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Universal realisators for homology classes

ALEXANDER GAIFULLIN

We study oriented closed manifolds M n possessing the following universal realisa-
tion of cycles (URC) property: For each topological space X and each homology class
z 2Hn.X;Z/ , there exists a finite-sheeted covering yM n!M n and a continuous
mapping f W yM n!X such that f�Œ yM n�D kz for a non-zero integer k . We find a
wide class of examples of such manifolds M n among so-called small covers of simple
polytopes. In particular, we find 4–dimensional hyperbolic manifolds possessing the
URC property. As a consequence, we obtain that for each 4–dimensional oriented
closed manifold N 4 , there exists a mapping of non-zero degree of a hyperbolic
manifold M 4 to N 4 . This was earlier conjectured by Kotschick and Löh.

57N65; 53C23, 52B70, 20F55

1 Introduction

Unless otherwise stated, all manifolds are supposed to be connected, compact, without
boundary and oriented.

Let M n and N n be manifolds of the same dimension n. We say that M n dominates
N n and write M n > N n if there exists a non-zero degree mapping M n ! N n .
Domination is a transitive relation on the set of homotopy types of connected oriented
closed manifolds. This relation goes back to the works of Milnor and Thurston [20]
and Gromov [16] and was first explicitly defined in the paper of Carlson and Toledo
[6] with a reference to a lecture of Gromov. Good surveys of results on domination
relation can be found in the papers of Wang [28] for the 3–dimensional case and of
Kotschick and Löh [18] for an arbitrary dimension. Obviously, M n > Sn for every
n–dimensional manifold M n . Hence the sphere Sn is the minimal element with
respect to the domination relation. We shall focus on the following question of Carlson
and Toledo [6] and the conjectural answer to it of Kotschick and Löh [18].

Question 1.1 (Carlson and Toledo, 1989) Is there an easily describable maximal
class of homotopy types with respect to the domination relation, that is, a collection Cn

of n–dimensional manifolds such that given any manifold N n , there exists an M n 2 Cn

satisfying M n >N n ?
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1746 Alexander Gaifullin

Recall that a hyperbolic manifold is a manifold admitting a Riemannian metric of
constant negative sectional curvature.

Conjecture 1.2 (Kotschick and Löh, 2008) In every dimension n�2, closed oriented
hyperbolic manifolds represent a maximal class of homotopy types with respect to the
domination relation.

This conjecture is trivially true for n D 2. By a result of Brooks [2], it is also true
for nD 3. Besides, Kotschick and Löh [18] showed that it is true for 4–dimensional
manifolds with finite fundamental groups. One of the goals of the present paper is to
prove Conjecture 1.2 for nD 4.

The following answer to Question 1.1 was obtained by the author [13; 14] in 2008. In
every dimension n, there is a manifold M n

0
such that each manifold N n is dominated

by a (non-ramified) finite-sheeted covering �M n
0

of M n
0

. Thus we can take for Cn the
collection of all finite-sheeted coverings of M n

0
. The manifold M n

0
is a so-called

small cover of the permutahedron (see Sections 2 and 3 for definitions). By a result
of Tomei [25], M n

0
is homeomorphic to an isospectral manifold of .nC 1/� .nC 1/

tridiagonal symmetric real matrices, which is important for integrable systems, since it
carries the famous Toda flow. However for n� 3 the manifold M n

0
is not hyperbolic,

since �1.M
n
0
/ contains a free Abelian subgroup of rank 2. We say that M n virtually

dominates N n if there exists a finite-sheeted covering �M n of M n such that �M n>N n .
Then the author’s result in [13; 14] can be formulated as follows.

Theorem 1.3 The manifold M n
0

is maximal with respect to the virtual domination
relation, ie, it virtually dominates every n–dimensional manifold N n .

Gromov [17] suggested a hyperbolisation procedure that, for each polyhedron P , yields
a polyhedron Ph and a mapping f W Ph!P such that Ph has a metric of non-positive
curvature in sense of Alexandrov (see definition in Section 3), f induces an injection
in integral cohomology, and singularities of Ph are “not worse” than singularities of P .
In particular, if P is a PL manifold, then Ph is also a PL manifold and f W Ph! P is
a degree 1 mapping. Besides, the pullback f � takes the rational Pontryagin classes of
P to the rational Pontryagin classes of Ph . This result of Gromov implies that each
manifold can be dominated (with degree 1) by a manifold of non-positive curvature.
Gromov’s hyperbolisation procedure has been improved by Davis and Januszkiewicz
[12] and by Charney and Davis [7]. The strongest result has recently been obtained by
Ontaneda [22] who has proved that, for a smooth manifold P , Ph can be constructed
to be a Riemannian manifold of negative sectional curvature in an arbitrarily small
interval Œ�1� ";�1�. However even the class of all Riemannian manifolds with such
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pinched sectional curvature seems to be too wide for Question 1.1. Theorem 1.3 shows
that more narrow classes Cn can be found.

Until now most results on domination relation in dimensions n> 3 have been negative.
For example, it is known that there exist manifolds that cannot be dominated by a
Kähler manifold [6] and there exist manifolds that cannot be dominated by a direct
product M1 �M2 of two manifolds of positive dimensions [18].

The domination relation is closely related to Steenrod’s problem on realisation of cycles.
The classical question of Steenrod is as follows. Given a homology class z 2Hn.X;Z/
of a topological space X , does there exist a smooth manifold M n and a continuous
mapping f W M n ! X such that f�ŒM n� D z? If such M n and f exist, we shall
say that z is realisable. A well-known theorem of Thom [24] claims that there exist
non-realisable homology classes, but for each z , a certain multiple kz , k 2 Z>0 , is
realisable. An important question is to describe a class Cn of n–dimensional manifolds
such that each n–dimensional homology class of each space X can be realised with
some multiplicity as an image of the fundamental class of a manifold belonging to
Cn . Thom’s Theorem easily implies that this question is equivalent to Question 1.1. In
particular, a manifold M n is maximal with respect to the virtual domination relation if
and only if it has the following universal realisation of cycles (URC) property.

Property URC For each X and each z 2 Hn.X;Z/, there exists a finite-sheeted
covering �M n of M n and a mapping f W �M n ! X such that f�Œ �M n� D kz for a
non-zero integer k .

Manifolds satisfying this condition will be called URC–manifolds. By Theorem 1.3,
URC–manifolds exist in every dimension. It is an interesting problem to describe the
class of URC–manifolds. The following proposition is straightforward.

Proposition 1.4 (1) Suppose �M n is a finite-sheeted covering of M n ; then �M n is
a URC–manifold if and only if M n is a URC–manifold.

(2) Suppose M n is a URC–manifold; then the connected sum M n # N n is a URC–
manifold for every N n .

(3) Suppose N n is a URC–manifold; then M n is a URC–manifold if and only if
M n virtually dominates N n .

In this paper our goal is to obtain a wide collection of examples of URC–manifolds.
These examples are small covers of simple polytopes satisfying certain special con-
ditions. In particular, in dimensions n� 4 we shall find hyperbolic URC–manifolds.
Thus we shall prove Conjecture 1.2 for nD 4.
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We denote by Sn , Rn and Hn the spaces of constant curvature C1, 0 and �1 respec-
tively, ie, the round sphere of radius 1, the Euclidean space and the Lobachevsky space
respectively.

Each compact hyperbolic manifold M n is isometric to the quotient of Hn by the action
of a torsion-free uniform discrete transformation group � � Isom.Hn/. Recall that
two discrete subgroups �1; �2 � Isom.Hn/ are said to be commensurable if �1\�2

has finite indices in both �1 and �2 . A discrete subgroup W � Isom.Hn/ is called a
reflection subgroup if it is generated by orthogonal reflections in hyperplanes H �Hn .
A reflection subgroup is called right-angular if the mirrors of any two reflections
s; s0 2W either are orthogonal to each other or do not intersect.

Theorem 1.5 Let M n D Hn=� be a compact hyperbolic manifold such that the
group �1.M

n/D� is commensurable with a uniform right-angular reflection subgroup
W � Isom.Hn/. Then M n is a URC–manifold.

Uniform right-angular reflection subgroups W � Isom.Hn/ correspond to compact
right-angular polytopes P �Hn . (It is well known that every compact right-angular
polytope is simple.) Compact right-angular polytopes P �Hn exist for nD 2; 3; 4. For
example, there is the right-angular regular dodecahedron in H3 and the right-angular
regular 120–cell in H4 . Many examples of compact right-angular polyhedra in H3

were obtained by Löbell [19]. Hence, for nD 2; 3; 4, there exist uniform right-angular
reflection subgroups W � Isom.Hn/. By Selberg’s Lemma each such subgroup W

contains a finite index torsion-free subgroup � . Then Hn=� is a hyperbolic URC–
manifold.

Corollary 1.6 In dimensions n D 2; 3; 4, there exist hyperbolic URC–manifolds.
Consequently, each manifold N n can be dominated by a hyperbolic manifold.

Notice that even in dimension 3 this assertion is stronger than a result of Brooks [2]
because the hyperbolic manifolds obtained by the Brooks construction are not coverings
of the same manifold.

By a result of Vinberg [27], for n� 5, there are no compact right-angular polytopes
P � Hn and hence there are no uniform right-angular reflection subgroups W �

Isom.Hn/. Thus Theorem 1.5 cannot be used for n� 5.

This paper is organised in the following way. In Section 2 we describe several con-
structions of manifolds glued from simple polytopes, in particular, the construction
of so-called small covers of simple polytopes due to Davis and Januszkiewicz [11].
These constructions play a key role throughout the paper. Main results are formulated
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in Section 3. They include several sufficient conditions for small covers of simple
polytopes to be URC–manifolds. In particular, we prove that a small cover of a
polytope is a URC–manifold whenever it admits an equivariant metric of strictly
negative curvature in sense of Alexandrov with at least one “smooth” point. The proofs
of these results as well as the proof of Theorem 1.5 are given in Sections 6 and 7.

Sections 4 and 5 are devoted to the proof of Theorem 1.3. Actually, this theorem
has been proved by the author in [13; 14]. However, in the present paper we give a
new interpretation of this proof based on a certain group-theoretic construction that
essentially clarifies the proof.

2 Manifolds glued from simple polytopes

We denote by Œm� the set f1; 2; : : : ;mg.

Let S be a finite set and let G be a graph on the vertex set S . Recall that a right-
angular Coxeter group associated to G is the group W with the set of generators S

such that all relations in W are consequences of relations s2 D 1, s 2 S , and st D ts

whenever fs; tg is an edge of G . The pair .W;S/ is called a right-angular Coxeter
system.

The following general construction is due to Vinberg [26]. Let X be a topological
space and let Xs be closed subsets of it indexed by elements s 2 S . For a point
p 2 X , denote by W .p/ the subgroup of W generated by all elements s 2 S such
that p 2Xs . Endow W with the discrete topology. Consider an equivalence relation
� on X �W such that .p;g/ � .p0;g0/ if and only if p D p0 and g0g�1 2W .p/,
and denote the quotient space .X �W /=� by U.W;X; fXsg/. Denote by Œp;g� the
point of U.W;X; fXsg/ corresponding to the equivalence class of .p;g/. The natural
right action of W on X �W is compatible with �. Hence the right action of W on
U.W;X; fXsg/ given by Œp;g� �g0 D Œp;gg0� is well defined.

Remark 2.1 Usually in this construction the condition g0g�1 2 W .p/ is replaced
with the condition g�1g0 2 W .p/ to obtain a left action of W on U.W;X; fXsg/.
However, it is convenient for us to have a right action here.

Davis [8; 9] and Davis and Januszkiewicz [11] applied this construction to obtain a
wide class of manifolds glued from simple convex polytopes. Here we describe several
their constructions.

Let P be a simple convex polytope in either Rn or Hn with facets F1; : : : ;Fm . We
always assume that P is n–dimensional, ie, not contained in a hyperplane, and compact.
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Recall that a polytope is said to be simple if every its vertex is contained in exactly n

facets.

(1) Let S D fs1; : : : ; smg and let fsi ; sj g be an edge of G if and only if Fi\Fj ¤∅.
Denote by WP the right-angular Coxeter group associated to the graph G . Let X DP

and Xsi
D Fi , i D 1; : : : ;m. Put UP D U.WP ;P; fFig/. Then

UP D .P �WP /=�;

where .p;g/ � .p0;g0/ if and only if p D p0 and g0g�1 belongs to the subgroup
W .p/�WP generated by all si such that p 2 Fi .

(2) Let S , X , Xsi
be as in the previous construction and let G be a complete graph on

the vertex set S . Then the corresponding right-angular Coxeter group is Zm
2

. We shall
use the multiplicative notation for Zm

2
and we shall denote its generators by a1; : : : ; am

to avoid confusion with the generators s1; : : : ; sm of WP . Put RP D U.Zm
2
;P; fFig/.

Then
RP D .P �Zm

2 /=�;

where .p;g/� .p0;g0/ if and only if p D p0 and g0g�1 belongs to the subgroup of
Zm

2
generated by all ai such that p 2 Fi .

(3) Suppose that facets of P are coloured in colours from a finite set. We say that a
colouring is regular if any two intersecting facets are of distinct colours. Assume that
P admits a regular colouring of facets in n colours, which we denote by 1; : : : ; n. Let
S D fb1; : : : ; bng, X DP and let Xbi

be the union of all facets of colour i . Let G be
a complete graph on the vertex set S . Then the corresponding right-angular Coxeter
group is Zn

2
. Put MP D U.Zn

2
;P; fXbi

g/. Then

MP D .P �Zn
2/=�;

where .p;g/� .p0;g0/ if and only if p D p0 and g0g�1 belongs to the subgroup of
Zn

2
generated by all bi such that p is contained in a facet of colour i . The manifold

MP is called the small cover of P induced from a linear model. Notice that if a regular
colouring of facets of P exists, it is unique up to a permutation of colours.

(4) This is a generalization of the previous construction. A characteristic function for
P is a mapping �W Œm�! Zn

2
that satisfies the following condition:

The elements �.i1/; : : : ; �.in/ generate Zn
2

whenever i1; : : : ; in are pairwise
distinct and Fi1

\ � � � \Fin
¤∅.

Given a characteristic function, we can define a small cover of P by

MP;� D .P �Zn
2/=��;
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where .p;g/ �� .p0;g0/ if and only if p D p0 and g0g�1 belongs to the subgroup
of Zn

2
generated by all �.i/ such that p 2 Fi . If every �.i/ is contained in the basis

b1; : : : ; bn , we obtain the small covering induced from a linear model described above.
Notice that there exist polytopes that admit no characteristic functions �.

Remark 2.2 The manifolds RP and MP;� have “complex” analogues that are ob-
tained by replacing the groups Zm

2
and Zn

2
with the compact tori T m and T n and are

called moment-angle manifolds and quasi-toric manifolds respectively. These manifolds
have also been defined by Davis and Januszkiewicz [11]. The theory of moment-angle
manifolds and quasi-toric manifolds has been fruitfully developed and has found many
applications; see Buchstaber and Panov [3] and references therein.

The spaces UP , RP and MP;� are glued from copies of the polytope P indexed by
elements of the groups WP , Zm

2
and Zn

2
, respectively. Hence these spaces have natural

cell decompositions with each n–dimensional cell isomorphic to P . It is not hard
to see that each vertex v of each of these decompositions is contained in exactly 2n

n–dimensional cells. Moreover, the corners of these 2n cells meet at the vertex v in a
standard way, ie, as the corners of orthants at the origin of Rn . Hence UP , RP and
MP;� are PL manifolds. Besides, the dual cell decompositions U�

P
, R�

P
and M �

P;�

are decompositions into cubes.

The manifolds UP , RP and MP;� carry natural right actions of the groups WP , Zm
2

and Zn
2

, respectively, and

UP=WP DRP=Z
m
2 DMP;�=Z

n
2 D P:

Further, we have surjective homomorphisms �W WP ! Zm
2

and ��W Zm
2
! Zn

2
given

by �.si/ D ai and ��.ai/ D �.i/ respectively. It can be easily seen that the groups
ker � and ker�� act freely on UP and RP respectively and

UP= ker �DRP ; RP= ker�� DMP;� :

Thus UP is a regular covering of RP and RP is a 2m�n –sheeted regular covering of
MP;� . Vice versa, the quotient of RP by any subgroup A � Zm

2
, A Š Zm�n

2
, that

acts freely on it is a small cover of P .

Davis [8] proved that the manifold UP is simply connected. Hence UP is the universal
covering of the manifolds RP and MP;� . A simple polytope P is called a flag
polytope if a collection Fi1

; : : : ;Fir
of its facets has non-empty intersection whenever

all pairwise intersections Fik
\Fil

are non-empty. Davis [8] proved that if P is a flag
polytope, then the manifold UP is contractible. Hence, the manifolds RP and MP;�
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are aspherical and their fundamental groups are isomorphic to the groups ker � and
ker.���/ respectively.

To a simple polytope P with facets F1; : : : ;Fm is assigned a simplicial complex KP

on the vertex set fv1; : : : ; vmg such that vertices vi1
; : : : ; vik

span a simplex in KP

if and only if Fi1
\ � � � \ Fik

¤ ∅. The complex KP is an .n � 1/–dimensional
combinatorial sphere. (A simplicial complex K is called an .n � 1/–dimensional
combinatorial sphere if it is PL homeomorphic to the boundary of the n–dimensional
simplex.) If P is a simple polytope in Rn , then KP is isomorphic to the boundary of
the dual simplicial polytope P� .

The constructions of manifolds UP , RP and MP;� can be extended to a wider class
of objects than simple polytopes. It is well known that not every combinatorial sphere
can be realised as the boundary of a simplicial polytope. Nevertheless, it is convenient
to assign to every combinatorial sphere K a certain object PK which turns out to
be the dual simple polytope whenever K is the boundary of a simplicial polytope.
The construction is as follows. Suppose K is an .n� 1/–dimensional combinatorial
sphere on the vertex set fv1; : : : ; vmg. Let PK D cone.K0/ be the cone over the first
barycentric subdivision of K and let Fi be the star of a vertex vi in K0 , that is, a
subcomplex of K0 consisting of all simplices containing vi . We say that PK is the
simple cell dual to K , Fi are facets of PK , and non-empty intersections of facets are
faces of PK . The simple cell PK has the following properties that mimic properties
of simple polytopes:

� PK is PL homeomorphic to the n–dimensional simplex.
� @PK D F1[ � � � [Fm .
� Fi1

\ � � � \Fik
is PL homeomorphic to the .n� k/–dimensional simplex if the

vertices vi1
; : : : ; vik

span a .k �1/–dimensional simplex of K , and Fi1
\ � � �\

Fik
is empty if the vertices vi1

; : : : ; vik
do not span a simplex of K .

The described constructions P 7! KP and K 7! PK are mutually inverse and
yield a one-to-one correspondence between n–dimensional simple cells and .n� 1/–
dimensional combinatorial spheres. The constructions of the manifolds UP , RP and
MP;� are immediately extended to the case of an arbitrary simple cell P .

Remark 2.3 Indeed, the requirement that K is a combinatorial sphere is not needed
to construct PK . This construction can be applied to an arbitrary simplicial complex
K and PK is called a simple polyhedral complex dual to K ; see [9; 11]. The spaces
UPK

, RPK
and MPK ;� can be constructed for an arbitrary simple polyhedral complex

PK . However generally they are not manifolds. Still they are homology manifolds if
K is a homology sphere and they are pseudo-manifolds if K is a pseudo-manifold.
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Let us fix terminology and notation concerning simplicial complexes and simple cells.
First, we always work with geometric simplicial complexes. Second, if K is a simplicial
complex, we use the same notation K (instead of jKj) for the underlying topological
space of K . This causes no ambiguity unless we write x 2K . We make a convention
that notation x 2K always means that x is a point of the underlying space of K and
we never use notation x 2K to indicate that x is a simplex of K . The simplex with
vertices u1; : : : ;uk will be denoted by Œu1 : : :uk �. If K is a combinatorial sphere and
P is the dual simple cell, we always identify with each other the topological spaces
@P , K0 and K . Now, let K1 and K2 be combinatorial spheres and let P1 and P2

be the dual simple cells respectively. A simplicial mapping 'W K1!K2 induces the
simplicial mapping '0W K0

1
!K0

2
and the mapping x' D cone.'0/W P1! P2 . After

identifying @Pi with Ki , i D 1; 2, the mapping x'j@P1
will coincide with the original

mapping 'W K1!K2 . Let u and v be vertices of K1 and K2 , respectively, and let
F and G be the corresponding facets of P1 and P2 , respectively. It is easy to see that
x'.F /�G whenever '.u/D v .

Let P1 and P2 be simple cells of the same dimension and let f W P1 ! P2 be a
mapping such that f .@P1/� @P2 . The degree of f is, by definition, the degree of the
induced mapping P1=@P1! P2=@P2 .

3 URC small covers

By definition, the permutahedron …n � RnC1 is the convex hull of .nC 1/! points
.j1; j2; : : : ; jnC1/ such that j1; j2; : : : ; jnC1 is a permutation of the set 1; 2; : : : ; nC1.
It can be easily seen that …n is a simple polytope in the hyperplane

PnC1
iD1 ti D

.nC 1/.nC 2/=2, where t1; : : : ; tn are the standard coordinates in RnC1 . The permu-
tahedron …n has 2nC1� 2 facets F! , which are conveniently indexed by non-empty
proper subsets ! � ŒnC 1�. (A subset ! � ŒnC 1� is called proper if ! ¤ ŒnC 1�.)
The facet F! is given by the equation

X
i2!

ti D

nC1X
jDn�j!jC2

j D
.nC 1/.nC 2/

2
�
.n� j!jC 1/.n� j!jC 2/

2
;

where j!j is the cardinality of ! . It is easy to see that facets F!1
and F!2

have
non-empty intersection if and only if either !1 � !2 or !2 � !1 . This implies that
the simplicial complex K…n is isomorphic to the first barycentric subdivision of the
boundary of the n–simplex.
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Colouring each facet F! in colour j!j, we obtain a regular colouring of facets of …n

in n colours 1; : : : ; n. Hence the small cover M…n induced from a linear model is
well defined. The following theorem is a reformulation of Theorem 1.3.

Theorem 3.1 The manifold M…n is a URC–manifold.

This theorem was proved by the author [13; 14] (see also [15] for further applications of
this construction). In Sections 4 and 5 we shall give a proof of Theorem 3.1. Actually,
this is the same proof as the proof given in [13] and [14]. Nevertheless, in the present
paper we give a new exposition of this proof using a new group-theoretic lemma, which
essentially clarifies the idea behind the construction.

For each characteristic function �, RP is a finite-sheeted covering of MP;� . Hence
MP;� is a URC–manifold if and only if RP is a URC–manifold. In particular, we see
that R…n is a URC–manifold and M…n;� is a URC–manifold for every characteristic
function �. We shall give several sufficient conditions for a manifold RP to be a
URC–manifold. To formulate the result we need several definitions.

A simplicial complex K is said to be a flag complex if a set of vertices of K spans a
simplex whenever these vertices are pairwise joined by edges. Another terminology is
that K contains “no empty simplices” or satisfies “no–4–condition”; see Gromov [17].
A simple cell P is said to be a flag simple cell if KP is a flag complex. For simple
polytopes this definition is equivalent to the definition given in Section 2. Further, we
shall say that K does not contain an empty 4–circuit if for any pairwise distinct vertices
u1;u2;u3;u4 such that Œu1u2�, Œu2u3�, Œu3u4� and Œu4u1� are edges of K , at least
one of the diagonals Œu1u3� and Œu2u4� is an edge of K . In Gromov’s terminology
[17] this condition is called “Siebenmann’s no-�–condition”.

Let K be an .n� 1/–dimensional combinatorial sphere and let 0 < " < � . We say
that K is "–fine if there exists a mapping K! Sn�1 of non-zero degree such that the
diameter of the image of every simplex of K is less than ". A simple cell P is said to
be "–fine if KP is "–fine.

Theorem 3.2 Let P be an n–dimensional simple cell. Assume that P satisfies one
of the following conditions:

(a) There exists a simplicial mapping f W KP ! .@�n/0 of non-zero degree, where
.@�n/0 is the first barycentric subdivision of the boundary of the n–dimensional
simplex.

(b) KP is isomorphic to the barycentric subdivision of a combinatorial sphere L.
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(c) P is "n –fine, where:

"n D arccos
�
1�

12

n.nC1/.nC2/

�
(d) P �Hn is a simple convex polytope whose interior contains a closed ball of

radius:

�n D log
�r

n.nC1/.nC2/

6
C

r
n.nC1/.nC2/

6
� 1

�
(e) KP is a flag combinatorial sphere without an empty 4–circuit, ie, KP satisfies

the “no-4–condition” and the “no-�–condition”.

Then RP is a URC–manifold. Therefore MP;� is a URC–manifold for every charac-
teristic function �.

The assertion that each manifold RP satisfying condition (x) is a URC–manifold will be
referred as Theorem 3.2(x), where x is one of the letters a, b, c, d and e. Conditions (a),
(b) and (e) are purely combinatorial. Notice, however, that condition (a) is harder to
check than conditions (b) and (e). Conditions (c) and (d) have more geometric nature.
We shall see that (d))(c))(a) and (b))(a). Hence all assertions of Theorem 3.2
except for (e) will follow from assertion (a).

The proof of Theorem 3.2(e) uses theory of CAT.�/ spaces. Good references for this
subject are Gromov [17] and Bridson and Haefliger [1]; for applications to manifolds
UP , see Davis [10]. Recall the definition of a CAT.�1/ space. Let X be a complete
geodesic metric space. For every geodesic triangle xyz in X , a comparison triangle is
a triangle x�y�z� in H2 with the same edge lengths. Let p and q be arbitrary points
in the boundary of xyz and let p� and q� be the corresponding points in the boundary
of x�y�z� . The CAT.�1/ inequality is the inequality distX .p; q/� distH2.p�; q�/.
A space X is said to be a CAT.�1/ space if the CAT.�1/ inequality is satisfied for
every geodesic triangle xyz and every points p and q in its boundary. A space X is
said to have curvature K � �1 if the CAT.�1/ inequality is satisfied locally, ie, in a
neighbourhood of every point. Replacing in these definitions the Lobachevsky plane
H2 with the Euclidean plane R2 one will obtain definitions of a CAT.0/ space and of
a space of curvature K � 0.

Theorem 3.3 Assume that the manifold RP admits a Zm
2

–invariant metric of curva-
ture K � �1 such that there exists a point o 2RP whose neighbourhood is isometric
to an open subset of Hn . Then RP is a URC–manifold.
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The universal covering of a space of curvature K ��1 is a CAT.�1/ space. Hence
RP has a Zm

2
–invariant metric of curvature K � �1 if and only if UP has a WP –

invariant CAT.�1/ metric. The condition of the existence of a point o with a “standard”
neighbourhood is technical and probably can be avoided.

The standard way to construct a metric on UP is as follows. The manifold UP has a
natural cell decomposition with n–dimensional cells isomorphic to P . The dual cell
decomposition U�

P
is a cubical decomposition; see Section 2. Choose an a > 0 and

endow every cube of U�
P

with the metric of a regular cube in Hn of edge length a.
Gromov [17] proved that the obtained metric is CAT.�1/ for some a> 0 if and only
if a simple cell P satisfies condition (e) of Theorem 3.2, that is, satisfies the “no-4–
condition” and the “no-�–condition”. This CAT.�1/ metric on UP is WP –invariant.
Besides, it is piecewise hyperbolic, since every cell of U�

P
is isometric to a cube in Hn .

Hence Theorem 3.2(e) immediately follows from Theorem 3.3.

Remark 3.4 The condition K��1 in Theorem 3.3 cannot be replaced by a condition
K� 0. Gromov [17] showed that the manifold UP has a WP –invariant CAT.0/ metric
whenever P is a flag simple cell, ie, whenever KP satisfies the “no-4–condition”. For
example, the direct product P1�P2 of any flag simple cells is a flag simple cell. Hence
the manifold RP1�P2

has a Zm
2

–invariant metric of curvature K� 0. However, a result
of Kotschick and Löh [18] implies that the manifold RP1�P2

DRP1
�RP2

cannot be
a URC–manifold if both cells P1 and P2 have positive dimensions. Nevertheless the
following conjecture seems to be reasonable.

Conjecture 3.5 Suppose P is a flag simple cell that is not combinatorially equivalent
to a direct product of two simple cells of positive dimensions. Then RP is a URC–
manifold.

Let us show that Theorem 3.3 implies Theorem 1.5. Indeed, let W � Isom.Hn/ be
a uniform right-angular reflection group and let P be a fundamental domain for W .
Then UP D Hn has a W –invariant metric of constant curvature �1. Theorem 3.3
yields that RP is a URC–manifold. Now, for a torsion-free subgroup � � W , the
manifolds RP and Hn=� possess a common finite-sheeted covering. Hence Hn=�

is a URC–manifold.

Remark 3.6 It is reasonable to ask whether the obtained URC–manifolds are smooth-
able. Indeed, if P is not only a simple cell, but a simple polytope in either Rn or Hn ,
then P has a natural structure of smooth manifold with corners. Hence the manifold
RP has a Zm

2
–equivariant smooth structure; see Davis [8].
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Remark 3.7 The proofs of Theorems 3.2 and 3.3 that are given in Sections 6 and 7
never use that KP is a combinatorial sphere. Actually, we might take for P a simple
polyhedral complex dual to an arbitrary oriented pseudo-manifold K (see Remark 2.3).
Then the analogues of Theorems 3.2 and 3.3 would assert that the pseudo-manifold
RP satisfies the URC-condition, though we would not be able to guarantee that RP is
a manifold.

4 A group-theoretic construction

Let � be a finite partially ordered set and let mD j�j be its cardinality. We shall write
!1 – !2 to indicate that either !1 � !2 or !1 and !2 are incomparable. Let F be
the free product of m copies of the group Z2 indexed by the elements of the set �.
The generator of the factor Z2 corresponding to an element ! 2� will be denoted by
x! . Thus,

F D hx! ; ! 2� j x
2
! D 1i:

For each ! 2�, we consider the automorphism  ! 2 Aut.F/ such that

 !.x /D

�
x!xx! if  < !;
x if  – !;

for all  2 �. We denote by ‰ the subgroup of Aut.F/ generated by the elements
 ! , ! 2�. Now, we consider the semi-direct product F Ì‰ corresponding to the
tautological action of ‰ � Aut.F/ on F and we consider the elements s! D x! ! 2

F Ì‰ . Denote by S the set consisting of m elements s! and by W the subgroup of
F Ì‰ generated by the elements s! . Obviously,  2

! D 1 and s2
! D 1 for all ! 2�.

Proposition 4.1 Suppose !1 < !2 ; then  !1
 !2
D  !2

 !1
and s!1

s!2
D s!2

s!1
.

Proof Suppose  2�. By a direct computation we obtain:

 !1
. !2

.x //D  !2
. !1

.x //D

8<:
x!2

x!1
xx!1

x!2
if  < !1;

x!2
xx!2

if  – !1 and  < !2;

x if  – !2:

Hence the automorphisms  !1
and  !2

commute. Now we have:

s!1
s!2
D x!1

 !1
x!2

 !2
D x!1

x!2
 !1

 !2
;

s!2
s!1
D x!2

 !2
x!1

 !1
D x!2

.x!2
x!1

x!2
/ !2

 !1
D x!1

x!2
 !1

 !2
:

Therefore s!1
s!2
D s!2

s!1
.
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Proposition 4.2 .W;S/ is a right-angular Coxeter system such that generators s!1

and s!2
commute if and only if !1 and !2 are comparable.

Proof We have already proved that the elements s! satisfy relations s2
! D 1 and

s!1
s!2
D s!2

s!1
whenever !1 < !2 . We need to prove that these relations imply all

relations among the elements s! . Let W be the right-angular Coxeter group generated
by the elements r! , ! 2�, with all relations among them following from the relations
r2
! D 1 and r!1

r!2
D r!2

r!1
, !1 < !2 . Then we have a well-defined homomorphism

i W W ! F Ì‰ such that i.r!/D s! . We need to prove that i is injective. Consider
the homomorphism j W F !W given by j .x!/D r! . Obviously, the homomorphism
j is ‰–invariant. Hence there exists a well-defined homomorphism j 0W F Ì‰!W

such that j 0.x / D j .x/ for every x 2 F and every  2 ‰ . Since the composite
homomorphism

W
i
�! F Ì‰

j 0

�!W

is the identity isomorphism, we obtain that i is injective.

Remark 4.3 The above construction has the following generalization. Let zF be the
free group with generators zx! , ! 2 �. Consider the automorphisms z ! 2 Aut.zF/
such that

z !.zx /D

�
zx! zx zx

�1
! if  < !;

zx if  – !;

for every  2 � and consider the elements y! D zx
�1
!
z ! 2 zF Ì Aut.zF/. Then

y!1
y!2
D y!2

y!1
and these relations imply all relations among the elements y! .

Therefore, the subgroup A� zF ÌAut.zF/ generated by the elements y! is the right-
angular Artin group. The proof is similar to the proof of Proposition 4.2.

For ! 2 �, let F>! � F be the subgroup generated by all elements x!0 such that
!0 > ! and let F�! � F be the subgroup generated by all elements x!0 such that
!0 � ! . The definition of the automorphisms  ! immediately implies the following
proposition.

Proposition 4.4 The subgroups F>! and F�! are ‰–invariant. For each  2‰ , we
have  .x!/D yx!y�1 for a y 2 F>! .

Now, we consider the mapping F Ì‰! F such that  x 7! x for every x 2 F and
every  2‰ , and we denote by � the restriction of this mapping to W . The mapping
� W W ! F is not a homomorphism, but it satisfies the following property.

Geometry & Topology, Volume 17 (2013)



Universal realisators for homology classes 1759

Proposition 4.5 Suppose g 2W and ! 2�; then there exists y 2 F>! such that

�.s!g/D yx!y�1�.g/:

Proof Suppose g D  x , where x 2 F and  2‰ ; then �.g/D x . We have s!g D

 ! zx , where zD �1.x!/. Hence, �.s!g/D zxD z�.g/. By Proposition 4.4, we
have z D yx!y�1 for a y 2 F>! .

Now, let H be a subgroup of finite index in F . Denote by ‰H the subgroup of ‰
consisting of all automorphisms  such that  .x/H D xH for all x 2 F . Since
 .H /DH for all  2‰H , the semi-direct product H Ì‰H is well defined. It is easy
to prove that the subgroup ‰H has finite index in ‰ . We put WH DW \ .H Ì‰H /.
Then WH is a subgroup of finite index in W .

Proposition 4.6 Let g1 and g2 be elements of W such that g1WH D g2WH . Then
�.g1/H D �.g2/H . Consequently the mapping � induces a well-defined mapping
�H W W =WH ! F=H .

Proof We have g2 D g1g for some g 2H Ì‰H . Suppose g1 D  x and g D 'h,
where x 2 F ,  2‰ , h 2H and ' 2‰H . Then �.g1/D x and �.g2/D '

�1.x/h.
Since h 2H and ' 2‰H , we see that �.g1/H D �.g2/H .

5 The manifold M…n is URC

In this section we use the group-theoretic construction described in Section 4 to prove
Theorem 3.1. Since arcwise connected components of X can be treated separately, we
may assume that X is arcwise connected.

Recall that a simplicial complex Z is called an n–dimensional pseudo-manifold if

(1) each simplex of Z is contained in an n–dimensional simplex,

(2) each .n� 1/–dimensional simplex of Z is contained in exactly two n–dimen-
sional simplices.

All pseudo-manifolds under consideration are supposed to be compact and strongly
connected. The latter means that any two n–dimensional simplices of Z can be
connected by a sequence of n–dimensional simplices such that every two consecutive
simplices have a common .n� 1/–dimensional face.

The following proposition follows easily from the definition of singular homology
groups.
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Proposition 5.1 Let X be an arcwise connected topological space and let z2Hn.X;Z/
be an arbitrary homology class. Then there exists a strongly connected oriented n–
dimensional pseudo-manifold Z and a continuous mapping f W Z ! X such that
f�ŒZ�D z .

Hence, to prove that M…n is a URC–manifold we suffice to show that for each strongly
connected oriented n–dimensional pseudo-manifold Z , a multiple of the fundamental
class of Z can be realised as an image of the fundamental class of a finite-sheeted
covering of M…n . We shall construct explicitly a finite-sheeted covering �M…n of
M…n and a continuous mapping �M…n !Z of non-zero degree.

Replacing Z with its first barycentric subdivision, we may assume that vertices of Z

admit a regular colouring in nC 1 colours 1; : : : ; nC 1. (This means that any two
vertices of Z connected by an edge are of distinct colours.) For an n–dimensional
simplex � of Z , the colouring of its vertices in colours 1; : : : ; nC 1 provides the
orientation of � . We colour the simplex � in either white or black colour depending
on whether this orientation of � coincides with the global orientation of Z or not.
Obviously, any two simplices with a common facet have distinct colours. Thus we
obtain a chess colouring of n–dimensional simplices of Z .

We denote by A the set of all n–dimensional simplices of Z and by AC and A� the
sets of all white and black n–dimensional simplices of Z , respectively. For a simplex
� of Z , we denote by A.�/ the set of all n–dimensional simplices � containing � .
We put AC.�/DA.�/\AC and A�.�/DA.�/\A� .

Proposition 5.2 For each simplex � of Z such that dim � < n, the number of white
n–dimensional simplices � containing � is equal to the number of black n–dimensional
simplices � containing � , ie, jAC.�/j D jA�.�/j.

Proof Let k D dim � . Each n–dimensional simplex � 2A.�/ contains exactly n�k

simplices � such that dim � D n� 1 and � � � . On the other hand, every .n� 1/–
dimensional simplex � containing � is contained in exactly one simplex belonging
to AC.�/ and in exactly one simplex belonging to A�.�/. Hence, the number of
.n� 1/–dimensional simplices � containing � is equal to both .n� k/jAC.�/j and
.n� k/jA�.�/j. Therefore, jAC.�/j D jA�.�/j.

This proposition implies that we can pair off elements of the sets AC.�/ and A�.�/.
For every � , we choose arbitrarily such pairing �� . Then �� W A.�/ ! A.�/ is a
bijection such that �� .A˙.�//DA�.�/ and �2

� D id.

Consider a non-empty proper subset ! � ŒnC1�. Denote by T! the set of all simplices
� of Z such that the set of colours of vertices of � coincides with ! . If j!j D k , then
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the set T! consists of .k � 1/–dimensional simplices. Obviously, each simplex � 2A

contains exactly one simplex � 2 T! , which will be called the face of � of type ! .
Hence the set A is the disjoint union of the sets A.�/, � 2 T! . Let �! W A! A be
the bijection whose restriction to every set A.�/ such that � 2 T! coincides with �� .
Then �! is a permutation of the set A satisfying the following conditions:

(1) �!.AC/DA� and �!.A�/DAC .

(2) �2
! D 1.

(3) For each � 2A, the simplices � and �!.�/ have a common face of type ! .

Let �n �RnC1 be the standard simplex with vertices

e1 D .1; 0; : : : ; 0/; e2 D .0; 1; : : : ; 0/; : : : ; enC1 D .0; 0; : : : ; 1/:

For a non-empty proper subset ! � ŒnC 1�, we denote by �! the face of �n with
vertices ei such that i 2 ! . For each simplex � 2 A, let �� W �n! � be the linear
isomorphism taking every vertex ei to the vertex of � of colour i . Obviously, ��
preserves the orientation if � 2AC and reverses the orientation if � 2A� . We shall
denote the point �� .p/ by Œp; � �. Then

(1) Œp; �!.�/�D Œp; � �

whenever p 2�! .

Now let � be the set of all non-empty proper subsets ! � ŒnC 1� partially ordered by
inclusion; then mD j�j D 2nC1 � 2. We consider the construction in Section 4 for
this �. Recall that facets F! of …n are in one-to-one correspondence with subsets
! 2 � and F!1

\F!2
¤ ∅ if and only if either !1 � !2 or !2 � !1 . Hence the

right-angular Coxeter group W corresponding to the partially ordered set � coincides
with the right-angular Coxeter group W…n . We have M…n D U…n=� , where � is the
kernel of the homomorphism �W W ! Zn

2
such that �.s!/D bj!j , ! 2�.

Let us construct a degree 1 mapping � W …n!�n such that �.F!/��! for every
! 2�. Map the barycentre of …n to the barycentre of �n . Each face F of …n can be
uniquely written as F!1

\ � � � \F!k
, !1 � � � � � !k . Map the barycentre of F to the

barycentre of �!1
. Now the mapping � is defined on the vertices of the barycentric

subdivision of …n . Extend this mapping linearly to every simplex of the barycentric
subdivision of …n .

Denote by SA the group of permutations of the set A. Consider the homomorphism
ƒW F!SA given by ƒ.x!/D �! . This homomorphism yields the action of the group
F on the set A. Since Z is strongly connected, this action is transitive. We shall write
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g �� Dƒ.g/.�/ for g 2 F , � 2A. Choose a simplex �0 2AC and define the mapping
f W U…n !Z by

f .Œp;g�/D Œ�.p/; �.g/ � �0�:

Let H � F be the stabilizer of �0 . The subgroup H has finite index, since the set
A is finite. Then WH is a subgroup of finite index in W . Let �H DWH \ � and�M…n D U…n=�H .

Proposition 5.3 The mapping f is well defined and invariant under the right action of
WH on U…n . Hence f induces a well-defined mapping f1W

�M…n !Z . The degree
of f1 is equal to jW W �H j=jAj.

Proof To prove that f is well defined we need to show that

Œ�.p/; �.g/ � �0�D Œ�.p/; �.g
0/ � �0�

whenever g0g�1 2W .p/. Let F!1
\� � �\F!k

be the minimal face of …n that contains
p . We may renumber the subsets !i so that !1 � � � � � !k . Then �.p/ 2�!1

. The
subgroup W .p/ is generated by s!1

; : : : ; s!k
. Since g0g�1 2W .p/, Proposition 4.5

implies that �.g0/D x�.g/ for an x 2 F�!1
. Then ƒ.x/ belongs to the subgroup of

SA generated by all �! such that ! � !1 . Let � D �.g/ � �0 ; then �.g0/ � �0 D x � � .
Equation (1) implies that Œ�.p/;x � �� D Œ�.p/; ��. Therefore f is well defined.
Proposition 4.6 immediately yields that f is WH –invariant.

The manifold U…n is glued from permutahedra indexed by elements g 2 W . We
denote by …g the permutahedron corresponding to g . The restriction f j…g

coincides
with the composite mapping

…g

��1
g

��!…n �
�!�n

��.g/��0
�����! �.g/ � �0;

where �gW …n! U…n is the mapping given by �g.p/D Œp;g�. All mappings in this
diagram have degrees ˙1. The mapping � has degree 1. The mapping �g has degree
1 if and only if the element g is represented by a word of even length in generators
s! . The mapping ��.g/��0

has degree 1 if and only if �.g/ � �0 2 AC . Obviously,
�.g/ � �0 2AC if and only if the element �.g/ 2 F is represented by a word of even
length in generators x! . Proposition 4.5 implies that the parity of the length of the
word in x! representing �.g/ coincides with the parity of the length of the word in
s! representing g . Therefore the mapping f j…g

W …g! �.g/ � �0 always has degree
1. Now we see that �M…n is a connected oriented manifold glued from jW W �H j

permutahedra and Z is a strongly connected oriented pseudo-manifold glued from jAj
simplices. Each cell of �M…n is mapped by f1 onto a simplex of Z with degree 1.
Hence, the degree of f1 is equal to jW W �H j=jAj.
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Remark 5.4 By a theorem of Thom [24], for each n, there is a positive integer k.n/

such that the class k.n/z is realisable for every X and every z 2Hn.X;Z/. Estimates
for k.n/ were obtained by Novikov [21] and Buchstaber [4; 5]. The best known
estimate is that k.n/ divides the numberY

pŒ.n�2/=.2.p�1//�;

where the product is taken over all odd primes p ; see [4; 5]. Unfortunately, the
combinatorial construction described above does not allow us to obtain a reasonable
estimate for k.n/. The multiplicity jW W �H j=jAj obtained by this construction can
be huge.

6 Proof of Theorem 3.2

In this section we shall prove all assertions of Theorem 3.2 except for (e). It was shown
in Section 3 that Theorem 3.2(e) follows from Theorem 3.3. The proof of Theorem 3.3
will be given in the next section.

Since R…n is a URC–manifold and K…n is isomorphic to .@�n/0 , the following
proposition implies Theorem 3.2(a).

Proposition 6.1 Let P1 and P2 be n–dimensional simple cells such that there exists
a simplicial mapping 'W KP1

!KP2
of non-zero degree. Then RP1

>RP2
.

Proof Let F1; : : : ;Fm1
be the facets of P1 and let G1; : : : ;Gm2

be the facets of P2 .
Let x'W P1! P2 be the mapping induced by ' . Identifying the vertex sets of KP1

and KP2
with the sets Œm1� and Œm2�, respectively, we may regard ' as a mapping

Œm1�! Œm2�. Let �W Zm1

2
! Zm2

2
be the homomorphism given by �.ai/ D b'.i/ ,

where a1; : : : ; am1
and b1; : : : ; bm2

are the standard generators of the groups Zm1

2

and Zm2

2
, respectively. Since deg' ¤ 0, we easily see that � is surjective. Now

we consider the mapping f W RP1
!RP2

given by f .Œp;g�/D Œx'.p/; �.g/�. Since
x'.Fi/ � G'.i/ for all i , we see that the mapping f is well defined. Obviously, f
maps each n–cell of RP1

onto an n–cell of RP2
with degree deg' . Therefore,

degf D 2m2�m1 deg' ¤ 0.

To prove Theorems 3.2(b), (c), (d) we shall show that (b))(a) and (d))(c))(a).

Proof of (b))(a)

For any .n�1/–dimensional combinatorial sphere L, there exists a simplicial mapping
'W L ! @�n of degree 1. This mapping induces a required simplicial mapping
'0W KP DL0! .@�n/0 .
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Let P be a flag simple cell and let 0 < " < � . We say that P is "–sparse if there
exists a homeomorphism hW @P ! Sn�1 such that dist.h.F1/; h.F2//� " for any two
non-intersecting facets F1 and F2 of P , and diam.h.F //� � � " for every facet F

of P . (The latter condition is technical. It guarantees that the open "
2

–neighborhood
of every set h.F / does not contain antipodal points.)

Proposition 6.2 Let P1 and P2 be n–dimensional simple cells such that P1 is "–fine
and P2 is flag and "–sparse. Then there exists a simplicial mapping KP1

!KP2
of

non-zero degree.

Proof Let F1; : : : ;Fm1
be the facets of P1 and let G1; : : : ;Gm2

be the facets of
P2 . Then K1 D KP1

and K2 D KP2
are simplicial complexes on the vertex sets

fu1; : : : ;um1
g and fv1; : : : ; vm2

g, respectively. Let f W K1!Sn�1 be the mapping of
non-zero degree such that diam.f .�// < " for every simplex � of K1 . Let hW @P2!

Sn�1 be the homeomorphism such that dist.h.Gi/; h.Gj //� " whenever Gi\Gj D∅
and diam.h.Gi//���" for all i . We define a mapping 'W Œm1�! Œm2� in the following
way. For every i 2 Œm1�, consider the point h�1.f .ui// 2 @P2 , choose an arbitrary
facet Gj containing this point, and put '.i/D j . Now let us prove that the mapping
' induces a simplicial mapping ˆW K1 ! K2 . For every i , we put ˆ.ui/ D v'.i/ .
Suppose Œui1

: : :uik
� is a simplex of K1 . Then dist.f .uip /; f .uiq

// < " for any p

and q . But f .uip / 2 h.G'.ip// and f .uiq
/ 2 h.G'.iq//. Hence G'.ip/\G'.iq/ ¤∅.

Since K2 is a flag complex, we obtain that G'.i1/\ � � � \G'.ik/ ¤∅. Therefore the
vertices ˆ.ui1

/; : : : ; ˆ.uik
/ span a simplex in K2 . Thus ˆ uniquely extends to a

simplicial mapping ˆW K1!K2 .

To show that ˆ has non-zero degree, we need to prove that the mappings ˆW K1!K2

and h�1f W K1 ! @P2 D K2 are homotopic. Equivalently, we need to prove that
the mappings hˆ and f of K1 to Sn�1 are homotopic. Let x 2 K1 D @P1 be an
arbitrary point. Let Fi be a facet of P1 containing x and let � be a simplex of K1

containing x . Then ui 2 � , hence, dist.f .x/; f .ui// < ". Since ˆ.Fi/�G'.i/ , we
obtain that h.ˆ.x// 2 h.G'.i//. On the other hand, we have f .ui/ 2 h.G'.i// by the
definition of ' . Hence dist.h.ˆ.x//; f .ui// � diam.h.G'.i/// � � � ". Therefore
dist.h.ˆ.x//; f .x// < � . Since this inequality holds for all x 2K1 , we see that hˆ

is homotopic to f .

Corollary 6.3 Let P1 and P2 be n–dimensional simple cells such that P1 is "–fine
and P2 is flag and "–sparse. Then RP1

>RP2
.

Proposition 6.4 For every n� 2, the permutahedron …n is "n –sparse.
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Proof We consider the standard realisation of …n in RnC1 whose vertices are obtained
by permuting the coordinates of the point .1; 2; : : : ; nC1/. Let oD ..nC2/=2; : : : ; .nC

2/=2/ be the centre of …n . It is easy to compute that the circumscribed sphere of …n

has radius RnD
p

n.nC 1/.nC 2/=12 . Identify Sn�1 with the unit sphere with centre
o in the hyperplane containing …n and let hW @…n! Sn�1 be the radial projection
from o. Suppose x and y are points belonging to non-intersecting facets F!1

and
F!2

of …n and let � D .�1; : : : ; �nC1/ and �D .�1; : : : ; �nC1/ be the vectors �!ox and
�!oy , respectively. Since F!1

\F!2
D ∅, we see that neither !1 � !2 nor !2 � !1 .

Choose any j 2 !1 n!2 and any k 2 !2 n!1 . Then �j � �k � 1 and �k ��j � 1. We
have:

cos dist.h.x/; h.y//D
.�; �/

j�jj�j
D

P
i¤j ;k �i�i C �j�k C �k�j � .�j � �k/.�k � �j /

j�jj�j

� 1�
1

R2
n

Hence dist.h.x/; h.y//� "n .

Now we need to prove that diam.h.F!// � � � "n for every ! . Let B be the
circumscribed ball of …n and let H! be the affine plane spanned by F! . It is easy
to see that the distance from o to H! is at least rn D

1
2

p
n.nC 1/. (The value rn is

attained if j!j is either 1 or n.) Since F! �H! \B , we have

diam.h.F!//� 2 arccos
rn

Rn
D � � arccos

�
1�

6

nC2

�
� "n:

Thus …n is "n –sparse.

Propositions 6.2 and 6.4 imply that (c))(a). Since

�n D arsinh cot
"n

2

the following proposition yields (d))(c).

Proposition 6.5 Let 0< "� �
2

and let P �Hn be a simple convex polytope whose
interior contains a closed ball of radius �D arsinh cot "

2
. Then P is "–fine.

Proof Let B be a ball of radius � in the interior of P and let o be its centre. Identify
Sn�1 with the sphere of unit vectors in ToHn . Define the mapping f W Hnnfog!Sn�1

by taking every point x to the tangent vector to the line segment Œox� at o. Obviously,
the degree of f j@P is equal to 1.

Let F1; : : : ;Fm be the facets of P and let v1; : : : ; vm be the corresponding vertices of
KP . For each i , let pi be the orthogonal projection of the point o onto the hyperplane

Geometry & Topology, Volume 17 (2013)



1766 Alexander Gaifullin

spanned by Fi and let �i D f .pi/. For each point x 2 Fi , opix is a triangle with
right angle at the vertex pi and angle distSn�1.f .x/; �i/ at the vertex o. We obtain:

cot
�
distSn�1.f .x/; �i/

�
D sinh

�
distHn.o;pi/

�
coth

�
distHn.x;pi/

�
> sinh �D cot

"

2

Therefore

(2) distSn�1.f .x/; �i/ <
"

2

and hence distSn�1.�i ; �j / < " whenever Fi \Fj ¤∅.

Define a mapping zf W KP ! Sn�1 by putting

zf .x/D
ˇ1�i1

C � � �Cˇk�ik

jˇ1�i1
C � � �Cˇk�ik

j

for a point x that has barycentric coordinates ˇ1; : : : ; ˇk in a simplex Œvi1
: : : vik

�.
Obviously, zf is well defined. We have zf .vi/D �i . For each simplex �D Œvi1

: : : vik
�

of KP , zf .�/ is the convex hull of the points �i1
; : : : ; �ik

in Sn�1 . Pairwise dis-
tances between the points �i1

; : : : ; �ik
are less than ". Since "� �

2
, this implies that

diam. zf .�// < ". Besides, inequality (2) implies that the set f .�/ is contained in the
"
2

–neighbourhood of the convex simplex zf .�/. It follows that distSn�1. zf .x/; f .x//<

� for all x 2KP D @P . Hence zf is homotopic to f j@P . Therefore zf has degree 1.
Thus P is "–fine.

7 Proofs of Theorems 1.5 and 3.3

We have shown in Section 3 that Theorem 3.3 implies Theorem 1.5. Nevertheless, it is
useful to give a proof of Theorem 1.5 first, because this proof contains all ideas behind
the proof of Theorem 3.3.

Proof of Theorem 1.5

Let M be the set of all mirrors of reflections s 2 W . Choose a point o 2 Hn and
denote by M>�n

the set of all mirrors H 2M such that the distance from o to H

is greater than �n . For each H 2M>�n
, let ƒC

H
� Hn be the closed half-space

bounded by H and containing o. Denote by P1 the intersection of all half-spaces ƒC
H

,
H 2M>�n

; see Figure 1. (In this figure the central pentagon is P , the dashed circle
is the sphere of centre o and radius �n , and the polygon bounded by the thick line is
P1 .) Obviously, P1 is a compact convex polytope. Since mirrors in M are orthogonal
whenever intersect, we see that the polytope P1 is right-angular. In particular, it is
simple. Let W1 be the group generated by the reflections in facets of P1 . Then W1
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is a subgroup of finite index in W . Let F1; : : : ;Fm1
be the facets of P1 and let

s1; : : : ; sm1
be the orthogonal reflections in these facets, respectively. Consider the

homomorphism �1W W1! Zm1

2
that takes each si to the generator of the i th factor

Z2 and put �1 D ker �1 . Then �1 acts freely on Hn and the quotient Hn=�1 is
homeomorphic to RP1

. Since the interior of P1 contains a ball of radius �n , we obtain
that Hn=�1 is a URC–manifold. But the manifolds Hn=� and Hn=�1 possess
a common finite-sheeted covering, since the groups � and �1 are commensurable.
Therefore Hn=� is a URC–manifold.

o

Figure 1: Polytope P1

Proof of Theorem 3.3 The idea is to mimic the above proofs of Proposition 6.5 and
Theorem 1.5 using the CAT.�1/ inequality instead of constant negative curvature to
obtain an analogue of inequality (2). However we shall face some additional difficulties
on this way.

The group W DWP acts by reflections on the CAT.�1/ manifold UP . Let M be the
set of all mirrors of reflections s 2W . Let o 2 UP be a point with a neighbourhood
isometric to an open subset of Hn . Then the tangent space ToUP is well defined. Let �
be a sufficiently large positive number. (A particular � will be chosen later.) Denote by
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M>� the set of all mirrors H 2M such that the distance from o to H is greater than
� . For each H 2M>� , let ƒC

H
� UP be the closed half-space bounded by H and

containing o. Denote by P1 the intersection of all half-spaces ƒC
H

, H 2M>� . Let
H1; : : : ;Hm1

2M>� be all mirrors intersecting P1 ; then the subsets Fi DHi \P1

will be called facets of P1 and their non-empty intersections will be called faces of
P1 . (Since W is a right-angular Coxeter group, it follows that every Fi is .n� 1/–
dimensional.) Let W1 �W be the subgroup of finite index generated by the reflections
in the mirrors H1; : : : ;Hm1

.

If P1 were a simple cell, RP1
would be a finite-sheeted covering of RP . Hence

it would suffice to prove that RP1
is a URC–manifold. The author does not know

whether P1 is always a simple cell (see Remark 7.3 below). Nevertheless P1 “looks
like” a simple cell so that we can mimic the proofs of Propositions 6.1, 6.2 and 6.5 in
this context. The main difficulty is that we cannot identify P1 with a cone over the
dual combinatorial sphere KP1

and hence should avoid usage of KP1
. We start with

the following obvious proposition.

Proposition 7.1 There exists a mapping t W …n!…n such that t.U!/�F! for some
open neighbourhoods U! of facets F! �…

n .

Notice that we denote facets of P1 by Fi and facets of …n by F! . This will not lead
to a confusion.

Obviously, the mapping t has degree 1. Now we consider the mapping

' D th�1
W Sn�1

! @…n;

where hW @…n!Sn�1 is the radial projection constructed in the proof of Proposition 6.4.
Since the permutahedron has finitely many facets and every facet is compact, we obtain
that the mapping ' satisfies the following property:

.�/ There is an " > 0 such that '.x/ 2 F! whenever dist.x; h.F!//� ".

Now we are ready to choose a particular � > 0. We take �D arsinh cot "
2

.

Identify Sn�1 with the unit sphere in To UP . Since UP is a CAT.�1/ manifold, the
point o is joined with every point x 2 UP by a unique geodesic segment. We denote by
f .x/ the unit tangent vector to this geodesic segment at o. Then f W UP n fog! Sn�1

is a continuous mapping.

Proposition 7.2 For each facet Fi of P1 , the diameter of f .Fi/ is less than ".
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Proof Let Hi 2M>� be the mirror such that Hi \P1 D Fi . Then the distance d

from o to Hi is greater than � . Since Hi is closed and metric balls in UP are compact,
we obtain that there exists a point p 2Hi such that dist.o;p/D d . Let x be a point
in Fi . Consider the comparison triangle o�x�p� in H2 for the triangle oxp . The
geodesic segment Œxp� is contained in Hi . Hence, the distance from o to every point
y of Œxp� is greater than or equal to d . By CAT.�1/ inequality, the distance from o�

to every point of the segment Œx�p�� is greater than or equal to d . But the length of
the segment Œo�p�� is equal to d . Hence the angle ˇ� of the triangle o�x�p� at the
vertex p� is greater than or equal to �

2
. Let ˛� be the angle of the triangle o�x�p�

at the vertex o� . Then

cot˛� � sinh d > sinh �D cot "
2

and hence ˛� < "
2

.

A neighbourhood of o in UP is isometric to an open subset of Hn . Hence the angle ˛
of the triangle oxp at the vertex o is well defined and is equal to dist.f .x/; f .p//.
The CAT.�1/ inequality easily implies:

dist.f .x/; f .p//D ˛ � ˛� < "

2
:

Hence for any two points x;y 2 Fi , we have dist.f .x/; f .y// < ".

For each i 2 Œm1�, choose a subset !i such that f .Fi/\ h.F!i
/¤∅. Since

diam.f .Fi// < ";

Property .�/ implies that '.f .Fi//� F!i
. Define the homomorphism �W Zm1

2
! Zn

2

by �.ai/D bj!i j
, where a1; : : : ; am1

are the generators of Zm1

2
and b1; : : : ; bn are the

generators of Zn
2

.

Though we are not sure that P1 is a simple cell, we can apply the construction of RP1

described in Section 2. Namely, we put

RP1
D .P1 �Zm1

2
/=�;

where .p;g/� .p0;g0/ if and only if p D p0 and g0g�1 belongs to the subgroup of
Zm1

2
generated by all ai such that p 2 Fi . Let �1W W1!Zm1

2
be the homomorphism

that takes the reflection in every mirror Hi to ai , and let �1 D ker �1 . Then �1 is
torsion-free and RP1

D UP=�1 . Therefore RP1
is a PL manifold.

Now we define a mapping ˆW RP1
!M…n by

ˆ.Œp;g�/D Œ'.f .p//; �.g/�:
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Since '.f .Fi//� F!i
, we obtain that ˆ is well defined. Since f and ' are degree 1

mappings, we obtain that the degree of ˆ is equal to 2m1�n ¤ 0. Therefore RP1
is a

URC–manifold. Since RP and RP1
possess a common finite-sheeted covering, we

obtain that RP is a URC–manifold.

Remark 7.3 The set P1 is a convex subset of a CAT.�1/ manifold hence P1 is
contractible. Similarly, faces of P1 are convex and hence contractible. Stone [23]
proved that closed metric balls in a piecewise Euclidean or piecewise hyperbolic CAT.0/
manifold are homeomorphic to the standard ball; see also Davis and Januszkiewicz [12]
and Davis [10]. This proof seems to be possible to extend to the case of an arbitrary
convex subset. However to guarantee that P1 is a simple cell we still need a stronger
result. Namely, we need to prove that the homeomorphisms of facets of P1 onto the
standard balls can be chosen to be piecewise linear and compatible to each other. The
author does not know whether this is possible or not. Actually, even if it were possible
to deduce that P1 is a simple cell from results of [23; 12; 10], we would prefer to avoid
usage of these results, since they are based on hard theorems from geometric topology.
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