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Random rigidity in the free group

DANNY CALEGARI

ALDEN WALKER

We prove a rigidity theorem for the geometry of the unit ball in random subspaces of
the scl norm in BH

1
of a free group. In a free group F of rank k , a random word

w of length n (conditioned to lie in ŒF;F �) has scl.w/D log.2k � 1/n=6 log.n/C
o.n= log.n// with high probability, and the unit ball in a subspace spanned by d

random words of length O.n/ is C 0 close to a (suitably affinely scaled) octahedron.

A conjectural generalization to hyperbolic groups and manifolds (discussed in the
appendix) would show that the length of a random geodesic in a hyperbolic manifold
can be recovered from the bounded cohomology of the fundamental group.

20P05, 20F67, 57M07; 20F65, 20J05

Dedicated to the memory of Andrew Lange

1 Introduction

Mostow’s Rigidity Theorem says that a homotopy equivalence between closed hyper-
bolic manifolds of dimension at least three is homotopic to an isometry. It follows that
geometric invariants of a hyperbolic manifold have (at least in principle) a purely topo-
logical definition. This is most apparent in Gromov’s famous proof [17] of the Rigidity
Theorem, which proceeds by showing that an obviously topological invariant — namely
the Gromov (or L1 ) norm of the fundamental class in homology — is proportional to
the volume in any hyperbolic metric. As observed by Thurston [28], a similar argument
shows that for any locally symmetric space M modeled on a symmetric space X there
is a constant C.X / so that the norm of the fundamental class kŒM �k1 satisfies

kŒM �k1 D C.X / � vol.M /

However, the determination of the constant C.X / in any given case is extremely
difficult. Haagerup and Munkholm [19] showed for X equal to hyperbolic n–space
Hn that C.Hn/D 1=vn , where vn is the volume of the regular ideal hyperbolic n–
simplex, and Bucher-Karlsson [4] showed that C.H2 �H2/D 3=2�2 . The proofs are
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very hard, and underscore the difficulty of computing the exact values of (nonzero)
Gromov norms.

In this paper we prove a new kind of rigidity theorem for the 2–dimensional relative
Gromov norm (or what is the same thing, the stable commutator length norm) in
a free group F . This is a norm on a vector space BH

1
.F /, the homogenization of

the space B1 of real group 1–boundaries (in the bar complex). The space BH
1

is
infinite dimensional, but its geometry can be probed by restricting attention to finite
dimensional subspaces. Our main theorem is a rigidity result for the geometry of the
unit ball in random finite dimensional subspaces of BH

1
(technically: in subspaces

spanned by random elements of fixed length). We show that these unit balls are (suitably
scaled) C 0 close to octahedra (ie, the unit ball in Rk with its usual L1 norm). We
also determine the exact scaling constant, and show that it has a simple expression in
terms of the growth exponent of the free group (ie, the entropy of the Markov process
that generates random reduced words). We concentrate in this paper on the case of free
groups for clarity of exposition, but similar results should hold for random words in
arbitrary hyperbolic groups, or random geodesics in negatively curved manifolds, with
an analogous formula for the scaling constant. We explain the idea of this generalization
in an appendix, but save the details for a follow-up paper.

Recall that stable commutator length is an algebraic stabilization of the topological
notion of filling genus. If X is a space, and �W

`
i S1!X is a homologically trivial

1–manifold, the filling genus of � is the least genus of a surface S mapping to X

whose boundary represents the homotopy class of � . The stable commutator length
scl.�/ is the infimum of ��.S/=2n over all n and all surfaces S mapping to X whose
boundary represents a cover y� of � of degree n. If G is a group and X is a space
with �1.X /DG , loops in X correspond to conjugacy classes in G , and the geometric
definition given above defines in a natural way a pseudo-norm on B1.G/, the space
of (real) 1–boundaries; ie, finite formal real linear combinations of elements in G

representing 0 in (real) homology. For G a hyperbolic group, scl descends to a norm
on a suitable homogenized quotient BH

1
.G/ WD B1=hg � hgh�1;gn � ngi. Precise

definitions are given in Section 3.

Our first main theorem concerns the stable commutator length of a random element
of ŒF;F � of prescribed length n (we assume without comment that n is even, since a
reduced element of odd length is never in ŒF;F �). Here “random” means with respect
to the uniform probability on the finite set of reduced words of length n in ŒF;F � (when
n is even). For clarity, we frequently use the standard Landau “big O /little o” notation,
so the expression O.g.x// denotes some function f .x/ satisfying f .x/� C jg.x/j

for some positive constant C and for all x� 0, the expression ‚.g.x// denotes some
function f .x/ satisfying C1g.x/�f .x/�C2g.x/ for some positive constants C1;C2
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and for all x � 0, the expression o.g.x// denotes some function f .x/ satisfying
limx!1 f .x/=g.x/D 0, and so on. See eg [21] for a reference.

Random Rigidity Theorem 4.1 Let F be a free group of rank k , and let v be a
random reduced element of length n, conditioned to lie in the commutator subgroup
ŒF;F �. Then for any � > 0 and C > 1,

j scl.v/ log.n/=n� log.2k � 1/=6j � �

with probability 1�O.n�C /.

In particular, this implies that scl.v/ log.n/=n converges in probability to log.2k�1/=6

as n!1.

In more geometric language, we derive strong control on the geometry of the unit ball
in the scl norm in a random subspace.

Random Norm Theorem 4.16 Let F be a free group of rank k , and for fixed d ,
let v1; v2; : : : ; vd be independent random reduced elements of length n1; n2; : : : ; nd

conditioned to lie in ŒF;F �, where without loss of generality we assume n1 � ni for
all i . Let V be the subspace of BH

1
.F / spanned by the vi . Then for any � > 0;C > 1

and real numbers ti ,ˇ̌̌
scl
�X

tivi

�
log.n1/=n1� log.2k � 1/

�X
jti jni

�
=6n1

ˇ̌̌
� �

with probability 1�O.n�C
1
/.

In words: the unit ball in the scl norm scaled by n1= log.n1/ converges to the unit
ball in the norm k

P
tivik D

P
jti jni=n1 in the C 0 topology and in probability, as

n1!1. If ni D n1Co.n1/ for all i , the unit ball is C 0 close to a (scaled) octahedron.

It is worth remarking that the speed of convergence is very slow. Our asymptotic
theorems depend on the distribution of the subwords of a random word at a particular
characteristic scale: for a word of length n, we focus on the subwords of length
O.log.n//. There are some “boundary effects” that suggest a heuristic correction to
our asymptotic formula, which becomes insignificant only when log.n/ is sufficiently
large. Computer experiments (described in Section 6) show this heuristic correction to
be in very good agreement with reality. However we are not able to rigorously justify
this observation nor obtain a precise asymptotic estimate of the error.
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2 The random reduced word

2.1 Reduced words

Fix a free group F of rank k and a free generating set. The generators will be denoted
a; b; c and so on, and their inverses by A;B;C .

We are interested in random reduced words conditioned to lie in the commutator
subgroup. This is a complicated (non-local) condition to impose on a word. Fortunately,
there is a nice estimate, due to Sharp, of the relative proportion of words of length n in
ŒF;F �.

Theorem 2.1 (Sharp [26, Theorem 1]) Let F be a free group of rank k � 2. Let Fn

denote the set of elements of F of length n, and let F 0n D Fn\ ŒF;F �. If n is odd, F 0n
is empty, whereas there is an explicit constant � depending on k so that

lim
n!1;
n even

ˇ̌̌̌
�knk=2 jF

0
nj

jFnj
�

2

.2�/k=2

ˇ̌̌̌
D 0;

where the limit is taken over even positive integers n.

This theorem has the following consequence. Suppose that a random element of Fn

has some property P with probability 1� o.n�k=2/. Then a random element of F 0n
has property P with probability 1� o.1/. In practice, we are interested in properties
of random elements in Fn that hold with probability 1�O.C�nc

/ for some constants
C > 1; c > 0, or with probability 1�O.n�C / for all C > 0, and Sharp’s theorem is
the fundamental tool that lets us draw conclusions about random elements of F 0n .

In the sequel we use the following notation consistently, where possible. We let v
denote a random reduced word of length n, and let m.n; k/ (or just m for brevity) be
defined by m.n; k/ WD log.n/= log.2k � 1/. There is a stationary Markov process that
produces random reduced words in F with the uniform probability, and log.2k�1/ is
the entropy of this process.
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2.2 Phase transition

The constant m D log.n/= log.2k � 1/ is a natural length scale on which to view
subwords of a random word of length n. A random word of length 100 like

bbbbaBAbAABaBaabbabbaBAABBAABBAbabAAbbABBBAbaaaaBAAbbABaBabaBaBAbAABBBBaBabbaaBAAABaBabAbABaaaabbbAA

does not look homogeneous to the naked eye; the long strings of capital letters leap out
and draw the reader’s attention to specific locations in the word. The meaning of the
scale m is that a random word of length n (for sufficiently large n) looks homogeneous
on scales smaller than m, and heterogeneous on scales larger than m. However for
this phase transition to become truly apparent, one must take n very large, so that
m� log.n/� 1.

One way to quantify this distinction is to fix a length ` and compute some statistic
associated to the set of subwords of v of length `. Each subword is an element of F`
(the set of elements of F of length `), and a natural number to count is

A`.v/ WD
1

2n

X
w2F`

ˇ̌
copies of w in v� copies of w�1 in v

ˇ̌
:

If v is cyclically reduced, and one counts copies in the cyclic word v , then A`.v/2 Œ0; 1�

with A`.v/D 1 if and only if no inverse pair of subwords of length ` appear. There is
a phase transition in A` : for `D Lm for some fixed L < 1 we have A`.v/! 0 in
probability, whereas for `DLm for some fixed L> 1 we have A`.v/! 1. This is
proved in Sections 2.4–2.5.

For words of length nD 10000 in rank kD 2 we have log.n/= log.2k�1/� 8:383613.
We compute A`.v/ for a random word v in ŒF;F � of length 10000 for 1 � ` � 11

(there are 236196 reduced words of length 11). This data is presented in Figure 1.
Note that conditioning v to lie in ŒF;F � forces A1.v/D 0. The figure hints at a phase
transition at `�m but for it to be really sharp, one would need to take something like
n� googol.

A`.v/

0

1

`
1 6 11m

Figure 1: Values of A`.v/ for v a random word of length 10000 and 1� `� 12
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2.3 Counting functions and counting measures

We use the notation Fi ;F<i ;F�i and so on for the set of elements in F of length
i , less than i , at least i , respectively. A random word of length n is an element of
Fn , chosen with the uniform probability measure. Note that the cardinality of Fn is
.2k/.2k � 1/n�1 , so jFLmj � nL .

Although it does not add much technically, we think of F as a measure space, with
the Borel algebra consisting of all subsets. Consequently any function f on F is
measurable, and a function f is in L1.F / if and only if

P
g2F jf .g/j<1.

Definition 2.2 For a reduced word � , the counting function C� is defined by

C� .v/D number of copies of � in v

and the counting measure C.v/ is the measure on F of total mass jvj.jvj � 1/=2 for
which C.v/.�/D C� .v/.

For f a measurable function on F , define

Cf .v/D

Z
F

f dC.v/

and define Hf .v/ WD Cf .v/�Cf .v
�1/.

2.4 Accurately estimating C� .v/

If v is a random word of length n, and � is a random word of length Lm where
L < 1, we need to estimate C� .v/. Since v contains n � j� j C 1 subwords of
length j� j, the “expected” number of copies of � in v is .n � j� j C 1/=jFj� jj D

n1�L.2k/=.2k�1/˙O.log.n//. If subwords were independent, one would expect the
deviation from this expected value to be typically of order n.1�L/=2 , and to be of order
n�C.1�L/=2 only with exponentially vanishing probability. This is what we prove:

Proposition 2.3 Let L< 1. Then for any � > 0 there are constants C > 1 and c > 0

so that:

P
�ˇ̌

C� .v/� n=jFLmj
ˇ̌
< n�C.1�L/=2 for all � 2 FLm

�
D 1�O.C�nc

/

Proof The strategy is as follows. We first show that for each fixed word � of length
Lm the inequality P.jC� .v/� n=jFj� jjj< n�C.1�L/=2/D 1�O.C�nc

/ holds. Since
there are only O.nL/ < n words of length Lm, it will follow that the desired estimate
will hold for every � 2 FLm with probability 1�O.nC�nc

/. Absorbing the n factor
into the constants C and c , we will be done.
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Choose some constant N (we will decide on the exact value of N later). For each
residue class j mod N m, let vj ;i be the subword of v of length Lm that starts at the
j C iN mth letter of v . The point is that for fixed j , the vj ;i for consecutive i are
“almost” independent. This is made precise in the following lemma:

Lemma 2.4 For any two words x , y of length j� j, there is an equality:ˇ̌
P.vj ;i D x j vj ;i�1 D y/� 1=jFj� jj

ˇ̌
� .2k � 2/�.N�1/m:

Proof Let yuz be the subword of v starting at y , where u has length .N � 1/m.
The number of words u of fixed length for which yuz is reduced depends only on the
length of u, the last letter of y , and the first letter of z . For any single letters a; b we
let um.a; b/ denote the number of reduced words of the form aub of length mC 2.
We show by induction on m that the following two statements are true:

(1) um.a; b/D um.a; c/ if neither of b; c are equal to a�1mC1

.

(2) jum.a; a
�1mC1

/=um.a; b/� 1j � .2k � 2/�m .

Since u1.a; b/D .2k � 2/ if b ¤ a and u1.a; a/D .2k � 1/ this is true for mD 1.

Assume it is true for .m� 1/ odd (for example). Then depending on the first letter of
u we have two cases (by the induction step), and we deduce

um.a; b/D um�1.b; b/C .2k � 2/um�1.c; b/ for b ¤A; c ¤ b;

um.a;A/D .2k � 1/um�1.c;A/ for c ¤A;

and the induction step is proved. The case .m� 1/ even is analogous. The lemma
follows.

We resume the proof of Proposition 2.3. By Lemma 2.4, the probability that vj ;i D �
conditioned on the value of vj ;i�1 is very nearly independent of the value of vj ;i�1 ,
so we can compare the number of � ’s among the vj ;i (for fixed j ) with a sum of
independent Bernoulli variables, and estimate the deviation from the mean using the
Chernoff bound. Let C�;j .v/ be the number of copies of � among the vj ;i .

Lemma 2.5 Suppose N � 3. For each j , and for any positive � , there is an inequality:

P
�ˇ̌

C�;j .v/� n=.N m � jFj� jj/
ˇ̌
> n�C.1�L/=2

�
DO.C�nc

/:

Proof By Lemma 2.4, the conditional probability that successive vj ;i are equal to � is
never more than 1=jFj� jjC.2k�2/�.N�1/m , or less than 1=jFj� jj�.2k�2/�.N�1/m .
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So we can bound the probability of a large deviation in terms of such large deviations
for sums of independent Bernoulli trials.

Since .2k�2/�.N�1/m�n�0:6.N�1/ (using the estimate log.2k�2/= log.2k�1/>0:6

for k � 2), when N � 3 we have .2k � 2/�.N�1/m � n�1 .

We have the Chernoff bound (eg the upper bound in [27, Theorem 1.3.13])

P.jSn� npj � ınp/� e�ı
2np=3;

where Sn is a sum of n independent Bernoulli random variables with parameter p .
Using pC D n�L.2k � 1/=.2k/C n�0:6.N�1/ < n�L , we obtain:

P
�
C�;j .v/� n=.N m � jFj� jj/� n1�0:6.N�1/=N m� ınpC=N m

�
� e�ı

2npC=3N m:

Since N mDO.log.n// and n1�0:6.N�1/=N m< 1, taking ı D n��.1�L/=2N m, this
implies

P.C�;j .v/� n=.N m � jFj� jj/� n�C.1�L/=2/�O.C�nc

/;

where C > 1, c > 0 depend only on � .

A similar inequality holds for n=.N m � jFj� jj/�C�;j .v/.

We now complete the proof of Proposition 2.3. Since j was arbitrary, it follows that
every C�;j .v/ deviates from n=.N m � jFj� jj/ by at most n�C.1�L/=2 , with probability
at least 1�N m �O.C�nc

/ which is still 1�O.C�nc

/. Hence

C� .v/D
X

j

C�;j .v/

deviates from n=jFj� jj by at most N m � n�C.1�L/=2 < n�
0C.1�L/=2 with the same

probability. The proposition follows.

In Appendix A, we compare this result with Chernoff-type inequalities for nonreversible
Markov chains obtained by Lezaud, Dinwoodie and others, and interpret such bounds
in terms of the Cheeger constants of certain directed graphs.

2.5 Bounding
P

� C� .v
�1/

We now turn our attention to words of length greater than m. Fix some L> 1, and let
S be the set of subwords of v of length Lm.

Geometry & Topology, Volume 17 (2013)
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Proposition 2.6 For any � there are constants C > 1 and c > 0 so that

P
�X
�2S

C� .v
�1/ < n2�LC�

�
D 1�O.C�nc

/:

In particular, for � < L� 1, with probability 1�O.C�nc

/ there is a subset S 0 of S

with
card.S �S 0/ < n2�LC�

D o.n= log.n//

so that no element � 2 S 0 appears in v�1 .

Remark 2.7 Note that we think of S just as a set, not a set with multiplicity. For
applications, it will be important to show that the cardinality of S is close to n with
probability 1�O.C�nc

/; we show this as Proposition 2.11.

Remark 2.8 The set of words of length Lm has cardinality of order nL , so the subset
S has measure of order n1�L . If we fix in advance any subset S of FLm of measure
n1�L , a robust Chernoff-type bound for Markov chains due to Lezaud (see Appendix
A) gives a bound on

P
�2S C� .v

�1/. However this estimate cannot be applied naively
to our context, since S depends (very strongly) on v .

Proof It is awkward to find a purely probabilistic proof of this estimate, because
overlapping subwords of v are necessarily very highly correlated. The non-proba-
bilistic ingredient in our proof is the following simple, but important observation:

Lemma 2.9 Let v be a reduced word. Then for any reduced word � , no copy of � in
v can overlap a copy of ��1 .

Proof If � overlaps ��1 , then without loss of generality we can write � as xy where
y D y�1 . But this is absurd.

Now, for each i , let vi be the subword of v of length Lm starting at the i th letter, and
let v<i and v>i denote the part of v outside vi , so that vD v<iviv>i as a reduced word.
Further, let S<i (respectively, S>i ) denote the subset of S consisting of subwords of
length Lm in v<i (respectively, v>i ). By Lemma 2.9,X

�2S

C� .v
�1/D

X
i

X
�2S<i

C� .v
�1
i /C

X
i

X
�2S>i

C� .v
�1
i /:

The point is that we can bound
P
�2Si

C� .v
�1
i / in probability conditioned on v<i ,

independently of v<i .
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Lemma 2.10 For any � ,

P
� X
�2S<i

C� .v
�1
i /D 1 j v<i

�
< n1�LC�:

Proof Note that X
�2S<i

.v�1
i /

is 1 or 0, depending on whether v�1
i is in the set S<i or not. No matter what v<i

is, there are .2k � 1/Lm > nL�� choices for vi , and each occurs with the uniform
probability. The cardinality of S<i is at most i which is less than n, so the chance
that v�1

i is in S<i is at most n1�LC� , as claimed.

It follows that if we fix a residue j mod Lm, for any � there are C > 1, c > 0 such
that we can estimate

P
� X

iDj mod Lm

X
�2S<i

C� .v
�1
i /� n2�LC�=Lm

�
<O.C�nc

/:

Summing over all residue classes j , and then replacing S<i by S>i by symmetry
proves the proposition.

As remarked above, it is important for applications to show that the cardinality of S is
very close to n, with high probability.

Proposition 2.11 Fix L> 1 and let S denote the set of subwords of v of length Lm.
There is an � and C > 1, c > 0 so that

P.n� card.S/ > n1��/DO.C�nc

/:

Proof The proof is almost the same as that of Proposition 2.6, except that we need to
estimate the number of � for which some copy of � overlaps itself, and show this is
less than n1�� for some � with the desired probability.

There are two kinds of overlaps to consider: those for which the nonoverlapping initial
segment of the first word has length less than 2m=3 (“big overlaps”) and those for
which it has length at least 2m=3 (“little overlaps”). We count the number of each
independently.

A big overlap results in a subword of the form wuw where the length of w is at least
m=6 and the length of u is at least m=6. Conditioned on w and u, the probability
that the next word will be a copy of w is at most n�1=6 , so there are at most n5=6

Geometry & Topology, Volume 17 (2013)
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subwords of v that are contained in a big overlap. A little overlap results in a subword
of the form ww where the length of w is at least 2m=3. Again, conditioned on w , the
probability that the next word will be a copy of w is at most n�2=3 so there are at most
n1=3 subwords of v that are contained in little overlaps. Each subword is contained in
at most LmDO.log.n// overlaps of either kind. The result follows.

3 Stable commutator length

The material in this section is standard. A basic reference is Calegari [5].

3.1 Definitions

Definition 3.1 Let G be a group, and ŒG;G� the commutator subgroup. The commuta-
tor length of an element g 2 ŒG;G�, denoted cl.g/, is the least number of commutators
whose product is g , and the stable commutator length, denoted scl.g/, is the limit
scl.g/ WD limn!1 cl.gn/=n.

The definition of (stable) commutator length can be extended to finite formal sums as
follows:

Definition 3.2 Let G be a group, and let fgig be a finite collection of elements withQ
i gi 2 ŒG;G�. Define cl.

P
gi/ to be the minimum of cl.

Q
g

hi

i / over all products of
conjugates g

hi

i of the gi . This is symmetric, and a class function in each gi separately.
Define scl.

P
gi/D limn!1 cl.

P
gn

i /=n.

Let C1.G/ be the real vector space with basis the elements of G , and let B1.G/ be
the kernel of C1.G/!H1.GIR/. So B1.G/ is the space of formal finite real linear
combinations of elements in G that represent 0 in (real) homology. Equivalently,
B1.G/ is the image of the vector space of real 2–chains (in the bar complex) under @.
It is a fact that scl extends by linearity and continuity to a pseudo-norm on B1.G/, and
vanishes on the subspace hg�hgh�1;gn�ngi. This vanishing reflects the homogeneity
of scl and the fact that it is a class function in each variable separately. So scl descends
to a pseudo-norm on the quotient BH

1
.G/ WD B1.G/=hg� hgh�1;gn� ngi.

The following theorem is nice to know, but is not used in an essential way in this paper:

Theorem 3.3 (Calegari and Fujiwara [7]) Let G be (word) hyperbolic. Then scl is a
norm on BH

1
.G/.
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3.2 Surfaces

Let X be a space with �1.X /DG , and for any finite collection of conjugacy classes
gi let �W

`
i S1

i !X be a 1–manifold in the associated free homotopy class. A map
of a (compact, oriented) surface f W S ! X is admissible if there is a commutative
diagram

@S //

@f

��

S

f

��`
i S1

i

� // X

and an integer n.S/ for which @f�Œ@S �D n.S/Œ
`

i S1
i � in H1 . The map is monotone

if @S !
`

i S1
i is homotopic to an orientation-preserving cover (equivalently, if every

component of @S wraps with positive degree around its image).

Lemma 3.4 [5, Proposition 2.74] Let g1; : : : ;gm be conjugacy classes in G , repre-
sented by �W

`
i S1

i !X . Then

scl
�X

i

gi

�
D inf

S

���.S/

2n.S/
;

where the infimum is taken over all surfaces S and all maps f W S ! X admissible
for � .

The notation ��.S/ means the sum of Euler characteristics
P

i �.Si/ taken over those
components Si of S with �.Si/ � 0. By [5, Proposition 2.13] it suffices to restrict
to monotone admissible surfaces. An admissible surface S is extremal if equality is
achieved.

3.3 Fatgraphs

If F is free, X can be taken to be a graph, and any admissible surface can be repre-
sented combinatorially (possibly after performing some compressions) by a fatgraph.
Fatgraphs are combinatorial objects which allow one to move back and forth between
group theory/combinatorics and 2–dimensional topology; a standard reference is Penner
[23], especially Section 1.

A fatgraph Y is a graph together with a cyclic ordering of the edges incident at each
vertex. Such a graph can be thickened to a compact surface S.Y / (or just S if Y

is understood) in such a way that Y embeds in S.Y / as a deformation retract. A
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fatgraph Y is oriented if S.Y / is oriented. In the sequel we assume all our fatgraphs
are oriented, and have no 1–valent vertices. Note that �.Y /D �.S.Y //.

A fatgraph over F is a fatgraph with oriented edges labeled by words in F so that
opposite sides get inverse labels, and the cyclic words obtained by reading around
@S.Y / are reduced. By abuse of notation we write @Y in place of @S.Y / and think
of it as an element of BH

1
.F /. Figure 2 gives an example of an extremal fatgraph for

the chain aC bCABC Œa; b� in F2 . Note that extremal surfaces do not need to be
connected.

a
A

B
b

B

b

a
A

A
a

b

B

B b b B

A
a

a
A

a
A

b
B

Figure 2: An extremal surface for aC bCABC Œa; b� represented as a fatgraph

The basic fact we use is the following lemma, which is a restatement of [14, Theorem
1.4] in the language of fatgraphs.

Lemma 3.5 (Culler [14, Theorem 1.4] (fatgraph lemma)) Let S be an admissible
surface bounding a chain � . Then after possibly compressing S a finite number of
times (thereby reducing ���.S/ without changing @S ) there is a fatgraph Y over F

with S.Y /D S and @Y D � .
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Remark 3.6 Culler proves his theorem only for surfaces with connected boundary,
but his argument generalizes with no extra work. An equivalent statement, valid for
surfaces with disconnected boundary, is also proved in Calegari [6, Lemma 3.4]; also
see [5, Section 4.3] for a discussion and references.

Let Y be an extremal fatgraph for v . The underlying fatgraph might not be trivalent,
but by splitting higher valence vertices, and inserting (unlabeled) “dummy edges”, we
can think of Y as a trivalent fatgraph in a degenerate way, where some degenerate
“edges” have length 0. We call this the operation of resolving vertices (such a resolution
need not be unique).

Lemma 3.7 Let Y be an extremal fatgraph for v , so that @Y represents Nv for some
N , and ��.Y /=2N D scl.v/. Resolve vertices of Y so that Y is trivalent, possibly
with some edges of length 0. Let the average length of the edges of Y be `m. Then

scl.v/D n log.2k � 1/=12` log.n/:

Proof Suppose Y has V vertices and E edges. Since Y is trivalent, 2E=3D V and
��.Y /DE �V DE=3. On the other hand, the total length of @Y is N nD 2E`m.
Hence

scl.v/D��.Y /=2N DE=6N D n=12`mD n log.2k � 1/=12` log.n/:

It will be our goal to show that for random v of length n� 1, the extremal fatgraph
Y has `D 1=2C o.1/ with probability 1� o.1/.

Remark 3.8 The reader who is unhappy with edges of length 0 can just take `m to
be equal to the total length of Y divided by EC

P
v valence.v/� 3.

4 Random values of scl

The goal of this section is to prove the Random Rigidity Theorem:

Theorem 4.1 (Random Rigidity Theorem) Let F be a free group of rank k , and
let v be a random reduced element of length n, conditioned to lie in the commutator
subgroup ŒF;F �. Then for any � > 0 and C > 1,

j scl.v/ log.n/=n� log.2k � 1/=6j � �

with probability 1�O.n�C /.

The proof will occupy most of the remainder of the section.
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4.1 Upper bounds

The upper bound in the Random Rigidity Theorem is sharpened by the following
proposition:

Proposition 4.2 Let v be a random reduced word in the commutator subgroup of
length n. Then for any � > 0 there are constants C > 1 and c > 0 so that

scl.v/ log.n/=n� log.2k � 1/=6� �

with probability 1�O.C�nc

/.

Given random v , we explicitly build an extremal surface (actually an extremal fatgraph)
by gluing together a very large number of tripods with edges of length slightly less
than .1� �/m=2. The fact that such tripods can be glued up to produce a fatgraph
with boundary very close to a multiple of v follows from an equidistribution lemma,
derived from the estimates in Section 2, which holds with very high probability for most
random v . The tripods do not glue up completely, but the mass of the unglued part has
size O.n��=2/ compared to the glued part, and the remainder can be glued up (under
the hypothesis that v is homologically trivial) with a contribution to � proportional to
the mass.

4.2 Tripods and joints

In what follows we generally adhere to the notational convention that group inverses
are denoted by small and capital letters; hence X means x�1 and so on.

Definition 4.3 A tripod of edge length L is a fatgraph with underlying graph a tripod,
and with edges labeled by reduced words xY;yZ; zX where each of x;y; z (the
incoming edge labels) has length L. We denote such a tripod T .x;y; z/.

A copy of T .x;y; z/ is a triple of segments of the form xY;yZ; zX in v . These
segments may appear anywhere in v ; they might or might not be adjacent, and are
allowed to overlap each other.

Lemma 4.4 A triple x;y; z of reduced words of length L are the labels of a tripod if
and only if their last letters are distinct. Consequently, for any reduced word xY of
length 2L, there are .2k � 2/.2k � 1/L�1 choices for z .

Proof Obvious.
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There are .2k/.2k � 1/.2k � 2/.2k � 1/3.L�1/=3� .2k � 1/3L=3 tripods T of edge
length L. For each tripod T , let @T denote the triple of words xY;yZ; zX .

Definition 4.5 A joint of edge length L is a fatgraph with underlying graph a segment,
and with edges labeled by reduced words x , X each of length L. Denote such a
joint J.x/.

A copy of J.x/ is an ordered pair of segments of the form x;X in v . Again, these
segments may appear anywhere in v (note that since v is reduced, these segments
cannot overlap or be adjacent in v ). We distinguish between orientations, so that J.x/

and J.X / are different.

Each joint J.x/ is contained in a unique maximal joint J.x0/.

Fix L with L=m D 1=2� � for some small � . For a word v , let TL.v/ denote the
set of copies of tripods of edge length L in v , and let JL.v/ denote the set of copies
of joints of edge length L in v . Note that each pair of subwords x;X of length L

in v determines two elements of JL.v/. We define an involution � on the set JL.v/

interchanging such pairs. If v is understood, we just write TL and JL .

Given T , a copy of T .x;y; z/ of length L, there are three associated joints J.x/,
J.y/, J.z/ which can be extended uniquely to maximal joints J.x0/, J.y0/ and J.z0/.
Note that x is a suffix of x0 , and so on. Define @T .x;y; z/D J.x0/CJ.y0/CJ.z0/

and extend @ to a linear map from the space of measures on TL to the space of measures
on JL .

Example 4.6 Let v DABBAbAABAAbababaabbABBBBabbaaB . The tripod of
length 2 as indicated

ABBAbAABAAbababaabbABBBBabbaaB

is associated to three joints: a pair Ab;Ba, a pair AA; aa and a pair bb;BB . The
joint Ab;Ba is contained in a maximal joint of length 5

ABBAbAABAAbababaabbABBBBabbaaB

and the joint aa;AA is contained in a maximal joint of length 4

ABBAbAABAAbababaabbABBBBabbaaB

whereas the joint bb;BB of length 2 is already maximal:

ABBAbAABAAbababaabbABBBBabbaaB
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The next lemma, although a simple consequence of the estimates in Section 2.4, is
key. It shows that with very high probability, the collection of all tripods of length
.1=2� �/m can be almost exactly glued up in pairs:

Lemma 4.7 Let L=m D 1=2� � . Then with probability 1�O.C�nc

/ there is an
inequality j@�� �@�j DO.n��=3j�j/, where � is the uniform measure on TL , and j � j
denotes mass of a (possibly signed) measure.

Proof For any given J.x/ in v contained in a maximal J.x0/ we estimate the number
of tripods T .x0;y; z/ with J.x0/ in @T . First of all, y is determined, since the copy
of x associated to J is the initial subword of some xY . Similarly, z is determined,
since the copy of X associated to J is the terminal subword of some zX . Therefore
the number of tripods is simply equal to the number of subwords of the form yZ in v .

The number of copies of yZ in v is approximately n=jF2Lj, ie, about n� with an error
of size O.n�=2Cı/ for any ı , by Proposition 2.3. Taking ıD �=6 for concreteness, the
error is at most O.n2�=3/ which is a fraction O.n��=3/ of the total mass.

Since this is true for every joint J.x/, the lemma follows.

4.3 Proof of upper bound

The proof of Proposition 4.2 is now straightforward:

Proof Assemble the tripods and glue them in pairs along their common boundary
joints. By Lemma 4.7 all but O.n��=3/ of the measure of the set of tripods can be glued
up this way, with probability 1�O.C�nc

/. This holds even conditioning on v 2 ŒF;F �
with probability 1�O.C�nc

/, with slightly different constants, by Theorem 2.1.

This (partial) fatgraph Y can be extended (usually in many ways) to a complete fatgraph
bounding some multiple of v in BH

1
.F / so that the Euler characteristic of the added

surface is proportional to the mass of the unglued part. We explain how to do this.

Let N be the function on the letters of v whose value at a given letter is the number
of edges of tripods that contain it, and let N 0 be the maximum of N . The function
N 0�N is therefore non-negative, and on the other hand max N 0�N DO.n��=3/N 0 .
We translate the problem of building a fatgraph that extends Y as a problem of suitably
gluing together a collection of rectangles.

Each rectangle corresponds to some finite subword w of v which we call the label
of the rectangle. We think of the rectangle as having height 1 and width equal to the
length of w . We keep track not only of w as a word in the generators, but also of
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bbbbaBAbAAB aBaabbabbaBAABBAABBAbab AA b
b AA

BB
Ab

ab
AA

b

Figure 3: N 0 copies of v cut up into long and short rectangles

where it appears as a subword of v . Color the top horizontal edge of the rectangle blue,
and the vertical sides red.

We want to glue together rectangles along segments of the boundary of integer length,
blue to blue and red to red, so that two red edges may be glued only if the words
associated to the rectangles are consecutive subwords of v , and two blue segments are
glued only if the paired letters on either side are inverse in F .

We take three rectangles for each copy of each tripod, with labels the subwords of v
corresponding to the edges of the tripod. We also take N 0 �N rectangles for each
letter of v , with label that letter. So we have lots of “long” rectangles — three for each
tripod — and far fewer “short” rectangles (of length 1). By the definition of N 0 and
N , every letter of v appears as the rightmost letter of a label exactly as many times as
the following letter of v appears as the leftmost letter of a label. So we could think of
taking N 0 strips labeled v and cutting them into long and short rectangles; see Figure 3.
Naturally, it is possible to glue up the red segments in pairs compatibly. However, there
are potentially many ways to do this, and it is important to glue up blue edges first, as
we now explain.

The long rectangles can be glued up along blue edges in threes to build fattened tripods.
Pairs of tripods can then be glued up along red edges corresponding to joints (note that
pairs of tripods are glued up in this manner along red segments of length 2). The result
can be thought of in an obvious way as the partial fatgraph Y , where the blue edges
are the core graph. See Figure 4.

Recall that by hypothesis v is homologically trivial, and note that the rectangles
corresponding to a given tripod have the same number of copies of each generator as of
its inverse. Consequently for each generator of F , there are as many short rectangles
labeled with this generator as are labeled with its inverse. We can therefore glue together
these short rectangles in pairs, so that every blue edge can be thus glued up.

As observed above, the remaining unglued red segments can be glued up in pairs. We
now perform this gluing (in an arbitrary way). See Figure 5. Note that the result might
have corners at which more than two paired red edges meet.
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Figure 4: Long rectangles glued in threes along blue edges to make tripods,
and tripods glued in pairs along red edges

Figure 5: Remaining red segments can be glued in pairs. This might produce
red corners where more than two red edges meet.

The resulting surface Y 0 has no unglued red edges. The blue edges form the core of
the surface, and the labels and the way the blue edges sit in the surface amounts to
giving it the structure of a fatgraph over F whose boundary is a multiple of v . The
fatgraph Y sits in Y 0 in an obvious way, and the contribution of Y 0 � Y to �� is
of order .N 0�N /jvj, which is very small compared to the contribution from Y . In
particular, the average edge length `m of Y 0 differs from the average edge length of
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Y by at most O.n��=3/, and therefore satisfies ` > 1=2� � . The proof now follows
from Lemma 3.7.

Remark 4.8 The use of ergodic theory to construct an almost equidistributed collection
of pieces with prescribed geometry that can be almost glued up is inspired by the
techniques in Kahn and Markovic’s recent proof [20] of the surface subgroup conjecture
in 3–manifold topology, and we are pleased to acknowledge our intellectual debt to
this paper.

4.4 Lower bounds

The goal of the next few sections is to prove the following estimate, which precisely
complements Proposition 4.2. The Random Rigidity Theorem (ie, Theorem 4.1) follows
immediately from these two propositions.

Proposition 4.9 Let v be a random reduced word in the commutator subgroup of
length n. Then for any � > 0 and any C ,

log.2k � 1/=6� scl.v/ log.n/=n� �

with probability 1�O.n�C /.

Note that the probability estimate associated to the upper bound is exponential, whereas
the estimate associated to the lower bound is merely polynomial (of arbitrarily large
degree). This disparity is an artifact of the method of proof. A worse lower bound, but
with exponential bounds on the probability of deviation, is obtained in Section 5 using
the method of quasimorphisms.

4.5 Combs

Let b be a subword of v , and consider some copy of b in the boundary of an extremal
fatgraph Y for v . Recall that by our convention we artificially split open vertices of
higher valence so that Y is trivalent, although it might have some edges of length 0.
The subword b is contained in a segment � of Y , which is incident to a sequence of
edges e1; e2; : : : ; ed of Y in order. Call the subgraph of Y consisting of the support
of b together with the union of the ei a comb.

Let c1; : : : ; cd be the labels on the edges ei (oriented to point in to � ). Further-
more, the vertices of the ei subdivide b into subwords b0; : : : ; bd , where we stress
that some bi ; ci might have length 0. Then there are boundary labels of Y of the
form BdCd ; cdBd�1Cd�1; : : : ; c2B1C1; c1B0 (see Figure 6). By the definition of an
extremal fatgraph, these boundary labels are (cyclic) subwords of v .

This suggests the following definition:
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b0 b1 b2 b3 b4

B0 B1 B2 B3 B4

c1 c2 c3 c4C1 C2 C3 C4

Figure 6: A comb with edge labels

Definition 4.10 Given a word b � v a comb on b is a family of subwords of v of the
form BdCd ; cdBd�1Cd�1; : : : ; c1B0 . The complexity of the cone is d (as above) and
the length is L, where jbjC

P
jci j DLm.

We would like to bound (in probability) the length of a comb in terms of its complexity.
Fix a big constant L0 , and let b � v be a subword of length L0m. We would like to
construct a comb on b for which L=d is as big as possible. This amounts to choosing a
partition of b into d successive subwords bi of length Lim (where Li D 0 is allowed),
then choosing copies of Bi in v , and defining ci to be the maximal subword following
the copy of Bi for which Ci precedes the copy of Bi�1 . Let these maximal ci have
length Kim.

Note that the comb has length LD
Pd

iD0 LiC
Pd

iD1 Ki and complexity d . We would
like to bound in probability the maximum ratio L=.2d C 1/, at least for typical b of
some fixed length L0m where L0 D

P
Li .

By Propositions 2.3 and 2.6 there are almost exactly n1�Li possible locations of each
Bi in v for Li < 1, and the chance that there is some Bi at all when Li > 1 is at most
n1�Li . If we assume that the prefixes and suffixes of the Bi of fixed length are evenly
distributed, then for any fixed T , there should be an estimate

P
�X

Ki > T C
X

.1�Li/
�
DO.n�T /:

If T is very big but fixed, and small compared to L0 D
P

Li , then we can estimate
L � T C .d C 1/, and therefore L=.2d C 1/ � 1=2C � for any � with probability
1�O.n�T /. This is good enough to give the desired bound in Proposition 4.9, by
Lemma 3.7.

Notice that this heuristic argument is almost rigorous: prefixes and suffixes of the Bi

are not perfectly independent, but their correlation decays exponentially fast with the
distance between Bi and Bj . Thus we need only examine the cases in which there
are CiC1Bici and CjC1Bj cj that overlap. In order to obtain the desired estimate, it is
necessary to make some a priori assumptions about a cone on b , which will turn out
to be justified for most combs in any given extremal fatgraph Y .
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Definition 4.11 A subword b of v is ı–regular if there is no subword b0 of length
.1C ı/m such that B0 is in v , and if all subwords of b of length ı and their inverses
are distinct.

A comb on b is ı–regular if b is ı–regular, and if all the ci have length at most
.1C ı/m.

Let v be a random word in F 0 of length n, and let Y be an extremal trivalent fatgraph
for v (possibly with some edges of length 0). For any d , we can consider the set of
combs of Y of complexity d . The following lemma justifies the definition of ı–regular:

Lemma 4.12 Let v be a random word in F 0 of length n, and let Y be an extremal
fatgraph for v . Then for any d , the proportion of combs of Y of complexity d that are
not ı–regular is at most O.n�ı=2/, with probability 1�O.C�nc

/.

Proof By Proposition 2.6, with probability 1�O.C�nc

/ there are at most n1�ı=2

subwords of v of length .1Cı/m whose inverse also appears in v (in fact, we could take
any number less than ı in place of ı=2); hence the proportion of combs of complexity
d that contain an edge of length at least .1C ı/m is at most .4d C 2/n�ı=2 , since
every edge of Y is contained in 4d C 2 combs of complexity d , and @Y represents
Nv for some N .

An argument similar to Proposition 2.11 establishes that subwords of typical b of
length ı are distinct, with probability O.C�nc

/.

4.6 Overlaps

We now restrict attention to a fixed ı–regular word b , and consider a random word
v conditioned to contain b as a subword. The arguments in this section depend on
order-of-magnitude estimates of probability, expressed as a power of n.

Fix vectors of lengths Li ;Ki < .1C ı/m, and for each choice of d locations in v ,
consider the probability that the subwords eiDi�1Ci of length Ki CLi�1CKi�1

starting at these locations constitute a comb on b ; we call such an occurrence a matching,
and we want to estimate the probability of a matching at a given d –tuple of locations.
We also refer to a vector of d locations in v as above as a configuration. If the subwords
do not overlap, this probability is less than n�.

P
LiC

P
Ki / . So it suffices to estimate

the probability in the case that some subwords do overlap. This is somewhat fiddly,
and depends on an analysis of the combinatorial possibilities for the overlap. However,
the estimates in every case are entirely elementary.
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For each j � 2, let Pj m be the total length where at least j words overlap. Define the
total overlap, counted with multiplicity, to be P WD

P
j�2 Pj . The total contribution to

P from overlaps of Di with Dj will be O.ı/, since b is ı–regular. If part of some ei

(resp. Ci ) is contained in an overlap, but the corresponding part of Ci (resp. ei ) is not,
this overlap does not significantly affect the probability of a matching. If corresponding
parts of Ci ; ei both overlap Dj , then again necessarily this overlap will be of size
O.ı/m, since b is ı–regular. So to estimate the probability of a matching, it suffices
to consider overlaps among the various Ci ; ej . Let P 0j m be the total length where at
least j such subwords overlap, and analogously define P 0 WD

P
j�2 P 0j .

Lemma 4.13 With notation as above, the probability of a matching in a given configu-
ration is at most nP 0=2�.

P
LiC

P
Ki /CO.ı/ .

Proof An overlap in some subword of ei of length lm must correspond to an overlap
in the corresponding subword of Ci to increase the probability of a match by at most nl ;
so the increase over the “naive” probability of a match is at most a factor of nP 0=2 .

On the other hand, there are nd sets of locations of the subwords, and for each given
location of one subword, there are only O.log.n// locations of any other subword
that overlaps it. Two subwords eiDi�1Ci�1 and ej Dj�1Cj�1 can contribute at most
2.1C ı/ to P 0 , precisely if ei D ej and Ci�1 D Cj�1 . We deduce the following
lemma:

Lemma 4.14 Let Li ;Ki be some fixed vector of lengths with Li ;Ki < 1C ı , and
define LD

P
i Li C

P
i Ki . Suppose b is an ı–regular subword of v . Then the prob-

ability that there is a comb over b with the prescribed lengths is at most O.n�TCO.ı//

where T D L� d � 1. Consequently if L=.2d C 1/ � 1=2C � and ı is sufficiently
small compared to � , and d is sufficiently big compared to � , we can make T as big
as desired.

Proof As above, each set of locations has probability at most nP 0=2�LCO.ı/ of a
matching. Moreover, there are nd sets of locations, and at most nd�rCO.ı/ sets of
locations for which P 0 � 2r . The estimate follows.

4.7 Proof of lower bound

We now give the proof of Proposition 4.9.
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Proof By Lemma 3.7, it suffices to show for every C and every � that the average
length `m of the edges of an extremal fatgraph Y is at most 1=2C � , with proba-
bility 1�O.n�C /. By Theorem 2.1, conditioning that v lies in ŒF;F � only affects
probabilities by at most a factor of O.nk=2/.

By Proposition 2.6, there are only O.1/ subwords of v of length at least 2m and
O.n1�ı=2/ of length at least .1Cı/m, whose inverse also appears in v , with probability
1�O.C�nc

/. So edges of length at least .1Cı/m affect ` negligibly, and the fraction
of combs containing such subwords are similarly negligible.

Choose some very large constant d , roughly of size O.1=�/, and consider the set of all
combs with complexity d in Y . Because Y is (formally) trivalent, every edge occurs
in exactly .4d C 2/ such combs; each comb has 2d C 1 edges, and each edge has
two sides. By Lemma 4.12, if `� 1=2C � , a definite fraction of these combs must be
ı–regular, and satisfy L=.2d C 1/ > 1=2C � .

On the other hand, by Lemma 4.14, for any ı–regular subword b and any given
vector of lengths less than 1C ı the probability that there is a comb over b with
prescribed lengths is at most O.n�TCO.ı// where T D L� d � 1. Since there are
at most n possible locations in v for such a subword b , and since there are at most
..1C ı/m/2dC1 < nı vectors of lengths, the probability that there is any ı–regular
comb with complexity d and length L is at most O.n�TC1CO.ı//. So for any C and
any � , if d is sufficiently large and L=.2d C 1/ > 1=2C � , no such comb exists, with
probability 1�O.n�C /. The proof follows.

Remark 4.15 A more careful analysis would almost certainly improve the estimate of
the probability of a large negative deviation. The probability that a specific ı–regular
subword is part of a ı–regular comb with big d and L=.2dC1/>1=2C� is polynomial
in n, and to violate the desired lower bound on scl we must construct a fatgraph
containing a definite proportion of such big ı–regular combs. However, the events that
distinct subwords b; b0 are parts of such ı–regular combs are not obviously independent,
and even estimating their correlation appears hard. Nevertheless, heuristically one
would expect the true probability of a deviation to be exponential in (some power of) n.

4.8 The Random Norm Theorem

In fact, it is not much more work to derive the following theorem, which specializes to
Theorem 4.1 when d D 1:

Theorem 4.16 (Random Norm Theorem) Let F be a free group of rank k , and
for fixed d , let v1; v2; : : : ; vd be independent random reduced elements of length
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n1; n2; : : : ; nd conditioned to lie in ŒF;F �, where without loss of generality we assume
n1 � ni for all i . Let V be the subspace of BH

1
.F / spanned by the vi . Then for any

� > 0;C > 1 and real numbers ti ,ˇ̌̌
scl
�X

tivi

�
log.n1/=n1� log.2k � 1/

�X
jti jni

�
=6n1

ˇ̌̌
� �

with probability 1�O.n�C
1
/.

We remark before giving the proof that even though the C 0 geometry of a (random)
slice of the unit ball is very simple, the finer polyhedral structure is apparently extremely
complicated. Figure 7 and Figure 8 exhibit 2 and 3 dimensional slices of the scl unit
ball of some relatively simple words.

(2/3, 0)

(20/27, 2/9)

(26/35, 2/7)
(142/191, 62/191)(26/35, 12/35)

(14/19, 15/38)
(310/423, 178/423)(169/231, 3/7)

(8/11, 5/11)(212/293, 279/586)(326/451, 433/902)(268/371, 179/371)
(5/7, 29/56)

(208/295, 164/295)(107/152, 85/152)(386/549, 308/549)(300/427, 240/427)

(2/3, 62/99)(484/729, 460/729)(1294/1963, 1254/1963)(152/231, 148/231)(28/43, 28/43)(38/59, 39/59)(53/84, 19/28)(48/77, 53/77)

(0, 1)(-12/137, 134/137)(-10/97, 94/97)
(-12/73, 68/73)(-16/89, 82/89)

(-1/4, 7/8)
(-20/67, 56/67)

(-22/63, 50/63)(-31/83, 64/83)(-88/227, 172/227)(-80/199, 148/199)
(-50/117, 28/39)

(-2/3, 0)

(-20/27, -2/9)

(-26/35, -2/7)
(-142/191, -62/191)(-26/35, -12/35)

(-14/19, -15/38)
(-310/423, -178/423)(-169/231, -3/7)

(-8/11, -5/11)(-212/293, -279/586)(-326/451, -433/902)(-268/371, -179/371)
(-5/7, -29/56)

(-208/295, -164/295)(-107/152, -85/152)(-386/549, -308/549)(-300/427, -240/427)

(-2/3, -62/99)(-484/729, -460/729)(-1294/1963, -1254/1963)(-152/231, -148/231)(-28/43, -28/43)(-38/59, -39/59)(-53/84, -19/28)(-48/77, -53/77)

(0, -1)(12/137, -134/137)(10/97, -94/97)
(12/73, -68/73)(16/89, -82/89)

(1/4, -7/8)
(20/67, -56/67)

(22/63, -50/63)(31/83, -64/83)(88/227, -172/227)(80/199, -148/199)
(50/117, -28/39)

Figure 7: Unit ball in the scl norm in the subspace spanned by
AbaBAbaBBAbaabaaBAAA and baaabAAbaabABAABBABa

Proof We give the proof in the case d D 2; the general case follows by essentially
the same argument. For any pair of reduced words v1; v2 (not necessarily in ŒF;F �)
choose a word z of length 6 contained in ŒF;F � so that v1zv2 is reduced. We can
always find such a word z of the form xyXXYx for some generators x;y so that v1

does not end, and v2 does not begin, with X .

This defines a map Fjv1j
�Fjv2j

!Fjv1jCjv2jC6 , and the pushforward of the product of
uniform measures is proportional to the uniform measure on the image, with constant
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Figure 8: Unit ball in the scl norm in the subspace spanned by
aabAcAcBC C , bbcBaBaCAA and ccaCbCbABB

of proportionality independent of n. The relative proportion of the image is a constant,
so by Theorem 4.1 for any � > 0;C > 1 we have

j scl.v1zv2/ log.n1C n2C 6/=.n1C n2C 6/� log.2k � 1/=6j � �

with probability 1�O.n�C
1
/. For n1 � n2 large, log.n1C n2C 6/ is very close to

log.n1/. On the other hand, j scl.v1C v2/� scl.v1zv2/j � const. It follows for any
� > 0;C > 1, with probability 1�O.n�C

1
/,

j scl.v1C v2/� scl.v1/� scl.v2/j � �n= log.n/:

In particular, the boundary of the unit ball contains a point which is very close to the
midpoint of the points v1= scl.v1/ and v2= scl.v2/, and by convexity, the unit ball in
the positive quadrant of the v1; v2 plane is C 0 close to a triangle. Replacing vi by
v�1

i , the entire unit ball in the v1; v2 plane is C 0 close to a diamond. The higher
dimensional case is completely analogous.
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5 Quasimorphism lower bound

In this section we exhibit an explicit quasimorphism which certifies a uniform lower
bound for scl of a random word. Unfortunately, this lower bound is not sharp, for it
exhibits only scl.v/� n log.2k � 1/=12 log.n/ (with high probability), which is 1=2

of the correct value, by Theorem 4.1.

Experience shows that constructing explicit extremal quasimorphisms is difficult. For
example, there is a polynomial time algorithm to produce an extremal surface for a
chain in a free group, whereas there is no known algorithm (of any kind) to produce a
certifying quasimorphism. Björklund and Hartnick [2] proved a central limit theorem
for quasimorphisms (on random walks; but these are very similar to random words in
the special case of free groups), and consequently any fixed quasimorphism on F takes
values of order O.

p
n/ on words of length n. For this reason, it is interesting to be

able to construct an explicit quasimorphism that gives the correct O.n= log.n// order
of magnitude. Another nice feature of the construction is that the bound in probability
is exponential in n, in contrast to the polynomial bound in Proposition 4.9.

5.1 Quasimorphisms and Bavard Duality

A reference for the material in this section is [5], especially Chapter 2.

Definition 5.1 Let G be a group a quasimorphism is a function for which there is a
least non-negative real number D.�/ (called the defect) for which

j�.gh/��.g/��.h/j �D.�/

for all g; h 2G .

Furthermore, a quasimorphism is homogeneous if �.gn/D n�.g/ for all g 2G and
all integers n.

If � is any quasimorphism, the homogenization of � , denoted � , is defined by

�.g/ WD lim
n!1

�.gn/=n:

It is a fact that � is a homogeneous quasimorphism, and satisfies D.�/� 2D.�/. See
[5, Lemma 2.58]. The set of homogeneous quasimorphisms on G is a real vector space
Q.G/. The subspace with DD 0 consists precisely of the homomorphisms H 1.GIR/,
and D makes the quotient Q=H 1 into a Banach space.

There is a duality between quasimorphisms and stable commutator length, known as
Generalized Bavard Duality. The statement of this duality theorem is:
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Theorem 5.2 (Generalized Bavard Duality [5, Theorem 2.79]) Let G be a group.
Then for any

P
tigi 2 BH

1
.G/ there is an equality

scl
�X

i

tigi

�
D

1

2
sup

�2Q=H 1

P
i ti�.gi/

D.�/
:

A special case of this theorem was established by Bavard in [1]. Notice that this theorem
is “complementary” to Lemma 3.4: an admissible surface certifies an upper bound for
scl, whereas a homogeneous quasimorphism certifies a lower bound.

An important and useful class of quasimorphisms are the (big) counting quasimorphisms,
defined by Rhemtulla [25], and rediscovered by Brooks [3]. Recall the definition of the
counting functions C� from Section 2.3 and their antisymmetrization H� WDC��C��1 .
Given a set of reduced words S�F , the function HS WD

P
�2S H� is a quasimorphism,

and its value on v counts the difference in the number of copies of � and of ��1 for
each � 2 S . The homogenization counts the difference of the number of copies in the
(cyclically reduced) cyclic word v .

While big counting quasimorphisms are intuitively very natural, it will be technically
easier for us to work with small counting quasimorphisms. As above, let S � F , and
define

cS Dmaximal number of disjoint copies of elements of S in v:

Then hS D cS � cS�1 is a quasimorphism, the small counting quasimorphism on
S . See eg [5, Section 2.3.2]. In contrast to big counting quasimorphisms, for which
bounding the defect proves difficult, small counting quasimorphisms have a uniformly
bounded defect.

Lemma 5.3 For any S � F , we have D.hS /� 3 and D.hS /� 6.

Proof This is [9, Lemma 5.1].

5.2 Construction of the quasimorphism

Proposition 5.4 Let v be a random reduced word in the commutator subgroup of
length n. Then there is an explicit construction of a homogeneous quasimorphism,
so that for all � > 0 there are constants C > 1 and c > 0 such that with probability
1�O.C�nc

/, the quasimorphism certifies the inequality

scl.v/� 1

1C�

n log.2k�1/

12 log.n/
:
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Proof Recall our notation mD log.n/= log.2k � 1/ where k is the rank of the free
group F . Fix L D 1C � for � > 0, and partition the cyclic word v into adjacent
disjoint subwords of length Lm. Note that there may be some small remainder if Lm

does not divide n; ignore this gap, as it will be insignificant for our purposes. Let S

be the collection of these subwords.

Lemma 5.5 For LD 1C � and S as above, there exist C > 1 and c > 0 such that
with probability 1�O.C�nc

/, there is a subset S 0 � S with

card.S �S 0/ < n2�LC�=2

such that for no � 2 S 0 does ��1 appear in v .

Proof Repeating the content of Section 2.5 while assuming that the words in S are
disjoint only simplifies the arguments, so Proposition 2.6 still holds in this case.

The certifying quasimorphism will be hS 0 . By construction,

hS 0.v/�
n

Lm
� n2�LC�=2

� 1� c.S 0/�1.v/;

and c.S 0/�1.v/ D 0 by Lemma 5.5. By Lemma 5.3, D.hS 0/ � 6, so Bavard duality
gives

scl.v/�
hS 0.v/

2D.hS 0/
�

1

1C �

n log.2k � 1/

12 log.n/
� o.n= log.n//:

The statement of the lemma is obtained by repeating the argument with �=2; the
multiplicative factor 1=.1C �/ then renders the o.n= log.n// unnecessary.

6 Computer experiments and a surprisingly good heuristic

Recall that in the proof of Proposition 4.2 we constructed a surface by gluing random
tripods. The length of the edges of the tripods was m=2 D log.n/=2 log.2k � 1/,
but each edge of each tripod was extended to a maximal joint before gluing. If
u D xy and u0 D xy0 are reduced words with a common nonempty prefix x , the
expected length of the common prefix of y is 1=.2k � 1/C 1=.2k � 1/2 C � � � D

1=.2k � 2/. This suggests that the average edge length of an extremal surface should
be at least m=2C 1=.2k � 2/, and therefore that the value of scl should be at most
n=12.log.n/=2 log.2k � 1/C 1=.2k � 2//�1 .

Without a really sound theoretical justification, we nevertheless made the prediction
that this heuristic correction should more accurately match the actual average value of
scl, and tested this experimentally.
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Figure 9 displays the result of computer experiment. We computed the scl of 20 random
words in ŒF2;F2� of lengths between 70 and 240 (inclusive) in steps of 10. The upper
solid line indicates the theoretical value n log.2k � 1/=6 log.n/ from Theorem 4.1, the
dots are the actual averages, and the lower dashed line (passing in a very satisfying way
through the experimental dots!) is the heuristic n=12.log.n/=2 log.2k � 1/C 1=.2k �

2//�1 .

70 100 130 160 190 220

1

3

5

7

scl

word length

Figure 9: Experimental computation of scl on random words in F2 of length
between 70 and 240 , and comparison with (asymptotic) theoretical and
heuristic values.

Appendix A: Directed graphs and Markov chains

The purpose of this appendix is firstly to put the estimates obtained in Section 2 into
the more general context of the theory of nonreversible Markov chains, and secondly
to indicate which aspects of the theory developed above can be expected to generalize
easily to hyperbolic groups and spaces, and which aspects require new ideas. The
main results of the paper do not depend logically on the results or conjectures in this
appendix.

Let X1 be the directed graph whose vertices are the generators of F , and whose
(directed) edges are the (ordered) non-inverse pairs. A random word v of length n

can be interpreted as a random walk on X (where edges have the uniform probability)
starting at a random vertex (also with the uniform probability). This graph is ergodic
(ie, there is a directed path from any vertex to any other vertex) and aperiodic (ie, the
gcd of the lengths of the directed loops is 1).

For any i let Xi be the directed graph whose vertices are the elements of Fi , and
whose (directed) edges are the elements of FiC1 , where an edge g starts/ends at its
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prefix/suffix respectively of length i . Note for each i that Xi is .2k � 1/–regular,
ergodic and aperiodic. Again, a random word v of length n can be interpreted as a
random walk on X of length n� i C 1 starting at a random vertex.

Each Xi determines a nonreversible Markov chain (in the obvious way), with stationary
probability � the uniform probability measure on vertices (ie, such that each vertex
has weight 1=.2k/.2k � 1/i�1 ), and Markov kernel Pi.x;y/D 1=.2k � 1/ if there is
a directed edge from x to y ; ie, if x and y are reduced words of length i , and the
suffix of x of length i � 1 is equal to the prefix of y of length i � 1.

For an introduction to the theory of Markov chains, see Freedman [16]. We remark that
we use only the most elementary aspects of the theory in this paper, since our Markov
chains always have discrete time and finite state space.

A.1: Chernoff inequalities for nonreversible Markov chains

We would like to estimate the rate of convergence of random sums to the equilibrium;
that is, we want to estimate the probability that jn�1

Pn
jD1 f .xj /�

R
f d�j is bigger

than n�ı , for some function f on the vertices of Xi (ie, on Fi ). In the sequel we
denote

R
f d� by mean�.f /, or just mean.f / if � is understood.

As is well-known, for reversible Markov chains, the rate of convergence is governed
by the spectral gap (ie, the difference between 1 and the second largest eigenvalue)
of the (symmetric) Markov kernel P . For nonreversible Markov chains, the relevant
quantity is the smallest nonzero eigenvalue �1 of L WD Id� .P CP�/=2. In general
P� is defined by P�.x;y/ D �.y/P .y;x/=�.x/, so in our context P� is just the
transpose PT .

Let f be normalized to have kf �mean.f /k1 � 1 and kf �mean.f /k2
2
� 1. Let

q be an initial distribution, and define Nq D kq=�k2 (note that we always have
Nq �min.�.v//�1=2 ). Then the main Chernoff-type inequality, due to Lezaud, is as
follows:

Theorem A.1 (Lezaud [22, Theorem 1.1 (cf Remark 1.3)]) With notation as above,
there is an inequality:

P
�
n�1

nX
jD1

f .xj /�mean.f /� 
�
�Nqe��1n2=8

Remark A.2 Replacing f by �f gives the same bound on

P
�
n�1

nX
jD1

f .xj /�mean.f /� �
�
:
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Remark A.3 It is possible to control the rate of convergence in terms of other kinds
of spectral data, for instance, the second smallest eigenvalue �1 of Id�PP� . However
for the Markov chains Xi as above with i � 2, the multiplicative reversibilization
PP� has many distinct eigenvectors of eigenvalue 1, so �1 D 0. Another approach is
to work directly with the smallest positive singular value of the (nonsymmetric) matrix
Id�P ; this approach is favored by Dinwoodie [15].

Remark A.4 Lezaud’s estimate is not in itself strong enough to derive Proposition 2.3
because the variance of a counting function C� is too big. Nevertheless, our proof of
Proposition 2.3 owes something to the approach of Lezaud, and also to the earlier work
of Dinwoodie [15] mentioned above (especially the implicit estimate of the random
covering time in Lemma 2.4).

A.2: Estimating �1

The following estimate on �1 in terms of the spectrum of P is obtained by Chung:

Theorem A.5 (Chung [11, Theorem 4.3]) If X is a directed graph, the eigenvalue
�1 of L is related to the (ordered) eigenvalues �i of P as follows:

min
i¤0

.1� j�i j/� �1 �min
i¤0

.1�Re.�i//:

Remark A.6 Note that Chung proves her theorem for arbitrary (not necessarily regular)
graphs, in which case the Laplacian L has the more complicated form

LD Id�
ˆ1=2Pˆ�1=2Cˆ�1=2P�ˆ1=2

2
;

where ˆ is the diagonal matrix whose entries are the values of � . For a regular
graph, ˆ is a scalar multiple of the identity and P� D PT , so this simplifies to
Id� .P CPT /=2, which agrees with the definition of L in Theorem A.1.

Lemma A.7 For LD Id� .Pi CPT
i /=2 where Pi is the probability matrix for Xi ,

there is an estimate �1 � const.> 0 where const. does not depend on i .

Proof By Theorem A.5, it suffices to obtain upper bounds on the absolute values j�i j

of the spectrum of Pi . But the spectrum of Pi is equal to the spectrum of P1 for any
i (padded by zeros), since the traces of all powers P

j
i and P

j
1

are equal. To see this,
observe that these traces count the number of periodic cycles in Xi and X1 of period
j , but such cycles in either case are in bijection with bi-infinite periodic words with
period j .
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So it suffices to show that the spectrum of P1 has a unique eigenvalue 1 and all other
eigenvalues strictly less than 1 in absolute value. This follows from the aperiodicity
and ergodicity of X1 .

Incidentally, X1 is a reversible Markov chain, and therefore the spectrum of P1 is real,
so the same is true for the spectrum of all Pi .

A.3: Cheeger constants in Xi

There are other methods to estimate �1 for a directed graph, via a generalization of the
classical Cheeger’s inequality. If X is a regular directed graph, the Cheeger constant
h.X / is the infimum of j@U j=jU j over all subsets U of vertices of X with cardinality
at most jU j � jX j=2, where @U is the set of elements of the complement U c joined
by a directed edge from U to U c .

The significance of this quantity for �1 is the following theorem of Chung:

Theorem A.8 (Chung [11, Theorem 5.1]) Let X be a directed graph. Then

2h.X /� �1 � h2.X /=2:

For the sake of interest, we show that the Cheeger constants of the Xi are all equal,
which gives another proof of Lemma A.7.

Lemma A.9 For any i , there is an equality h.Xi/� h.X1/.

Proof We give a sketch of a proof.

Given U a subset of Xi with jU j � jXi j=2, let V denote the set of suffixes of U

of length i � 1, and let V 0 denote the set of words obtained from V by appending a
letter. Then @U D V 0nU . Also, let 0V denote the set of words obtained from V by
prepending a letter. Then jV 0j D j0V j D jV j.2k � 1/ and U � 0V . Choose U so that

j@U j D jV 0nU j D h.Xi/jU j � h.Xi/jV
0
j:

Note that either jV j � jXi�1j=2, or else we may obtain a lower bound on h.Xi/ from
the difference jV j � jXi�1j=2; for the sake of argument, therefore, assume the former.

Now think of V as a subset of Xi�1 , and let W denote the set of suffixes of V of
length i � 2, and define W 0 and 0W analogously to above. Then @V D W 0nV by
definition. Moreover, jW 0nV j.2k � 1/D jV 0n0V j since each element of W 0nV can
be prepended with .2k � 1/ different letters to produce an element of V 0n0V . Since
also jV j.2k � 1/D jV 0j � jU j we deduce

h.Xi�1/�
j@V j

jV j
D
jW 0nV j

jV j
D
jV 0n0V j

jV 0j
�
jV 0n0V j

jU j
�
jV 0nU j

jU j
D h.Xi/:
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A.4: Hyperbolic groups

For an introduction to hyperbolic groups, see Gromov [18]. A finitely generated group
G is hyperbolic if it is coarsely negatively curved on a large scale. This can be expressed
in several equivalent ways in terms of the geometry of the Cayley graph; the most
useful characterizations are

(1) ı–thinness of triangles,

(2) a linear isoperimetric inequality, and

(3) all asymptotic cones are R–trees.

The adjective “hyperbolic” comes from the close (metric) resemblance to hyperbolic
geometry. But there is another sense in which such groups are hyperbolic, namely in
the dynamics of the (symbolic) geodesic flow.

Cannon [10] showed that in hyperbolic groups, a set of representative shortest words in
any given generating set can be enumerated by a finite state automaton. In the language
of digraphs, one version of Cannon’s theorem can be expressed as follows.

Let G be a hyperbolic group with a symmetric generating set S . Let � be a finite
directed graph with a distinguished (initial) vertex, and edges labeled by elements of
S , in such a way that there is at most one edge with a given label emanating from
each vertex. A directed path  in � starting at the initial vertex determines a word
w. / in the generators S , and by evaluation, an element of G . Cannon shows that
one can find such a � for which there is a 1–1 correspondence between such directed
paths and elements of G , and moreover for which every word w. / is a geodesic,
ie it is of shortest length among all words in S� representing a given element of G .
In more geometric terms, let z� denote the universal cover of � (it is also a directed
graph), and let � 0 be the subgraph of z� that is the union of all directed rays starting
at some lift of the initial vertex. Then � 0 embeds in the Cayley graph CS .G/ in
an edge-label-respecting way as a spanning tree, and every directed path in � 0 is a
geodesic in CS .G/.

In this language, there is a correspondence between “random” words in G , and “random”
directed walks in � . One thinks of � as a topological Markov chain, and then one
can assign probabilities to the edges (the transitions between states) in a way that
maximizes the entropy. For such an assignment, the pushforward measure from walks
of length n to the sphere of radius n in CS .G/ is coarsely equivalent to the uniform
measure on the sphere, and the limit as n!1 converges to the Patterson–Sullivan
measure on the Gromov boundary @G (see eg Coornaert and Papadopoulos [13]).
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A significant technical issue is that the graph � is not typically ergodic. Given a general
directed graph � , one can form a new directed graph without cycles, whose vertices
are the “communicating classes” of vertices in � (ie, equivalence classes of the relation
�, where u� v if there is a directed path from u to v and another directed path from
v to u). Each vertex of the new graph corresponds to an ergodic subgraph of � , whose
adjacency matrix has a real, non-negative (Perron–Frobenius) eigenvalue.

From the point of view of probability theory, only the vertices with maximal eigenvalue
are significant. It is an important consequence of a theorem of Coornaert [12] that for
hyperbolic groups, such vertices do not occur in series, but only in parallel. It follows
that this maximal eigenvalue � is also the growth rate of the group; ie, the unique �
such that there are ‚.�n/ words of length n. The fact that such “maximal” vertices
only occur in parallel means informally that there are finitely many distinct classes W

so that all but O.C�nc

/ words of length n fall into one of the classes of W , and for
words v in a given class Wi , for each � of length L log.n/= log.�/ with L< 1, there
is some fi.�/ (depending only on � and on the class Wi ) so that

P
�
jC� .v/� nfi.�/j< n�C.1�L/=2

�
D 1�O.C�nc

/;

ie, the analogue of Proposition 2.3 holds for each class Wi separately, and with
essentially the same proof. This leaves two problems before one can attempt to
generalize the construction in Section 4 to arbitrary hyperbolic groups: one must be
able to compare fi.�/ for different classes i , and one must be able to compare fi.�/

with fi.�
�1/. These problems are largely solved by the methods of Calegari and

Fujiwara [7], and Calegari and Maher [8]; see especially [8, Section 3.7].

We believe that it should be straightforward (albeit technically involved) to generalize
the results of Section 4 to arbitrary hyperbolic groups, and therefore feel confident in
the following conjecture:

Conjecture A.10 Let G be a hyperbolic group with finite generating set S , and let �
be such that the number of elements of length n is ‚.�n/. Let v be a random element
of word length n, conditioned to lie in the commutator subgroup ŒG;G�. Then for any
� > 0 and C > 1,

j scl.v/ log.n/=n� log.�/=6j � �

with probability 1�O.n�C /.

A similar analogue of Theorem 4.16 should also hold.
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A.5: Hyperbolic manifolds

If M is a closed hyperbolic d –manifold, it makes sense to study the stable commutator
length of random closed geodesics with length in Œn � ı; nC ı� for some fixed ı

(conditioned to be homologically trivial). The geodesic flow on a hyperbolic manifold
is the canonical example of an Anosov flow, and the analogues of Lezaud’s Chernoff-
type inequality are the mixing theorems of Pollicott [24] and others.

The correct analogue of log.�/ should be the exponential growth rate of the number of
orbits as a function of length which is just d � 1 (ie, the volume entropy) where d is
the dimension. The following conjecture seems very reasonable:

Conjecture A.11 Let M be a closed hyperbolic d –manifold. Fix some ı > 0. Let
 be a random geodesic of length in Œn� ı; nC ı� conditioned to be homologically
trivial, and let v be the corresponding conjugacy class in �1.M /. Then for any � > 0

and C > 1,
j scl.v/ log.n/=n� .d � 1/=6j � �

with probability 1�O.n�C /.

If true, this conjecture would say that one can recover (to any desired accuracy)
the length of a random geodesic directly from the bounded cohomology of �1.M /;
this interpretation is obviously very close to the spirit of Gromov’s celebrated result
discussed in the introduction.
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