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Continuous families of divisors, paracanonical systems and a
new inequality for varieties of maximal Albanese dimension
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Given a smooth complex projective variety X , a line bundle L of X and v2H 1.OX /,
we say that v is k –transversal to L if the complex H k�1.L/!H k.L/!H kC1.L/

is exact. We prove that if v is 1–transversal to L and s 2H 0.L/ satisfies s[vD 0 ,
then the first order deformation .sv;Lv/ of the pair .s;L/ in the direction v extends
to an analytic deformation.

We apply this result to improve known results on the paracanonical system of a
variety of maximal Albanese dimension, due to Beauville in the case of surfaces and
to Lazarsfeld and Popa in higher dimension. In particular, we prove the inequality
pg.X /��.KX /Cq.X /�1 for a variety X of maximal Albanese dimension without
irregular fibrations of Albanese general type.

14C20, 14J29, 32G10

1 Introduction

The geometry of the divisors of an irregular algebraic variety is richer than in the regular
case, due to the existence of nontrivial continuous families of divisors. Some of these
families are intrinsically defined, as the paracanonical system introduced below, which
is of fundamental importance in the study of irregular varieties of general type: indeed,
the interest in the geometry of the paracanonical system has been the motivation leading
to the groundbreaking results of Green and Lazarsfeld [6; 7] on generic vanishing.

Here we consider the following situation: let X be a smooth projective variety, let �
be a class in the Néron–Severi group NS.X / and denote by Pic�.X / the connected
component of Pic.X / that parametrizes isomorphism classes of line bundles with
class �. The effective divisors with class � are parametrized by a projective va-
riety Div�.X / and the characteristic map c�WDiv�.X / ! Pic�.X / is defined by
D 7! OX .D/. The fiber of c� over a point L 2 Pic�.X / is naturally isomorphic
to the linear system jLj. One defines the continuous rank of � (this terminology is due
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to M A Barja) as �.�/ WDminfh0.L/ jL 2 Pic�.X /g: if �.�/ > 0 there is exactly one
irreducible component Div�.X /main of Div�.X / that maps surjectively onto Pic�.X /.
The variety Div�.X /main is called the main component of Div�.X /; its dimension is
equal to �.�/C q.X /� 1.

We study the problem of deciding whether the linear system jLj is contained in
Div�.X /main , and the closely related question of deciding whether jLj is a component
of Div�.X / (ie, whether, in the terminology used by Beauville in [2], the system jLj
is exorbitant).

To this end, we introduce the notion of k –transversality for a vector v 2H 1.OX /: we
say that v is k –transversal to L if the complex given by cup product

H k�1.L/
[v
��!H k.L/

[v
��!H kC1.L/

is exact. We prove the following.

Theorem 1.1 Let X be a smooth projective variety, let 0¤L 2 Pic.X / and denote
by �2NS.X / the class of L; let 0¤ s 2H 0.L/ and v 2H 1.OX / such that s[vD 0,
and denote by D the divisor of zeros of s . Then

(i) if v is 1–transversal to L, then D belongs to the closure of Div�.X / n jLj;

(ii) if v is k –transversal to L for every k > 0 and �.L/ > 0, then �.L/ D �.L/
and D 2 Div�.X /main .

The idea of the proof is to construct inductively a formal deformation of the pair .s;L/
over Spec CŒŒt ��: the transversality assumption on v allows one to perform the inductive
step (cf Proposition 3.1).

We apply Theorem 1.1 to the analysis of the paracanonical system Div�.X / of a
variety X of maximal Albanese dimension, where � is the canonical class. In view of
the generic vanishing theorem of Green and Lazarsfeld, Theorem 1.1 translates this
problem into some nontrivial linear and multilinear algebra questions.

One should observe in this particular case the crucial deformation result Proposition 3.1
(and thus Theorem 1.1) could also be derived by the results in [7, Section 3] via
Grothendieck duality; however, we believe that the statement of Theorem 1.1, that
relates the vanishing of all higher obstructions with the 1–transversality property, will
prove useful for the analysis of other situations.

It is traditional to denote the paracanonical system Div�.X / by PX , or simply by P .
The generic vanishing theorem of [6] implies that the continuous rank �.�/ of P is equal
to the Euler characteristic �.KX /, hence for �.KX / > 0 the paracanonical system P
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has a main component Pmain . Paracanonical systems and conditions for jKX j to be
exorbitant or not have been studied in [2] in the case of surfaces, and by Lazarsfeld
and Popa in [8] in the general case. Here we make some further progress in the
understanding of paracanonical systems. In dimension greater than 2, we prove the
following result (see Section 2 for the definitions of Albanese general type fibration
and Vk.X /).

Theorem 1.2 Let n� 3 be an integer and let X be a smooth projective n–dimensional
variety with irregularity q � nC 1. If X has no Albanese general type fibration, then
�.KX /� q� n> 0 and

(i) pg.X /� �.KX /C q� 1;

(ii) pg.X /D �.KX /C q� 1 if and only if jKX j � Pmain ;

(iii) if pg.X /D �.KX /C q� 1, then q D nC 1;

(iv) if, in addition, 0 2 Vk.X / is an isolated point for k > 0, then we have that
pg.X /D�.KX /Cq�1 if and only if qD nC1 and

�
h.X /

n

�
� 1 mod 2, where

h.X / WD
Pb.n�1/=2c

jD0
h0;n�1�2j .X /.

Notice that any smooth ample divisor X in an abelian variety satisfies the equation
pg.X /D �.KX /C q.X /� 1 (cf Example 5.3). In Section 5 we give examples that
show that neither the assumption q.X /� dim X C 1 nor the assumption that X does
not have fibrations of Albanese general type can be removed from Theorem 1.2.

To our knowledge, the inequality in Theorem 1.2 had not been conjectured before,
possibly due to the fact that for a surface X one has that pg.X /D �.KX /C q � 1.
Indeed, [8, Proposition 5.5] gives necessary and sufficient numerical conditions (that
we use in the proof of Theorem 1.2(iv)) in order that jKX j be exorbitant, assuming the
converse inequality pg.X /� �.KX /C q� 1 (which clearly holds when jKX j is not
exorbitant).

Then we turn to the case of surfaces. In [2] Beauville proved that if X is a surface of
general type of irregularity q � 2 without irrational pencils of genus greater than q=2

then the general canonical curve deforms to first order in a 1–transversal direction
if and only if q is odd. This shows that jKX j is exorbitant for q even and gives
strong evidence for the fact that jKX j is not exorbitant if q is odd. Here, thanks to
Theorem 1.1, we are able to complete Beauville’s results as follows.

Theorem 1.3 Let X be a surface with �.KX / > 0 and irregularity q � 2 without
irrational pencils of genus greater than q=2. Then

(i) if q is odd, then jKX j � Pmain ;
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(ii) if q is even, then † WD jKX j\PmainD jKX j\ .P n jKX j/ is a reduced and irre-
ducible hypersurface of degree q=2 of jKX j. If, in addition, X has no irrational
pencil of genus greater than 1, then Sing.†/D fŒs� 2† j rk.[s/ < q� 2g.

As an immediate consequence of Theorem 1.3, we are able to answer in the case of
surfaces the question, raised by the authors in [9, Section 7], of what is the relation
between the base schemes of jKX j and Pmain . Since for q� 3 the variety jKX j\Pmain

is a nondegenerate subvariety of jKX j, we have the following.

Corollary 1.4 Let X be a surface of general type that has no irrational pencil of
genus greater than q=2. If X has irregularity q � 3, then the base scheme of Pmain is
contained in the base scheme of jKX j.

Theorems 1.2 and 1.3 imply immediately necessary conditions for the irreducibility
of P .

Corollary 1.5 Let X be a smooth projective n–dimensional variety with irregularity
q � nC 1 that has no Albanese general type fibration. If the paracanonical system PX

is irreducible, then X is one of the following:
(a) a curve;
(b) a surface with q odd;
(c) a variety of dimension n� 3 with pg.X /D �.KX /C q� 1 (and q D nC 1).

Notation and conventions We work over the complex numbers; all varieties are
projective. If X is a smooth projective variety, we denote as usual by pg.X / the
geometric genus h0.KX /Dhn.OX /, and by q.X / the irregularity h0.�1

X
/Dh1.OX /.

Recall that by Hodge theory there is an antilinear isomorphism H 0.�1
X
/!H 1.OX /

that we denote by ˛ 7! x̨ . We use the standard notation Pic.X /, resp. NS.X /, for the
group of divisors modulo linear, resp. algebraic, equivalence; given L 2 Pic.X /, we
denote by �.L/ its Euler characteristic.

For V a complex vector space and r � 1 an integer, G.r;V / denotes the Grassmannian
of r –dimensional vector subspaces of V .
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2 Preliminaries

We recall several known results on irregular varieties that are used repeatedly throughout
the paper.

2.1 Albanese dimension and irrational fibrations

Let X be a smooth projective variety of dimension n. The Albanese dimension
albdim.X / is defined as the dimension of the image of the Albanese map of X ; in
particular, X has maximal Albanese dimension if its Albanese map is generically
finite onto its image and it is of Albanese general type if in addition q.X / > n. For a
normal variety Y , we define the Albanese variety Alb.Y / and all the related notions
by considering any smooth projective model of Y .

An irregular fibration f W X ! Y is a morphism with positive dimensional connected
fibers onto a normal variety Y with albdim Y D dim Y > 0; the map f is called
an Albanese general type fibration if in addition Y is of Albanese general type. If
dim Y D 1, then Y is a smooth curve of genus b > 0; in that case, f is called an
irrational pencil of genus b and it is an Albanese general type fibration if and only if
b > 1.

Notice that if q.X / � n and X has no Albanese general type fibration, then X has
maximal Albanese dimension.

The so-called generalized Castelnuovo–de Franchis Theorem (see Catanese [3, Theo-
rem 1.14] and Ran [11]) shows how the existence of Albanese general type fibrations
is detected by the cohomology of X .

Theorem 2.1 (Catanese, Ran) The smooth projective variety X has an Albanese
general type fibration f W X ! Y with dim Y � k if and only if there exist independent
1–forms !0; : : : ; !k 2H 0.�1

X
/ such that !0 ^!1 ^ � � � ^!k D 0 2H 0.�kC1

X
/.

A closely related result, due to Green and Lazarsfeld, is recalled in the next section
(Theorem 2.5).

2.2 Generic vanishing

Let X be a projective variety of dimension n and let L2Pic.X /; the i th cohomological
support locus of L is defined as Vi.L;X / WD f� j h

i.LC �/ > 0g � Pic0.X /, i D

0; : : : ; n. The cohomological support loci are closed by the semicontinuity theorem.
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One says that generic vanishing holds for L if Vi.L;X / is a proper subvariety of
Pic0.X / for i > 0.

We identify, as usual, the tangent space to Pic0.X / at any point with H 1.OX /, so we
regard the elements of H 1.OX / as tangent directions. Given 0¤ v 2H 1.OX /, the
derivative complex of L in the direction v is

(2-1) 0!H 0.L/
[v
��!H 1.L/

[v
��! � � �

[v
��!H n.L/! 0:

We say that v is k –transversal to L if the k th cohomology group of the complex (2-1)
vanishes. This terminology is explained by the following key result (cf [6, Section 1],
in particular Theorem 1.6, and [7, Corollary 3.3]).

Proposition 2.2 (Green–Lazarsfeld) Let X be a smooth projective variety and
let L 2 Pic.X /; consider a point � 2 Vk.L;X / and a nonzero direction v 2H 1.OX /.
Then

(i) if v is k –transversal to LC � then v is not in the tangent cone to Vk.L;X /

at �;

(ii) if � 2 Vk.L;X / is general, then either v is k –transversal to LC� or both maps
in the sequence

H k�1.LC �/
[v
��!H k.LC �/

[v
��!H kC1.LC �/

vanish.

Proposition 2.2 has the following immediate consequence (in fact, the generic vanishing
theorem for KX was first proven in [6] using this argument).

Corollary 2.3 Let X be a smooth projective variety and let L 2 Pic0.X /; if there
exists � 2 Pic0.X / and v 2H 1.OX / such that v is k –transversal to LC � for every
k > 0, then generic vanishing holds for L.

When LDKX , we omit L from the notation and simply write Vi.X /; the loci Vi.X /

are also called generic vanishing loci of X . We recall the main facts about them.

Theorem 2.4 (Green–Lazarsfeld, Simpson) Assume that X has maximal Albanese
dimension. Then

(i) Vi.X / has codimension greater than or equal to i in Pic0.X / for i D 0; : : : ; n;

(ii) V0.X /� V1.X /� � � � � Vn.X /D f0g;

(iii) the components of Vi.X / are translates of complex subtori of Pic0.X / by torsion
points.
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Proof Part (i) is [6, Theorem 2.10], (ii) is from Ein and Lazarsfeld [5, Lemma 1.8].
The fact that the components of Vi.X / are translates of subtori is the main result
of [7]. Finally, the fact that they are translates by torsion points is proven by Simpson
in [12].

For L algebraically equivalent to KX , the condition that v is k –transversal to L is
related to the existence of irregular fibrations, as shown by the following result ([7,
Theorem 5.3]), that can also be regarded as a generalization of the Castelnuovo–de
Franchis theorem.

Theorem 2.5 (Green–Lazarsfeld) Let X be a smooth projective variety of maximal
Albanese dimension, let � 2 Pic0.X /, let 0¤ v 2H 1.OX / and set ! WD xv 2H 0.�1

X
/.

If v is not k –transversal to KX C�, then there exists an irregular fibration f W X ! Y

with dim Y � n� k such that ! is the pullback of a 1–form ˛ 2H 0.�1
Alb.Y //.

Proposition 2.2 and Theorem 2.5 for �D 0, give the following.

Corollary 2.6 If X has no irregular fibration, then 0 is an isolated point of Vi.X / for
every i > 0.

3 Proof of Theorem 1.1

The key step in the proof of Theorem 1.1 is a deformation result for sections of L that we
state next. Denote by R the ring CŒŒt �� of formal power series; for 0¤ v 2H 1.OX /,
there is a morphism �vW Spec R ! Pic�.X / defined by t 7! L˝ exp.tv/, where
expW H 1.OX /! Pic0.X / denotes the exponential mapping. Pulling back via �v a
Poincaré line bundle on X � Pic.X /, one obtains a deformation Lv.t/ of L over
Spec R that we call the (formal) straight line deformation of L in the direction v .

Proposition 3.1 Let X be a smooth projective variety, let L2Pic.X / be a line bundle
and let s 2 H 0.L/ be a nonzero section. If v 2 H 1.OX / is 1–transversal to L and
s[ v D 0, then the formal straight line deformation Lv.t/ of L in the direction v can
be lifted to a deformation .sv.t/;Lv.t// of the pair .s;L/.

Granting Proposition 3.1 for the moment, we prove Theorem 1.1.

Proof of Theorem 1.1 (i) By Proposition 3.1, there exists a formal deformation
.sv.t/;Lv.t// of the pair .s;L/ over Spec R, where Lv.t/ is the straight line defor-
mation of L in the direction v . By Artin’s convergence Theorem [1, Theorem 1.2],
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there exists an analytic deformation .zs.t/; zL.t// of .s;L/ over a small disk around
0 2C such that .sv.t/;Lv.t//D .zs.t/; zL.t// mod t2 .

(ii) Since v is k –transversal, L satisfies generic vanishing by Corollary 2.3, hence
�.L/D �.L/ > 0. To prove the claim, it is enough to show that for t ¤ 0 small the
analytic deformation .zs.t/; zL.t// is not contained in an irreducible component Z of
Div�.X / different from the main component. By the semicontinuity of the dimension
of cohomology groups, it follows that the image in Pic�.X / of such a component
is contained in LC Vk.L;X / for some k > 0. By Proposition 2.2, the vector v ,
being k –transversal to L, is not in the tangent cone to LC Vk.L;X / at the point
L 2 Pic�.X /, hence zL.t/ 62LCVk.L;X / for t ¤ 0 small.

The rest of the section is devoted to the proof of Proposition 3.1. We need to state and
prove some technical results. Let D be the divisor of zeros of s ; for n� 1 consider
the twisted restriction sequence

(3-1) 0!OX ..n� 1/D/!OX .nD/!OD.nD/! 0

and denote by dnW H
0.OD.nD//!H 1.OX ..n� 1/D// the induced maps in coho-

mology.

We use Dolbeault cohomology. We consider the sheaf C1.L/ of C1 sections of the
line bundle L and we set C1.L/D WD C1.L/=C1 ; in addition, we denote by A0;q

and A0;q.L/ the sheaves of C1 .0; q/–forms and C1 .0; q/–forms with values in L,
respectively. We have a commutative diagram

OS L LjD

C1 C1.L/ C1.L/D

A0;1 A0;1.L/

//s

�� ��

//

��

//

��

@

��

@

//

//

Lemma 3.2 Let k � 1 be an integer, let � 2 H 0.LjD/ and set v WD d1� , let
 2 C1.L/ be a lift of � and let � 2 C1.L/.

If v is 1–transversal to L and  kx@� 2 A0;1..k C 1/L/ is x@–closed, then  kx@� is
x@–exact.
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Proof Since 0D x@. kx@�/D k k�1x@ ^x@� , we have x@ ^x@� D 0 on the support
of  . On the other hand, x@ D 0 outside the support of  , hence x@ ^ x@� D 0

on all of X and therefore �x@ 2 A0;1.L/ is closed. Since the class v 2 H 1.OX /

is represented by x@ 2 A0;1 and x@ ^ �x@ D 0, we have v [ Œ�x@ � D 0. By the
assumption v is 1–transversal to L, there exists g 2H 0.L/ and ˛ 2 C1.L/ such that

�x@ D gx@ Cx@˛ D x@.g C˛/:

Then we have

 kx@� D x@. k�/� k k�1�x@ D x@. k�/� k k�1x@.g C˛/:

Since k k�1x@.g /D x@. kg/, we get

(3-2)  kx@� D x@. k.� �g//� k k�1x@˛:

For k D 1, (3-2) is precisely the claim, and for k > 1 it gives the inductive step.

Lemma 3.3 Let � 2H 0.OD.D// and set v WD d1� . Then

(i) v[ d2�
2 D 0;

(ii) if � 2 H 0.L/ is such that d2�
2 D v [ 2� , then d2.� � r1.�//

2 D 0, where
r1W H

0.L/!H 0.OD.D// is the restriction map;

(iii) if d2�
2 D 0 and v is 1–transversal to L, then dn�

n D 0 for every n� 2.

Proof (i) We regard � as a global section of C1.L/D and we lift it to a global section
 2 C1.L/. Then x@ represents the class v D d1� 2 H 1.OX / and x@ 2 D 2 x@ 

represents the class d2�
2 . But then (i) follows, since

v[ d2�
2
D Œ2 x@ ^x@ �D 0:

(ii) The function  �� is a C1 lift of �� r1.�/, hence d2.��r1.�//
2 is represented

by 2. � �/x@ . Since, as shown in the proof of (i), x@ represents v and 2 x@ 

represents d2�
2 , we have Œ2. � �/x@ �D d2�

2� v[ 2� D 0.

(iii) Since d2�
2 D 0, there exists � 2 C1.L/ such that  x@ D x@� . For n � 2 the

class dn�
n is represented by x@. n/ D n n�1x@ D n n�2x@� , hence it vanishes by

Lemma 3.2 since v is 1–transversal to L.

Proof of Proposition 3.1 Denote by D the divisor of zeros of s and for n � 1 let
rnW H

0.OX .nD//!H 0.OD.nD// be the restriction map. Let fUig be an open cover
of X consisting of polydiscs, denote by gij 2O�X .Uij / a system of transition functions
for LDOX .D/, by si 2OX .Ui/ local representations of s and by aij 2OX .Uij / a
cocycle that represents v .
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Set Vi WDUi�Spec R; transition functions for Lv.t/ with respect to the open cover fVig

of X �Spec R are given by

(3-3) gij .t/D gij exp.taij /D gij

�
1C aij t C

a2
ij t2

2
C � � �C

an
ij tn

n!
C � � �

�
:

We look for functions si.t/ 2OX�Spec R.Vi/ that satisfy

(3-4) si.t/D gij .t/sj .t/:

We write formally si.t/ D si exp.�i t C
P

r�2�
.r/
i tr /, with �i , � .r/i meromorphic

functions on Ui with poles only on D , and we start by solving (3-4) mod t2 , namely
we look for functions �i 2OX .D/.Ui/ that on Uij satisfy

(3-5) �i D aij C �j :

Equivalently, we look for a section � 2H 0.OD.D// such that d1� D v . Consider the
long cohomology sequence associated with the standard restriction sequence on for D :

� � � !H 0.OX .D//
r1
�!H 0.OD.D//

d1
�!H 1.OX /

[s
��!H 1.OX .D//! � � � :

Since s[ v D 0 by assumption, Equation (3-5) can be solved, and any two solutions
differ by a section of H 0.OX .D//. The second step is to solve

(3-6) �
.2/
i D �

.2/
j on Uij ; �

.2/
i C �

2
i =2 2OX .D/.Ui/;

for every i; j . Namely, we look for a section � .2/ 2H 0.OX .2D// that lifts the section
��2=2 2 H 0.OD.2D//. Hence we must have that d2�

2 D 0. By Lemma 3.3(i),
v [ d2�

2 D 0, hence by the assumption that v is transversal to L there exists
� 2H 0.OX .D// such that d2�

2 D v[ 2� . Hence we have d1.� � r1.�//D d1� D v

and by Lemma 3.3(ii) we have d2.� � r1.�//
2 D 0.

Therefore we may replace � by � � r1.�/ and then solve (3-6). The third step consists
in solving

(3-7) �
.3/
i D �

.3/
j on Uij ; �

.3/
i C �i�

.2/
i C

�3
i

3
2OX .D/.Ui/;

for every i; j . As in the previous step, (3-7) has a solution � .3/ 2 H 0.OX .3D// if
and only if

(3-8) d3.3� r2.�
.2//C �3/D 0:

Since by construction r2.�
.2// is a nonzero multiple of �2 , this is equivalent to

d3�
3 D 0. Hence (3-7) can be solved by Lemma 3.3(iii). By the same argument, one

shows inductively the existence of � .r/ for every r � 4.
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4 Paracanonical systems

4.1 Proof of Theorem 1.2

We let X be a smooth projective variety with albdim X D dim X D n� 2; for the sake
of brevity, we write pg; q; � instead of pg.X /; q.X /; �.KX /. We assume that � > 0,
so that we can consider the main paracanonical system.

We write P WD P .H 1.OX // and define an incidence subvariety I � P � jKX j as
follows:

I WD f.Œv�; Œs�/ j v[ s D 0g:

Let Imain � I be the closure of the open subset consisting of pairs .Œv�; Œs�/ such that v
is 1–transversal to KX . We consider the two projections of P � jKX j and we set
†� jKX j and respectively †main � jKX j, the image of I , respectively Imain , via the
second projection. Hence † is the locus of canonical divisors that deform to first order
in some nonzero direction v , and †main is the closure of the locus of canonical divisors
that deform to first order in some direction v that is 1–transversal to KX . The key
observation is the following.

Lemma 4.1 One has inclusions

†main � Pmain\ jKX j � jKX j \ .P n jKX j/�†:

Proof Let v 2 H 1.OX / be a vector. If v is k –transversal to KX , then v is not
in the tangent cone to Vk.X / at 0 by Proposition 2.2(i); on the other hand, if v is
not k –transversal to KX , then it is not in the tangent cone to Vk.X / at 0 by [7,
Corollary 3.3]. Summing up, v is k –transversal to KX if and only if it is not in the
tangent cone to Vk.X / at 0. Since by Theorem 2.4(ii) V1.X / � Vk.X / for every
k � 1, v is 1–transversal to KX if and only if it is k –transversal to KX for every
k � 1. Hence the first inclusion is a consequence of Theorem 1.1(ii). The second one
is obvious.

To prove the last one, consider D D .s/ 62†; the sequence

0!H 0.OX /!H 0.OX .D//!H 0.OD.D//! 0

is exact. Since H 0.OD.D// is the tangent space to P at the point D , this means
that P and jKX j have the same tangent space at D . Since jKX j is a smooth variety,
this means that jKX j and P coincide near D , so jKX j is an irreducible component
of P , ie, it is exorbitant. In particular D 62 Pmain .

Now we start to study the geometry of the varieties that we have introduced.
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Lemma 4.2 (i) Imain is irreducible of dimension �C q� 2;

(ii) if 0 2 Vk.X / is an isolated point for k > 0, then jKX j \ .P n jKX j/D†main .

Proof Denote by pri , i D 1; 2, the restrictions to I , Imain of the two projections of
P � jKX j.

(i) As we have already remarked in the proof of Lemma 4.1, a vector v 2H 1.OX / is
1–transversal to KX if and only if it is k –transversal to KX for every k > 0. Hence, if
v 2H 1.OX / is 1–transversal to KX , then pr�1

1
.Œv�/ is a projective space of dimension

�� 1. Since by Theorem 2.5, the classes Œv� such that v is 1–transversal to KX form
a nonempty open subset of P .H 1.OX //, the claim follows immediately.

(ii) By Proposition 2.2, the point 0 2 Vk.X / is isolated for k > 0 if and only if every
0¤ v 2H 1.OX / is k –transversal to KX for k > 0, hence, as explained in the proof
of (i), if and only if every 0 ¤ v 2 H 1.OX / is 1–transversal to KX . Therefore we
have I D Imain , and the claim follows by Lemma 4.1.

Next we need a linear algebra result, which is an infinitesimal version of the so-called
Ker/Coker Lemma.

Lemma 4.3 Let V;W be complex vector spaces, let X � Hom.V;W / be an irre-
ducible closed subset and let f 2X be general.

If g is tangent to X at the point f , then g.ker.f //� Imf .

Proof By the generality of f , we may assume that X is smooth at f and that rkf
is equal to the maximum of rk h for h 2 X ; we set r WD dim Kerf . Then there
is an analytic map F W �! X , where � is a small disk around 0 2 C , such that
F.t/Df CgtC� � � ; then t!U.t/ WD ker F.t/ defines an analytic map �!G.r;V /,
where G.r;V / is the Grassmannian. Given u 2 kerf , we can lift t ! U.t/ to the
universal family on G.r;V /, namely there exists an analytic map uW �! V such that
u.t/D uCu1t C� � � and F.t/u.t/D 0. Hence 0D .F.t/u.t//0jtD0 D f u1Cgu, ie,
guD�f u1 2 Imf .

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Since X has no Albanese general type fibration and q� nC1,
the inequality �.KX /� q.X /� n holds by Pareschi and Popa [10].

(i) Consider the projection pr2W Imain ! †main � jKX j. If for general Œs� 2 †main

the fiber pr�1
2
.Œs�/ is a point, or, equivalently, if the dimension t of the kernel N of
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the map [sW H 1.OX /!H 1.KX / is equal to 1, then the inequality �C q� 1� pg

follows by Lemma 4.2.

So assume t � 2 and denote by P .T /� jKX j the projective tangent space to †main at
a general point Œs�. Let ˛; ˇ 2H 0.�1

X
/ be independent 1–forms such that x̨; x̌ 2N .

Given s0 2 T � H 0.KX /, then by Lemma 4.3 there exists 
 2 H 0.�1
X
/ such that

s0^x̨D s^x
 . Thus we have s0^x̨^ x̌D s^x
^ x̌D�s^ x̌^x
 D0, for every x̨; x̌2N .
It follows T is annihilated by the image S of the map

V2
N˝H n�2.OX /!H n.OX /.

Denote by GN the subset of the Grassmannian G.n;H 1.OX // consisting of the n–
dimensional vector subspaces of H 1.OX / that intersect N in dimension greater than
or equal to 2. Since by assumption X has no Albanese general type fibration, by
Theorem 2.1 the wedge product induces a finite map GN ! P .S/. Hence, we have
codim†main D codim T � dim S � dim GN C 1 D .n� 2/.q � n/C 2.t � 2/C 1 if
q � nC t � 1 and codim†main � n.q � n/C 1 if q < nC t � 1. Since we have
dim†main D dim Imain� .t � 1/D �C q� t , this can be rewritten as

(a) pg � .�C q� t/� .n� 2/.q� n/C 2t � 3, if q � nC t � 1;

(b) pg � .�C q� t/� n.q� n/C 1, if q < nC t � 1.

In case (a) we obtain pg � .�C q� 1/� .n� 2/.q� n/ > 0; in case (b), since t � q ,
we get pg � .�C q� 1/� .n� 1/.q� n/� nC 2� .n� 1/� nC 2D 1.

(ii) If jKX j � Pmain , then pg � �C q � 1 and therefore pg D �C q � 1 by (i).
Conversely, the proof of (i) shows that if pg D �C q � 1 we have t D 1. Hence in
this case dim†mainD �Cq�2 and therefore †mainD jKX j and jKX j �Pmain is not
exorbitant.

(iii) By (ii), if pg D � C q � 1, then for general s 2 H 0.KX / the kernel of
[sW H 1.OX /! H 1.KX / is 1–dimensional. Let s 2 H 0.KX / be general and take
0 ¤ ˛ 2 H 0.�1

X
/ such that s ^ x̨ D 0. We denote by W the image of the map

H 0.KX /!H 1.KX / defined by w 7!w^ x̨ . By Lemma 4.3, for every w 2H 0.KX /

there exists ˇ 2 H 0.�1
X
/ such that w ^ x̨ D s ^ x̌, namely W is contained in the

image of the map [sW H 1.OX /!H 1.KX /. It follows that W has dimension less
than or equal to q� 1.

Let SM � H 1.OX / be a subspace such that hx̨i ˚ SM D H 1.OX /, and consider
M �H 0.X; �1

X
/. Now take a decomposable form s1Dˇ1^� � �^ˇn�1^˛ with ˇi 2M

independent. By the assumption that X has no Albanese general type fibration, we have
s1 ¤ 0, hence s1^xs1 ¤ 0, and, a fortiori, s1^ x̨ ¤ 0. Hence the map

Vn�1
M !W

defined by s 7! s^˛^ x̨ induces a finite morphism G.n�1;M /! P .W /. It follows
that q�2� .n�1/.q�1� .n�1//D .n�1/.q�n/, that is .n�2/q � .n�2/.nC1/

and thus q � nC 1.
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(iv) By (ii) the equality pg D �C q � 1 holds if and only if jKX j � Pmain , if and
only if, since 0 2 Vk.X / is isolated for k > 0, jKX j is not exorbitant. In addition, by
(iii) if pg.X /D �.X /C q� 1 then q D nC 1.

Hence, by [8, Proposition 5.5], in our situation jKX j is not exorbitant if and only if
the coefficient sn of tn in the formal power series expansion in ZŒŒt �� of the rational
function

Qn
jD1.1C j t/.�1/jC1h0;n�j

does not vanish.

As explained in [8], sn is the degree in P .H 1.OX // of a general fiber of the map
Imain! P .H 0.KX //; since by the proof of (i) this fiber is either empty or a point, it
is enough to compute sn modulo 2. Finally, it is an elementary computation to show
that sn �

�
h.X /

n

�
mod 2.

4.2 Proof of Theorem 1.3

Let X be a surface with irregularity q � 2 and with � WD �.KX / > 0 that has no
irrational pencil of genus greater than q=2. Recall that pg D �.KX /C q� 1.

As explained in the introduction, part of the results that follow were already proven
in [2], but in order to give a clear presentation of our results we prefer to give all the
proofs.

Lemma 4.4 The irreducible components of I distinct from Imain have dimension less
than pg � 1.

Proof Let v 2 H 1.OX / and let ˛ D xv 2 H 0.�1
X
/: by Hodge theory v is not 1–

transversal to KX if and only if the sequence

H 0.OX /
^˛
��!H 0.�1

X /
^˛
��!H 0.KX /

is not exact. Hence by the classical Castelnuovo–de Franchis Theorem (cf also The-
orems 2.1 and 2.5), the set of classes Œv� 2 P WD P .H 1.OX / such that v is not
1–transversal to jKX j is the union of the (finitely many) mutually disjoint linear
subspaces P .f �H 0.KB//, where f W X ! B is a pencil of genus b > 1. Fix such a
pencil f and write W WDf �H 0.KB/. Let vD x̨ , with ˛ 2W , and choose a subspace
N �H 0.�1

X
/ such that H 0.�1

X
/DW ˚N : again by the Castelnuovo–de Franchis

theorem, we have ˛^ˇ¤0 for every 0¤ˇ2N . Therefore
R
X ˛^ˇ^x̨^ x̌¤0, hence

˛^ˇ^ x̨ ¤ 0 2H 1.KX /. This shows that the linear map [vW H 0.KX /!H 1.KX /

has rank greater than or equal to q � b . Hence pr�1
1
.Œv�/ has dimension less than or

equal to pg � qC b� 1 and the preimage in I of P .f �H 0.KB// has dimension less
than or equal to pg � qC 2b� 2< pg � 1, by the assumption that b � q=2.
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Assume that Z is an irreducible component of I distinct from Imain and consider
the first projection pr1W I ! P : by the definition of Imain , pr1.Z/ is contained in
P .f �H 0.KB// for some irrational pencil f W X ! B , and the claim follows by the
previous discussion.

Given a 2–form s 2H 0.KX /, the linear map [sWH 1.OX /!H 1.KX /ŠH 1.OX /
_

induces a skew-symmetric bilinear form on H 1.OX / (by Serre duality) that we denote
by cs . Clearly, † is the subset of classes Œs� such that cs is degenerate.
Lemma 4.5 (i) If q is odd, then †D†main D jKX j.

(ii) If q is even, then †D†main is the zero set of a polynomial Pf of degree q=2.

Proof (i) If q is odd, then cs , being skew-symmetric, is degenerate for every
s 2 H 0.KX /, hence † D jKX j. By Lemma 4.4, Imain is the only component of I
that can dominate jKX j, hence we also have †main D jKX j.

(ii) For q even, † is the zero locus of the pull back Pf of the Pfaffian polynomial inV2
H 1.OX /

_ , hence it is either a divisor or it is equal to jKX j. The latter possibility
cannot occur by dimension reasons, since for every Œs�2† the fiber pr�1

2
.Œs�/ is an odd

dimensional linear space. So † is a divisor. Let ��† be an irreducible component:
then pr�1

2
.�/ has a component of dimension greater than or equal to pg�1, hence by

Lemma 4.4 pr�1
2
.�/ contains Imain . It follows that �D†main D†.

Lemma 4.6 Assume that q � 4 is even and let Œs� 2† be such that
(a) the map [sW H 1.OX /!H 1.KX / has rank q� 2;
(b) if ker[s D hx̨; x̌i, with ˛; ˇ 2H 0.�1

X
/, then ˛^ˇ ¤ 0.

Then the hypersurface Z defined by Pf (cf Lemma 4.5) is smooth at Œs�.

Proof Set w D ˛ ^ ˇ ; we are going to show that the line M � jKX j that joins Œs�
and Œw� intersects Z with multiplicity 1 at Œs�. We regard cs and cw as alternating
forms on H 1.OX /. Let

J WD

�
0 1

�1 0

�
I

it is possible to complete ˛; ˇ to a basis of H 1.OX / in such a way that the matrices
A, B associated to cs , cw have the form

AD

0BBBBB@
0 0 � � � � � � 0

0 J 0 � � � 0
:::
: : :

: : :
: : :

:::

0 � � � 0 J 0

0 � � � � � � � � � J

1CCCCCA ; B D

�
C � tN

N M

�
;
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where M is a .q� 2/� .q� 2/ antisymmetric matrix and C is a 2� 2 antisymmetric
matrix. Notice det C ¤ 0 by the condition ˛^ˇ¤ 0. Set D.�; �/ WD det.�AC�B/;
then it is easy to see that the coefficient in D.�; �/ of the monomial �q�2�2 is equal
to det C ¤ 0. Hence �D 0 is a double root of D.�; �/. Since D.�; �/ is the square
of the Pfaffian Pf.�; �/ of �AC�B , it follows that �D 0 is a simple root of Pf.�; �/.
So the intersection multiplicity of M and Z at Œs� is equal to 1, and thus Z is smooth
at Œs�.

Conclusion of the proof of Theorem 1.3 (i) By Lemma 4.5, we have †mainDjKX j,
hence jKX j � Pmain by Lemma 4.1.

(ii) If q is even, then we have that †D†main by Lemma 4.5, and therefore we have
that jKX j \ Pmain D jKX j \ .P n jKX j/ D † by Lemma 4.1. By Lemma 4.5, the
closed set † is irreducible and it is the zero locus of a polynomial Pf of degree q=2.
In particular, if q D 2 then † is a hyperplane, so we may assume from now on that
q � 4. Counting dimensions, one sees that if Œs� 2 † is general, then pr�1

2
.Œs�/ has

dimension 1. This is equivalent to the fact that the linear map [s has rank q � 2.
In addition, the kernel of [s contains a general x̨ 2H 1.OX /, hence s satisfies the
assumptions of Lemma 4.6, and so Œs� is a smooth point of the hypersurface Z defined
by Pf. Thus †DZ is a reduced and irreducible hypersurface of degree q=2. Finally,
if X has no irrational pencil of genus greater than 1, then every s 2H 0.KX / such
that [s has rank q� 2 satisfies the assumptions of Lemma 4.6, hence it corresponds
to a smooth point of †. Conversely, an argument similar to the proof of Lemma 4.6
shows that if [s has rank less than q� 2, then Œs� 2† is singular.

5 Examples and open questions

The first two examples here show that neither the assumption that q.X /� dim X C 1

nor the assumption that X has no fibration of Albanese general type, respectively, can
be removed from Theorem 1.2; the third one shows that when q.X /D dim X C 1 the
canonical system jKX j may or may not be exorbitant.

Example 5.1 (Varieties with q.X / D dim X and pg.X / < �.KX /C q � 1) Our
starting point is the example, constructed by Chen and Hacon in [4, Section 4], of a
threefold Y of general type and maximal Albanese dimension with pg.Y /D 1, q D 3

and �.KY /D 0, so that pg.Y /� .�.KY //C q.Y /� 1/D�1< 0.

Now let H 2Pic.Y / be very ample, let D2j2H j be a smooth divisor and let pW X!Y

be the double cover given by the relation 2H �D . The variety X is a smooth threefold
of general type and its Albanese map is surjective. By the functoriality of the Albanese
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map, if X ! Z is any fibration then the Albanese map of Z is also surjective. In
particular, X has no fibration of Albanese general type.

The usual formulae for double covers give

�.KX /D �.KY /C�.KY CH /D �.KY CH /;

q.X /D q.Y /C h1.�H /D 3C h1.�H /;

pg.X /D pg.Y /C h0.KY CH /D 1C h0.KY CH /:

Since h1.�H /D 0 and �.KY CH /D h0.KY CH / by Kodaira vanishing, we get
q.X /D 3 and pg.X /�.�.KX /Cq.X /�1/D�1. By taking H a multiple of a fixed
very ample L 2 Pic.Y /, one obtains examples with �.KX / arbitrarily large.

In addition, in [4] Y is constructed as a desingularization of a certain Z2
2

–cover of a
product of three elliptic curves and it is easy to see that replacing the elliptic curves
by abelian varieties one can obtain examples of varieties Y of any dimension greater
than or equal to 3 that are of general type and maximal Albanese dimension and have
pg.Y /D 1, �.KY /D 0 and q.Y /D dim Y . Taking a double cover X ! Y as above,
one obtains examples with �.KX / arbitrarily large and pg.X /�.�.KX /Cq.X /�1/D

2� dim X < 0.

Example 5.2 (Varieties with Albanese general type fibrations) As in Example 5.1,
let Y be a variety of general type and maximal Albanese dimension with q.Y / D

dim Y DW n � 3, pg.Y / D 1 and �.KY / D 0. Let C be a curve of genus 2 and let
Z WD Y � C ; the variety Z is of general type and of Albanese general type, with
dim Z D nC 1, q.Z/D nC 2, pg.Z/D 2, hence pg.Z/� .�.KZ /C q.Z/� 1/D

1�n< 0. As in Example 5.1, by taking a double cover X !Z branched on a smooth
very ample divisor, one obtains examples with pg.X /�.�.KX /Cq.X /�1/D1�n<0.

Notice that all these examples have an irrational pencil of genus 2 induced by the
second projection X ! C .

Example 5.3 (Varieties with q.X / D dim X C 1) Let A be an abelian variety
of dimension q and let X � A be a smooth ample divisor. Using the adjunction
formula and Kodaira vanishing, one sees immediately that q.X / D q D dim X C 1

and pg.X / D �.KX /C q � 1, and hence we have that jKX j is not exorbitant by
Theorem 1.2. By [5, Section 3], the same is true also when X is a desingularization
of an irreducible theta divisor in a principally polarized abelian variety. In addition,
standard computations show that by taking a smooth double cover X ! Z with
ample branch locus where is Z a variety such that pg.Z/ D �.KZ /C q � 1 and
q.Z/D dim ZC 1, then the Albanese map of X factorizes through the double cover
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X !Z and pg.X /D �.KX /Cq�1, q.X /D dim X C1. Iterating this construction,
one gets examples with pg D �C q� 1 and Albanese map of arbitrarily high degree.

Next we describe some examples of n–dimensional varieties with qD nC1 for which
the difference pg.X /� .�.KX /C q� 1/ can be arbitrarily large. Let D be a smooth
ample divisor in an abelian variety A of dimension q WD nC 1, n � 3, let Y � Pn

be a smooth hypersurface of degree d and let X � D � Y be an n–dimensional
general complete intersection of very ample divisors. Since the morphism X !D is
generically finite, the variety X has maximal Albanese dimension; in addition, by the
Lefschetz Theorem, hi.OX /D hi.OD�Y / for i < n. Using Künneth formula, we get

hi.OD�Y /D hi.OD/D

�
q

i

�
; i � n�2I hn�1.OD�Y /D hn�1.OD/Chn�1.OY /:

In particular, we have q.X /D q D nC 1. It follows that

pg.X /D �.KX /�

nX
iD1

.�1/ihn�i.OX /D �.KX /C q� 1C hn�1.OY /:

Hence, by taking d� 0 we can make pg.X /� .�.KX /C q� 1/D pg.Y / arbitrarily
large.

We finish by posing a couple of questions.

Question 5.4 It would be interesting to have more geometrical information on varieties
with q.X /D dim X C 1 and pg � .�C q � 1/ > 0. For instance, the examples that
we know (described in Example 5.3) all have nonbirational Albanese map. One may
wonder whether this is true for all varieties with q D nC 1 and pg � .�C q� 1/ > 0.

Question 5.5 Can one describe jKX j \Pmain also for varieties of dimension greater
than 2? For instance, if one could show that Pmain\jKX j is a nondegenerate subvariety
of jKX j then Corollary 1.4 would extend to higher dimension.
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