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Constructing derived moduli stacks

JONATHAN P PRIDHAM

We introduce frameworks for constructing global derived moduli stacks associated
to a broad range of problems, bridging the gap between the concrete and abstract
conceptions of derived moduli. Our three approaches are via differential graded Lie
algebras, via cosimplicial groups, and via quasicomonoids, each more general than
the last. Explicit examples of derived moduli problems addressed here are finite
schemes, polarised projective schemes, torsors, coherent sheaves and finite group
schemes.

14A20; 14D23, 14J10

Introduction

In [25], representability was established by the author for many derived moduli problems
involving schemes and quasicoherent sheaves. However, the derived stacks there were
characterised as nerves of 1–groupoids with very many objects, making it difficult to
understand the derived stacks concretely.

By contrast to the indirect approach of satisfying a representability theorem, Ciocan-
Fontanine and Kapranov [6; 5] construct explicit derived Hilbert and Quot schemes
as dg–schemes with the necessary properties, but give no universal family, so the
derived moduli spaces lack functorial interpretations. In this paper, we will show how
to reconcile these approaches, thereby giving explicit presentations for the derived
moduli spaces of [25].

In fact, we go substantially beyond the problems considered in [6; 5], and give a
framework valid in all characteristics (rather than just over Q). This is done by
working with quasicomonoid valued functors, which give a global analogue of the
simplicial deformation complexes of the author [20]. In broad terms, derived moduli
constructions over Q tend to be based on differential graded Lie algebras (DGLAs),
while quasicomonoids perform the same role in much greater generality. Since quasi-
comonoids arise naturally from algebraic theories, they are much more general than
DGLAs, even in characteristic zero.
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Beware that for the purposes of this paper, derived algebraic geometry will mean the
theory of Lurie [18] based on simplicial commutative rings, or on dg algebras when
working over Q, rather than the more exotic HAG contexts of Toën and Vezzosi [32].
This enables us to apply Lurie’s Representability Theorem in Section 1, but is also
needed in later sections. The key to Section 3 is that tensoring a commutative algebra
with a Lie algebra gives a Lie algebra, but similar constructions could be made with any
pair of algebras for Koszul-dual operads. Likewise, the constructions of Section 4–5
adapt to give functors on any category of simplicial objects. However, they will not
adapt to give functors on symmetric spectra, since they depend on the functor A� A0 .

The structure of the paper is as follows. Section 1 summarises various results from
the author [26] concerning representability of derived stacks, and gives a few minor
generalisations. Section 2 develops some technical results on the pro-Zariski and
pro-étale sites. Lemma 2.3 shows that any finitely presented sheaf is a sheaf for the
associated pro site, and our main results are Lemmas 2.10 and 2.13, concerning the
existence of weakly universal coverings. These are applied in later sections to deal with
infinite sums of locally free sheaves, which feature when studying polarised projective
varieties.

In Section 3, DGLAs are introduced, together with the Deligne groupoid Del.L/ asso-
ciated to any DGLA L with a gauge action. By adapting the techniques of [5], DGLAs
are used to construct derived moduli stacks for pointed finite schemes (Proposition 3.16)
and for polarised projective schemes (Proposition 3.33). The resulting functors are
shown (in Propositions 3.18 and 3.34, respectively) to be equivalent to the corresponding
functors in [25], defined as nerves of 1–groupoids of derived geometric stacks.

DGLAs only tend to work in characteristic 0, and Section 4 shows how to construct
derived moduli stacks using cosimplicial groups instead. For any simplicial cosimplicial
group G , there is a derived Deligne groupoid Del.G/; Proposition 4.15 shows that
cosimplicial group valued functors G give rise to well-behaved derived moduli functors
Del.G/. For any DGLA L with gauge GL , there is an associated cosimplicial group
D.exp.L/;GL/, and Corollary 4.27 shows that the Deligne groupoids associated to L

and D.exp.L/;GL/ are isomorphic. Section 4.4 defines a kind of sheafification G]

for cosimplicial group valued functors G , removing the need to sheafify Del.G/; this
gives an immediate advantage of cosimplicial groups over DGLAs. Proposition 4.38
gives a cosimplicial group governing derived moduli of torsors, a problem not easily
accessible via DGLAs.

Cosimplicial groups cannot handle all moduli problems, so Section 5 begins by recalling
the quasicomonoids from the author [23], and the derived Deligne groupoid Del.E/

of a simplicial quasicomonoid E . Corollary 5.43 then shows that quasicomonoid

Geometry & Topology, Volume 17 (2013)



Constructing derived moduli stacks 1419

valued functors E give rise to well-behaved derived moduli functors Del.E/. In
Section 5.2.1, we recall basic properties of monads, together with results from [23]
showing how these give rise to quasicomonoids. Monads are ubiquitous, arising
whenever there is some kind of algebraic structure. Section 5.2.2 goes further, by
associating quasicomonoids to diagrams. In particular, this allows derived moduli of
morphisms to be constructed for all the examples considered in Section 6. Section 5.5
then defines a kind of sheafification E] for quasicomonoid valued functors E , removing
the need to sheafify Del.E/.

For every cosimplicial group G , there is a quasicomonoid E.G/, and Lemma 5.12
shows that Del.E.G//'Del.G/, ensuring consistency between the various approaches.
For moduli problems based on additive categories, the associated quasicomonoid E

is linear. This means that its normalisation NE is a DG associative noncommutative
algebra (so a fortiori a DGLA), so the techniques of this section give DGLAs for abelian
moduli problems. Moreover, Proposition 5.40 gives an equivalence Del.E/'Del.NE/,
so quasicomonoids and DGLAs give equivalent derived moduli.

Section 6 gives a selection of examples which can be tackled by quasicomonoids.
Derived moduli of finite schemes, of polarised projective schemes, and of finite group
schemes are constructed in Propositions 6.4, 6.17 and 6.28, respectively. In Proposi-
tions 6.6, 6.18 and 6.32, these are shown to be equivalent to the corresponding functors
in [25], defined as nerves of1–groupoids of derived geometric stacks. Proposition 6.11
constructs derived moduli of coherent sheaves, and Proposition 6.12 shows that this is
equivalent to the nerve of 1–groupoids of hypersheaves considered in [25].

Acknowledgements The author was supported during this research by Trinity College,
Cambridge and by the Engineering and Physical Sciences Research Council (grant
number EP/F043570/1).

1 Background on representability

Let S be the category of simplicial sets. Denote the category of simplicial commutative
rings by sRing, the category of simplicial commutative R–algebras by sAlgR , and
the category of simplicial R–modules by sModR . If Q�R, we let dgCAlgR be the
category of differential graded-commutative R–algebras in nonnegative chain degrees,
and dgCModR the category of R–modules in chain complexes in nonnegative chain
degrees.

Definition 1.1 Given a simplicial abelian group A� , we denote the associated nor-
malised chain complex by N sA (or, when no confusion is likely, by NA). Recall
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that this is given by N.A/n WD
T

i>0 ker.@i W An!An�1/, with differential @0 . Then
H�.NA/Š ��.A/.

When Q � R, using the Eilenberg–Zilber shuffle product (see Weibel [33, 8.5.4]),
normalisation N extends to a right Quillen equivalence

N W sAlgR! dgCAlgR;

by Quillen [28, Section I.4].

Definition 1.2 Define dgCNR (resp. sNR ) to be the full subcategory of dgCAlgR

(resp. sAlgR ) consisting of objects A for which the map A!H0A (resp. A! �0A)
has nilpotent kernel. Define dgCN [

R
(resp. sN [

R
) to be the full subcategory of dgCNR

(resp. sNR ) consisting of objects A for which Ai D 0 (resp. NiAD 0) for all i � 0.

From now on, we will write dN [ (resp. dAlgR , resp. dModR ) to mean either sN [
R

(resp. sAlgR , resp. sModR ) or dgCN [
R

(resp. dgCAlgR , resp. dgCModR ), noting
that we only use chain algebras in characteristic 0.

Definition 1.3 Say that a surjection A ! B in dgCAlgR (resp. sAlgR ) is a tiny
acyclic extension if the kernel K satisfies IA �K D 0, and K (resp. NK ) is of the
form cone.M /Œ�r � for some H0A–module (resp. �0A–module) M . In particular,
H�K D 0.

1.1 Formal quasismoothness and homogeneity

The following definitions are mostly taken from [25].

Definition 1.4 Say a natural transformation �W F !G of functors F;GW dN [! S
is homotopic (resp. prehomotopic) if for all tiny acyclic extensions A! B , the map

F.A/! F.B/�G.B/G.A/

is a trivial fibration (resp. a surjective fibration). Say that F is homotopic if F !� is
so, where � denotes the one point set.

Definition 1.5 Say a natural transformation �W F !G of functors F;GW dN [! S
is formally quasipresmooth (resp. formally presmooth) if for all square zero extensions
A! B , the map

F.A/! F.B/�G.B/G.A/

is a fibration (resp. a surjective fibration).

Say that � is formally quasismooth (resp. formally smooth) if it is formally quasipres-
mooth (resp. formally presmooth) and homotopic.
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Definition 1.6 Say that a natural transformation �W F ! G of functors on dN [ is
formally étale if for all square zero extensions A! B , the map

F.A/! F.B/�G.B/G.A/

is an isomorphism.

Definition 1.7 Say that a natural transformation F ! G of functors on dN [ is
(relatively) homogeneous if for all square zero extensions A! B , the map

F.A�B C /!G.A�B C /�ŒG.A/�G.B/G.C /� ŒF.A/�F.B/ F.C /�

is an isomorphism. Say that F is homogeneous if F !� is relatively homogeneous.

Proposition 1.8 Let ˛W F ! G be a formally étale morphism of the functors
F;GW dN [! Set. If G is homogeneous, then so is F . Conversely, if ˛ is surjective
and F is homogeneous, then so is G .

Proof This is [25, Proposition 2.18].

1.2 Tangent complexes

Given a category C , write Ab.C/ for the category of abelian group objects in C .

Definition 1.9 For a homogeneous functor F W dN [!S , A2dN [ and M 2dModA ,
define the tangent space by

T .F;M / WD F.A˚M / 2 S#F.A/;

noting that this is an abelian group object in this category. Here, S#F.A/ denotes the
category of objects over F.A/.

Given a natural transformation ˛W F !G of homogeneous functors F;GW dN [! S ,
define the relative tangent space by

T .F=G;M / WD ker.T .F;M /! T .G;M /�G.A/ F.A// 2 Ab.S#F.A//:

Given x 2 F.A/, define Tx.F=G;M / WD T .F=G;M /�F.A/ fxg 2 Ab.S/D sAb.

When ˛W F!G is formally quasipresmooth, note this definition is compatible with [26,
Definition 1.8], in the sense that for x 2 �0F.A/, the space Tx.F=G/.M / of [26] is
the homotopy fibre of T .F=G;M /! F.A/ over x , since T .F=G;M /! F.A/ is a
fibration.
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Definition 1.10 Given a prehomotopic formally quasipresmooth transformation
˛W F ! G of homogeneous functors F;GW dN [! S , an object A 2 dN [ , a point
x 2F0.A/ and a module M 2dModA , define Di

x.F=G;M / as follows, following [26,
Definition 3.14].

For i � 0, set
Di

x.F=G;M / WD ��i.Tx.F=G;M //:

For i > 0, set

Di
x.F;M / WD �0F.Tx.F=G;M Œ�i �//=�0.Tx.F=G; cone.M /Œ1� i �//:

Note that homogeneity of F ensures that these are abelian groups for all i , and that
the multiplicative action of A on M gives them the structure of A–modules.

If ˛W F !G is formally quasismooth, note that [26, Lemma 1.12] gives

Dn�i
x .F=G;M /D �i.Tx.F=G;M Œ�n�//:

The following is immediate.

Lemma 1.11 If X;Y;ZW dN [ ! S are homogeneous, and X
˛
�! Y is formally

quasipresmooth, with ˇW Z!Y any map, set T WDX �Y Z , and observe that T !Z

is quasipresmooth. There is an isomorphism

D�t .T=Z;M /Š D�x.X=Y;M /;

for t 2 T .A/ with image x 2X.A/.

Proposition 1.12 Let X;Y;ZW dN [! S be homogeneous functors, with ˛W X ! Y

and ˇW Y ! Z formally quasismooth. For x 2 X.A/, there is then a long exact
sequence

: : : @ // Dj
x.X=Y;M / // Dj

x.X=Z;M / // Dj
y.Y=Z;M /

@ // DjC1
x .X=Y;M / // DjC1

x .X=Z;M / // : : : ;

where y 2 Y .A/ is the image of x .

Proof Since Tx.X=Y;M /D ker.˛W Tx.X=Z;M /! Ty.Y=Z;M //, we have fibra-
tion sequences

� � � ! �iTx.X=Y;M Œ�n�/! �iTx.X=Z;M Œ�n�/! �iTx.Y=Z;M Œ�n�/! � � �

for all i; n� 0 so the result follows because �iTx.X=Y;M Œ�n�/D Dn�i.X=Y;M /,
and similarly for X=Z;Y=Z .
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Definition 1.13 Recall that a local coefficient system on S 2 S is an object V of
Ab.S#S/ for which the maps @i W Vs! V@i s are isomorphisms for all s 2 Sn , where
Vs WD Vn �Sn

fsg.

Lemma 1.14 If ˛W X ! Y is a formally quasismooth morphism between homoge-
neous functors, take an object A 2 dN [ and M 2 dModA . Then there is a local
coefficient system

D�.X=Y;M /

on X.A/, whose stalk at x 2 X.A/ is D�x.X=Y;M /. In particular, D�x.X=Y;M /

depends (up to noncanonical isomorphism) only on the image of x in �0X.A/.

Proof As with [26, Lemma 1.16], this follows straightforwardly from the proof of
[26, Lemma 1.9].

1.2.1 Obstructions

Proposition 1.15 If F;GW dN [! S are homogeneous, with G prehomotopic and
˛W F !G formally quasismooth, then for any square zero extension eW I !A! B

(with f W A! B ) in dN [ , there is a sequence of sets

�0.FA/
f�
�! �0.FB�GB GA/

oe
�! �.FB;D1.F=G; I//;

where �.�/ denotes the global section functor. This is exact in the sense that the fibre
of oe over 0 is the image of f� Moreover, there is a group action of D0

x.F=G; I/ on
the fibre of �0.FA/! �0.FB/ over x , whose orbits are precisely the fibres of f� .

For any y 2 F0A, with x D f�y , the fibre of FA! FB�GB GA over x is isomorphic
to Tx.F=G; I/, and the sequence above extends to a long exact sequence

: : :
e� // �n.FA;y/

f� // �n.FB�GB GA;x/
oe // D1�n

y .F=G; I/
e� // �n�1.FA;y/

f� // : : :
f� // �1.FB�GB GA;x/

oe // D0
y.F=G; I/

��y // �0.FA/:

Proof The proof of [26, Proposition 1.17] carries over to this generality.

Corollary 1.16 If F;GW dN [ ! S are homogeneous, with G prehomotopic and
˛W F !G prehomotopic and formally quasipresmooth, then ˛ is formally presmooth
if and only if Di

x.F=G;M / D 0 for all i > 0, all discrete rings A, all x 2 �0F.A/

and all A–modules M .
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Definition 1.17 Given a functor F on dN [
R

, define the functor �0F on AlgH0R by
.�0F /.A/ WD F.A/.

Corollary 1.18 Take a morphism ˛W F ! F 0 of homogeneous formally quasismooth
functors F;F 0W dN [! S . Then ˛ is a weak equivalence if and only if

(1) �0˛W �0F ! �0F 0 is a weak equivalence of functors AlgH0R! S ;

(2) the maps Di
x.F;M /! Di

˛x.F
0;M / are isomorphisms for all A 2 AlgH0R , all

A–modules M , all x 2 F.A/0 , and all i > 0.

Proof For any A 2 dN [ , we need to show that ˛AW F.A/ ! F 0.A/ is a weak
equivalence. By hypothesis, we know that this holds if we replace A with H0A.
Now, the map A! H0A is a nilpotent extension; let the kernel be IA . The maps
A=InC1

A
! A=In

A
are square zero extensions, and their kernels In

A
=InC1

A
are H0A–

modules. This allows us to proceed inductively, using the long exact sequence of
Proposition 1.15 to deduce that F.A=InC1

A
/! F 0.A=InC1

A
/ is a weak equivalence

whenever F.A=In
A
/! F 0.A=In

A
/ is so.

1.3 Representability

For the remainder of this section, R will be a derived G–ring admitting a dualising
module (in the sense of [18, Definition 3.6.1]). In particular, this is satisfied if R is
a G–ring admitting a dualising complex in the sense of Hartshorne [13, Chapter V].
Examples are Z, any field, or any Gorenstein local ring.

Theorem 1.19 Take a functor F W dN [
R
! S satisfying the following conditions:

(1) F is formally quasismooth.

(2) For all discrete rings A, F.A/ is n–truncated, ie �iF.A/D 0 for all i > n.

(3) F is homogeneous.

(4) �0F W AlgH0R! S is a hypersheaf for the étale topology.

(5) �0�
0F W AlgH0R! Set preserves filtered colimits.

(6) For all A 2 AlgH0R and all x 2 F.A/, the functors �i.�
0F;x/W AlgA! Set

preserve filtered colimits for all i > 0.

(7) For all finitely generated integral domains A 2 AlgH0R , all x 2 F.A/0 and all
étale morphisms f W A!A0 , the maps

D�x.F;A/˝A A0! D�f x.F;A
0/

are isomorphisms.
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(8) For all finitely generated A 2 AlgH0R and for all x 2 F.A/0 , the functors
Di

x..F=R/;�/W ModA! Ab preserve filtered colimits for all i > 0.

(9) For all finitely generated integral domains A 2 AlgH0R and all x 2 F.A/0 , the
groups Di

x.F=R;A/ are all finitely generated A–modules.

(10) For any complete discrete local Noetherian H0R–algebra A, with maximal ideal
m, the map

�0F.A/! lim
 �

F.A=mr /

is a weak equivalence.

Then F is the restriction to dN [
R

of an almost finitely presented geometric derived
n–stack F 0W dAlgR ! S . Moreover, F 0 is uniquely determined by F (up to weak
equivalence).

Proof This variant of Lurie’s Representability Theorem essentially appears in [26,
Theorem 2.17], which takes a homotopy preserving, homotopy homogeneous functor
instead of a formally quasismooth homogeneous functor. However, every homotopic
functor is homotopy preserving (by [25, Lemma 2.24]), while every formally quasipres-
mooth homogeneous functor is homotopy homogeneous (by [25, Lemma 2.27]). Finally,
note that formal quasipresmoothness allows us to replace homotopy limits with limits.

Remark 1.20 For the definition of hypersheaves featuring in (4) above, see [26,
Definition 1.29]. For all the applications in this paper, the following observation suffices.
Given a groupoid valued functor �W AlgH0R!Gpd, the nerve B�W Alg�0R! S is a
hypersheaf if and only if � is a stack (in the sense of Laumon and Moret-Bailly [17]).

Remark 1.21 Note that there are slight differences in terminology between [32; 18].
In the former, only disjoint unions of affine schemes are 0–representable, so arbitrary
schemes are 2–geometric stacks, and Artin stacks are 1–geometric stacks if and only
if they have affine diagonal. In the latter, algebraic spaces are 0–stacks. A geometric
n–stack is called n–truncated in [32], and it follows easily that every n–geometric
stack in [32] is n–truncated. A weak converse is that every geometric n–stack is
.nC 2/–geometric.

Theorem 1.19 follows the convention from [18], so “geometric derived n–stack” means
“n–truncated derived geometric stack”.

Beware, however, that condition (2) of the theorem only applies to discrete rings. In
general, if A 2 dN [

R
with HiAD 0 for i >m, then a geometric derived n–stack F

will have the property that �j F.A/D 0 for all j >mC n.
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1.4 Prerepresentability

Concrete approaches to derived moduli can naturally produce functors F W dN [
R
! S

with the property that �iF.A/ D 0 for all i > n and all A. Such functors are not
geometric derived n–stacks, since they cannot be both homotopic and homogeneous.
The purpose of this section is to establish weaker conditions which can be satisfied
by such functors, and still allow us to associate a geometric derived n–stack F to F .
In particular, all of the examples in Sections 3–6 will work by constructing derived
geometric 1–stacks F from groupoid valued functors F .

Definition 1.22 Define a simplicial enrichment of sN [
R

as follows. For A2 sN [
R

and
a finite simplicial set K , AK 2 sN [

R
is defined by

.AK /n WD HomS.K ��
n;A/:

Spaces Hom.A;B/ 2 S of morphisms are then given by

HomsN [
R
.A;B/n WD HomsN [

R
.A;B�

n

/:

Definition 1.23 Define a simplicial enrichment of dgCN [
R

as follows. First set �n

to be the differential graded algebra

QŒt0; t1; : : : ; tn; dt0; dt1; : : : ; dtn�
.�X

ti � 1;
X

dti

�
of rational differential forms on the n–simplex �n , where ti is of degree 0. These fit
together to form a simplicial complex �� of graded-commutative DG–algebras, and we
define A�

n

as the good truncation A�
n

WD ��0.A˝�n/. (Note that this construction
commutes with finite limits, so extends to define AK for finite simplicial sets K .)

Spaces Hom.A;B/ 2 S of morphisms are then given by

HomdgCN [
R
.A;B/n WD HomdgCN [

R
.A;B�

n

/:

Definition 1.24 Given a functor F W dN [ ! S , we define F W dN [ ! sS , (for sS
the category of bisimplicial sets), by

F .A/n WD F.A�
n

/:

Definition 1.25 Define W W sS ! S to be the right adjoint to Illusie’s total Dec
functor given by DEC .X /mn DXmCnC1 . Explicitly,

W p.X /D
n
.x0;x1; : : : ;xp/ 2

pY
iD0

Xi;p�i

ˇ̌̌
@v0xi D @

h
iC1xiC1; 80� i < p

o
;
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with operations

@i.x0; : : : ;xp/D .@
v
i x0; @

v
i�1x1; : : : ; @

v
1xi�1; @

h
i xiC1; @

h
i xiC2; : : : ; @

h
i xp/;

�i.x0; : : : ;xp/D .�
v
i x0; �

v
i�1x1; : : : ; �

v
0 xi ; �

h
i xi ; �

h
i xiC1; : : : ; �

h
i xp/:

In [3], Cegarra and Remedios established that the canonical natural transformation

diagX !W X

from the diagonal is a weak equivalence for all X .

Lemma 1.26 For a homotopic functor F W dN [ ! S , the natural transformation
F !W F is a weak equivalence.

Proof This is [26, Lemma 3.13].

Proposition 1.27 If a formally quasipresmooth homogeneous functor F W dN [! S
is prehomotopic, then the functor WF W dN [ ! S is homogeneous and formally
quasismooth.

Proof This is essentially the same as [26, Corollaries 3.10 and 3.12] (replacing weak
equivalences with isomorphisms, and homotopy fibre products with fibre products), us-
ing the result from Cegarra and Remedios [4] that diagonal fibrations are W –fibrations.

Lemma 1.28 Given a formally quasipresmooth prehomotopic homogeneous functor
F W dN [

R
! S , an object A 2 dN [ , a point x 2 F0.A/, and a module M 2 dModA ,

there are canonical isomorphisms

Di
x.F;M /Š Di

x.WF ;M /:

Proof The proof of [26, Lemma 3.15], which deals with the case when A and M are
discrete, carries over to this generality.

Corollary 1.29 If a formally quasipresmooth homogeneous functor F W dN [! S is
prehomotopic, and admits a morphism ˛W F !G to a formally quasismooth homoge-
neous functor, then ˛ induces a functorial weak equivalence

WF 'G

if and only if

(1) �0˛W �0F ! �0G is a weak equivalence of functors AlgH0R! S ;

(2) the maps Di
x.F;M /! Di

˛x.G;M / are isomorphisms for all A 2 AlgH0R , all
A–modules M , all x 2 F.A/0 , and all i > 0.

Geometry & Topology, Volume 17 (2013)



1428 J P Pridham

Proof By Lemma 1.28, the map from F to WF induces isomorphisms on Di , so the
maps

Di
x.WF ;M /! Di

˛x.WG;M /

are isomorphisms. Proposition 1.27 shows that WF and WG are formally quasismooth
homogeneous functors. Since F  WF does not change �0F , Lemma 1.28 and
Corollary 1.18 imply that the map

WF !WG

is a weak equivalence.

Since G is also homogeneous and formally quasismooth, Corollary 1.18 gives a weak
equivalence G ! WG . Combining this with the weak equivalence above, we see
that WF and G are canonically weakly equivalent.

Remark 1.30 By replacing Proposition 1.15 with [26, Proposition 1.17], the proof
of Corollary 1.29 works just as well if F is homotopy homogeneous and homotopy
surjecting, while G is homotopy homogeneous and homotopy preserving. In particular,
this holds if G is any presentation of a derived geometric n–stack.

Theorem 1.31 Take a functor F W dN [
R
! S satisfying the following conditions:

(1) F is prehomotopic.

(2) F is formally quasipresmooth.

(3) For all discrete rings A, F.A/ is n–truncated, ie �iF.A/D 0 for all i > n.

(4) F is homogeneous.

(5) �0F W AlgH0R! S is a hypersheaf for the étale topology.

(6) �0�
0F W AlgH0R! Set preserves filtered colimits.

(7) For all A 2 AlgH0R and all x 2 F.A/, the functors �i.�
0F;x/W AlgA! Set

preserve filtered colimits for all i > 0.

(8) For all finitely generated integral domains A 2 AlgH0R , all x 2 F.A/0 and all
étale morphisms f W A!A0 , the maps

D�x.F;A/˝A A0! D�f x.F;A
0/

are isomorphisms.

(9) For all finitely generated A 2 AlgH0R and for all x 2 F.A/0 , the functors
Di

x.F;�/W ModA! Ab preserve filtered colimits for all i > 0.
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(10) For all finitely generated integral domains A 2 AlgH0R and all x 2 F.A/0 , the
groups Di

x.F;A/ are all finitely generated A–modules.

(11) For all complete discrete local Noetherian H0R–algebras A, with maximal ideal
m, the map

�0F.A/! lim
 �

F.A=mr /

is a weak equivalence.

Then WF is the restriction to dN [
R

of an almost finitely presented geometric derived
n–stack F 0W sAlgR ! S (resp. F 0W dgCAlgR ! S). Moreover, F 0 is uniquely
determined by F (up to weak equivalence).

Proof This essentially appears as [26, Theorem 3.16], which takes a homotopy surject-
ing, homotopy homogeneous functor instead of a formally quasismooth prehomotopic
homogeneous functor. However, every prehomotopic functor is automatically homotopy
surjecting, while every formally quasipresmooth homogeneous functor is homotopy
homogeneous (by [25, Lemma 2.27]).

Alternatively, note that Proposition 1.27 ensures that WF is homogeneous and formally
quasismooth, so we may apply Theorem 1.19.

2 Sheaves on the pro-Zariski and pro-étale sites

Our primary motivation for this section is the following. In general, an infinite direct
sum M D

L
i Mi of locally free A–modules is not locally free for the étale topology,

in the sense that there need not exist any faithfully flat étale morphism A!A0 with
M ˝A A0 free. However, for all maximal ideals m of A, the Am–module M ˝A Am is
free. Indeed, for any set S of maximal ideals, the

Q
m2S Am–module M˝A

Q
m2S Am

is free. As we will show below, this amounts to saying that M is locally free for the
pro-Zariski topology, and hence for the pro-étale topology.

Definition 2.1 A presheaf FW AlgR! Set is said to be locally of finite presentation
if for any filtered direct system fAigi , the map

lim
�!

i

F.Ai/! F
�

lim
�!

i

Ai

�
is an isomorphism.
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Definition 2.2 Given a property P of morphisms of affine schemes, we say that
f W X ! Y is pro-P if it can be expressed as the limit X D lim

 �i
Xi of a filtered inverse

system fXigi of P–morphisms Xi! Y , in which all structure maps Xi!Xj are P–
morphisms. Likewise, we say that a map A!B of rings is ind-P if Spec B! Spec A

is pro-P.

Lemma 2.3 If FW AlgR!Set is locally of finite presentation and a sheaf for a class P
of covering morphisms, then F is also a sheaf for the class pro.P/.

Proof Given any finite (possibly empty) set fAsgs2S of objects of AlgR , we auto-
matically have an isomorphism

F

�Y
s2S

As

�
!

Y
s2S

F.As/;

so we need only check that for any ring homomorphism A!B in ind.P/, the diagram

F.A/! F.B/D) F.B˝A B/

is an equaliser diagram.

Now, we can express A!B as a direct limit BD lim
�!i

Bi of P–morphisms A!Bi , so

F.B/Š lim
�!

i

F.Bi/; F.B˝A B/Š lim
�!

i

F.Bi ˝A Bi/;

F being locally of finite presentation. Since F is a P–sheaf, the diagram

F.A/! F.Bi/D) F.Bi ˝A Bi/

is an equaliser, and the required result now follows from the observation that finite
limits commute with filtered direct limits.

We will now construct weak universal covers for the topologies which concern us.

2.1 The pro-Zariski topology

Definition 2.4 A morphism A! B of commutative rings is said to be conservative
if the map

A�!A�B B�

is an isomorphism, where A� denotes units in A. Say a morphism Spec B! Spec A

of affine schemes is conservative if A! B is so.
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Definition 2.5 Say that a map A ! B of commutative rings is a localisation if
B ŠAŒS�1�, for some subset S �A.

Note that Spec D ! Spec C is an open immersion if and only if D Š C ŒS�1� for
some finite set S . Thus A! B is a localisation if and only if Spec B! Spec A is a
pro-(open immersion).

Lemma 2.6 Any commutative ring homomorphism f W A!B has a unique factori-
sation A! C ! B as a localisation followed by a conservative map.

Proof This is from Anel [1, Proposition 52]. The factorisation is given by setting
S WD fa 2A j f .a/ 2 B�g, then letting C WDAŒS�1�.

In order to study the Zariski topology, we wish to use local isomorphisms rather
than open immersions. Likewise, for the pro-Zariski topology, we want pro-(local
isomorphisms) rather than pro-(open immersions).

Definition 2.7 A morphism A ! B of commutative rings is said to be strongly
conservative if it is conservative, and the map id.A/! id.B/ on sets of idempotent
elements is an isomorphism. Say that a morphism Spec B! Spec A of affine schemes
is strongly conservative if A! B is so.

Remark 2.8 The set id.A/ just consists of ring homomorphisms Z2 ! A. If A

is finitely generated, then Spec A has a finite set �.Spec A/ of components. Since
an arbitrary ring A can be expressed as a filtered colimit A D lim

�!i
Ai of finitely

generated rings, we can then define �.A/ to be the profinite set lim
 �i

�.Spec Ai/. Thus
a conservative morphism Spec B ! Spec A is strongly conservative if and only if
�.Spec B/! �.Spec A/ is an isomorphism of profinite sets.

Lemma 2.9 Every morphism f W X ! Y of affine schemes has a unique factorisa-
tion X ! .X=Y /loc ! Y as a strongly conservative map followed by a pro-(local
isomorphism).

Proof This is remarked at the end of [1, Section 4.2], where strongly conservative
maps are denoted by Conv, and pro-(local isomorphisms) by Zet. Explicitly, we first
factorise f as X ! Y ��.Y / �.X /! Y , and then apply Lemma 2.6 to the first map,
obtaining X ! .X=Y /loc! Y ��.Y / �.X /! Y . If X D Spec B and Y D Spec A,
note that

Y ��.Y / �.X /D Spec .A˝Z:id.A/Z:id.B//:

Note we would get the same construction by applying Lemma 2.6 to X!Y ��.X /.
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Lemma 2.10 For any commutative ring A, the category of pro-Zariski covers of
Spec A has a weakly initial object Spec C . In other words, for any covering pro-(local
isomorphism) Y ! Spec A, there exists a map Spec C ! Y over Spec A, although
the map need not be unique.

Moreover, every covering pro-(local isomorphism) Z! Spec C has a section.

Proof Let S be the set of maximal ideals of A, and set C WD .A=
Q

m2S .A=m//
loc ,

as constructed in Lemma 2.9. Explicitly, we first form the subring A0 of AS consisting
of functions f W S ! A with finite image. To form C , we then invert any element
f 2A0 whenever for all s 2 S , f .s/ 62ms .

Now, given any covering pro-(local isomorphism) Spec B! Spec A, use the covering
property to lift the closed points of A to closed points of B ; this gives us a map

gW B!
Y
m

A=m:

Properties of unique factorisation systems then give a unique map

B!
�
A=

Y
m2S

.A=m/
�loc

compatible with g .

For the second part, take a covering pro-(local isomorphism) Z D Spec D! Spec C ,
and choose a lift D!A=m of each canonical map C !A=m. This gives a diagram
A! D !

Q
m2S A=m with hW A! D opposite to a pro-(local isomorphism), so

the universal property of C then gives a unique factorisation D! C !
Q

m2S A=m.
The composition C !D! C must then be the identity, since C !

Q
m2S A=m is

strongly conservative.

2.2 The pro-étale topology

Definition 2.11 A morphism f W A! B is said to be Henselian if any factorisation
A!A0!B , with A!A0 étale, has a section A0!A over B . Say that a morphism
Spec B! Spec A of affine schemes is Henselian if A! B is so.

Lemma 2.12 Every morphism f W X!Y of affine schemes has a unique factorisation
X ! .X=Y /hen! Y as a Henselian map followed by a pro-étale morphism.

Proof This is an immediate consequence of [1, Proposition 64], which shows that ind-
étale morphisms and Henselian morphisms form the left and right classes of a unique
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factorisation system on the category of commutative rings. Explicitly, if Y D Spec A

and X D Spec B , then
.A=B/hen

WD lim
�!

Ai ;

where Ai runs over all factorisations A!Ai! B of f ] with A!Ai étale. Then
.X=Y /hen WD Spec .A=B/hen .

Lemma 2.13 For any commutative ring A, there is a weakly initial object Spec C in
the category of pro-étale coverings of Spec A.

Moreover, every pro-étale covering Z! Spec C has a section.

Proof For each point x of Spec A, choose a geometric point xx over x , so k.xx/ is a
separably closed field, and let the set of all these points be S . Now, use Lemma 2.12
to construct the unique factorisation

A!

�
A=

Y
xx2S

k.xx/

�hen

!

Y
xx2S

k.xx/

of A!
Q
xx2S k.xx/. The arguments used in Lemma 2.10 now adapt to show that

Spec C WD Œ.Spec
Q
xx2S k.xx//=Spec A�hen is weakly initial in the category of pro-étale

coverings of Spec A, and that every covering of Spec C has a section.

2.3 Sheaves on derived rings

Definition 2.14 Given a subclass P of flat morphisms of commutative rings, closed
under pushouts and composition, say that a morphism f W A! B in sRing is

(1) homotopy P if �0f W �0A! �0B is in P, and the maps

�n.A/˝�0A �0B! �nB

are isomorphisms for all n;

(2) strictly P if f0W A0! B0 is in P, and the maps

An˝A0
B0! Bn

are isomorphisms for all n.

Definition 2.15 Given P as above, say that a morphism f W A! B in dgCAlgQ is

(1) homotopy P if H0f W H0A! H0B is in P, and the maps

Hn.A/˝H0A H0B! HnB

are isomorphisms for all n;
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(2) strictly P if f0W A0! B0 is in P, and the maps

An˝A0
B0! Bn

are isomorphisms for all n.

Lemma 2.16 Every strictly P morphism in sRing or dgCAlgQ is homotopy P.

Proof We first prove this in the simplicial case. Take a strictly P morphism f W A!B ;
taking homotopy groups gives �n.B/Š �n.A/˝A0

B0 , by flat base change. We then
have isomorphisms

�n.B/Š �n.A/˝A0
B0

Š �n.A/˝�0A .�0A˝A0
B0/

Š �n.A/˝�0A �0B;

as required. For the chain algebra case, replace �n with Hn .

Definition 2.17 On sRingopp and dgCAlgopp
Q , we define topologies for every class P

as above by setting Pc to be the intersection of P with faithfully flat morphisms, and
saying that f W A! B is a homotopy P covering (resp. a strict P covering) if f is
homotopy Pc (resp. strictly Pc ).

In this way, we define both homotopy and strict sites for the étale, Zariski, pro-étale
and pro-Zariski topologies.

3 Moduli from DGLAs

3.1 DGLAs

Definition 3.1 A differential graded Lie algebra (DGLA) is a graded Q–vector space
LD

L
i2N0

Li , equipped with operators Œ�;��W L�L!L bilinear and d W L!L

linear, satisfying

(1) ŒLi ;Lj ��LiCj ;

(2) Œa; b�C .�1/xa
xb Œb; a�D 0;

(3) .�1/xcxaŒa; Œb; c��C .�1/xa
xb Œb; Œc; a��C .�1/

xbxc Œc; Œa; b��D 0;

(4) d.Li/�LiC1 ;

(5) d ı d D 0;

(6) d Œa; b�D Œda; b�C .�1/xaŒa; db�.

Here xa denotes the degree of a mod 2, for a homogeneous.
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3.1.1 Maurer–Cartan

Definition 3.2 Given a DGLA L� , define the Maurer–Cartan set by

MC.L/ WD f! 2L1
j d!C 1

2
Œ!; !�D 0 2L2

g

Lemma 3.3 If a map eW L�M of DGLAs has kernel K , with ŒK;K�D 0, then for
any ! 2MC.M /, the obstruction to lifting ! to MC.L/ lies in

H2.K; d C Œ!;��/:

Proof This is well-known. Given ! 2MC.M /, choose a lift z! 2 L1 , and look at
u.z!/ WD d z!C 1

2
Œz!; z!�. Since Œa; Œa; a��D 0 for any a 2L1 , we get

duC Œz!;u.z!/�D Œd z!; z!�C Œz!; d z!�D 0;

so u 2 Z2.K; d C Œ!;��/. Another choice for z! is of the form z!C a, for a 2 K1 ,
and then

u..z!C a/D u..z!/C daC Œz!; a�;

so the obstruction is

oe.!/ WD Œu.z!/� 2 Z2.K; d C Œ!;��/=.d C Œ!;��/K1
D H2.K; d C Œ!;��/:

3.1.2 The gauge action

Definition 3.4 Given a DGLA L, we say that a group GL is a gauge group for L if
it is equipped with the extra data

(1) group homomorphisms adW GL! GL.Ln/ for all n,

(2) a map DW GL!L1 ,

satisfying the following conditions for g; h 2GL , v;w 2L:

(1) adg.Œv; w�/D Œadgv; adgw�.

(2) D.gh/DDgC adg.Dh/.

(3) d.Dg/D 1
2
ŒDg;Dg�.

(4) d.adg.v//D ŒDg; adg.v/�C adg.dv/.

Examples 3.5 If the DGLA L is nilpotent, then a canonical choice for GL is the
group exp.L0/, with D.g/D .dg/ �g�1 .

When L0 is finite-dimensional, GL will typically be an algebraic group integrating L0 ,
again with D.g/D .dg/ �g�1 .
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Definition 3.6 Given a gauge group GL for a DGLA L, define the gauge action
of GL on MC.L/ by

g ?! WD adg.!/�Dg

for g 2GL and ! 2MC.L/, noting that the conditions on adg and D ensure that this
is well-defined and a group homomorphism.

Definition 3.7 Given a DGLA L with gauge group GL , define the Deligne groupoid
by Del.L/ WD ŒMC.L/=GL�. In other words, Del.L/ has objects MC.L/, and mor-
phisms from ! to !0 consist of fg 2GL j g ?! D !

0g.

Define Del.L/ 2 S to be the nerve BDel.L/ of Del.L/.

3.2 Moduli of pointed finite schemes

For a fixed r 2 N , we now construct a DGLA governing moduli of pointed finite
schemes of rank r C 1. For any commutative Q–algebra A, our moduli groupoid
consists of nonunital commutative A–algebras B , with the A–module underlying B

being locally free of rank r . Our approach is analogous to the treatment of finite
subschemes in [6, Section 3].

Definition 3.8 Given a graded vector space V over Q, let CL.V / be the free (ind-
conilpotent) graded Lie coalgebra

L
n�1 CLn.V / cogenerated by V . Note that

CLn.V / is a quotient of V ˝n by graded shuffle permutations.

Definition 3.9 Given a graded-commutative chain algebra A, define ˇ.A/ to be the
dg Lie coalgebra CL.AŒ�1�/, with coderivation dC given on cogenerators by

dC .a1˝ a2 � � � ˝ an/D

8̂<̂
:

da1 nD 1;

a1a2 nD 2;

0 n> 2:

Definition 3.10 Define a DGLA L by

Ln
WD HomQ.CLnC1.Q

r Œ�1�/;Qr Œ�1�/I

this can be identified with the space of degree �n Lie coalgebra derivations of ˇ.Qr /,
and this latter description allows us to define differential and bracket as

dL.f /D dˇ ıf ˙f ı dˇ; Œf;g�D f ıg�g ıf:

Define a gauge group for L by setting GLDGL.Qr /DGLr .Q/. This has a canonical
action on ˇ.Qr /, so we set adW GL! GL.Ln/ to be the adjoint action on derivations.
Finally, DW GL!L1 is given by D.g/D dˇ �ˇ.g/ ı dˇ ıˇ.g/

�1 .
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Definition 3.11 Given a differential graded (chain) Lie coalgebra C , define the graded-
commutative chain algebra ˇ�.C / to be the free graded-commutative algebra on
generators C Œ1�, with derivation given on generators by

dˇ�.C / D dC C�W C Œ1�! C ˚S2.C Œ1�/Œ�1�;

where �W C Œ1�! S2.C Œ1�/Œ�1�D CL2.C /Œ1� is the cobracket.

Note that ˇ� is left adjoint to the functor ˇ from graded-commutative chain algebras
to ind-conilpotent chain Lie coalgebras.

Lemma 3.12 If we set GL˝A WD GLr .A/, then for any commutative Q–algebra
A, Del.L˝A/ is canonically isomorphic to the groupoid of nonunital commutative
A–algebra structures on the A–module Ar .

Proof This is standard. Square-zero A–linear degree �1 derivations on ˇ.Qr /˝Q A

are all of the form dˇ.Qr /C! , for ! 2MC.L˝A/. Given g 2GL.A/, the derivation
dˇ.Qr /Cg ?! is then ˇ.g/ ı .dˇ.Qr /C!/ ıˇ.g/

�1 .

An element ! 2MC.L˝A/ is just an associative multiplication S2.Ar /!Ar , so
corresponds to a nonunital commutative A–algebra structure.

Definition 3.13 Given A 2 dgCN [
Q , define L˝A to be the DGLA

.L˝A/n WD
M

i

LnCi
˝Ai ;

with differential dL˙dA and bracket given by Œv˝a; w˝b�D˙Œv; w�˝ .ab/, where
signs follow the usual graded conventions.

Definition 3.14 For the DGLA L of Definition 3.10, define the groupoid valued
functor GW dgCN [

Q! Gpd to be the stackification of the groupoid presheaf

A 7! ŒMC.L˝A/=GLr .A0/�

in the strict Zariski topology of Definition 2.17.

Explicitly, objects of G.A/ are pairs .!;g/ 2MC.L˝A˝A0
B/�GLr .B˝A0

B/,
for A0 ! B a faithfully flat local isomorphism (so Spec B ! Spec A0 is an open
cover), satisfying the following conditions:

(1) g ? .pr�
1
!/D pr�

0
! 2MC.L˝A˝A0

B˝A0
B/

(2) pr�
02

g D .pr�
01

g/ � .pr�
12

g/ 2 GLr .B˝A0
B˝A0

B/
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An isomorphism from .B; !;g/ to .C; �; h/ is a local isomorphism B˝A0
C !D

with A0!D faithfully flat, together with an element ˛ 2 GLr .D/ such that we have
˛ ?! D � 2MC.L˝A˝A0

D/, with .pr�
0
˛/ �g D h � .pr�

1
˛/ 2 GLr .D˝A0

D/.

Definition 3.15 As in Dwyer and Kan [8], given a simplicial object C in the category
of categories, we define the simplicial set WC by first forming the nerve BC (a
bisimplicial set), then applying the functor W of Definition 1.25, giving

WC WDWBC:

Explicitly,

.W �/n D f.x;g/ j x 2 Ob�n �Ob�n�1 � � � � �Ob�0;

g 2 �n�1.@0xn;xn�1/��n�2.@0xn�1;xn�2/� � � � ��0.@0x1;x0/g;

with operations giving @i.xn; : : : ;x0Ign�1; : : : ;g0/ as8̂̂̂<̂
ˆ̂:
.xn�1; : : : ;x0Ign�2; : : : ;g0/ i D 0;

.@ixn;@i�1xn�1; : : : ; @1xn�iC1;xn�i�1; : : : ;x0I

@i�1gn�1; : : : ; @1gn�iC1; .@0gn�i/gn�i�1;gn�i�2; : : : ;g0/ 0< i < n;

.@nxn; : : : ; @1x1I @n�1gn�1; : : : ; @1g1/ i D n;

and �i.xn; : : : ;x0Ign�1; : : : ;g0/ as

.�ixn; �i�1xn�1; : : : ; �0xn�i ;xn�i ; : : : ;x0I

�i�1gn�1; : : : ; �0gn�i ; idxn�i
;gn�i�1; : : : ;g0/:

Proposition 3.16 The functor W GW dgCN [
Q ! S is representable by an almost

finitely presented derived geometric 1–stack.

Proof We verify the conditions of Theorem 1.31 for BGW dgCN [
Q! S . Homogene-

ity follows immediately, because both MC.L˝�/ and GLr preserve finite limits.
Lemma 3.3 implies that MC.L ˝ �/ is prehomotopic, since for any tiny acyclic
extension A! B with kernel I , it gives the obstruction space as

H2.L˝ I; d C Œ!;��/D
M

n

H2Cn.L˝H0B; d C Œ!;��/˝H0B Hn.I/D 0:

It follows immediately that BG is prehomotopic, and formal quasipresmoothness is a
consequence of the smoothness of GLr .

Now, for A 2 AlgQ , Lemma 3.12 implies that G.A/ is equivalent to the groupoid of
rank r commutative algebras over A. This implies that �0G is a stack, so �0BG is a
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hypersheaf, and it also guarantees that the other conditions relating to G hold, so we
need only verify the cohomological conditions.

For an A–algebra B corresponding to an object ŒB� of G.A/, the results of [6, Sec-
tion 2] imply that

Di
ŒB�.BG;M /Š ExtiC1

A˚B
.LA˚B=A
� ;M ˝A B/;

which has all the properties we require. Here, LA˚B=A denotes the cotangent complex
(in the sense of Illusie [15]) of the unital algebra A˚B over A. This corresponds to
the cotangent complex LB=A in the category of nonunital commutative rings, defined
using the formalism of Quillen [29].

Remark 3.17 Alternatively, we can describe the associated derived geometric 1–
stack explicitly. The functor A 7!MC.L˝A/ is an affine dg scheme, and W G is
just the hypersheafification of the quotient BŒMC.L/=GLr � in the homotopy Zariski
(and indeed homotopy étale) topologies. In the terminology of the author [27], the
simplicial affine dg scheme BŒMC.L/=GLr � is a derived Artin 1–hypergroupoid
representing W G .

Proposition 3.18 For A 2 dgCN [
Q , the space W G.A/ is functorially weakly equiva-

lent to the nerve W G.A/ of the 1–groupoid G.A/ of nonunital graded-commutative
chain A–algebras B in nonnegative degrees for which B˝L

A
H0A is weakly equivalent

to a locally free module rank r over H0A.

Proof The data .!;g/ 2 G.A/ amount to giving a locally free A0 –module M of
rank r (defined by the descent datum g ), and a closed degree �1 differential ı on
the free chain Lie A–coalgebra CLA0

.M Œ�1�/˝A0
A. Note that in the notation of [6,

3.5], RCA.Qr / is the dg scheme representing MC.L˝�/.

The functor ˇ� from Definition 3.11 maps from dg Lie A–coalgebras to nonunital
graded-commutative chain A–algebras, giving us a chain algebra

ˇ�.CLA0
.M Œ�1�/˝A0

A; ı/

over A. Thus we have defined a functor ˇ�W G.A/!G.A/, and Lemma 3.12 implies
that this is a weak equivalence when A 2 AlgQ , so �0G ' �0G.A/.

Now, for A 2 AlgQ , ! 2MC.L˝A/ and an A–module N , a standard calculation
gives

Di
.!;id/.BG;N /Š HiC1.L˝N; d C Œ!; �/;
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which by [6, Section 2] is just ExtiC1
A˚B

.LA˚B=A;N ˝A B/, where B is the nonunital
A–algebra corresponding to ! . By faithfully flat descent, we deduce that if an A–
algebra B is associated to .!;g/ 2 G.A/, then

Di
.!;id/.BG;N /Š ExtiC1

A˚B
.LA˚B=A;N ˝A B/:

Adapting [25, Corollary 3.10 and Example 3.11] to nonunital algebras,

Di
ŒB�.W G;N /Š ExtiC1

A˚B
.LA˚B=A;N ˝A B/;

so f induces isomorphisms on the cohomology groups Di .

As [25, Example 3.11] adapts to nonunital algebras, the functor W G is also rep-
resentable by a derived geometric 1–stack, so the weak equivalence follows from
Remark 1.30.

3.3 Derived moduli of polarised projective schemes

Fix a numerical polynomial h 2QŒt �, with h.i/� 0 for i � 0. We will now study the
moduli of polarised projective schemes .X;OX .1// over an affine base, with OX .1/

ample, for which �.X;OX .n// is locally free of rank h.n/ for n� 0. As in Mum-
ford [19, Lecture 7 Corollary 3], such a polynomial h exists for every flat projective
scheme over a connected Noetherian base.

Note that a Gm –representation M in A–modules is equivalent to an A–linear decom-
position

M D
M
n2Z

M fng;

with � 2Gm.A/ acting on M fng as multiplication by �n . The functors ˇ� and ˇ of
the previous section both extend naturally to Gm –equivariant objects.

Definition 3.19 Given p� 0 and q � p , define a DGLA LŒp;q� over Q by

Ln
Œp;q� WD HomGm

Q

�
CLnC1

� M
q�r�p

Qh.r/
frgŒ�1�

�
;
M

q�r�p

Qh.r/
frgŒ�1�

�
I

this can be identified with the space of Gm –equivariant degree �n Lie coalgebra
derivations of ˇ

�L
q�r�p Qh.r/frg

�
, and this latter description allows us to define

differential and bracket as

dLŒp;q�
.f /D dˇ ıf ˙f ı dˇ; Œf;g�D f ıg�g ıf:
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Definition 3.20 Given p� 0, define the pro-DGLA Lp over Q to be the inverse
system Lp D fLŒp;q�gq , so the underlying DGLA is lim

 �q
LŒp;q� , given by

Ln
p D HomGm

Q

�
CLnC1

�M
r�p

Qh.r/
frgŒ�1�

�
;
M
r�p

Qh.r/
frgŒ�1�

�
;

which can be identified with the space of Gm –equivariant degree �n Lie coalge-
bra derivations of ˇ

�L
r�p Qh.r/frg

�
, the latter of which is regarded as the colimit

lim
�!q

ˇ
�L

q�r�pQh.r/frg
�
.

Given a Q–vector space V , we then define Lp y̋V to be the completed tensor product

Lp y̋V WD lim
 �

q

.LŒp;q�˝V /;

so

.Lp y̋V /n WD HomGm

Q

�
CLnC1

�M
r�p

Qh.r/
frgŒ�1�

�
;
M
r�p

V h.r/
frgŒ�1�

�
:

Definition 3.21 Given A 2 AlgQ , we define a gauge group for Lp y̋A by setting
GLp

.A/ WD
Q

r�p GLh.r/.A/. This has a canonical action on ˇ
�L

r�p Qh.r/.r/
�
˝QA,

so we set adW GLp
! GL.Ln

p/ to be the adjoint action on derivations. Finally,
DW GLp

!L1 is given by D.g/D dˇ �ˇ.g/ ı dˇ ıˇ.g/
�1 .

Lemma 3.22 For any commutative Q–algebra A, the groupoid ŒMC.Lp y̋A/=GLp
.A/�

is naturally equivalent to the groupoid of Gm –equivariant nonunital commutative A–
algebra structures on M

r�p

Ah.r/
frg:

Proof This is just a graded version of Lemma 3.12.

Definition 3.23 Given A 2 dgCN [
Q , define Lp.A/ to be the DGLA

Lp.A/
n
WD

M
i

LnCi
p
y̋Ai

with differential dL˙dA and bracket given by Œv˝a; w˝b�D˙Œv; w�˝ .ab/, where
signs follow the usual graded conventions.
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Definition 3.24 For the DGLA Lp of Definition 3.20, define the groupoid valued
functor GpW dgCN [

Q! Gpd to be the stackification of the groupoid presheaf

A 7! ŒMC.Lp.A//=GLp
.A0/�

in the strict pro-Zariski topology of Definition 2.17.

If we make use of Lemma 2.10, we can describe this explicitly by first setting
A0

0
WD .A0=.

Q
m A0=m//

loc , where m runs over all maximal ideals of A0 , and then
by setting A0 WDA0

0
˝A0

A. Objects of Gp.A/ are then pairs .!;g/ 2MC.Lp.A
0//�

GLp
.A0

0
˝A0

A0
0
/, satisfying the following conditions:

(1) g ? .pr�
1
!/D .pr�

0
!/ 2MC.L.A0˝A A0//

(2) pr�
02

g D .pr�
01

g/ � .pr�
12

g/ 2GLp
.A0

0
˝A0

A0
0
˝A0

A0
0
/

An isomorphism from .!1;g1/ to .!2;g2/ is an element ˛ 2 GLp
.A0

0
/ such that

˛ ?!1 D !2 2MC.Lp.A
0//, with .pr�

0
˛/ �g1 D g2 � .pr�

1
˛/ 2GLp

.A0˝A A0/

Lemma 3.25 For A 2 AlgQ , the groupoid Gp.A/ is canonically equivalent to the
groupoid of nonunital Gm –equivariant commutative A–algebras

B D
M
r�p

Bfrg;

with each A–module Bfrg locally free of rank h.r/.

Proof If we set A0 WD .A=
Q

m A=m/loc , where m runs over all maximal ideals
of A, then Lemma 2.10 shows that any Zariski cover Spec B! Spec A0 must have
a section. Hence locally free A0–modules are free. Lemma 3.22 then implies that
ŒMC.Lp.A

0//=GLp
.A0/� is equivalent to the groupoid of nonunital Gm –equivariant

commutative A0–algebras B0 D
L

r�p B0frg; with each A0–module B0frg locally
free of rank h.r/.

Given an object .!;g/ of Gp.A/, it thus follows that ! corresponds to such an A0–
algebra B0 , while g is a descent datum. This determines a unique A–algebra B with
B0 D B˝A A0 , and isomorphisms behave as required.

Definition 3.26 For A 2 AlgQ , define Mp.A/ to be the full subgroupoid of Gp.A/

whose objects correspond under Lemma 3.25 to finitely generated commutative A–
algebras.

Lemma 3.27 The morphism Mp! �0Gp of groupoid valued functors on AlgQ is
formally étale.
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Proof For any square zero extension A� B of commutative Q–algebras, we need
to show that

Mp.A/!Mp.B/�Gp.B/ Gp.A/

is an isomorphism. This follows because any flat A–algebra C is finitely generated if
and only if C ˝A B is finitely generated as a B –algebra, since any lift of a generating
set for C ˝A B must give a generating set for C .

Lemma 3.28 The functor MpW AlgQ ! Gpd is locally of finite presentation, in
the sense that for any filtered direct system fAigi of commutative Q–algebras with
AD lim
�!i

Ai , the map
lim
�!

i

Mp.Ai/!Mp.A/

is an equivalence of groupoids.

Proof We first show essential surjectivity. Take an object B 2Mp.A/. Since B

is finitely generated, we can choose homogeneous generators xj of degree dj for
1� j � n, giving us a surjection

f W AŒx1; : : : ;xn�� B:

If we let S WD ZŒx1; : : : ;xn�, then I WD kerf is a graded ideal of S ˝A. In the
notation of Haiman and Sturmfels [12], we have a degree functor degW Nn!N given
by .a1; : : : ; an/ 7!

P
i aidi , and the Hilbert polynomial is given by hI D h. By [12,

Corollary 1.2], there is a projective scheme H h
S

over Z with H h
S
.A/ the set of all

graded ideals of S with Hilbert function

hp.i/ WD

(
h.i/ i � p;

0 i < p:

(Note that we do not use Grothendieck’s construction from [10], since that only describes
A–valued points of the Hilbert scheme for A Noetherian.)

In particular, H
hp

S
is of finite presentation, so H

hp

S
.A/ D lim

�!i
H

hp

S
.Ai/. Therefore

there exists Bi 2H
hp

S
.Ai/ with B Š Bi ˝Ai

A. The forgetful functor H
hp

S
!Mp

then ensures that Bi 2Mp.Ai/.

It only remains to show that lim
�!i

Mp.Ai/!Mp.A/ is full and faithful. Now, [12,
Proposition 3.2] shows that the ideal I above is finitely generated, so B is finitely
presented over A. Likewise, any objects Bi ;B

0
i 2Mp.Ai/ will be finitely presented,

which implies that

HomMp.A/.Bi ˝Ai
A;B0i ˝Ai

A/Š lim
�!
j

HomMp.Aj /.Bi ˝Ai
Aj ;B

0
i ˝Ai

Aj /;
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completing the proof.

Definition 3.29 Define MW AlgQ ! Gpd by M.A/ WD lim
�!p

Mp.A/. Likewise,
define

G WD lim
�!
p

GpW dgCN [
Q! Gpd

and �MW dgCN [
Q! Gpd by

�M.A/ WD G.A/�G.H0A/M.H0A/:

Proposition 3.30 For A2AlgQ , M.A/ is equivalent to the groupoid of flat polarised
schemes .X;OX .1// of finite type over A, with OX .1/ ample and the A–modules
�.X;OX .n// locally free of rank h.n/ for all n� 0.

Proof This is fairly standard—the analogue for subschemes is [12, Lemma 4.1]. Given
an object B 2M.A/, there exists p with B lifting to B 2Mp.A/. Therefore we can
define

.X;OX .1// WD Proj .A˚B/:

Replacing B with its image in Mq.A/ (for q > p ) does not affect Proj .A˚B/, so
we have a functor Proj .A˚�/ from M.A/ to polarised projective schemes over A.

For the quasi-inverse functor, take a polarised scheme .X;OX .1// and some p for
which �.X;OX .n// is locally free of rank h.n/ for all n�p . Then define B 2Mp.A/

by

B WD
M
n�p

�.X;OX .n//:

Remark 3.31 Note that the hypothesis �.X;OX .n// be locally free for n� 0 ensures
that X is flat over A. If A is Noetherian, then the proof of Hartshorne [14, III.9.9]
shows that the converse holds, and indeed that if A is connected, then there exists a
Hilbert polynomial h with �.X;OX .n// locally free of rank h.n/ for all n� 0.

Proposition 3.32 If A 2AlgQ and X D Proj .A˚C / for C 2Mp.A/, then for any
A–module M , there are canonical isomorphisms

Di
ŒC �.B

�M;M /Š ExtiC1
X

.LX=BGm˝A;OX ˝A M /;

where L is the cotangent complex of [15].
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Proof Given C 2Mp0
.A/, first let zX WD Spec .A˚C /� f0g, where f0g denotes

the copy of Spec A defined by the ideal C . zX inherits a Gm –action from C (with
trivial action on A), and in fact

zX D SpecX

�M
n2Z

OX .n/

�
;

with X D zX=Gm and zX DX�h
BGm˝A

Spec A. Writing � W zX!X for the projection,
base change gives

��LX=BGm˝A
' L

zX =A:

Since j W zX!Spec .A˚C / is an open immersion, it is étale, so L
zX =A'j �L.A˚C /=A .

For any C –module N , the associated quasicoherent sheaf N ] on X is given by
N ] D .��j

�N /Gm . Now, Lemma 3.28 implies that there exists a finitely generated
Q–subalgebra A0 � A and an object C 0 2Mp0

.A0/ with C D C 0˝A0 A. Since
both Di and Ext are compatible with base change (the former by [26, Lemma 1.15]),
it suffices to show that

Di
ŒC 0�

.B �M;M /Š ExtiC1
X0

.LX0=BGm˝A0

;OX0
˝A0 M /;

where X0D Proj .A0˚C 0/. Replacing A and C with A0 and C 0 , we may therefore
reduce to the case where A is a finitely generated Q–algebra (hence Noetherian).
Because both expressions above commute with filtered colimits of the modules M ,
we may assume that M is a finitely generated A–module.

Since M! �0G is formally étale by Lemma 3.27,

Di
ŒC �.B

�M;M /Š Di
ŒC �.BG;M /:

As A˚ˇ�ˇ.B/ is a cofibrant resolution of A˚B , we have

Di
ŒC �.BG;M /Š lim

�!
p�p0

ExtiC1
A˚Bf�pg

.L.A˚Bf�pg/=A;Bf� pg˝A M /Gm :

Now, the proof of Serre’s Theorem [30, Section 59] still works over any Noetherian
base, so shows that for a finitely generated C –module N and any n 2 Z,

ExtiX .OX .n/;N
]/Š lim
�!
p

ExtiC .C.n/f� pg;N f� pg/Gm :

Indeed, a spectral sequence argument shows that the same is true if we replace C.n/

with any finitely generated C –module L, since L will then admit a resolution by finite
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sums of C.n/’s. In fact, another spectral sequence argument allows us to take a chain
complex L whose homology groups Hi.L/ are finite and bounded below, giving

ExtiX .L
];N ]/Š lim

�!
p

ExtiC .Lf� pg;N f� pg/Gm :

Thus for any fixed p � p0 ,

ExtiX .L
zX =BGm˝A;OX ˝A M /

Š lim
�!
q�p

ExtiA˚Bf�pg..L
.A˚Bf�pg/=A/f� qg;Bf� pg˝A M /Gm :

We can then take the colimit over the poset of pairs .p; q/ with q � p � p0 . Since the
set of pairs .p;p/ is cofinal in this poset, we get

ExtiX .L
zX =BGm˝A;OX ˝A M /

Š lim
�!

p�p0

ExtiA˚Bf�pg.L
.A˚Bf�pg/=A;Bf� pg˝A M /Gm ;

as required.

Proposition 3.33 The functor B �MW dgCN [
Q ! S satisfies the conditions of

Theorem 1.31, and therefore the associated functor W �MW dgCN [
Q!S is representable

by an almost finitely presented derived geometric 1–stack.

Proof We apply Theorem 1.31 to �M. First, note that �0 �MDM, which is a stack,
locally of finite presentation by Lemma 3.28. Proposition 3.30 and Grothendieck’s
formal existence theorem [11, 5.4.5] ensure that for any complete local Noetherian
Q–algebra ƒ, the map

M.ƒ/! lim
 �

n

M.ƒ=mn/

is surjective on objects. That the map is an isomorphism is a consequence of [11, 5.1.4].

Now, homogeneity of B �M is immediate, and Lemma 3.3 gives prehomotopicity. All
the remaining conditions follow from Proposition 3.32, with the same reasoning as for
Proposition 3.16.

Proposition 3.34 For A2dgCN [
Q , the space W �M.A/ is functorially weakly equiva-

lent to the nerve W M.A/ of the 1–groupoid M.A/ of derived geometric 0–stacks X

over BGm�Spec A for which X WDX˝L
A

H0A is weakly equivalent to a flat projective
scheme over H0A, with the polarisation X ! BGm ˝ H0A ample with Hilbert
polynomial h.
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Proof We adapt the proof of Proposition 3.18. An object of Gp.A/ corresponds
to a locally free Gm –equivariant A0 –module N f� pg, with N frg locally free of
rank h.r/, together with a closed degree �1 differential ı on the free chain Lie
coalgebra CLA0

.N Œ�1�/˝A0
A. We may therefore form the DG–scheme

X WD Proj .A˚ˇ�.CLA0
.N Œ�1�/˝A0

A; ı//:

As in [27, Section 6.4], there is a canonical derived geometric 1–stack associated
to X. To give an explicit map from this to BGm , we first let zX WD Spec .A ˚
ˇ�.CLA0

.N Œ�1�/˝A0
A; ı//�f0g, and then form the simplicial scheme

zX�Gm EGm;

which is a simplicial resolution of X , and has a canonical map to the simplicial
scheme BGm . Here, EGm is the universal Gm –space over BGm , given by the
simplicial 0–coskeleton EGm D cosk0Gm , so .EGm/n D .Gm/

nC1 . For an explicit
Artin hypergroupoid representation of X , we could go further and replace zX with its
Čech nerve associated to any open affine cover.

Now, if our object C lies in �Mp � Gp.A/, then C ˝A H0A lies in Mp.H0A/, so
C ˝A H0AD ˇ.B/, for a finitely generated commutative algebra structure B on N .
Since the map

ˇ�ˇ.B/! B

is a quasi-isomorphism, this means that

X˝L
A H0A' Proj .H0A˚B/;

which is a polarised projective scheme with Hilbert polynomial h.

Since Proj is unchanged on replacing N with N f� qg for q > p , we have defined a
functor

˛AW
�M.A/!M.A/:

By [25, Example 3.39], the functor W M is also representable by a derived geometric
1–stack, so we just need to check that W �M ! W M satisfies the conditions of
Remark 1.30.

If A 2 AlgQ , then Proposition 3.30 implies that ˛A is an equivalence of groupoids.
Combining Proposition 3.32 with [25, Corollary 3.32 and Example 3.39], we have
isomorphisms

Di
ŒC �.B

�M;M /Š ExtiC1
X

.LX=Gm˝A;OX ˝A M /Š Di
ŒC �.W

zM;M /;

so Remark 1.30 applies.
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Remark 3.35 Replacing the DGLA Lp with the finite-dimensional DGLA LŒp;q� in
the definitions above gives us a functor �MŒp;q� . Since Lp D lim

 �q
LŒp;q� , we will have�Mp D lim

 �q
�MŒp;q� , and hence �MD lim

�!
p

lim
 �

q

�MŒp;q�:

It is natural to seek an open substack of M on which these limits stabilise. If we define
M.k/ �M to be the open substack consisting of polarised schemes .X;OX .1// for
which OX .k/ is very ample, then we may regard X as a subscheme of Ph.k/ , and so
[5, Theorem 1.2.3(b) and Theorem 1.4.1] imply that for q� p� 0, the maps

M.k/
 M.k/

p !M.k/

Œp;q�

are equivalences of underived stacks.

Moreover, for fixed i , [6, Theorem 4.1.1] implies that for q� p� 0, the maps

Di
ŒC �.B

�M.k/;M / Di
ŒC �.B

�M.k/
p ;M /! Di

ŒC �.B
�M.k/

Œp;q�
;M /

are isomorphisms for all ŒC � and M . This does not give suitable p; q for all i

simultaneously.

However, if we restrict further to the open substack M.k/;LCI�M.k/ of local complete
intersections, then the cotangent complex LX=Gm˝A will be concentrated in chain
degrees Œ0; 1�. Thus Di

ŒC �
.B �M.k/;LCI;M /D 0 for i 62 Œ�1; deg h�, so for q� p� 0,

we have weak equivalences

W �M.k/;LCI
 W �M.k/;LCI

p !W �M.k/;LCI
Œp;q�

of derived stacks, by applying Remark 1.30.

4 Moduli from cosimplicial groups

Since suitable DG Lie algebras can usually only be constructed in characteristic 0, we
now work with cosimplicial groups, which form the first step towards a more general
construction.

4.1 Cosimplicial groups

Definition 4.1 Let cGp be the category of cosimplicial groups, and csGp the category
of cosimplicial simplicial groups.
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4.1.1 Maurer–Cartan

Definition 4.2 Define MCW cGp! Set by

MC.G/ WD Z1.G/D f! 2G1
j �0! D 1; @1! D @2! � @0!g:

Definition 4.3 Define MCW csGp ! S by setting MC.G/ �
Q

n�0.G
nC1/�

n

to
consist of elements .!n/n�0 satisfying

@i!n D

(
@iC1!n�1 i > 0;

.@1!n�1/ � .@
0!n�1/

�1 i D 0;

�i!n D �
iC1!nC1;

�0!n D 1:

Define MCW csGp!Set by MC.G/DMC.G/0 , noting this agrees with Definition 4.2
when G 2 cGp.

Remark 4.4 Note that by the author’s proof of [21, Lemma 3.3],

MC.G/Š HomcS.�;WG/;

for W as in Definition 3.15, where the cosimplicial simplicial set � is given by the
n–simplex �n in cosimplicial level n. Thus MC.G/ D Tot0WG , for TotW cS! S
the total space functor of Goerss and Jardine [9, Chapter VIII], originally defined in
Bousfield and Kan [2, Chapter X].

In fact, we have that W has a left adjoint G (the loop group functor), and also that
MC.G/Š HomcGp.G.�/;WG/. However, W is not simplicial right Quillen, so this
does not equal HomcS.�;WG/D Tot.WG/.

Definition 4.5 Given a cosimplicial group G , define the nth matching object M nG

to be the group

M nG D f.g0;g1; : : : ;gn�1/ 2 .G
n�1/n j � igj D �

j�1gi 8i < j g:

The Reedy matching map Gn!M nG sends g to .�0g; �1g; : : : ; �n�1g/.

There is then a Reedy model structure on scGp (analogous to [9, Section VII.4]) in
which a morphism f W G!H is a (trivial) fibration whenever the canonical maps

Gn
!H n

�M nH M nG

are (trivial) fibrations in sGp for all n� 0.
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Definition 4.6 Given an element G 2 cGp, we define the cosimplicial normalisation
by N n

c G WD Gn \
Tn�1

iD0 ker � i . If G is abelian, then we make NcG into a cochain
complex by setting

dc WD

nX
iD0

.�1/i@i
W N n�1

c G!N n
c G:

Lemma 4.7 A morphism f W G ! H in scGp is a (trivial) fibration whenever the
maps

f n
W Gn

!H n

are all (trivial) fibrations in sGp.

Proof First note that N n
c G D ker.Gn!M nG/. Given .g0;g1; : : : ;gn�1/ 2M nG ,

we can functorially construct a preimage.

First, set g.1/ WD@1g0 ; this has �0g.1/Dg0 . Proceeding by induction, assume that we
have constructed g.r/2Gn with � ig.r/Dgi for all i < r . Set gi.r/ WD �

ig.r/�1 �gi ,
so .g0.r/;g1.r/; : : : ;gn�1.r// 2 M nG , with gi.r/ D 1 for all i < r . Now let
g.r C 1/ WD g.r/ � @rC1gr .r/, noting that this satisfies the inductive hypothesis.

Thus we have an isomorphism GnŠN nG�M nG as simplicial sets, and f W G!H

is therefore a (trivial) fibration whenever N nf W N nG!N nH is a (trivial) fibration
in S for all n. Since N nf is a retraction of f n , the result follows.

Lemma 4.8 If f W G!H is a (trivial) fibration in scGp, then the map

MC.f /W MC.G/!MC.H /

is a (trivial) fibration in S . In particular, if f W G!H is a trivial fibration, then MC.f /
is surjective.

Proof In the proof of [23, Proposition 6.7], a cofibrant object ˆ is constructed in
scGp, with the property that

MC.G/Š Hom.ˆ;G/;

where the simplicial sets Hom come from a simplicial model structure. Since ˆ is
cofibrant, Hom.ˆ;�/ is right Quillen, so has the properties claimed.

Definition 4.9 Define the total complex functor Tot… from chain cochain complexes
(ie bicomplexes) to chain complexes by

.Tot…V /n WD
Y

a�bDn

V b
a ;

with differential d WD d sC .�1/adc on V b
a .
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Lemma 4.10 If A 2 csGp is abelian, then

MC.A/Š Z�1.Tot…N sNcA/;

�nMC.A/Š Hn�1.Tot…��1N sNcA/;

where ��1 denotes brutal truncation in cochain degrees greater than or equal to 1.

Proof This is a fairly straightforward application of the simplicial and cosimplicial
Dold–Kan correspondences. Alternatively, we could appeal to Lemma 4.23, noting
that AD exp.DNcA/.

4.1.2 The gauge action

Definition 4.11 For G 2 scGp, there is an action of the simplicial group G0 on the
simplicial set MC.G/, called the gauge action, and given by writing

.g ?!/n D ..@
1/nC1.�0/

ng/ �!n � .@
0.@1/n.�0/

ng�1/;

as in [21, Definition 3.8], with .�0/
n denoting the canonical map G!G�n

.

Definition 4.12 Given an element G 2 scGp, we then define the Deligne groupoid by
Del.G/ WD ŒMC.G/=G0

0
�. In other words, Del.G/ has objects MC.G/, and morphisms

from ! to !0 consist of fg 2G0
0
j g ?! D !0g.

Define the derived Deligne groupoid to be the simplicial object in groupoids given by
Del.G/ WD ŒMC.G/=G0�, so Del.G/DDel.G/0 .

Define the simplicial sets Del.G/;Del.G/ 2 S to be the nerves BDel.G/, W Del.G/,
respectively.

Lemma 4.13 If A 2 csGp is abelian, then

�nDel.A/Š Hn�1.Tot…N sNcA/;

whereas �1Del.A/Š H0.A0/, with

�0Del.A/Š Z�1.Tot…N sNcA/=dc.A
0
0/:

Proof This is a straightforward consequence of Lemma 4.10.
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4.2 Moduli functors from cosimplicial groups

Proposition 4.14 If GW AlgR ! cGp is a homogeneous functor, with each Gn for-
mally smooth, then the functor

MC.G/W dN [
R! S

is homogeneous and formally quasismooth, so

MC.G/W dN [
R! Set

is homogeneous and prehomotopic.

Proof Homogeneity is automatic, as MC preserves arbitrary limits.

We can extend Gn to a functor GnW dN [
R
! Gp, given by Gn.A/ WDGn.A0/. Then

formal smoothness of Gn implies that the extended Gn is prehomotopic. It is au-
tomatically formally quasipresmooth, as all discrete morphisms are fibrations. Thus
Proposition 1.27 implies that Gn

W dN [
R
! S is formally smooth, and hence formally

quasismooth.

Lemma 4.7 therefore implies that G.A/ ! G.B/ is a (trivial) fibration in scGp
for all (acyclic) square zero extensions A! B , and Lemma 4.8 then implies that
MC.G/.A/!MC.G/.B/ is a (trivial) fibration, as required.

Proposition 4.15 If GW AlgR ! cGp is a homogeneous functor, with each Gn for-
mally smooth, then the functor

Del.G/W dN [
R! S

is homogeneous and formally quasismooth, while

Del.G/W sN [
R! S

is homogeneous, prehomotopic and formally quasipresmooth.

Proof Homogeneity is immediate, combining Proposition 4.14 with the fact that G0 is
homogeneous. Now, take a square zero (acyclic) extension f W A!B in dN [

R
. Since

MC.G/ is formally quasismooth, the map MC.G.A// ! MC.G.B// is a (trivial)
fibration.

Combining [9, Lemma IV.4.8] with [4], this means that

W
�
MC.G.A//=G0.A/

�
!W

�
MC.G.B//=G0.A/

�
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is a (trivial) fibration in S . Now, the map

W
�
MC.G.B//=G0.A/

�
!W

�
MC.G.B//=G0.B/

�
is a pullback of WG0.A/!WG0.B/, which is a (trivial) fibration as G0 is formally
smooth. Composing the two morphisms above, we see that

Del.G/.A/! Del.G/.B/

is a (trivial) fibration, so Del.G/ is formally quasismooth.

Meanwhile, prehomotopicity of Del.G/ follows immediately from prehomotopicity of
MC.G/, while formal quasipresmoothness of Del.G/ is an immediate consequence of
formal smoothness of G0 , by [9, Chapter V].

4.2.1 Cohomology

Definition 4.16 Given a ring A2AlgR , an A–module M , a homogeneous, levelwise
formally smooth functor GW AlgR! cGp and ! 2MC.G.A//, define the cosimplicial
module C�!.G;M / to be the tangent space

Cn
!.G;M / WD T1.G

n;M /

with operations on a 2 Cn
!.G;M / given by

� iaD � i
Ga;

@iaD

(
..@2

G
/n!/.@0

G
a/..@2

G
/n!�1/ i D 0;

@i
G

a i � 1:

Definition 4.17 For G;A;M; ! as above, define

Hi
!.G;M / WD HiC�!.G;M /:

Lemma 4.18 Given A 2 AlgR , M 2 dModA , a homogeneous, levelwise formally
smooth functor GW AlgR ! scGp and ! 2 MC.G0.A//, then the fibre of the map
MC.G.A˚M //!MC.G.A// over ! is canonically isomorphic to MC.C�!.G;M //.

Proof Given ˛ 2MC.C�!.G;M ///, the associated element ˇ 2MC.G.A˚M // is
given by

ˇn WD ˛n.@
2
G/

n! 2 T.@2
G
/n!.G

nC1
n ;M /:
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Lemma 4.19 If GW AlgR ! cGp is a homogeneous, levelwise formally smooth
functor, with A 2 AlgR and M an A–module, then

Di
!.MC.G/;M /Š Di

!.MC.G/;M /Š

(
HiC1
! .G;M / i > 0;

Z1C�!.G;M / i D 0:

Proof By Lemma 4.10, for any L 2 dModA ,

Di
!.MC.G/;L/Š Hi�1.Tot…��1N sNcC�!.G;L//:

Thus we have a spectral sequence

E
i;�j
2
D Hi.��1�j C�!.G;L//D) Di�j�1

! .MC.G/;L/I

in the terminology of [33, Page 142], this is a second quadrant spectral sequence, so is
weakly convergent.

The simplicial abelian group Cn
!.G;L/ is given in level i by Cn

!.G; .L
�i

/0/. More-
over, C!.G;�/ is an exact functor; left exactness follows from homogeneity, and right
exactness from formal smoothness. Thus �j Cn

!.G;L/Š Cn
!.G; �j .L

��/0/.

Now, when dN [
R
D sN [

R
, we have that .L�

n

/0 D Ln , and so .L�
�

/0 D L. When
dN [

R
D dgCN [

R
, then N s.L�

�

/0 is weakly equivalent to L. In either case, we have
�j .L

��/0 Š Hj L, so our spectral sequence is

Hi.��1C�!.G;Hj L//D) Di�j�1
! .MC.G/;L/:

Taking LDM Œ�n�, the spectral sequence degenerates, giving

Hi.��1C�!.G;M //Š Di�n�1
! .MC.G/;M Œ�n�/D Di�1

! .MC.G/;M /;

completing the proof for MC.

Now, T!.MC;�/W dModA ! S preserves fibrations and trivial fibrations. Since
M Œ�j �˚ cone.M /Œ1� j � is a path object for M Œ�j � when j � 1 (recalling that M

is a discrete A–module), this means that T!.MC;M Œ�j �˚ cone.M /Œ1� j �/ must be
a path object for T!.MC;M Œ�j �/. Therefore for j � 1,

�0T!.MC;M Œ�j �/D T!.MC;M Œ�j �/=T!.MC; cone.M /Œ1� j �/;

Dj
!.MC;M /D Dj

!.MC;M /:

The proof for j D 0 is even simpler, since we have that M�n

D M , and so we
conclude that T!.MC;M /D T!.MC;M /.
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Lemma 4.20 If GW AlgR ! cGp is a homogeneous, levelwise formally smooth
functor, with A 2 AlgR and M an A–module, then

Di
!.Del.G//Š Di

!.Del.G//Š HiC1
! .G;M /:

Proof The description of Di
!.Del.G// follows with the same reasoning as Lemma 4.19,

substituting Lemma 4.13 for Lemma 4.10.

Now, there is a morphism

MC.G/ //

��

Del.G/ //

��

BG0

��
MC.G/ // Del.G/ // WG0

of fibration sequences, with the outer maps inducing isomorphisms on Di , and so
Proposition 1.12 gives the required isomorphisms Di

!.Del.G//Š Di
!.Del.G//.

4.3 Denormalisation

Definition 4.21 Given a DGLA L in nonnegative degrees, let DL be its cosimplicial
denormalisation. Explicitly,

DnL WD
M

mCsDn
1�j1<���<js�n

@js � � � @j1Lm;

for formal symbols @j . We then define operations @j and � i using the cosimplicial
identities, subject to the conditions that � iLD 0 and @0v D dv�

PnC1
iD1 .�1/i@iv for

all v 2Ln .

We now have to define the Lie bracket ŒŒ�;��� from DnL˝DnL to DnL. Given a finite
set I of distinct strictly positive integers, write @I D @is � � � @i1 , for I D fi1; : : : ; isg,
with i1 < � � �< is . The Lie bracket is then defined on the basis by

ŒŒ@Iv; @Jw�� WD

(
@I\J .�1/.J nI;InJ /Œv; w� v 2LjJ nI j; w 2LjInJ j;

0 otherwise;

where for disjoint sets S;T of integers, .�1/.S;T / is the sign of the shuffle permutation
of S tT which sends the first jS j elements to S (in order), and the remaining jT j ele-
ments to T (in order). Beware that this formula cannot be used to calculate ŒŒ@Iv; @Jw��

when 0 2 I [ J (for the obvious generalisation of @I to finite sets I of distinct
nonnegative integers).
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Of course, the denormalisation functor above extends a denormalisation functor D

from nonnegatively graded cochain complexes to cosimplicial complexes. The latter D

is quasi-inverse to the normalisation functor Nc of Definition 4.6.

Definition 4.22 Given a pro-nilpotent Lie algebra g, define �U.g/ to be the pro-
unipotent completion of the universal enveloping algebra of g, regarded as a pro-object
in the category of algebras. As in [28, Appendix A], this is a pro-Hopf algebra, and
we define exp.g/� �U.g/ to consist of elements g with ".g/D 1 and �.g/D g˝g ,
for "W �U.g/! k the augmentation (sending g to 0), and �W �U.g/! �U.g/˝ �U.g/ the
comultiplication.

Since k is assumed to have characteristic 0, exponentiation gives an isomorphism
from g to exp.g/, so we may regard exp.g/ as having the same elements as g, but
with multiplication given by the Campbell–Baker–Hausdorff formula.

If L is a DGLA in strictly positive degrees, observe that we can write L as the inverse
limit LD lim

 �n
��nL of nilpotent DGLAs, where ��n denotes brutal truncation. We

may thus regard DL as the pro-nilpotent cosimplicial Lie algebra lim
 �n

D.��nL/, so
we can exponentiate to obtain exp.DL/ WD lim

 �n
exp.D.��nL//.

Lemma 4.23 Given a simplicial DGLA L�� in strictly positive cochain degrees, there
is a canonical isomorphism

MC.exp.DL//ŠMC.Tot…N sL/;

Here, N s is simplicial normalisation (as in Definition 1.1).

Proof This is [23, Theorem 6.23].

Definition 4.24 Given a DGLA L with gauge GL , define the cosimplicial group
D.exp.L/;GL/ as follows:

Dn.exp.L/;GL/ WD exp.DnL>0/ÌGL;

(with GL acting on exp.DnL>0/ via the adjoint action ad), with operations

� i.a;g/D .� ia;g/;

@i.a;g/D

(
.@ia;g/ i > 0;

.@0a � exp..@2/nDg/;g/ i D 0;

for .a;g/ 2Dn.exp.L/;GL/, and Dg 2L1 .
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Remark 4.25 If L is a nilpotent DGLA in nonnegative degrees and GLD exp.L0/ as
in Examples 3.5, then observe that D.exp.L/;GL/Š exp.DL/, with the isomorphism
given in level n by

.a;g/ 7! a � .@1/ng:

The only difficult part of the comparison is checking that the isomorphism preserves @0 .
This follows because for v 2L0 , we have @0v D @1vC dv . Since ŒŒdv; @1v��D 0, this
gives

exp.@0v/D exp.@1v/C d exp.v/

D .1C .d exp.v// exp.�v// � exp.@1v/

D .1CD exp.v// � exp.@1v/

D exp.D exp.v// � exp.@1v/:

Lemma 4.26 Given a simplicial DGLA L with gauge GL for L0 , the isomorphism
MC.D.exp.L/;GL// Š MC.Tot…N sL/ of Lemma 4.23 is GL –equivariant for the
respective gauge actions.

Proof This is a consequence of the proof of [21, Theorem 4.44], which deals with the
case when GL D exp.L0/ is defined as in Examples 3.5.

Corollary 4.27 Given a DGLA L over R, with gauges GL.A/ for L˝RA, functorial
in A 2 AlgR , there are canonical isomorphisms

MC.L˝R �/ŠMC.D.exp.L˝R �/;GL.�//;

ŒMC.L˝R �/=GL.�/�ŠDel.D.exp.L˝R �/;GL.�//

of functors on dgCAlgR .

Thus cosimplicial groups generalise DGLAs, with the added advantage that they can
also give functors on sAlgR , and hence work in all characteristics.

4.4 Sheafification

Another advantage of cosimplicial groups over DGLAs is that they have a good notion
of sheafification.

Definition 4.28 Given some class P of covering morphisms in AlgR and a levelwise
formally smooth, homogeneous functor GW AlgR! cGp preserving finite products, de-
fine the sheafification G] of G with respect to P by first defining a cosimplicial commu-
tative A–algebra .B=A/� for every P–covering A!B , as .B=A/n WDB˝A � � �˝A B
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(nC 1 times), then setting

G].A/D diag lim
�!
B

G..B=A/�/;

where diag is the diagonal functor .diagX /n D X nn from bicosimplicial groups to
cosimplicial groups.

Definition 4.29 Given a groupoid valued functor �W dN [
R
! Gpd, and a class P of

covering morphisms in AlgR , define �]W dN [
R
! Gpd to be the stackification of the

groupoid presheaf � in the strict P–topology of Definition 2.17.

Lemma 4.30 For G and P as above, there is a canonical morphism

Del.G/]!Del.G]/

of groupoid valued functors on dN [
R

, inducing an equivalence

�0Del.G/]! �0Del.G]/:

Proof An object of Del.G/] is a pair .!;g/ 2MC.G.B˝A0
A//�G0.B˝A0

B/,
for A0! B a P–covering, satisfying the conditions

(1) g ? .pr�
1
!/D .pr�

0
!/ 2MC.G.A˝A0

B˝A0
B//

(2) pr�
02

g D .pr�
01

g/ � .pr�
12

g/ 2G0.B˝A0
B˝A0

B/

and we now describe the image of .!;g/.

First, form the cosimplicial A0 –algebra .B=A0/
� as in Definition 4.28. We now map

.B; !;g/ to the object !0 of MC.diagG.A˝A0
.B=A0/

�// given by

!0n WD .pr�01.@
1/nC1

G
g/ � pr�1!n 2GnC1..A�

n

/0˝A0
.B=A0/

nC1/:

An isomorphism from .B; !;g/ to .C; �; h/ is a P–covering B ˝A0
C ! D with

A ! D a P–covering, together with an element ˛ 2 G0.D/ such that we have
˛?! D � 2MC.G.A˝A0

D//, with .pr�
0
˛/ �gD h � .pr�

1
˛/ 2G0.D˝A0

D/. We just
map this to ˛ 2G0.D/.

To see that this induces an equivalence Del.G/].A/!Del.G].A// for A 2AlgR , we
appeal to [23, Lemma 1.21], which shows that objects of

MC.diagG..B=A/�//

correspond to pairs .!;g/ 2MC.G.B//�MC.G0..B=A/�// which satisfy the condi-
tion @1

B
! � @0

G
g D @1g � @0

B
! . Since @1

B
! D pr�

0
! and @0

B
! D pr�

1
! , this amounts to
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saying that g and ! satisfy condition (1) above, while condition (2) is equivalent to
saying that g 2MC.G0..B=A/�/. Morphisms in MC.diagG..B=A/�// are given by
the gauge actions of G0.B0/, so the equivalence of groupoids follows.

Now recall that P–covering morphisms are all assumed faithfully flat.

Lemma 4.31 Take GW AlgR ! cGp satisfying the conditions of Definition 4.28, a
ring A 2AlgR , an A–module M , and an object of Del.G/].A/ represented by .!;g/
for ! 2MC.G.B//. If the maps

H�!.G;M ˝A B/˝B B0! H�!.G;M ˝A B0/

are isomorphisms for all P–coverings B! B0 , then the morphism ˛ of Lemma 4.30
induces an isomorphism

D�.!;g/.BDel.G/];M /! D�˛.!;g/.BDel.G]/;M /:

Proof We begin by calculating the cohomology groups D�
.!;g/

.BDel.G/];M /. It
follows from Lemma 4.20 that these are given by first taking a cosimplicial A–
module K.B0/ given by the equaliser of

C�!.G;M ˝A B0/
pr�

1 //

adgpr�
0

//C�pr�
1
!
.G;M ˝A B0˝A B0/;

then getting
Di
.!;g/.BDel.G/];M /Š lim

�!
B0

HiC1K.B0/;

where B0 ranges over all P–hypercoverings B! B0 .

Now, the requirement that H�! commute with base change ensures that adg gives an
effective descent datum on cohomology, giving an isomorphism

H�K.B0/˝A B0 Š H�!.G;M ˝A B0/:

Thus taking the colimit over B0 does not affect the calculation, so

Di
.!;g/.BDel.G/];M /Š HiC1K.B/:

Meanwhile, g allows us to extend the fork above to form a bicosimplicial complex
LC�.B0=A;C�!.G;M //, with

LCi.B0=A;C�!.G;M //D C�pr�
i
!
.G;M ˝A .B

0=A/i/
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and horizontal cohomology LH0.B0=A;C�!.G;M //DK.B0/. Lemma 4.20 then shows
that

Di
˛.!;g/.BDel.G]/;M /Š lim

�!
B0

HiC1.diag LC�.B0=A;C�!.G;M ///;

and the Eilenberg–Zilber Theorem allows us to replace diag with the total complex
functor Tot.

Now, there are canonical maps K.B/˝A .B
0=A/n! LCn.B0=A;C�!.G;M //, and we

know that these give isomorphisms on cohomology, so

Di
˛.!;g/.BDel.G]/;M /Š lim

�!
B0

HiC1.TotK.B/˝A .B
0=A/�/:

Since Hj ..B0=A/�/D 0 for all j > 0, this becomes

Di
˛.!;g/.BDel.G]/;M /Š lim

�!
B0

HiC1K.B/;

as required.

Remark 4.32 In particular, this means the groupoid valued functor G of Definition 3.29
can be replaced by a functor coming straight from a cosimplicial group valued functor.
Explicitly, set GŒp;q� WDD.exp.LŒp;q�/;GLŒp;q�

/; then G WD lim
�!p

lim
 �q

GŒp;q� satisfies
the conditions of Definition 4.28, so Lemma 4.30 gives a map

G!Del.G]/;

inducing an equivalence on �0 , and isomorphisms on Di for all points of M� �0G .

Remark 4.33 In Definition 4.28, instead of just taking hypercovers A0!B� coming
from P–covering morphisms A0! B , we could have taken the filtered colimit over
the category of all simplicial P–hypercovers Spec zA�! Spec A. This corresponds to
a kind of hypersheafification, rather than just sheafification, and all the results above
still carry over, by faithfully flat descent.

4.5 Derived moduli of G –torsors

We now show how cosimplicial groups can govern derived moduli of torsors. Fix a
smooth algebraic group space G over R, and a Deligne–Mumford stack X over R.

Definition 4.34 Define C�
Ket.X;G/W AlgR ! cGp as follows. Given A 2 AlgR , let

hypKet.X;A/ be the homotopy inverse category whose objects are simplicial étale
hypercovers Y� of X �Spec A. Then set

Cn
Ket.X;G/.A/ WD lim

�!
Y�2hypKet.X ;A/

Hom.Yn;G/:
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Remark 4.35 Since G is finitely presented, we can work just as well with pro-étale
hypercovers. This has the advantage that Lemma 2.13 can be applied to provide a
weakly initial object among simplicial hypercovers, giving a smaller, nonfunctorial,
model for C�

Ket.X;G/.A/.

Lemma 4.36 For A 2 AlgR , the groupoid Del.Cn
Ket.X;G/.A// is equivalent to the

groupoid of G –torsors on X �Spec A.

Proof An object of MC.C�
Ket.X;G/.A// is a descent datum ! 2 Hom.Y1;G/, with

the Maurer–Cartan relations giving the gluing conditions. Thus ! gives rise to an étale
G –torsor B! on X �Spec A, and it is straightforward to check that the gauge action
of Hom.Y0;G/ corresponds to isomorphisms of torsors. Every torsor is trivialised by
some étale cover, so this functor is an equivalence.

Lemma 4.37 Given A 2 AlgR , an A–module M , and ! 2 MC.C�
Ket.X;G/.A//

corresponding to a G –torsor B! on X �Spec A, there are canonical isomorphisms

Hi
!.C
�

Ket.X;G/;M /Š Hi
Ket.X �Spec A;M ˝A adB!/;

where adB! is the adjoint bundle

.g˝R OX ˝R A/�G.OX˝RA/ B! ;

for g the Lie algebra of G , equipped with its adjoint G –action.

Proof First, observe that

G.OX ˝R .A˚M //ŠG.OX ˝R A/Ë .g˝R OX ˝R M /;

which gives functorial isomorphisms

Ci
!.C
�

Ket.X;G/;M /Š lim
�!
Y�

�.Yi ;M ˝A adB!/:

Since étale hypercovers compute cohomology, this gives the required isomorphism.

Proposition 4.38 The functor Del.C�Ket.X;G// is canonically weakly equivalent to the
derived stack of étale derived G –torsors on X from [25, Example 3.38].

Proof Combining Lemma 4.20 and Proposition 4.15 with Remark 1.30, it suffices
to construct a functorial natural transformation from Del.C�Ket.X;G//.A/ to the 1–
groupoid Tors.X;G/.A/ of G–torsors on X � Spec A, and to show that this is an
equivalence for A 2 AlgR , inducing isomorphisms on cohomology groups Di .
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Our first key observation is that for A2 dN [
R

, the ring .A�
n

/0 is a nilpotent extension
of H0A, so its étale site is isomorphic to that of A0 . In particular, every simplicial étale
hypercover of X � Spec .A�

n

/0 is of the form Y�˝A0
.A�

n

/0 , for Y� a simplicial
étale hypercover of X �Spec A0 .

Therefore an element ! 2 MC.C�Ket.X;G/.A// lies in MC applied to the simplicial
cosimplicial group �.Y�˝A0

.A�
�

/;G/ given by .i; j / 7! Hom.Yi ˝A0
.A�

j

/0;G/,
for some simplicial étale hypercover Y� of X �Spec A0 . Now,

MC.�.Y�˝A0
.A�

�

/;G//D HomcS.�;W �.Y�˝A0
.A�

�

/;G//

Š Homs Pr.dN [
R
/.Y� �Spec A0

Spec A;WG/;

where s Pr.dN [
R
/ denotes the category of functors dN [

R
! S .

For a simplicial group � , and W as in Definition 3.15, there is a universal principal
� –space W� over W � , as in [9, Section V.4], given by W� DW Œ�=��, (whereas
W � D W Œ�=��, regarding a group as a groupoid on one object). Thus W� has a
group structure inherited from � , and � D W Œ�=f1g� is a subgroup; the � –action
on W� is then given by left multiplication, with W � D �nW� .

Thus we may associate the G–space P! WD .Y� �Spec A0
Spec A/ �WG WG to ! .

Since G is the derived stack RG associated to G , the derived stack RP! associated
to P! is a derived RG –torsor on R.Y� �Spec A0

Spec A/' R.X �Spec A0
Spec A/, so

we have defined our functor on objects.

Now, the constant group �0 is a simplicial subgroup of � , giving a simplicial group
homomorphism W�0!W� . Moreover, W�0 is the 0–coskeleton cosk0�0 of �0 ,
so HomS.Y;W�0/ Š HomSet.Y0; �0/. From the proof of [21, Proposition 3.9], the
gauge action (Definition 4.11) of Hom.Y0; �0/ on MC.C�.Y; �// D Hom.Y;W �/

corresponds to the right multiplication by W�0 on W � D �nW� .

Hence, given !;!02Homs Pr.dN [
R
/.Y��SpecA0

Spec A;WG/ and g2HomPr.dN [
R
/.Y0;G/

with g ?! D !0 , this means that !0.y/D !.y/ �g.y/�1 . We therefore construct an
isomorphism P!!P!0 by .y; w/ 7! .y; w �g.y/�1/, for y 2 Y��Spec A0

Spec A and
w 2WG .

We have thus constructed a morphism Del.C�Ket.X;G// ! Tors.X;G/. The nerve
of Tors.X;G/ is weakly equivalent to the derived stack Hom.X;BG/ from [25, Ex-
ample 3.38]. Since g D HomR.e

��G=R;R/, the calculation of [25, Example 3.38]
gives

Di
B.Hom.X;BG/;M /Š HiC1

Ket .X �Spec A;M ˝A adB!/:
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On taking nerves, we thus get maps

Del.C�Ket.X;G// Del.C�Ket.X;G//!W Tors.X;G/'Hom.X;BG/;

all of which give isomorphisms on Di and equivalences on �0 . Remark 1.30 thus
shows that

Del.C�Ket.X;G//'W Del.C�Ket.X;G//'Hom.X;BG/:

Remark 4.39 If G D GLr , this gives us a construction for derived moduli of rank r

vector bundles on X . If instead G D SLr , we get derived moduli of determinant 1,
rank r vector bundles.

5 Moduli from quasicomonoids

Although cosimplicial groups can be used to construct derived moduli in all character-
istics for many problems, they are insufficiently flexible to arise in the generality we
need. Instead, we use the quasicomonoids introduced in [23]

5.1 Quasicomonoids

The following is a special case of [23, Lemma 1.5].

Definition 5.1 Define a quasicomonoid E to consist of sets En for n 2N0 , together
with maps

@i
W En

!EnC1; 1� i � n;

� i
W En

!En�1; 0� i < n;

an associative product �W Em �En!EmCn , with identity 1 2E0 , such that

(1) @j@i D @i@j�1 i < j ;

(2) �j� i D � i�jC1 i � j ;

(3) �j@i D

8̂<̂
:
@i�j�1 i < j ;

id i D j ; i D j C 1;

@i�1�j i > j C 1I

(4) @i.e/�f D @i.e �f /;

(5) e � @i.f /D @iCm.e �f /, for e 2Em ;

(6) � i.e/�f D � i.e �f /;

(7) e � � i.f /D � iCm.e �f /, for e 2Em .
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Denote the category of quasicomonoids by QM � .

Example 5.2 Given a cosimplicial group G (or even a cosimplicial monoid G ), there
is an associated quasicomonoid E.G/ given by E.G/n D Gn , with identity 1 2 G0 ,
operations @i

E.G/ D @
i
G
; � i

E.G/ D �
i
G

, and Alexander–Whitney product

g � hD ..@mC1
G

/ng/ � ..@0
G/

mh/;

for g 2Gm; h 2Gn .

5.1.1 Maurer–Cartan We now construct a Maurer–Cartan functor analogous to the
one for cosimplicial groups.

Definition 5.3 Define MCW QM �.Set/! Set by

MC.E/D f! 2E1
j �0! D 1; @1! D ! �!g:

Now let QM �.S/ be the category of simplicial objects in QM � . Then the following
is [23, Definition 3.5].

Definition 5.4 Define MCW QM �.S/! S by

MC.E/�
Y
n�0

.EnC1/I
n

(where I D�1 2 S), consisting of those ! satisfying

!m.s1; : : : ; sm/�!n.t1; : : : ; tn/D !mCnC1.s1; : : : ; sm; 0; t1; : : : ; tn/;

@i!n.t1; : : : ; tn/D !nC1.t1; : : : ; ti�1; 1; ti ; : : : ; tn/;

� i!n.t1; : : : ; tn/D !n�1.t1; : : : ; ti�1;minfti ; tiC1g; tiC2; : : : ; tn/;

�0!n.t1; : : : ; tn/D !n�1.t2; : : : ; tn/;

�n!n.t1; : : : ; tn/D !n�1.t1; : : : ; tn�1/;

�0!0 D 1:

Define MCW QM �.S/ ! Set by MC.E/ D MC.E/0 , noting that this agrees with
Definition 5.3 when E 2QM �.Set/.

Definition 5.5 Given a quasicomonoid E , define the nth matching object M nE to
be the set

M nE D f.e0; e1; : : : ; en�1/ 2 .E
n�1/n j � iej D �

j�1ei 8i < j g:
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The Reedy matching map En!M nE sends e to .�0e; �1e; : : : ; �n�1e/.

Then [23, Definition 3.2] gives a model structure on QM �.S/ in which a morphism
E! F is a (trivial) fibration whenever the canonical maps

En
! Fn

�M nF M nE

are (trivial) fibrations in S for all n� 0.

Lemma 5.6 If f W E! F is a (trivial) fibration in QM �.S/, then the map

MC.f /W MC.E/!MC.F /

is a (trivial) fibration in S . In particular, if f W E!F is a trivial fibration, then MC.f /
is surjective.

Proof This is a direct consequence of [23, Corollary 3.12], which shows that MC is a
right Quillen functor.

Lemma 5.7 There is an equivalence between the category of abelian group objects
in QM � , and the category cAb of cosimplicial complexes of abelian groups.

Proof This is [23, Lemma 4.1]. The equivalence is given by the functor E of
Example 5.2.

Lemma 5.8 For a cosimplicial simplicial abelian group A, there are canonical iso-
morphisms

�nMC.E.A//Š Hn�1.Tot…��1N sNcA/;

where ��1 denotes brutal truncation in cochain degrees greater than or equal to 1, Tot…

is the product total functor of Definition 4.9, and N s and Nc are the normalisation
functors of Definitions 1.1 and 4.6.

Proof This is [23, Proposition 4.12].

5.1.2 The gauge action

Definition 5.9 For E 2QM �.S/, let .E0/�n � E0
n be the submonoid of invertible

elements. There is then an action of the simplicial group .E0/� on the simplicial set
MC.E/, called the gauge action, and given by setting

.g ?!/n D .�0/
ng �!n � .�0/

ng�1;

as in [21, Definition 3.8], with .�0/
n denoting the canonical map .E0/! .E0/�

n

.
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Definition 5.10 Given an element E 2 QM �.S/, define the Deligne groupoid by
Del.E/ WD ŒMC.E/=.E0

0
/�� In other words, Del.E/ has objects MC.E/, and mor-

phisms from ! to !0 consist of fg 2 .E0
0
/� j g �! D !0 �gg.

Define the derived Deligne groupoid to be the simplicial object in groupoids given by
Del.E/ WD ŒMC.E/=.E0/��, so Del.E/DDel.E/0 .

Define the simplicial sets Del.E/;Del.E/ 2 S to be the nerves BDel.E/, W Del.E/,
respectively.

Lemma 5.11 If A is a simplicial cosimplicial abelian group, then

�nDel.E.A//Š Hn�1.Tot…N sNcA/;

whereas �1Del.E.A//Š H0.A0/, with

�0Del.E.A//Š Z�1.Tot…N sNcA/=dc.A
0
0/:

Proof This is [23, Proposition 4.13].

5.1.3 Comparison with cosimplicial groups

Lemma 5.12 Given a simplicial cosimplicial group G , and associated simplicial
quasicomonoid E.G/ as in Example 5.2, there are G0 –equivariant weak equivalences

MC.E.G//'MC.G/

and hence weak equivalences

Del.E.G//' Del.G/

in S , functorial in objects G 2 csGp. Here, the functors MC on the left and right are
those from Definitions 5.4 and 4.3 respectively, while the functors Del are those from
Definitions 5.10 and 4.12.

Proof This is [23, Propositions 6.8 and 6.11].

5.2 Constructing quasicomonoids

5.2.1 Monads

Definition 5.13 A monad (or triple) on a category B is a monoid in the category of
endofunctors of B (with the monoidal structure given by composition of functors).
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Example 5.14 Given an adjunction

D
U

>

//
B

F
oo

with unit �W id!UF and counit "W F U ! id, the associated monad on B is given by
>D UF , with unit �W id!> and multiplication � WD U"F W >2!>.

Definition 5.15 Given a monad .>; �; �/ on a category B , define the category of
>–algebras, B> , to have objects

>B
�
�! B;

such that � ı �B D id and � ı>� D � ı�BW >
2B! B .

A morphism

gW .>B1
�
�! B1/! .>B2

�
�! B2/

of >–algebras is a morphism gW B1! B2 in B such that � ı>g D g ı � .

Example 5.16 Let > WD SymmR be the symmetric functor on ModR , with unit
�M W M!>M given by the inclusion of degree 1 monomials, and �M W >

2M!>M

given by expanding out polynomials of polynomials. Then .ModR/
> is equivalent to

the category of unital commutative R–algebras.

Given a monad .>; �; �/ on a category B , and an object B 2 B , there is a quasi-
comonoid E.B/ given by

En.B/D HomB.>
nB;B/

in .Set;�/, with product g � hD g ı>nh, and for g 2En.B/,

@i.g/D g ı>i�1�>n�i B;

� i.g/D g ı>i�>n�i�1B:

Note that these constructions also all work for a comonad .?; �; "/, by contravariance.
There is even a generalisation to bialgebras for a distributive monad-comonad pair;
see [23, Proposition 2.12].
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Lemma 5.17 Given an object B 2 B , the set of >–algebra structures on B is
MC.E.B//, while Del.E.B// is equivalent to the groupoid of >–algebras overly-
ing B .

Proof This follows immediately from the explicit description in Definition 5.3.

5.2.2 Diagrams

Definition 5.18 Given a category B equipped with a monad >, together with K 2 S
and a map BW K0! ObB , define the quasicomonoid EK .B/ by

En.B=K/D
Y

x2Kn

HomB.>
nB..@0/

nx/;B..@1/
nx//;

with operations

@i.e/.x/ WD e.@ix/ ı>
i�1�>n�i B..@0/nC1x/;

�j .e/.y/ WD e.�j y/ ı>i�>n�i�1B..@0/n�1x/;

.f � e/.z/ WD f ..@mC1/
nz/ ı>me..@0/

mz/;

for f 2Em.B=K/, e 2En.B=K/.

Definition 5.19 Given a category B equipped with a monad >, together with a small
category I and a map BW Ob I! ObB , define the quasicomonoid E.B=I/ by

E.B=I/ WDE.B=BI/;

where BI is the nerve of I .

Lemma 5.20 Given B;>; I and BW Ob I! ObB as above,

MC.E.B=I//

is isomorphic to the set of functors DW I!B> with U D.i/DB.i/ for all i 2 I , where
U W B>! B is the forgetful functor.

Meanwhile Del.E.B// is equivalent to the groupoid of diagrams DW I!B> with D.i/
overlying B.i/ for all i 2 I .

Proof This is [23, Lemma 1.36]. Given ! 2 MC.E.B=I//, the algebra structure
>B.i/!B.i/ is given by !.idW i! i/ 2HomB.>

nB.i/;B.i//, while the morphism
D.f /W D.i/!D.j / is given by !.f W i ! j / ı �B.i/ 2 HomB.B.i/;B.j //.
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Corollary 5.21 Take a category B equipped with a monad >, together with a small
category I and a subcategory J . Assume that we have a functor F W J ! B> , and a
map BW Ob I! ObB extending U Ob F W Ob J ! ObB .

For !F 2MC.E.BjJ=J// corresponding to F in Lemma 5.20, we can form a quasi-
comonoid E by

En
WDEn.B=I/�En.BjJ=J/ f

n‚ …„ ƒ
!F �!F � � � � �!Fg:

Then MC.E/ is isomorphic to the set of functors DW I! B> with U D.i/D B.i/ for
all i 2 I and DjJ D F , while Del.E/ is the groupoid of such functors.

Proof This follows immediately from the observation that MC preserves limits.

Example 5.22 The main applications of these results are to moduli of morphisms. In
that case, I is the category 0! 1, BI Š�1 , and we define E.B0;B1/ WDE.B=I/,
where BW Ob I! B is given by B.i/ WD Bi .

The category J will be ∅, f0g, f1g or f0; 1g, depending on which endpoints we
wish to fix (if any), and so the quasicomonoid E of the corollary is the fibre of
E.B0;B1/!

Q
j2J E.Bj / over products of !j .

Remark 5.23 In [23, Definition 3.25] the construction E.B=I/ (for a simplicial
category B equipped with a monad >) is used to extend the simplicial set MC.E/ to a
bisimplicial set MC.E/. Explicitly, MC.E/n is given by taking I to be the category
associated to the poset Œ0; n�, and setting

MC.E/n WD
a

BW Œ0;n�!ObC

MC.E.B=n//:

By [23, Proposition 5.7], MC.E/ is a Segal space whenever C satisfies suitable fibrancy
conditions. Segal spaces are a model for 1–categories (whereas simplicial sets are a
model for 1–groupoids), and [23, Propositions 5.15 and 5.24] show that Del.E/ is
effectively the core of MC.E/. This means that for all of our moduli constructions
based on quasicomonoids in Section 6, we could construct derived moduli as 1–
categories, rather than just 1–groupoids.

Definition 5.24 Say that an ordered pair B;B0 of objects in B induces fibrant qua-
sidescent data if E.B/ and E.B0/ are fibrant simplicial quasicomonoids, and the
matching maps HomB.>

nB;B0/!M nHomB.>
�B;B0/ are also Kan fibrations for

all n� 0.
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Note that this is the same as regarding B as a simplicial quasidescent datum (in the
sense of [23, Proposition 2.9], then restricting to objects B;B0 , discarding morphisms
B0! B , and requiring that the resulting simplicial quasidescent datum D be fibrant.

Lemma 5.25 Take objects D0;D1 2 B> , with UD0;UD1 2 B inducing fibrant
quasidescent data. Then there is a natural weak equivalence

MC.UD0;UD1/�MC.E.UD0//�MC.E.UD1// f.D0;D1/g ' TotHomB.>
�UD0;UD1/;

where TotW cS! S the total space functor of [9, Chapter VIII], and the cosimplicial
structure on HomB.>

�UD0;UD1/ is the usual cotriple resolution [33, Section 8.7]
defined via the isomorphisms

HomB.>
nUD0;UD1/Š HomB>..F U /nC1D0;D1/:

Proof This is [23, Proposition 5.10].

5.2.3 A bar construction Now fix a simplicial category B equipped with a monad
.>; �; �/ respecting the simplicial structure. Assume that B> is a cocomplete simplicial
category, equipped with a functor S�B> ˝�!B> for which

HomB>.K˝D;D0/Š HomS.K;HomB>.D;D
0//:

Write F W B! B> for the free algebra functor sending M to .�M W >
2M !>M /,

and U W B>!B for the forgetful functor sending .� W >M !M / to M . In particular,
UF D>.

Definition 5.26 Given an object M 2 B and an element ! 2MC.E.B// (for MC as
in Definition 5.4), define ˇ�

F
.M / 2 B> by the property that

Hom.ˇ�F .M /;D/�
Y
q�0

HomB>..�
1/q˝F>qM;D/

consists of � satisfying

�q.t1; : : : ; ti�1; 1; ti ; : : : ; tq�1/D @
i�q�1.t1; : : : ; tq�1/;

�q.t1; : : : ; ti�1; 0; ti ; : : : ; tq�1/D �i�1.t1; : : : ; ti�1/ ıF>i�1!q�i.ti ; : : : ; tq�1/;

� i�q.t1; : : : ; tq/D �q�1.t1; : : : ;min.ti ; tiC1/; : : : ; tq/; 1� i � q;

�q�q.t1; : : : ; tq/D �q�1.t1; : : : ; tq�1/;

where @0 D ��
>q�1M

, @i D F>i�1��
>q�i M

, and � i D F>i�1��
>q�i M

.

Beware that, unlike Definition 5.4, there is no relation for �0 .
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Remarks 5.27 Note that ˇ�
F
.M; !/ is a >–algebra R generated by �q.>

qM ˝Iq/,
subject to various conditions, all of which are linear on generators except for

�q.1; t1; : : : ; tq�1/D U"R ı>�q�1.t1; : : : ; tq�1/:

Also observe that ˇ�
F

defines a functor Del.E.M //! B> .

This construction is inspired by Lada’s bar construction in [7], which uses similar data
to define a bar construction as an object of B , then shows that it carries a canonical >–
algebra structure. However, Lada’s construction only applies when > is an operad and B
is the category of topological spaces, since it uses special properties of both. Beware
that although similar expressions arise in both ˇ�

F
and in Lada’s bar construction, they

are not directly comparable.

Proposition 5.28 Fix B;>;M; ! as above, and take any D 2 B> for which the pair
M;UD induces fibrant quasidescent data (Definition 5.24). Then there is a functorial
weak equivalence between HomB>.ˇ

�
F
.M; !/;D/ and the fibre of

MC.E.M;UD//!MC.E.M //�MC.E.UD//

over .!; �D/, where DD .�D W >UD!UD/, and E.M;UD/ is the quasicomonoid
defined in Example 5.22.

Proof We adapt the proof of [23, Proposition 5.10]. In the notation of [23], we
have D 2 sQDat1 given by D.0; 0/ D E.M /, D.1; 1/ D E.UD/, D.1; 0/ D ∅
and D.0; 1/n D HomB.>

nM;UD/. Using further notation from [23], we can define
A 2 sQDat1 by

A WD .„� alg�1/[„�f1g .alg�0� f1g/;

and we then have

MC.E.M;UD//�MC.E.UD// MC.E.D/0/Š HomsQDat1.A;D/:

Meanwhile, we can construct another object C 2 sQDat1 with C.0; 0/ D „ (so
we have C.0; 0/n D In�1 ), C.1; 1/ D �, C.1; 0/ D ∅ and C.0; 1/n D In , where
I D �1 . The multiplication operation C.0; 0/m � C.0; 1/n! C.0; 1/mn is given by
Im�1 � In! Im�1 � f0g � In . The operations on C.0; 1/ are

@i.t1; : : : ; tn/D .t1; : : : ; ti�1; 1; ti ; : : : ; tn/; 1� i � n;

� i.t1; : : : ; tn/D .t1; : : : ;min.ti ; tiC1/; : : : ; tn/; 0� i < n:

The multiplication operation C.0; 1/m � C.1; 1/n! C.0; 1/mCn is given by

.t1; : : : ; tm; �/ 7! .t1; : : : ; tm; 1; 1; : : : ; 1/:
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Now, the inclusion „D C.0; 0/! C gives a Kan fibration

HomsQDat1.C;D/! HomsQM�.S/.„;E.M //�Hom.alg�0;E.UD//

DMC.E.M //�MC.E.D/0/;

whose fibre over .!;D/ is HomB>.ˇ
�
F
.M; !/;D/. It therefore suffices to show that

HomsQDat1.C;D/�MC.E.UD/0/ fDg 'MC.E.M;UD//�MC.E.UD/0/ fDg

as fibrant objects over MC.E.M //, since taking the fibre over ! yields the required
result.

Now, alg�12 sQDat1 is given by .alg�1/.i; j /nD� for all n and for all 0� i � j � 1,
while .alg�1/.1; 0/D∅. Thus the unique maps C! alg�1 and A! alg�1 are both
weak equivalences, and hence both are cofibrant replacements for alg�1 in the comma
category .alg�0� f1g/#sQDat1 .

If we were to regard D as an object of .alg�0 � f1g/# sQDat1 via the morphism
DW .alg�0� f1g/!D , this means that

HomsQDat1.C;D/�MC.E.UD/0/ fDg ' Hom.alg�0�f1g/#sQDat1.C;D/
' RHom.alg�0�f1g/#sQDat1.alg�1;D/
' Hom.alg�0�f1g/#sQDat1.A;D/
'MC.E.M;UD//�MC.E.UD// fDg;

which completes the proof.

Definition 5.29 Define ?�W B>! B> by the property that

HomB>.?�A;D/Š TotHomB>..F U /�C1A;D/:

Explicitly, we form the simplicial diagram n 7! .F U /nC1A in B> (the cotriple
resolution), then let ?�A be the coendZ n2�

�n
˝ .F U /nC1:

Corollary 5.30 If A;D 2 B> , with UA;UD inducing fibrant quasidescent data, then
there are functorial weak equivalences

HomB>.ˇ
�
F .UA; �A/;D/' HomB>.?�A;D/:

Proof This just combines Lemma 5.25 with Proposition 5.28.
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5.3 Linear quasicomonoids

Definition 5.31 Say that a quasicomonoid A is linear if each An is an abelian group,
with the operations @i ; � i being linear, and �W Am�An!AmCn bilinear. As explained
in [23, Section 4.4], this corresponds to working with the monoidal structure ˝ rather
than �.

Denote the category of linear quasicomonoids by QM �.Ab;˝/, and the category of
simplicial objects in QM �.Ab;˝/ by QM �.sAb;˝/.

Example 5.32 The quasicomonoid E.B/ constructed in Section 5.2.1 is a linear
quasicomonoid whenever B is a preadditive category and > is an additive functor.

Lemma 5.33 Given A 2QM �.Ab;˝/, the normalisation NA has the natural struc-
ture of a (not necessarily commutative) DG ring.

Proof The normalisation is given by .NA/n D An \
Tn�1

iD0 ker � i . If we write 0m

for the additive identity in Am , then define @0; @nC1W An!AnC1 by @0a WD 01 � a,
@nC1a WD a�01 . This makes A into a cosimplicial complex, so NA is a chain complex,
with d W N nA!N nC1A given by

da WD

nC1X
iD0

.�1/i@i :

For a 2 N mA and b 2 N nA, the product a � b lies in N mCnB , and we have that
d.a�b/D .da/�bC.�1/ma�.db/, so NA is indeed a DG ring, with unit 12N 0A.

Definition 5.34 Given a DG ring B in nonnegative cochain degrees with multiplication
denoted by ^, we now define the cosimplicial ring DB. As a cosimplicial complex,
DB is given by the formula of Definition 4.21, with multiplication

.@I a/ � .@J b/ WD

(
@I\J .�1/.J nI;InJ /a^ b a 2LjJ nI j; b 2LjInJ j;

0 otherwise;

for .�1/.S;T / defined as in Definition 4.21.

Lemma 5.35 Given A 2QM �.Ab;˝/, then the quasicomonoid E.DNA/ is isomor-
phic to A (for E as in Example 5.2, regarding DNA as a cosimplicial multiplicative
monoid).
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Proof Since DNAŠA as a cosimplicial complex, it is automatic that we have isomor-
phisms E.DNA/nŠAn , compatible with the structural operations � i ; @i , as well as with
the operations a 7! 01 � a and a 7! a� 01 (corresponding to the additional operations
@0; @nC1 ). Now, since Eilenberg–Zilber shuffles are left inverse to Alexander–Whitney,
it follows that for a; b 2 NA, a �E b D a � b . Since A is spanned by elements of
the form @I a for a 2 NA, the defining equations of a quasicomonoid ensure that
a�E b D a� b for all a; b 2A.

Now, we have that any DG R–algebra B has an underlying DGLA over R, with
bracket Œa; b�D ab� .�1/deg deg bba. If a nonunital DG Q–algebra B is pro-nilpotent
(ie B Š lim

 �n
B=.B/n ), we can thus define a group exp.DN>0B/ as in Lemma 4.23.

Lemma 5.36 For any nonunital pro-nilpotent DG Q–algebra B , there is a canonical
isomorphism

exp.DB/Š 1CDB

of groups.

Proof Since B is pro-nilpotent, DB is as well. The isomorphism is given by evaluating
the exponential in the ring DB, with inverse given by log.

Definition 5.37 Given A 2QM �.Ab;˝/, make .A0/� into a gauge on the DGLA
underlying NA by giving it the obvious adjoint action, and with DW .A0/�!N 1A

given by DaD da � a�1 .

Lemma 5.38 For A 2 QM �.Ab;˝/ with A0 a Q–algebra, there is a canonical
isomorphism

D.exp.NA/; .A0/�/Š .DNA/�A0 .A0/�

of cosimplicial groups.

Proof By applying Lemma 5.36 to N>0A,

D.exp.NA/; .A0/�/n Š .A0/� Ë .1C ker.An
!A0//

D .A0/� Ë .An
�A0 1/ŠAn

�A0 .A0/�;

and this is automatically compatible with the cosimplicial operations in higher degrees.
A short calculation show that it is also compatible with @0; @1W A0!A1 .
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Definition 5.39 Given a simplicial DGLA L, define the simplicial set MC.L/ as fol-
lows. For any simplicial set K , define the simplicial DGLA LK by .LK /n WD .Ln/K ,
defined with the formula of Definition 1.22. Then MC.L/ is given by

MC.L/n WDMC.Tot…N s.L�
n

//;

where the normalisation N s.L/ has a bracket N s.L/im�N s.L/
j
n!N s.L/

iCj
mCn given

by the Eilenberg–Zilber shuffle product [33, 8.5.4].

Proposition 5.40 For A 2 QM �.sAb;˝/, there is a canonical .A0/�–equivariant
weak equivalence

MC.A/'MC.NA/;

of simplicial sets, and hence a canonical weak equivalence

Del.A/'W
�
MC.NA/=.A0/�

�
:

Proof By combining Lemma 4.23 with Lemma 5.38, we have an .A0/�–equivariant
isomorphism

MC.NA/ŠMC..DNA/�A0 .A0/�/:

Now, Lemma 5.12 combines with Lemma 5.35 to give an .A0/�–equivariant weak
equivalence

MC..DNA/�A0 .A0/�/'MC.A�A0 .A0/�/:

Since MC.A�A0 .A0/�/DMC.A/ and Del.A/DW ŒMC.A/=.A0/��, this completes
the proof.

5.4 Moduli functors from quasicomonoids

Definition 5.41 Given a ring A 2 AlgR , an A–module M , a homogeneous, level-
wise formally smooth functor EW AlgR ! QM � and ! 2 MC.E.A//, define the
cosimplicial A–module C�!.E;M / by

Cn
!.E;M / WD T!n.En;M /

with operations on a 2 Cn
!.E;M / given by

� iaD � i
Ea;

@iaD

8̂<̂
:
! � a i D 0;

@i
E

a 1� i � n;

a�! i D nC 1:
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Proposition 5.42 If EW AlgR ! QM � is a homogeneous functor, with each En

formally smooth, then the functor

MC.E/W dN [
R! S

is homogeneous and formally quasismooth, so

MC.E/W dN [
R! Set

is homogeneous and prehomotopic.

Proof This proceeds along the same lines as Proposition 4.14. Homogeneity is
automatic, as MC preserves arbitrary limits.

We can extend En to a functor EnW dN [
R
! Set, given by En.A/ WDEn.A0/. Then

formal smoothness of En implies that the extended En is prehomotopic. It is au-
tomatically formally quasipresmooth, as all discrete morphisms are fibrations. Thus
Proposition 1.27 implies that En is formally smooth, and hence formally quasismooth.

For our next step, there is no analogue of Lemma 4.7 for quasicomonoids, so we have
to work a little harder. We wish to show that MC.E/.A0/!MC.E/.A/ is a (trivial)
fibration for all (acyclic) square zero extensions A0!A. Write C WD H0A, and note
that E.C /DE.C /, so MC.E.C //DMC.E.C // is a set. For any ! 2MC.E.C //,
it thus suffices to show that the morphism MC.E/.A0/! ! MC.E/.A/! of fibres
over ! is a (trivial) fibration.

Now, on the subcategory of dN [#C consisting of nilpotent extensions B!C , define
a functor E! by En

!.B/DEn.B/�En.C /!
n . Thus E!.B/2QM � ; since C�n

DC ,
we also have E!.B/ 2QM �.S/. Now, the crucial observation is that

MC.E/.B/! DMC.E!.B//;

so by Lemma 5.6, it suffices to show that E!.A
0/! E!.A/ is a (trivial) fibration

in QM �.S/.

This amounts to saying that �nW E
n
!!M nE! is formally quasismooth for all n� 0.

In fact, it is formally smooth; we prove this inductively on n. For nD 0, this follows
immediately from the observation above that E0 is formally smooth. If this holds up
to level n�1, then M nE! is also formally quasismooth, being a pullback of formally
quasismooth maps. Since En

! is formally smooth, it follows from Corollary 1.16
that �n will be formally smooth provided

Di
!.E

n;M /! Di
!.M

nE;M /
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is surjective for i D 0, and an isomorphism for i > 0, for all C –modules M . Now,
Lemma 1.28 shows that Di

!.E
n;M /D Di

!.E
n;M /, and similarly for M nE . These

are 0 for i ¤ 0, and D0
!.E

n;M /D Cn
!.E;M /. Hence we need only show that

Cn
!.E;M /!M nC�!.E;M /

is surjective, which follows from Lemma 4.7.

Corollary 5.43 If EW AlgR !QM � is a homogeneous functor, with each En for-
mally smooth, then the functor

Del.E/W dN [
R! S

is homogeneous and formally quasismooth, while

Del.E/W sN [
R! S

is homogeneous, prehomotopic and formally quasipresmooth.

Proof The proof of Proposition 4.15 adapts, if we substitute Proposition 5.42 for
Proposition 4.14.

5.4.1 Cohomology

Definition 5.44 Given a ring A2AlgR , an A–module M , a homogeneous, levelwise
formally smooth functor EW AlgR!QM � and ! 2MC.E.A//, define

Hi
!.E;M / WD HiC�!.E;M /;

for C�!.E;M / as in Definition 5.41.

The following is immediate.

Lemma 5.45 Given a ring A 2 AlgR , an A–module M , a homogeneous, levelwise
formally smooth functor EW AlgR ! QM �.S/ and ! 2 MC.E0.A//, the fibre of
MC.E.A˚M //!MC.E.A// over ! is canonically isomorphic to MC.Cn

!.G;M //.

Lemma 5.46 If EW AlgR ! QM � is a homogeneous, levelwise formally smooth
functor, with A 2 AlgR and M an A–module, then

Di
!.MC.E/;M /Š Di

!.MC.E/;M /Š

(
HiC1
! .E;M / i > 0;

Z1C�!.E;M / i D 1:
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Proof First, observe that there is a constant quasicomonoid ��, given by the one
point set in every level. The element ! thus defines a morphism !�W ��!E.A/ of
quasicomonoids, given by !n in level n, and the fibre product

T!�.E;L/ WDE.A˚L/�E.A/;!� ��

is thus an abelian quasicomonoid, for all L2 dModA . By Lemma 5.7, this corresponds
to a simplicial cosimplicial abelian group, which is just given in simplicial level n by

T!�.E;L/n D C�!.E; .L
�n

/0/:

Therefore
T!.MC.E/;L/ŠMC.T!�.E;L//;

and the result is an immediate consequence of Lemma 5.8.

Lemma 5.47 If EW AlgR ! QM � is a homogeneous, levelwise formally smooth
functor, with A 2 AlgR and M an A–module, then

Di
!.Del.E/;M /Š Di

!.Del.E/;M /Š HiC1
! .E;M /:

Proof The proof of Lemma 4.20 carries over.

5.5 Sheafification

Definition 5.48 Given a cosimplicial diagram C�.E/ in QM � , define the quasi-
comonoid diagC�.E/ by

diagC�.E/n WD Cn.En/;

with operations @i D @i
C@

i
E

, � i D � i
C�

i
E

, identity 1 2 C0.E/, and multiplication

a� b WD .@mC1
C /na�E .@

0
C/

mb;

for a 2 Cm.Em/, b 2 Cn.En/.

Definition 5.49 Given some class P of covering morphisms in AlgR and a level-
wise formally smooth, homogeneous functor EW AlgR ! QM � preserving finite
products, define the sheafification E] of E with respect to P by first defining a
cosimplicial commutative A–algebra .B=A/� for every P–covering A ! B , as
.B=A/n WD B˝A � � � ˝A B (nC 1 times), then setting

E].A/D diag lim
�!
B

E..B=A/�/:
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Lemma 5.50 For E and P as above, there is a canonical morphism

Del.E/]!Del.E]/

of groupoid valued functors on dN [
R

, for sheafification Del.E/] which is defined as in
Definition 4.29. This induces an equivalence

�0Del.E/]! �0Del.E]/:

Proof An object of Del.E/] is a pair .!;g/ 2MC.E.A˝A0
B//�E0.B˝A0

B/� ,
for A0! B a P–covering, satisfying the conditions

(1) g � .pr�
1
!/D .pr�

0
!/�g 2MC.E.A˝A0

B˝A0
B//,

(2) pr�
02

g D .pr�
01

g/ � .pr�
12

g/ 2E0.B˝A0
B˝A0

B/� ,

and we now describe the image of .!;g/.

First, form the cosimplicial A0 –algebra .B=A0/
� as in Definition 5.49. We now map

.B; !;g/ to the object !0 of MC.diagE.A˝A0
.B=A0/

�// given by

!0n WD .pr�0;nC1g/� pr�1!n 2EnC1..A�
n

/0˝A0
.B=A0/

nC1/:

The remainder of the proof now follows exactly as for that of Lemma 4.30.

Now recall that P–covering morphisms are all assumed faithfully flat.

Lemma 5.51 Take EW AlgR!QM � satisfying the conditions of Definition 5.49, a
ring A 2AlgR , an A–module M , and an object of Del.E/].A/ represented by .!;g/
for ! 2MC.E.B//. If the maps

H�!.E;M ˝A B/˝B B0! H�!.E;M ˝A B0/

are isomorphisms for all P–coverings B! B0 , then the morphism ˛ of Lemma 5.50
induces an isomorphism

D�.!;g/.BDel.E/];M /! D�˛.!;g/.BDel.E]/;M /:

Proof The proof of Lemma 4.31 carries over verbatim.
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6 Examples of derived moduli via quasicomonoids

We now show how to apply the machinery of the previous section to construct derived
moduli stacks for several specific examples. The approach is the same as that used to
construct derived deformations by the author in [20; 24], by finding suitable monads to
construct a quasicomonoid, and then taking the Deligne groupoid.

Throughout this section, R will be a G–ring admitting a dualising complex in the
sense of [13, Chapter V]. Examples are Z, any field, or any Gorenstein local ring.

6.1 Finite schemes

For a fixed r 2 N , we now study a quasicomonoid governing finite schemes of
rank r . For any commutative R–algebra A, our moduli groupoid consists of algebra
homomorphisms A! B , with B a locally free A–module of rank r .

In order to construct a quasicomonoid, we take the approach of Section 5.2.1. Let B.A/
be the category of A–modules, and define the monad >A on B.A/ to be SymmA , so
D.A/ WD B.A/>A is the category of commutative A–algebras.

Definition 6.1 Working in B.A/, define Er W AlgR!QM � by setting Er .A/ to be
the quasicomonoid Er .A/ WDE.Ar /, given by

En
r .A/D HomA.>

n
A.A

r /;Ar /:

The following is then just Lemma 5.17 in this context.

Lemma 6.2 For any commutative R–algebra A, Del.Er .A// is canonically isomor-
phic to the groupoid of commutative A–algebra structures on the A–module Ar .

For our next step, note that Del.Er / is not a stack, although the core of D is. However,
the stackification Del.Er /

] in the Zariski topology is equivalent to the subgroupoid of
D.A/ consisting of commutative A–algebras B which are locally free A–modules of
rank r .

Definition 6.3 Define Del.Er /
]W dN [

R
! Gpd to be the stackification of Del.Er /

in the strict Zariski topology of Definition 2.17. Likewise, define the simplicial
groupoid valued functor Del.Er /

] on dN [
R

by stackifying levelwise, so we have
that .Del.Er /

]/n D .Del.Er /n/
] .

Geometry & Topology, Volume 17 (2013)



Constructing derived moduli stacks 1481

Proposition 6.4 The functor W Del.Er /
]! S is representable by an almost finitely

presented derived geometric 1–stack. Moreover,

W Del.Er /
]
'W Del.Er /

]
' Del.Er

]/;

where the last is defined using the quasicomonoid sheafification of Definition 5.49.

Proof For the first statement, we just show that BDel.Er /
] satisfies the conditions

of Theorem 1.31. Corollary 5.43 ensures BDel.Er /
] is homogeneous and prehomo-

topic. It follows from Lemma 5.47 and the cotriple characterisation of André–Quillen
cohomology [33, Section 8.8] that

Di
C .BDel.Er /

];M /Š ExtiC1.LC=A
� ;C ˝A M /;

so the finiteness conditions of Theorem 1.31 all hold, making W Del.Er /
] repre-

sentable.

Similar arguments show that W Del.Er /
] satisfies the conditions of Theorem 1.19,

so is representable by a derived geometric 1–stack. For the first equivalence, we thus
apply Corollary 1.29 to the morphism

BDel.Er /
]
!W Del.Er /

]

coming from the map Del.Er /
]!Del.Er /

] of simplicial diagrams of groupoids.

For the second equivalence, we just use Lemmas 5.50 and 5.51 to show that the
composite map

BDel.Er /
]
! BDel.Er

]/!W Del.Er /
]

satisfies the conditions of Corollary 1.29.

Remark 6.5 Alternatively, we can describe the associated derived geometric 1–stack
explicitly. The functor A 7! MC.Er .A// is an affine dg scheme, .E0

r /
� D GLr ,

and W Del.Er /
] is just the hypersheafification of the quotient BŒMC.Er /=.E

0
r /
�� in

the homotopy Zariski (and indeed homotopy étale) topologies. In the terminology
of [27], the simplicial affine dg scheme BŒMC.Er /=.E

0
r /
�� is a homotopy derived

Artin 1–hypergroupoid representing W Del.Er /
] .

Proposition 6.6 For A 2 sN [
R

, the space Del.Er
]/.A/ is functorially weakly equiv-

alent to the nerve W G.A/ of the 1–groupoid G.A/ of simplicial commutative A–
algebras B for which B ˝L

A
�0A is weakly equivalent to a locally free module of

rank r over �0A.
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Proof For F W sMod.A/! sAlg.A/ the free commutative algebra functor on sim-
plicial A–modules, the functor ˇ�

F
of Definition 5.26 maps from Del.E

]
r /.A/ to

sAlg.A/, functorially in A 2 sN [
R

, and all objects in its image are cofibrant.

When A 2 AlgR , Corollary 5.30 implies that ˇ�
F
.C / is homotopy equivalent to the

cotriple resolution ?�C of C . Thus �0.ˇ
�
F
.C //Š C , and �i.ˇ

�
F
.C ///D 0 for all

i > 0, so we indeed have a functor

ˇ�F W Del.E]
r /.A/!G.A/

for all A 2 sN [
R

(using compatibility with base change). Moreover, this functor is an
equivalence of 1–groupoids when A 2 AlgR .

Now, [25, Corollary 3.10 Example 3.11] and give

Di
ŒB�.W G;N /Š ExtiC1

B
.LB=A;N ˝A B/;

and so ˇ�
F

satisfies the conditions of Remark 1.30, which gives an equivalence
W Del.Er /

]!W G. If we combine this with Proposition 6.4, then we get the required
equivalence Del.Er

]/'W G.

6.2 Coherent sheaves

Take a projective scheme X over R, and fix a numerical polynomial h. We now
consider moduli of coherent sheaves on X with Hilbert polynomial h. In other words,
our underived moduli functor Mh will set Mh.A/ to be the groupoid of coherent
sheaves F on X �Spec A with �.X �Spec A;F.n// locally free of rank n for n� 0.

Definition 6.7 For A 2 AlgR , we now define our base category B.A/ as follows.
First form the category C.A/ of graded A–modules M D

L
n�0 M fng in nonnegative

degrees, then let B.A/ WD pro.C.A//. Explicitly, objects of B.A/ are inverse systems
fM ˛g˛ in C.A/, with

HomB.A/.fM
˛
g˛; fN

ˇ
gˇ/D lim

 �
ˇ

lim
�!
˛

HomC.A/.M
˛;N ˇ/:

If we let S WD
L

n�0 �.X;OX .n//, then there is a monad > on C.A/ given by
>M D S ˝R M , with multiplication �W >2 ! > coming from the multiplication
S ˝R A! S , and unit id!> coming from R! S .

This extends naturally to a monad on B.A/, and we are now in the setting of Section 5.2.1,
since the category D.A/ WD B.A/> of >–algebras is just the pro-category of graded
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S˝R A–modules. We are interested in pro-modules of the form M Df
L

n�pM fnggp ;
for M;M 0 any two such, we get

HomD.A/.M;M 0/D lim
 �

q

lim
�!
p

HomGm

S˝RA
.M f� pg;M 0

f� qg/

Š lim
 �

q

lim
�!
p�q

HomGm

S˝RA
.M f� pg;M 0

f� qg/

Š lim
 �

q

lim
�!
p�q

HomGm

S˝RA
.M f� pg;M 0/

Š lim
�!
p

HomGm

S˝RA
.M f� pg;M 0/;

which ties in with [30].

Definition 6.8 Let Rh 2 B.R/ be the inverse system f
L

n�pRh.n/.n/gp of graded
modules, and form the quasicomonoid Eh.A/ WDE.Rh˝R A/ given by

En
h.A/D HomB.A/.>

n.Rh
˝R A/;Rh

˝R A/:

Lemma 5.17 then implies that Del.Eh.A// is the subgroupoid of D.A/ consisting of
S –module structures on Rh˝R A, and all isomorphisms between them.

For our next step, note that Del.Eh/ is not a stack, although the core of D is. However,
Lemma 3.25 adapts to show that the stackification Del.Eh/

] in the pro-Zariski topol-
ogy is equivalent to the subgroupoid of D.A/ consisting of pro-.S ˝R A/–modules
M D f

L
n�pM fnggp , with M fng locally free of rank h.n/ over A for n� 0.

Now, there is a functor F 7!
L

n�0 �.X;F.n// from coherent sheaves to D.A/, and
the essential image just consists of finitely generated .S ˝R A/–modules.

Definition 6.9 Define MCf .Eh/W AlgR!Set by letting MCf .Eh;A/�MC.Eh;A/

consist of .S ˝R A/–modules isomorphic to finitely generated modules. Next, define
MCf .Eh/W dN [

R
! S by

MCf .Eh;A/ WDMC.Eh;A/�MC.Eh;H0A/ MCf .Eh;H0A/;

with MCf .Eh;A/DMCf .Eh;A/0 .

Likewise, define Delf .Eh/ WD ŒMCf .Eh/=.E
0/��, Delf .Eh/ WD ŒMCf .Eh/=.E

0/��

and Delf .Eh/ WD ŒMCf .Eh/=.E
0/��.
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Definition 6.10 Let E
]

h
be the quasicomonoid sheafification (see Definition 5.49)

of Eh in the pro-Zariski topology, and recall Del.E
]

h
/'Del.Eh/

] from Lemma 5.50.
Define MCf .E

]

h
/�MC.E]

h
/ to be the essential image of Delf .Eh/

] (which consists
of modules isomorphic to finitely generated modules).

Then define MCf .E
]

h
/;MC.E]

h
/;Delf .E

]

h
/;Delf .E

]

h
/ and Delf .E

]

h
/ by adapting

the formulae of Definition 6.9.

Lemma 3.25 adapts to show the substack Delf .Eh/
] of Delf .Eh/

] is equivalent to the
stack Mh.A/ defined at the beginning of the section. Note that MCf .Eh/!MC.Eh/

is formally étale, and so Delf .Eh/ ! Del.Eh/ is also formally étale, as well as
Delf .E

]

h
/!Del.E

]

h
/.

Proposition 6.11 The functor W Delf .Eh/
]!S is representable by an almost finitely

presented derived geometric 1–stack. Moreover,

W Delf .Eh/
]
'W Delf .Eh/

]
' Delf .Eh

]/:

Proof By exploiting the fact that MCf .Eh/!MCf .Eh/ is formally étale, the proof
of Proposition 6.4 carries over. The only substantial differences lie in the calculation
of cohomology,

Di
L.BDel.Eh/

];M /Š ExtiC1
S˝RA

.L;L˝A M /;

and in establishing local finite presentation, which we get from the adaptation of
Lemma 3.28.

Proposition 6.12 For A 2 sN [
R

, the space Delf .Eh
]/.A/ is functorially weakly

equivalent to the nerve of the 1–groupoid Mh of derived quasicoherent sheaves F on
X �Spec A for which

(1) F˝L
A
�0A is weakly equivalent to a quasicoherent sheaf SF on X �Spec�0A,

(2) for all n� 0, �.X �Spec�0A;SF.n// is a locally free A–module of rank h.n/.

Proof Taking F W sB.A/! sD.A/ to be the functor M 7! S ˝R M from simplicial
graded A–modules to simplicial graded S ˝R A–modules, Definition 5.26 gives us a
functor

ˇ�F W Del.E
]

h
/.A/! sD.A/;

preserving cofibrant objects. In particular, if A2AlgR , and L2D.A/ has Lfng locally
free for all n, then ˇ�

F
.L/ is cofibrant, and Corollary 5.30 implies that it is homotopy

equivalent to the cotriple resolution S˝R�C1˝R L of L (as in [33, Section 8.7.1]).
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This ensures that for any A 2 sN [
R

, ˇ�
F

maps objects of Delf .E
]

h
/.A/ to modules

associated to objects of Mh.A/. Explicitly, let zX WD .Spec S/�f0g be the canonical
Gm –bundle over X D Proj S , with � W zX ! X the projection and j W zX ! Spec S

the open immersion. Then our functor Delf .E
]

h
/.A/!Mh.A/ is

.M; !/ 7! ˇ�F .M; !/] D .��j
�1ˇ�F .M; !//Gm :

Now, for any A 2 AlgR , we have

Di
L.BDel.E

]

h
/;M /Š ExtiC1

D.A/.L;L˝A M /I

adapting Serre’s Theorem [30, Section 59] as in the proof of Proposition 3.32, this is
isomorphic to ExtiC1

X�Spec A
.L];L]˝A M /.

The remainder of the proof follows as for the proof of Proposition 6.6, but replacing
[25, Example 3.11] with [25, Theorem 4.12].

Remark 6.13 (Associated DGLAs) Since the functor > D S˝R is linear, our
quasicomonoid Eh.A/ is linear in the sense of Section 5.3, so its normalisation NEh

has the natural structure of a DGLA. We could thus use Proposition 5.40 to rewrite
all these results in terms of the groupoid ŒMC.NEh/=.E

0
h
/��, thereby making them

consistent with the approach of [5].

Remark 6.14 (Quot schemes) If we wished to work with quotients of a fixed coherent
sheaf M on X , there are two equivalent approaches we could take. One is to choose
M 2 D.R/ with M ] D M, and then to replace D.A/ with the comma category
.M ˝R A/#D.A/. The monad > would then be given by >.L/ D .M ˝R A/˚

.S˝A L/, with unit L! S˝A L, and multiplication >2.L/!>.L/ being the map

.M ˝R A/˚ .S ˝R M ˝R A/˚ .S ˝R S ˝R L/! .M ˝R A/˚ .S ˝A L/;

.m1; s1˝m2; s2˝ s3˝ l/ 7! .m1C s1m2; .s2s3/˝ l/:

We would also have to replace MCf .Eh/ with the subset of MC.Eh/ consisting of
finitely generated S˝R A–modules under M ˝R A for which the map M ˝R A!L

is surjective.

The alternative approach would be to work with the construction of Example 5.22, first
forming the quasicomonoid

E WDE.Ah0 ;Ah/�E.Ah0 / fM g;

where h0 is the Hilbert polynomial of M , then taking the subset of MC.E/ cut out by
the finiteness and surjectivity conditions above.

Geometry & Topology, Volume 17 (2013)



1486 J P Pridham

Beware, however, that in both of these approaches, the resulting quasicomonoid is no
longer linear, so cannot naturally be replaced with a DGLA.

6.3 Polarised projective schemes

For a fixed numerical polynomial h 2QŒt �, we will now study the moduli of polarised
projective schemes .X;OX .1//, with OX .1/ ample, for which �.X;OX .n// is locally
free of rank h.n/ for n� 0.

We take B.A/ to be the pro-category of graded A–modules from Section 6.2, with
monad

>D SymmAW B.A/! B.A/:

Setting D.A/ WD B.A/> gives us the pro-category of Gm –equivariant commutative
A–algebras in nonnegative degrees.

Definition 6.15 Let Rh 2 B.R/ be the inverse system f
L

n�pRh.n/.n/gp of graded
modules, and form the quasicomonoid Eh.A/ WDE.Rh˝R A/ given by

En
h.A/D HomB.A/.>

n.Rh
˝R A/;Rh

˝R A/:

Lemma 5.17 then implies that Del.Eh.A// is the subgroupoid of D.A/ consisting of
commutative ring structures on Rh˝R A, and all isomorphisms between them. By
Lemma 3.25, the stackification Del.Eh/

] in the pro-Zariski topology is equivalent to the
subgroupoid of D.A/ consisting of commutative pro-A–algebras BDf

L
n�p Bfnggp ,

with Bfng locally free of rank h.n/ over A for n� 0.

We now proceed as in Definition 6.9, letting MCf .Eh/�MC.Eh/ consist of finitely
generated A–algebras, and so on for MCf .Eh/ etc. Note that MCf .Eh/!MC.Eh/

is formally étale.

Proposition 6.16 For A 2 AlgQ , Delf .Eh.A// is equivalent to the groupoid of flat
polarised schemes .X;OX .1// of finite type over A, with OX .1/ ample and the A–
modules �.X;OX .n// locally free of rank h.n/ for all n� 0.

Proof This is essentially just Proposition 3.30.

Proposition 6.17 The functor W Delf .Eh/
]!S is representable by an almost finitely

presented derived geometric 1–stack. Moreover,

W Delf .Eh/
]
'W Delf .Eh/

]
' Delf .Eh

]/:

Geometry & Topology, Volume 17 (2013)



Constructing derived moduli stacks 1487

Proof The proofs of Propositions 6.4 and 6.11 carry over, substituting the relevant
finiteness properties from Proposition 3.33. In particular, Proposition 3.32 adapts to
show that

Di
ŒC �.Delf .Eh

]/;M /Š ExtiC1
X

.LX=BGm˝A;OX ˝A M /;

where X D Proj .A˚C /.

Proposition 6.18 For A 2 sN [
Q , the space Delf .Eh

]/ is functorially weakly equiva-
lent to the nerve W M.A/ of the 1–groupoid M.A/ of derived geometric 0–stacks X

over BGm�Spec A for which X WDX˝L
A

H0A is weakly equivalent to a flat projective
scheme over H0A, with the polarisation X ! BGm ˝ H0A ample with Hilbert
polynomial h.

Proof This is essentially the same as Proposition 3.34, replacing ˇ� with the functor
ˇ�

F
W Del.Eh.A//! sD.A/ on simplicial objects from Definition 5.26 (constructed

similarly to those of Propositions 6.6 and 6.12).

Remark 6.19 Note that the constructions of Section 5.2.2 immediately allow us to
adapt Eh to work with moduli of diagrams of polarised projective schemes, and in
particular with morphisms of such schemes. For moduli over a fixed base Proj S , an
alternative approach is to replace > with the monad M 7! S˝R SymmAM . Either of
these approaches can be used to construct derived Hilbert schemes (by taking MCf .E/
to be the subset of MC.E/ consisting of finitely generated A–algebras B for which
S ˝R A! B is surjective). Propositions 6.18 and 3.34 ensure that these approaches
give equivalent derived stacks, as does [6].

6.4 Finite group schemes

To study moduli of finite group schemes, we follow the approach of [25, Example 3.41],
by noting that the nerve functor gives a full and faithful inclusion of the category of
group schemes into the category of pointed simplicial schemes.

Given a finite group scheme G over Spec A, with O.G/ WD �.G;OG/ locally free of
rank r , we thus look at the simplicial group scheme BG (for an explicit description, note
this is the same as WG in Definition 3.15). If we write O.BG/n WD�.BGn;OBGn

/, then
O.BG/ is a commutative cosimplicial augmented A–algebra, with O.BG/n locally
free of rank rn .

Lemma 6.20 The functor G 7!BG from group schemes to pointed simplicial schemes
is formally étale.
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Proof A simplicial scheme X� over A is of the form BG if and only if

(1) X0 D Spec A;

(2) for all n > 1 and all 0 � k � n, the maps Xn! HomS.ƒ
n;k ;X / are isomor-

phisms, where ƒn;k ��n is the k th horn, obtained by removing the k th face
from @�n .

Since any deformation of an isomorphism is an isomorphism, the result follows.

We could now combine Section 5.2.2 with Section 6.1 to obtain a quasicomonoid
functor governing moduli of such diagrams, but there is a far more efficient choice.
If A is a local ring, then not only are the modules O.BG/n independent of G : we can
also describe all operations except @0 .

The following is adapted from [21, Definition 3.6].

Definition 6.21 Define xV W sGp! S by setting

xV Gn WDGn�1 �Gn�2 � � � � �G0

with operations

@0.gn�1; : : : ;g0/D ..@0gn�1/
�1gn�2; : : : ; .@

n�1
0 gn�1/

�1g0/;

@i.gn�1; : : : ;g0/D .@i�1gn�1; : : : ; @1gn�iC1;gn�i�1;gn�i�2; : : : ;g0/;

�i.gn�1; : : : ;g0/D .�i�1gn�1; : : : ; �0gn�i ;gn�i ;gn�i�1; : : : ;x0/:

Lemma 6.22 There is a natural isomorphism x�W xV !W .

Proof As in [21, Proposition 3.9], the map x�G W
xV G!WG is given by

x�.gn�1; : : : ;g0/D .gn�1; .@0gn�1/
�1gn�2 : : : ; .@0g1/

�1g0/:

We can therefore replace B with the functor xV , and consider the simplicial scheme xVG ,
which has the property that @0 is the only simplicial operation to depend on the group
structure of G . We now proceed along the same lines as the author [22, Section 5.1].

Definition 6.23 Define �� to be the subcategory of the ordinal number category �
containing only those morphisms fixing 0. Given a category C , define the category
cCC of almost cosimplicial diagrams in C to consist of functors ��! C . Thus an
almost cosimplicial object X � consists of objects X n 2 C , with all of the operations
@i ; � i of a cosimplicial complex except @0 , satisfying the usual relations.
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Definition 6.24 Define the functor F@W cCMod.A/! cMod.A/ from almost cosim-
plicial A–modules to A–modules by

.F@M
�/n DM n

˚M n�1
˚ � � �˚M 0;

with operations

@i.vn; : : : ; v0/D .@
ivn; @

i�1vn�1; : : : ; @
1vn�iC1; 0; vn�i ; : : : ; v1; v0/;

� i.vn; : : : ; v0/D .�
ivn; : : : ; �

1vn�iC1; �
0vn�i C vn�i�1; vn�i�2; : : : ; v0/:

By the argument of [22, Lemma 4.12], we have that F@ is left adjoint to the functor
U@W cMod.A/ ! cCMod.A/ given by forgetting @0 . Moreover, this adjunction is
monadic, so for the monad >@ WD F@U@ , there is a natural equivalence

cMod.A/' cCMod.A/>@ :

In fact, we can go further than this. By [22, Section 5.1], the monad Symm distributes
over >@ , so the composite monad Symm ı>@ is another monad. Moreover,

cAlg.A/' cCMod.A/.Symmı>@/:

We wish to modify this slightly, since we are only interested in augmented cosimplicial
A–algebras, or equivalently nonunital cosimplicial A–algebras (taking augmentation
ideals). We thus replace Symm with SymmC WD

L
n>0 Sn , and set >WDSymmCı>@ .

Then cCMod.A/> is equivalent to the category cNAlg.A/ of nonunital commutative
cosimplicial A–algebras.

Definition 6.25 Define a functor Er W AlgR ! QM � by first forming the almost
cosimplicial module xV .Ar / 2 cCMod.A/ as

xV .Ar /n WDArn

D

n‚ …„ ƒ
.Ar /˝A .A

r /˝A � � � ˝A .A
r /;

with operations dual to the operations of Definition 6.21, but without @0 . We then let
xVC.A

r / WD ker. xV .Ar /!A/, where the A is the constant diagram xV .A0/, so

xVC.A
r /n D ker..@1/nW xV .Ar /n! xV .Ar /0/:

We now set Er .A/ to be the quasicomonoid Er .A/ WDE. xVC.A
r // of Section 5.2.1,

given by

En
r .A/D HomcCMod.A/.>

n
A
xVC.A

r /; xVC.A
r //:
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Definition 6.26 Define Del.Er /
]W dN [

R
! Gpd to be the stackification of Del.Er /

in the strict Zariski topology of Definition 2.17. Likewise, we define the simplicial
groupoid valued functor Del.Er /

] on dN [
R

by stackifying levelwise, so we have that
.Del.Er /

]/n D .Del.Er /n/
] .

Definition 6.27 By Lemma 5.17, MC.Er .A// is equivalent to the groupoid of pointed
simplicial affine schemes X over A for which U@O.X /Š xV .A

r / 2 cCMod.A/. We
then define

MCg.Er .A//�MC.Er .A//

to consist of simplicial schemes of the form BG, for G a group scheme. By Lemma 6.20,
this inclusion of functors is formally étale.

We define Delg.Er /, MCg.Er /, MCg.E
]
r / and so on similarly.

Proposition 6.28 The functor W Delg.Er /
]!S is representable by an almost finitely

presented derived geometric 1–stack. Moreover,

W Delg.Er /
]
'W Delg.Er /

]
' Delg.Er

]/;

where the last is defined using the quasicomonoid sheafification of Definition 5.49.

Proof The proofs of Propositions 6.4 and 6.17 carry over. The only differences lie
in a straightforward check that Delg.Er /

] is locally of finite presentation, and in the
calculation of cohomology groups.

For the comonad ? WD SymmC ıF@U@ on cNAlg.A/, we get a canonical simplicial
resolution ?�S , given by ?nS WD?nC1S . For A2AlgR , the proof of [22, Lemma 5.7]
then shows that A˚ .?�S/

m is a cofibrant resolution of A˚Sm for all m, when-
ever Sm is projective as an A–module. If we set L?� .S/ WD�..A˚?�S/=A/, this
means that the simplicial complex L?� .S/

m is a model for the cotangent complex of
A˚Sm .

If S is levelwise projective as an A–module, then by [22, Lemma 5.8], L?n .S/ is a
projective object of cMod.S/. Thus, for S 2E

]
r .A/, Lemma 5.47 gives that

Di
ŒS �.Delg.Er

]/;M /Š ExtiC1
S

.L?� .S/;S ˝A M /;

which satisfies the finiteness conditions of Theorem 1.19.

Definition 6.29 Given a flat group scheme over a ring A, follow Illusie [16, Sec-
tion 2.5.1] in defining the A–complex �G=A by

�G=A
WD Le�LG=A;
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where eW Spec A!G is the unit of the group structure. This has a canonical G –action,
and we write �G=A for the associated complex on BG.

As in [16, Section 4.1], �G=A is perfect and concentrated in chain degrees 0; 1. We set
!G=A WD H0.�

G=A/, with !G=A the associated sheaf on BG.

Definition 6.30 For a cosimplicial ring S , we make cMod.S/ into a simplicial
category by setting (for K 2 S)

.M K /n WD .M n/Kn ;

as an Sn –module. This has a left adjoint, which we denote by M 7!M ˝K . Given
a cofibration K ,!L in S , we write M ˝ .L=K/ WD .M ˝L/=.M ˝K/.

Given M 2 cMod.S/, define M to be the bicosimplicial complex given in horizontal
level i by M i�

DM ˝�i . Let NcM we the cochain complex in cMod.S/ given by
taking the horizontal cosimplicial normalisation of Definition 4.6.

Lemma 6.31 Given an affine group scheme G over A, with �.G;OG/ locally free of
rank r over A, let S 2Del.Er /

].A/ be the associated cosimplicial ring

Sn
WD ker.�..BG/n;O.BG/n//!A/:

Then for M 2ModA ,

Di
ŒS �.Delg.Er

]/;M /Š ExtiBG.L
BG=A; ker.OBG˝A M !M //:

In particular,

Di
ŒS �.Delg.Er

]/;M /Š ExtiC2
BG .�G=A;OBG˝A M /

for i � 1. For low degrees, there is an exact sequence

0 // HomBG.!
G=A;OBG˝A M / // HomA.!

G=A;M /

D�1
ŒS �
.Del/g.Er

];M / //// Ext1BG.�
G=A;OBG˝A M / // Ext1A.�

G=A;M /

D0
ŒS �
.Del/g.Er

];M / //// Ext2BG.�
G=A;OBG˝A M / // 0:

Proof Write L WD L?� .S/, defined as in the proof of Proposition 6.28, and recall
that this is a projective object of cMod.S/. Observe that in the terminology of [27],
Spec .A˚S/ is a derived fppf 1–hypergroupoid, and a derived Artin 1–hypergroupoid
whenever G is smooth.

If G is smooth, then [27, Proposition 7.21] shows that

ExtiS .TotNcL;S ˝A M /Š ExtiBG.L
BG=A; ker.OBG˝A M !M //;

Geometry & Topology, Volume 17 (2013)



1492 J P Pridham

where Tot is the total complex functor. For general G , the same formula holds,
since [27, Proposition 7.11] only uses the Artin hypothesis to prove that TotNcN sL is
projective, while the descent argument from the proof of [27, Proposition 7.13] works
for all faithfully flat morphisms.

Now, [27, Lemmas 2.18 and 7.4] combine to show that N i
c L is acyclic for i > 1,

while N 1
c L is the pullback to BG of the cotangent complex of a trivial relative derived

1–hypergroupoid. It then follows from [27, Lemma 2.9] that there are canonical
isomorphisms

Ext�S .N
1
c L;P /Š Ext�

S0..N
1
c L/0;P0/

for all P 2 cMod.S/. Since S0 D 0, this means that

ExtiS .TotNcN sL;S ˝A M /Š Exti.L;S ˝A M /:

Thus, combined with the proof of Proposition 6.28, we get

Di
ŒS �.Delg.Er

]/;M /Š ExtiBG.L
BG=A; ker.OBG˝A M !M //:

Finally, LBG=A ' �G=AŒ1�, so the exact sequence 0! S ! A˚ S ! A! 0 of
S –modules gives the required long exact sequence.

Proposition 6.32 For A2 sN [
R

, the space Delg.Er
]/.A/ is functorially weakly equiv-

alent to the nerve W M.A/ of the 1–groupoid M.A/ of pointed derived geometric
1–stacks X over A for which X ˝L

A
�0A is weakly equivalent to the nerve of a flat

rank r group scheme over �0A.

Proof We work along the same lines as Proposition 6.6. As a consequence of
Proposition 6.28 and Remark 1.30, it suffices to construct a natural transformation

ˆW Delg.Er /
]
!M

of 1–groupoids, inducing equivalences on �0 and isomorphisms on Di of the nerves.

Given an object of Delg.Er /
].A/, we get M 2 cCMod.A0/, locally isomorphic

(over A0 ) to xVC.Ar
0
/, together with elements

!n 2 HomcCMod.A0/.>
nC1M;M ˝A0

.AI n

/0/;

which satisfy the Maurer–Cartan relations of Definition 5.4. For the free functor
F W scCMod.A/ ! scNAlg.A/ from simplicial almost cosimplicial A–modules to
nonunital simplicial cosimplicial commutative A–algebras, Definition 5.26 thus gives
us a functor

ˇ�F W Del.Er /
].A/! scNAlg.A/:
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We therefore get a functor �W Del.Eh.A//! scAlg.A/#A to the category of aug-
mented simplicial cosimplicial commutative A–algebras, given by ! 7!A˚ˇ�

F
.!/.

Moreover, it follows from Definition 5.26 that all objects in the image of � are Reedy
cofibrant. If A 2 AlgR and ! corresponds to a group scheme G , then arguing as in
the proof of Proposition 6.6, �.!/ is a cofibrant resolution of O.BG/ as a simplicial
augmented cosimplicial commutative A–algebra. Therefore for arbitrary A 2 sN [

R
,

Spec .�.!/˝L
A �0A/

is a pointed fppf 1–hypergroupoid, and so Spec�.!/ is a pointed derived fppf 1–
hypergroupoid.

We therefore define ˆ.!/ to be the homotopy fppf hypersheafification of Spec�.!/.
By [27, Theorem 4.15], ˆ.!/ is a pointed derived geometric fppf 1–stack whenever
! 2Delg.Er /

].A/. By Toën [31, Theorem 0.1], this is the same as a derived geometric
Artin 1–stack.

When A 2 AlgR , with ! corresponding to G , we have seen that ˆ.!/ is just the
classifying stack BG. For arbitrary A 2 sN [

R
, this means that ˆ.!/˝L

A
�0A is of the

form BG for some flat rank r group scheme G over �0A. Thus ˆ indeed gives a
functor ˆW Delg.Er /

]!M.

The arguments above have shown that �0ˆ is an equivalence, since the space of group
homomorphisms G!G0 corresponds to the space of pointed morphisms BG! BG0 .
To see that ˆ gives isomorphisms

Di
!.BDel.Er /

];M /! Di
ˆ.!/.W M;M /;

we combine Lemma 6.31 with [25, Theorem 3.35].
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