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Addendum to “Commensurations and subgroups
of finite index of Thompson’s group F ”
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We show that the abstract commensurator of F is composed of four building blocks:
two isomorphism types of simple groups, the multiplicative group of the positive
rationals and a cyclic group of order two. The main result establishes the simplicity
of a certain group of piecewise linear homeomorphisms of the real line.

20E32, 20E34; 20F65, 20E36

The purpose of this note is to extend our earlier work [2], where we described the
commensurator group of Thompson’s group F . We prove that an interesting subgroup
of Com.F / is simple and describe the algebraic structure of Com.F / in terms of short
exact sequences of simple groups and the multiplicative group of the positive rationals.
For all the details and notation, see the paper [2].

1 The group of eventually periodic maps

Previously [2] we described the commensurator group of F as the group of the eventu-
ally integrally periodically affine maps in P , which is defined in [2, Section 1]. These
elements may preserve or reverse the orientation of the real line. We also showed that
the index two subgroup ComC.F / of orientation-preserving maps fits into the short
exact sequence

1 �!K �! ComC.F / �!Q� �Q� �! 1;

whose kernel K is exactly those elements f of PC for which there exists M > 0 and
two positive integers p;p0 such that

f .t Cp/D f .t/Cp for t �M;

f .t Cp0/D f .t/Cp0 for t � �M:

Now we can associate to each element f 2K two integrally periodically affine maps
fC and f� , which coincide with f near 1 and �1, respectively. This property
leads to the following definitions.
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For p 2 N , we denote by Hp the subgroup of PC of p–periodically affine maps,
that is

Hp D ff 2 PC j f .t Cp/D f .t/Cp for all t 2Rg:

Clearly, if p j q , then Hp �Hq , whence we define the subgroup H as a direct limit
under inclusion by

H D

1[
pD1

Hp:

The maps fC and f� now give rise to a homomorphism

�W K �!H �H;

given by �.f /D .f�; fC/. The kernel consists of the eventually trivial elements, and
therefore equals F 0 , the commutator subgroup of F (see [1] or [2]). In other words,
we get the short exact sequence

1 �! F 0 �!K �!H �H �! 1:

Brin [1] showed that AutC.F / D ��1.H1 � H1/ and established the short exact
sequence

1 �! F �! AutC.F / �! T �T �! 1;

where T is Thompson’s group T (see Cannon, Floyd and Parry [3]). Since we clearly
have a map H1! T , due to the fact that a map which is 1–periodically affine can
be viewed as a map on the circle S1 given by R=Z, an alternative version of this
sequence is

1 �! F 0 �! AutC.F / �!H1 �H1 �! 1:

These two sequences are related by the short exact sequence

1 �!A1 �!H1 �! T �! 1;

whose kernel A1 is the maps t 7! tCk for integers k . Clearly A1 is isomorphic to Z.

It is straightforward to verify that any element ˛ of ComC.F / which satisfies ˛.tC1/D

˛.t/Cp for all t 2R conjugates H1 to Hp and A1 to Ap , the group of maps of the
form t 7! t C kp with k 2 Z. So we clearly have a short exact sequence

1 �!Ap �!Hp �! T �! 1:

We note that this extension is, in fact, central, and that one may view this copy of T

as acting on the circle of length p given by R=pZ. We summarise this discussion as
follows.
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Theorem 1 The structure of the group Com.F / and its index two subgroup ComC.F /
is given by the following short exact sequences and equalities:

1 ComC.F / Com.F / C2 1,

1 K ComC.F / Q��Q� 1,

1 F 0 K H �H 1,

1 Ap Hp T 1,

where H D
S1

pD1 Hp and Ap Š Z is central in Hp .

2 Simplicity of the group H

Here we exploit the well-known fact that T is simple [3] to prove our main result.

Theorem 2 The group H D ff 2 PC j f .t C p/ D f .t/C p for some p 2 Ng is
simple.

Note that for p; q 2N with p j q , we have Hp �Hq and Ap �Aq . So the theorem
says that in the union H the groups Ap cease to be normal. This is due to the following.

Lemma 3 A normal subgroup of Hp is either Hp or it is contained in Ap .

Proof In the light of the isomorphism between Hp and H1 which carries Ap to A1 ,
it suffices to consider the case pD 1. Let N be a normal subgroup of H1 and consider
its image in T . Since T is simple, the image of N is either f1g or the whole of T . If
the image is f1g, then N �A1 . So we assume that the image is T , which yields the
exact sequence

1 �! B �!N �! T �! 1;

with kernel B DN \A1 �A1 . It follows that B DAr for some r , and we find that

H1=N ŠA1=Ar Š Z=rZ:

In particular H1=N is abelian. The proof will be complete once we show that H1 is
equal to its commutator subgroup, because then N DH1 . In order to establish this,
we recall from [3] that T is generated by three elements x0 , x1 and c subject to the
relators

Œx0x�1
1 ;x�1

0 x1x0�;

.x�1
0 cx1/

2x�1
0 c�1;

Œx0x�1
1 ;x�2

0 x1x2
0 �;

x1x�2
0 cx2

1x�1
0 x�1

1 x0x�1
1 c�1x0;

x1x�1
0 cx1c�1;

c3:
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This easily gives rise to a finite presentation for H1 with three generators x0 , x1

and c subject to the same relators, except for c3 which has to be replaced by the two
relators Œc3;x0� and Œc3;x1�. Here x0 , x1 and c are the preimages of the corresponding
generators for T , as defined in [3], with x0.0/Dx1.0/D0 and c.0/D�1

4
; composition

is then to be read from right to left, as in [3]. In this case c3 is the map t 7! t � 1,
which generates A1 . Modulo the commutator subgroup of H1 , the third, fourth and
fifth relators yield the relators x�1

0
x2

1
, x�3

0
x2

1
c and x�1

0
x1 , respectively, which in turn

imply x0 D x1 D c D 1. This proves that ŒH1;H1�DH1 .

Proof of Theorem 2 Let N be a nontrivial normal subgroup of H . According to
Lemma 3, for each p , we have that N \Hp is either Hp or it is contained in Ap .

We claim that if N \Hp DHp for some p , then this happens for all p 2N . We take
q 2N . Then N \Hpq is a normal subgroup of Hpq , and

N \Hpq �N \Hp DHp © Ap �Apq;

which shows that N \Hpq DHpq by the lemma. Thus, in this case N contains all
Hq , and hence N DH .

The only case left now is that N \Hp �Ap for all p . Since N is nontrivial and the
Ap are infinite cyclic, there exists a p with N \Hp DArp for some r � 1. But then

A2pr �N \H2pr �N \Hp DApr © A2pr ;

which is a contradiction. Thus the only normal subgroups of H are H and the identity
as claimed.
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