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Contact Anosov flows on hyperbolic 3–manifolds

PATRICK FOULON

BORIS HASSELBLATT

Geodesic flows of Riemannian or Finsler manifolds have been the only known contact
Anosov flows. We show that even in dimension 3 the world of contact Anosov flows
is vastly larger via a surgery construction near an E –transverse Legendrian link that
encompasses both the Handel–Thurston and Goodman surgeries and that produces
flows not topologically orbit equivalent to any algebraic flow. This includes examples
on many hyperbolic 3–manifolds, any of which have remarkable dynamical and
geometric properties.

To the latter end we include a proof of a folklore theorem from 3–manifold topology:
In the unit tangent bundle of a hyperbolic surface, the complement of a knot that
projects to a filling geodesic is a hyperbolic 3–manifold.

37D20; 57N10, 57M50

Dedicated to the memory of William P Thurston

1 Introduction

1.1 Summary of the main results

Theorems 1.6 and 1.9 are our main results, and the essence of their conclusions is
summarized as follows:

Theorem 1.1 There are contact Anosov flows that are not topologically orbit equiva-
lent to algebraic flows; this includes examples on numerous hyperbolic 3–manifolds.

Here we use the following definition.

Definition 1.2 (Katok and Hasselblatt [38]) Let M be a manifold and 'W R�M !

M be a smooth flow with generating vector field X . Then ' is said to be an Anosov
flow if the tangent bundle TM splits as TM D E' ˚EC˚E� (the flow, strong-
unstable and strong-stable directions, respectively), where E' DRX ¤ f0g, in such a
way that there are constants C > 0 and � > 1> � > 0 such that

(1)
D'�t � EC

� C��t and
D't � E�

� C�t
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1226 Patrick Foulon and Boris Hasselblatt

for t > 0. The weak-unstable and weak-stable bundles are E' ˚EC and E' ˚E� ,
respectively. ' is said to be a contact Anosov flow if there is a smooth invariant 1–form
A such that A^ dA^ � � � ^ dA defines a (clearly smooth invariant) volume.

A well-known consequence of this definition is that E˙ are tangent to foliations W ˙

with smooth leaves.

Remark 1.3 If ! is a form invariant under an Anosov flow, then so is iX! , where
X is the generating vector field. Volume-preserving Anosov flows are ergodic, i.e.,
bounded invariant functions are constant. This implies that A.X /D const so, up to
constant rescaling of X , a contact Anosov flow is the Reeb flow of the contact form.

A bounded invariant form restricts to 0 on the stable bundle (see Feres and Katok [19,
Lemma 1], and Kanai [36, page 221f]) and the unstable bundle. Thus, a bounded
invariant 1–form for an Anosov flow is constant on X and vanishes on EC˚E� , so
a contact Anosov flow on a 3–manifold can be described as the Reeb flow of a contact
form whose contact structure is of the form EC˚E� for line bundles satisfying (1).1

Following Handel and Thurston [28] and Tomter [51] we use the following definition.

Definition 1.4 An Anosov flow on a 3–manifold is said to be of algebraic type if it is
finitely covered by the geodesic flow of a surface or the suspension of a diffeomorphism
of the 2–torus.

Theorems 1.6 and 1.9 also provide remarkable properties of the resulting flows such as
the existence of distinct isotopic closed orbits.

We include a proof of Theorem 1.12, a needed folklore theorem from 3–manifold
topology: In the unit tangent bundle of a hyperbolic surface, the complement of a knot
that projects to a filling geodesic is a hyperbolic manifold.

1.2 Algebraic and anomalous Anosov flows

As mechanical systems amenable to statistical analysis (see Artin [1] and Hopf [34]),
geodesic flows of manifolds of negative curvature have been a classical and central
proving ground in hyperbolic dynamics. That they preserve a natural smooth measure
is one of the consequences of their Hamiltonian nature, but it can also be seen as a
consequence of the fact that they preserve a natural contact form p dq .

1That contact structure is tight: the Reeb flow of an overtwisted contact structure has a contractible orbit
(see Hofer [33, Theorem 1]) while an Anosov flow of a 3–manifold does not (see Plante and Thurston [46]
and Barbot [5, page 18]).
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Remark 1.5 While every Anosov flow admits a canonical invariant 1–form (defined
by being 1 on the generating vector field and having its kernel spanned by the strong
stable and unstable subspaces), this is only rarely smooth (see Plante [45, Theorem 4.7]
and Foulon and Hasselblatt [21]), and for suspensions, this canonical 1–form is smooth
but closed, so A^ dA^ � � � ^ dAD 0; the extreme opposite of the contact case. Thus,
the contact condition can be viewed as a constraint on the canonical 1–form.

For the discrete-time counterpart, Anosov diffeomorphisms, all known examples are
topologically equivalent to a linear representative, and thereby the known situations are
classified by a list of algebraic objects. Anosov flows are not this rigid (see Franks and
Williams [22], Christy [13], Handel and Thurston [28] and Goodman [26]). However,
some experts thought that surgeries could not produce contact flows, and the published
record (see, for example, Hamenstädt [27], Foulon [20], Liverani [39] and Fang [14])
reflects a paucity of examples. We remark that Anosov flows on the unit tangent
bundle of a surface are always topologically orbit equivalent to an algebraic flow (see
Ghys [24]). The present work (announced in Foulon [20]) presents a wealth of genuinely
new contact Anosov flows, showing that the universe of contact flows is vastly greater
than that of geodesic flows of Riemannian or Finsler manifolds. A separate aspect of
interest is that our surgery is carried out along a Legendrian knot, not necessarily near
a periodic orbit (see also Bonatti and Langevin [10]). Our context is one that makes
many such knots available, and, on the other hand, for any one such knot we describe
entire families of surgeries.

That contact Anosov flows need not be topologically orbit equivalent to an algebraic
flow means there are no “shortcuts” in the study of their structure. For instance, the
proof that smoothness of the invariant foliations implies smooth, hence in particular
topological, conjugacy to a standard algebraic system, up to a canonical time-change
(see Benoist, Foulon and Labourie [8; 9]) had to laboriously exclude the Lie-algebraic
structures that do not fit into that collection of classical examples. It would have
been greatly simplified by knowing a priori that contact flows are topologically orbit
equivalent to an algebraic flow; we show that there is no such shortcut.

By structural stability, connected components of the collection of contact flows (in the
C 1 –topology) lie in orbit equivalence classes. All previously known orbit equivalence
classes contain an algebraic representative, so Theorem 1.1 (and Theorems 1.6 and 1.9
below) can be viewed as describing connected components of altogether new types.

1.3 The main result

While Theorem 1.1 is our essential conclusion, there is additional value both in the
remarkable properties of the examples obtained when starting with a Legendrian knot
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having hyperbolic complement and in the method: a surgery that produces many new
examples of volume-preserving Anosov flows on 3–manifolds and, upon a time-change,
new examples of contact Anosov flows, and which subsumes the Handel–Thurston
surgery [28] and the Goodman surgery [26] (for contact flows; Goodman surgery was
invented to deal with suspensions of toral automorphisms).

Theorem 1.6 For a contact Anosov flow on a 3–manifold M and an E–transverse
Legendrian knot (Definition 2.1) in M , there is a family of smooth Dehn surgeries that
produce new contact Anosov flows.

If the original contact flow is the geodesic flow on the unit tangent bundle of a negatively
curved surface, then these surgeries include the Handel–Thurston surgery, in which
case the resulting flow has the following properties:

(1) It acts on a manifold that is not a unit tangent bundle.

(2) It is not topologically orbit equivalent to an algebraic flow.

(3) Its weak stable foliation is not transversely projective (Barbot [2, Théorème A]).

(4) Its Anosov splitting TM DE'˚EC˚E� is not C 1Czygmund , that is, does not
have “little Zygmund” (hence not Lipschitz-continuous) derivative (Theorem 1.7).

(5) Its topological and volume entropies differ, or, equivalently, the measure of
maximal entropy is always singular (Theorem 1.8).

Theorem 1.7 (Hurder and Katok [35], Ghys [25]) If a volume-preserving Anosov
flow on a 3–manifold has C 1Czygmund Anosov splitting, then it is smoothly conjugate
to a geodesic flow.

Theorem 1.8 (Foulon [20]) Contact Anosov flows on 3–manifolds for which the
topological and Liouville entropies coincide are up to finite covers smoothly conjugate
to a geodesic flow of constant curvature.

We now obtain contact Anosov flows on hyperbolic manifolds.

Theorem 1.9 There are contact Anosov flows on hyperbolic manifolds: If the com-
plement in M of the E–transverse Legendrian knot in Theorem 1.6 is a hyperbolic
manifold, then all but finitely many of our Dehn surgeries produce a hyperbolic manifold
(and hence neither the unit tangent bundle of a surface nor a torus bundle over a circle).
The resulting contact Anosov flow (and any contact Anosov flow topologically orbit
equivalent to it) has the following properties.

(1) (1)–(5) of Theorem 1.6.
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(2) It is not quasigeodesic.

(3) Its orbits are geodesics for suitable Riemannian metrics on M .

(4) Each closed orbit is freely homotopic to infinitely many others2, and each free
homotopy class is an isotopy class (see Fenley [15, Theorem A], Barthelmé [6,
Remark 5.1.16, Theorem 5.3.3], and Barthelmé and Fenley [7]).

(5) Each closed orbit is related to at most finitely many others by the pair being the
boundary of an embedded cylinder3 [7].

(6) It is associated with a new example of a quasigeodesic pseudo-Anosov flow (see
Definition 1.10, Fenley [17] and Thurston [48, Section 5]).

Definition 1.10 A quasigeodesic curve is one that is efficient, up to a bounded multi-
plicative distortion, in measuring distances in relative homotopy classes, and a flow is
said to be quasigeodesic if all flow lines are quasigeodesics (see Fenley [16]).

Remark 1.11 Theorem 1.9 (4) says that there is no knot theory of closed orbits within
a free homotopy class4. One might ask about the growth rate (as a function of period)
of the number of closed orbits in a given isotopy class.

The folklore theorem that gives substance to Theorem 1.9 is the following:

Theorem 1.12 Suppose † is a hyperbolic surface, � W M WDS†!† its unit tangent
bundle,  W S1!M continuous such that c WD � ı  is an indivisible filling closed
geodesic in †.Then S† n . .S1// is a hyperbolic manifold.

We apply this to the curve of vectors orthogonal to a filling geodesic in †.

Definition 1.13 A closed curve c in a surface fills the surface if ˛\ c ¤∅ whenever
˛ is a closed curve that is not null-homotopic. It is said to be indivisible if it is not the
same geodesic traversed more than once.

Remark 1.14 This paper originally contained Theorem 1.12 with a flawed proof we
were unable to fix, so the submitted version omitted it. We are grateful to Danny
Calegari for suggesting the proof on his blog [12]. Theorem 1.12 appears to be a
folklore result in 3–manifold theory, and the experts we consulted found it easier to
prove this result than to locate a proof in the literature. Appendix B presents a proof
that reflects suggestions by Calegari, Fenley, Otal and Walsh.

2For algebraic flows, free homotopy classes of closed orbits have cardinality at most 2.
3This relation is neither transitive nor reflexive. For comparison, isotopy is the equivalence relation of

being the boundary components of an immersed cylinder.
4. . . which is the proper setting—analogously to the classical setting for knot theory, S3 , where knots

are null-homotopic
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Remark 1.15 The Handel–Thurston examples are not topologically orbit equivalent
to a standard model. As the introduction to Handel and Thurston [28] explains:

The standard examples of Anosov flows on three-dimensional manifolds are the
geodesic flows on surfaces of negative curvature, and the suspensions of Anosov
diffeomorphisms of T 2 .
Both of these families are algebraic; i.e., they fit into the broader category of
one-parameter subgroups acting on homogeneous spaces. More precisely, a flow
�t on a compact connected manifold M is algebraic if M D � nG=K , where G

is a Lie group, K is a compact subgroup, and � is a discrete cocompact subgroup
of G acting by left multiplication; the flow is given by �t W �gK 7!�g.exp t˛/K

where ˛ is an element of the Lie algebra of G .
Tomter showed that if M is three dimensional and if �t is an algebraic Anosov
flow, then some finite cover of M is either a geodesic flow or the suspension
of a toral diffeomorphism [T] (Tomter called these flows .G; �/–induced). By
examining the fundamental groups of the manifolds we construct, we show that
our examples are not algebraic. These are the first such examples.

Since Handel and Thurston obtain their conclusion by examining the fundamental group,
their examples are not topologically orbit equivalent to any algebraic flow. Likewise,
those of our examples whose phase space is a hyperbolic manifold are not algebraic in
this sense. Indeed, Handel and Thurston remark that “it would be very interesting to
find examples of Anosov flows. . . on an atoroidal M ”. (Note that “hyperbolic” implies
“atoroidal”.) This was accomplished by Goodman [26], and we show how to do so in
the contact category.

The first author has previously presented this construction in lectures, and this is
reflected in the literature (for example, Barbot [5, pages 53 and 75; 3, page 754],
Fang [14, page 1191], Hasselblatt [29, page 254], Mitsumatsu [42, page 1417]).

1.4 Methods

Both Handel–Thurston and Goodman were inspired by the idea of Dehn surgery. It is
of particular interest to point to Goodman [26, page 307], which describes something
along rather similar lines to what we do here, but starting from a suspension (of�

2 1
1 1

�
W T2 ! T2 ), a situation complementary to contact flows. In that context the

orbit of the origin is a knot with hyperbolic complement, which provides the base for
obtaining Anosov flows on hyperbolic manifolds. In our context, there is an orbit that
can play an analogous role, once we pass to an isotopic Legendrian perturbation.

The Handel–Thurston examples are graph manifolds, that is, they are obtained by
glueing Seifert fibered spaces together along their T2 boundary components.
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The method for showing that this surgery yields contact flows is new: It involves a
suitable deformation of the contact form and a time-change adapted to this deformation.
Showing that the surgered and time-changed flows are hyperbolic was essentially done
in Handel and Thurston [28] and Goodman [26], but we outline a proof by Thierry
Barbot that is remarkably clean, direct and transparent [5, page 54].

The construction of contact structures is not our claim to novelty; there are contact
structures on any 3–manifold (see Martinet [40]). We give new manifolds with a contact
form whose Reeb flow is a nonstandard Anosov flow.

1.5 Structure of this paper

Below we prove Theorem 1.9. Section 2 describes the local structure near the knot
used to define the surgery, which is described in Section 3. Section 4 shows that this
yields contact Anosov flows. Section 5 explains how our surgery subsumes and extends
the surgeries of Handel–Thurston and Goodman; it serves to convey that this surgery
provides an abundance of examples. Section 6 recalls that in the Handel–Thurston
situation we get nonalgebraic flows. Appendix A translates the Alexeev cone criterion
for hyperbolicity into the language of Lyapunov–Lorentz metrics, and Appendix B
establishes the folklore Theorem 1.12 about hyperbolic knot complements..

1.6 Contact Anosov flows on hyperbolic manifolds: proof of Theorem 1.9

Although we describe it in terms of an annulus, our surgery can also be viewed as
the deletion of a knot (or tubular neighborhood thereof) followed by what is called a
Dehn filling, that is, the glueing-in of a solid torus subject to a prescribed identification
of a meridian on the boundary of the knot complement with a curve on the boundary
of the inserted torus. The effect of this surgery is described uniquely by the slope of
the boundary curve. Therefore, these surgeries are parameterized by Q[

˚
1
0

	
. If the

initial knot can be chosen so as to have a hyperbolic complement, then the abundance
of hyperbolic manifolds arising from our construction is due to the following result of
Thurston’s.

Theorem 1.16 (Thurston [49, Theorem 5.8.2; 50], Petronio and Porti [44]) For all
but finitely many slopes, Dehn filling a hyperbolic 3–manifold gives rise to a hyperbolic
manifold.5

Some orbits of contact Anosov flows on hyperbolic manifolds are quite far from being
globally minimizing (Theorem 1.6 (2)). This follows from

5. . . which is Haken for at most finitely many slopes.
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Theorem 1.17 (Fenley [15, Theorem B; 16, Theorem A]) Contact Anosov flows on
hyperbolic manifolds are not quasigeodesic.

This contrasts with item (3) in Theorem 1.9: contact flows are “geodesible.”

Proposition 1.18 If X generates a flow that preserves a contact form A, and g is a
Riemannian metric with X ? ker A and g.X;X /� 1, then X –orbits are geodesics
for g .

Remark 1.19 This holds in the hyperbolic case, which is not quasigeodesic. Thus,
the metrics in Proposition 1.18 are not negatively curved in this case.

Proof To verify the geodesic equation rX X D0, where r is the Levi-Cività derivative,
we check g.rX X; �/D 0 for any vector field � . Compute the Lie derivative

LX g.X; �/DrX g.X; �/D g.rX X; �/Cg.X;rX �/:

Since g.X; �/DA.�/, this agrees with

LX A.�/DA.ŒX; ��/DA.rX � �r�X /D g.X;rX �/�g.X;r�X /:

Therefore,

g.rX X; �/D�g.X;r�X /D�
1
2
r�g.X;X /D�

1
2
r�1D 0:

Finally, a contact flow is R–covered (see Barbot [4, Theorem A]) and on an atoroidal
manifold has a transverse regulating pseudo-Anosov flow (see Calegari [11, Corol-
lary 5.3.16]), which is quasigeodesic (see Fenley [18, Theorem 6.1, Section 7]). This
proves item (6) of Theorem 1.9.

2 Local structure near Legendrian knots

Definition 2.1 A Legendrian curve in a contact manifold is a curve tangent to the
contact structure at every point. In the presence of a contact Anosov flow, a Legendrian
curve (which is by construction transverse to the flow) is said to be E–transverse if
it is also transverse to both the strong stable and strong unstable subbundles E� and
EC of the flow.

Proposition 2.2 Suppose ' is a contact Anosov flow with orientable strong-stable
subbundle E� and  is an E–transverse Legendrian knot.
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Then there is a smooth annular transversal † through  that is transverse to E� and
EC away from  , and there are coordinates .s; w/ on † such that s 2 S1 is the
parameter for  , and on ƒ WD

S
t2.��;�/ '

t .†/ the contact form A satisfies

AD dt Cw ds; dAD dw^ ds and A^ dAD dt ^ dw^ ds:

Here, t denotes the transverse parameter given by the flow.

Remark 2.3 This in particular implies that † is transverse to the flow, which means
that our surgery does indeed reconnect orbits—without transversality it would not even
be clear whether orbits become smooth curves after surgery.

Proof For a Legendrian knot  W S1!M , s 7!  .s/ consider transversals

T � WD
[

s2S1

W �� . .s// and TC WD
[

s2S1

W C� . .s//

swept out by local stable and unstable manifolds of size � > 0. ker A is the common
tangent plane of TC and T � at points of  , and TC and T � are fibered by smooth
Legendrian curves (stable and unstable leaves) transverse to  .

T
C

T
�

Figure 1: Transversals

Using, for instance, local exponential maps centered at  .s/ and a partition of unity we
obtain a smooth convex combination † of these transversals that contains  such that:

� T.s/†D ker A for all s 2 S1 ,
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� † is transverse to both E� and EC off  ,

� † is smoothly fibered by Legendrian curves transverse to  .

Next, we define convenient coordinates on †. One coordinate on † is the parameter
s 2 S1 of the Legendrian knot  , another is a smoothly chosen parameter v along the
Legendrian curves transverse to  . In these coordinates

AD dt Cf .s; v/ ds:

Since  is Legendrian, A.0;s;0/.@=@s/D 0, so f .s; 0/D 0, while,

0¤ dAD .@=@v/f .s; v/ dv^ ds;

so .@=@v/f .s; v/¤ 0. Thus, the transformation

.s; v/ 7! .s; f .s; v//DW .s; w/

is nonsingular and gives coordinates on † that are as desired.

3 Contact surgery

The surgeries we describe in this work are topologically of the Dehn filling type: One
can view them as removing a tubular neighborhood of a knot and glueing that solid
torus back in such a way as to match a prescribed closed curve on the boundary with a
meridian. The surgery is then described by the slope of the prescribed curve, a pair of
coprime integers. For a pair .1; n/ this can equivalently be described as splitting apart
an annulus in the manifold and glueing both copies of this annulus back together with
a shear, that is, by again identifying the 2 annuli via the shear map. We remark that
although this shear map is a homeomorphism of the annulus, this defines a discontinuous
operation since the resulting space is no longer homeomorphic to the original one. We
perform surgery of the latter type, but have occasion to keep in mind the knot near
which the surgery takes place.

Moreover, it is important for us that the surgery yield a smooth manifold, not just a
topological one, and moreover, that the vector field that generates the flow gives rise to
a well-defined vector field on the surgered manifold.

Proposition 2.2 gives an annulus that contains the Legendrian knot  and is uniformly
transverse to the flow. (By moving  along the flow one obtains a homotopic knot
 0 with a tubular neighborhood whose boundary contains this annulus; this tubular-
knot-neighborhood point of view will prevail in Section 6, where we study topological
properties.) We split the flow-box chart from Proposition 2.2 into 2 one-sided flow-box
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neighborhoods of the surgery annulus, and while the initial transition map between these
on f0g �S1 � .��;C�/ is the identity, the surgered manifold is defined by imposing
the desired shear as the transition map on this annulus. The use of flow-box charts
ensures that the original vector field defining the contact Anosov flow defines a smooth
vector field on the surgered manifold, that is, that the orbits are reglued to smooth
curves.

The transition map pulls meridians around the equator q 2N times before exiting (see
Figure 2).

Figure 2: Surgery in the chart (here, q D 1)

Definition 3.1 The contact .1; q/–Dehn surgery for q 2N is defined by imposing on
the aforementioned chart overlap the transition map

(2) F W S1
� .��; �/! S1

� .��; �/; .s; w/ 7! .sCf .w/;w/:

Here (see Figure 3),

f W Œ��; ��! S1; w 7! exp.�iqg.w=�//;

where gW R! Œ0; 2�� is a monotone smooth function with 0� g0 � 4 even such that
g..�1;�1�/D f0g and g.Œ1;1//D f2�g (see Figure 3).

�1 10

2�

g �� �0
�2q�

�qg.w=�/

Figure 3: The function g

Because of our use of flow-box charts it is apparent that the vector field generating the
original contact Anosov flow defines a smooth vector field X on the surgered manifold
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M . The original contact form induces a contact form on the surgered manifold only
if the coordinate representation AD dt Cw ds is preserved by the transition map F

between the two overlapping charts that define the surgery. Unfortunately, this is not
so:

Lemma 3.2 F�ADACwf 0.w/ dw and F�dAD dA.

Proof Since d.sCf .w//D dsCf 0.w/ dw we have

F�AD dt Cw d.sCf .w//DACw f 0.w/ dw

F�dAD dw^ d.sCf .w//D dw^ ds D dA:

This completes the proof.

This implies that dA induces a well-defined (albeit not necessarily exact) 2–form on
the surgered manifold. Moreover, since F�dt D dt , we see that A^dAD dt ^dA is
well-defined on the surgered manifold. Indeed:

Corollary 3.3 The new flow preserves the Liouville volume defined by A^ dA.

We remark that Handel and Thurston also obtained volume-preserving flows.

4 Contact Anosov property

We produce a contact form on the surgered manifold by giving representations A�
and AC for it on the 2 one-sided flow-box charts (whose overlap defines the surgery
annulus) that on one hand agree with A D dt Cw ds near the chart boundary and
on the other hand are such that F�A� D AC . This follows from the existence of a
function h such that F�.A�dh/DACdh: deforming A to A�dh on one side of the
surgery and to ACdh on the other gives a contact form that glues together nicely, and
dA is unchanged. To define h recall from Lemma 3.2 that F�AD ACwf 0.w/ dw

and “split the difference”: To get dhD 1
2
wf 0.w/ dw at points where F ¤ Id set

(3) h.t; w/ WD 1
2
�.t/

Z w

��

xf 0.x/ dx

on .��; �/�.��; �/ and hD 0 outside. Here, �W R! Œ0; 1� is a smooth bump function

� supported in .��; �/,

� with ��1.f1g/ an interval containing a neighborhood of 0,

� monotone on the two intervals where it takes intermediate values,
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�� �

1

�

t

Figure 4: The function �

� with j�0j � �=�.

Equation (3) defines a smooth function on M since hD 0 for t near ˙� by choice of
�.

Lemma 4.1 If 0< � < �
2�q

, then jdh.X /j< 1.

Proof Clear where dhD 0. Elsewhere use jf 0.w/j D q

ˇ̌̌̌
d

dw
g
�w
�

�ˇ̌̌̌
D

q

�

ˇ̌̌
g0
�w
�

�ˇ̌̌
,

j�0j � �=�, 0� g0 � 4 to getˇ̌̌̌
@h

@t

ˇ̌̌̌
D

ˇ̌̌̌
1

2
�0.t/

Z w

0

x f 0.x/ dx

ˇ̌̌̌
�

ˇ̌̌̌
q�

2�

ˇ̌̌̌ Z �

0

x
jg0j

�
dx �

ˇ̌̌̌
q�

2�
�

4

�

Z �

0

dx

ˇ̌̌̌
D

2q�

�
� < 1:

This completes the proof.

Theorem 4.2 The Dehn surgery of Definition 3.1 near a Legendrian knot and a
choice of bump function as in (3) yield a contact flow 't

h
defined by a vector field

Xh WD
X

1˙dh.X /
, where the contact form is Ah WDA˙ dh. Here, for both Xh and Ah ,

we take “C” on one chart and “�” on the other.

Proof h is independent of s , so F�hD h, hence F�dhD dh. That Ah is smooth is
clear away from the surgery. At the surgery it follows since Lemma 3.2 yields

F�.A� dh/D F�A�F�dhD .AC 2dh/�F�dhDAC dh:

Next, Ah is clearly a contact form where dhD 0. Elsewhere,

Ah ^ dAh D .A˙ dh/^ d.A˙ dh/D .A˙ dh/^ dA

D
�
A˙

�
@h
@t

dt C @h
@w

dw
��
^ dAD

�
1˙ @h

@t

�
dt ^ dA

by Lemma 5.1, and 1˙ @h
@t
¤ 0 by Lemma 4.1.

Xh is a smooth vector field since by Lemma 4.1 the denominator is nonzero, and “˙”
matches smoothly on the surgery annulus, near which dh.X /D @h=@t D 0.
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Finally, the flow 't
h

generated by Xh preserves Ah since

Ah.Xh/DAh

�
X

1˙ dh.X /

�
D
.A˙ dh/.X /

1˙ dh.X /
D

1˙ dh.X /

1˙ dh.X /
D 1

implies LXh
Ah D 0.

Theorem 4.3 The Dehn surgery of Definition 3.1 near a Legendrian knot with the
choices of Theorem 4.2 yields a contact Anosov flow 't

h
W M !M .

Remark 4.4 This is effectively proved in Goodman [26] and Handel and Thurston [28].
With kind permission from Thierry Barbot we outline here his elegant and hitherto
unpublished version [5, page 54] of the argument.

Proof (Barbot [5]) We use the formulation of hyperbolicity in terms of suitable
Lyapunov–Lorentz metrics as described in Proposition A.1; this is a reformulation of
the usual cone criterion for hyperbolicity.

By Proposition A.1 there is a pair of Lyapunov–Lorentz metrics for 't . We deform
these to work as needed for 't

h
. First, we arrange (using a partition of unity, say) for

the Lyapunov–Lorentz metrics for 't to have the form

Q˙ D˙dw ds� c dt2

in ƒ, where c is chosen sufficiently small to ensure that the positive Q˙–cone contains
E˙ . Choose ˇW R!RC smooth with ˇ..�1; 0�/D f1g, ˇ.Œ�;1//D 0 and ˇ0 < 0

on .��; �/ to obtain:

Claim 4.5 Taking Q˙
0

and Q˙
1

to be the old Lyapunov–Lorentz metrics outside ƒ
and

Q˙i WD˙.dw dsC iˇ.t/f 0.w/ dw2/� c dt2

inside defines Lyapunov–Lorentz metrics for 't
h

. Here, i D 0 on one side of the surgery
and i D 1 on the other.

Proof of Claim 4.5 Our choice of f and ˇ ensures that these are smooth metrics.

These choices fit together, that is, F sends the choice on one side to that on the other,
because for t D 0:

F�Q
˙
0 D F�

�
˙ dw ds� c dt2

�
D˙dw d.sCf .w//� c dt2

D˙.dw dsCf 0.w/ dw dw/� c dt2

D˙.dw dsCˇ.0/f 0.w/ dw2/� c dt2
DQ˙1 :

This completes the proof of Claim 4.5.
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Of the required properties in Proposition A.1, (2) and (3) are clear. We wish to check
that properties (1) and (4) in Proposition A.1 are inherited from the same properties for
't . Outside of ƒ this is given since ' D 'h .

On ƒ we have been using a flow-box chart for 't , so the flow is represented by a shift
in time. This makes it a Q˙

0
–isometry. We need to see how the surgery and the choice

of ˇ affect invariance, that is, Proposition A.1 (4). To that end it is helpful to restrict
attention to the trace of these cones in the sw–plane. Here, the Q˙

0
–cones show as

quadrants since
0DQ˙0

�
a @
@s
C b @

@w

�
D ab

implies aD 0 or b D 0. On the immediate other side of the surgery (t D 0) they are
given by

0DQ˙1
�
a @
@s
C b @

@w

�
D abCf 0.w/b2

D .aCf 0.w//b;

which implies a D �f 0.w/b or b D 0; since f 0 � 0, this describes a subcone of
the first and third quadrant that shares the horizontal axis. Since ƒ is a flow-box,
'h leaves these cones exactly invariant, which means that strict monotonicity of ˇ
produces a strictly invariant cone field that connects smoothly at t D �. This gives
Proposition A.1 (4).

To obtain Proposition A.1 (1) note that, ƒ being a flow-box chart,

˙Q˙1 .D'
t
h

�
a @
@s
C b @

@w

�
/D˙Q˙1

�
a @
@s
C b @

@w

�
D abCˇ.t/f 0.w/b2

is increasing in t . Combined with the exponential growth outside ƒ, this yields
Proposition A.1 (1).

5 Constructing examples

In this section we describe how our construction subsumes those of Handel and
Thurston [28] and Goodman [26] and goes beyond these by considering different
initial geodesics as starting points or applying surgeries simultaneously or repeatedly.

5.1 Handel–Thurston surgery and beyond

To reproduce the setting used by Handel and Thurston, consider a negatively curved
oriented surface and select a closed geodesic cW S1!†, s 7! c.s/. If this geodesic is
simple and separating, we denote the unit tangent bundles of the two components of
the surface by M1 and M2 .

We deform the geodesic flow gt on the unit tangent bundle S† of the surface to a
flow on a new 3–manifold. The common boundary of M1 and M2 is a torus S1 �S1
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Figure 5: A simple closed geodesic and normal vectors

parametrized by the parameter s of the geodesic c and the angle � with the tangent
vector of the geodesic. The Legendrian knot is the unit vector field perpendicular to c

given by � D��=2.

Figure 6: The annulus S1 �
�
�
�
2
� �;��

2
C �

�
� S1 �S1 before surgery

Although we localize the surgery in an annulus around � D ��=2 inside the torus,
topologically this is clearly the same as in [28].

To parametrize a neighborhood ƒ of the perpendicular unit vector field  of c, linearize
the angle � with the tangent vector field to c by taking w WD `

2�
cos � for � near ��=2,

where ` is the length of c. This gives parameters

(4) .t; s; w/ 2� WD .��; �/�S1
� .��;C�/;
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Figure 7: The annulus after surgery (q D 1)

where t 2 .��; �/ parametrizes the flow direction and s 2 S1 is the parameter along c.
 is parametrized by f0g �S1 � f0g. This gives a chart as in Proposition 2.2:

Lemma 5.1 The standard contact form A in this chart satisfies

AD dt Cw ds; dAD dw^ ds and A^ dAD dt ^ dw^ ds:

Proof If gs denotes the Riemannian metric at .0; s/ 2 † and we write .0; s; �/ D
.x;u/ 2 S†, then for a vector

Z D a @
@t
C b @

@s
C c @

@�

we have

A.0;s;�/.Z/D gs.u; d�.Z//D gs

�
u; a d�

�
@
@t

�
C b d�

�
@
@s

��
D aC bgs

�
u; @
@s

�
since d�.@=@�/D 0.

Taking S1 to have length 2� we necessarily obtain k@=@sk D `=2� . Since a priori
A.t;s;�/ D dt C g ds C h d� with functions g and h, this implies A.t;s;�/ D dt C
`

2�
cos � ds , that is, AD dt Cw ds . The other claims immediately follow.

5.2 Goodman surgery and beyond

While the Handel–Thurston surgery is described for a separating geodesic and hyper-
bolicity of the phase space in Theorem 1.12 uses a filling geodesic, neither of these is
needed for the perpendicular vector field to the geodesic to define an E–transverse
Legendrian knot; our surgery subsumes all these possibilities. Moreover, such surgeries
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can be carried out successively, using Legendrian knots from the preceding intermediate
stage.

Goodman [26] gave surgeries inspired by those of Handel and Thurston but carried out
in the vicinity of orbits (Figure 8, taken from [26], shows her Dehn torus as seen along
the orbit in question). The salient point is that for every closed orbit of a suspension (of

Figure 8: The Goodman surgery annulus (tilted segment in first quadrant)

a hyperbolic toral automorphism), Goodman produces an isotopic knot near which to
perform Dehn surgery. In the contact category, geodesic flows (of hyperbolic surfaces)
are the counterpart to her context, and they give rise to Legendrian knots in a similar
manner:

Theorem 5.2 Consider the geodesic flow on the unit tangent bundle of a negatively
curved surface. Then for each finite union of free homotopy classes of closed curves
there exists an E–transverse Legendrian link that includes precisely one knot in each
of the chosen homotopy classes.

Proof Since negative curvature implies hyperbolicity of the geodesic flow, each of
the chosen homotopy classes contains a closed orbit of the geodesic flow. These
are pairwise disjoint, and each of these is isotopic to a knot given by rotation of the
tangent vector field by ��=2, and these knots are pairwise disjoint. As before, they
are Legendrian knots.

After choosing pairwise disjoint neighborhoods of these Legendrian knots, we can
perform surgery in each of these as described in Section 2.

We remark that the Goodman surgery (unlike that presented by Handel and Thurston)
can be carried out recursively; it applies near any closed orbit of any Anosov flow.
In like manner, our surgery can be carried out repeatedly or simultaneously on finite
collections of knots, that is, we have described surgery on E–transverse Legendrian
links.
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5.3 Transversality

One may wonder whether our surgery can be applied in the following generality: Given
a 3–manifold with a contact Anosov flow, is a knot always isotopic (or close) to an
E–transverse Legendrian knot? Without “E–transverse” the answer is positive:

Proposition 5.3 (Geiges [23, Theorem 3.3.1]) A knot in a contact 3–manifold is
isotopic to a C 0 –close Legendrian knot.

It is, however, not readily apparent that one can arrange for the knot to be E–transverse.
This calls attention to our transversality assumption, and it is well to note that while
it may not be essential for performing our surgery, it is needed to establish that the
resulting flow is an Anosov flow.

6 Geometry of the Handel–Thurston surgery

We return to the Handel–Thurston context of Section 5.1 and show that in this case we
never get flows that are topologically orbit equivalent to an algebraic flow.

Definition 6.1 A 3–manifold is said to be Seifert-fibered if it admits a decomposition
into a disjoint union of circles (the fibers) such that each fiber has a tubular neighborhood
diffeomorphic (in a fiber-preserving way) to the torus D2�S1 obtained from D2�Œ0; 1�

by identifying D2 � f0g and D2 � f1g via a rational rotation.

We now recall the proof Handel and Thurston [28] that the flows thus obtained are not
topologically orbit equivalent to an algebraic flow.

Theorem 6.2 When the surgery is carried out using a separating curve, the flow 't
h

in
Theorem 4.3 is not topologically orbit equivalent to an algebraic Anosov flow. More
strongly (see Tomter [51, page 419]), no finite cover of the surgered manifold M from
Definition 3.1 is a Seifert-fibered manifold (much less a sphere bundle) or a torus bundle
over a circle.

Proof (Handel and Thurston [28]) We study finite covers of M by examining their
fundamental group. The two pertinent facts are

(1) The fundamental group of a torus bundle over a circle is solvable; thus we wish
to show that �1.M / is not virtually solvable, that is, has no solvable finite-index
subgroup.
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(2) The fundamental group of a Seifert-fibered manifold contains an infinite normal
cyclic subgroup generated by a regular fiber (see Scott [47, page 432]); thus we
want to show that no finite-index subgroup of �1.M / contains an infinite cyclic
normal subgroup.

One observation that we will use for both of these items is the following.

Remark 6.3 If a group contains a finite-index subgroup H and a free subgroup F ,
then H contains a subgroup of F that is isomorphic to F .

By the van Kampen Theorem (see, for example, Hatcher [30, Theorem 1.20]), we have

�1.M /D �1.M1/ �
�1.@M1/

�1.M2/D �1.M1/ �
�1.@M2/

�1.M2/;

using the isomorphism F�W �1.@M1/! �1.@M2/ induced by F (as introduced in
Definition 3.1).

Puncturing a surface of genus g and retracting the remainder to its skeleton (a string
of 2g circles) shows that the fundamental group is a free group with 2g generators.
Thus, we see that �1.Mi/D Fi ˚Z for i D 1; 2, where F1 and F2 are free groups.

If H < �1.M / has finite index, then, as remarked above, it contains a free group
inherited from F1 or F2 , and since this holds recursively, H is not solvable, and
item (1) above is settled.

To settle item (2) suppose hgi<H is an infinite cyclic normal subgroup. This means
that for every h2H there is a ph2Z such that hgh�1Dgph . Clearly, ph1h2

Dph1
ph2

for any h1; h2 2H , so pId D 1 implies that for each h 2H we have ph 2 f˙1g and
ph D ph�1 . Thus, after possibly passing to the index-2 subgroup fh 2H j ph D 1g,
we may assume without loss of generality that H is in the centralizer of g , that is,
ghD hg for all h 2H .

As remarked above, there is a free group FH � F1\H isomorphic to F1 (we only
need that it is large enough). We can write g D wrk with w a word in generators
of F1 and F2 only and r the generator of the S1 –factor of �1.M1/: writing one of
the generators of �1.@M2/ as ˛ar D aD !ar 0

k with ˛a 2 F1 , !a 2 F2 and r 0 the
generator of the S1 –factor of �1.M2/, we find that any occurrence of r! with ! 2F2

can be rewritten as ˛�1
a !a!!

�1
a ˛ar ; one applies this recursively to get the claim. We

thus find that for any h 2 FH � F1 we get

whrk
D wrkhD ghD hg D hwrk ;
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that is, whD hw . But for w¤ Id, this only holds when h is a power of w . Since FH

is not a subgroup of a cyclic group, we must have g D rk for some k 2 Z.

However, the same reasoning using F2 shows that g D r 0
` for some ` 2 Z, where

r 0 is the generator of the S1 –factor of �1.M2/. This is incompatible with the earlier
observation that g D rk � .sr 0/k , where s represents the word in F2 corresponding
to the slope of the surgery—unless s D Id and the surgery is therefore trivial.

This implies item (2) above.

Appendix A Anosov flows and Lyapunov–Lorentz metrics

This appendix reproduces a way of expressing the Alexeev cone criterion for hyper-
bolicity in terms of Lorentz metrics that behave analogously to Lyapunov functions or
metrics (see Barbot [5, page 16]).

Proposition A.1 A smooth flow 't W M ! M of a 3–manifold M is an Anosov
flow if and only if there are two continuous Lorentz metrics QC and Q� on M and
constants a; b; c;T > 0 such that

(1) for all v 2 TxM , t > T , if Q˙.v/ > 0 then Q˙.Dx'
˙t .v// > aebtQ˙.v/,

(2) CC\C� D∅, where C˙ is the Q˙–positive cone,

(3) Q˙.X /D�c where X is the generating vector field,

(4) Dx'
˙T .C˙.x//X f0g � C˙.'˙T .x//.

Proof If 't is an Anosov flow we can choose disjoint cones around the strong stable
and unstable directions, neither of which contains X . These define (up to a factor) the
Lorentz metrics, and choosing c D 1 fixes the metrics; we omit the details.

Assume now the above conditions for two continuous Lorentz metrics Q˙ and
constants a; b; c;T > 0. The cone fields C˙ induce fields E˙ of ellipses in the
projectivization PTM of TM , and 't acts on fields of ellipses by .'t

�E/.x/ WD
PD'�t .x/'

t .E.'�t .x///. Then

� condition (2) implies that ECt .x/\ E�t .x/D∅,

� condition (4) implies that E˙
T
.x/� int E˙.x/.

If we endow each E˙.x/ with the Hilbert metric then this last property (strict nesting)
implies that D'˙T induces contractions E˙.x/!E˙.'˙T .x// of the Hilbert metrics
with a factor that can be chosen uniformly by compactness of M . Thus, the diameter of
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E˙t .x/� E˙.x/ as measured by the Hilbert metric on E˙.x/ goes to 0 exponentially,
so �˙.x/ WD

T
t>T E˙t .x/ are points, and �C.x/ ¤ ��.x/ for all x 2 M since

ECt .x/\ E�t .x/D∅.

Clearly �˙ define 't –invariant line fields E˙ , and since X 62 C˙ by condition (3),
�C.x/¤X.x/¤��.x/.

Now choose a continuous Riemannian metric on M whose unit spheres intersect E˙

in points for which Q˙ D 1. Then condition (1) implies that E˙ are exponentially
expanding and contracting, respectively, as required.

Appendix B Hyperbolicity of complements of filling knots

This appendix proves Theorem 1.12. Choosing  as in Theorem 1.12, M WDM nU ,
the complement of a tubular neighborhood of  in M , is a manifold whose boundary
is a 2–torus, and

Proposition B.1 M is irreducible (every embedded 2–sphere bounds a ball).

Proof To establish this we use that M is itself irreducible:

Proposition B.2 (Hatcher [31, Proposition 1.12]) Compact connected Seifert-fibered
manifolds are irreducible, except for S1 �S2 , S1z�S2 , RP3#RP3 .

If S2 is embedded into M and hence into M , then it bounds a ball B �M . Since
S2\ D∅ we have either  �B or B\ D∅. Since  projects to a filling geodesic,
it does not lie in a ball, so B \  D∅ and B �M , as required.

Since M has nontrivial fundamental group, it is a Haken manifold:

Theorem B.3 (Matignon [41, page 14], Thurston [49, page 72]) An irreducible
3–manifold with boundary is either a Haken manifold or the 3–ball.

Moreover, we have the following.

Proposition B.4 M is atoroidal.

Definition B.5 (Hatcher [31]) A 3–manifold M is said to be atoroidal if every
incompressible torus in M is boundary-parallel. Here, a 2–torus in M is said to be

Geometry & Topology, Volume 17 (2013)



Contact Anosov flows on hyperbolic 3–manifolds 1247

� compressible if every essential circle (that is, one that bounds no disk in the
2–torus) on it bounds a disk (a “compression disk”) in M .

� boundary-parallel if there is an isotopy from it to @M , that is, there is an
embedded T2 � Œ0; 1� such that T2 � f0g parametrizes the given torus and
T2 � f1g a boundary component.

This implies Theorem 1.12:

Theorem B.6 (Hyperbolization Theorem, Thurston [50], Kapovich [37], Otal [43])
The interior of a compact atoroidal Haken 3–manifold with torus boundary admits a
complete hyperbolic Riemannian metric (that is, with sectional curvature �1) of finite
volume.

It remains to prove Proposition B.4.

Proof of Proposition B.4 Suppose that T is an incompressible 2–torus in M . We
need to show that T is boundary-parallel. Our first step is to show

Claim B.7 T is compressible in M .

Proof Otherwise the isotopy extension lemma (Hirsch [32, Theorem 8.1.3, page 180])
gives is an isotopy of M that produces one or the other of the scenarios in the following
theorem.

Theorem B.8 (Waldhausen [52, Satz 2.8]) An incompressible torus in an S1 –bundle
is isotopic to one of the following: A union of fibers or a torus T such that � � T (the
base-point projection) is a covering map.

The second one is impossible because it means that † is covered by a 2–torus although
† has higher genus. Thus, instead, we have an isotopy of M that presents T as
a union of fibers, which means that under � it projects to a curve in † that is (by
incompressibility of T ) not null-homotopic and yet disjoint from c D �. / (since
T \  D∅), contrary to the assumption that c fills †.

The second step towards T being boundary-parallel is the following lemma.

Lemma B.9 T bounds a solid torus � �M that contains  .
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Proof (See also Hatcher [31, Section 1.2].) That  must lie in any such torus is clear:
� \ ¤∅ (otherwise T is compressible in M ), but then T �M )T \ D∅)
 � � by connectedness.

Compressibility of T means that there is a compression disk D . Compressing D

pinches T off to a 2–sphere, which by irreducibility (see Waldhausen [52, Lemma 2.7]
and Hatcher [31, Proposition 1.12]), bounds a ball B . We presently show that B\DD

∅, so uncompressing again and adding the compression disk deforms B into the
desired solid torus � by attaching a handle to the bounding sphere from the outside.

To see that B \D D∅,6 note that otherwise D � B and hence T � B , so T lifts to
the universal cover zM of M . Since T is incompressible in M , it is incompressible
in any cover of M to which it lifts, so it is incompressible in zM n z , where z denotes
the total preimage of  under the universal covering map. This is impossible: zM n z
is homeomorphic to .R2 nX /�R for some infinite discrete set X �R2 (because the
geodesic flow is globally product-covered), so its fundamental group is free, which
precludes the presence of an incompressible torus (an embedded torus is incompressible
if and only if its fundamental group injects).

The final step is that  lies in � in such a way as to allow the desired homotopy from
T to the boundary of a tubular neighborhood of  . To that end let ˇ be a simple closed
curve representing the core curve of � , that is, a curve such that arbitrarily small tubular
neighborhoods are isotopic to � . Then “boundary-parallel” and hence Proposition B.4
follows from the next lemma.

Lemma B.10  and ˇ are isotopic in � .

Proof (Fenley–Walsh) The main step is to show that these curves are homotopic. By
assumption  meets any candidate for a compression disk, so  represents a nontrivial
element of the fundamental group of � , that is,  is homotopic to ˇn for some n 2 Z.
Homotopy follows once we show that jnj D 1.

To this end, denote by g the deck transformation associated to  with g.z /D z , and
let h be the deck transformation corresponding to ˇ and such that hn D g . To find
an h–invariant orbit, consider the lift of the stable foliation to zM ; its leaf space is
homeomorphic to R (geodesic flows are R–covered), and g does not act freely on it
since it preserves z and hence its stable leaf. Therefore, h does not act freely either,
that is, it preserves a leaf and hence a flow-line z� in it. Since gD hn preserves both z
and z�, the closed orbits  and � in M D S† to which they project represent the same

6This paragraph is due to Calegari.
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element of the fundamental group and are freely homotopic. The homotopy projects to
a free homotopy in S of cD �. / and a geodesic e traversed n times. Since closed
geodesics in S are the unique minimizers in their homotopy class, cD e as geodesics.
By assumption, c is not the same geodesic traversed more than once, and jnj D 1.

To see that  is isotopic to ˇ , note that, since  projects to a closed geodesic, z is not
knotted in zM and hence not knotted in z� , an infinite cylinder. Thus,  is not knotted
in � .

Acknowledgements We feel deep gratitude to Thierry Barbot, Thomas Barthelmé,
Danny Calegari, Sérgio Fenley, Jean-Pierre Otal and Genevieve Walsh for sharing their
insights with us. Barbot provided the particularly elegant proof of hyperbolicity of the
surgered flow and allowed us to reproduce the requisite background in Appendix A,
the consultations with Calegari, Fenley, Otal and Walsh enabled us to produce here a
proof of hyperbolicity of the surgered manifold (Appendix B), and conversations with
Barthelmé were an essential ingredient while writing this paper. It is furthermore a
pleasure to acknowledge the congenial hospitality and working conditions of the Collège
Doctoral Européen in Strasbourg as well as the Centre International de Rencontres
Mathématiques in Luminy. This work was partially supported by the Committee on
Faculty Research Awards of Tufts University.

References
[1] E Artin, Ein mechanisches System mit quasiergodischen Bahnen, Abh. Math. Semin.

Univ. Hamb. 3 (1924) 170–175

[2] T Barbot, Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages
faibles, Ergodic Theory Dynam. Systems 15 (1995) 247–270 MR1332403

[3] T Barbot, Generalizations of the Bonatti–Langevin example of Anosov flow and their
classification up to topological equivalence, Comm. Anal. Geom. 6 (1998) 749–798
MR1652255

[4] T Barbot, Plane affine geometry and Anosov flows, Ann. Sci. École Norm. Sup. 34
(2001) 871–889 MR1872423

[5] T Barbot, De l’hyperbolique au globalement hyperbolique, Habilitation à diriger
des recherches, Université Claude Bernard de Lyon (2005) Available at http://
www.umpa.ens-lyon.fr/~barbot/HABILITATION/memoireCRY.pdf

[6] T Barthelmé, A new Laplace operator in Finsler geometry and periodic orbits of
Anosov flows, PhD thesis, Université de Strasbourg (2012) arXiv:1204.0879

[7] T Barthelmé, S R Fenley, Knot theory of R–covered Anosov flows: Homotopy versus
isotopy of closed orbits arXiv:1208.6487

Geometry & Topology, Volume 17 (2013)

http://dx.doi.org/10.1007/BF02954622
http://dx.doi.org/10.1017/S0143385700008361
http://dx.doi.org/10.1017/S0143385700008361
http://www.ams.org/mathscinet-getitem?mr=1332403
http://www.umpa.ens-lyon.fr/~barbot/ARTICLES/BLarticle.pdf
http://www.umpa.ens-lyon.fr/~barbot/ARTICLES/BLarticle.pdf
http://www.ams.org/mathscinet-getitem?mr=1652255
http://dx.doi.org/10.1016/S0012-9593(01)01079-5
http://www.ams.org/mathscinet-getitem?mr=1872423
http://www.umpa.ens-lyon.fr/~barbot/HABILITATION/memoireCRY.pdf
http://www.umpa.ens-lyon.fr/~barbot/HABILITATION/memoireCRY.pdf
http://arxiv.org/abs/1204.0879
http://arxiv.org/abs/1208.6487


1250 Patrick Foulon and Boris Hasselblatt

[8] Y Benoist, P Foulon, F Labourie, Flots d’Anosov à distributions de Liapounov dif-
férentiables, I, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990) 395–412 MR1096099

[9] Y Benoist, P Foulon, F Labourie, Flots d’Anosov à distributions stable et instable
différentiables, J. Amer. Math. Soc. 5 (1992) 33–74 MR1124979

[10] C Bonatti, R Langevin, Un exemple de flot d’Anosov transitif transverse à un tore et
non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633–643
MR1304136

[11] D Calegari, The geometry of R–covered foliations, Geom. Topol. 4 (2000) 457–515
MR1800151

[12] D Calegari, Filling geodesics and hyperbolic complements, Geometry and the Imagina-
tion blog (2012) Available at http://lamington.wordpress.com/2012/02/11/
filling-geodesics-and-hyperbolic-complements

[13] J P Christy, Anosov flows on three-manifolds (topology, dynamics), PhD thesis, Uni-
versity of California, Berkeley (1984) MR2633722

[14] Y Fang, Thermodynamic invariants of Anosov flows and rigidity, Discrete Contin. Dyn.
Syst. 24 (2009) 1185–1204 MR2505698

[15] S R Fenley, Anosov flows in 3–manifolds, Ann. of Math. 139 (1994) 79–115
MR1259365

[16] S R Fenley, Quasigeodesic Anosov flows and homotopic properties of flow lines, J.
Differential Geom. 41 (1995) 479–514 MR1331975

[17] S R Fenley, Foliations, topology and geometry of 3–manifolds: R–covered folia-
tions and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415–490
MR1933786

[18] S Fenley, Ideal boundaries of pseudo-Anosov flows and uniform convergence groups
with connections and applications to large scale geometry, Geom. Topol. 16 (2012)
1–110 MR2872578

[19] R Feres, A Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov
exponents and rigidity of geodesic flows, Ergodic Theory Dynam. Systems 9 (1989)
427–432 MR1016661

[20] P Foulon, Entropy rigidity of Anosov flows in dimension three, Ergodic Theory Dynam.
Systems 21 (2001) 1101–1112 MR1849603

[21] P Foulon, B Hasselblatt, Zygmund strong foliations, Israel J. Math. 138 (2003) 157–
169 MR2031955

[22] J Franks, B Williams, Anomalous Anosov flows, from: “Global theory of dynamical
systems”, (Z Nitecki, C Robinson, editors), Lecture Notes in Math. 819, Springer,
Berlin (1980) 158–174 MR591182

[23] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathe-
matics 109, Cambridge Univ. Press (2008) MR2397738

Geometry & Topology, Volume 17 (2013)

http://www.numdam.org/item?id=AIHPA_1990__53_4_395_0
http://www.numdam.org/item?id=AIHPA_1990__53_4_395_0
http://www.ams.org/mathscinet-getitem?mr=1096099
http://dx.doi.org/10.2307/2152750
http://dx.doi.org/10.2307/2152750
http://www.ams.org/mathscinet-getitem?mr=1124979
http://dx.doi.org/10.1017/S0143385700008099
http://dx.doi.org/10.1017/S0143385700008099
http://www.ams.org/mathscinet-getitem?mr=1304136
http://dx.doi.org/10.2140/gt.2000.4.457
http://www.ams.org/mathscinet-getitem?mr=1800151
http://lamington.wordpress.com/2012/02/11/filling-geodesics-and-hyperbolic-complements
http://lamington.wordpress.com/2012/02/11/filling-geodesics-and-hyperbolic-complements
http://www.ams.org/mathscinet-getitem?mr=2633722
http://dx.doi.org/10.3934/dcds.2009.24.1185
http://www.ams.org/mathscinet-getitem?mr=2505698
http://dx.doi.org/10.2307/2946628
http://www.ams.org/mathscinet-getitem?mr=1259365
http://projecteuclid.org/euclid.jdg/1214456224
http://www.ams.org/mathscinet-getitem?mr=1331975
http://dx.doi.org/10.1007/s00014-002-8348-9
http://dx.doi.org/10.1007/s00014-002-8348-9
http://www.ams.org/mathscinet-getitem?mr=1933786
http://dx.doi.org/10.2140/gt.2012.16.1
http://dx.doi.org/10.2140/gt.2012.16.1
http://www.ams.org/mathscinet-getitem?mr=2872578
http://dx.doi.org/10.1017/S0143385700005071
http://dx.doi.org/10.1017/S0143385700005071
http://www.ams.org/mathscinet-getitem?mr=1016661
http://dx.doi.org/10.1017/S0143385701001523
http://www.ams.org/mathscinet-getitem?mr=1849603
http://dx.doi.org/10.1007/BF02783424
http://www.ams.org/mathscinet-getitem?mr=2031955
http://dx.doi.org/10.1007/BFb0086986
http://www.ams.org/mathscinet-getitem?mr=591182
http://dx.doi.org/10.1017/CBO9780511611438
http://www.ams.org/mathscinet-getitem?mr=2397738


Contact Anosov flows on hyperbolic 3–manifolds 1251

[24] É Ghys, Flots d’Anosov sur les 3–variétés fibrées en cercles, Ergodic Theory Dynam.
Systems 4 (1984) 67–80 MR758894

[25] É Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci.
École Norm. Sup. 20 (1987) 251–270 MR911758

[26] S Goodman, Dehn surgery on Anosov flows, from: “Geometric dynamics”, (J Palis, Jr,
editor), Lecture Notes in Math. 1007, Springer, Berlin (1983) 300–307 MR1691596

[27] U Hamenstädt, Regularity of time-preserving conjugacies for contact Anosov flows
with C 1 –Anosov splitting, Ergodic Theory Dynam. Systems 13 (1993) 65–72
MR1213079

[28] M Handel, W P Thurston, Anosov flows on new three manifolds, Invent. Math. 59
(1980) 95–103 MR577356

[29] B Hasselblatt, Hyperbolic dynamical systems, from: “Handbook of dynamical systems
1A”, (B Hasselblatt, A Katok, editors), North-Holland, Amsterdam (2002) 239–319
MR1928520

[30] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354

[31] A Hatcher, Notes on basic 3–manifold topology (2007) Available at http://
www.math.cornell.edu/~hatcher/3M/3Mfds.pdf

[32] M W Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer, New
York (1976) MR0448362

[33] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Wein-
stein conjecture in dimension three, Invent. Math. 114 (1993) 515–563 MR1244912

[34] E Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung,
Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939) 261–304 MR0001464

[35] S Hurder, A Katok, Differentiability, rigidity and Godbillon–Vey classes for Anosov
flows, Inst. Hautes Études Sci. Publ. Math. (1990) 5–61 MR1087392

[36] M Kanai, Geodesic flows of negatively curved manifolds with smooth stable and
unstable foliations, Ergodic Theory Dynam. Systems 8 (1988) 215–239 MR951270

[37] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183,
Birkhäuser, Boston, MA (2001) MR1792613

[38] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems,
Encyclopedia of Mathematics and its Applications 54, Cambridge Univ. Press (1995)
MR1326374

[39] C Liverani, On contact Anosov flows, Ann. of Math. 159 (2004) 1275–1312
MR2113022

[40] J Martinet, Formes de contact sur les variétés de dimension 3 , from: “Proceedings of
Liverpool Singularities Symposium II”, (C T C Wall, editor), Lecture Notes in Math.
209, Springer, Berlin (1971) 142–163 MR0350771

Geometry & Topology, Volume 17 (2013)

http://dx.doi.org/10.1017/S0143385700002273
http://www.ams.org/mathscinet-getitem?mr=758894
http://www.numdam.org/item?id=ASENS_1987_4_20_2_251_0
http://www.ams.org/mathscinet-getitem?mr=911758
http://dx.doi.org/10.1007/BFb0061421
http://www.ams.org/mathscinet-getitem?mr=1691596
http://dx.doi.org/10.1017/S0143385700007203
http://dx.doi.org/10.1017/S0143385700007203
http://www.ams.org/mathscinet-getitem?mr=1213079
http://dx.doi.org/10.1007/BF01390039
http://www.ams.org/mathscinet-getitem?mr=577356
http://dx.doi.org/10.1016/S1874-575X(02)80005-4
http://www.ams.org/mathscinet-getitem?mr=1928520
http://www.math.cornell.edu/~hatcher/AT/AT.pdf
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf
http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf
http://dx.doi.org/10.1007/978-1-4684-9449-5
http://www.ams.org/mathscinet-getitem?mr=0448362
http://dx.doi.org/10.1007/BF01232679
http://dx.doi.org/10.1007/BF01232679
http://www.ams.org/mathscinet-getitem?mr=1244912
http://www.ams.org/mathscinet-getitem?mr=0001464
http://www.numdam.org/item?id=PMIHES_1990__72__5_0
http://www.numdam.org/item?id=PMIHES_1990__72__5_0
http://www.ams.org/mathscinet-getitem?mr=1087392
http://dx.doi.org/10.1017/S0143385700004430
http://dx.doi.org/10.1017/S0143385700004430
http://www.ams.org/mathscinet-getitem?mr=951270
https://www.math.ucdavis.edu/~kapovich/RFG/book.pdf
http://www.ams.org/mathscinet-getitem?mr=1792613
http://www.ams.org/mathscinet-getitem?mr=1326374
http://dx.doi.org/10.4007/annals.2004.159.1275
http://www.ams.org/mathscinet-getitem?mr=2113022
http://dx.doi.org/10.1007/BFb0068901
http://www.ams.org/mathscinet-getitem?mr=0350771


1252 Patrick Foulon and Boris Hasselblatt

[41] D Matignon, Topologie en basse dimension: Remplissages de Dehn et théorie des
nœuds, Habilitation à diriger des recherches, Université d’Aix-Marseille I (2004) Avail-
able at http://www.cmi.univ-mrs.fr/~matignon/travaux-pdf/HDR.pdf

[42] Y Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier
(Grenoble) 45 (1995) 1407–1421 MR1370752

[43] J-P Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3,
Astérisque 235 (1996) x+159 MR1402300

[44] C Petronio, J Porti, Negatively oriented ideal triangulations and a proof of Thurston’s
hyperbolic Dehn filling theorem, Expo. Math. 18 (2000) 1–35 MR1751141

[45] J F Plante, Anosov flows, Amer. J. Math. 94 (1972) 729–754 MR0377930

[46] J F Plante, W P Thurston, Anosov flows and the fundamental group, Topology 11
(1972) 147–150 MR0295389

[47] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401–487
MR705527

[48] W P Thurston, Three-manifolds, foliations and circles I arXiv:math/9712268

[49] W P Thurston, The geometry and topology of three-manifolds (1980) Available at
http://library.msri.org/books/gt3m/

[50] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geome-
try, Bull. Amer. Math. Soc. 6 (1982) 357–381 MR648524

[51] P Tomter, Anosov flows on infra-homogeneous spaces, from: “Global analysis”, Proc.
Sympos. Pure Math. 14, Amer. Math. Soc. (1970) 299–327 MR0279831

[52] F Waldhausen, Eine Klasse von 3–dimensionalen Mannigfaltigkeiten I, Invent. Math.
3 (1967) 308–333 MR0235576

Institut de Recherche Mathematique Avancée, UMR 7501 du Centre National de la Recherche
Scientifique, 7 Rue René Descartes, 67084 Strasbourg Cedex, France

Centre International de Rencontres Mathématiques, 163 Avenue de Luminy
Case 916, 13288 Marseille Cedex 9, France

Department of Mathematics, Tufts University
Medford, MA 02155, USA

foulon@math.u-strasbg.fr, foulon@cirm.univ-mrs.fr,
Boris.Hasselblatt@tufts.edu

Proposed: Danny Calegari Received: 1 February 2012
Seconded: Ronald Stern, Leonid Polterovich Revised: 10 February 2013

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://www.cmi.univ-mrs.fr/~matignon/travaux-pdf/HDR.pdf
http://dx.doi.org/10.5802/aif.1500
http://www.ams.org/mathscinet-getitem?mr=1370752
http://www.ams.org/mathscinet-getitem?mr=1402300
http://www.dm.unipi.it/pages/petronio/public_html/files/lavori/df.ps
http://www.dm.unipi.it/pages/petronio/public_html/files/lavori/df.ps
http://www.ams.org/mathscinet-getitem?mr=1751141
http://dx.doi.org/10.2307/2373755
http://www.ams.org/mathscinet-getitem?mr=0377930
http://dx.doi.org/10.1016/0040-9383(72)90002-X
http://www.ams.org/mathscinet-getitem?mr=0295389
http://dx.doi.org/10.1112/blms/15.5.401
http://www.ams.org/mathscinet-getitem?mr=705527
http://arxiv.org/abs/math/9712268
http://library.msri.org/books/gt3m/
http://library.msri.org/books/gt3m/
http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://www.ams.org/mathscinet-getitem?mr=648524
http://www.ams.org/mathscinet-getitem?mr=0279831
http://dx.doi.org/10.1007/BF01402956
http://www.ams.org/mathscinet-getitem?mr=0235576
mailto:foulon@math.u-strasbg.fr
mailto:foulon@cirm.univ-mrs.fr
mailto:Boris.Hasselblatt@tufts.edu
http://msp.org
http://msp.org

	1. Introduction
	1.1. Summary of the main results
	1.2. Algebraic and anomalous Anosov flows
	1.3. The main result
	1.4. Methods
	1.5. Structure of this paper
	1.6. Contact Anosov flows on hyperbolic manifolds: proof of 0=theorem.201=Theorem 1.9

	2. Local structure near Legendrian knots
	3. Contact surgery
	4. Contact Anosov property
	5. Constructing examples
	5.1. Handel--Thurston surgery and beyond
	5.2. Goodman surgery and beyond
	5.3. Transversality

	6. Geometry of the Handel--Thurston surgery
	Appendix A. Anosov flows and Lyapunov--Lorentz metrics
	Appendix B. Hyperbolicity of complements of filling knots
	References

