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The Gromoll filtration, KO–characteristic classes
and metrics of positive scalar curvature

DIARMUID CROWLEY

THOMAS SCHICK

Let X be a closed m–dimensional spin manifold which admits a metric of pos-
itive scalar curvature and let RC.X / be the space of all such metrics. For any
g 2RC.X / , Hitchin used the KO–valued ˛–invariant to define a homomorphism
An�1W �n�1.RC.X /;g/! KOmCn . He then showed that A0 ¤ 0 if m D 8k or
8kC 1 and that A1 ¤ 0 if mD 8k � 1 or 8k .

In this paper we use Hitchin’s methods and extend these results by proving that

A8jC1�m ¤ 0 and �8jC1�m.RC.X //¤ 0

whenever m � 7 and 8j �m � 0 . The new input are elements with nontrivial ˛–
invariant deep down in the Gromoll filtration of the group �nC1 D �0.Diff.Dn; @// .
We show that ˛.�8jC2

8j�5
/¤ f0g for j � 1 . This information about elements existing

deep in the Gromoll filtration is the second main new result of this note.

57R60; 53C21, 53C27, 58B20

1 Introduction

Let n be greater than 4, let ‚nC1 denote the group of homotopy .nC 1/–spheres
and let �nC1 D �0.Diff.Dn; @// denote the group of isotopy classes of orientation-
preserving diffeomorphisms of the n–disc which are the identity near the boundary.
There is the standard isomorphism †W �nC1 Š‚nC1 , due to Smale [26] and Cerf [6].
Moreover, for all 0< i � j there are homomorphisms

�n
i;j W �j .Diff.Dn�j ; @// �! �j�i.Diff.Dn�jCi ; @//:

The definitions of † and �n
i;j are recalled in Section 2.1.

We denote � WD �n
i;i . In [8, Abschnitt 1], Gromoll defined the group

�nC1
iC1
WD �.�i.Diff.Dn�i ; @//� �nC1
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and the corresponding filtration

0D �nC1
n�2
� �nC1

n�3
� � � � � �nC1

3
� �nC1

2
D �nC1:

We say that f 2 �nC1 has Gromoll filtration i if f 2 �nC1
i n�nC1

iC1
. The identity

�nC1 D �nC1
2

is due to Cerf [6], as pointed out by Antonelli, Burghelea and Kahn [2].
The equality �nC1

n�2
D 0 follows from Hatcher’s proof [10] of the Smale Conjecture.

Starting with Novikov [22], authors have used the homomorphisms �n
i;j to explore the

homotopy type of Diff.Dn; @/. For example, Burghelea and Lashof [5, Theorem 7.4]
show that there is an infinite sequence f.pi ; ki ;mi/g of integer triples with pi odd
primes, limi!1mi=ki D 0 and

�ki
.Diff.Dmi ; @//˝Z=pi ¤ 0:

Later, Hitchin [12, Section 4.4] used the homomorphisms �n
i;j to investigate the

homotopy type of the space of positive scalar curvature metrics on a closed manifold.
In this paper we extend the results of [5] and [12, Section 4.4].

Hitchin’s main tool is the ˛–invariant, the KO–valued index of the real Dirac operator
of a closed spin manifold. Since an exotic sphere carries a unique spin structure, we
get an induced homomorphism

˛W �mC1 Š
�!‚mC1 �! KOmC1:

Our first main result shows that the Gromoll filtration of some .8kC 2/–dimensional
exotic spheres with nontrivial ˛–invariant is quite deep.

1.1 Theorem For all j � 1 there is an element fj 2 �8j�6.Diff.D7; @// such that
˛.�.fj // ¤ 0 and 2fj D 0. Hence ˛.�8jC2

8j�5
/ ¤ f0g and for all 0 � i � 8j � 6,

�
8jC1
i;8j�6

.fj / 2 �8j�6�i.Diff.D7Ci ; @// is a nontrivial element of order 2.

1.1 Positive scalar curvature

Let X be a closed spin manifold of dimension m and let RC.X / denote the space
of positive scalar curvature metrics on X . The Lichnerowicz formula entails that the
first obstruction to the existence of a positive scalar curvature metric on X is the index
of the Dirac operator defined by its spin structure. This is an element ind.X / 2 KOm

which gives rise to a ring homomorphism

˛W �
spin
� �! KO�; ŒX � 7�! ind.X /:

When X is simply connected of dimension � 5, Stolz [27] proved that RC.X /¤ �
if and only if ˛.X / D 0. In general, the question of whether RC.X / ¤ � is a
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deep problem which remains open; see for example Rosenberg [24] and the second
author [25].

If RC.X / ¤ ∅ we equip it with the C1–topology and go on to investigate this
topological space. Note that Diff.X / acts on RC.X / via pull-back of metrics and so
fixing g defines a map T W Diff.X /!RC.X /; h 7! h�g . Moreover, fixing Dm �X

defines an inclusion i W Diff.Dm; @/! Diff.X / via extension by the identity.

Hitchin observed in his thesis [12, Theorem 4.7] that sometimes nonzero elements in
��.Diff.Dm; @// yield, via the induced action of Diff.Dm; @/ on RC.X /, nonzero
elements in ��.RC.X // WD ��.RC.X /;g/. More precisely, Hitchin [12, Proposition
4.6] (see Section 2.5), defines a homomorphism

An�1W �n�1.RC.X // �! KOmCn

and shows that the composition

Cn�1W �n�1.Diff.Dm; @//
i�
�! �n�1.Diff.X //

T�
�! �n�1.RC.X //

An�1
����! KOmCn

is nontrivial for nD 1 and mD 8k; 8kC 1 and for nD 2 and nD 8k � 1; 8k .

Hitchin’s method exploited the at the time known facts that ˛.�8jC1
1

/ ¤ f0g and
˛.�

8jC2
2

/¤ f0g. With our refined knowledge about the nonzero images ˛.�8jC2
8j�5

/,
we obtain the following corollary using the same method as Hitchin.

1.2 Corollary Let X be a spin manifold of dimension m � 7 with g 2 RC.X /
and let fj be as in Theorem 1.1. Then for all j 2 Z such that 8j C 1 �m � 0,
C8jC1�m.�

8jC1
m�7;8j�6

.fj //¤ 0 2 KO8jC2 . In particular, the homomorphism

A8jC1�mW �8jC1�m.RC.X // �! KO8jC2

is a split surjection and for all such .X;g/ the graded group ��.RC.X // contains
nontrivial two-torsion in infinitely many degrees.

To our knowledge, these examples and those of Hanke, Steimle and the second author [9]
are the first examples where �k.RC.X // is shown to be nontrivial when k > 1. In
contrast to [9], Corollary 1.2 also shows that ��.RC.X // is nontrivial in infinitely
many degrees. However, note that by construction the elements of ��.RC.X // found
in Corollary 1.2 vanish under the action of Diff.X /, ie in ��.RC.X /=Diff.X //. In
contrast to this in [9] the first examples of elements x 2 �k.RC.X // which remain
nontrivial by pullback with arbitrary families in Diff.X / are constructed for arbitrarily
large k . That RC.X /=Diff.X / often has infinitely many components is already proved
in Botvinnik and Gilkey [3], Lawson Jr and Michelsohn [17] and Piazza and the second
author [23].
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2 The Gromoll filtration of Hitchin spheres

In this Section we prove Theorem 1.1 and Corollary 1.2. Section 2.1 recalls meth-
ods from smoothing theory which give a second definition of the Gromoll filtration.
Section 2.2 reviews the Kervaire–Milnor analysis of the group of homotopy spheres.
Section 2.3 recalls results of Adams from stable homotopy theory and their relation to
the KO–index theory due to Milnor. Section 2.4 shows how nontrivial compositions in
the stable homotopy groups of spheres lead to nonzero elements deeper in the Gromoll
filtration and so proves Theorem 1.1.

2.1 The groups ‚nC1 , �nC1 and �nC1.PL=O/

Let n � 5. Recall that ‚nC1 is the group of oriented diffeomorphism classes of
homotopy .nC1/–spheres, that by definition �nC1D �0.Diff.Dn; @// and recall also
the space PL=O which will be defined below. In this subsection we review the three
fundamental isomorphisms †, ‰ and M� appearing in the following diagram:

�nC1
† //

M�

&&

‚nC1

‰

xx
�nC1.PL=O/

We then prove that the diagram commutes: a point which seems to have been implicit
in the literature.

Given a mapping class f 2 �nC1 we may build a homotopy .nC 1/–sphere †f by
first extending f by the identity map to a diffeomorphism xf W Sn ! Sn and then
setting †f WDDnC1[ xf DnC1 . In this way we obtain the map, which is well known
to be a homomorphism,

.2:1/ †W �nC1
�!‚nC1; f 7�!†f :

By [26] † is onto and by [6] † is injective.

Next let Ok and PLk denote the k –dimensional orthogonal group and the group of
piecewise linear homeomorphisms of k –dimensional Euclidean space fixing the origin
and let O WD limk!1Ok and PL WD limk!1 PLk denote the corresponding stable
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groups. There are inclusions Ok ! PLk with quotients PLk=Ok and we obtain the
space PL=OD limk!1.PLk=Ok/ along with stabilization maps S W PLk=Ok!PL=O .
The fundamental theorem of smoothing theory applied to the .nC 1/–sphere (see [11],
[16] and also [15, Theorem 7.3]) states that there is an isomorphism

.2:2/ ‰nC1W ‚nC1 Š �nC1.PL=O/:

A third fundamental result is due to Morlet (unpublished) and Burghelea and Lashof
[5, Theorems 4.4, 4.6].

2.3 Theorem [5, Theorem 4.4] There is a homotopy equivalence of commutative
H –spaces

MnW Diff.Dn; @/'�nC1.PLn=On/

such that the composition

�0 Diff.Dn; @/
Mn�
���! �0�

nC1.PLn=On/
S�
�! �0�

nC1.PL=O/D �nC1.PL=O/

yields an isomorphism
M�W �

nC1
Š �nC1.PL=O/:

Here S� is induced by the stabilization map �nC1.PLn=On/!�nC1.PL=O/.

To give the alternative description of the Gromoll filtration, we use the homomorphisms

�n
i;j W �j .Diff.Dn�j ; @// �! �j�i.Diff.Dn�jCi ; @//

from Section 1. Here we represent a 2 �j .Diff.Dn�j ; @// by a map

aW Œ0; 1�j �! Diff.Œ0; 1�n�j ; Œ0; 1�n�j /

such that the value of a is the identity map near the boundary of Œ0; 1�j and such that
each a.x/ is a diffeomorphism which restricts to the identity near the boundary of
Œ0; 1�n�j . The class �n

i;j .a/ is then represented by the map

.2:4/ �n
i;j .a/W Œ0; 1�

j�i
�! Diff.Œ0; 1�n�j

� Œ0; 1�i ; Œ0; 1�n�j
� Œ0; 1�i/

with �n
i;j .a/.x/.t;y/ D .a.x;y/.t/;y/. Indeed the formula (2.4) implies that if we

use � to denote the space of differentiable loops, then there are maps

ƒn
i;j W �

j Diff.Dn�j ; @/ �!�j�1 Diff.Dn�jCi ; @/

which induce the homomorphisms �n
i;j .
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2.5 Lemma (cf [4, Theorem 1.3]) Let inW PLn=On!PLnC1=OnC1 be the canonical
inclusion and let �Mn be the map of smooth loop spaces induced by Mn and assume
n� 4. Then the following diagram is homotopy commutative:

�Diff.Dn; @/

�n
1;1

��

�Mn // �nC2.PLn=On/

�nC2.in/
��

Diff.DnC1; @/
MnC1 // �nC2.PLnC1=OnC1/

Proof The corresponding statement for n¤4 with PLn replaced by Topn is given in [4,
Theorem 1.3] where Burghelea considers the map hnW Diff.Dn; @/!�nC1.Topn=On/.
And indeed Burghelea remarks [4, page 9] that the analogous versions of his results
hold when Topn is replaced by PLn .

We give a somewhat indirect argument based on the work of Kirby and Siebenmann
which deduces the commutativity of the diagram above from [4, Theorem 1.3]. By defi-
nition the map hn factors through Mn and the canonical map �nW PLn=On!Topn=On :

hn D �n ıMnW Diff.Dn; @/ �!�nC1.PLn=On/ �!�nC1.Topn=On/:

Now there is a fibration sequence

�nC1.PLn=On/ �!�nC1.Topn=On/ �!�nC1.Topn=PLn/

and for n� 5 there is, by [14, Essay V, 5.0 (1)], a homotopy equivalence

Topn=PLn 'K.Z=2; 3/:

Hence the space �nC1.Topn=PLn/ is contractible and the map �n above is a homotopy
equivalence. It follows that the commutativity of Burghelea’s diagram [4, Theorem 1.3]
entails the commutativity of the diagram above.

An immediate consequence of Theorem 2.3 and [4, Theorem 1.3] is the following
alternative definition of the Gromoll filtration.

2.6 Corollary �nC1
kC1
DM�1

� S�
�
�nC1.PLn�k=On�k/

�
.

The following lemma is presumably well known and in particular is implicit in [5].
Since we could not find a reference, we give a proof.

2.7 Lemma M� D .‰ ı†/W �
nC1 Š
�! �nC1.PL=O/.
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Proof We use the description of ‰W ‚nC1 Š �nC1.PL=O/ given in the proof of
[19, Theorem 6.48]. Given an exotic sphere †f obtained from a diffeomorphism
f 2 Diff.Dn; @/, take the PL–homeomorphism uW †f Š SnC1 to the standard sphere
coming from the Alexander trick. There is an associated “derivative” map between the
PL–microbundles of †f and SnC1 . Using the smooth structures, these PL–bundles are
induced from the smooth tangent bundles which are of course vector bundles. Pulling
back with u to SnC1 , we then have two OnC1 –structures on the same PLnC1 –bundle
over SnC1 , and the difference of the lifts of structure group gives a pointed map
SnC1! PLnC1=OnC1 . By stabilization we get an element of �nC1.PL=O/, which is
by definition ‰.†f /.

On the other hand, the map M�W �0.Diff.Dn; @//! �nC1.PL=O/ from [5] is defined
(after we strip off the technicalities associated to the use of simplicial methods) by first
looking at the path  W Œ0; 1�! PL.Dn; @/ obtained by applying the Alexander trick to
f , with induced loop x W Œ0; 1�! PL.Dn; @/=Diff.Dn; @/. The latter corresponds to
the inverse of f under the boundary map of the fibration with fiber Diff.Dn; @/:

PL.Dn; @/ �! BDiff.Dn; @/D PL.Dn; @/=Diff.Dn; @/I

compare the proof of [5, Theorem 4.2]. The path of PL–derivatives t 7! D.t /

gives, as above by comparing the pullbacks of the vector bundle structure on the
PL–microbundle of Dn to the standard vector bundle structure, a loop of maps from
.Dn; @/ to PLn=On , ie a map SnC1! PLn=On . By [5, proof of 4.2 and Section 1],
its stabilization represents M�. / 2 �nC1.PL=O/.

Observe that the family of PL–homeomorphisms Dn!Dn just constructed, extended
by the identity over a “second hemisphere”, patch together to the PL–homeomorphism
between the homotopy sphere †f and SnC1 used in the definition of ‰ı†. Moreover,
if we stabilize the family of differentials by the identity of the vertical direction, we
obtain the differential of that PL–homeomorphism. Finally, the underlying vector
bundle structures on the PL–microbundles patch together and stabilize to the vector
bundle structures on the PL–microbundles of †f and SnC1 encountered above. It
follows that the stable comparison maps SnC1! PL=O coincide, ie M� D‰ ı†.

2.8 Remark It is interesting to observe that ‰ ı† factors by construction through
�nC1.PLnC1=OnC1/, whereas M� even factors through �nC1.PLn=On/.

2.2 Homotopy spheres

In this subsection we review a number of important isomorphisms used to study the
group of homotopy spheres ‚nC1 . More information and proofs can be found in
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[19, 6.6] and [18, Appendix]. Let G WD limk!1G.k/ denote the stable group of
homotopy self-equivalences of spheres, let �S

i denote the i th stable stem and let �fr
i

denote the i –dimensional framed bordism group. We have isomorphisms

�i.G/Š �
S
i Š�

fr
i ;

where the first isomorphism may be found in [20, Corollary 3.8] and the second is the
Pontrjagin–Thom isomorphism.

The canonical map O!G induces the stable J –homomorphism on homotopy groups
Ji W �i.O/! �i.G/. The group im.Ji/� �i.G/ is a cyclic summand and the group
coker.Ji/ maps isomorphically onto the torsion subgroup of �i.G=O/ under the
canonical map qW G! G=O . Moreover there is an isomorphism �i.G=O/Š�

alm
i ,

where �alm
� denotes almost framed bordism (cycles are manifolds with a chosen base

point and a framing of the stable normal bundle on the complement of this base point).

2.9 Theorem [13, Section 4] For n� 4 the abelian group ‚nC1 is finite and lies in
an exact sequence

0 �! bPnC2 �!‚nC1
ˆ
�! coker.JnC1/;

where bPnC2 is the finite cyclic subgroup of homotopy spheres bounding parallelizable
manifolds. By [13, Theorem 6.6], ˆ is surjective if n is odd.

2.10 Proposition The canonical map pW PL=O!G=O satisfies

q� ıˆD p� ı‰W ‚nC1 �! �nC1.G=O/:

Proof The statement follows from the commutativity of the squares

�nC1.PL=O/

p�

��

‚nC1
‰

Š
oo

��
�nC1.G=O/ �alm

nC1

Šoo

�S
nC1

Š // �nC1.G/

q�

OO

�fr
nC1

;
Šoo

OO

which is explained in [19, Theorem 6.48]. The homomorphism ˆ is geometri-
cally defined as the composition of the upper right homomorphism, the isomor-
phism �alm

nC1
Š �nC1.G=O/ and the inverse of the isomorphism induced by q� from

coker.JnC1/ to the torsion subgroup of �nC1.G=O/.
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2.3 The ˛–invariant

Recall from [12, Section 4.2] that the ˛–invariant is the ring homomorphism ˛W �
Spin
� !

KO� which associates to a spin bordism class the KO–valued index of the Dirac operator
of a representative spin manifold. We also write ˛ for the corresponding invariant on
framed bordism:

.2:11/ ˛W �fr
� �!�

Spin
� �! KO�:

Under the Pontrjagin–Thom isomorphism �fr
� Š �

S
� the ˛–invariant has the following

interpretation as Adams’ d –invariant [1, Section 7], dRW �
S
� ! KO� , which was used

already in [12, page 44]; compare [21, Section 3].

2.12 Lemma Under the Pontryagin–Thom isomorphism �fr
� Š �

S
� the ˛–invariant

˛W �fr
8jC1

! KO8jC1 may be identified with dRW �
S
8jC1

! KO8jC1 .

Recall that KO� satisfies Bott periodicity of period 8 with Bott generator ˇ 2KO8ŠZ.
By [1, Theorems 7.18 and 12.13], for all k � 1 there are (not uniquely defined) Adams’
elements �8kC1 2 �

S
8kC1

D�fr
8kC1

satisfying

˛.�8kC1/D ˛.�/ˇ
k
¤ 0 2 KO8kC1;

where � 2 �S
1

generates the 1–stem and ˛.�/ generates KO1 . Since ˛ is a ring
homomorphism we see that ˛.��8kC1/D ˛.�

2/ˇk ¤ 0 2 KO8kC2 , and combining
Lemma 2.12 with [1, Proposition 12.14] we have

.2:13/ ˛.�8jC1 ��8kC1/D ˛.�
2/ˇjCk

¤ 0 2 KO8.jCk/C2:

Recall that an element x 2 �S
j D limk �jCk.S

k/ is said to live on Sk if there is
xk 2 �jCk.S

k/ which maps to x under the canonical homomorphism.

The next crucial property of the elements �8kC1 is that (at least if we make suitable
choices here) they all live on S5 .

2.14 Lemma For suitable choices, the (not uniquely defined) homotopy class �8jC12

�S
8jC1

lives on the 5–sphere and moreover there is �8jC1;5 2 �8jC5.S
5/ with

2�8jC1;5 D 0. It follows that there is a corresponding homotopy class �8jC1;9 2

�8jC10.S
9/ of order 2.

Proof The statement follows by carefully inspecting Adams’ construction of the
homotopy class �8jC1 2 �

S
8jC1

, involving Toda brackets.
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Let us recall that, given homotopy classes of maps uW Sa ! Sb , vW Sb ! Sc and
wW Sc!Sd such that Œv ıu�D 0 and Œw ıv�D 0, there is a set fw; v;ug of homotopy
classes of maps SaC1 ! Sc , the Toda brackets of w; v;u, a kind of secondary
composition. The elements of the set depend on choices of null-homotopies for vıu and
wıv , and indeed (for a�1) fw; v;ug is a coset of ŒEu�ı�bC1.S

c/C�aC1.S
b/ıŒw�2

�aC1.S
c/, where E denotes suspension.

Now, for the construction of the �8jC1;5 on starts with a homotopy class ˛1W S
kC7!

Sk of order 2 such that f2; ˛1; 2g contains 0. Here 2 stands for the self map of the
sphere of degree 2.

One then chooses inductively for s > 1 ˛sW S
kC8s�1! Sk to be any element in the

Toda bracket f˛s�1; 2; ˛1g. For notational simplicity we write ˛ also instead of the
appropriate suspension of it. Note that in this proof we follow Adams and use ˛s to
refer to a certain homotopy class. This should not be confused with the ˛–invariant
of (2.11).

For the induction to work we have to show that Œ2˛s �D 0 2 �kC8s�1.S
k/. For this

we use [28, Proposition 1.2 IV]: f˛s�1; 2; ˛1g2 D ˛s�1 ı f2; ˛1; 2g D 0. The latter
follows because by our induction hypothesis Œ˛s�1 ı 2�D 0 and f2; ˛1; 2g contains by
assumption only multiples of 2.

Finally, we define �8jC1;k�1 as any element in the Toda bracket f�;k�1; 2; j̨ g. Here,
we let �;nW SnC1! Sn represent (for n� 3) the generator of �nC1.S

n/Š Z=2.

To see that �8jC1;k�1 is of order 2 we need some preparation:

If for a 2 �kCs.S
k/ we have that f2; a; 2g D 2�kCsC1.S

k/ � �kCsC1.S
k/, then

for arbitrary xW Sr ! SkCs and yW Sk ! Sb also f2; a; 2xg � 2�rC1.S
k/ and

f2y; a; 2g � 2�kCsC1.S
b/. Note that f2; a; 2xg is a coset of

2�rC1.S
k/C�kCsC1.S

r / ı 2Ex � 2�rC1.S
k/

so it suffices to show that 0 2 f2; a; 2xg, and similarly for f2y; a; 2g. Now the module
property [28, Proposition 1.2 IV] implies 0D 0 ıx 2 f2; a; 2g ıx � f2; a; 2xg, and in
the same way 0 2 f2; a; 2yg.

Now we show by induction that f2; ˛s; 2g consists of the multiples of 2. By assumption
this is true for sD 1. For the induction, we apply the Leibniz rule [28, Proposition 1.5],
which says that f2; ˛s; 2g D f2; f˛s�1; 2; ˛1g; 2g (which is a coset of the multiples
of 2) is congruent to the set

ff2; ˛s�1; 2g; ˛1; 2gC f2; ˛s�1; f2; ˛1; 2gg:
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By the induction hypothesis and the above consideration, both these iterated Toda
brackets only contain multiples of 2, and so f2; ˛s; 2g must be the coset of 0 of the
multiples of 2.

Next, using again [28, Proposition 1.2]

2�8jC1;k�1 2 f�;k�1; 2; j̨ g2D �;k�1 ı f2; j̨ ; 2g � �;k�1 ı 2�kC8j .S
k/D 0;

because 2�;k�1 D 0 as long as k � 4.

Finally, we follow literally one of the proofs Adams gives to show that ˛.�8jC1/ is
nontrivial. This uses the fact, established in [1, page 68] that for the relevant dimension
˛ coincides with Adams’ homomorphism eC (both considered to be maps to R=Z).
To compute eC.�8jC1/ one can inductively apply [1, Theorem 11.1]. This theorem
states that eCfx; 2;yg D 2eC.x/eC.y/ modulo Z. Finally, one only has to use that
eC.�/D 1=2 and eC.˛/D 1=2, which is established in the proof of [1, Theorem 12.13].

For the choice of ˛1 we follow again the proof of [1, Theorem 12.13] which uses
corresponding results of Toda. Indeed, in [28, Lemma 5.13] Toda checks that the
element � 000 2 �5C7.S

5/ of order 2 stabilizes to the element of order 2 in �S
7

.
Moreover, with E still denoting the suspension, Toda shows in [28, Corollary 3.7]
that f2;E� 000; 2g 3 E� 000�;13 D 2� 00�;13 D 0 since �;13 has order 2. Therefore, an
appropriate choice is ˛1 WDE.� 000/D 2� 00 2 �6C7.S

6/. Here � 00 is Toda’s notation
for an element of order 4 in �6C7.S

6/Š Z=60.

2.15 Remark On the face of it, our construction of ˛s and therefore �8jC1 is slightly
more general than Adams’ construction which does seem not to allow for arbitrary
elements in the Toda brackets involved in the inductive construction. Note, however
that we have to use unstable Toda brackets, which means that the same construction,
starting with larger k , might give rise to more elements in �S

8jC1
which do not live on

the 5–sphere.

2.16 Remark Another proof of the existence of �8jC1;5 comes from [7], where
Curtis calculated the sphere of origin for many examples using the Adams spectral
sequence and the restricted lower central series spectral sequence. In fact Curtis shows
that elements of nontrivial d –invariant live on S3 . We gave an independent proof to
avoid the task of checking how the notations from [7] match with those of [1] and to
show that there is a �8jC1;5 of order two.
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2.4 Proof of Theorem 1.1

In this subsection we prove our main theorem. Since every homotopy sphere has a
unique spin-structure we obtain the ˛–invariant on �nC1 Š‚nC1 :

˛W �nC1
�!�

Spin
nC1
�! KOnC1:

Combining [21, Theorem 2 and proof], [1, Theorems 7.18 and 12.13] and Theorem 2.9
we see that for each j > 1 there is a homotopy .8j � 7/–sphere †�8j�7

2 ‚8j�7

representing Œ�8j�7�2 coker.J8j�7/. In particular we have the equation ˛.†�8j�7
/D

˛.�/ˇj�1 ¤ 0 2 KO8j�7 . By Cerf’s Theorem [6], �9
2
D �9

1
and so we can find

g 2 �1.Diff.D7; @// such that †.�.g//D†�9
. By (2.13) above,

.2:17/ ˛.†�9
�†�8j�7

/D ˛.�2/ˇj
¤ 0 2 KO8jC2:

Recall the homotopy equivalence M W Diff.D7; @/ ' �8.PL7=O7/ of Theorem 2.3
and consider the induced isomorphism

M7�W �1.Diff.D7; @//Š �9.PL7=O7/:

With g 2 �1.Diff.D7; @// as above we have M7�.g/ 2 �9.PL7=O7/. Now let
�8j�7;9 2 �8jC2.S

9/ be an element of order 2 with S.�8j�7;9/D �8j�7 2 �
S
8j�7

whose existence is proven in Lemma 2.14. The composition

M7�.g/ ı�8j�1;9 2 �8jC2.PL7=O7/

has order 2 and we define

fj WDM�1
7� .M7�.g/ ı�8j�7;9/ 2 �8j�6.Diff.D7; @//

so that �.fj / 2 �
8jC2
8j�5

. For †fj
WD†.�.fj // we show below that

.2:18/ ˛.†fj
/D ˛.†�9

�†�8j�7
/

and so by (2.17) we have that ˛.�.fj //D ˛.†fj
/D ˛.�2/ˇj ¤ 0 2 KO8jC2 , which

proves Theorem 1.1.

We prove Equation (2.18) using the following diagram, where k D 8j C 2. We obtain
the diagram by combining [5, page 14] and [19, Theorems 6.47, 6.48] and we claim
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that it commutes:

.2:19/

�1.Diff.D7; @//��k.S
9/

M��id
��

�k�8.Diff.D7; @//

Š M�
��

†ı� // ‚k

D

��
�9.PL7=O7/��k.S

9/
ı //

S��id
��

�k.PL7=O7/

S�
��

‰�1ıS� // ‚k

D

��
�9.PL=O/��k.S

9/
ı //

p��id
��

�k.PL=O/

p�

��

‚k
‰

Š
oo

��
�9.G=O/��

S
k�9

ı // �k.G=O/ �alm
k

Šoo ˛ // KOk

�9.G/��
S
k�9

q��id

OO

ı // �k.G/

q�

OO

�fr
k

Šoo ˛ //

OO

KOk

D

OO

�S
9
��S

k�9

ı //

Š

OO

�S
k

Š

OO

�fr
k

Šoo

D

OO

˛ // KOk

D

OO

Using the claimed commutativity of diagram (2.19) let us start in the second row with
the pair

.M7�.g/; �8j�7;9/ 2 �9.PL7=O7/��8jC2.S
9/:

Since †.�.g//D†�9
, the pair .�9; �8j�7/ 2 �

S
9
��S

k�9
maps to the same element

in �9.G=O/� �
S
k�9

as .M7�.g/; �8j�7;9/. We already checked in Equation (2.17)
that .�9; �8j�7/ is mapped in the bottom row to ˛.�2/ˇj 2 KO8jC2 . Finally, †fj

is
obtained from the element † ı� ıM�1

7�
.M7�.g/ ı�8j�7;9/ 2‚8kC2 in the top right

corner of the diagram. By commutativity, its ˛–invariant is as desired.

Now we prove the commutativity of (2.19). The left part is taken from [5], the
identification of the homotopy groups of PL=O , G=O , G with the bordism groups or
‚k and the corresponding commutativity from [19, Section 6]. The only assertions
which are not contained in those two references are the compatibility with ˛ , which is
clear, and, although implicitly stated in [5], the commutativity of the diagram

�k�8.Diff.D7; @//
†ı� //

M� Š

��

‚k

D

��
�k.PL7=O7/

‰�1ıS� // ‚k :
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This commutativity we have essentially proved in Lemma 2.7, one has additionally
only to apply compatibility of the constructions with suspension.

2.20 Remark The argument above started from the statement †�1.†�9
/ 2 �9

2
. If

one knew that a 9–dimensional Hitchin sphere †�9
had Gromoll filtration �9

k
for

2< k � 5 then we could repeat the argument to conclude that ˛.�8jC2

8j�7Ck
/¤ 0. As

of writing, it seems that nothing is known about the Gromoll filtration of 9–dimension
Hitchin spheres beyond the Cerf–Hatcher bounds †�1.†�9

/ 2 �9
2

and �9
6
D f0g.

2.21 Remark In our construction, we crucially use the ring structure of KO� and the
nontriviality of the product of generators in KO8kC1 . This means that the interesting
elements (with nontrivial ˛–invariant) we obtain are in �k.Diff.Dn; @// with kCn�

1 .mod 8/.

We expect that one can use Toda brackets (of an element in ��.PLk=Ok/ with elements
of ��.Sn/) to construct such elements in �k.Diff.Dn; @// with kC n 6� 1 .mod 8/.
This we leave for future work.

2.5 Positive scalar curvature metrics: Corollary 1.2

To prove Corollary 1.2 one need only recall the arguments following [12, Proposi-
tion 4.6]: Let X be a closed m–dimensional spin-manifold (m� 7) and let RC.X / be
the space of positive scalar curvature metrics on X which we assume to be nonempty.
Observe that the group of diffeomorphisms of X , Diff.X /, acts on RC.X / by pullback.
In particular, fixing a metric g 2RC.X /, define the map

T W Diff.X / �!RC.X /; h 7�! h�g:

Moreover, by fixing a k –disc Dm �X and extending diffeomorphisms by the identity
we obtain a map i W Diff.Dm; @/! Diff.X /.

In [12, Proposition 4.6] Hitchin defines a homomorphism

An�1W �n�1.RC.X // �! KOmCn:

He shows then that the composite homomorphism

Bn�1 WDAn�1 ıT�W �n�1.Diff.X // �! �n�1.RC.X /;g0/ �! KOmCn

assigns to �W Sn�1!Diff.X / the family index of the bundle of spin manifolds X !

Z�! Sn obtained by the usual clutching construction. Moreover, in [12, Section 4.3,
Proposition 4.4] Hitchin shows that if we start with �W Sn�1 ! Diff.Dm; @/ then
B.i�.�//D ˛.†�/, where †� is the exotic .nCm/–sphere defined by �.�/ 2 �nCm

n .
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Fix j with 8j C 1 > m � 7. We apply the argument above starting from fj as in
Theorem 1.1 and with

� WD �
8jC1
m�7;8j�6

.fj / 2 �8jC1�m.Diff.Dm; @//:

By Theorem 1.1 we have that 2� D 0 and that �.�/ 2 �8jC2
8j�5

satisfies ˛.�.�//¤ 0.
Pulling back the metric g by � we obtain a continuous family of metrics in RC.X / pa-
rameterized by S8jC1�m and hence the homotopy class T�i�.�/2�8jC1�m.RC.X //
of order 2. By [12, Proposition 4.4], A8jC1�m.T�i�.�// D ˛.�/ and so generates
KO8jC2 Š Z=2. This proves Corollary 1.2.

Appendix A: The Gromoll filtration: table of values

We think that our results about the Gromoll filtration and the existence of elements
rather deep down with nontrivial ˛–invariant are interesting in their own right. In this
appendix we place them in context by assembling some results from the literature about
the Gromoll filtration.

�7
2
Š Z=28 �7

2
¤ �7

3
� 0D �7

4
. The inequality for �7

3
¤ �7

2
is

due to Weiss [30] who proved that �7
3

has at most
14 elements.

�8
2
Š Z=2 Nothing known

�9
2
Š .Z=2/3

�10
2
Š Z=6 �10

3
� Z=2 by Theorem 1.1

�11
2
Š Z=992 �11

3
� Z=496 by [29]

�12
2
D 0

�13
2
Š Z=3 �13

2
D �13

3
D �13

4
by [2]

�14
2
Š Z=2 Nothing known

�15
2
Š Z=2˚Z=8;128 �15

3
Š Z=2˚Z=4;064 by [2] and [29]

�16
2
Š Z=2 Nothing known, conjecturally �16

3
D 0

�17
2
Š .Z=2/2 If Remark 2.21 could be implemented we would be

able to conclude that ˛.�17
9
/ ¤ 0 or perhaps even

˛.�17
10
/ ¤ 0, in particular �17

9
or even �17

10
would

contain Z=2.

�18
2
Š Z=8˚Z=2 By Theorem 1.1, ˛.�18

11
/¤0. Because Z=8Dker.˛/,

�18
11
� Z=2.
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