characteristic) power series is

(39) yQy.˛/ WD
Qy.˛.1Cy//

1Cy
D

˛.1Cy/

1� e�˛.1Cy/
�˛y ;

which defines the normalized cohomology Hirzebruch class yT �y .�/. By specializing
the parameter y of yT �y .�/ to the three distinguished values y D �1; 0 and 1, we
recover the cohomology Chern, Todd, and L–class, respectively. Also, if X is smooth,
the classes yTy�.X / and yT �y .TX / are Poincaré dual to each other (see [8]). Similarly,
the un-normalized cohomology Hirzebruch class T �y .�/ specializes for the three
distinguished values y D�1; 0 and 1 to the top Chern class, Todd class and Atiyah–
Singer L–class zL� , respectively, with ‰2

zL� DL� the Hirzebruch L–class (where
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‰2 denotes the corresponding cohomological Adams operation defined in degree 2k

by multiplication with 2k ).

It follows from [8] that, even if X is singular, by specializing to y D�1 one gets that

(40) yT�1�.X /D c�.X /˝Q

is the rationalized homology Chern class of MacPherson [24]. For the un-normalized
Hirzebruch class, we only get the degree-zero part of the MacPherson Chern class as
its specialization at y D�1:

(41) T�1�.X /D c0.X /˝Q

This motivates our discussion in Section 6.

Remark 4.1 We will denote by the same symbol, Ty�.�/, the induced functorial
transformation PK0.var=X /!PH�.X /. Since the un-normalized motivic Hirzebruch
class transformation

Ty�W K0.var=X /!H�.X / WDH BM
even .X /˝QŒy�

commutes with exterior products and proper push-forward, it follows that it also
commutes with the Pontrjagin product ˇ, hence

Ty�.�/W PK0.var=X /! PH�.X /

becomes a ring homomorphism. Since the diagonal embeddings pk W X
n ! X nk

(hence also the induced maps p
.n/

k
) are proper, Ty�.�/ also commutes with the power

operations Pk defined on PK0.var=X / and PH�.X /, respectively.

4.2 Hirzebruch classes of symmetric products and configuration spaces

A generating series for the un-normalized motivic Hirzebruch classes of symmetric
products of a quasi-projective variety X was given in the authors’ paper [10, The-
orem 1.2, Corollary 1.3]. A reformulation of this formula in terms of our motivic
exponentiation, obtained by using Example 3.5, is the following:

Theorem 4.2 Let X and X 0 be quasi-projective complex algebraic varieties. Then:

(42) T.�y/�

��
.1� t/�ŒX

0�
�X �
D .1� t � d�/

���y.X
0/�T.�y/�.X /;

with

.1� t � d�/
�. � /
WD exp

� 1X
rD1

‰r dr
�. � /

tr

r

�
W H�.X /! PH�.X /:
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Here dr W X !X .r/ is the composition of the diagonal embedding X !X r with the
natural projection X r !X .r/ , and ‰r denotes the r th homological Adams operation
which is defined by multiplication by 1

rk on H BM
2k

.�IQ/ and by sending y to yr .

Corollary 4.3 Let X be a quasi-projective variety and ˛ 2 K0.var=C/ be a fixed
virtual class. Then, in the above notations, we obtain

(43) T.�y/�

��
.1� t/�˛

�X �
D .1� t � d�/

���y.˛/�T.�y/�.X /:

Proof We use that ˛D ŒX 0��ŒX 00�, with X 0 and X 00 quasi-projective varieties, together
with the fact that T.�y/�W PK0.var=X /! PH�.X / and ��y W K0.var=C/! ZŒy�
are ring homomorphisms.

In particular, for ˛ D Œpt� we get the following result (see also [10, Corollary 1.3]) by
using Example 3.3:

Corollary 4.4 If X is a quasi-projective complex algebraic variety, then:X
n�0

T.�y/�.X
.n// � tn

D T.�y/�..1� t/�X /

D .1� t � d�/
�T.�y/�.X /

D exp
� 1X

rD1

‰r dr
�

�
T.�y/�.X /

� tr

r

�
:

Moreover, Example 3.4 can be used to derive the following:

Proposition 4.5 For a quasi-projective complex algebraic variety X , let inW X
fng ,!

X .n/ denote as above the inclusion of the configuration space X fng of n unlabeled
points on X into the symmetric product X .n/ . Then the following generating series
formula holds:

(44)
X
n�0

T.�y/�.Œin�/ � t
n
D .1� t2

� d2
� /

T.�y/�.X /ˇ .1� t � d�/
�T.�y/�.X /:

Proof By applying the ring homomorphism

T.�y/�W PK0.var=X /! PH�.X /
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to the identity in Example 3.4, and using the fact that 1C t D 1�t2

1�t
, we obtain:X

n�0

T.�y/�.Œin�/ � t
n
D T.�y/�..1C t/X /

(iii0)
D T.�y/�

�
.1� t2/X ˇ .1� t/�X

�
D T.�y/�

�
.1� t2/X

�
ˇT.�y/�

�
.1� t/�X

�
(vii0)
D T.�y/�

�
P2

�
.1� t/X

��
ˇT.�y/�

�
.1� t/�X

�
D P2

�
T.�y/�

�
.1� t/X

��
ˇT.�y/�

�
.1� t/�X

�
The desired result follows now from formula (42).

The result of Proposition 4.5 should be regarded as a characteristic class version of
Getzler’s generating series formula for the virtual Hodge polynomial (or, more generally,
for the Hodge–Deligne polynomial) of configuration spaces X fng of n unlabeled points
on X , see Getzler [15, Corollary 5.7].

4.3 Proof of Theorem 1.1

After developing (36) into the corresponding Euler product with exponents ˛k 2

K0.var=C/, and by using the rules of exponentiation, we get:

1C
X
n�1

ŒX Œn� �n
!X .n/� � tn

D

�
1C

X
n�1

�
Hilbn

Cd ;0

�
� tn

�X

D

� 1Y
kD1

.1� tk/�˛k

�X

(iii0)
D

1K
kD1

�
.1� tk/�˛k

�X
(vii0)
D

1K
kD1

Pk

��
.1� t/�˛k

�X �
where

J
denotes the Pontrjagin product in the motivic Pontrjagin ring PK0.var=X /.

We next apply the ring homomorphism

T.�y/�W PK0.var=X /! PH�.X /

to the above identity and use that fact that this transformation commutes with proper
push-forwards, with the Pontrjagin multiplication, and with the power operations Pk ,

Geometry & Topology, Volume 17 (2013)



Characteristic classes of Hilbert schemes 1189

to obtain the following:

1C
X
n�1

�n�T.�y/�

�
X Œn�

�
� tn
D T.�y/�

� 1K
kD1

Pk

��
.1� t/�˛k

�X ��

D

1K
kD1

Pk

�
T.�y/�

��
.1� t/�˛k

�X ��
(43)
D

1K
kD1

Pk

�
.1� t � d�/

���y.˛k/�T.�y/�.X /

�

DW

1K
kD1

.1� tk
� dk
� /
���y.˛k/�T.�y/�.X /

DW

�
1C

1X
nD1

��y.Hilbn
Cd ;0

/ � tn
� dn
�

�T.�y/�.X /

This completes the proof.

Note that the method of proof of the above result yields the following characteristic
class version of Proposition 2.8:

Theorem 4.6 Let X be a quasi-projective variety and 1C
P

n�1 Antn2K0.var=C/JtK
be a normalized power series. Then

T.�y/�

�
.1C

X
n�1

Antn/X
�
D

�
1C

1X
nD1

��y.An/ � t
n
� dn
�

�T.�y/�.X /

:

5 Hirzebruch classes of virtual motives of Hilbert schemes of
threefolds

In this section we show that our methods can be combined with the approach of Behrend,
Bryan and Szendrői [3], where virtual motives of Hilbert schemes of threefolds are
defined in relation with Donaldson–Thomas invariants.

Let f W M!C be a regular function on a smooth quasi-projective variety, with singular
locus

Z D fdf D 0g �M:

The relative virtual motive of Z is defined as in [3] by the formula

ŒZ�relvir D�L�
dim M

2 Œ�f �Z 2K0.var=Z/ŒL�1=2�;
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in terms of motivic vanishing cycles �f (where we ignore the monodromy action of
roots of unity, which is not needed here). This is a motivic refinement of Behrend’s
constructible function �Z constructed in [2]. Pushing down to a point, we get the
virtual motive

ŒZ�vir D�L�
dim M

2 Œ�f � 2K0.var=C/ŒL�1=2�:

A priori, these (relative) virtual motives may depend on the chosen equation f with
degeneracy locus Z .

In particular, this construction applies to the Hilbert scheme .C3/Œn� , which can be
realized as a degeneracy locus as above after a choice of a volume form on C3 , see [3,
Proposition 2.1] for more details. By restriction to the fiber above 0 2C3 , one gets a
virtual motive for the punctual Hilbert scheme�

Hilbn
C3;0

�
vir 2K0.var=C/ŒL�1=2�:

As shown in [3], the definition of these virtual motives is independent of the choice of
the volume form on C3 .

Moreover, the proof of [3, Proposition 2.6] gives the following generating series for
the push-forwards under the Hilbert–Chow morphisms of the (relative) virtual motives
of .C3/Œn� :

(45) 1C
X
n�1

�n�Œ.C
3/Œn��relvir � t

n
D

�
1C

X
n�1

�
Hilbn

C3;0

�
vir � t

n

�C3

:

This is a relative version of the following virtual counterpart of Theorem 2.9 (see [3,
Proposition 3.2]):

(46) 1C
X
n�1

�
.C3/Œn�

�
vir � t

n
D

�
1C

X
n�1

�
Hilbn

C3;0

�
vir � t

n

�ŒC3�

:

Note that in formula (45) we need to use the extension of our geometric motivic
exponentiation .A.t//X to normalized power series A.t/ 2 K0.var=C/ŒL�1=2�JtK.
This extension will be constructed below in two steps.

Let us first explain this geometric extension at the level of Grothendieck groups. Let
S˙

0
.var=X / be the relative semiring of Z2 –graded quasi-projective varieties over the

fixed quasi-projective variety X , which is defined as the semiring S0.var=X / using
Z2 –graded varieties, that is, Z D Z0 ]Z1 with the commutative (graded) product
and external product � induced from the usual fiber and cartesian product. Note that
there are canonical functorial semiring homomorphisms

canW S0.var=X /! S˙0 .var=X /!K0.var=X /
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defined by

ŒZ0!X � 7! ŒZ0]∅!X � and ŒZ0]Z1!X � 7! ŒZ0!X �� ŒZ1!X �;

with

ŒZ0]Z1!X �� ŒZ00]Z01!X 0� 7!
�
ŒZ0!X ��ŒZ1!X �

�
�
�
ŒZ00!X 0��ŒZ01!X 0�

�
:

The first homomorphism above is an injection, whereas the second one is an epimor-
phism. Similar considerations apply to equivariant situations, which we only need
for X a point space, in the context of equivariant external products of (Z2 –graded
and virtual) varieties. More precisely, we have the following result (for a proof see [3,
Lemma 1.4]):

Lemma 5.1 There exist canonical equivariant external products �n induced from the
cartesian products of varieties, which fit into a commutative diagram:

(47) S˙
0
.var=C/ S

Sn;
˙

0
.var=C/�n

//

S0.var=C/

S˙
0
.var=C/
��

S0.var=C/ S
Sn

0
.var=C/�n

// SSn

0
.var=C/

S
Sn;
˙

0
.var=C/

��

K0.var=C/ K
Sn

0
.var=C/�n

//K0.var=C/
��

//

K
Sn

0
.var=C/
��

Using these equivariant external products, we can extend our geometric definition
of a motivic exponentiation also to normalized power series 1 C

P
i�1 Ai t

i with
either Z2 –graded coefficients (that is, Ai 2 S˙

0
.var=C/) or with virtual coefficients

(that is, Ai 2K0.var=C/). In this way, we get a commutative diagram of semigroup
homomorphisms:

(48) .1C tS˙
0
.var=C/JtK; �/ .PS˙

0
.var=X /;ˇ/

.�/X //

.1C tS0.var=C/JtK; �/

.1C tS˙
0
.var=C/JtK; �/
��

.1C tS0.var=C/JtK; �/ .PS0.var=X /;ˇ/
.�/X // .PS0.var=X /;ˇ/

.PS˙
0
.var=X /;ˇ/
��

.1C tK0.var=C/JtK; �/ .PK0.var=X /;ˇ/:
.�/X //.1C tK0.var=C/JtK; �/

��

//

.PK0.var=X /;ˇ/:
��

Note that the top two exponentiation maps are semigroup homomorphisms by the con-
struction of the geometric motivic power structure given by Gusein-Zade, Luengo and
Melle-Hernández [19; 20], which directly applies also to the Z2 –graded context. The
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bottom exponentiation in the above diagram is then also a semigroup homomorphism
by the surjectivity of the left bottom vertical arrow. By uniqueness, this geometrically
defined exponentiation

.�/X W .1C tK0.var=C/JtK; �/! .PK0.var=X /;ˇ/

has to agree with the exponentiation constructed already in Section 3.3, since they
coincide on (the image of) .1C tS0.var=C/JtK; �/.

In the second step, we extend our geometric definition of a motivic exponentiation to a
normalized power series with localized coefficients in K0.var=C/ŒL�1=2�. This can
be defined as in [19; 20] and [3] by modifying (29) using (for Ai 2K0.var=C/ and
ci 2 Z) the identities:

��Y
i

X ki

�
n�

�
�

Y
i

�
.�L1=2/ci Ai

�ki=
Y

i

Ski

D .�L1=2/
P

i ci ki

��Y
i

X ki

�
n�

�
�

Y
i

A
ki

i =
Y

i

Ski
2K0.var=X .n//ŒL�1=2�:

Altogether, we get a geometric motivic exponentiation:

.�/X W .1C tK0.var=C/ŒL�1=2�JtK; �/! .PK0.var=X /ŒL�1=2�;ˇ/

on the Pontrjagin ring associated to the covariant functor F.�/DK0.var=�/ŒL�1=2�.
By construction, besides the usual rules of our motivic exponentiation, we also have
the following:

(49) .A.�t//X D .A.t//X jt 7!�t :

Note that Theorem 4.6 also holds for power series with coefficients in the localized
Grothendieck ring K0.var=C/ŒL�1=2�. Here we choose the convention

��y.�L1=2/ WD y1=2 and ‰r .y
1=2/ WD yr=2;

which fits for y D 1 with the convention �.L1=2/D�1 used in [3].

By applying the un-normalized Hirzebruch class transformation to formula (45) we get
by (this extension of) Theorem 4.6 the following result:
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Theorem 5.2 In the above notations, the following formula holds:

(50)
1X

nD0

�n�T.�y/�

��
.C3/Œn�

�
relvir

�
� tn

D

�
1C

1X
nD1

��y

��
Hilbn

C3;0

�
vir

�
� tn
� dn
�

�T.�y/�.C3/

Moreover,

(51)
1X

nD0

�n�T.�y/�

��
.C3/Œn�

�
relvir

�
� .�t/n D

1Y
kD1

�
1� tk

� dk
�

����y.˛k/�T.�y/�.C3/
;

where the coefficients ˛k 2K0.var=C/ŒL�1=2� of the corresponding Euler product are
explicitly given by

˛k D L�3
� .�L1=2/4�k

�
1� .�L1=2/2k

1�L
D
.�L1=2/�k � .�L1=2/k

L.1�L/
:

Note that in the above result, T.�y/�.C
3/ D ŒC3� 2 H BM

even .C
3/ and the ˛k ’s are

computed in the proof of [3, Theorem 3.3]. For this explicit computation it is important
to switch from the variable t to �t using (49).

If one wants to extend the above results from C3 to an arbitrary smooth quasi-projective
threefold X , one is faced with the problem that the Hilbert scheme X Œn� is not known
to be in general a global degeneracy locus, so the (relative) virtual motive

�
X Œn�

�
relvir

is not defined. Even so, the corresponding global Behrend constructible function is
well-defined, see [2]. However, by imitating the result of Theorem 3.6, one can still
define the push-forward

�n�

�
X Œn�

�
relvir 2K0.var=X .n//ŒL�1=2�

by the generating series formula

(52) 1C
X
n�1

�n�

�
X Œn�

�
relvir � t

n
WD

�
1C
X
n�1

�
Hilbn

C3;0

�
vir � t

n

�X

2PK0.var=X /
�
L�1=2

�
:

This is a relative version of the following formula established in [3, Proposition 3.2]:

(53) 1C
X
n�1

ŒX Œn��vir � t
n
D

�
1C

X
n�1

�
Hilbn

C3;0

�
vir � t

n

�ŒX �
2 PK0.var=pt/ŒL�1=2�:

By applying the un-normalized Hirzebruch class transformation to formula (52) we get
by (the extension of) Theorem 4.6 the following result:
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Theorem 5.3 For any smooth quasi-projective threefold X the following formula
holds:

(54)
1X

nD0

T.�y/�.�n�

�
X Œn�

�
relvir/�t

n
D

�
1C

1X
nD1

��y

��
Hilbn

C3;0

�
vir

�
�tn
�dn
�

�T.�y/�.X /

Moreover,

(55)
1X

nD0

T.�y/�

�
�n�

�
X Œn�

�
relvir

�
� .�t/n D

1Y
kD1

�
1� tk

� dk
�

����y.˛k/�T.�y/�.X /;

with coefficients ˛k 2K0.var=C/ŒL�1=2� given as before by

˛k D
.�L1=2/�k � .�L1=2/k

L.1�L/
:

Note that the identification

T.�y/�

�
�n�

�
X Œn�

�
relvir

�
D �n�T.�y/�

��
X Œn�

�
relvir

�
does not make sense except for X D C3 . Nevertheless, a suitable specialization at
y D 1 is well-defined and reduces to the functoriality of the MacPherson Chern classes
of Behrend’s constructible function of the Hilbert scheme:

(56) c�
�
�n��X Œn�

�
D �n�c�

�
�X Œn�

�
:

This will be explained in the next section.

6 MacPherson–Chern classes

In order to explain (56) and the formula of Corollary 1.3 about the MacPherson–Chern
classes of Hilbert schemes, we need to say a few words about the normalized version
of our main result in Theorem 1.1, as well as in Theorems 4.6 and 5.3.

Recall that the normalized homology Hirzebruch class yTy� is defined as

yTy� WD‰.1Cy/ ıTy�;

with
‰.1Cy/W H

BM
even .X /˝QŒy�!H BM

even .X /˝QŒy; .1Cy/�1�

the normalization transformation given in degree 2k by multiplication by .1Cy/�k .
Moreover, by letting y D�1, we get that

yT�1�.X /D c�.X /˝Q
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is the rationalized homology Chern class of MacPherson.

By applying the normalization transformation ‰.1�y/ (note that due to our index-
ing conventions, y is replaced here by �y ) to the left-hand side of the formula in
Theorem 1.1, we get the generating series

P
n�0 �n�

yT.�y/�

�
X Œn�

�
� tn , which at yD 1

yields the left-hand side of the Chern class formula of Corollary 1.3. Applying the same
procedure to the right-hand side of the identity in Theorem 1.1, we first note that the
normalization transformation ‰.1�y/ commutes with push-forward for proper maps, as
well as with exterior products, therefore ‰.1�y/ commutes with the Pontrjagin product
(hence with the exponential) and it also commutes with the power operations Pk on
the homology Pontrjagin ring PH�.X /. Moreover, as shown in [10, Lemma 5.2], the
following identification of transformations holds:

(57)
lim

y!1
‰.1�y/‰r T.�y/�.�/D yT�1�.�/

D c�.�/˝QW K0.var=X /!H BM
even .X IQ/:

So by applying the identity (57) to the distinguished element ŒidX � 2K0.var=X /, we
obtain that:

(58) lim
y!1

‰.1�y/‰r T.�y/�.X /D yT�1�.X /D c�.X /˝Q:

In other words, after specializing the parameter y to the value yD 1, the normalization
transformation ‰.1�y/ “cancels out” the Adams operation ‰r . Corollary 1.3 follows
now readily.

The same argument yields the following counterparts of Theorems 4.6 and 5.3 for
the MacPherson Chern class transformation c�W K0.var=�/! H BM

ev .�IQ/ (for a
definition of this motivic lift of c� , see [8]).

Theorem 6.1 Let X be a quasi-projective variety and 1C
P

n�1 Antn2K0.var=C/JtK
or in K0.var=C/ŒL�1=2�JtK be a normalized power series. Then

c�

��
1C

X
n�1

Antn

�X�
D

�
1C

1X
nD1

�.An/ � t
n
� dn
�

�c�.X /

:

Note that the MacPherson Chern class transformation c� factorizes over the group of
(algebraically) constructible functions CF.�/ as

K0.var=�/ŒL�1=2�
e
�! CF.�/

c�
�!H BM

ev .�IQ/;

with the canonical transformation e defined in [8] and e.L�1=2/ WD �1 (to fit with the
convention of [3]). Recall that the Aluffi class of the Hilbert scheme X Œn� is defined
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in [2] as the MacPherson Chern class of the corresponding Behrend function:

cA
� .X

Œn�/ WD c�.�X Œn�/:

Moreover,

(59) e
�
�n�

�
X Œn�

�
relvir

�
D �n�

�
�X Œn�

�
;

as it follows from the compatibility of the transformation e with vanishing cycles in the
motivic and resp. constructible function context, see Cappell, Maxim, Schürmann and
Shaneson [9] and Schürmann [30]. With these identifications, we obtain as a corollary
of Theorem 5.3:

Corollary 6.2 For any smooth quasi-projective threefold X the following formula
holds:

(60)
1X

nD0

�n�

�
cA
�

�
X Œn�

��
� .�t/n D

1Y
kD1

.1� tk
� dk
� /
�k�c�.X /:

In particular, comparing with formula (13), we obtain that

(61) �n�

�
cA
�

�
X Œn�

��
D .�1/n�n�

�
c�
�
X Œn�

��
:

This formula is obtained here from a motivic viewpoint. It also follows from the
constructible function identity:

(62) �n�

�
�X Œn�

�
D .�1/n�n�.1X Œn�/

proved by Behrend and Fantechi [4, Section 4] by localization techniques for C�–
equivariant symmetric obstruction theories.
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[3] K Behrend, J Bryan, B Szendrői, Motivic degree zero Donaldson–Thomas invariants,
Invent. Math. 192 (2013) 111–160 MR3032328

[4] K Behrend, B Fantechi, Symmetric obstruction theories and Hilbert schemes of points
on threefolds, Algebra Number Theory 2 (2008) 313–345 MR2407118

[5] A A Beı̆linson, J Bernstein, P Deligne, Faisceaux pervers, from: “Analysis and topol-
ogy on singular spaces I (Luminy, 1981)”, Astérisque 100, Soc. Math. France, Paris
(1982) 5–171 MR751966

Geometry & Topology, Volume 17 (2013)

http://www.ams.org/mathscinet-getitem?mr=0412190
http://dx.doi.org/10.4007/annals.2009.170.1307
http://www.ams.org/mathscinet-getitem?mr=2600874
http://dx.doi.org/10.1007/s00222-012-0408-1
http://www.ams.org/mathscinet-getitem?mr=3032328
http://dx.doi.org/10.2140/ant.2008.2.313
http://dx.doi.org/10.2140/ant.2008.2.313
http://www.ams.org/mathscinet-getitem?mr=2407118
http://www.ams.org/mathscinet-getitem?mr=751966


Characteristic classes of Hilbert schemes 1197

[6] S Boissière, M A Nieper-Wisskirchen, Generating series in the cohomology of Hilbert
schemes of points on surfaces, LMS J. Comput. Math. 10 (2007) 254–270 MR2320831

[7] L Borisov, A Libgober, Elliptic genera of singular varieties, Duke Math. J. 116 (2003)
319–351 MR1953295

[8] J-P Brasselet, J Schürmann, S Yokura, Hirzebruch classes and motivic Chern classes
for singular spaces, J. Topol. Anal. 2 (2010) 1–55 MR2646988

[9] S E Cappell, L Maxim, J Schürmann, J L Shaneson, Characteristic classes of com-
plex hypersurfaces, Adv. Math. 225 (2010) 2616–2647 MR2680178

[10] S E Cappell, L G Maxim, J Schürmann, J L Shaneson, Equivariant characteristic
classes of singular complex algebraic varieties, Comm. Pure Appl. Math. 65 (2012)
1722–1769 MR2982640

[11] S E Cappell, J L Shaneson, Stratifiable maps and topological invariants, J. Amer.
Math. Soc. 4 (1991) 521–551 MR1102578

[12] J Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996)
479–511 MR1382733

[13] G Ellingsrud, S A Strømme, On the homology of the Hilbert scheme of points in the
plane, Invent. Math. 87 (1987) 343–352 MR870732

[14] W Fulton, S Lang, Riemann–Roch algebra, Grundl. Math. Wissen. 277, Springer, New
York (1985) MR801033

[15] E Getzler, Mixed Hodge structures of configuration spaces arXiv:
alg-geom/9510018

[16] E Gorsky, Adams operations and power structures, Mosc. Math. J. 9 (2009) 305–323,
back matter MR2568440

[17] L Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective
surface, Math. Ann. 286 (1990) 193–207 MR1032930

[18] L Göttsche, W Soergel, Perverse sheaves and the cohomology of Hilbert schemes of
smooth algebraic surfaces, Math. Ann. 296 (1993) 235–245 MR1219901

[19] S M Gusein-Zade, I Luengo, A Melle-Hernández, A power structure over the
Grothendieck ring of varieties, Math. Res. Lett. 11 (2004) 49–57 MR2046199

[20] S M Gusein-Zade, I Luengo, A Melle-Hernández, Power structure over the
Grothendieck ring of varieties and generating series of Hilbert schemes of points,
Michigan Math. J. 54 (2006) 353–359 MR2252764

[21] F Hirzebruch, Topological methods in algebraic geometry, 3rd edition, Grundl. Math.
Wissen. 131, Springer New York (1966) MR0202713 Appendix and trans. from 2nd
German edition by R L E Schwarzenberger, additional section by A Borel.

[22] M Kapranov, The elliptic curve in the S –duality theory and Eisenstein series for
Kac–Moody groups arXiv:math/0001005

[23] E Looijenga, Motivic measures, from: “Séminaire Bourbaki 1999/2000”, Astérisque
276 (2002) 267–297 MR1886763

Geometry & Topology, Volume 17 (2013)

http://www.ams.org/mathscinet-getitem?mr=2320831
http://dx.doi.org/10.1215/S0012-7094-03-11625-7
http://www.ams.org/mathscinet-getitem?mr=1953295
http://dx.doi.org/10.1142/S1793525310000239
http://dx.doi.org/10.1142/S1793525310000239
http://www.ams.org/mathscinet-getitem?mr=2646988
http://dx.doi.org/10.1016/j.aim.2010.05.007
http://dx.doi.org/10.1016/j.aim.2010.05.007
http://www.ams.org/mathscinet-getitem?mr=2680178
http://dx.doi.org/10.1002/cpa.21427
http://dx.doi.org/10.1002/cpa.21427
http://www.ams.org/mathscinet-getitem?mr=2982640
http://dx.doi.org/10.2307/2939268
http://www.ams.org/mathscinet-getitem?mr=1102578
http://www.ams.org/mathscinet-getitem?mr=1382733
http://dx.doi.org/10.1007/BF01389419
http://dx.doi.org/10.1007/BF01389419
http://www.ams.org/mathscinet-getitem?mr=870732
http://www.ams.org/mathscinet-getitem?mr=801033
http://arxiv.org/abs/alg-geom/9510018
http://arxiv.org/abs/alg-geom/9510018
http://www.ams.org/mathscinet-getitem?mr=2568440
http://dx.doi.org/10.1007/BF01453572
http://dx.doi.org/10.1007/BF01453572
http://www.ams.org/mathscinet-getitem?mr=1032930
http://dx.doi.org/10.1007/BF01445104
http://dx.doi.org/10.1007/BF01445104
http://www.ams.org/mathscinet-getitem?mr=1219901
http://www.ams.org/mathscinet-getitem?mr=2046199
http://dx.doi.org/10.1307/mmj/1156345599
http://dx.doi.org/10.1307/mmj/1156345599
http://www.ams.org/mathscinet-getitem?mr=2252764
http://www.ams.org/mathscinet-getitem?mr=0202713
http://arxiv.org/abs/math/0001005
http://www.ams.org/mathscinet-getitem?mr=1886763


1198 S Cappell, L Maxim, T Ohmoto, J Schürmann and S Yokura

[24] R D MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. 100
(1974) 423–432 MR0361141

[25] R MacPherson, Characteristic classes for singular varieties, from: “Proceedings
of the Ninth Brazilian Mathematical Colloquium (Poços de Caldas, 1973), Vol II
(Portuguese)”, Inst. Mat. Pura Apl., São Paulo (1977) 321–327 MR534464

[26] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory
and Donaldson–Thomas theory I, Compos. Math. 142 (2006) 1263–1285 MR2264664

[27] B Moonen, Das Lefschetz–Riemann–Roch–Theorem für singuläre Varietäten, Bon-
ner Mathematische Schriften 106, Universität Bonn Mathematisches Institut (1978)
MR544020 Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn

[28] M A Nieper-Wisskirchen, Characteristic classes of the Hilbert schemes of points
on non-compact simply-connected surfaces, JP J. Geom. Topol. 8 (2008) 7–21
MR2444822

[29] T Ohmoto, Generating functions of orbifold Chern classes I: Symmetric products,
Math. Proc. Cambridge Philos. Soc. 144 (2008) 423–438 MR2405899

[30] J Schürmann, Nearby cycles and characteristic classes of singular spaces, from:
“Singularities in Geometry and Topology (Strasbourg 2009)”, (V Blanlœil, T Ohmoto,
editors), IRMA Lectures in Mathematics and Theoretical Physics 20, European Math.
Soc. (2012) 181–205 arXiv:1003.2343

[31] S Yokura, A singular Riemann–Roch for Hirzebruch characteristics, from: “Singulari-
ties Symposium—Łojasiewicz 70 (Kraków, 1996; Warsaw, 1996)”, Banach Center Publ.
44, Polish Acad. Sci., Warsaw (1998) 257–268 MR1677403

Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA

Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA

Department of Mathematics, Hokkaido University, Kita 10 Nishi 8, Sapporo 060-0810, Japan

Mathematische Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

Math. & Comp. Sci., Kagoshima Uni., 21-35 Korimoto 1-chome, Kagoshima 890-0065, Japan

cappell@cims.nyu.edu, maxim@math.wisc.edu,
ohmoto@math.sci.hokudai.ac.jp, jschuerm@math.uni-muenster.de,
yokura@sci.kagoshima-u.ac.jp

http://www.math.nyu.edu/faculty/cappell/, http://www.math.wisc.edu/
~maxim/, http://www.math.sci.hokudai.ac.jp/~ohmoto/,
http://wwwmath.uni-muenster.de/u/jschuerm/

Proposed: Lothar Göttsche Received: 15 April 2012
Seconded: Jim Bryan, Ralph Cohen Revised: 30 October 2012

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2307/1971080
http://www.ams.org/mathscinet-getitem?mr=0361141
http://www.ams.org/mathscinet-getitem?mr=534464
http://dx.doi.org/10.1112/S0010437X06002302
http://dx.doi.org/10.1112/S0010437X06002302
http://www.ams.org/mathscinet-getitem?mr=2264664
http://www.ams.org/mathscinet-getitem?mr=544020
http://www.ams.org/mathscinet-getitem?mr=2444822
http://dx.doi.org/10.1017/S0305004107000898
http://www.ams.org/mathscinet-getitem?mr=2405899
http://arxiv.org/abs/1003.2343
http://www.ams.org/mathscinet-getitem?mr=1677403
mailto:cappell@cims.nyu.edu
mailto:maxim@math.wisc.edu
mailto:ohmoto@math.sci.hokudai.ac.jp
mailto:jschuerm@math.uni-muenster.de
mailto:yokura@sci.kagoshima-u.ac.jp
http://www.math.nyu.edu/faculty/cappell/
http://www.math.wisc.edu/~maxim/
http://www.math.wisc.edu/~maxim/
http://www.math.sci.hokudai.ac.jp/~ohmoto/
http://wwwmath.uni-muenster.de/u/jschuerm/
http://msp.org
http://msp.org

	1. Introduction
	2. Power structures
	3. (Motivic) Pontrjagin (semi)rings
	3.1. Relative motivic Grothendieck (semi)group
	3.2. Pontrjagin rings and operations
	3.3. Motivic exponentiation

	4. Proof of the main result
	4.1. Motivic Hirzebruch classes
	4.2. Hirzebruch classes of symmetric products and configuration spaces
	4.3. Proof of 0=theorem.31=Theorem 1.1

	5. Hirzebruch classes of virtual motives of Hilbert schemes of threefolds
	6. MacPherson--Chern classes
	References

