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Loose Legendrians and the plastikstufe
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We show that the presence of a plastikstufe induces a certain degree of flexibility in
contact manifolds of dimension 2nC 1 > 3 . More precisely, we prove that every
Legendrian knot whose complement contains a “nice” plastikstufe can be destabilized
(and, as a consequence, is loose). As an application, it follows in certain situations
that two nonisomorphic contact structures become isomorphic after connect-summing
with a manifold containing a plastikstufe.
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1 Introduction

In dimension 3, it has been known for a long time that contact structures containing
a topological object called an overtwisted disk are “flexible”, in the sense that two
overtwisted contact structures which are homotopic as oriented 2–plane fields are also
isotopic; see Eliashberg [5]. Often this property is phrased as saying that overtwisted
contact structures on 3–manifolds satisfy an h–principle. A second important property
of all contact structures containing overtwisted disks is that such contact 3–manifolds
are not symplectically fillable.

In higher dimensions, the quest for the right definition of “overtwisted” contact struc-
tures has been going on for a while, but we are far from having a definitive answer.
On the one hand, there is a variety of special submanifolds, plastikstufes and bLobs
(see the second author alone [22] and with Massot and Wendl [17]), whose presence
in a contact manifold is known to obstruct fillability. On the other hand, certain
related objects possess flexibility properties desired for “overtwisted” contact structures.
More specifically, a class of Legendrian knots, called “loose” Legendrians, satisfies a
version of h–principle (see the first author [20]), and Weinstein cobordisms obtained
by attaching symplectic handles along loose knots are governed by a “symplectic
h–cobordism theorem” (see Cieliebak and Eliashberg [2]). (Roughly speaking, loose
Legendrian knots in higher-dimensional contact manifolds are those that contain a
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sufficiently wide “kink” whose projection to a 3–dimensional subspace is a stabilized
Legendrian arc. See Section 6 for a precise definition.) In this paper, we hope to shed
some light on flexibility in high dimensions by studying loose Legendrians in contact
manifolds containing a plastikstufe. (The latter is a foliated submanifold of maximal
dimension that is a product of an overtwisted disk and a closed manifold.) Our main
result is the following:

Theorem 1.1 Let .M 2nC1; �/ be any contact manifold containing a small plastik-
stufe PB with spherical core and trivial rotation. Then any Legendrian in .M; �/ which
is disjoint from PB is loose.

(The definitions of the various terms in the above theorem are deferred to Sections 3
and 6.)

Etnyre and Pancholi [10] have constructed examples of PS –overtwisted contact mani-
folds satisfying the hypotheses of Theorem 1.1. The proof of Theorem 1.1 is based on
the proof of the corresponding statement concerning overtwisted contact 3–manifolds,
together with a certain isotopy gained from a classical h–principle (see Gromov [14]) to
bring a part of the given Legendrian into product position with respect to the plastikstufe.

As a consequence of the above theorem, we establish a flexibility result motivated by a
familiar 3–dimensional fact: if two contact structures on a 3–manifold are homotopic
as oriented 2–plane fields, they become isotopic as contact structures after connect-
summing with any overtwisted contact manifold. The following theorem is a corollary
of Theorem 1.1 and of the results of Cieliebak and Eliashberg [2] on flexible Weinstein
cobordisms. Different versions of the symplectic h–cobordism theorem [2] imply
several versions of our result below.

Theorem 1.2 Consider two contact structures �0; �1 on a manifold Y of dimension
2nC1>3. Let .M; �PS/ be a simply connected manifold containing a small plastikstufe
with spherical core and trivial rotation. Assume that one of the following conditions
holds:

(1) There exists a manifold W of dimension 2nC 2 with @W D Y , and W carries
two Stein structures J0 , J1 such that .W;J0/ is a filling for �0 , .W;J1/ is a
filling for �1 , and J0 , J1 are homotopic through almost complex structures.

(2) There exists a Stein cobordism .W;J / from .Y; �0/ to .Y; �1/ such that W is
smoothly the product cobordism Y � Œ0; 1�.

Then .M; �PS/ # .Y; �0/ is contactomorphic to .M; �PS/ # .Y; �1/.
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According to [2], the requirement about the existence of Stein structures on W can
be exchanged to Weinstein structures. (For the definition of a Weinstein structure, see
Section 6.) Indeed, a Stein structure induces a Weinstein structure, and any Weinstein
structure (after possibly a homotopy through Weinstein structures) can be induced by a
Stein structure. In addition, two Stein structures are homotopic (through Stein structures)
if and only if the induced Weinstein structures are homotopic (through Weinstein
structures). In conclusion, in the above theorem the two notions are interchangeable.
In fact, in accordance with the results we quote from [2], the proofs in Section 6
will be phrased in the language of Weinstein manifolds, and we appeal to the above
interchangeability principle. Unlike in the 3–dimensional situation, we are unable to
prove any flexibility result in the absence of Stein/Weinstein fillings or cobordisms.

Seidel and Smith [24], and later McLean [19] constructed infinite families of examples
of exotic Stein structures of finite type on R2nC2 for n> 1. (Yet further such examples
are given by Abouzaid and Seidel [1].) A spherical level set that encloses all the
critical points of the plurisubharmonic Morse function in any of the above exotic
Stein R2nC2 carries a contact structure �exo filled by a nonstandard Stein ball. By
calculating symplectic homologies, it is shown [1; 19; 24] that .S2nC1; �exo/ is not
contactomorphic to .S2nC1; �std/. (Indeed, it is expected [18] that infinitely many of
these exotic contact spheres are pairwise noncontactomorphic.) Now, let .S2nC1; �PS/

be a sphere containing a plastikstufe as in Theorem 1.2 (the existence of which, with
the right rotation class in every dimension, will be checked in Section 5).

Corollary 1.3 With the notations as above, .S2nC1; �exo # �PS/ is contactomorphic to
.S2nC1; �std # �PS/Š .S

2nC1; �PS/.

Proof This is an immediate consequence of the previous theorem: one could use
either condition (1), applied to fillings by the standard and nonstandard Stein ball, or
condition (2), applied to the cobordism obtained by puncturing the nonstandard Stein
ball.

The paper is organized as follows. In Section 2, we quickly review the 3–dimensional
case: if M 3 is overtwisted, then every Legendrian knot L�M disjoint from an over-
twisted disk can be destabilized. The destabilization is realized by taking a connected
sum with the boundary of an overtwisted disk. (While this seems to be a “folklore”
statement, explicit proofs are absent from the literature.) The definition and properties
of plastikstufes are reviewed in Section 3. In Section 4 we recall the definition of loose
knots and in Section 5, via the Etnyre–Pancholi construction, we find plastikstufes with
trivial rotation. In Section 6 we give the proof of Theorem 1.2. We close the paper
with a short list of some open problems in Section 7.

Geometry & Topology, Volume 17 (2013)



1794 E Murphy, K Niederkrüger, O Plamenevskaya and A I Stipsicz

Acknowledgments The main results of the present work were found when the authors
visited the American Institute of Mathematics (AIM), as participants of the “Contact
topology in higher dimensions” workshop. We would like to thank AIM for their
hospitality, the ESF and the NSF for the support and other workshop participants, in
particular to Atsuhide Mori, for stimulating conversations. We are grateful to John
Etnyre for useful conversations and e-mail correspondence. The third author would
also like to thank Yasha Eliashberg, Ko Honda and Thomas Vogel for answering some
questions. EM was partially supported by NSF grant DMS-0943787. KN was partially
supported by Grant ANR-10-JCJC 0102 of the Agence Nationale de la Recherche. OP
was partially supported by NSF grant DMS-1105674. AS was partially supported by
ERC Grant LDTBud, by ADT Lendület and by OTKA NK81203.

2 The 3–dimensional case: Sliding over an overtwisted disk

In this section we prove that a Legendrian knot in the complement of an overtwisted
disk can be destabilized. (For related results and constructions, see also Huang [16].)
More precisely, we need a local statement: assuming that the knot is close to the
overtwisted disk, we would like to find a destabilization by modifying the knot only in
the neighborhood of the overtwisted disk. For this local modification, we restrict to
the case of a “simple” overtwisted disk, that is, an embedded disk whose characteristic
foliation is isomorphic to the one shown in Figure 1: the boundary of the disk is
the closed leaf of the foliation, and there is a unique (elliptic) singularity inside the
disk. (Recall that an overtwisted disk is any embedded disk with Legendrian boundary
with tbD 0. Standard arguments resting on Giroux Flexibility imply that a manifold
containing an overtwisted disk also contains a simple one.) Although it is a known fact
that any Legendrian knot in the complement of an overtwisted disk can be destabilized
(cf Dymara [3]), we were unable to find the above “local” version in the literature, and
therefore (for the sake of completeness) we include the arguments below.

Before proceeding any further, we recall the definition of the stabilization for Legendrian
knots in R3 . (For a general discussion on Legendrian knots, see, eg Etnyre [9].)
Suppose that in a Darboux chart containing a strand of the Legendrian knot L, the
front projection of this strand has a cusp. To stabilize L, remove this cusp in the
projection and replace it by a kink, as shown in Figure 2. It is not hard to check that,
up to Legendrian isotopy, the stabilized knot Lstab is independent of the choice of the
Darboux coordinates and of the point where the stabilization is performed. A more
invariant definition can be given by using convex surfaces: Lstab is a stabilization of
L if L[Lstab is the boundary of a convex annulus whose dividing set consists of a
single arc with endpoints on Lstab .

Geometry & Topology, Volume 17 (2013)
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Figure 1: A simple overtwisted disk

Figure 2: Stabilization of a Legendrian knot in dimension 3

Theorem 2.1 Let .M 3; �/ be an overtwisted contact manifold. Suppose that L is a
Legendrian knot in the complement of a simple overtwisted disk Dot . Then L can be
destabilized, that is, it is the stabilization of another Legendrian knot. A destabilization
of L is given by the Legendrian connected sum L # @Dot of L and the boundary of the
overtwisted disk.

Corollary 2.2 If .M 3; �/ is an overtwisted contact manifold, then any Legendrian
knot in the complement of any overtwisted disk can be destabilized.

The above corollary follows immediately from Theorem 2.1: as we already remarked,
any overtwisted contact structure on the knot complement contains a simple overtwisted
disk. (Alternatively, the corollary can be derived from results of Eliashberg and
Fraser [6] or Etnyre [8].) It is useful, however, to have an explicit destabilization
procedure given by Theorem 2.1.

Our proof of Theorem 2.1, or at least its main idea, is essentially borrowed from
Vogel [26, Proposition 3.22], although the statement of [26] is different from ours. (We
are also indebted to John Etnyre, who pointed out Vogel’s lemma to us.) We modify
the proof from [26] to adapt it to our present purposes.

Proof of Theorem 2.1 We will use convex surface theory [12; 15] to see the destabi-
lization. First, notice that the overtwisted disk from Figure 1 is convex, and its dividing
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set consists of a unique closed curve. By Giroux’s Flexibility Principle, we can isotope
the disk (while keeping its Legendrian boundary fixed) to obtain a convex disk with
any characteristic foliation divided by the same curve. Consider the foliation shown in
Figure 3. It is clear that this foliation can be carried by a convex surface and is divided
by the same closed curve. Thus, after an isotopy, we can assume that the foliation on
Dot looks like Figure 3 and has the following features:

(i) A family of straight Legendrian arcs (vertical lines on Figure 3) separate Dot

into two half-disks.

(ii) There are smooth Legendrian closed curves that run close to the boundary of
these half-disks and are formed by the union of the leaves of the foliation.

Now, consider a (piecewise smooth) Legendrian curve formed by the left semicircle of
@Dot and the leftmost vertical Legendrian arc. Let Dl denote the half-disk bounded by
this curve in Dot . A disk Dr is defined similarly on the right side of Dot .

Recall that the Thurston–Bennequin number of a Legendrian knot K can be computed
[15] from the dividing set �† on its convex Seifert surface †:

(1) tb.K/D�1
2
j� \Kj:

From this formula, tb.@Dl/ D tb.@Dr / D �1. Note that the Thurston–Bennequin
number is defined even for piecewise smooth curves: indeed, linking with the transverse
push-off is still well-defined. The formula of Equation (1) also holds in this context,
which can be seen, for example, via approximation by smooth Legendrian curves. We
will be attaching the overtwisted disk in two steps, first one half, that is, Dl , then the
other, ie the Legendrian arcs and Dr . The idea is that half of Dot is easier to control:
indeed, half of an overtwisted disk represents a bypass, and bypasses can be found in
tight contact manifolds [15].

Now we are ready to prove the theorem. Since the statement is local, it suffices to
establish the claim for a small Legendrian unknot L0 with tb.L0/D�1, located near
the overtwisted disk Dot (and disjoint from it). Let L be another standard Legendrian
unknot with tb.L/D�1, such that L0 and L together bound a thin annulus A whose
framing gives the Seifert framing on both knots, ie the contact framings of the knots
are one less than the framings provided by the annulus. This property guarantees that
after a small perturbation, we can assume A to be convex. We will show that L # @Dot

is a destabilization of L0 . To begin, notice that the dividing set on A consists of two
parallel arcs, each connecting L0 and L. To establish the theorem, we will show that
the annulus A # Dot bounded by L0 and L # @Dot can be perturbed into a convex
surface with dividing set given by one boundary parallel arc with endpoints on L0 (see
Figure 4). This will be done in two steps.
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Figure 3: The overtwisted disk Dot can be endowed with another characteris-
tic foliation divided by the same dividing set (the thick circle). The foliation
in the figure has a collection of singular points at the top and bottom of
the boundary circle and on the horizontal diameter (near the endpoints and
near the center). A family of vertical leaves separates the right and the left
half-disks. The vertical leaves go from singular points at the top (respectively
bottom) of the boundary circle to singular points near the center. The right
and left halves of the disk are foliated by arcs connecting singularities near
the endpoints of the horizontal diameter and those near the center of Dot . The
arcs located near @Dot have vertical tangencies, thus the union of an arc on
the top and the corresponding arc on the bottom (together with the singular
points they connect) is a smooth Legendrian knot. The half-disk Dl on the
left side of Dot is cut off by the leftmost vertical Legendrian arc.

First, assume that the part of @Dot where the connected sum L # @Dot was formed
lies in @Dl , and consider the Legendrian connected sum L # @Dl . Make the annulus
A # Dl convex by a small isotopy fixing the boundary (we will keep the same notation
for the perturbed surface). This is possible because tb of each boundary component is
negative: tb.L0/D �1 and tb.L # @Dl/D tb.L/C tb.@Dl/� 1D �1. Here, we are
using [15, Proposition 3.1], where the convex perturbation is described as a two-stage
process. First, a C 0 –small isotopy is done near the Legendrian boundary of the surface
to put a collar neighborhood of the boundary into standard form. Second, a C1–
small isotopy, supported away from the boundary, makes the surface convex. The first
perturbation uses a model neighborhood of the Legendrian boundary, and introduces a
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L0

L

@Dot�

Figure 4: Connected sum with the boundary of an overtwisted disk destabi-
lizes a Legendrian knot

certain number of singularities with uniform rotation of the contact structure between
them. If a collar neighborhood for part of the boundary is already in standard form,
this part can be kept fixed during the first isotopy. (A close examination of Honda’s
proof shows that the same arguments go through in our case even though the boundary
is only piecewise smooth. The key observation here is that the smooth Legendrian
knots approximating the boundary of Dl form an annulus which is convex and in
standard form in the terminology of [15, Proposition 3.1].) Therefore, we can assume
that the isotopy that makes A # Dl convex fixes a neighborhood of the diameter of Dot

separating Dl and Dr , more precisely, that all the straight Legendrian arcs between
the two half-disks are kept fixed, as well as the half-disk Dr .

The convex surface A # Dl (or rather, a surface with the same characteristic foliation)
can be found in a tight contact manifold. Indeed, the dividing set on Dl is the same as
that on a bypass. Bypasses exist in tight contact manifolds, thus by Giroux Flexibility
we can find a surface with foliation isomorphic to that on Dl . Furthermore, in a
tight neighborhood of a bypass we can find both an annulus bounded by two small
unknots and the strip needed to form the connected sum. Now, consider the dividing
set � on A # Dl . Tightness of a neighborhood of A # Dl implies that � can have no
homotopically trivial closed components. By (1), � intersects both components of
the boundary of A # Dl at two points. This gives the following possibilities for the
dividing set: either (i) � consists of two arcs, each connects a point on L0 to a point
on L #@Dl , or (ii) � consists of two boundary-parallel arcs, plus possibly a number of
closed curves running along the core of the annulus.

To rule out the second possibility, we argue as follows. Since L0 is a small unknot, we
can find a disk U bounded by L0 , such that U is contained in the tight neighborhood
of the bypass Dl . We can assume that U is convex; then its dividing set is given by a
single arc connecting two points on L0 . Moreover, we can assume that U [A # Dl is
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a convex surface (with a tight neighborhood). But then, if there is a boundary-parallel
dividing curve on A # Dl connecting two points of L0 , the surface U [A # Dl would
have a homotopically trivial closed component of the dividing set, which contradicts
the tightness of the neighborhood.

Once we know that on A # Dl the dividing set � consists of two parallel arcs running
from L0 to L # @Dl , it is clear that after we attach the other half of the overtwisted
disk, the convex surface A#Dot will have the dividing set as in Figure 4. In conclusion,
the knot L #Dot is a destabilization of L.

3 Higher dimensions: Definition of the plastikstufe

Many obstructions of fillability of higher-dimensional contact manifolds have been
found in the recent past; see [22] and [17]. Many of these obstructions are modeled on
the overtwisted disk and take the shape of particular submanifolds in the given contact
manifold. The initial incarnation of this type of obstruction is the plastikstufe [22]:

Definition 3.1 Let .M; �/ be a contact manifold of dimension 2nC 1, and let B be
a closed .n� 1/–manifold. A plastikstufe PB with core B is a submanifold

PB DD2
�B ,!M

such that � \TPB is a singular foliation that is tangent to the fibers fzg�B for every
z 2D2 , and that restricts on every slice D2 � fbg to the foliation of the overtwisted
disk sketched in Figure 1. A plastikstufe PB is called a small plastikstufe if there is
an embedded open ball in .M; �/ containing PB . A contact manifold that contains a
plastikstufe is called PS –overtwisted.

Figure 5: The core of a plastikstufe in a contact 5–manifold is always a circle

A plastikstufe determines the germ of the contact structure on its neighborhood [21].
More precisely, let Dot be an overtwisted disk in .R3

ot; ˛ot/ with ˛ot D cos rdz C
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r sin rd' written in cylindrical coordinates. Then a plastikstufe PB has a neighbor-
hood UPS contactomorphic to a neighborhood of Dot � f0–sectiong in�

R3
ot �T �B; ˛PS D ˛otC�can

�
;

with �canD�pdq the canonical 1–form on T �B . (For purposes of the present paper,
we could even assume the existence of a standard neighborhood of the plastikstufe as
part of definition of a PS –overtwisted manifold.) In the next section, we will prove
that Legendrians become flexible in the presence of a plastikstufe, at least if the latter
satisfies some technical conditions.

4 h–principles, Legendrians and plastikstufe

In this section, we review the definition of loose Legendrians and prove Theorem 1.1.
We begin with some background on Gromov’s h–principle for subcritical isotropic
embeddings; see [14] and [7].

4.1 Formal isotropic embeddings and immersions

Note that an isotropic embedding f W S! .M; �/ induces a monomorphism df W TS!

TM such that dxf .TxS/ is a isotropic plane in the symplectic space .�f .x/; d˛/ for
every x 2 S . If we choose a compatible almost complex structure J on .M; �/, then
dxf .TxS/ is a totally real subspace in .�f .x/;J /. Thus, we can think of df W TS! �

as a isotropic monomorphism, or as a totally real monomorphism if an almost complex
structure is chosen. (Note that in the latter case, the complexification df CW TCS !

�f .x/ with TCS D TS ˝C gives a complex monomorphism in every fiber.)

Suppose that g; hW S!M are two Legendrian immersions. If there is a regular homo-
topy ft of Legendrian immersions that connects g and h, then the maps dgW TS! �

and dhW TS ! � are homotopic through Ft D dft .

As a generalization of isotropic isotopies, we recall the definition of formal isotopy of
isotropic embeddings. We say that isotropic embeddings f0; f1W S !M are formally
isotopic if

(a 0 ) there is a smooth isotopy ft W S !M of embeddings connecting f0 and f1 ,

(b 0 ) there is a homotopy Ft of isotropic monomorphisms over ft so that df0 D

F0; df1 D F1W TS ! � , and

(c 0 ) the path of isotropic monomorphisms Ft is homotopic to dft through paths of
monomorphisms with fixed endpoints df0 , df1 .
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By a result of Gromov [14], formally isotopic subcritical isotropic embeddings are
isotropically isotopic. In general, an h–principle fails for Legendrian embeddings, but
it holds for the special class of loose Legendrians [20], which we review in the next
subsection.

We make a similar definition for Legendrian immersions. Given two Legendrian
immersions f0; f1W ƒ!M , assume that

(a) there is a homotopy of continuous maps ft W ƒ!M connecting f0 and f1 , and

(b) a homotopy Ft of Lagrangian monomorphisms over ft so that df0DF0; df1D

F1W Tƒ! � .

In this case, we say that the Legendrian immersions f0 and f1 are formally homotopic.

It is also shown in [14] that Legendrian immersions satisfy an h–principle, that is,
any formally homotopic Legendrian immersions are homotopic through Legendrian
immersions. We do not make use of this h–principle, but formal homotopies of
Legendrian immersions will be needed throughout the paper. In particular, formal
homotopies are used below in the definition of relative rotation class.

Remark 4.1 The notion of formal isotopy carries over verbatim to the case where � is
an almost contact structure. Moreover, consider a path of almost contact structures �t

that starts and ends at honest contact structures �0 and �1 , respectively. Suppose
that g; hW ƒ!M are embeddings that are Legendrian for both �0 and �1 , and the
bundle maps dg and dh are Lagrangian for every almost contact structure �t . Then
g and h are formally homotopic with respect to �0 if and only if they are formally
homotopic with respect to �1 . In this case, Gromov’s h–principle implies that g and h

are homotopic through immersions that are Legendrian with respect to �0 if and only
if they are homotopic through Legendrian immersions with respect to �1 .

Remark 4.2 It is useful to reinterpret condition (b) in the definition of formal homo-
topy in different terms for the case where the image of the Legendrian immersions
g; hW ƒ!M is contained in some open ball U �M . Fix a complex structure J on
� that is tamed by the conformal symplectic structure given by d˛j� , and choose a
J –complex trivialization of .�;J / over the ball U ; both J and the trivialization will
be unique up to homotopy. In particular, these choices allow us to identify .�jU ;J /
with the trivial bundle Cn �U ! U .

If gW ƒ! .U; �/ is a Legendrian immersion in U , we can write the differential dg with
respect to the trivialization chosen above, as a map dgW Tƒ!Cn , and furthermore
since dg.Txƒ/ is a totally real subspace in .�g.x/;J /, the complexification

dgC
W TCƒ �!Cn

Geometry & Topology, Volume 17 (2013)
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gives a complex isomorphism in every fiber.

Given now a second Legendrian immersion hW ƒ! U , we can relate the two maps
dgC and dhC by a map 'W ƒ! GL.n;C/ defined by the identity

(2) dhC
x D '.x/ � dgC

x

for every x 2 ƒ. The homotopy class of ' is called the relative rotation class of
the Legendrian immersion h relative to g . The relative rotation class is an element
of Œƒ;GL.n;C/� Š Œƒ;U.n/�. It is clear that the maps dgCW Tƒ ˝ C ! � and
dhCW Tƒ˝C! � are homotopic through fiberwise complex isomorphisms if and
only if their relative rotation class vanishes.

4.2 Loose Legendrians

We define loose Legendrian embeddings [20] (or loose Legendrians for short) by
requiring that they possess the following model chart.

Definition 4.3 Let n> 1. In .R3; �std D ker.dz�y dx//, let L0 be the Legendrian
curve

t 7!
�
t2; 15

4
.t3
� t/; 3

2
t5
�

5
2
t3
�
;

where t is in an open interval containing Œ�
p

5=
p

3;
p

5=
p

3�. Let U �R3
std be some

convex open set containing L0 (see the right diagram of Figure 2). In T �Rn�1 let Z

be the Lagrangian zero section fpD 0g, and let V� be the open set fjpj< �; jqj< �g.
Then U �V� is canonically identified with an open set in .R2nC1; �std/, and L0 �Z

is Legendrian in this contact Darboux chart. If � > 1, we call the relative pair
.U � V�;L0 � Z/ a loose chart. A connected Legendrian manifold ƒ � .M; �/

with dimƒ> 1 is called loose if there is a Darboux chart U �M so that .U; ƒ\U /

is a loose chart.

Note that the above definition contains a size restriction � > 1 on the chart parameter � .
This is a key condition: indeed, any Legendrian can be shown to have a model chart
with sufficiently small � .

Remark 4.4 The above definition is slightly different than the one given in [20],
because here we are fixing a concrete stabilization with action 2. There is no loss of gen-
erality here, due to the existence of the contactomorphism .xi ;yi ; z/ 7! .cxi ; cyi ; c

2z/

for any constant c .

It is not a priori clear why a chart with a small � < 1 is not isomorphic to a chart with
large � > 1, but this must be true because loose Legendrians satisfy the following
h–principle:
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Theorem 4.5 [20] If two loose Legendrians ƒ0; ƒ1 in a contact manifold of di-
mension 2nC 1> 3 are formally isotopic, then they are isotopic through Legendrian
embeddings.

In other words, loose Legendrians are flexible, ie they are classified up to Legendrian
isotopy by easy to calculate invariants coming from smooth topology and bundle
theory. Recall that for general Legendrian embeddings, a similar h–principle does
not hold in any dimension. Indeed, it is known that holomorphic curve invariants
detect Legendrian rigidity in many examples where two knots are formally isotopic but
Legendrian nonisotopic [4]. (This also tells us that the requirement � > 1 imposes a
nontrivial restriction.)

4.3 The proof of Theorem 1.1

Our strategy for proving Theorem 1.1 is quite simple. The motivation comes from
Theorem 2.1: in every overtwisted R3 –slice we can isotope a given Legendrian embed-
ding of a knot to an embedding where its front projection has a “kink”. We can think
of a plastikstufe as a “product” family of overtwisted disks and perform a family of the
above isotopies for slices ƒ\R3�fbg of a given Legendrian ƒ (near the plastikstufe).
This product isotopy would produce a chart required by Definition 4.3 and verify that
the given Legendrian is, indeed, loose. For us to carry out this plan, the Legendrian ƒ,
perhaps after an isotopy, must contain a codimension 0 submanifold ƒ0 diffeomorphic
to B � Œ0; 1�, where B is the core of the plastikstufe PB . Moreover, ƒ0 must be in a
“product position” in some standard neighborhood UPS DN�Dot �T �� B of PB :

PB DDot � f0–sectiong� UPS;

ƒ0 DK � f0–sectiong � UPS;

where K �N�Dot is a Legendrian arc. In other words, we must be able to move the
given Legendrian ƒ by an ambient contact isotopy so that a product strip of the form
K � f0–sectiong would be contained in ƒ. In Lemma 4.8, we will show that this is
possible if the plastikstufe has a spherical core and trivial rotation, a notion we now
define.

A leaf ribbon in a plastikstufe PB with core B is a thin ribbon diffeomorphic to
B � .0; 1/, obtained by shrinking a leaf of PB within itself into the standard neigh-
borhood of the core B . Notice that all such ribbons are Legendrian isotopic: ribbons
contained in the same leaf are all deformations of the same leaf and ribbons in different
leaves can be related by rotating around the core.

From now on, we restrict to plastikstufes with core B diffeomorphic to Sn�1 (see
Remark 5.4 for a brief discussion of the general case). We will compare the formal
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Legendrian homotopy class of their leaf ribbons to the class represented by a punctured
Legendrian disk.

Definition 4.6 For a small plastikstufe P with spherical core, we define the rotation
class of P to be the relative rotation class between a leaf ribbon of P and a punctured
Legendrian disk. We say that P has trivial rotation if this class vanishes.

It is not hard to show that any two Legendrian disks in .M; �/ are Legendrian isotopic.
Therefore, the rotation class of a small plastikstufe with spherical core is well-defined.

Remark 4.7 The rotation class of a plastikstufe with core B D Sn�1 is an element of�
B � Œ0; 1�;GL.n;C/

�
Š ŒB;U.n/�D �n�1.U.n//D

�
Z if n is even,
0 if n is odd.

Thus, in contact manifolds of dimension 2nC 1D 4mC 3, every small plastikstufe
with spherical core has trivial rotation. We will see in Section 5 that in the appropriate
sense, the rotation of a plastikstufe in dimensions 2nC 1D 4mC 1> 5 is determined
by the rotation of its core, while in dimension 5 it is the rotation of the leaf direction
that determines the rotation of P .

Given a plastikstufe P with trivial rotation, and a Legendrian ƒ, we now isotope ƒ
towards P .

Lemma 4.8 Suppose .M 2nC1; �/ contains a small plastikstufe P � .M; �/ with
spherical core B D Sn�1 , and P has trivial rotation. Let ƒ �M be a Legendrian
disjoint from P . Then there exists an ambient contact isotopy of M , fixed near P ,
that takes a submanifold ƒ0 of ƒ diffeomorphic to Sn�1 � Œ0; 1� to a product strip
ƒ1 D Œ0; 1�� f0–sectiong near P .

Proof We can assume that the plastikstufe P and at least some part of ƒ are contained
in an open ball U . Fix a strip ƒ1 D Sn�1 � I which is isotopic to a leaf ribbon for
P but lies in the complement of P . (Here and below, I denotes a closed interval.)
Choose a small Legendrian disk in ƒ\ U , and let ƒ0 D Sn�1 � I be an annular
Legendrian strip in this disk, so that the interior of ƒ0 is isotopic to the punctured disk.

Now we have two Legendrian embeddings f0; f1W S
n�1 � I !M , such that ƒi is

the image of fi , i D 0; 1. We would like to connect these by a path of Legendrian
embeddings. To this end, we will apply Gromov’s h–principle for subcritical isotropic
embeddings; see [14] and [7]. (Alternatively, we could have used the h–principle for
open Legendrian embeddings [14]).
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To use the subcritical isotropic h–principle, restrict attention to the core spheres
Si D fi.S

n�1 � fcg/, i D 0; 1, where c is a point inside I . (In what follows, we will
be assuming that c is close to an endpoint of I . It will be clear from the context where
we want the core spheres to be; a particular choice is unimportant, since any two are
isotropically isotopic.) Let fi jcoreW S

n�1!M denote the isotropic embeddings given
by the corresponding restriction maps. We first construct a formal isotropic isotopy
between these embeddings.

Reparameterizing I , we can think of f0 and f1 as maps

f0W S
n�1
� Œ0; ı� �!M; f1W S

n�1
� Œ1� ı; 1� �!M;

for some small ı > 0. Choosing a trivialization of � in U as in Remark 4.2, we
consider the maps

df C
0 W TC.S

n�1
� Œ0; ı�/ �!Cn; df C

1 W TC.S
n�1
� Œ1� ı; 1�/ �!Cn:

The map df C
0

is homotopic to the map

GC
0 W T .S

n�1
� Œ0; ı�/ �!Cn; GC

0 .x; t/D df C
0 .x; ı/; 0� t � ı:

Similarly, df C
1

is homotopic to the map

GC
1 W T .S

n�1
� Œ1� ı; 1�/ �!Cn; GC

1 .x; t/D df C
1 .x; 1� ı/; 1� ı � t � 1:

Then, we can write

(3) df C
0 .x; ı/D  .x/df

C
1 .x; 1� ı/

for a map  W Sn�1! GL.n;C/; cf Remark 4.2.

Because P has trivial rotation and ƒ1 is isotopic to a leaf ribbon of P , it follows that
ƒ0 and ƒ1 are formally Legendrian homotopic. Then, the map  is homotopic to the
map sending each point of Sn�1 to the identity transformation in GL.n;C/. Using
this homotopy, we can construct a map

GC
W TC.S

n�1
� Œ0; 1�/ �!Cn

which gives a complex isomorphism in every fiber and coincides with df C
0

near
Sn�1 � f0g and with df C

1
near Sn�1 � f1g. The real part G of GC is a Lagrangian

monomorphism T .Sn�1 � Œ0; 1�/! � , restricting to df0 and df1 near the ends of the
cylinder Sn�1 � Œ0; 1�.

The Smale–Hirsch Immersion Theorem (see eg [7]) implies that G is homotopic to
the differential dg of an immersion gW Sn�1 � Œ0; 1�! M such that g D f0 near
Sn�1 � f0g and g D f1 near Sn�1 � f1g.
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But Sn�1 � Œ0; 1� has dimension n, and M has dimension 2nC 1, so we can perturb
g into general position by homotoping it (through immersions) to an embedding zg .
We can assume that this homotopy fixes the cylinder near the ends, and that the core
spheres we took are close enough to the ends of the cylinder.

Clearly, the maps zgt D zg. � ; t/ are smooth embeddings connecting f0jcore and f1jcore .
The maps Gt D G. � ; t/jT .Sn�1�ftg/ are isotropic monomorphisms covering zgt ; more-
over, Gt coincides with df0jTSn�1 respectively df1jTSn�1 near 0 respectively 1, and
the path Gt is homotopic to d zg rel endpoints. In short, we have a formal isotopy of
subcritical isotropic embeddings. By Gromov’s h–principle, it follows that f0jcore and
f1jcore can be connected by a path zft of isotropic embeddings.

The next step is to upgrade zft to a path of framed isotropic embeddings. For an
.n� 1/–dimensional isotropic submanifold S of .M 2nC1; �/, we consider a framing
by a nonvanishing vector field X W S ! � , such that X.s/ 2 .TsS/? nTsS for every
point s 2 S . (Here, .TsS/? stands for the symplectic orthogonal complement of TsS

in .�; d˛/; this subspace contains TsS and has dimension nC 1.) In other words,
we look at framings such that at every point of S the direct sum TS ˚ Span.X /
is a Lagrangian subspace of � . For an isotropic submanifold contained in a ball,
we can use a trivialization to find two vector fields v; v0 such that at every point
.TsS/? D TsS ˚Span.v; v0/, and think of the vector field X as living in Span.v; v0/.
Since X does not vanish, after normalizing we can think of the framing as a map
X W S ! S1 .

Notice that the original embeddings f0 , f1 of Sn�1�I endow the restrictions fi jcore ,
i D 0; 1 with a framing Xi given by Xi D dfi.the I–direction/. We would like to
find framings Xt for the isotropic embeddings zft , so that the path . zft ;Xt / connects
.f0jcore;X0/ and .f1jcore;X1/. If n > 2, then the maps X0W f0.S

n�1/! S1 and
X1W f1.S

n�1/ ! S1 are necessarily homotopic, so we can find the desired path
Xt . In the case n D 2, recall that the differentials df0 and df1 of the embeddings
of Sn�1 � I were connected by a path of Lagrangian monomorphisms Ft . Then,
Ft .the I–direction/ is a homotopy between X0 and X1 .

The framed isotropic isotopy of the core spheres f0.S
n�1/ and f1.S

n�1/ immediately
gives a Legendrian isotopy of the original annuli ƒ0 and ƒ1 . Indeed, ƒ0 and ƒ1

can be shrunk and flattened (by a Legendrian isotopy) to thin annuli around their core
spheres, linear in the direction of X0 , respectively X1 . These can be connected by a
family of thin Legendrian annuli built on the spheres zft .S

n�1/, spanning a linear strip
in the Xt direction. By the ambient isotopy theorem, (see eg [11, Theorem 2.6.2]),
the resulting isotopy of Legendrian annuli can be realized by a compactly supported
contact isotopy of .M; �/, concluding the proof.
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Lemma 4.9 Suppose that ƒ is a Legendrian in .M; �/ which lies in the complement of
a small plastikstufe with spherical core and trivial rotation. Then there is an open subset
V of M with topology Sn�1�DnC2 such that the pair .V;V \ƒ/ is contactomorphic
to .D3

std �D�Sn�1; ƒ0/, where ƒ0 is the Cartesian product of a stabilization in D3
std

and the zero section in D�Sn�1 .

Proof By Lemma 4.8, after an appropriate Legendrian isotopy, in the standard neigh-
borhood of the plastikstufe R3

OT �D�Sn�1 the Legendrian ƒ is given by K �Sn�1 .
Our entire picture is Sn�1 –symmetric, so we apply Theorem 2.1 simultaneously for
each point in Sn�1 .

Lemma 4.10 Suppose that ƒ � .M; �/ is Legendrian, and there exists an open set
V � M such that .V;V \ƒ/ is contactomorphic to .D3

std �D�Sn�1; ƒ0/, where
ƒ0 is the Cartesian product of a stabilization in D3

std and the zero section in D�Sn�1 .
Then ƒ is loose.

Proof For any metric on Sn�1 , D�Sn�1 contains a subset symplectomorphic to
U� D fjqj< �; jpj< �g � T �Rn�1 , for some � . Fix � > 0 so that � < � . In D3

std , we
can isotope any stabilization by compactly supported isotopy to the stabilization L�
given by

t 7!
�
�t2; 15�

4
.t3
� t/; �

2

2
.3t5
� 5t3/

�
:

We apply this isotopy to ƒ0 simultaneously for each point in Sn�1 , showing that
.D3

std �D�Sn�1; ƒ0/ is contactomorphic to .D3
std �D�Sn�1;L� �Z/, where Z is

the zero section in D�Sn�1 . Then the subset D3
std �U� is a loose chart, which can

be seen by reparametrizing our coordinates by the contactomorphism .xi ;yi ; z/ 7!

.xi=�;yi=�; z=�
2/.

5 Small plastikstufes with trivial rotation

For Theorem 1.1 to be useful, we need a supply of contact manifolds containing small
plastikstufes satisfying the hypotheses of Lemma 4.8, ie having spherical core and
trivial rotation. We will use the following result of Etnyre–Pancholi [10] to find suitable
examples.

Theorem 5.1 [10] Let .M; �/ be a contact manifold of dimension 2nC 1 and let
B be an .n� 1/–dimensional isotropic submanifold with trivial conformal symplectic
normal bundle. Then we may alter � to a contact structure � 0 that contains a small
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plastikstufe with core B such that � and � 0 are homotopic through almost contact
structures.

In fact, choosing any neighborhood U of B , we can find a smaller neighborhood U 0 of
B such that both the modification and the homotopy only affect � in U nU 0 .

In our application we need a refinement of this result, in which one also determines the
rotation of the plastikstufe.

Proposition 5.2 The modification of Theorem 5.1 can be applied in any contact
manifold to produce a small plastikstufe with spherical core and trivial rotation.

Proof The only part of the statement which needs justification is that we can achieve
triviality of the rotation class. Indeed, choose a Legendrian disk D in .M 2nC1; �/ and
apply the construction from the proof of Theorem 5.1 to any cooriented codimension 1

submanifold B of D . This B is automatically isotropic, and its symplectic normal
bundle is spanned by .Xn;JXn/ where Xn denotes a vector field in D that is transverse
to B , and J is a compatible almost complex structure on � . Since we can do this
construction inside a small ball around the Legendrian disk D , the resulting contact
structure � 0 will contain a small plastikstufe PB .

Assume for the rest of the proof that B is a small sphere Sn�1 that bounds a Legendrian
disk in L. (See Remark 5.4 below for discussion of the more general case.) By
Remark 4.7, the rotation class of a small plastikstufe with spherical core necessarily
vanishes in contact manifolds of dimension 4mC 3, but we still need to study the
remaining dimensions 4mC 1. Below, we will first show that the rotation for any
plastikstufe constructed by Theorem 5.1 (on a core BDSn�1 that bounds a Legendrian
disk before creating the plastikstufe) is trivial if dim M > 5. (This phenomenon already
manifested itself in the proof of Theorem 1.1, where any two framings on isotropic
spheres were automatically homotopic if dim M > 5.) Finally, we will show that using
the Etnyre–Pancholi Theorem 5.1 in dimension 5 with more care, we can produce
plastikstufes with arbitrary rotation class, including trivial rotation.

We can assume that the modification to � 0 has been done in a sufficiently small
neighborhood of Sn�1 so that � 0 D � both close to the center of the auxiliary Legen-
drian disk D chosen above, and outside of an embedded ball. Moreover, the Etnyre–
Pancholi modification does not change the contact structure near the chosen isotropic
submanifold B . Thus, close to B the leaves of the resulting plastikstufe are also
Legendrian with respect to the old contact structure � . Since � and � 0 are homotopic,
by Remark 4.1 it suffices to examine the rotation of a leaf with respect to � .
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Choose a leaf ribbon near B and compare its rotation to the punctured Legendrian
disk D � f0g Š B � I . Recall that by Remark 4.2 we can trivialize � over a ball
containing the Legendrians, and then obtain the rotation class as the homotopy class of
the map 'W B � I ! GL.n;C/ that satisfies Equation (2), where h and g denote the
two embeddings we wish to compare. In fact, because B � I deformation retracts to
B , it suffices to study the restriction of this map to B � f1

2
g.

Then the two embeddings are the same over B and only differ in the remaining direction.
Over B the tangent bundle to the leaf ribbon splits as TB˚hXli, where Xl is the leaf
direction, and the tangent bundle to the flat annulus splits as TB˚hXni, where Xn is
the normal to B in the disk D . Therefore, for any q 2 B we have

'.q/D

0BBB@ Id
�

:::

�

0 � � � 0 �.q/

1CCCA ;
where �W B!C� is a continuous function. This helps us understand the homotopy
class of ' in ŒB;GL.n;C/�. We consider two cases.

Case 1 Suppose 2nC 1> 5. Then the function �W B!C� is homotopic to 1, since
by assumption B D Sn�1 with n� 1� 2. It follows that ' represents the trivial class
in ŒB;GL.n;C/�, so the plastikstufe PB has trivial rotation.

Case 2 Suppose 2nC 1D 5. Now, the function � , and therefore ' , may represent
a nontrivial homotopy class. It turns out that this class depends on the choice of
coordinates in the Etnyre–Pancholi construction. A reparametrization will allow us to
adjust the rotation class. To see this, we first review the setup of the construction of
[10]. Given an isotropic manifold B with trivial symplectic conormal bundle, we use
the isotropic neighborhood theorem to identify a neighborhood of B in .M; �/ with
T �B �R3 , equipped with the contact form pdqCdzC r2d� . Choosing a transverse
curve 
 .t/ in R3 , we can further identify a neighborhood of B�
 in T �B�R3 with�

T �B �S1
�D2; ker.pdqC dt C r2d�/

�
:

Here, B is the 0–section of T �B , pdq is the canonical 1–form on T �B , S1 is the
transverse curve 
 .t/, and D2 is an open disk with polar coordinates .r; �/. Since
dim M D 5, we have B D S1 , and the coordinate q varies in the unit circle. The
generalized Lutz twist from the Etnyre–Pancholi construction produces in each of the
slices T �B�ft0g�D2 a plastikstufe Pt0

whose core is B�ft0g, where B is the zero
section as before. Near the core, the leaves of Pt0

are given by f� D constg.
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We can define for any a 2 Z a contactomorphism

FaW T
�B �S1

�R2
�! T �B �S1

�R2

by Fa.p; q; t; rei� / D .p � ar2; q; t; rei.�Caq// that preserves pdq C dz C r2d� .
Note that the zero section fp D 0; r D 0g is preserved by Fa .

Instead of applying now the generalized Lutz twist of [10] to the initial model neighbor-
hood of B we have chosen in the Legendrian disk D above, we use first a restriction
of the map Fa to modify the coordinates of the model neighborhood. This means
that for a fixed t0 , the construction will produce a plastikstufe with the same core for
either choice of coordinates. The leaf direction near the core, however, is different:
we get f� D constg for the plastikstufe P constructed with the old coordinates, and
� 0 D � C aq D const for P 0 constructed in the new coordinates. Intuitively, the leaf
direction of P 0 rotates a times with respect to the leaf direction of P as we move
around the circle S1 D B .

We now compute the relative rotation class between P and P 0 . For this, we compare
two trivializations of the bundle �!BDS1 corresponding to the (Legendrian) leaves
of our plastikstufes. With a choice of a compatible almost complex structure J on � ,
each plastikstufe yields a trivialization of �jB given by�

core S1–direction;J.core S1–direction/; leaf direction;J.leaf direction/
�
:

Since the S1–direction for P and P 0 is the same and the leaf directions differ as
described above, the two trivializations are related by the map 'W S1!U.2/ given by

'
�
eiq
�
D

�
1 0

0 eiaq

�
:

Different values of a give maps lying in different homotopy classes in ŒS1;U.2/�D

�1.U.2// D Z. More precisely, we can realize any given element in �1.U.2// by
an appropriate choice of a. In particular, we can realize the class given by a flat
Legendrian annulus (ie the one contained in the Legendrian disk D ). It follows that
by an appropriate choice of coordinates, we can construct a plastikstufe with trivial
rotation class.

Remark 5.3 The previous proposition essentially shows that the Etnyre–Pancholi
construction can be used to produce a plastikstufe with an arbitrary given rotation
class. Indeed, any rotation class of the core can be realized by Gromov’s h–principle
for subcritical isotropic embeddings. In the leaf direction, rotation is always trivial in
dimensions higher than 5; in dimension 5, any given rotation can be realized by an
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appropriate choice of coordinates in the Etnyre–Pancholi construction. We leave the
details to the reader as we have no use for plastikstufes with nontrivial rotation.

Remark 5.4 The construction above could be generalized in a relatively easy way for
a small plastikstufe PB with core Bn�1 , as long as Bn�1 can be (smoothly) embedded
into Rn . To simplify the presentation, we have chosen to restrict our attention to the
spherical case; cf Question 7.2.

6 Flexible Weinstein manifolds

Let .W 2nC2; d�/ be an exact symplectic manifold. Given an exhausting Morse
function 'W W !R, we say the triple .W; �; '/ is a Weinstein manifold if the vector
field V determined by V y d�D � is gradient-like for the Morse function ' . (If '
has finitely many critical points, we say that W has finite type.) It follows that � is a
contact form on any noncritical level set '�1.c/. Similarly, .W; �; '/ is a Weinstein
cobordism from .Y0; �0/ to .Y1; �1/ if @W D Y1[�Y0 , where Y0 and Y1 are level
sets for ' , and V points inwards along Y0 and outwards along Y1 . If Y0 D∅, W is
called a Weinstein domain.

Observe that because LV �D �, the flow of the vector field V expands � exponentially.
If p 2W is a critical point of ' , the descending manifold C of p consists of all the
points in W which converge to p by the flow of V . Since any vector in T C converges
to the zero vector at the point p under the flow of V , but this flow also expands �
exponentially, we conclude that �jC D 0. Thus any descending manifold is an isotropic
submanifold of W , and furthermore it intersects every level set in a contact isotropic
submanifold. In particular, every critical point of ' must have index less than or equal
to nC 1.

A Weinstein cobordism of dimension 2nC 2> 4 is called flexible if every descending
manifold of index nC1 intersects a lower level set along a loose Legendrian sphere (in
other words, attaching spheres for all handles of index nC 1 are loose Legendrians).
Here, we will assume for simplicity that all critical values of ' are distinct. Using the
h–principle result from [20], it is shown in [2] that flexible Weinstein cobordisms can
be completely classified by their topology. There are several related theorems proved
in [2, Chapter 14]; we state two results (in the form relevant to our case).

Theorem 6.1 [2] Let .W; �; '/ be a flexible Weinstein cobordism from .Y0; ker˛0/

to .Y1; ker˛1/, such that W is smoothly a product cobordism. Then after a homotopy
through Weinstein structures, the cobordism .W; �; '/ is isomorphic to .Y0�R; et˛0; t/.
In particular, .Y0; ker˛0/ is contactomorphic to .Y1; ker˛1/.
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More generally:

Theorem 6.2 [2] Let .W; �0; '0/ and .W; �1; '1/ be two flexible Weinstein struc-
tures on a fixed cobordism W . Suppose that @�.W; �0; '0/ is contactomorphic to
@�.W; �1; '1/, and further that d�0 and d�1 are homotopic through nondegenerate
2–forms. Then there exists a homotopy of Weinstein structures connecting .W; �0; '0/

and .W; �1; '1/.

Now we are ready to prove Theorem 1.2 from the introduction:

Proof of Theorem 1.2 Suppose hypothesis (1) is satisfied, ie .Y; �0/ and .Y; �1/ are
the respective boundaries of the Weinstein manifolds .W; �0; '0/ and .W; �1; '1/. We
then puncture each manifold, so that .W; �j ; 'j / is a Weinstein cobordism from S2nC1

std
to .Y; �j /. Let .M 2nC1; �PS/ be a PS –overtwisted manifold containing a plastikstufe
P satisfying the hypotheses of Theorem 1.1. By connect summing this manifold onto
each level set of .W; �0; '0/ and .W; �1; '1/ (away from all descending manifolds)
we obtain two new Weinstein cobordisms zWj from .M; �PS/ to .Yj ; �j / # .M; �PS/.
The cobordism zWj has the same critical points as W , and each descending manifold
is disjoint from M (and in particular, from the plastikstufe P ) at every level set. By
Theorem 1.1 this implies that all descending manifolds of index nC 1 intersect all
level sets in loose Legendrians, therefore zWj is a flexible Weinstein cobordism. We
then complete the proof by applying Theorem 6.2. The proof of the theorem under
hypothesis (2) is similar; in this case we connect sum .M; �PS/ to each level set of the
cobordism between .Y; �0/ and .Y; �1/, and apply Theorem 6.1.

7 Open questions

The questions in this section are not new, but with the results of this paper they may be
formulated in a more precise way. Above we have showed that certain PS –overtwisted
manifolds are flexible within the class of PS –overtwisted manifolds being Stein
cobordant by a topologically trivial cobordism.

Question 7.1 Even if the general flexibility question seems to be out of reach, it would
be interesting to tackle more special cases. For example:

(a) Is it true that the connected sum of an Ustilovsky sphere (cf [25]) with a suitable
PS –overtwisted manifold is contactomorphic to the PS –overtwisted manifold? Note
that in this case, the two contact manifolds are cobordant via a topologically nontrivial
Stein cobordism.

(b) Take a model PS –overtwisted sphere .S2nC1; �PS/. Is it true that .S2nC1; �PS #
�PS/ is contactomorphic to .S2nC1; �PS/?
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Question 7.2 Can we remove the technical conditions in Theorem 1.1 and prove
similar statements for arbitrary plastikstufes, or, more generally, for arbitrary bLobs?
(Bordered Legendrian open books, or bLobs for short, were introduced in [17] to
generalize the notion of PS –overtwistedness.)

It is not hard to see that the arguments of this paper go through in the presence of a
“large” open ball in R3

ot �R2n . Moreover, some properties of such ball [23] resemble
those of a loose chart. Is it true that a neighborhood of an arbitrary plastikstufe or bLob
contains such an open ball?

A further question is about finding the correct definition of overtwistedness in higher
dimensions. A very useful approach to studying contact structures in all dimensions is
provided by open book decompositions [13].

Question 7.3 Can our results be interpreted in terms of open books to obtain some
type of flexibility in that context?
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