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Pseudo-Anosov flows in toroidal manifolds

THIERRY BARBOT

SÉRGIO R FENLEY

We first prove rigidity results for pseudo-Anosov flows in prototypes of toroidal
3–manifolds: we show that a pseudo-Anosov flow in a Seifert fibered manifold is
up to finite covers topologically equivalent to a geodesic flow and we show that a
pseudo-Anosov flow in a solv manifold is topologically equivalent to a suspension
Anosov flow. Then we study the interaction of a general pseudo-Anosov flow with
possible Seifert fibered pieces in the torus decomposition: if the fiber is associated
with a periodic orbit of the flow, we show that there is a standard and very simple form
for the flow in the piece using Birkhoff annuli. This form is strongly connected with
the topology of the Seifert piece. We also construct a large new class of examples in
many graph manifolds, which is extremely general and flexible. We construct other
new classes of examples, some of which are generalized pseudo-Anosov flows which
have one-prong singularities and which show that the above results in Seifert fibered
and solvable manifolds do not apply to one-prong pseudo-Anosov flows. Finally we
also analyse immersed and embedded incompressible tori in optimal position with
respect to a pseudo-Anosov flow.

37D20, 37D50; 57M60, 57R30

1 Introduction

The goal of this article is to start a systematic study of pseudo-Anosov flows in toroidal
3–manifolds. More specifically we analyse such flows in closed manifolds which are
not hyperbolic or in pieces of the torus decomposition which are not hyperbolic and we
obtain substantial results in Seifert fibered pieces. We also produce many new examples
of pseudo-Anosov flows, including a large new class in graph manifolds and we study
optimal position of tori with respect to arbitrary pseudo-Anosov flows.

The study of hyperbolic flows in toroidal manifolds was initiated by Ghys [29], who
analysed Anosov flows in 3–dimensional circle bundles. Ghys showed that up to
finite covers, the flow is topologically equivalent to the geodesic flow in the unit
tangent bundle of a hyperbolic surface. This was later strengthened by the first author
who showed that this holds if the manifold is Seifert fibered [2]. In the mid 70s
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a generalization of Anosov flows called pseudo-Anosov flows was introduced by
Thurston [47]. He showed that these are extremely important for the study of surfaces
and 3–manifolds [45; 46; 47]. The difference from Anosov flows is that one allows
finitely many singularities which are each of p–prong type. In the applications to
the topology of 3–manifolds there is a requirement that p is at least 3, which is the
convention here as well. Pseudo-Anosov flows have been used very successfully to
analyse the topology and geometry of 3–manifolds (see Mosher [37; 38; 39], Gabai
and Kazez [27] and the second author [16; 20; 21]) and they are much more common
than Anosov flows; see Fried [25], Roberts, Shareshian and Stein [43] and the second
author [19]. They are much more flexible because for instance they survive most
Dehn surgeries on closed orbits [25]; see also Section 8 for new examples. In addition
as opposed to Anosov flows, pseudo-Anosov flows can be constructed transverse to
Reebless foliations in vast generality if the manifold is atoroidal (see [37], the second
author [17] and Calegari [10; 11; 12], yielding deep geometric information.

In this article we analyse several aspects of pseudo-Anosov flows in toroidal manifolds.
In the presence of a general pseudo-Anosov flow the manifold is always irreducible; see
the second author and Mosher [22]. By the geometrization theorem a three-manifold
with a pseudo-Anosov flow is either hyperbolic, Seifert fibered, or a solv manifold, or
the torus decomposition of the manifold is nontrivial; see Perelman [40; 42; 41].

Notice that there is an ongoing broad study of pseudo-Anosov flows in closed, hyper-
bolic manifolds by the second author [16; 20; 21], which is mostly orthogonal to this
article. In our situation classical 3–dimensional topology will play a much bigger role.

A topological equivalence between two flows is a homeomorphism which sends orbits
to orbits. We first analyse Seifert fibered manifolds. Despite the much bigger flexibility
of pseudo-Anosov flows we prove a strong rigidity theorem, extending the result of [2]
for Anosov flows.

Theorem 4.1 Let ˆ be a pseudo-Anosov flow in a Seifert fibered 3–manifold. Then
up to finite covers, ˆ is topologically equivalent to a geodesic flow in the unit tangent
bundle of a hyperbolic surface.

In particular the flow does not have singularities and is topologically Anosov. The
proof of Theorem 4.1 splits into two cases depending on whether the fiber is homotopic
to a closed orbit of the flow or not. In fact later on this dichotomy will be fundamental
for the study of pseudo-Anosov flows restricted to an arbitrary Seifert fibered piece
of the torus decomposition of the manifold. In the proof of Theorem 4.1 we start by
showing that the first case cannot happen. In the other case we prove that there are no
singularities and also that the stable/unstable foliations are slitherings as introduced by
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Thurston [48; 49]. This produces two actions of the fundamental group on the circle,
which are used to produce a �1 –invariant conjugacy of the orbit space with the orbit
space of the geodesic flow. This is enough to prove Theorem 4.1. Here orbit space
refers to the orbit space of the flow lifted to the universal cover. For a pseudo-Anosov
flow, this orbit space is always homeomorphic to the plane [22] and hence the flow in
the universal cover is topologically a product.

Next we analyse pseudo-Anosov flows in three-manifolds with virtually solvable
fundamental group. Here again there is a very strong rigidity result.

Theorem 5.7 Suppose that ˆ is a pseudo-Anosov flow in a three-manifold with
virtually solvable fundamental group. Then ˆ has no singularities and is topologically
equivalent to a suspension Anosov flow.

The proof of Theorem 5.7 is roughly as follows. Suppose first that the fundamental
group is solvable and consider a normal rank two abelian subgroup. The first case is that
this subgroup acts nonfreely on the orbit space. In this case we show that the subgroup
preserves a structure in the universal cover called a chain of lozenges (described below).
By normality the whole fundamental group of the manifold will preserve this chain
of lozenges. We also show that the stabilizer of a chain of lozenges is at most a finite
extension of Z2 , which leads to a contradiction. It follows that the rank two abelian
subgroup acts freely on the orbit space and by previous results this implies that the flow
is topologically equivalent to a suspension Anosov flow; see the second author [18].
If the manifold is virtually solvable then the flow is covered by a suspension Anosov
flow and one can show that the original flow is also a suspension Anosov flow.

One difference between Theorems 4.1 and 5.7 is that in Theorem 5.7 the flow is
topologically equivalent to a suspension Anosov flow, whereas in Theorem 4.1, we
only prove it is equivalent to a geodesic flow up to finite covers. The condition on finite
covers cannot be removed from Theorem 4.1 as can be seen by unwrapping the fiber
direction. See detailed explanation after the proof of Theorem 4.1 in Section 4.

The proofs of both Theorems 4.1 and 5.7 use amongst other tools, the study of actions on
the leaf spaces of the stable/unstable foliations in the universal cover. These topological
spaces already have a key role in the context of Anosov flows; see [29; 2] and the
second author [14; 15]. In the more general context of pseudo-Anosov flows, these
leaf spaces are generalizations of both trees and non-Hausdorff simply connected one
manifolds and are called non-Hausdorff trees; see the second author [18]. A key fact
used, generalizing a previous result in the case of non-Hausdorff simply connected
one manifolds (see the first author [5]), is that a group element acting freely on the
non-Hausdorff tree has an axis; see [18] and Roberts and Stein [44]. Notice that for
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a pseudo-Anosov flow, the axis may not be properly embedded in the respective leaf
space.

This theme of analysing the structure of the flow in the universal cover is prevalent in
a lot of the study of pseudo-Anosov flows and is central to the results of this article.
This is used to give topological and homotopic information about the manifold, and it
also aids in answering questions of rigidity of the flows and large scale geometry of the
flow and the manifold. This previous, extensive topological study of pseudo-Anosov
flows substantially simplifies the proofs of Theorems 4.1 and 5.7.

Next we consider manifolds with nontrivial torus decomposition. The overarching goal
is to understand the flow in each piece of the torus decomposition and then analyse how
the pieces are glued. In this article we do a substantial analysis of one type of Seifert
fibered piece (the periodic type; see below) and we study the tori in the boundary of the
pieces of a torus decomposition. One of our main goals is to produce a large new class
of examples. These examples are much more naturally understood after the structure
of periodic Seifert pieces is analysed and the structure of tori is better understood.

In terms of the relation with pseudo-Anosov flows, Seifert fibered pieces in the torus
decomposition fall in two categories: if the piece admits a Seifert fibration where the
fiber is freely homotopic to a closed orbit of the flow we say that the piece is periodic,
otherwise the piece is called a free piece. Equivalently the Seifert piece is free if and
only if the action in the orbit space of a deck transformation corresponding to a fiber in
any possible Seifert fibration is free. This dichotomy between free pieces and periodic
pieces is fundamental. For example if the whole manifold is Seifert then one main
step in the proof of Theorem 4.1 is to show that the piece is a free piece. For solvable
manifolds, after cutting along a fiber, the piece is also free. For Anosov flows, the case
of free Seifert pieces has been extensively analysed by the first author in [4], giving
a nearly final conclusion in the following case: Anosov flows on graph manifolds
where all Seifert fibered pieces are free. Recall that a graph manifold is an irreducible
3–manifold where the pieces of the torus decomposition are all Seifert.

To understand pseudo-Anosov flows in pieces of the torus decomposition one wants to
cut the manifold along tori and analyse the flow in each piece. Therefore one wants
the cutting torus to be in good position with respect to the flow. The best situation for
a general given torus is that there is a torus isotopic to it which is transverse to the
flow. But this is not always possible. A good representative of a much more common
situation is the following: consider the geodesic flow in the unit tangent bundle of a
closed hyperbolic surface (an Anosov flow). Let ˛ be a simple closed geodesic and
let T be the torus of unit vectors along ˛ . Then T is embedded and incompressible
but is not transverse to the flow: it contains two copies of ˛ corresponding to the two
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directions along ˛ and is otherwise transverse to the flow. This is the best position
amongst all tori isotopic to T .

Hence it is essential to understand the interaction between �1 –injective tori and pseudo-
Anosov flows. Consider a Z2 subgroup of the fundamental group: if it acts freely
on the orbit space then the flow is topologically equivalent to a suspension Anosov
flow [18]. Otherwise some element in Z2 does not act freely on the orbit space and is
associated to a closed orbit of the flow. In the last case the Z2 describes a nontrivial
free homotopy from a closed orbit to itself. Any free homotopy between closed orbits
can be put in a canonical form as a union of immersed Birkhoff annuli; see eg the
first author [3; 4]. A Birkhoff annulus is an immersed annulus so that each boundary
component is a closed orbit of the flow and the interior of the annulus is transverse to
the flow. A Birkhoff torus or Birkhoff Klein bottle is essentially a �1 –injective surface
which is a union of Birkhoff annuli (see Section 6). Given an embedded incompressible
torus T , one looks for an isotopic copy which is a Birkhoff torus.

A Birkhoff annulus lifts to a lozenge in the universal cover: the boundaries lift to
periodic orbits and the interior lifts to a partial ideal quadrilateral region D in the
orbit space: two opposite vertices of D are lifts of the boundary orbits, two vertices
of D are ideal and the stable/unstable foliations in D form a product structure. The
boundary orbits are the corners of the lozenge. Lozenges are the building blocks in
the universal cover associated to free homotopies between closed orbits and they are
fundamental for much of the theory of Anosov flows [3; 15] and more generally, of
pseudo-Anosov flows [16; 18]. Unless the flow is suspension Anosov, then any Z2 in
the fundamental group has associated to it an (essentially) unique chain of lozenges,
where some elements of Z2 act fixing the corners and some elements act freely. In the
next two results one goal is to look for the best position of embedded incompressible
tori. In Proposition 6.4, we prove the following (see Definition 6.3 for the notion of a
string of lozenges).

Theorem A Let T be a �1 –injective torus and let C be a �1.T / invariant chain of
lozenges. Suppose there is a corner ˛ of C and a covering translation g with g.˛/

in the interior of a lozenge in C . Then C is a string of lozenges. In addition T is
homotopic into a free Seifert fibered piece.

An important consequence of this result is that we also prove the following: if no corner
of C is mapped into the interior of a lozenge in C then one can homotope T to a union
of Birkhoff annuli so that the periodic orbits in the annuli do not intersect the union
of the interiors of the Birkhoff annuli. This is half way to producing an embedded
torus homotopic to T which is a union of Birkhoff annuli. The second conclusion of
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Theorem A implies for instance that if T is the boundary torus between two hyperbolic
pieces in the torus decomposition, then the situation of Theorem A cannot happen. The
general result concerning best position of embedded tori is the following.

Theorem 6.10 Suppose that M is orientable and that the pseudo-Anosov flow is
not topologically equivalent to a suspension Anosov flow. Let T be an embedded,
incompressible torus in M . Then either

(1) T is isotopic to an embedded Birkhoff torus,

(2) T is homotopic to a weakly embedded Birkhoff torus T 0 and T (or T 0 ) is
contained in a periodic Seifert fibered piece, or

(3) T is isotopic to the boundary of the tubular neighborhood of an embedded
Birkhoff–Klein bottle contained in a free Seifert piece.

Weakly embedded means that T 0 is embedded except perhaps along the closed orbits
contained in the Birkhoff annuli. All the possibilities in Theorem 6.10 indeed happen:
(1) is the typical situation when the flow is a geodesic flow of an orientable surface (or
more generally, a Handel–Thurston example [31]), (2) occurs in the Bonatti–Langevin
examples [9] and (3) occurs in the geodesic flow on nonorientable closed surfaces (see
the last remark of Section 4).

One consequence of this study of standard forms for tori is the following.

Proposition 6.9 Let ˛ be a singular orbit of a pseudo-Anosov flow. Then ˛ is
homotopic into a piece of the torus decomposition of the manifold.

If the manifold is atoroidal or Seifert fibered the statement is trivial. Notice that the
result is clearly not true for regular periodic orbits as there are many transitive Anosov
flows in graph manifolds which are not Seifert fibered [31].

The results above help tremendously to understand canonical flow neighborhoods
associated to periodic Seifert fibered pieces (Section 7).

Theorem B Let ˆ be a pseudo-Anosov flow in M orientable and let P be a periodic
Seifert fibered piece of the torus decomposition of M . Then there is a finite union Z

of Birkhoff annuli, which is embedded except perhaps at the boundaries of the Birkhoff
annuli and which is a model for the core of P : a sufficiently small neighborhood of Z

is a representative for the Seifert piece P . The finite union Z is well defined up to flow
isotopy.
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This is a remarkably simple form for the flow in the piece P . It follows that the
dynamics of the flow restricted to the piece is extremely simple: there are finitely many
closed orbits; the union of the boundary of the Birkhoff annuli. All other orbits are
either in the stable or unstable leaves of the closed orbits or enter and exit the manifold
with boundary. In addition the theorem says that in periodic Seifert pieces the flow is
intimately connected with the topology of the Seifert piece. This provides a strong
relation between dynamics and topology. Notice for future reference that it is not true
in general that one can make the boundary of a neighborhood of the Birkhoff annuli
transverse to the flow.

The basic ideas of the proof of Theorem B are as follows: The fiber in P is represented
by a closed orbit of the flow and any Z2 in �1.P / can be represented by a Birkhoff
torus which has this closed orbit. The Seifert piece being periodic implies that the
situation of Theorem A cannot happen, and we can adjust the Birkhoff annuli so that the
interiors are embedded and disjoint. three-manifold topology and the study of chains of
lozenges implies that we can choose finitely many of these Birkhoff annuli which carry
all of �1.P /. This produces Z and P can be represented by a small neighborhood
of Z .

We are now ready to describe the main family of examples we produce; see Section 8.
The construction uses the understanding of the structure given by Theorem B and it
shows that the description given in Theorem B is actually realizable in a wide variety
of cases, at least when one requires that the boundary of the periodic Seifert pieces are
transverse to the flow.

In fact in the construction of Theorem C we allow one-prongs. If there are one-prongs,
these generalized pseudo-Anosov flows are called one-prong pseudo-Anosov flows.
Classically they originated in Thurston’s work [47] since he constructed pseudo-Anosov
homeomorphisms of the two sphere, having for example four one-prong singularities.
A suspension of these homeomorphisms produces a one-prong pseudo-Anosov flow.
In this case the universal cover is S2 �S1 and hence M is not irreducible, but still
the flow in the universal cover is topologically a product flow and the orbit space is S2

which is a two manifold. Other examples with one-prongs are obtained doing Dehn
surgery on periodic orbits of pseudo-Anosov flows [25], but here very little is known
about the resulting one-prong pseudo-Anosov flows.

Theorem C There is a large family of (possibly one-prong) pseudo-Anosov flows in
graph manifolds and manifolds fibering over the circle with fiber a torus, where the flows
are obtained by gluing simple building blocks. The building blocks are homeomorphic
to solid tori and they are canonical flow neighborhoods of intrinsic (embedded) Birkhoff
annuli. The building blocks have tangential boundary, transverse boundary and only
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two periodic orbits. A collection of blocks is first glued along annuli in their tangential
boundary to obtain Seifert fibered manifolds with boundary, and which have a semiflow
transverse to the boundary with finitely many periodic orbits. Under very general and
specified conditions these can be glued along their boundaries (transverse to the flow)
to produce (possibly one-prong) pseudo-Anosov flows in the resulting closed manifolds.
In addition one can do any Dehn surgery (except for one) in the periodic orbits of the
middle step to obtain new (possibly one-prong) pseudo-Anosov flows.

This family is a vast generalization of the Bonatti–Langevin construction [9]. The
constructions in Theorem C are very general producing for example one-prong pseudo-
Anosov flows in all but one torus bundle over the circle. This shows that Theorem 5.7
also does not hold if one allows one-prongs. In the construction in Theorem C, if the
middle step produces a flow without one-prong periodic orbits (this is immediate to
check), then the resulting final flow in the closed manifold will be pseudo-Anosov in a
graph manifold. All the Seifert fibered pieces are periodic pieces. This construction is
extremely general producing a very large class of new examples.

An appealing way to describe the examples of Theorem C in the absence of the Dehn
surgeries is the following: the manifolds with transverse boundary in the middle step
are circle bundles, with fibers preserved by the local flow, and projecting to a local flow
of Morse–Smale type on a surface S with boundary: there is a finite number of singular
points (prong singularities) in S , stable and unstable manifolds joining the singular
points to the boundary, and all other orbits go from one boundary component to another.
This picture can be encoded in the combinatorial data of a fat graph satisfying some
conditions.

In a subsequent article we will show that the examples of Theorem C without one-
prongs (hence pseudo-Anosov) are rigid; that means that up to topological equivalence
they are determined by topological data. By construction these flows have many tori
transverse to the flow. We stress that the family of examples in Theorem C is entirely
new and is constructed by assembling non pseudo-Anosov blocks of semiflows and
gluing. Recall that the majority of constructions of pseudo-Anosov flows, besides those
transverse to foliations, are obtained by modifying some original pseudo-Anosov flow:

(1) Dehn surgery on closed orbits of flows, introduced by Goodman for Anosov
flows [30] and extended by Fried for pseudo-Anosov flows [25].

(2) The derived from Anosov construction of blow up of orbits and gluing by Franks
and Williams [24].

(3) The shearing construction along tori, by Handel and Thurston [31].
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When the flows of Theorem C do not have p–prong singularities or one-prongs, they
are new examples of Anosov flows. In this case these Anosov flows are never contact.
This is because all contact Anosov flows are R–covered, ie the lift to the universal
cover of the weak stable and unstable foliations have leaf space homeomorphic to the
real line [14]; see the first author [7]. In addition if an Anosov flow is R–covered and
admits a transverse torus T , then it has to be topologically equivalent to a suspension
and T must be a cross section [14; 2]. In our situation consider the transverse tori
which are the boundary components of the middle gluing pieces: they do not intersect
all orbits of the flow and cannot be cross sections. This proves that the flows are not
contact.

We now describe additional families of new examples. At the end of Section 4, we
produce some interesting new examples using branched cover constructions.

Theorem D (1) There is an infinite family of one-prong pseudo-Anosov flows with
two one-prong singular orbits and no other singular orbits where the manifold
is Seifert fibered. They are doubly branched covered by the Handel–Thurston
examples [31].

(2) There are also infinitely many examples of one-prong pseudo-Anosov flows
which are doubly branched covered by a geodesic flow in a hyperbolic surface
and where the original manifolds are not irreducible.

As remarked above the Handel–Thurston examples are in graph manifolds which are
not Seifert fibered. Part (1) of Theorem D shows that Theorem 4.1 does not hold in
Seifert fibered manifolds if one allows one-prong orbits. The manifolds in part (2) are
not irreducible and neither homeomorphic to S2 �S1 . At the beginning of Section 8,
we improve these examples to show that a mixed behavior of Seifert fibered pieces is
possible.

Theorem E There are examples of pseudo-Anosov flows in graph manifolds with one
periodic piece and an arbitrary number of free pieces.

The flows in Theorem E are obtained as branched cover constructions of the example (2)
in Theorem D.

At this point there is no good understanding of the general structure of one-prong pseudo-
Anosov flows and they can be much less well behaved than pseudo-Anosov flows. In
this article we do not analyse at all the structure of one-prong pseudo-Anosov flows,
but only construct many examples of these, some of which highlight the differences
with pseudo-Anosov flows in Seifert fibered manifolds, solvable manifolds and graph
manifolds.
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The first examples of an Anosov flow in a graph manifold where the pieces are periodic
were constructed by Bonatti and Langevin [9]: they are extremely special cases of the
examples provided by Theorem C. The general case requires different arguments to
prove the pseudo-Anosov behavior. The systematic study of Anosov flows in graph
manifolds was started by the first author in [4; 6].

In the final section of this article we discuss further questions/comments/conjectures
concerning pseudo-Anosov flows in toroidal manifolds. In this article we do not
really analyse free Seifert pieces, but in the final section we have some comments and
questions about them.

2 Background

Pseudo-Anosov flows: Definitions

Definition 2.1 (Pseudo-Anosov flows) Let ˆ be a flow on a closed 3–manifold M .
We say that ˆ is a pseudo-Anosov flow if the following conditions are satisfied:

� For each x 2M , the flow line t ! ˆ.x; t/ is C 1 and not a single point, and
the tangent vector bundle Dtˆ is C 0 in M .

� There are two (possibly) singular transverse foliations ƒs; ƒu which are two
dimensional, with leaves saturated by the flow and so that ƒs; ƒu intersect
exactly along the flow lines of ˆ.

� There is a finite number (possibly zero) of periodic orbits 
i , called singular orbits.
A stable/unstable leaf containing a singularity is homeomorphic to P � I=f

where P is a p–prong in the plane and f is a homeomorphism from P � f1g

to P � f0g; in addition p is at least 3.

� In a stable leaf all orbits are forward asymptotic, in an unstable leaf all orbits
are backwards asymptotic.

Basic references for pseudo-Anosov flows are [38; 39] and [1] for Anosov flows. A
fundamental remark is that the ambient manifold supporting a pseudo-Anosov flow
(without 1–prongs) is necessarily irreducible; the universal covering is homeomorphic
to R3 [22].

Definition 2.2 (One-prong pseudo-Anosov flows) A flow ˆ is a one-prong pseudo-
Anosov flow in M 3 if it satisfies all the conditions of the definition of pseudo-Anosov
flows except that the p–prong singularities can also be 1–prong (p D 1).
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Torus decomposition Let M be an irreducible closed 3–manifold. If M is orientable,
it has a unique (up to isotopy) minimal collection of disjointly embedded incompressible
tori such that each component of M obtained by cutting along the tori is either atoroidal
or Seifert-fibered (see Jaco [33] and Jaco and Shalen [34]) and the pieces are isotopically
maximal with this property. If M is not orientable, a similar conclusion holds; the
decomposition has to be performed along tori, but also along some incompressible
embedded Klein bottles.

Hence the notion of maximal Seifert pieces in M is well-defined up to isotopy. If M

admits a pseudo-Anosov flow, we say that a Seifert piece P is periodic if there is a
Seifert fibration on P for which a regular fiber is freely homotopic to a periodic orbit
of ˆ. If not, the piece is called free.

Remark In a few circumstances, the Seifert fibration is not unique: it happens for
example when P is homeomorphic to a twisted line bundle over the Klein bottle or P

is T 2 � I . We stress that our convention is to say that the Seifert piece is free if no
Seifert fibration in P has fibers homotopic to a periodic orbit.

Orbit space and leaf spaces of a pseudo-Anosov flow

Notation/definition We denote by � W �M !M the universal covering of M , and by
�1.M / the fundamental group of M , considered as the group of deck transformations
on �M . The singular foliations lifted to �M are denoted by zƒs; zƒu . If x 2 M let
W s.x/ denote the leaf of ƒs containing x . Similarly one defines W u.x/ and in the
universal cover �W s.x/; �W u.x/. Similarly if ˛ is an orbit of ˆ define W s.˛/, etc.
Let also ẑ be the lifted flow to �M .

We review the results about the topology of zƒs; zƒu that we will need. We refer to [15;
16] for detailed definitions, explanations and proofs. The orbit space of ẑ in �M is the
quotient space �M = ẑ and is denoted by O . It is always homeomorphic to the plane
R2 [22]. There is an induced action of �1.M / on O . This action is not free, a fixed
point in O corresponds to a closed orbit of ˆ. Let

‚W �M !OŠR2

be the projection map: it is naturally �1.M /–equivariant. If L is a leaf of zƒs or zƒu ,
then ‚.L/�O is a tree which is either homeomorphic to R if L is regular, or is a
union of p–rays all with the same starting point if L has a singular p–prong orbit. In
addition L is a closed subset of �M or equivalently L is properly embedded in �M .
The foliations zƒs; zƒu induce �1.M /–invariant singular 1–dimensional foliations
Os;Ou in O . Its leaves are the ‚.L/ where L is a leaf of zƒs or zƒu . If L is a leaf
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of zƒs or zƒu , then a sector (of L) is a component of �M �L. Similarly for Os;Ou .
If B is any subset of O , we denote by B �R the set ‚�1.B/. We stress that for
pseudo-Anosov flows there are at least 3–prongs in any singular orbit (p � 3). For
example, the fact that the orbit space in �M is a 2–manifold is not true in general if
one allows one-prongs.

Definition 2.3 Let L be a leaf of zƒs or zƒu . A slice of L is l �R, where l is a
properly embedded copy of the reals in ‚.L/. For instance if L is regular then L is
its only slice. If a slice is the boundary of a sector of L then it is called a line leaf
of L. If a is a ray in ‚.L/ then AD a�R is called a half leaf of L. If � is an open
segment in ‚.L/ it defines a flow band L1 of L by L1 D � �R. We use the same
terminology of slices and line leaves for the foliations Os;Ou of O .

If F 2 zƒs and G 2 zƒu then F and G intersect in at most one orbit.

We abuse convention and call a leaf L of zƒs or zƒu periodic if there is a nontrivial
covering translation g of �M with g.L/DL. This is equivalent to �.L/ containing a
periodic orbit of ˆ. In the same way an orbit 
 of ẑ is periodic if �.
 / is a periodic
orbit of ˆ. Observe that in general, the stabilizer of an element ˛ of O is either trivial,
or a cyclic subgroup of �1.M /.

Product regions Suppose that a leaf F 2 zƒs intersects two leaves G;H 2 zƒu and so
does L2 zƒs . Then F;L;G;H form a rectangle in �M , ie every stable leaf between F

and L intersects every unstable leaf between G and H . In particular, there is no
singularity in the interior of the rectangle [16].

There will be two generalizations of rectangles: perfect fit, which is a rectangle with
one corner orbit removed (Definition 2.8) and lozenge, which is a rectangle with two
opposite corners removed (Definition 2.9). We will also call rectangles, perfect fits,
lozenges and product regions the projection of these regions to OŠR2 .

Definition 2.4 Suppose A is a flow band in a leaf of zƒs . Suppose that for each orbit ˛
of ẑ in A there is a half leaf B˛ of �W u.˛/ defined by ˛ so that for any two orbits

; ˇ in A then a stable leaf intersects Bˇ if and only if it intersects B
 . This defines a
stable product region which is the union of the B
 . Similarly define unstable product
regions.

The main property of product regions is the following: for any product region P , and
for any F 2 zƒs , G 2 zƒu so that F \P 6D∅, G \P 6D∅, then F \G 6D∅. There
are no singular orbits of ẑ in P .
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Theorem 2.5 [16] Let ˆ be a pseudo-Anosov flow. Suppose that there is a stable or
unstable product region. Then ˆ is topologically equivalent to a suspension Anosov
flow. In particular ˆ is nonsingular.

In particular, we have the following.

Definition 2.6 [14] A pseudo-Anosov flow is product (or splitting in the terminology
of Franks [23]) if the entire �M is a product region, ie if every leaf of its stable
foliation zƒs intersects every leaf of its unstable foliation zƒu .

Proposition 2.7 A (topological) Anosov flow is product if and only if it is topologically
equivalent to a suspension Anosov flow. In particular M fibers over the circle with
fiber a torus and Anosov monodromy.

Hence, in the sequel, we will use product pseudo-Anosov flow as an abbreviation for
pseudo-Anosov flow topologically equivalent to a suspension.

Perfect fits, lozenges and scalloped chains Recall that a foliation F in M is R–
covered if the leaf space of zF in �M is homeomorphic to the real line R [14].

Definition 2.8 (Perfect fits [15; 16]) Two leaves F 2 zƒs and G 2 zƒu , form a perfect
fit if F \G D∅ and there are half leaves F1 of F and G1 of G and also flow bands
L1 �L 2 zƒs and H1 �H 2 zƒu , so that the set

xF1[
xH1[

xL1[
xG1

separates �M and forms a rectangle R with a corner removed: The joint structure of
zƒs; zƒu in R is that of a rectangle with a corner orbit removed. The removed corner
corresponds to the perfect of F and G which do not intersect.

We refer to Figure 1, a for perfect fits. There is a product structure in the interior of R:
there are two stable boundary sides and two unstable boundary sides in R. An unstable
leaf intersects one stable boundary side (not in the corner) if and only if it intersects
the other stable boundary side (not in the corner). We also say that the leaves F;G are
asymptotic.

Definition 2.9 (Lozenges [15; 16]) A lozenge R is an open region of �M containing
no singularity, whose closure is a rectangle in �M with two corners removed. More
specifically two orbits p; q define the corners of a lozenge if there are half leaves A;B

of �W s.p/; �W u.p/ defined by p and C;D half leaves of �W s.q/; �W u.q/ defined by q ,
so that A and D form a perfect fit and so do B and C . The sides of R are A;B;C;D .
The sides are not contained in the lozenge, but are in the boundary of the lozenge.
There may be singularities in the boundary of the lozenge; see Figure 1(b).
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F1

H1

G1

S
L1

(a)

�W s.p/

p

�W u.p/�W s.q/

q

�W u.q/

(b) (c)

Figure 1: (a) perfect fits in �M , (b) a lozenge, (c) a chain of lozenges

Two lozenges are adjacent if they share a corner and there is a stable or unstable leaf
intersecting both of them; see Figure 1(c). Therefore they share a side. A chain of
lozenges is a collection fCig; i 2 I , where I is an interval (finite or not) in Z; so that
if i; iC1 2 I , then Ci and CiC1 share a corner; see Figure 1(c). Consecutive lozenges
may be adjacent or not. The chain is finite if I is finite.

Definition 2.10 (Scalloped chain) Let C be a chain of lozenges. If any two successive
lozenges in the chain are adjacent along one of their unstable sides (respectively stable
sides), then the chain is called s–scalloped (respectively u–scalloped) (see Figure 2
for an example of a s–scalloped region). Observe that a chain is s–scalloped if and
only if there is a stable leaf intersecting all the lozenges in the chain. Similarly, a
chain is u–scalloped if and only if there is an unstable leaf intersecting all the lozenges
in the chain. The chains may be infinite. A scalloped chain is a chain that is either
s–scalloped or u–scalloped.

For simplicity when considering scalloped chains we also include any half leaf which
is a boundary side of two of the lozenges in the chain. The union of these is called a
scalloped region which is then a connected set.

We say that two orbits 
; ˛ of ẑ (or the leaves �W s.
 /; �W s.˛/) are connected by a
chain of lozenges fCig; 1� i � n, if 
 is a corner of C1 and ˛ is a corner of Cn .

Fat tree of lozenges

Definition 2.11 (Fat tree of lozenges G.˛/) Let ˛ be an orbit of ẑ . We define G.˛/
as the graph such that:

� The vertices G.˛/ are orbits of ẑ connected to ˛ by a chain of lozenges.

� There is an edge in G.˛/ between ˇ and 
 if and only if there is a lozenge with
corners 
 , ˇ .
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One easily proves (see for example [15] for Anosov flows) the following.

Proposition 2.12 For every ˛ in O , G.˛/ is a tree.

In particular for any two orbits ı; 
 connected by a chain of lozenges, then there is a
unique indivisible or minimal chain of lozenges, where no backtracking on lozenges is
allowed.

The proposition implies that G.˛/ is naturally embedded in the 2–plane O . Hence,
once an orientation is fixed on O , there is, for every vertex ˛ , a cyclic order on the
set of edges of G.˛/ adjacent to ˛ . Moreover, G.˛/ is naturally equipped with a
structure of a fat graph: it is a retract of an orientable surface with boundary (the
tubular neighborhood of its embedding in O ). This object will be extremely useful in
this article.

If C is a lozenge with corner orbits ˇ; 
 and g is a nontrivial covering translation
leaving ˇ; 
 invariant (and so also the lozenge), then �.ˇ/; �.
 / are closed orbits
of ˆ which are freely homotopic to the inverse of each other [15]. Here we consider
the closed orbits �.ˇ/; �.
 / traversed in the positive flow direction and we allow
�.ˇ/; �.
 / to be nonindivisible closed orbits. In other words it is the closed orbit
associated to the deck transformation g , which may not be indivisible.

Theorem 2.13 [15; 16] Let ˆ be a pseudo-Anosov flow in M 3 closed and let
F0 6D F1 2

zƒs . Suppose there is a nontrivial covering translation g with g.Fi/D Fi ,
i D 0; 1. Let ˛i ; i D 0; 1 be the periodic orbits of ẑ in Fi so that g.˛i/D ˛i . Then ˛0

and ˛1 are connected by a finite chain of lozenges fCig; 1 � i � n, and g leaves
invariant each lozenge Ci as well as their corners.

In particular, we have the following.

Proposition 2.14 Let g be a nontrivial element of �1.M / fixing two orbits ˛ and 
 .
Then G.˛/D G.
 /.

We think of a fat tree as a simplicial tree. Observe that g as above naturally acts
simplicially on G.˛/. It does not necessarily preserve the cyclic order on links of
vertices in G.˛/, since it does not necessarily preserve the orientation of O .

Definition 2.15 (The tree G.g/) Let g in �1.M / fixing an orbit ˛ of ẑ . The
g–fixed points in G.˛/ form a connected subtree because of simplicial action. This
subtree is denoted by G.g/.
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From this observation we infer several interesting facts.

Proposition 2.16 Let g be a nontrivial element of �1.M /. All of the following
statements are true:

(1) For any n¤ 0, g admits a fixed point in O if and only if gn admits a fixed point
in O .

(2) Assuming that g fixes an orbit ˛2O , then, some positive power gp acts trivially
on G.˛/.

(3) Let p be an integer as in (2), let Z.gp/ be the pseudocentralizer of gp in
�1.M /, ie the subgroup comprised of elements f such that fgpf �1 D g˙p ;
then Z.gp/ acts on the tree G.˛/D G.gp/.

(4) Assuming that g preserves a lozenge L, then, g preserves individually each
corner of L; moreover, g preserves the orientation of O , and acts trivially on
G.˛/D G.ˇ/, where ˛ and ˇ are the corners of L.

Proof (1) Suppose gn.˛/ D ˛ with ˛ orbit of ẑ . Then gn.g.˛// D g.˛/, so
by Theorem 2.13, ˛ and g.˛/ are connected by a chain of lozenges and therefore
G.˛/ D G.g.˛// D g.G.˛//. Hence g acts on G.˛/. The result now follows easily
from the fact that if g acts freely on a tree, then gn acts freely on the tree.

(2) Let k be the number of prongs at ˛ . Then g2 preserves the orientation of O ,
hence the cyclic ordering of the link of ˛ . Hence g2k fixes every vertex of G.˛/
adjacent to ˛ . But if g2k fixes a point 
 in G.˛/ and an edge in G.˛/ adjacent to 
 ,
it fixes every vertex adjacent to 
 (once more, due to the preservation of orientation
of O by g2k ). Our claim follows by induction.

(3) Let f in Z.gp/ and ˇ a vertex in G.˛/. Then gpf .ˇ/ D ff �1gpf .ˇ/ D

f .g˙p.ˇ//D f .ˇ/ by (2). By Theorem 2.13 f .ˇ/ is in G.˛/ and so f acts on G.˛/.
(4) Let ˛ , ˇ be the corners of L. Assume by way of contradiction that g.˛/ D ˇ

and g.ˇ/ D ˛ . Let A, C be the stable half leaves of �W s.˛/, �W s.ˇ/ contained in
the closure of L. Let a D ‚.A/ and c D ‚.C /. Considering g acting on O , then
g.a/D c , and composing g with the holonomy map from c to a along leaves of Ou

defines an orientation reversing map from a onto itself. This map must admit a fixed
point, hence there is a leaf U of zƒu invariant under g and intersecting L. Now g2

fixes U and A and hence leaves invariant the orbit U \A. This produces two distinct
periodic orbits in �.A/, contradiction.

Hence, g fixes ˛ and ˇ . Keeping the notation above, we have g.A/DA and g.B/DB

(where B is the g invariant unstable half-leaf of �W u.˛/ in the boundary of L). It
follows that g preserves the orientation of O . It therefore preserves the cyclic ordering
along vertices of G.˛/. It follows as in item (2) that g acts trivially on G.˛/.
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The main result concerning non-Hausdorff behavior in the leaf spaces of zƒs; zƒu is the
following.

Theorem 2.17 [15; 16] Let ˆ be a pseudo-Anosov flow in M 3 . Suppose that
F 6DL are not separated in the leaf space of zƒs . Then F is periodic and so is L. More
precisely, there is a nontrivial element g of �1.M / such that g.F /DF and g.L/DL.
Moreover, let ˛ , ˇ be the unique g–invariant orbits of ẑ in F , L, respectively. Then,
the chain of lozenges connecting ˛ to ˇ is s–scalloped (see Figure 2).

F0

˛

C

H0

A1 A2 A3 A4 A5 A6

L0

ˇ

Figure 2: The correct picture between nonseparated leaves of zƒs

Non-Hausdorff trees A segment is a set with a linear order which is isomorphic
to an interval in R: Œ0; 1�; Œ0; 1/; .0; 1�; .0; 1/ or Œ0; 0�. Type .0; 1/ is called an open
segment and type Œ0; 0� is a degenerate segment. A closed segment is one of type
either Œ0; 0� or Œ0; 1�, ie admitting a minimal and a maximal element. A half open
segment is one of type Œ0; 1/ or .0; 1�. If I is a segment then I with the reverse linear
order is also considered a segment. A subsegment C is a subset of a segment I so
that if x;y are in C and z in C satisfies x < z < y , then z is also in C . With the
induced linear order, C is also a segment. If a set Z is a union of segments, then
given x in Z , a prong at x is a segment I in Z of type Œ0; 1/ or Œ0; 1� with x 2 I

corresponding to 0. A subprong of a prong I at x is a subsegment of I of type Œ0; 1/
with x corresponding to 0. We will say that two prongs I1; I2 at x are distinct if
I1\ I2 D fxg, or equivalently they do not share a subprong at x .

Definition 2.18 (Non-Hausdorff tree [18]) A non-Hausdorff tree is a space H satis-
fying

(1) H is a union of open segments.

(2) H is arcwise connected: for each x;y 2H , there is a finite chain of segments
I1; : : : ; In with x 2 I1;y 2 In and Ii \ IiC1 6D∅ for any 1� i < n.
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(3) Points separate H in the following way: for any x 2 H and I1; I2 distinct
prongs at x the following happens: given y1 2 I1 � fxg; y2 2 I2 � fxg, then
any finite chain of segments from y1 to y2 (as in (2) above) must contain x in
at least one of the segments.

If I1; I2 are two segments with I1\ I2 a single point which is an endpoint of both I1

and I2 , then given compatible orders in I1; I2 we extend them to an order in I1[ I2 ,
which is then a segment of H .

A priori there may be infinitely or even uncountably many distinct prongs at x .

Definition 2.19 (Topology of H [18]) We say that a subset A of H is open in H if
for any x 2 A the following happens: for any prong I at x , there is a subprong I 0

at x (I 0 � I ) so that I 0 �A.

Equivalently A is open if for any open segment S and x in A\S , there is an open
subsegment S 0 containing x and contained in A.

It follows from condition 3) of non-Hausdorff trees that if I1 and I2 are two segments,
then I1\ I2 is either empty or is a subsegment of both I1; I2 , which may be a point.
A point x 2H is regular if given any two open segments I1; I2 with x 2 I1\I2 , then
I1\ I2 is an open segment in H . Otherwise x is singular and H is “treelike” at x .
Equivalently a point is regular if there are only two distinct prongs at x .

It is easy to check that if V is an interval in R with the standard topology and f W V !H
is an order preserving bijection to a segment in H , then f is a continuous map.

Given x 6D y then for any prong at y there is a subprong disjoint from x , hence
contained in H � fxg. It follows that H � fxg is an open set in H and therefore
points are closed in H , that is, H satisfies the T1 property of topological spaces; see
Kelley [36]. In general H does not satisfy the Hausdorff property T2 [36]. Given
x 2H and I a prong at x let

AI Dfy 2H�fxg j there is a segment path 
 �H�fxg from y to some point in Ig:

By the above remark, AI is arcwise connected. If I;J are prongs at x which share
a subprong then it is easy to see that AI DAJ . If I;J are distinct prongs at x then
I [J is a segment of H with x in the interior of the segment. If there is a segment
path 
 �H�fxg from some y 2AI to some z 2AJ then one constructs a segment
path 
 contained in H � fxg from some y0 2 I to some z0 2 J . This contradicts
condition (3) of the definition of non-Hausdorff tree. Hence AI \AJ D∅.
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In addition given y 2 AI and J a prong at y , there is a subprong J 0 � H � fxg.
Clearly J 0 �AI . This implies that any AI is open in H and hence AI is also closed
in H�fxg. Each AI is path connected hence connected, so the collection

(1) fAI g; I distinct prongs at x;

is the collection of connected components of H�fxg.

In addition suppose that AI ;AJ are distinct, but there is a path ˛ in H� fxg from
a point in AI to a point in AJ (notice here we consider a general path). Then
since AI ;AJ are path connected, it follows that AI [AJ [˛ is path connected and
hence connected in H�fxg contradicting the fact that (1) is the family of connected
components of H�fxg. It follows that the collection (1) is also the collection of path
components of H�fxg.

Conclusion distinct prongs at x are in one to one correspondence with components
(or path components) of H�fxg. For instance, x has exactly p distinct prongs if and
only if H�fxg has p components.

Given x;y 2H which are not separated from each other in H we write x � y . One
says that z separates x from y if x;y are in distinct components of H�fzg. Given
any two x;y 2H there is a continuous path ˛.t/; 0� t � 1, from x to y . Define

.x;y/D fz 2H j z separates x from yg; Œx;y�D .x;y/[fxg[ fyg;

The first is the open block of H with endpoints x;y and the second is the closed block
of H with endpoints x;y . In [18] it is proved that Œx;y� is the intersection of all
continuous paths in H from x to y .

We remark that when x;y are the endpoints of a segment I of H , the notation Œx;y�
also suggests the segment I from x to y (there is a unique such segment). In fact I and
Œx;y� are the same [18]. We will also use the notation .x;y� for half open segments.

As H may not be Hausdorff it may be that Œx;y� is not connected. It turns out that
Œx;y� is a union of finitely many closed segments of H homeomorphic to either Œ0; 0�
or Œ0; 1�.

Lemma 2.20 [18] For any x;y 2H then there are xi ;yi 2H with

Œx;y�D

n[
iD1

Œxi ;yi �; x1 D x; yn D y;

a disjoint union, where Œxi ;yi � are closed segments in H . In addition yi � xiC1 for
any 1� i � n� 1 and some or all segments Œxi ;yi � may be degenerate, that is, points.
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There is a natural pseudodistance in H: d.x;y/D #.components Œx;y�/� 1 [5; 43].
So d.x;y/D 0 means there is a segment from x to y . Also d.x;y/ is the minimum
number of nonimmersed points of any path from x to y .

We now consider group actions on non-Hausdorff trees. Let 
 be a homeomorphism
of H . We say that 
 separates points if 
 .x/ is separated from x for any x 2H , that
is, they have disjoint neighborhoods in H . In particular 
 acts freely on H . In [5], the
first author constructed a fundamental axis A.
 / if 
 separates points in H and H
has no singularities. In that case H is a simply connected 1–dimensional manifold and
hence is orientable.

Definition 2.21 (Fundamental axis [18]) Let 
 be a homeomorphism of a non-
Hausdorff tree H so that 
 has no fixed points. The fundamental axis of 
 , denoted
by A.
 / is

A.
 /D fx 2H j 
 .x/ 2 Œx; 
 2.x/�g:

If 
 .x/ is not separated from x in H , we say that x is an almost invariant point
under 
 . In [18] the following easy fact is proved: Let 
 be a homeomorphism of a
non-Hausdorff tree H without fixed points. Then x 2A.
 / if and only if there is a
component U to H�fxg so that 
 .U /� U . The main result is the following.

Theorem 2.22 [18] Let 
 be a homeomorphism of a non-Hausdorff tree H without
fixed points. Then A.
 / is nonempty.

Clearly A.
 / is invariant under 
 . Also applying 
�2 then 
�1.x/ separates x from

�2.x/ and so A.
 /DA.
�1/.

Proposition 2.23 For any x 2A.
 /, then A.
 /D
S

i2ZŒ

i.x/; 
 iC1.x/�.

Remark In general it is not true that if 
 acts freely on H , then powers of 
 also do.
For example let 
 have an almost invariant point v with 
 .v/ 6D v , but 
 2.v/D v . In
this case A.
 / is an open segment which is not properly embedded in H .

Let x 2 A.
 /. If d.x; 
 .x// D 0, then x; 
 .x/ are connected by a segment in H .
Since 
 .x/ separates x from 
 2.x/, then Œx; 
 .x/�[ Œ
 .x/; 
 2.x/�D Œx; 
 2.x/� is a
segment of H . It follows that A.
 / is an open segment of H , hence homeomorphic
to R. If d.x; 
 .x// > 0, then x and 
 .x/ are connected by a chain of closed segments.
It is easy to see that

A.
 /D
[
n2Z

Œzi ; wi �;
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where wi is not separated from ziC1 . Then 
 acts as a translation on the set of
segments, that is, there is k 2Z, so that 
 .Œzi ; wi �/D ŒziCk ; wiCk � for any i 2Z. We
abuse notation and say that 
 acts on Z.

Notice that if 
 acts freely and 
 leaves invariant an open segment I of H , then
A.
 /D I . This is because for any z 2 I , 
 .x/ separates x from 
 2.x/ (free action
on I ), so I �A.
 /. But A.
 /D[n2ZŒ


n.x/; 
 nC1.x/� so I DA.
 /. Finally it is
also not hard to prove the following: Let 
; ˛ be two commuting homeomorphisms
of H which act freely. Then A.
 /DA.˛/; see [18].

3 Actions and pseudo-Anosov flows

Let ˆ be a pseudo-Anosov flow in M 3 . The foliations ƒs; ƒu have the following
local models: at a nonsingular point y there is a ball neighborhood U of y in M

homeomorphic to D2 � Œ0; 1� where the leaves of (say) ƒs are of the form D2 � ftg.
Near a singular p prong orbit the picture is the same as a p–prong singularity of a
pseudo-Anosov homeomorphism of a surface times an interval. For example consider
the germ near zero of the foliation of the plane whose leaves are the fibers of the
complex map z! Re.zp�2/. This foliation has a p–prong singularity at the origin.
The 3–dimensional picture is obtained by multiplying this by an interval. Similarly
for ƒu . Let C be an interval in R.

Definition 3.1 (Transverse curves) Let � W C !M be a continuous curve. Then � is
transverse to ƒs if the following happens: given t in C there is a small neighborhood Z

of �.t/ where � is an injective map to the set of local sheets of ƒs . The same definition
works for ƒu; zƒs; zƒu .

Equivalently the curve is always crossing local leaves. The foliations ƒs; ƒu blow
up to essential laminations. Hence in �M being transverse to zƒs is equivalent to �
inducing an injective map in the leaf space of zƒs . For nonsingular points this is the
usual notion of transversality.

We establish some notation. Let

Hs
D the leaf space of zƒs and �sW

�M !Hs the projection map:

Similarly define Hu and �u . The results below which will be proved for Hs , obviously
work also for Hu . Notice the leaf space of Os is canonically and naturally identified
with Hs . We will abuse notation and also denote the leaf space of Os by Hs ; the
context makes it clear which foliation is being considered. Similarly for zƒu;Ou

and Hu .
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Lemma 3.2 Hs has a natural structure as a non-Hausdorff tree, where the segments
in Hs are projections of transversals to zƒs . Similarly for Hu .

Proof We prove properties (1)–(3) of the definition of non-Hausdorff tree. Given x

in Hs let p in ��1
s .x/ and � an open transversal to zƒs containing p . Then �s.�/

is an open segment containing x . This proves (1). Let x;y in Hs and choose p in
��1

s .x/, q in ��1
s .y/. Connect p; q by a path in �M and perturb it slightly to be a

concatenation of transversals. This can be done because it can be done locally. Hence
x;y are connected by a finite collection of segments in Hs and this proves (2).

Finally let I1; I2 be segments in Hs intersecting only in x . Let l1; l2 be transversals
to zƒs with Ii D �s.li/, i D 1; 2. We can assume they share a point p in ��1

s .x/.
Any two transversals to zƒs entering the same component of �M � �W s.p/ will have
subtransversals intersecting the same leaves of zƒs because of the local picture. There-
fore l1 � fpg, l2 � fpg are contained in different components of �M � �W s.p/. Let
now yk 2 Ik � fxg, k D 1; 2. Let Ji ; 1 � i � n be a concatenation of segments
from y1 to y2 in Hs . There are transversals �i to zƒs with �s.�i/ D Ji . Let q1 in
�1 \ �

�1
s .y1/ and q2 in �n \ �

�1
s .y2/. Since Ji and JiC1 intersect we can connect

a point in �i to a point in �iC1 by a path in a leaf of zƒs . The concatenation of parts
of �i and paths in leaves of zƒs produces a path from q1 to q2 in �M . Since �W s.p/

separates �M and q1; q2 are in different components of the complement, then this
path has to intersect �W s.p/. If it intersects �W s.p/ in a path in �W s.p/ then the
endpoints of this path are in some �i and hence its projection, which is x is in Ji . This
proves (3).

We have two topologies in Hs : the quotient topology from �s and the non-Hausdorff
tree topology. These are the same as proved in the next lemma.

Lemma 3.3 The quotient topology in Hs (from �sW
�M ! Hs ) is the same as the

non-Hausdorff tree topology in Hs .

Proof Let A � Hs be an open set in the quotient topology and x in A. Let I

be a prong at x . Then I D �s.�/ for some transversal � to zƒs starting in some
p 2 ��1

s .x/. Since ��1
s .A/ is open in �M and p is in ��1

s .A/ there is a nondegenerate
subtransversal � 0 of � starting at p and contained in ��1

s .A/. Let I 0D �s.�
0/. Then I 0

is a prong at x which is a subprong of I . In addition I 0 is contained in A. Therefore A

is open in the non-Hausdorff tree topology.

Conversely suppose that A is open in the non-Hausdorff tree topology. By way of
contradiction suppose that there is p in ��1

s .A/ which is not in the interior of ��1
s .A/.
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Then we can find a sequence .pn/n2N in �M converging to p and with pn not
in ��1

s .A/ for any n. It follows that pn 62
�W s.p/ for any n as ��1

s .A/ is zƒs saturated.
Up to a subsequence assume there is a component Z of �M � �W s.p/ containing pn

for every n. Here the condition of finitely many prongs at singular points is used. Let �
be a transversal to zƒs starting at p and entering the component Z . Let x D �s.p/

and I D �s.�/. Then I is a prong at p and since A is open in the non-Hausdorff
tree topology, there is a subprong I 0 at x with I 0 contained in A. Let � 0 be the
subtransversal of � corresponding to I 0 . For n sufficiently large �W s.pn/ intersects
� 0 � ��1

s .A/. Hence pn is in ��1
s .A/. This contradiction shows that ��1

s .A/ is open
in �M . Therefore A is open in the quotient topology.

Remarks (1) A variation of the proof works for non-Hausdorff trees H which are
“leaf spaces” of lifts of essential laminations. The difference is that it is very
possible that there are singularities H which have infinitely many prongs.

(2) The study of group actions on non-Hausdorff trees has important precursors: first
the fundamental work of Gabai and Oertel [28] who created essential laminations
and introduced order trees. Previous study of group actions on order trees and
related sets was done by Roberts and Stein [44] and Roberts, Shareshian and
Stein [43] with some exceptional consequences for the existence of foliations in
certain 3–manifolds.

We say that two leaves L;F of zƒs are nonseparated from each other if there are p

in L, q in F and a sequence of leaves .Ln/ of zƒs having points pn; qn in Ln

with .pn/ converging to p and .qn/ converging to q . We call this condition (I) for
L;F . Up to subsequence we may assume that .Ln/ is a nested sequence of leaves
of zƒs . By throwing out a few initial terms of the sequences .pn/; .qn/, this is equivalent
to the existence of transversals �L; �F to zƒs with �L starting at p , �F starting at q

with �L containing all pn as above and �L containing all qn . Project to Hs : let

xD �s.p/; yD �s.q/; xnD �s.pn/; ynD �s.qn/; I D �s.�L/; J D �s.�F /:

Here I;J are segments in Hs , I is a prong at x and J is a prong at y . Also xnD yn .
If In is the subsegment of I from x1 to xn and Jn the subsegment of J from y1

to yn then In D Jn and therefore I �fxg D J �fyg. Conversely if x;y have prongs
I;J so that I �fxg D J �fyg it is easy to show that LD ��1.x/ and F D ��1.y/

are leaves of zƒs nonseparated from each other.

We claim that condition (I) is also equivalent to condition (II): L;F do not have disjoint,
open, zƒs saturated neighborhoods in �M . In other words x;y do not have disjoint
open neighborhoods in Hs . Clearly condition (I) implies condition (II). Conversely
suppose that condition (II) holds. If x D y then clearly condition (I) holds. Suppose
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then x;y are distinct. We proved before that for any z in Hs , then two points are in
the same path component of Hs �fzg if and only if they are connected by a segment
path in Hs which does not contain fzg and these path components are open in Hs . By
condition (II) it follows that for any z in Hs �fx;yg, the points x;y are in the same
component of Hs �fzg. Hence .x;y/ is empty. There are prongs I at x and J at y

so that I �fxg D J �fyg, by [18, Lemma 3.5, page 71]. This is condition (I).

If either of these conditions holds for x;y in Hs we write x � y .

For f in �1.M / let Fix.f / be those x in Hs with f .x/D x . Let Fix�.f / be the
set of x in Hs with x � f .x/. Considering the action of f on the orbit space O ,
let B.f / the set of u in O , fixed by f .

Lemma 3.4 Let ˆ be a pseudo-Anosov flow and f in �1.M /. Then Fix�.f / is a
closed subset of Hs .

Proof Let x not in Fix�.f /, so x 6� f .x/. Then x and f .x/ have disjoint open
neighborhoods U;V in Hs . By continuity of f , there is a smaller open neighbor-
hood W of x so that f .W / is contained in V . Hence any y in W satisfies y 6� f .y/

and .Fix�.f //c is open.

Remark In general Fix.f / is not closed: a sequence .xn/ in Fix.f / may converge
to x which is only in Fix�.f /.

The following will be useful later.

Lemma 3.5 If f is in �1.M / and f is not the identity, then Fix�.f / is countable.

Proof First we show that Fix.f / is countable. Let L in zƒs with f .L/DL. Then
there is a periodic orbit in �.L/. If L1;L2 are in Fix.f / then their periodic orbits
are connected by a finite chain of lozenges by Theorem 2.13. In addition the orbit
space OŠR2 is countably compact. If Fix.f / were uncountable, then B.f / would
be uncountable and there would be accumulation points in B.f /. This is disallowed
because any two points in Fix.f / are connected by a unique chain of lozenges.

Now let N D fx 2Hs; so that x is nonseparated from some y 2Hsg. We will prove
that N is countable, hence Fix�.f / is countable. Assume by way of contradiction
that N is uncountable. The space Hs is a union of countably many open segments and
we fix one such countable collection. For each x in Hs , let Ix be one such segment in
the countable family containing x . Notice that Ix D Iy with x;y distinct occurs a lot.
If N is uncountable, then there is an open segment I in Hs containing uncountably
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many elements of N . Choose an order in I . For each z in I \N , there is y distinct
from z with y � z . Suppose without loss of generality that for uncountably many
such z the corresponding y is nonseparated from the z in their positive sides, with
respect to the order in I . For any such z; z0 in I \N , let y;y0 be nonseparated from
them respectively. We claim that Iy ; Iy0 are different. Suppose for simplicity that
z < z0 in I . Here z0 � y0 and nonseparated on their positive sides, so Iy0 does not
contain z0 or any point in I smaller than z0 . But by construction Iy contains y , so
Iy ; Iy0 are different. Hence all such Iy are different, contradicting the fact that there
are only countably many of these. This finishes the proof of the lemma.

4 Pseudo-Anosov flows in Seifert fibered spaces

This section is devoted to proving the following result.

Theorem 4.1 If ˆ is a pseudo-Anosov flow in M 3 which is a Seifert fibered space,
then up to finite covers, ˆ is topologically equivalent to a geodesic flow on a closed
hyperbolic surface.

Proof The new mathematical result is a reduction of the proof to the nonsingular case.
The smooth Anosov case was originally proved in [2]. We also give an improved proof
of the Anosov case, which may be useful in other contexts.

If necessary lift to a double cover so that the Seifert fibration is orientable, hence
the center of �1.M / is nonempty (it contains for example the homotopy class of the
regular fibers). Let h be in the center of �1.M /. The cyclic subgroup hhi is a normal
subgroup of �1.M /. The proof splits in two cases, depending on whether Fix�.h/ is
empty or not.

Case 1: Fix�.h/ is nonempty We show that this cannot happen. Notice that if
x � y in Hs and g is in �1.M / then g.x/ � g.y/. Let g in �1.M / and x in
Fix�.h/. Then g�1hg.x/D h.x/� x , so hg.x/� g.x/ and g.x/ is in Fix�.h/. By
Lemma 3.5, Fix�.h/ is countable. Therefore Fix�.h/ is a countable, closed, �1.M /

invariant subset of Hs . Consider the union Z of the leaves L in zƒs with �s.L/

in Fix�.h/. This set Z is closed, zƒs saturated, �1.M / invariant and transversely
countable. It projects to a sublamination of ƒs which is transversely countable. Let L
be a minimal sublamination of �.Z/. Any sufficiently small transversal to a minimal
lamination intersects it in either a closed interval, a Cantor set or a point. The first two
are disallowed by the transverse countability condition. The last option implies that
there is an isolated leaf in ƒs , which is not possible for pseudo-Anosov flows. This
shows that Case 1 cannot happen.
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Case 2: Fix�.h/ is empty By Theorem 2.22, we have that h has a nonempty axis
A.h/Dfx 2Hs j h.x/ separates x from h2.x/g. This axis has a linear order where h

acts as a translation. Clearly, for every g in �1.M /,

gA.h/DA.ghg�1/DA.h/;

hence A.h/ is �1.M /–invariant.

Either A.h/ is an infinite segment or a countable union of disjoint closed segments:

(�) A.h/D
[
i2Z

Œxi ;yi �D
[
i2Z

Bi ;

where yi � xiC1 . We show that the second option cannot happen. Suppose by
way of contradiction that A.h/ is of form (�). Every g in �1.M / permutes the
components Bi , preserving or reversing the order on the set Z of labels. Hence there
is a morphism �1.M /! Aut.Z/, whose kernel is the subgroup made of elements g

such that gxi D xi for all i , ie a trivial or cyclic normal subgroup. Since Aut.Z/ is
the dihedral group, containing a cyclic subgroup of index 2, it follows that �1.M /

contains a finite index subgroup isomorphic to Z or Z˚Z, which is not possible for
an irreducible Seifert fibered space without boundary. We conclude that A.h/ cannot
be an infinite collection of disjoint closed segments.

Therefore A.h/ is a real line parametrized as A.h/ D flt ; t 2 Rg. If A.h/ is not
properly embedded in Hs , then .lt / converges to a point x in Hs as t converges to
infinity (and maybe other points as well). But then since A.h/ is invariant under h,
this implies that h.x/� x , which is not allowed in Case 2.

Next we show that A.h/ is all of Hs . Again suppose it is not and let l be a point
of Hs not in A.h/. Since A.h/ is connected (as it is a line), then A.h/ is contained
in a single component of Hs � flg. Let B be another component of Hs � flg. Let
LD ��1

s .l/. It was proved in [20] that any complementary component of L covers M .
This implies that given x in A.h/, there is g in �1.M / with g.x/ in B , which is
disjoint from A.h/. This contradicts the �1.M / invariance of A.h/.

We conclude that Hs is homeomorphic to R and similarly Hu is also homeomorphic
to R. Therefore there are no singularities of ˆ and ƒs; ƒu are R–covered.

Since there is no singularity, the flow is actually (topologically) Anosov. The result
was then proved in [2]. We present a different proof here, which improves arguments
in [2] and which follows arguments in the unpublished reference by the first author [8].

If there is a leaf of zƒs intersecting all leaves of zƒu , then it is easy to see that this
holds for all leaves and hence ˆ is a product pseudo-Anosov flow. Proposition 2.7
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shows that the manifold would have solv geometry and could not be Seifert fibered,
contradiction.

It follows from [14; 2] that ˆ has the skewed type: the orbit space O is homeomorphic
to an infinite strip in R2 bounded by parallel lines, say with slope one. The stable
foliation is the foliation by horizontal segments and the unstable foliation is the foliation
by vertical segments (see Figure 3). Let .x;y/ be the induced cartesian coordinates in
O�R2 . The fact that ˆ has skewed type implies in particular that M is orientable [15].

L
˛

S D �u
s .L/

ˇ

h.˛/

h.L/ �s.L/

Figure 3: Orbit space of skewed type

Put a transverse orientation to zƒs positive with increasing y and to zƒu positive with
increasing x . For each stable leaf L, there is in the positive side of L a unique unstable
leaf S which makes a perfect fit with L: in this model it is equivalent to S sharing an
endpoint with L. This produces a �1.M / equivariant map �u

s from Hs to Hu , which
is a homeomorphism [2; 14]. Similarly for each S in zƒu there is a unique E of zƒs in
the positive side of S and sharing an endpoint with S . The composition L! S !E

is a translation �s in Hs and Hs=�s is a circle S1
s . Similarly one has �u which is

increasing from Hu to Hu and a circle S1
u D Hu=�u . Both �s and �u are �1.M /

equivariant homeomorphisms [2; 14], so �1.M / acts on S1
s and S1

u . We denote the
first action by

�sW �1.M /! Homeo.S1
s /:

In addition the map �u
s W L! S as above is also equivariant by the action of �1.M /

and hence induces a canonical homeomorphism from S1
s to S1

u with inverse denoted
by � . So we can identify S1

s �S1
u with S1

s �S1
s by .z; w/! .z; �.w//. This induces

an action of �1.M / on S1
s �S1

s .
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For every orbit ˇ of ẑ , there are unique leaves L of zƒs and G of zƒu so that
ˇ D L\G . Using L and G , the orbit ˇ generates a point in S1

s �S1
u and hence a

point .p; q/ in S1
s �S1

s . We say that ˇ projects to .p; q/. This defines a map

�W O! S1
s �S1

s :

The projection .p; q/ is not in the diagonal �: points in the diagonal correspond to L

in zƒs and S in zƒu so that S D �u
s .�s/

n.L/ for some integer n. In particular L and S

do not intersect and neither does S intersect .�s/
m.L/ for any integer m. Conversely

if .p; q/ is in S1
s � S1

s ��, then one can lift p to a leaf L of zƒs and q lifts to a
stable leaf, which after the identification S1

s with S1
u produces S in zƒu with S \L

not empty.

Note that if g acts trivially on Hs then g is the identity in �1.M /. This follows for
instance because the set of fixed points of nontrivial elements of �1.M / is discrete
in Hs .

Claim 1 h acts trivially on S1
s .

Let z̨ be a lift of a periodic orbit ˛ associated to a covering translation g . Then
g2h.z̨/ D hg2.z̨/ D h.z̨/, so z̨ and h.z̨/ are connected by a chain of n lozenges
by Theorem 2.13. Replacing g2 by g�2 if necessary, we can assume that z̨ is an
attracting fixed point of the restriction of g2 to the set of orbits in the stable leaf L

through z̨ . Then h.z̨/ is also an attracting fixed point of the restriction of g2 to h.L/.
It follows (see Figure 3) that n is even. In the figure ˇ is connected to ˛ by one lozenge
and h.˛/ is connected to ˛ by a chain of two lozenges. Therefore h.L/D .�s/

i.L/

for i D n=2.

This implies that the projections to S1
s of periodic leaves are fixed points of �s.h/.

Since periodic leaves are dense, we conclude that �s.h/ is the identity map on S1
s . The

claim is proved.

Recall that h was any element of the center of �1.M /. First notice that �1.M / cannot
be Z3 because M has a pseudo-Anosov flow: if Z2 � f0g subgroup of �1.M / acts
freely on O , then ˆ is product and �1.M / is solvable and not Z3 . Then Z2 � f0g

leaves invariant a bi-infinite chain of lozenges C by Lemma 5.3. As �1.M // is abelian
it follows that it preserves C . But Lemma 5.2 states that the stabilizer has a finite index
subgroup which is a subgroup of Z2 . This is a contradiction.

Since M is Seifert fibered, orientable and �1.M / not Z3 it follows that the center of
�1.M / is a cyclic subgroup; see Hempel [32] and [34]. The center is generated by an
element associated with a regular fiber of the Seifert fibration, which is unique up to
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isotopy [32; 34]. From now on, we assume that h generates the center; and we denote
by l the integer such that when acting on Hs , then � l

s D h. In order to simplify the
presentation, we identify in the sequel Hs with R in a way that �s is the translation
x 7! xC 1.

Now let f be in the kernel of �s . When acting on Hs , f .x/ D xC j for some j

in Z. In addition given any g in �1.M / and considering the action on Hs , it follows
that for any x in Hs , for any i in Z, then g.xC i/D g.x/C i . Now, for any g in
�1.M /, again when considering the action on Hs we have

g�1f �1gf .x/D g�1f �1g.xC j /D g�1f �1.g.x/C j /D g�1g.x/D x:

Therefore g�1f �1gf acts trivially on Hs and is the identity in �1.M /. Hence f is
in the center of �1.M / which is hhi.

Conclusion ker �s D hhi D center of �1.M /.

Let H D hhi and QD �1.M /=H . Since H is the kernel of �s , there is an induced
action x�s of Q on S1

s . Given g in �1.M / let xg be its image in Q. By the conclusion
above the action x�s is faithful.

Lemma 4.2 The action x�s of Q on S1
s is a convergence group action.

Proof First we prove the following fact.

Claim 2 Two arbitrary orbits ˇ1; ˇ2 of ẑ are connected by a chain of lozenges if
and only if ˇ1; ˇ2 project to either the same point of S1

s �S1
s �� or one projects to

some point .p; q/ and the other projects to .q;p/. In the first case they are connected
by an even number of lozenges and in the second case they are connected by an odd
number of lozenges.

Suppose first that ˇ1; ˇ2 are connected by a chain of lozenges. The first lozenge in the
chain has a stable side L containing ˇ1 . There is an unstable side S of the lozenge
making a perfect fit with L. The other corner ˇ of the lozenge is contained in S .
Suppose without loss of generality that S is in the positive side of L. Then S D �u

s .L/.
In addition �W u.ˇ1/; �W s.ˇ/ also make a perfect fit and�W u.ˇ1/D �

u
s .�
�1
s . �W s.ˇ//:

So if ˇ1 projects to .p; q/ then ˇ projects to .q;p/. Following the lozenges in the
chain proves that ˇ2 projects to either .p; q/ or .q;p/. Using these arguments one
sees that ˇ1 and ˛ D �s.L/\ �u. �W u.ˇ1// are connected by a chain of two lozenges.
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Conversely suppose ˇ1 and ˇ2 both project to .p; q/. Let F D �W s.ˇ1/; GD �W u.ˇ1/

and let also E D �W s.ˇ2/; S D �W u.ˇ2/. Since the projections of both ˇ1 and ˇ2

have the same point p as first coordinate, there is n in Z so that ED �n
s .F /. Similarly

there is m in Z with S D �m
u .G/. In the collection f� i

u.G/; i 2 Zg, there is only one
element intersecting �n

s .F / and that is �n
u .G/. It follows that nDm. In addition,

ˇ2 D �
n
s .F /\ �

n
u .G/:

As explained above ˇ1 and �s.F /\ �u.G/ are connected by a chain of two lozenges
and by induction ˇ1 and ˇ2 are connected by a chain with an even number of lozenges.
The case that ˇ1 projects to .p; q/ and ˇ2 projects to .q;p/ is very similar and is left
to the reader. This proves Claim 2.

Let ˛ be an arbitrary closed orbit of ˆ traversed once, let z̨ be a lift to �M , which
is invariant under g in �1.M /, with g associated to ˛ in the positive direction. Let
.p; q/ in S1

s �S1
s �� be �.z̨/. We call such a .p; q/ a periodic point. Recall that h

in �1.M / represents the fiber of the Seifert fibration. Since h acts trivially on S1
s ,

then claim 2 implies that z̨ and h.z̨/ are connected by a chain of lozenges with an
even number of lozenges [14]. Therefore the set of orbits in the complete chain of
lozenges from z̨ is finite modulo the action by hhi and this set projects to a finite
set V of orbits of ˆ in M . But ˛ is closed, so V is a finite set of closed orbits and
hence discrete in M . Hence ��1.V / is a discrete, �1.M / invariant set of orbits of ẑ .
We conclude that �.‚.��1.V /// is a discrete set in S1

s �S1
s ��. It is also �1.M /

invariant. This is the “orbit” of .p; q/ under the action of �1.M /.

Now given ˛; z̨;g as above, let LD �W s.z̨/. Then g.L/DL and since g is associated
to the positive direction of ˛ then L is a contracting fixed point of g acting on Hs .
In the same way S D �W u.˛/ is also fixed by g and it is a repelling fixed point of g

acting on Hu and hence p is the attracting fixed point of g acting on S1
s and q is the

repelling fixed point. There are no other fixed points.

In order to prove the convergence group property for the action x�s of Q on S1
s , we

now consider a sequence dn of distinct elements of Q and let gn in �1.M / with
dn D xgn . In the arguments below we abuse notation and also denote by �s the action
of �1.M / on S1

s �S1
s ; the context makes clear which one is being used.

Consider a closed orbit ˛ as above, with a given lift z̨ . Let .p; q/ D �.z̨/ and
LD �W s.z̨/. Suppose first that up to subsequence

�s.gn/..p; q//D .p; q/ or �s.gn/..p; q//D .q;p/ for all n:

Notice that it does not matter if we consider �s.gn/ or x�s.xgn/. First a reduction: if
�s.gn/..p; q// D .q;p/ for all n, then replace z̨ by g1.z̨/ and gn by gng�1

1
. The

Geometry & Topology, Volume 17 (2013)



Pseudo-Anosov flows in toroidal manifolds 1907

new collection satisfies �s.gn/..p; q// D .p; q/ for all n. Claim 2 implies that for
every n, gn.z̨/ is connected to z̨ by a chain of lozenges, with an even number of
lozenges. For each n there is an so that gn.L/D �

an
s .L/. Recall the integer l above

so that hD � l
s when acting on Hs . There are unique bn and cn in Z with 0� cn < l

and an D bnl C cn . Up to another subsequence we assume that cn is constant. Again
up to taking g1.z̨/ instead of z̨ and gng�1

1
instead of gn we may assume that cn D 0

for all n. The above facts imply that for each n there is in in Z so that hingn.z̨/D z̨

(in fact in D�bn ). Therefore hingn D f
jn , for some jn in Z where f is a generator

of the isotropy group of z̨ in the forward direction. Notice that �s.hin/ acts as the
identity on S1

s (and also on S1
s �S1

s ��). If there is a subsequence .jnk
/ which is

constant, then the formula
gnk
D h�ink f jnk

shows that all �s.gnk
/ act in exactly the same way on S1

s . Then x�s.xgnk
/ is constant

and since x�s is faithful, then the sequence .xgnk
/ is also constant, a contradiction to the

hypothesis. So up to subsequence we may assume (say) that jn converges to infinity
(as opposed to converging to minus infinity) when n!1. Then

�s.gn/D �s.h
�inf jn/D �s.f

jn/

and p is the sink for the sequence �s.gn/ acting on S1
s and q is the source. This

proves the convergence group property in this case.

From now on we assume up to subsequence that �s.gn/..p; q// 6D .p; q/; .q;p/ for all n.
In fact by the same arguments we can assume that all �s.gn/..p; q// are distinct. Since
the orbit of .p; q/ under �1.M / is discrete in S1

s �S1
s ��, then up to subsequence

�s.gn/..p; q// converges to a point .z; z/ in S1
s �S1

s . These arguments work for any
closed orbit ˛ .

We now show that �s.gn/ has a subsequence with the source/sink behavior. Fix
an identification of S1

s with the unit circle S1 . Since ˆ is R–covered, then the
set of closed orbits is dense [2]. Find a pair p1; q1 so that .p1; q1/ is a periodic
point, very close to .�1; 1/ and p1; q1 not disconnecting �1; 1 in S1 . By the above
arguments, up to subsequence �s.gn/..p1; q1// converges to a single point .z; z/ in
S1 �S1 . Therefore one interval I1 of S1 defined by the pair p1; q1 converges to z

under �s.gn/. The interval I1 has length close to half the length of the circle S1 .
We work by induction assuming that an interval Ii has been produced. Let Ji be
the closed complementary interval to Ii . Find a periodic point .pi ; qi/ so that: qi is
in Ji and almost cuts it in half and pi is in the interior of Ii (switch pi and qi if
necessary). We already know that �s.gn/.pi// converges to z . As before up to another
subsequence one of the intervals defined by .pi ; qi/ converges to a point under �s.gn/,
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which then must be z as pi is in Ii . Adjoin this interval to Ii to produce IiC1 which
converges to z under �s.gn/. Let JiC1 be the closed complementary interval. Since
each step roughly reduces the size of the remaining interval by a factor of 1=2, then
the intervals Ji converge to a single point w . Use a diagonal process and obtain a
sequence �s.gnk

/ with source w and sink z . This finishes the proof of the convergence
group property.

Notice that as we mentioned before, we denoted by �s the action on both S1
s and

S1
s �S1

s ��.

Convention We lift to a double cover if necessary so that zƒs is transversely orientable.
Every orientation preserving convergence group acting on the circle is equivalent in
HomeoC.S1/ to a Fuchsian group; see Gabai [26] and Casson and Jungreis [13].
Let � be x�s.Q/. Hence � is equivalent to a Fuchsian group T . Here O DH2=T is
a hyperbolic 2–dimensional orbifold.

We have a conjugation  W S1
s ! S1 between the action of � on S1

s and a Fuchsian
action T on S1 . Lift  to a homeomorphism z W Hs!R. Let g in �1.M / and we
also think of g as acting on Hs . Then

 ı x�s.xg/ ı 
�1
D  ı �s.g/ ı 

�1

is the ideal map of a Möbius transformation and hence z g. z /�1 is a projective
transformation of R. This shows that the foliation ƒs is transversely projective. As
shown by the first author in [2], this implies that the flow ˆ is up to a finite cover,
topologically equivalent to a geodesic flow in the unit tangent bundle of a hyperbolic
surface. This finishes the proof of Theorem 4.1.

Remark One may ask whether Theorem 4.1 can be improved to remove the finite
covers condition, perhaps by considering geodesic flows in unit tangent bundles of
hyperbolic orbifolds. But this is not possible in general, because one can unwrap the
fiber direction. We explain this: suppose ˆ0 is the geodesic flow in T1S , where S

is a closed hyperbolic orbifold. Let ˛ be a closed orbit of ˆ0 , that is, it comes from
a closed geodesic 
 in S , where for simplicity we assume that 
 does not pass
through a singularity of S . Then the vectors in T1S projecting to 
 in S form a
torus T 0 in T1S and there are exactly two closed orbits in T 0 corresponding to the
two directions along 
 . To get a counterexample start with M D T1R where again
for simplicity R is a nonsingular hyperbolic surface. Let M1 be a finite cover of M

obtained by unwrapping the fiber direction some number n of times. Then M1 is
Seifert fibered and the geodesic flow in T1R lifts to an Anosov flow in M1 . Any
torus in T in M1 projects to a torus in T1R and this is homotopic to a torus over a
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closed geodesic of R, but traversed n times in the fiber direction. This implies that the
original torus is homotopic to one which has 2n closed orbits, and hence cannot be
a torus of the geodesic flow of a hyperbolic orbifold. Hence the Anosov flow in M1

cannot be topologically equivalent to a geodesic flow, but is equivalent to a finite cover
of a geodesic flow.

Examples and counterexamples

Recall that in a one-prong pseudo-Anosov flow we allow the existence of one-prongs.
One–prong pseudo-Anosov flows can behave completely differently from pseudo-
Anosov flows. In particular it is well known that there are one-prong pseudo-Anosov
flows in S2 �S1 , so the manifold M need not be irreducible and the universal cover
need not be R3 .

Here we introduce two new classes of examples of one-prong pseudo-Anosov flows.

(1) Let R be a closed hyperbolic surface with an order two symmetry � which is an
isometric reflection along a separating simple closed geodesic ˛ of R. Let M1 be
the unit tangent bundle of R and ˆ1 be the geodesic flow in M1 . The isometry �
sends geodesics of R to geodesics and preserves length along geodesics. It induces a
map �� in M1 which has order 2. Let M be the quotient of M1 by the map �� . The
map �� does not act freely: the fixed points correspond exactly to the tangent vectors
to ˛ ; there are two closed orbits ˛1; ˛2 of ˆ1 which are fixed pointwise by �� . These
correspond to the two directions in ˛ . Hence M is an orbifold, but admitting a natural
manifold structure so that the projection map M1!M is an order 2 branched covering
map. The flow ˆ1 induces a flow ˆ in M because � sends geodesics to geodesics
and preserves length. The stable/unstable foliations of ˆ1 are invariant under �� so
induce stable/unstable foliations of ˆ. The stable leaf of ˆ1 through ˛1 folds in two,
producing a one-prong singularity of ˆ and similarly for ˛2 . The flow ˆ is an example
of a one-prong pseudo-Anosov flow. Alternatively the manifold M is obtained as
follows: let R1;R2 be the closures of the two components of R�˛ . The unit tangent
bundle of R1 is homeomorphic to R1�S1 , with boundary a torus Z with two closed
curves corresponding to ˛1 and ˛2 . The map �� identifies one complementary annulus
of ˛1; ˛2 in Z to the other one with no shearing. This is obtained by a Dehn filling
of Z where ftg �S1 (a Seifert fiber) is the meridian. Therefore M is homeomorphic
to the union of N1 DR1 �S1 and a solid torus. This is almost a graph manifold: it
is the union of Seifert fibered spaces, but M is not irreducible: Take a nonperipheral
arc l in R1 . Then l �S1 is an annulus in R1�S1 which is capped off with two discs
in the solid torus to produce a sphere which is nonseparating in M and hence clearly
does not bound a ball in M .
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Remark This example and the next work whenever the hyperbolic surface R admits
an isometric reflection along a collection of simple closed geodesics f˛ig. For simplicity
of exposition we describe the examples in (1) and (2) with a single geodesic ˛ .

(2) The second class of examples is obtained by a modification of example (1) in
order to be in a Seifert fibered manifold. The modification is that the gluing of the
annuli in @N1 is done with a shearing. The notation is the same as in example 1): R

is the hyperbolic surface with a geodesic ˛ of symmetry and R1;R2 the closures of
the components of R� ˛ . The unit tangent bundle of R is M1 and N1;N2 are the
restrictions to unit vectors in R1 and R2 respectively. We use two tori: @N1 D T1

and @N2 D T2 . These are glued to form M1 . Put coordinates .�1; �2/ in T1 , .a1; a2/

in T2 as follows: T1 consists of the unit vectors along ˛ . Parametrize ˛ by arc length
parameter t where 0� t � l0 and l0 is the length of ˛ . Let �1D 2� t= l0 . Let �2 be the
angle between the unit tangent vector to ˛ and the vector v , where �2D 0 corresponds
to the forward direction of ˛1 . Also �2 D � corresponds to ˛2 and 0 < �2 < � are
the vectors exiting N1 and entering N2 . Put coordinates .a1; a2/ in T2 so that the
gluing map to create M1 is �W T1! T2 given by a1 D �1; a2 D �2 (essentially the
same coordinates). Notice that vectors with 0< a2 < � are entering N2 and vectors
with � < a2 < 2� are entering N1 .

In N1 we consider the restriction of the geodesic flow of R. We collapse @N1 D T1

to an annulus as follows. Let A1 be the strip 0� �2 � � in T1 and let A2 be the strip
� � �2 � 2� in T1 . Let n be an integer. We glue A1 to A2 by

(�) f .�1; �2/D .�1C 2n�2; 2� � �2/:

Let M be the quotient of N1 by this gluing and let ˆ be the induced flow from the
geodesic flow in N1 . Notice that the flow in N1 is outgoing in the interior of A1

and incoming in the interior of A2 . In addition, the angle between flow lines and T1

depends only on �2 and not on �1 (by definition) and so by formula .�/ this produces
a flow ˆ in M which is smooth outside of the closed orbits ˛1; ˛2 . Here we abuse
notation and continue to call ˛1; ˛2 their projections to M .

Let A be the annulus which is the quotient of A1;A2 by the gluing. Let M2 be the
double branched cover of M obtained by double branched cover (opening up) along A.
This M2 can be cut along the torus T which is the preimage of A. The closure of
the two complementary components of T are homeomorphic to N1 and N2 and still
denoted by N1;N2 . We think of N1 as the unit tangent bundle of R1 . We can also
think of N2 as the unit tangent bundle of R2 : this is because N2 under the branched
cover is another copy of N1 , which is isometric to N2 by the map �� induced by the
symmetry � of the surface R. Let T1;T2 be the corresponding boundaries of N1;N2 ,
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with the corresponding coordinates .�1; �2/ and .a1; a2/ as above. Therefore M2 is
obtained by a certain gluing of map g from T1 to T2 .

We first extend the map f to an involution on the entire torus T1 : in A2 (which is the
region ���2�2� ), the map f has the same formula f .�1; �2/D .�1C2n�2; 2���2/.
Clearly f is an involution in T1 .

Claim In order to obtain the flow ˆ in M , the gluing from T1 to T2 in the .�1; �2/,
.a1; a2/ coordinates is given by

gW T1! T2; g.�1; �2/D .�1C 2n�2; �2/:

In order to prove the claim we need to show that when restricted to the annulus A1

then f D ��g . Recall that �� restricted to T2 (which is identified with T ) has the
form ��W T2! T1 , ��.a1; a2/D .a1; 2� � a2/. It is now clear that f D ��g in A1 .
By the extension of f to A2 , this also holds in A2 . This proves the claim.

Let ˆ2 be the lift of the flow ˆ to M2 . This flow ˆ2 is the geodesic flow in R1

when restricted to N1 and the geodesic flow of R2 when restricted to N2 . The gluing
is given by the map g described above. The map g is a shearing. In a very nice
result, Handel and Thurston [31] studied exactly this example and they proved that the
flow ˆ2 in M2 is an Anosov flow which is volume preserving. Therefore this flow has
stable and unstable foliations which project to stable/unstable foliations of ˆ: this is
because if two orbits in M2 are asymptotic then their projections to M are asymptotic
and vice versa. The projection from M2 to M is locally injective and smooth except
along ˛1 and ˛2 , where it is branched 2 to 1. Hence the stable/unstable foliations
in M are nonsingular except possibly at ˛1; ˛2 . Since the projection is 2 to 1 and
stable leaves go to stable leaves, then along the stable leaf of ˛1 the stable leaf folds in
two and similarly for the unstable leaf and likewise for ˛2 . Therefore ˆ is smooth
everywhere except at ˛1; ˛2 which are one-prong singularities. We conclude that ˆ is
a one-prong pseudo-Anosov flow.

Finally M can be thought as a Dehn filling of N1 along T1 . We determine the new
meridian. Under the map f from A1 to A2 , the segment �1 D 0; 0� �2 � � in A1

is glued to the segment .2n�2; 2� � �2/; 0� �2 � � in A2 . This last segment goes
from .0; 2�/ to .2n�; �/ linearly. It follows that this is the new meridian which is
then the .�n; 1/ curve.

When nD 0, this is exactly the same construction as in the first example which makes
the fiber in N1 nullhomotopic. When n 6D 0, the curve which becomes nullhomotopic
is not fpg �S1 . It follows that the resulting manifold M is Seifert fibered.
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Conclusion If one allows 1–prongs, then Seifert fibered manifolds can admit one-
prong pseudo-Anosov flows with singularities as opposed to what happens with pseudo-
Anosov flows. Theorem 4.1 does not hold for one-prong pseudo-Anosov flows.

This poses the following questions: Suppose that ˆ is a one-prong pseudo-Anosov
flow in M Seifert fibered (closed). Can one show that there are no p–prongs with
p � 3? Can one show that ˆ has a branched cover to an Anosov flow in a Seifert
manifold?

Remark With this description of geodesic flows we now mention the following,
which will be extremely useful later on in the article. Here is an explicit example of
an embedded, incompressible Klein bottle in a manifold with an Anosov flow. Let ˆ
be the geodesic flow of a nonorientable hyperbolic surface S and ˛ an orientation
reversing simple geodesic. Let A be the unit tangent bundle of S restricted to ˛
and ˛1; ˛2 , the two orbits of ˆ associated to the two directions of ˛ . Consider tubular
neighborhoods of ˛1 , ˛2 . These are solid tori, and A in these neighborhoods wraps
around each of these periodic orbits twice producing a Möbius band, which contains
the periodic orbit, and with boundary a closed curve homotopic to the double of the
periodic orbit. It follows that the closure of A is the union of an annulus (outside the
solid tori) and two Möbius strips and therefore A is a Klein bottle. This Klein bottle
is embedded and incompressible. This is a typical example of Birkhoff–Klein bottle;
see the formal definition in Section 6. A tubular neighborhood of this Klein bottle is
homeomorphic to the twisted line bundle over the Klein bottle.

5 Pseudo-Anosov flows in manifolds with virtually solvable
fundamental group

In this section we first do a detailed analysis of maximal subgroups of �1.M / stabilizing
a given chain of lozenges. Conversely given a subgroup of �1.M / isomorphic to Z2

we analyse the uniqueness of chains of lozenges invariant under this subgroup. These
results are foundational for understanding any Z2 subgroup of �1.M / and they are
fundamental for the analysis of pseudo-Anosov flows in manifolds with virtually
solvable fundamental groups. The results are later used for other results in this article.
We also expect that these results will be useful for further study of pseudo-Anosov
flows in toroidal manifolds.

In this section let K denote the Klein bottle. We first need a result from 3–dimensional
topology. Let F be a compact surface with a free involution � . Then we have
that M D .F � I/=.x; t/ � .�.x/; 1 � t/ is a twisted I –bundle over the surface
F 0 D F=x � �.x/ and F is the associated 0–sphere bundle; see [32, page 97].
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Lemma 5.1 Let N be an irreducible, compact 3–manifold with finitely generated
fundamental group which is torsion free and has a finite index subgroup isomorphic
to Z2 . Then N is either an I –bundle or a twisted I –bundle over a surface of zero Euler
characteristic. In particular �1.N / is isomorphic to either Z2 or �1.K/. In addition
if N is orientable, then either N D T 2 � I or N D .T 2 � I/=.x; t/� .�.x/; 1� t/ is
a twisted I –bundle over the Klein bottle T 2=x � �.x/ which is one sided in N .

Proof Suppose first that N is closed. Then take a finite cover N 0 with �1.N
0/DZ2 .

Since the finite cover is irreducible, this is not possible [32]. Hence @N is not empty.
Suppose that boundary of N is compressible. By the loop theorem [32] there is a curve
in @N , not nullhomotopic in @N , but bounding an embedded disc D in N . Cutting
along D, shows that �1.N / is either a free product or an amalgamated free product
along a trivial group, hence a free product with Z. In either case the free product would
either not contain a Z2 (it would be infinite cyclic) or would contain a free group of
rank greater than or equal to 2, in which case it could not contain Z2 with finite index.
Hence @N is incompressible. If it has a component of genus greater than or equal to 2

then as above it would have a rank 2 free subgroup, again contradiction. If it has a
component which is a projective plane, then �1.N / has elements of order 2, contrary
to hypothesis. Since N is irreducible, no component of @N is a sphere, as �1.N / is
not trivial. We conclude that every boundary component of N is either a torus or a
Klein bottle.

Let F be one such component. Because F is incompressible and �1.N / has a finite
index subgroup isomorphic to Z2 , then we have that �1.F / has finite index in �1.N /.
By [32, Theorem 10.5], either

(i) �1.N /D Z,

(ii) �1.N /D �1.F / with N Š F � I or

(iii) �1.F / has index 2 in �1.N / and N is a twisted I –bundle over a compact
manifold F 0 , with F the associated 0–sphere bundle.

In our situation case (i) cannot happen. In case (ii) �1.N / is either Z2 or �1.K/ and
we are done. In case (iii) �1.N / is isomorphic to �1.F

0/ as there is a deformation
retract from N to F 0 . Here F 0 is a closed surface which has a double cover either
the torus or the Klein bottle. Hence again F 0 is the torus or the Klein bottle and we
also conclude that �1.N / is either Z2 or �1.K/. The last statement is easy given the
above. This finishes the proof of the lemma.

Note that both the torus and the Klein bottle have double covers homeomorphic to
themselves. The manifolds in Lemma 5.1 can be either orientable or not. It is easy to
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construct a compact manifold N which is a twisted I –bundle over the Klein bottle
(with quotient surface a Klein bottle). This manifold has boundary a Klein bottle and an
orientation double cover N2 which is a twisted I –bundle over the torus (with quotient
surface a Klein bottle, which is one sided in N2 ). Finally N has an order 4 cover
homeomorphic to T 2 � I .

Lemma 5.2 Suppose that M has a pseudo-Anosov flow ˆ. Let C be a bi-infinite
chain of lozenges of ˆ. Let G be the stabilizer of C in �1.M /. Then G is isomorphic
to a subgroup of �1.K/. In particular, G is torsion free and it contains a unique
maximal abelian subgroup, which has index at most two, and which is either trivial,
(infinite) cyclic or isomorphic to Z2 .

Proof The proof will reveal the structure of the stabilizer of C and not just show that it
is isomorphic to a subgroup of �1.K/. In this proof cyclic means infinite cyclic. Let ˛
be a corner in C . The chain C corresponds to a linear subtree T0 of the tree G.˛/. It
defines a homomorphism �W G! Aut.T0/. The kernel K of � stabilizes every corner
of C , and thus, is either cyclic or trivial.

Assume first that G preserves the orientation on T0 . Then �.G/ is a group of transla-
tions along T0 , ie trivial or cyclic. In the former case, G DK is either trivial or cyclic.
In the latter case, if K is trivial then G is isomorphic to �.G/ and hence trivial or
cyclic. If K is cyclic then G is an extension of Z by Z. It is an elementary fact that
any such extension splits and hence G is either Z2 or �1.K/. We are done.

Hence from now on assume that some element g of G reverses the orientation
of T0 . Hence g leaves either a vertex or an edge of T0 invariant. According to
Proposition 2.16(4), g preserves a corner ˛ . That is g does not act as an inversion
on an edge. Let s be a generator of the G –stabilizer of ˛ ; in particular this stabilizer
is not the identity and is isomorphic to Z. Then s reverses the orientation of T0

(otherwise all elements in G leaving ˛ invariant would preserve orientation) and s2 is
in K . On the other hand, every element of K fixes ˛ and preserves the orientation: it
must be a power of s2 , which therefore generates K . As before there are two options
for �.G/. One option is that �.G/D �.hsi/ and therefore G is generated by s and
is cyclic. Otherwise �.G/ has at least one translation. Select h in G such that �.h/
is a translation along T0 of minimal length. In this case it is easy to see that s , h

generate G .

By considering the action on the set of vertices of T0 one sees that hsh preserves ˛ .
It is also in G so hshD si where i is odd. Similarly h�1sh�1 D sj , j odd. Now we
use 3–manifold topology.
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Let G0 be the subgroup of G preserving the orientation on T0 . The first case of the
proof shows that G0 has a subgroup of index less than or equal to 2 isomorphic to Z2 ,
so G has a subgroup of index less than or equal to 4 isomorphic to Z2 (we stress that
we want a subgroup of index 2 isomorphic to Z2 , so more work is needed). Let U

be the cover of M associated to G . Then U is irreducible and �1.U / is torsion free,
because �1.M / is torsion free, as its universal cover is homeomorphic to R3 . By
Scott’s Core Theorem [32] there is a compact core N for U . We can assume that
no boundary component of N is a sphere, by attaching 3 balls to such components,
without affecting the fundamental group. Now apply the previous lemma to show that
G D �1.N / is isomorphic to either Z2 or �1.K/.

Finally if G is not abelian then G is isomorphic to �1.K/ and it is an elementary
algebra fact that G has a unique maximal abelian subgroup, and that this maximal
abelian subgroup has index 2 and is isomorphic to Z2 .

Remark Consider the most complicated case (G contains a Z2 subgroup). Using
graphs of groups one can quickly produce a short exact sequence 1!Z!G!A! 1,
where A is either Z or D1 , the infinite dihedral group. The difficulty occurs in the
dihedral group case: in particular in our situation the exact sequence does not split,
for otherwise G would have torsion. Hence the graph of groups analysis gets more
involved and has many possibilities.

Conversely, we have the following.

Lemma 5.3 Let G be a subgroup of �1.M / isomorphic to Z2 . Assume that ˆ is not
product. Then G preserves a bi-infinite chain of lozenges.

Proof If G � Z˚Z acts freely on the orbit space O , then it was proved in [18]
that ˆ is product, contrary to hypothesis. Hence there is g in G with a fixed point
in O . If gD .g0/n where g0 is in G and jnj> 1, then g0 also does not act freely on O
(Proposition 2.16(1)). Hence we may assume that g is indivisible in G . Choose h in G

so that h;g form a basis of G . Consider the tree T DG.g/: since G is abelian, then G

acts on T . If f is an element of G admitting a fixed point in T , then some power
of f leaves invariant all vertices of T and likewise for g . It follows that g and f
admit a common power: gp D f q . Since f;g are in G Š Z2 then f;g generate
a cyclic group. But g is indivisible in G , implying that f is a power of g . Hence,
G=hgi � Z is a cyclic group acting freely on the vertices of the tree T . According to
Proposition 2.16(4), an element in G=hgi cannot reverse an edge of T . It follows that
G=hgi acts freely on T , and that there is an invariant axis for this cyclic group therein.
It provides a bi-infinite G –invariant chain of lozenges C . In particular the arguments
show that g fixes all the vertices in C .
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Definition 5.4 [18] Let C be an s–scalloped bi-infinite chain of lozenges. The s–
scalloped region defined by C is the union of all lozenges in C with the half-leaves
of Ou common to two adjacent lozenges in C . One defines similarly u–scalloped
regions. A scalloped region is a s–scalloped or u–scalloped region; it is an open subset
of O .

It may happen in the situation of Lemma 5.3 that the G –invariant chain is not unique,
but only in a very special situation as shown by the next lemma.

Lemma 5.5 Let G be a subgroup of �1.M / isomorphic to Z2 . Assume that G

preserves two different chains of lozenges. Then, one of these chains is s–scalloped,
and the other is u–scalloped. Moreover the associated u–scalloped and s–scalloped
regions are the same, that is, they are the same subset of the orbit space O .

Proof In this proof we consider all objects in O . Let C , C0 be two different G–
invariant chains of lozenges. First of all notice that the set of vertices of a chain is a
linear set isomorphic to a subset of Z and the stabilizer of any vertex is at most Z.
Since G ŠZ2 there is an element of G acting freely on the set of vertices of C (or C0 ).
It follows that C; C0 are bi-infinite chains of lozenges.

Let g be an element of G fixing every corner in C , and let f be an element of G

fixing every corner of C0 ; see proof of the previous lemma. Suppose first that g and f
share a common nontrivial power: gp D f q , p; q 6D 0. Since G is abelian it acts
on G.gp/ and also G.g/� G.gp/, so C is an invariant axis for G acting on G.gp/.
Similarly C0 is a G–invariant axis in G.f q/. Since these trees are the same, it now
follows that C D C0 , contradiction.

Hence, replacing G by a finite index subgroup if necessary, one can assume that f , g

form a basis of G � Z2 .

Let ˇ be a corner of C0 . We claim that ˇ cannot be in C or in one of its boundary
sides. Suppose not. There is h nontrivial in G fixing ˇ and therefore fixing every
corner of C0 . As h leaves C invariant, then ˇ has to be a corner of C . This would
produce an element in G fixing every corner of C and every corner of C0 and hence
some powers of f and g coincide. The previous paragraph shows this is impossible.
Let now c be a path in O joining ˇ to an element ı in the union of the lozenges
in C , and disjoint from the corners of C . We assume that c avoids the singular orbits
in O . Notice that the union of corners of C forms a discrete set in O . Consider the
intersection V between c and the union of stable and unstable half-leaves contained in
the boundary of the lozenges of C . By the above this intersection is nonempty. Assume
first that V is finite. Let 
 be the first element of V met while traveling along c
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from ˇ to ı . Then 
 lies on the boundary of a lozenge C of C , for instance the
boundary component is a stable half leaf L containing a corner ˛ of C . Let C 0 be the
other lozenge in C admitting also ˛ as a corner: there is a half leaf K , contained in the
boundary of C 0 and such that the union L[K[˛ is an embedded line in O , which
moreover disconnects C from ˇ . In addition this properly embedded line is unique
with these properties. Since C and ˇ are f –invariant, it now follows that L[K[˛

is f –invariant, and hence f .˛/D ˛ , where ˛ is a corner of C . Contradiction.

Therefore V is not finite: it admits an accumulation point 
 . Since Os and Ou are
transverse to each other outside the singular points, 
 is an accumulation point of a
sequence Fn\c , where the Fn are leaves in the boundary of lozenges in C . In addition
we may assume that all Fn have all the same type, for example all Fn are leaves of Os .
Let L be the leaf of Ou through 
 : it intersects all the Fn for n sufficiently big. It
follows that C contains an infinite u–scalloped subchain. Since C is G –invariant, the
entire chain C has to be a bi-infinite u–scalloped chain. Hence it defines a u–scalloped
region U .

Similarly, C0 has to be scalloped, and defines a scalloped region U 0 .

Now the key point is the following: in [18] the following facts are shown.

(i) We can choose h in G acting freely on O .

(ii) The leaves of Os (respectively Ou ) intersecting U define a G –invariant subline
I s in Hs (respectively a G –invariant subline Iu in Hu ); here we are thinking
of Hs as the leaf space of Os .

(iii) Every leaf in I s intersects every leaf in Iu , and these intersections occur in U .

(iv) Every point in U is the intersection of a leaf in I s and a leaf in Iu .

Similarly, the open scalloped region U 0 provides G–invariant sublines J s and J u

in Hs and Hu , such that every leaf in J s intersects every leaf in J u at a point in U 0 .
But since h acts freely, h–invariant lines in Hs , Hu are unique [18]. Thus, I s D J s

and Iu D J u . The equality U D U 0 follows.

If the chain C0 was u–scalloped, as C , then it would be equal to C since it defines the
same scalloped region. Hence, C0 is s–scalloped. The lemma follows.

Corollary 5.6 Let G be a subgroup of �1.M / isomorphic to Z2 and h an element
of �1.M / such that hG0h�1 DG0 , where G0 is a finite index subgroup of G . Then h

preserves any G –invariant chain of lozenges.
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Proof Let C be a G –invariant chain of lozenges. Then, C is G0–invariant, and h.C/
is hG0h�1 D G0–invariant. According to Lemma 5.5, if C is not scalloped, then C
is the unique G0–invariant chain: hence we have h.C/ D C . If not, C is scalloped,
for example suppose that C is s–scalloped. Again by Lemma 5.5, C is the unique s–
scalloped G0–invariant chain, and since h.C/ is also s–scalloped, the equality h.C/DC
follows.

As a corollary of these results, we get the description of pseudo-Anosov flows in
manifolds with virtually solvable fundamental group (Theorem 5.7).

Theorem 5.7 Let ˆ be a pseudo-Anosov flow in M 3 with �1.M / virtually solvable.
Then ˆ has no singularities and is product. In particular ˆ is topologically equivalent
to a suspension Anosov flow.

Proof First notice that the fact that each leaf of zƒs intersects every leaf of zƒu is
invariant up to taking finite covers and so is the existence of singularities. Hence we can
take finite covers at will. Up to a finite cover, one can assume that �1.M / is solvable.
Notice that as M has a pseudo-Anosov flow then M is irreducible. Since �1.M /

is solvable, classical 3–manifold topology results [32] imply that M fibers over the
circle with fiber a surface S which has solvable fundamental group. The surface S

can only be the torus or the Klein bottle K . Up to another finite cover one can assume
that S is actually the torus.

Assume that ˆ is not product. Then, according to Lemma 5.3, �1.S/ preserves a
chain of lozenges. Since �1.S/ is normal in �1.M /, it follows from Corollary 5.6
that this chain of lozenges is �1.M /–invariant. According to Lemma 5.2, �1.M / is
a finite index extension of Z or Z2 . This contradicts the fact that M fibers over the
circle with fiber T 2 . This finishes the proof.

6 �1–injective tori in optimal position

Given a �1 –injective torus in a 3–manifold M with a pseudo-Anosov flow ˆ, we
look for a representative in its homotopy class which is in optimal position with respect
to the flow ˆ. First we define Birkhoff annuli.

Definition 6.1 A Birkhoff annulus is an immersed annulus in M so that each boundary
component is a periodic orbit of the flow ˆ, and such that the interior of the annulus is
transverse to the flow. If the interior is embedded, then the annulus is called weakly
embedded.
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The interior of a Birkhoff annulus is transverse to the flow, and hence is also transverse
to the foliations ƒs , ƒu . They therefore induce foliations on the annulus denoted
by ls , lu . These foliations can both be extended to the boundary of the annulus as
foliations tangent to the boundary. A singular orbit with p prongs (here again we use
that for pseudo-Anosov flows p � 3) induces a singularity of ls (or lu ) in the interior
of the annulus having negative index 1�p=2. Since the Euler characteristic of the
annulus is zero, Poincaré–Hopf index formula implies that the interior of the annulus
intersects no singular orbits.

Definition 6.2 A Birkhoff annulus is elementary if ls , lu do not have closed leaves
in the interior.

Observe that in the definition of weakly embedded Birkhoff annuli, we did not require
the whole annulus to be embedded: it may wrap around each periodic orbit in its
boundary, an arbitrary (finite) number of times. It may also be that the two boundary
orbits are the same orbit. Notice however that the boundary orbits cannot intersect the
interior, as otherwise points near the boundary would produce self intersections in the
interior.

Good position of a torus with respect to a pseudo-Anosov flow means that the torus is
a union of Birkhoff annuli. If the initial torus is embedded we want to study when the
optimal position torus is also embedded. This is tremendously important if one wants
to cut the manifold along the tori which separate pieces in the torus decomposition.

We first study under which conditions a chain of lozenges C may admit a corner ˛
such that for some element g of �1.M / the image g.˛/ is contained in a lozenge
of C . Later on we explain how this concerns the intersections of corner orbits in the
Birkhoff annuli with the interior of the annuli.

Definition 6.3 Let C be a chain of lozenges. If for any element g of �1.M / and for
every corner ˛ of C then the orbit g.˛/ is not in the interior of a lozenge in C , then C
is called simple. The chain C is called a string of lozenges if no corner orbit is singular
and consecutive lozenges are never adjacent.

Proposition 6.4 Let G be a subgroup of �1.M / isomorphic to Z2 and let C be a
G–invariant chain of lozenges. Suppose that C is not simple. Then C is a string of
lozenges. In addition G is contained in the fundamental group of a free Seifert fibered
piece and no corner of C is the lift of a singular orbit of ˆ.

Proof The chain C is not simple. Therefore there is a corner orbit ˛ of C and an
element g in �1.M / so that g.˛/ is in the interior of a lozenge in C . Once and for all

Geometry & Topology, Volume 17 (2013)



1920 Thierry Barbot and Sérgio R Fenley

in this proof the transformation g is fixed. The ˛ may change to another corner orbit
of C . We stress that the element g is not used all the time in this proof, but whenever
it is, it refers to this fixed element. Notice that g is NOT in G as G preserves C and
its corners.

Proof that C is a string of lozenges We denote by f˛i ; i 2 Zg the corners of C and
by fCi ; i 2 Zg the lozenges of C , so that ˛i , ˛iC1 are the corners of Ci for each
integer i . Moreover, by shifting the indices (i 2 Z) we may assume that ˛ D ˛0 .
By assumption there is an integer k so that ˇ D g.˛/ is contained in Ck . We will
prove that both corners ˛k , ˛kC1 of Ck are in the interior of lozenges in g.C/. Since
the orbit ˇ is in the interior of a lozenge, then ˇ is nonsingular and �W s.ˇ/; �W u.ˇ/

define exactly 4 quadrants in �M . Two of the quadrants contain the corners of Ck .
Let W be one of the remaining quadrants. It contains a perfect fit between two sides
of the lozenge Ck . Without loss of generality we may assume that these sides are
S D �W s.˛k/ and U D �W u.˛kC1/.

We claim that W does not contain a lozenge with corner in ˇ . Suppose not and call
this lozenge D1 . Then D1 has two sides in �W u.ˇ/ and �W s.ˇ/. There is a unstable
side of D1 , call it E which is contained in an unstable leaf and makes a perfect fit
with �W s.ˇ/. Since �W s.ˇ/ intersects U D �W u.˛kC1/ transversely, it follows that U

separates E from the lozenge Ck . Therefore E cannot intersect any leaf which makes
a perfect fit with �W u.ˇ/. This is a contradiction and proves the claim.

It follows that the two quadrants defined by ˇ which contain respectively ˛k and ˛kC1 ,
also contain lozenges in g.C/. Let D2;D3 be these lozenges which are in g.C/ and
have a corner in ˇ (where g is the fixed element in this proof). Since �W s.˛kC1/

intersects �W u.ˇ/ and �W u.˛kC1/ intersects �W s.ˇ/, the definition of lozenges implies
that ˛kC1 is in the interior of one of these lozenges, say D3 . As in the argument
above it now follows that the other corners of D2;D3 are in the interior of Ck�1;CkC1

respectively. This procedure can be iterated indefinitely and in both directions. It now
follows that all g.˛i/ are in the interior of lozenges in C . In particular this implies that
each g.˛i/ (and consequently the same for the orbits ˛i ) is nonsingular and Ci , CiC1

are not adjacent. This shows that C is a string of lozenges.

In order to conclude, we have to show that up to conjugation G is contained in the
fundamental group of a free Seifert piece. Let H be the stabilizer of C in �1.M /, and
let H0 be the maximal abelian subgroup of H (see Lemma 5.2 which shows that H0

exists and has index less than or equal to 2 in H . Apply that Lemma to the stabilizer H

of C in �1.M /). Then G �H0 ; hence we can assume G DH0 , ie that G has index
at most two in H .
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We stress the following very important fact: the above arguments show that for any
corner 
 of C there are exactly two lozenges which have corner 
 . The remaining
quadrants of 
 do NOT have lozenges with corner 
 . As a corollary, we obtain that
the tree G.˛/ coincides with C . Similarly, G.ˇ/D g.C/. In particular C D G.˛/ is a
simplicial linear tree. This implies the following fact:

If z 2 �1.M / and for some corner 
 of C , the orbit z.
 / is also a corner
of C , then z.C/D C .

Claim 1 One can assume that the manifold M is orientable.

Suppose that M is not orientable and let por W M2!M be the orientation double
cover of M , with lifted flow ˆ2 . Let ls be the set of stable leaves either intersecting
a lozenge in C or containing a corner orbit in C . This set is order isomorphic to the
reals R. Similarly define lu . One can use the arguments above to show that ls; lu

are invariant under g . This is because every g.˛i/ is in the interior of a lozenge in C ,
so the arguments above show that if q is any corner of C , then g.q/ is also in the
interior of a lozenge in C . This implies the g invariance of ls; lu . If g preserves the
order in ls then the arguments above imply that g also preserves the order in lu : this
is because one can order ls; lu so that “high elements” in ls intersect high elements
in lu . Since intersection is preserved by the action of g the statement follows. This
implies that g preserves orientation in OŠR2 . If on the other hand g reverses order
in ls , the same argument shows that g also reverses order in lu and hence g again
preserves orientation in O . Since clearly g preserves the flow direction it follows that
in any case g preserves orientation in M . Therefore g is an element of �1.M2/.

Similarly, one proves for every element a of G that if a reverses the orientation of ls ,
it also reverses the orientation of lu : G is contained in �1.M2/. Now if P2 is a free
Seifert piece of M2 whose fundamental group contains G , then P D por .P2/ is a
free Seifert piece in M whose fundamental group contains G . Hence we may assume
that M DM2 in the statement of the proposition. Claim 1 is proved.

Notice that it is not true that any Z2 subgroup of any 3–manifold group consists
entirely of orientation preserving elements. For instance consider the twisted I –bundle
over the torus T 2 . The one sided torus in the middle has orientation reversing elements.
Glue two copies of this to produce examples in closed 3–manifolds.

Assumption From now on we can assume that M is orientable.

Since g preserves ls , there are two options.

Case I: g preserves orientation in ls Then there is k in Z so that g.˛i/ is always
in the interior of CkCi .
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Case II: g reverses orientation in ls In this case we will reindex the ˛i . This forces
a reindexing of the Ci as Ci is always the lozenge with corners in ˛i and ˛iC1 . Here
there are two possibilities: First if k is even, then shift the i 0s (by i ! i � k=2) so
that g.˛i/ is in the interior of C�i for all i . If on the other hand k is odd, then first
shift the i 0s by i! i � .kC1

2
/ which results in g.˛i/ is in C�i�1 , then do a reflection

i !�i , which results in g.˛i/ is in C�i . So regardless of k even or odd in Case II,
we can adjust the indices so that g.˛i/ is always in C�i .

Then up to choosing a new ˛0 and perhaps changing i to �i , it follows that g.˛i/ is
in the interior of C�i for all i .

Claim 2 There is an element h0 of G such that the centralizer Z.h0/ (in �1.M /) is
not abelian.

Let f denote a generator of the stabilizer in G of every ˛i , and let h be an element
of G acting freely on C : there is an integer p so that h. j̨ /D j̨�p , h.Cj /D Cj�p .

Assume first that we are in Case I. For every integer i , g. p̨i/ is contained in CkCpi ,
hence all the hig. p̨i/ lie in Ck . On the other hand, one can produce as in [3] a
f –invariant proper embedding of Œ0; 1��R into �M , so that f0; 1g �R maps into the
corner orbits of Ck , .0; 1/�R maps into the interior of the lozenge and transversely
to ẑ . The image of this embedding projects to an embedded annulus yA in �M =hf i,
which itself projects to an immersed annulus A in M , transverse in its interior to the
flow ˆ. The key point is that A is compact, hence the periodic orbit �.ˇ/ intersects A

only a finite number of times. It follows that �.ˇ/D�.˛0/D�.˛/ admits only finitely
many lifts in �M =hf i intersecting yA. In other words, there must be distinct positive
integers i; j and an integer q such that

hig. p̨i/D f
q.hj g. p̨j //;

because �. p̨i/D �.˛/ as p̨i D h�i.˛0/. Let

˛0 D p̨j D h�j .˛/ so p̨i D h�i.˛/D hj�i.˛0/:

Hence
highj�i.˛0/D f qhj g.˛0/:

So there is n for which highj�i D f qhj gsn , where s is the stabilizer in �1.M / of
p̨j D ˛

0 . Let mD i � j . Here n may be zero, but m is never zero. Since f and h

are both in G they commute, so the last equation implies

(2) g�1f �qhmg D snhm:
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Notice that s preserves G.˛/D C , by the fact stated just before Claim 1 in this proof,
because s.˛0/D ˛0 and ˛0 is a corner of C . Hence s belongs to H . Let

h0 D .s
nhm/2; v D .f �qhm/2:

Since m is not zero then h0 is not the identity. Equation (2) implies that

(3) g�1vg D h0:

Since H0 has index less than or equal to 2 in H then h0 is in H0 . The elements f; h
are in G so v is in G . Equation (3) means that h0 2 g�1Gg . As this group is abelian,
then g�1Gg �Z.h0/.

We conclude that h0 is a nontrivial element of G whose centralizer Z.h0/ in �1.M /

contains G , and it also contains g�1Gg .

Now suppose we are in Case II and we want to achieve the same conclusion. This is
similar to Case I and some details are left to the reader. Here g. p̨i/ is in C�pi and
h�i.C�pi/D C0 . As in Case I there are i; j positive and distinct and q an integer so
that

h�ig. p̨i/D f
qh�j g. p̨j /:

So if ˛0 D p̨j then h�ighj�i D f qh�j gsn , with s as in Case I, leading finally to

g�1.f �qh�m/g D snhm; where mD i � j 6D 0:

Here take h0 D .s
nhm/2 nontrivial in H0 because m 6D 0. Let v D .f �qh�m/2 . So

as before g�1vg D h0 , so again h0 is a nontrivial element of H0 whose centralizer
contains G and also g�1Gg .

Now assume by way of contradiction that Z.h0/ is abelian. According to Lemma 5.5,
since the chain C is not scalloped, it is the unique G –invariant chain of lozenges. Since
g�1Gg is a subgroup of Z.h0/, it commutes with G as Z.h0/ is abelian. It follows
that C is g�1Gg–invariant.

As C is the unique G invariant chain of lozenges, then g�1.C/ is the unique g�1Gg–
invariant chain of lozenges. Hence g�1.C/D C . This is a contradiction since ˇD g.˛/

is not a corner of C . This finishes the proof of Claim 2.

Since Z.h0/ is not abelian, [34, Lemma VI.1.5] shows that there is a Seifert fibered
piece P of the torus decomposition of M [34; 33] and Johannson [35] so that up to
conjugation Z.h0/ � �1.P /. We may conjugate and assume that this in fact holds.
The hypotheses of [34, Lemma VI.1.5] require

(i) M is irreducible,
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(ii) M is orientable,

(iii) M has an incompressible surface.

Condition (i) holds because M has a pseudo-Anosov flow [22]. Condition (ii) holds
because of Claim 1. As for condition (iii) we know that �1.M / has a Z2 subgroup.
Work of Gabai [26] or Casson and Jungreis [13] implies that either M has an embedded
incompressible torus or M is a small Seifert fibered space. But it M is Seifert fibered,
then Theorem 4.1 shows that the fiber in M acts freely on O and we are done. So we
can assume that condition (iii) also holds. An example of a nonsimple chain of lozenges
in Seifert fibered spaces is the following: let ˆ be a geodesic flow, 
 a nonsimple
geodesic and T the torus associated to 
 with corresponding chain C . Then C is not
simple.

In order to conclude, we just have to show that P is a free piece. Assume this is not
the case: let t be the fiber of a Seifert fibration in P admitting fixed points in O .

Claim 3 For any � in �1.P /, �.C/D C .

Since G � �1.P /, for every a in G we have ata�1 D t˙1 . Let G0 be the subgroup
of G made of elements a2 where a is an arbitrary element of G . Then G0 is isomorphic
to Z2 (it has index 4 in G ) and G0 is contained in the centralizer Z.t/. The chain C
is the unique G0–invariant chain of lozenges (Lemma 5.5). But since G0 �Z.t/, the
chain t.C/ is G0–invariant, hence equal to C . Then t has a fixed point which is a
corner of C and so G.t/� G.˛/.

Consider now the action of G0 on the tree G.t/. Since G.t/ is contained in a linear
tree and G0 is isomorphic to Z2 , there is an element b of G0 acting freely on G.t/.
Since G.t/� G.˛/D C and the last one is a simplicial linear tree, it now follows that
G.t/D C . Claim 3 follows since G.t/ is obviously �1.P /–invariant.

The fundamental group �1.P / contains Z.h0/ which itself contains g�1Gg : it follows
that g�1Gg preserves C . We have already observed, while proving that Z.h0/ is not
abelian (Claim 2), that this is impossible. This contradiction proves that t acts freely
on O . This finishes the proof of Proposition 6.4.

Remark The same arguments as in the section “Proof that C is a string of lozenges” of
the above proposition prove the following: suppose that C is a infinite chain of lozenges.
Suppose that there is a corner p in C and an element g of �1.M / so that g.p/ is in
(the interior of) a lozenge in C . Then C is a string of lozenges with their corners.

Geometry & Topology, Volume 17 (2013)



Pseudo-Anosov flows in toroidal manifolds 1925

Let ‡ W A ,!M be a Birkhoff annulus (embedded or not). It lifts as an immersion
z‡ W zA � R� Œ0; 1� ,! �M such that R� f0g, and R� f1g are orbits of ẑ , and such
that the image by z‡ of R� .0; 1/ is transverse to ẑ : we call z‡ W zA ,! �M a Birkhoff
band. Moreover, this image is invariant under the action of the cyclic subgroup
‡�.�1.A//�Z. Finally, every orbit of �M intersects the image of the interior in at most
one point, and if ‡ W A ,!M is elementary, then the projection in O is a ‡�.�1.A//–
invariant lozenge union its two corners but without the sides [3, Proposition 5.1]. This
set is neither closed nor open in O .

Conversely, and as we already mentioned in the proof of Proposition 6.4, Claim 2,
every lozenge C in O invariant by a cyclic subgroup H of �1.M / is the projection
in O of an embedded Birkhoff band in �M that is H invariant and it projects in M

to an elementary Birkhoff annulus. To get more embeddedness assume moreover
that the lozenge is simple, ie its interior contains no iterate of its corner, and also
that H is the group of all elements of �1.M / preserving C . Observe that according to
Proposition 2.16(4), elements of H preserve every corner of C , hence each boundary
component of the H –invariant Birkhoff band is preserved. Then, the Birkhoff annulus
in M which is the projection of the Birkhoff band invariant under the maximal such H

can be selected weakly embedded [3, Theorem D].

More generally, let C be a string of lozenges invariant under a subgroup G of �1.M /

isomorphic to Z2 . Then, there is a cyclic subgroup H of G fixing every lozenge in C .
We lift all the lozenges to �M , so that the lift of every two successive lozenges share a
common H –invariant orbit. This can be done in a G –equivariant way. We also lift the
entire corner orbits of the lozenges. The union is a set which is G invariant in �M and
projects in the quotient of �M by G to an embedded torus. This torus projects to an
immersed torus in M which is a union of elementary Birkhoff annuli.

Definition 6.5 A Birkhoff torus is an immersion ‡ W T ! M of a torus T , such
that T is a union of distinct annuli Ai for which every restriction ‡ W Ai !M is
an elementary Birkhoff annulus. In addition we require the following: if Ai and
AiC1 are two consecutive annuli abutting the common closed orbit 
 , then locally
near 
 the annuli Ai and AiC1 are in distinct quadrants defined by 
 . Similarly, a
Birkhoff–Klein bottle is an immersion of the Klein bottle whose image is a union of
elementary Birkhoff annuli. We have the same restriction on abutting annuli as in the
tori case.

Notice the restriction to elementary Birkhoff annuli.

In the sequel, a closed Birkhoff surface means a Birkhoff torus or a Birkhoff–Klein
bottle. As is commonly done in topology, unless it is necessary, we do not distinguish
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between a Birkhoff surface and its image. A Birkhoff surface is a union of Birkhoff
annuli. It contains a finite number of periodic orbits of ˆ, called the tangent orbits,
and is transverse to ˆ outside these periodic orbits.

The reason for the added condition about quadrants is the following: Without it we
could have started with say an embedded Birkhoff annulus A and flow A forward
slightly to an annulus A0 which is disjoint from A in the interior. The union T DA[A0

is a torus which is NOT incompressible as it bounds an obvious solid torus. We now
explain the added condition on quadrants. Let 
 be a closed orbit in the boundary of
an elementary Birkhoff annulus A. Denote this boundary component of A by @1A.
The stable and unstable leaves of 
 define quadrants: in a neighborhood of 
 they
are the components of the complement of the union of the local sheets of W s.
 / and
W u.
 / near 
 . The interior of the annulus A cannot intersect these local sheets of
W s.
 / or W u.
 /. This is because the interior is transverse to ˆ and A is compact;
an intersection would create a closed curve intersection. This is disallowed because all
Birkhoff annuli are elementary. Therefore near @1A, the annulus A enters a unique
quadrant defined by 
 . In the universal cover this means that the lift zA enters a well
defined, unique lozenge with corner z
 .

Definition 6.6 A closed Birkhoff surface ‡ W S !M is called weakly embedded if
the Birkhoff annuli ‡ W Ai!M are all weakly embedded, with interiors two-by-two
disjoint. If moreover ‡ W S !M is an embedding, then the closed Birkhoff surface is
said to be embedded.

As explained above, the condition that interiors are embedded and two by two disjoint
implies that none of the tangent periodic orbits of ‡.S/ intersects the interior of any
of the annuli.

Proposition 6.7 Let C be a string of lozenges in O invariant under a subgroup G

of �1.M / isomorphic to Z2 or �1.K/. Then the union of C and its corner orbits is
the projection in O of the lift to �M of a closed Birkhoff surface ‡ W S !M . More
precisely, ‡ W S !M is the composition yp ı y‡ of an embedding y‡ W S ! �M and the
covering map ypW �M !M , where �M is the quotient of �M by G .

Moreover, assume that we have the following additional properties:

� C is simple, ie no element of �1.M / maps a corner of C in the interior of a
lozenge of C .

� The only elements of �1.M / mapping a lozenge of C to itself are the elements
of G .
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Then the closed Birkhoff surface can be selected weakly embedded.

Proof The first part has been explained before in the case where G is abelian, and is
easily generalized to the case G � �1.K/: the matter is to find a fundamental domain
of the action of G on the set of lozenges in C , to lift each lozenge in this fundamental
domain to a Birkhoff band, and then to lift all other lozenges in C as Birkhoff bands in
a G –equivariant way.

Assume now that the additional properties hold: every lozenge in it is simple, and
elements of �1.M / preserving a lozenge in C are in G . Then the closed Birkhoff
surface is a union of weakly embedded Birkhoff annuli, whose interiors are all disjoint
from the tangent periodic orbits. Since the chain is simple, we can prove, using the
techniques in [3, Section 7] that through some isotopy along the flow, the interiors
of the elementary annuli can be made disjoint from each other, that is, the Birkhoff
surface is weakly embedded.

All of these results in [3] were stated and proved for smooth Anosov flows. However,
exactly the same techniques work for general pseudo-Anosov flows.

More generally, using the results above, then according to Lemma 5.3, we have the
following.

Lemma 6.8 Let G be a subgroup of �1.M / isomorphic to Z2 . Suppose that the
pseudo-Anosov flow ˆ is not product. Then G is the image ‡�.�1.T // of the
fundamental group of a Birkhoff torus ‡ W T !M .

From the conclusion of Theorem B (to be proved in the next section) it is easy to
construct many weakly embedded Birkhoff surfaces that are not homotopic to an
embedded Birkhoff surface. Observe that weakly embedded closed Birkhoff surfaces
may fail to be embedded for various reasons, as follows.

(I) A Birkhoff subannulus may be non-embedded, wrapping around one or both of
the tangent periodic orbits in its boundary. It means that some element g of �1.M /

(corresponding to the periodic orbit) is not in G , but g preserves a corner in C (where C
is the G Š Z2 invariant chain of lozenges).

(II) An element of �1.M / may map a corner ˛ of C to another corner ˇ of C which
is not in the G –orbit of ˛ , ie a tangent periodic orbit can be the boundary of more than
two Birkhoff subannuli. This is the case in the Bonatti–Langevin example [9].

(III) Even an element g of �1.M / not in G could map a lozenge in C to another
lozenge in C . At the Birkhoff surface level this implies the existence of two different
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elementary Birkhoff annuli (in the torus) sharing the same boundary components and
homotopic one to the other along the orbits of ˆ. This situation typically arises in
Proposition 6.7 if G is a finite index subgroup of a bigger group preserving the chain C .

Remark Let us first stress that possibility (I) can certainly happen. For example let ˆ
be the geodesic flow in the unit tangent bundle of an orientable hyperbolic surface and
let T be the set of unit vectors along a simple closed geodesic. Let 
 be one closed
orbit in T . Put coordinates in the torus @N.
 / so that .0; 1/ is the meridian and .1; 0/
is the trace of say the stable foliation. The construction here is more general, the key
fact used is that the trace of the stable foliation intersects the meridian once. Do Dehn
surgery on 
 so that the new meridian is .n; 1/, where n is an integer greater than 1.
Isotoping the old torus slightly to a torus T 0 avoiding 
 we see that it survives the Dehn
surgery. After Dehn surgery T 0 is homotopic to a Birkhoff torus, with Birkhoff annuli
which wrap n times around the orbit 
 . Since it is a Birkhoff torus, it is �1 –injective
and so is T 0 . This gives the desired examples. In fact the surgery procedure can be
done by blowing up the orbit 
 into a boundary torus and then blowing back using the
new meridian information [25]. Therefore the new Birkhoff torus can be taken as the
result of the original Birkhoff torus under this procedure.

A Birkhoff torus is �1 –injective because of the following: a closed curve is homotopic
to either a closed orbit in the Birkhoff torus or to a curve transverse to say the stable
foliation in the torus. In the first case the curve represents a power of a closed orbit,
which is not nullhomotopic [22]. In the second case, the curve is transverse to the stable
foliation in the torus. The condition that consecutive annuli abut the closed orbit from
distinct quadrants of that closed orbit implies that this curve is also transverse to the
stable foliation in the manifold. It now follows from the theory of essential laminations
that this curve is not nullhomotopic in the manifold [16; 28].

The notion of weakly embedded tori is sufficient to analyse the relationship between
(possible) singular orbits of the flow and the torus decomposition of M .

Proposition 6.9 Let ˛ be a singular orbit of a pseudo-Anosov flow ˆ in M . Then ˛
is homotopic into a piece of the torus decomposition of M .

Remarks (1) Clearly this is not true for regular periodic orbits: for example there are
(non-Seifert) graph manifolds with Anosov flows which are transitive, for example the
flows constructed by Handel and Thurston [31], which are actually volume preserving.
Then there are dense orbits and hence periodic orbits which are not homotopic into any
Seifert fibered piece.

(2) If M is atoroidal, Lemma 6.8 is trivial.
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(3) Notice that ˛ may be homotopic into several pieces. If that happens then ˛ is
homotopic into a torus T which is boundary of two pieces. Finally, if ˛ is homotopic
into a third piece, then ˛ has to be homotopic through a piece P . The piece P

cannot be atoroidal, because an atoroidal piece is a cusped hyperbolic manifold and
consequently acylindrical. Hence P is Seifert and since ˛ is homotopic to two distinct
boundary components of P , it follows that ˛ and the fiber of P have common powers.
In that case the piece P has to be a periodic piece. Then ˛ is homotopic into any other
piece P1 which intersects P . Notice that ˛ cannot be homotopic into any additional
piece: otherwise ˛ would be homotopic through a second Seifert piece P 0 . That would
force the fibers in P and P 0 to be the same, which is impossible.

Proof of Proposition 6.9 Let T1; : : : ;Ta be the cutting tori in a torus decomposition
of M with complementary components P1; : : : ;Pb , which are either Seifert fibered
or atoroidal. By a small isotopy assume that ˛ is transverse to the collection fTig. Fix
a lift z̨ to �M and let g in �1.M / be associated to ˛ so that g.z̨/D z̨ . Consider the
collection of all lifts of the fTig.

Case 1 Suppose that z̨ eventually stops intersecting lifts of the fTig.

Since ˛ is closed, this shows ˛ is contained in a component of the complement of fTig.

Case 2 Suppose that z̨ keeps intersecting a fixed lift zT in points pk D
ẑ

tk
.p0/

where tk converges to infinity.

Let V be the tree, whose vertices are the components �M� (lifts of fTig) and edges
are the lifts of fTig. Then �1.M / acts on V .

By transversality, the intersection of ˛ and fTig is finite. Up to subsequence we may
assume that �.pk/ is a single point. The projection to M of ẑ Œtk ;tk0 �

.p0/ is the orbit ˛
being traversed a number n of times. This shows that ˛n is freely homotopic into
some torus Ti . It follows that gn preserves an edge in V and so does not act freely
on V . Therefore g also does not act freely on V . There are two options: If g acts as
an inversion in the tree V , then it fixes an edge associated to a lifted torus zT� and then
˛ is homotopic into the torus T� D �. zT�/. Then we are done. Otherwise g fixes a
vertex in V and hence ˛ is homotopic into a piece of the torus decomposition.

Case 3 z̨ intersects distinct lifts zT j ; j 2N of elements in fTig.

By the proof of Case 2, it follows that the assumption of Case 2 does not hold.
Therefore z̨ eventually stops intersecting any single lift zT of one of the fTig. In
addition if distance between z̨ and any single lift zT does not converge to infinity as
time goes to infinity then: up to subsequence we may assume there are pk in z̨ with
d.pk ; zT / bounded. We may then assume that �.pk/ converges in M and up to a small
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adjustment and subsequence we may assume that �.pk/ is constant. In addition pk

is a bounded distance from zk in zT . Up to another subsequence assume that �.zk/

converges in M and since �.T / is compact, we may assume that �.zk/ is constant.
The projection of ẑ Œtk ;tk0 �

is ˛ being traversed n times. The projection of an arc in zT
from zk to zk0 is a closed curve in T . Up to another subsequence assume that the
geodesic arcs from zk to pk have images in M which are very close. This produces a
free homotopy from ˛n and a closed curve in �.T /. Now the proof is exactly as in
Case 2.

Hence assume that d.pk ; zT / converges to infinity for any fixed lift zT . If z̨ keeps
returning to the same component of �M� (lifts of fTig), then some power of ˛ preserves
this component and an argument as in Case 2 finishes the proof.

Finally we can assume that z̨ crosses zT j for each j and eventually switches from
one component of �M � zT j to the other. There is a smallest separation distance
a0 > 0 between any two lifts of fTig. Homotope each Ti to a Birkhoff torus, union
of Birkhoff annuli fBmg and lift these homotopies to �M . Each point is moved at
most a constant a1 . Fix j and let j 0 vary. The fact that d. zT j ; zT j 0/ goes to infinity
means that z̨ has to cross some lift zBm of some Birkhoff annulus Bm and cannot be
contained in zBm . But this is a contradiction because the orbits intersecting the interior
of a Birkhoff annulus are never singular. This finishes the proof of Proposition 6.9.

Remark One can also prove this by using group actions on trees more extensively:
the element g either fixes a point, or g has an inverted edge or acts freely on V . To use
this, further work is needed, for instance in the first case, one needs to find a vertex p

in V , fixed by g so that z̨ has a point in the region associated to p and similarly for
the other cases.

Theorem 6.10 Suppose that M is orientable and that ˆ is not product. Let T be an
embedded, incompressible torus in M . Then either

(1) T is isotopic to an embedded Birkhoff torus,

(2) T is homotopic to a weakly embedded Birkhoff torus and contained in a periodic
Seifert fibered piece, or

(3) T is isotopic to the boundary of the tubular neighborhood of an embedded
Birkhoff–Klein bottle contained in a free Seifert piece.

Proof Let T 2 denote the 2–dimensional torus. Let ‡0W T
2!M be an immersed

Birkhoff torus homotopic to T and let T� D ‡0.T
2/, using Proposition 6.7. Let C

be the chain of lozenges invariant under �1.T / and associated with the torus T � (a
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priori there could be two �1.T /–invariant chains, if they are scalloped). The proof of
this theorem has similarities with that of Proposition 6.4, but notice that some of the
conclusions are opposite.

Step 1: C is simple The proof of Step 1 does not assume that M is orientable.

Suppose this is not true. Then there is a corner orbit ˛ in C and f in �1.M / with
f .˛/ D ˇ intersecting the interior of a lozenge in C . Let g be a generator of the
isotropy group of ˇ . Let zT� be the lift of T� to �M which is invariant under �1.T /.
Similarly let zT be the lift of T invariant under �1.T /. Then ˇ intersects zT� in a
single point p . Let ˇC , ˇ� be the two rays of ˇ defined by p . Notice that zT� is
embedded and separates �M . Hence ˇC and ˇ� are in distinct components of �M � zT� .
In addition zT also separates �M .

Assume that ˇC and ˇ� are not at bounded distance from zT� : for any R> 0, there
are points q�

R
, qC

R
in ˇ� , ˇC , each at distance greater than R from zT� . But T

and T� are freely homotopic, hence there is some R0 such that zT is contained in the
R0 –neighborhood of zT� . It follows that for any R> 2R0 , any path joining a point q�

to a point qC such that d.q˙; q˙
R
/ <R=2 must intersect zT .

On the other hand, the closed orbit �.ˇ/ is freely homotopic in M to a curve in T .
But T is embedded. If T is two sided then �.ˇ/ is freely homotopic to a curve disjoint
from T (it is crucial that T is embedded here). If T is one sided then .�.ˇ//2 is
freely homotopic to a curve disjoint from T . In either case lift this to a homotopy
from ˇ to a curve ˇ1 disjoint from zT . The homotopies from ˇ to ˇ1 move points a
bounded distance. Hence, there is a positive number r such that for every R> 0, there
are points m˙

R
on ˇ1 such that d.m˙

R
; q˙

R
/ < r . Take R> 2R0 , R> 2r : according

to the above, the segment in ˇ1 between m�
R

and mC
R

must intersect zT . This is a
contradiction.

Therefore, one of the two rays (say ˇC ) is at bounded distance less than or equal to a1

from zT� . Consider a sequence of points pi D gni .p/ in ˇC which all project to the
same point �.p1/ in M .

Let qi in zT� a distance less than or equal to a1 from pi . Up to subsequence assume
that �.qi/ converges in M . Since T� is compact, we can assume that �.qi/ is constant.
Now up to another subsequence assume that there are geodesic segments ui in �M
from pi to qi so that �.ui/ converges in M . Again by small adjustments we can
assume that �.ui/ is constant for i big. Consider the following closed curve in �M :
a segment in ˇ from pi to pk , k > i , then the segment uk , then a segment in zT�
from qk to qi and finally a segment from qi to pi along ui . Since �.ui/D �.uk/

this projects to a free homotopy from a power of the loop �.˛/ to a closed curve in T� .
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In other words, gn.qi/D qk for some n in Z. Hence for some n different from 0, gn

leaves zT� invariant.

But this implies that gn leaves C invariant. Since gn.ˇ/D ˇ , then gn leaves invariant
the lozenge C of C containing ˇ in its interior and gn is not the identity. But then gn

does not leave invariant any orbit in the interior of C , a contradiction to it leaving ˇ
invariant. This finishes the proof of Step 1.

Let G D �1.T /. As we already observed, if this Birkhoff torus is not embedded, some
element g of the set .�1.M /� �1.T // maps a corner of C to a corner of C . Our
strategy is to enlarge G to a bigger subgroup of �1.M /, containing all these elements.

Let G denote the tree G.˛/ where ˛ is a corner in C . The chain C corresponds to a
G –invariant line in G . Let H be the subset of �1.M / of those h such that there is a
vertex ˇ of G such that h.ˇ/ is also a vertex of G . In particular G.ˇ/DG.˛/DG.h.ˇ//.
Then, for every h in H ,

h.G.˛//D h.G.ˇ//D G.h.ˇ//D G.˛/;

hence H is the stabilizer of G in �1.M /. In particular H is a subgroup of �1.M /.

Let H0 be the subgroup of H acting trivially on G : H0 is a cyclic normal subgroup
of H , generated by an element h0 . Let H 0 be the centralizer of H0 (or h0 ) in H : it
is a normal subgroup of H of index at most 2. Since G leaves invariant the collection
of corners of C , it contains an element hn

0
of H0 with n¤ 0. Since G is contained

in H , for every g in G we have gh0g�1 D h˙1
0

. On the other hand, G is abelian,
hence we have ghn

0
g�1 D hn

0
, and G �H 0 .

Step 2: The case where H 0 is abelian Then H 0 has no torsion, contains G Š Z2 ,
and is contained in �1.M /, the only possibility is H 0 Š Z2 . Then G �H 0 has finite
index in H 0 : it follows that C is H 0–invariant (Corollary 5.6 ). Now since H 0 is normal
in H and H 0 Š Z2 , the same result shows that C is H –invariant. By Lemma 5.2, H

is isomorphic to Z2 or �1.K/, since it contains a Z2 . This is the crucial conclusion
in this case.

Apply Proposition 6.7 to H using that C is simple and that elements of �1.M /

preserving a lozenge of C are in H : it implies that there is a weakly embedded closed
Birkhoff surface ‡1W S!M with .‡1/�.�1.S//DH . It follows from the discussion
following Lemma 6.8 that ‡1W S!M is an embedding, since any element of �1.M /

mapping a corner of C to a corner of C lies in H .

Suppose first that S is a torus, that is, H is isomorphic to Z2 . If S is one sided,
then M is nonorientable, contrary to hypothesis. Therefore there is a neighborhood N

of S homeomorphic to S � Œ0; 1�. As the initial embedded torus T �M is homotopic
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into N , it now follows from classical 3–dimensional topology [32] that T is homotopic
and in fact isotopic to the embedded Birkhoff torus ‡1.S/. In other words, T is isotopic
to an embedded Birkhoff torus: we are done here. This is case (1) of the statement of
the theorem.

Consider now the case where S is the Klein bottle. Since M is oriented, ‡1.S/

admits a tubular neighborhood U in M diffeomorphic to the nontrivial line bundle
over K . The boundary of U is an embedded torus T 0 . As above T is homotopic
into U and has to be homotopic and in fact isotopic to T 0 .

Now observe that U is a Seifert submanifold which is not a product of surface cross
interval. It follows that U is contained in a Seifert piece P of the torus decomposition
of M (that is S is not in the boundary of two intersecting atoroidal/hyperbolic pieces).
If P is periodic then Proposition 6.7 implies that T is homotopic to a weakly embedded
Birkhoff torus; this is case (2) of the statement of the theorem. If P is not periodic
then we are in case (3). We are done in this case.

Step 3: The case where H 0 is not abelian Since H 0 , contained in the centralizer
of H0 , is not abelian, [34, Lemma VI.1.5] shows that there is a Seifert fibered piece P

of the torus decomposition of M so that H 0 � �1.P / (after conjugation if necessary).
Let t 2 �1.P / be a representative of the regular fibers of a fibration of P . Then the
centralizer Z.t/ of t in �1.P / (the characteristic subgroup) has index at most two
in �1.P /. Observe that we have G �H 0 � �1.P /. Therefore T is homotopic, hence
isotopic, to an embedded torus in P . But incompressible tori in P are vertical: it
implies that t lies in G , hence G �Z.t/.

Assume first that the action of t on G is free. Then C is the unique axis of t in G .
Since H 0 is contained in �1.P /, some finite index normal subgroup H 00 of H is
contained in Z.t/. For any g in H 00 , tg.C/ D g.C/ so by the uniqueness above,
g.C/D C , hence C is the unique chain in G preserved by H 00 . Since H 00 is normal
in H then again it follows that H preserves C . Now we conclude almost as in
Step 2: if H is isomorphic to Z2 then H 0 is abelian, contradiction to assumption in
case (3). If H is isomorphic to �1.K/ then T is isotopic to the boundary of a tubular
neighborhood of an embedded Birkhoff–Klein bottle contained in P , which can be
periodic (case (2)) or free (case (3)). Is the periodic case possible? That is, can t

act nonfreely on O if it acts freely on C? This is possible if C is a scalloped region,
preserved by t and t has fixed points in the boundary of the scalloped region.

Assume now that t has a fixed point in G . Then P is periodic, and some nontrivial
power tk lies in H0 . Since t 2G , the line in G corresponding to C is preserved by t .
If t acts freely on C , it acts on it by translation, and it contradicts our hypothesis that t

acts non-freely on G . Since there is f in G acting freely on C and f t D tf it follows
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that every corner of C is a fixed point of t . According to Proposition 2.16(4), t lies
in H0 .

The transformation t fixes every corner of G and only those points in O . It follows
that �1.P / preserves G . Therefore, H0 is a cyclic normal subgroup of �1.P /. By
Hempel [32, Theorem 12.8] H0 is contained in the group generated by a regular fiber of
a Seifert fibration of P . A little bit of care is needed if P admits two nonisotopic Seifert
fibrations. Here P is compact, orientable and with boundary. [33, Lemma VI.20] states
that the free homotopy class of the fiber is unique unless P is homeomorphic to (1)
D2� Œ0; 1�, (2) T 2� Œ0; 1� or (3) a twisted I –bundle over the Klein bottle. But P is a
piece of the torus decomposition of an irreducible manifold, so P cannot be D2� Œ0; 1�.
If P were T 2 � Œ0; 1� it would be included in a peripheral part of an adjoining Seifert
piece, that is, this cannot happen either. The only possibility is that P is a twisted
I –bundle over the Klein bottle. There are two Seifert fibrations of P in this case. But
since t lies in H0 it now follows that H0 is the group generated by t and therefore
H0 is contained in G .

On the other hand if P is not as in (3), then the Seifert fibration in P is unique up to
isotopy. It now follows that H0 � hti and so H0 is contained in G as well.

Let now g be an element of �1.M / preserving a lozenge in C . According to
Proposition 2.16(4), g lies in H0 , hence in G . Since C is simple, the additional
properties in Proposition 6.7 are satisfied: it follows that T is homotopic to a weakly
embedded Birkhoff torus, contained (up to homotopy) in P . We are in case (2) of
Theorem 6.10. Notice that in general there may be identifications in the boundary
orbits as already described. A priori any of problems (I), (II) or (III) described after
Lemma 6.8 may occur. This finishes the proof of Theorem 6.10.

Step 1 of this theorem proves the following.

Corollary 6.11 Suppose that T is an incompressible, embedded torus or Klein bottle
in M which admits a pseudo-Anosov flow ˆ. If C is a chain lozenges invariant under
�1.T / then C is simple.

Step 1 proves this for tori. The same proof of Step 1 can be applied to Klein bottles.

Remark We remark that tori homotopic to a double cover of a Birkhoff–Klein bottle
appearing in Step 2 and 3 actually occur in the free case and in the periodic case too.
The periodic case occurs for example in the Bonatti–Langevin flow [9]. An example of
the free case was described in the remark at the end of Section 4.
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Remark The hypothesis of orientability for M in Theorem 6.10 occurs because
several results for torus decompositions and maps of Seifert spaces into manifolds are
only clearly stated in the literature for orientable manifolds, for example [34].

7 Periodic Seifert fibered pieces

This section is devoted to the proof of Theorem B; in particular we assume that M is
orientable. Let P be a (nontrivial) Seifert fibered piece of a 3–manifold M with a
pseudo-Anosov flow ˆ. We will analyse here only the case that the regular fiber h0

in �1.P / does not act freely on O , that is P is a periodic piece. By Theorem 4.1 this
implies that P is not all of M . We start by constructing a canonical tree of lozenges
associated to P . First consider the action on O : there is ˛ in O with h0.˛/D˛ . Let T
be the fat tree G.˛/. Given g in �1.P /, then gh0g�1 D h˙1

0
so h0g.˛/ D g.˛/

and g.˛/ is in G.˛/. It follows that T D G.˛/ is a �1.P /–invariant tree. The kernel
of the �1.P /–action on T is a normal cyclic subgroup H0 of �1.M /, which contains
a nontrivial power hn

0
of h0 (cf Proposition 2.16).

Notice that there is at least a Z˚Z in �1.P / so there are elements in �1.P / acting
freely on T . We now go through several steps to produce a normal form of the flow
in P .

Pruning the tree T We first construct a subtree of T which is still �1.P /–invariant
and has no vertices of valence one. Given g in �1.P / acting freely on T let A.g/

be the axis of g in T . Let now T 0 be the union of all axes A.g/, for all g in �1.P /

acting freely on O . Clearly T 0 is �1.P /–invariant and has no vertices of valence one,
since they are all in axes. All that is left to prove is that T 0 is connected and hence a
subtree.

Let c0; c1 in T 0 so that there are f;g in �1.P / with c0 in A.f /, c1 in A.g/.
If A.f /;A.g/ intersect, then there is a path in T 0 from c0 to c1 . Suppose then
that they do not intersect. There is a well-defined bridge in T from A.f / to A.g/

denoted by Œx;y�; it is a closed segment intersecting A.f / only in the extremity x

and intersecting A.g/ only in y . Let z D f �1.x/. Consider the element gf which
is in �1.P /. Then x separates z from y and so separates z from gf .x/ which is
in gA.f /. Also gf .z/Dg.x/ separates x from gf .x/ which is in gA.f /. It follows
that z;x;gf .z/ and gf .x/ are all distinct and linearly ordered in a segment contained
in T . Hence gf acts freely on T and x;gf .x/ are in A.gf /. In particular x and y

are in A.gf / contained in T 0 so there is a path in T 0 from c0 to c1 . This shows
that T 0 is connected.
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Weakly embedded Birkhoff annuli Suppose there is a vertex q of T 0 and an el-
ement g of �1.M / (necessarily not in �1.P /) and a lozenge C in T 0 with g.q/

intersecting the interior of C . This is called condition (I). The lozenge C is part of an
axis A.f / for some f in �1.P /. By the remark after Proposition 6.4, it follows that
the subtree T 0 is a string of lozenges, which is denoted by C . Then f; h2n

0
generate

a Z˚Z subgroup G of �1.M / preserving this string of lozenges. Moreover, q is a
vertex of T 0 and g.q/ is in the interior of C . Proposition 6.4 again implies that G

is also a subgroup of the fundamental group of a free Seifert piece P 0 . Therefore the
pieces P and P 0 are adjacent and there is a boundary torus T of both of them so that G

is a subgroup of �1.T /. In particular �1.T / also preserves the string of lozenges C .
But now T is embedded, so Corollary 6.11 implies that C is simple, contradiction.
This shows that condition (I) cannot happen.

We first prove that each lozenge in T 0 corresponds to a weakly embedded elementary
Birkhoff annulus in M . As in the proof of Theorem 6.10, we consider the stabilizer H

in �1.M / of T 0 . The action of H on T 0 is not faithful, since the kernel contains a
nontrivial group. Therefore, H contains an infinite cyclic normal subgroup but is not
cyclic. Again by [34, Lemma VI.1.5] H is contained (up to conjugation) in �1.P

0/

for some Seifert fibered piece P 0 of M . But H also contains �1.P /. It follows that
P D P 0 and H D �1.P /. In addition the same arguments show that the stabilizer
in �1.M / of T is also �1.P /.

Suppose that g in �1.M / maps a vertex ˛ of T 0 to a vertex of T 0 . Hence it also
sends a vertex of T to a vertex of T . In that case we already observed during the
proof of Theorem 6.10 that g stabilizes T and hence belongs to �1.P /. We can now
apply Proposition 6.7 to conclude that each lozenge in T 0 corresponds to a weakly
embedded elementary Birkhoff annulus in M .

Weakly embedded union of Birkhoff annuli We want to show that the union of the
Birkhoff annuli can be adjusted to be embedded in the interiors.

Consider the quotient of the tree T 0 by �1.P /. It is a graph, that we denote by A.
Since it is a graph, the fundamental group of A is a free group, and since �1.P / is
finitely generated, then the fundamental group of A has finite rank. Moreover, by
construction, A does not contain an infinite ray (since every element of T 0 lies on the
axis of some element of �1.P / acting freely on T 0 ). In particular this is one reason
why we do the pruning T to T 0 . It follows that A is a finite graph.

Consider a fundamental domain of the action of �1.P / on T 0 . We lift every lozenge
of this fundamental domain to a Birkhoff band in �M , and then lift all other lozenges
in T 0 in a �1.P /–equivariant way. By the previous subsection we can choose the
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Birkhoff bands so that the union projects in M to a union of weakly embedded Birkhoff
annuli in M . Once more, we can then use cut and paste techniques of [3] to have the
union of the Birkhoff annuli to be embedded in the interior of the annuli, with possible
identifications in the boundary orbits.

Flow adapted neighborhoods of periodic pieces Let B be the union of the weakly
embedded elementary Birkhoff annuli as in the previous item. Let U be the neigh-
borhood of B obtained by taking a tubular neighborhood of every periodic orbit
contained in B (the “tangent periodic orbits”), attaching to them tubular neighborhoods
of the elementary Birkhoff annuli. Then U is a submanifold of M with boundary.
Topologically, this corresponds to the following: start with a finite collection of solid
tori and attach several handles diffeomorphic to Œ�1; 1�� Œ�1; 1��S1 , where in each
handle, f0g� Œ�1; 1��S1 is contained in the corresponding weakly embedded Birkhoff
annulus. Handles attached to a given solid torus (corresponding to one of the tangent
periodic orbits) are pairwise disjoint. One can perform a Dehn surgery on U along
tangent periodic orbits so that now the handles are attached along longitudes of the
solid tori: we get a 3–manifold U 0 which is clearly a circle bundle over a surface
with boundary †. We can think of A as naturally embedded in the interior of †.
Moreover, † retracts to the graph A. Notice that U 0 is not contained in any way
in M .

It follows that U is diffeomorphic to a Seifert manifold, obtained by Dehn surgeries
around fibers in U 0 above vertices of A. More precisely, there is a Seifert fibration
�W U !†� where †� is an orbifold, whose singularities correspond to some vertices
of A. The singular fibers of � are the tangent periodic orbits where the attached
Birkhoff annuli wrap more than once around this orbit.

Now observe that U is the projection of a “tubular neighborhood” in �M of a countable
union Birkhoff bands. This union is homeomorphic to the product of the tree T 0 by R.
This neighborhood is therefore simply connected. This implies that U has incompress-
ible boundary in M . Hence U is a Seifert submanifold of M with fundamental group
isomorphic to P (in the appropriate conjugacy class). Therefore, P is isotopic to U .
This completes the proof of Theorem B.

Remark The only periodic orbits contained in U correspond to the projections of the
vertices of T 0 .

Here is why: The interiors of the finitely many Birkhoff annuli in question are transverse
to ˆ and so orbits intersecting these interiors exit U if U is sufficiently small. The
other orbits are in the solid tori neighborhoods. If these neighborhoods are small enough
then the only orbits entirely contained in them are the core orbits.
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In particular a singular orbit 
 cannot intersect the interior of the Birkhoff annuli,
hence either 
 is one of the periodic orbits in U or can be chosen disjoint from U if U

is small. Previously we had proved that a singular orbit is homotopic into a piece of the
torus decomposition. In a graph manifold, if a singular orbit is homotopic into a free
piece Z , we conjecture that it must be homotopic into the boundary of the piece Z .

8 New classes of examples of pseudo-Anosov flows in graph
manifolds

In Section 4 we described some new examples of (one-prong) pseudo-Anosov flows.
In this section we will describe two new classes of examples, which are extremely
interesting: The first class consists of actual pseudo-Anosov flows. The examples in
the second class, which is a much larger class, may have one-prongs.

(1) Consider the class of examples (1) of Section 4. Each example had a 2–fold
branched cover which is the geodesic flow in T1S , where S is closed, hyperbolic and
has a reflection along finitely many geodesics. For simplicity we assume here that S

has a single closed geodesic ˛ of symmetry. Let N be the quotient manifold. In N ,
there is a quotient annulus C which is the branched quotient of the unit tangent bundle
of ˛ . Now for any integer n> 0 we can do the n–fold branched cover of N along C .
If nD 2 this recovers the original geodesic flow. Otherwise the boundary of C lifts to
two closed orbits which are n–prongs. Let Mn be this n–fold cover and C 0 be the lift
of the annulus C . The set C 0 cuts Mn into Seifert fibered pieces, each a copy of T1S 0 ,
where S 0 is one component of S cut along ˛ (notice both components of S �˛ are
isometric by the reflection along ˛ ). Each of these components is a component (up
to isotopy) of the torus decomposition of Mn . In each of these components the fiber
acts freely on the orbit space, so these are free pieces. There is one additional Seifert
component which is a small neighborhood of C 0 . There is a planar graph X which
has two vertices (corresponding to the two directions on the geodesic ˛ ) and n edges
from one vertex to the other. The set C 0 is homeomorphic to X �S1 . This is a Seifert
fibered piece of Mn , where the fiber corresponds to a periodic orbit; this is a periodic
piece.

This highlights an important fact: there are examples of graph manifolds M supporting
pseudo-Anosov flow ˆ, so that in the torus decomposition of M there are periodic
pieces glued to free pieces.

(2) The next class of examples will be on graph manifolds where all pieces are periodic.
It is much more involved and much more interesting.
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In the previous section we proved that the periodic Seifert pieces of orientable manifolds
with pseudo-Anosov flows can be obtained as neighborhoods of unions of Birkhoff
annuli. Here we will introduce standard models for certain neighborhoods of Birkhoff
annuli and then use them to produce many examples.

Model of neighborhood of an embedded Birkhoff annulus Let I D Œ��=2; �=2�.
Let N DI�S1�I with coordinates .x;y; z/. Think of S1 as Œ0; 1�=0�1. Convention:
the increasing or positive direction in S1 corresponds to increasing in Œ0; 1�.

For every positive real number �, we consider the C1 vector field X� defined by

Px D 0;

Py D � sin.x/ cos2.z/;

Pz D cos2.x/C sin2.z/ sin2.x/:

Let  � be the local flow in N generated by X� . It has the following properties.

� It preserves the fibration by circles .x;y; z/ 7! .x; z/.

� There are only two closed orbits:

˛1 D f��=2g �S1
� f0g; ˛2 D f�=2g �S1

� f0g:

In ˛1 the flow is decreasing the y coordinate (in the flow forward direction) and
in ˛2 the flow is increasing the y coordinate. Hence as oriented orbits, ˛1 is
freely homotopic in N to .˛2/

�1 .

� The flow is incoming and perpendicular to the boundary I �S1 � f��=2g and
outgoing and perpendicular to I�S1�f�=2g. The flow is tangent to @I�S1�I .

� The annuli x D constant are flow saturated.

� The orbits in f��=2g � S1 � f��=2g enter N and spiral towards ˛1 in the
negative y direction. Hence in N , W s.˛1/ D f��=2g � S1 � Œ��=2; 0�. In
f��=2g�S1�.0; �=2� the orbits spiral (flow backwards) to ˛1 in the positive y

direction, so W u.˛1/D f��=2g �S1 � Œ0; �=2�. We have a similar behavior
(with the y coordinate increasing when moving flow forward) in f�=2g�S1�I .

� The flow is invariant under any rotation in the y coordinate: .x;y; z/ !

.x;y C a; z/ where the y coordinate is mod 1. The flow is invariant under

.x;y; z/! .�x;�y .mod 1/; z/. This is symmetry (I).

� Let F0D .��=2; �=2/�S1�f��=2g;F1D .��=2; �=2/�S1�f�=2g, both
parametrized by the x;y coordinates. In .��=2; �=2/�S1�I all orbits enter N
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in F0 and exit N in F1 . An easy computation shows that the variation of time
spent between the entrance and the exit is

�t D
�

j cos.x/j
:

There is an induced homeomorphism f W F0!F1 given by the exit point in the
x;y coordinates. It has the form

f .x;y/D .x;yC a.x//;

where the function a.x/ is C1 and depends only on x . It can also be computed:

a.x/D ��Œtan.x/� tan.x=2/�:

Observe that a.0/ D 0. In fact, the orbits in the center annulus have y co-
ordinate constant. Also, a.x/ converges to minus infinity when x converges
to ��=2 and a.x/ converges to infinity when x converges to �=2. In addition,
a.�x/D�a.x/. Finally,

a0.x/D ��
�

1
2
C .tan2.x/� 1

2
tan2.x=2//

�
�
��

2
:

By the formula above, the map f is a nonlinear shearing in the y direction. The bigger
the � the stronger the shearing.

One canonical Birkhoff annulus associated to the block N is BD Œ��=2; �=2��S1�0.
If ˛1; ˛2 are traversed in the positive flow direction then B is a free homotopy from ˛1

to .˛2/
�1 . The flow is transverse to B outside of ˛1; ˛2 . The formulas above are

convenient and give explicit models, but they are not essential: Up to topological
equivalence any embedded Birkhoff annulus has a neighborhood with this description.

y

z

x

Figure 4: The local flow .N;  �/ . The top and bottom are identified, that is,
the vertical coordinate y is defined modulo 1 .
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Gluing the tangential boundaries of the blocks Observe that the same formula
defines a vector field zX� on N� WDR�S1 � I , which is 2� –periodic on the coordi-
nate x . Actually, due to the invariance of X� under the symmetry (I), we see that the
transformation �.x;y; z/ D .xC �;�y; z/ preserves zX� . We can take the quotient
of N� by the group generated by � is a Seifert manifold N1 , homeomorphic to the
product K � I , where K is the Klein bottle. The induced local flow has a single
1-prong singular orbit: N1 has two boundary components, one which is a incoming
Klein bottle, the other an outgoing Klein bottle.

More generally, we can take the quotient of N� by the group generated by �k , where k

is a positive integer. We get a Seifert 3–manifold Pk , diffeomorphic to K � I or
T 2 � I (according to the parity of k ), with one incoming boundary component and
one outgoing component, containing exactly k singular 1-prong periodic orbits.

Now, more generally, we can glue several copies of .N;X�/ in a much more involved
way. The blueprint encoding such a gluing will be a finite fat graph .X; †/ that is, a
graph embedded in the interior of a surface † with boundary, such that X is a retract
of †; here, we do not require that † be oriented.

We moreover require two additional conditions. Basic topology of surfaces implies
that each component A of †�X is a half open annulus homeomorphic to Œ0; 1/�S1 .
Then @AD 
 is a component of @†. If e is an edge of X we define “sides” of e as
follows: if p is an interior point of e and D is a small disk around p intersecting e in
a properly embedded arc, then D� e has two components. Each such component B

defines a “local side” of e in †. Then B is contained in an annulus component A as
above and we say that the side of e associated to B is the boundary curve 
 of A.
The two additional on conditional conditions on fat graphs are the following.

(I) The valence of every vertex of X is an even number.

(II) The set of boundary components of † can be partitioned in two subsets so that
for every edge e of X , the two sides of e in † lie in different subset of this
partition.

Use as labels “incoming” and “outgoing” for this partition of the set of boundary
components of †. Now every edge has an incoming side, and an outgoing side.

Given such information we construct a flow in a 3–manifold. Associate to every
edge e of X a copy Ne of N as above. Then, every incoming boundary component c

of † corresponds to a cyclic sequence of edges .e1; e2; : : : ; ek/. We glue all the
associated Nei

along the stable manifolds f˙�=2g�S1� Œ��=2; 0/ in the same cyclic
order; more precisely, we map every point of coordinate .�=2;y; z/, .z < 0/ in Nei
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to the point of coordinate .��=2;�y; z/ in the following copy N.eiC1/. The result,
for each boundary component c , is a Seifert 3–manifold (with boundary and corner).
The Seifert 3–manifold has interior diffeomorphic to Pk with the unstable manifolds
f˙�=2g � S1 � Œ��=2; 0� and the incoming and outgoing boundaries removed. It
has an incoming boundary component, obtained by gluing copies of closures of the
incoming annulus F0 for each Nei

. This boundary component is diffeomorphic to the
torus if k is even and to the Klein bottle if k is odd. This manifold also has “outgoing”
annular components. Observe that up to diffeomorphism, the result depends only on
the cyclic order .e1; e2; : : : ; ek/.

Next we do the similar gluing along outgoing boundary components, but now gluing
the copies of N along the unstable annuli. The result is a Seifert manifold N.X /,
with incoming and outgoing components, but no tangential boundary components.
Moreover, to every vertex v of X corresponds a tubular neighborhood of the periodic
orbit which is homeomorphic to a solid torus. The flow is obviously homeomorphic to
a p–branched cover of a tubular neighborhood of the singular orbit in P1 ; here 2p is
the valence of v . This is a compact Seifert manifold.

At first it may seem that N.X / is orientable if and only if all the integers k in the
description above are even. This is because if k is even then going around each
transverse boundary component can always be achieved by orientation preserving
gluing maps along tangential annuli. In addition all gluing to produce N.X / is done
tangential boundary annuli. We will have more to say about that at the end of this
section.

By construction, N.X / is equipped with a vector field X� for every � > 0. The
boundary of N.X / is a union of incoming components and outgoing components,
which are tori or Klein bottles. Due to the final process in the construction, this vector
field is not smooth along the vertical orbits corresponding to the vertices of X , except
if the valence of the vertex is 2 or 4, a special situation where we can perform the
gluing so that the vector field is smooth in the neighborhood of the associated singular
orbit. In particular, if all vertices have valence 4, then there is no singular orbit.

This is exactly the case in the Bonatti–Langevin [9] example, where the fat tree X is a
figure eight (with one vertex) embedded in a once-punctured Möbius strip.

Remark Notice that N.X / is a circle bundle over the surface †, with fibers the
vertical circles with constant x , z components. Moreover, the local flow generated
by X� preserves this fibration, hence there is an induced vector field X � on †. The
vector field X � is Morse–Smale. Its singularities are the vertices of X ; it is transverse
to @†. There are three types of nonsingular trajectories of X � :
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� Trajectories in the stable line of a singularity, entering †.

� Trajectories in the unstable line of a singularity, exiting †.

� Trajectories joining two boundary components.

Observe that the data .†;X / is equivalent to the data .†;X �/ up to isotopy.

Gluing the transverse boundary components

The next step is to glue outgoing boundary components to incoming boundary compo-
nents. Observe that these components are naturally isomorphic to boundary components
in the manifolds Nk , and thus admit natural coordinates .x;y/.

Let T 0 be the union of the incoming boundary components and let T be the union of
the outgoing boundary components. Let also

� denote the line field in T or T 0 associated to x being constant:

In order to perform the gluing, we have one obvious condition: there must be the same
number of outgoing and incoming tori, and the same number of outgoing and incoming
Klein bottles.

Under this condition, we can select a map AW T ! T 0 . The only assumption we will
have is that A does not preserve any of the line fields �. Equivalently A does not send
any unstable manifold of the periodic orbits to a curve isotopic into the stable manifold
of a periodic orbit.

Given this condition we first show that there are no components of T which are
Klein bottles. Suppose there is one such component denoted by K1 to be glued to
a component K2 of T 0 . Notice that up to isotopy there are only two foliations by
circles of the Klein bottle K . One foliation has two circles which are orientation
reversing and the nearby leaves cover such a leaf two to one. The leaf space is a
1–dimensional orbifold, with two “boundary” orbifold points of order 2. This is type I.
The other foliation comes from a product foliation by circles of the annulus and gluing
the boundaries by an orientation reversing homeomorphism. This is type II. Since
there are only two such foliations up to isotopy and they are intrinsically different (one
has orientation reversing leaves and the other does not), then: any homeomorphism
between a Klein bottle K and another K0 has to preserve each type up to isotopy.

The construction of the flow shows that the line field � induces foliations of type II
in K1 and K2 . By the above explanation A has to preserve the line field � up to
isotopy, which we do not want. Hence we have the following necessary condition.
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Conclusion In order for the last step to produce a pseudo-Anosov flow, then all the
components of T have to be tori.

Since all components of T;T 0 are tori we can use the natural linear coordinates .x;y/
to choose the gluing map AW T ! T 0 which is linear in the x;y –coordinates on each
component. By gluing T 0 onto T by A we obtain a closed 3–manifold M DM.X;A/

equipped with a family of vector fields Y� . Hence it provides a flow ‰� on M for
each �> 0. The periodic orbits of X� provide a finite number of periodic orbits of ‰�
that we call vertical orbits. Observe that since X� is orthogonal to the boundary, Y� is
smooth outside of the vertical orbits.

Our goal is to prove that, if � is big enough, then ‰� is pseudo-Anosov, perhaps with
one-prongs.

Let lu
0

be the union of the circles in T contained in the local unstable manifolds of the
vertical orbits (they are associated to the circles x D˙�=2, z D �=2 in each block),
and similarly let ls

0
be the union of the circles in T 0 contained in the local stable

manifolds of the vertical orbits. Let ' be the first return map of ‰� from a maximal
subset of T to itself. Its domain is the complement in T of �s

0
DA�1.ls

0
/. For every

n > 0, let �s
n be the preimage of �s

0
by 'n : T n�s

n is the domain of 'nC1 . Each
component of �s

n��
s
0

is a curve in T , intersecting every circle in lu
0

, and spiraling
around two circles in �s

0
. The complement �C of the union �s

1 of all �s
n is the

domain of points where all the positive iterates 'n , .n � 0/ are defined. Observe
that �s

1 is a union of countably many 1–manifolds: the intersection with T of the
stable manifolds of the vertical orbits.

Let C0 be a smooth small cone field on T , centered around �, and constant in
the coordinates x , y . If C0 is small enough, then A.C0/ is a cone field in T 0

whose closure avoids the line field � in T 0 . If in addition � > �0 � 1, that is,
a0.x/� ��=2> a0� 1, then the image of A.C0/ across the fundamental blocks will
be very close to the constant x direction, that is �. This is because A is a linear map,
so A.C0/ is a definite positive distance away from the line field �. In addition if the
shearing is strong enough as above then the first return of A.C0/ will be very close
to the line field �. This implies that whenever ' is defined, then '�.C0/ is strictly
contained in C0 . Moreover, this contraction from C0 inside itself is uniform, since
the bound from below of a0.x/ is uniform. Furthermore: '�.C0/� C0 is close to �,
hence every tangent vector in C0 has a nontrivial y–component, which is uniformly
expanded by the differential of ' . It follows that, again increasing �0 if necessary, all
vectors in '�.C0/ have a norm uniformly expanded under the differential of ' , let us
say have norm at least multiplied by two.
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Similarly, let C 0
0

be a small cone field defined on the entire T , centered around A�1.�/

and constant in the x;y coordinates. If the shearing along the blocks is strong enough
then we can choose C 0

0
so that C 0

0
� .'�1/�.C

0
0
/. In addition as above we can choose

the shearing strong enough so that any vector in C 0
0

has norm multiplied by two
under .'�1/� . It implies that any vector in .'�1/� .C 0

0
/ has its norm divided by two

under '� . We can select the cone fields C0 and C 0
0

so that there are disjoint.

Given these properties, standard arguments (see for example [31]) show that at every
point p of �C , the intersection of all iterates '�n

� .C 0
0
.'n.p/// defines an invariant

direction Es.p/. Vectors in this direction are uniformly exponentially contracted under
the action of '� .

Similarly, at a point p where '�n is defined for every positive integer n, the intersection
of all the iterated cones 'n

�.C0.'
�n.p/// defines an invariant direction Eu.p/ whose

elements are uniformly exponentially expanded under the action of '� .

Consider now more closely the set �s
1 . Let F be a component of the complement

in T of lu
0

: it is a copy of the annulus F1 (from the definition of model neighborhoods
of Birkhoff annuli). The intersection between F and �s

0
(after the gluing by A) is

a union of straight segments, with tangent vectors lying in the cone field C 0
0

, and
joining the two boundary components of F . The second generation curves, that is, the
components of �s

1
D '�1.�s

0
// are obtained by pushing backward the first generation

lines through all blocks. These become curves in T 0 with direction very close to � if
the curves are close to ls

0
. Then apply A�1 : in every annular component F they are

still a union of curves joining the boundary of F , and these curves are nearly horizontal,
that is, with tangent directions inside C 0

0
. Iterating the argument, we get that every

connected component of �s
1 has these properties: in every annular component F , it

is a disjoint union of graphs y D g.x/ of smooth functions, with uniformly bounded
derivative g0 . They are of course all included in the stable manifold of vertical orbits.

Claim �C has empty interior.

This is the key property. Suppose this is not true and let q be a point in the interior
of �C . Its positive orbit intersects T infinitely many times; hence there is an annular
component F of T � lu

0
visited infinitely many times.

Consider now all paths c in Int.�C/, with tangent directions contained in C0 . Due to
the description above, the length of these paths is uniformly bounded from above.

On the other hand, let c be such a path containing q . There are infinitely many
iterates 'nk .q/ contained in F . Since c is connected, and since the image of '
avoids lu

0
, the paths 'nk .c/ are all contained in F\Int.�C/. But they all have tangent
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vectors contained in C0 as '�.C0/� C0 , and their length is exponentially increasing
as proved above: contradiction. The claim is proved.

It follows that �s
1 is dense. In every annular component F , every point p is a limit of

points pi lying in �s
1 , which is in the graph of a function gi . We may assume that pi

are in different components of �s
1 and that these components are nested. Recall that

every component of �s
1\F is the graph of a function g with bounded derivative and

therefore uniformly Lipschitz. The Arzelà–Ascoli Theorem implies that gi converge
to a Lipschitz map g

p
1 whose graph contains p . First the Arzelà–Ascoli Theorem

implies the convergence of a subsequence, but the nested, disjoint condition implies
the convergence of the whole sequence. It follows that F is foliated by graphs of these
Lipschitz functions.

We claim that every g
p
1 is C 1 . In order to prove that, first observe that since the

set �s
n of iterated stable curve of generation n is locally finite inside F , we can assume

that for every n, the graph of gn lies in an element of �s
1 n�

s
n , meaning that every

iterate 'k.q/, for 1� k � n and every q in the graph of gn , is well-defined. Hence,
the direction tangent to the graph of gn at q , which is obviously contained in C 0

0
.q/,

is actually contained in '�n
� .C 0

0
.'n.q///. It means that the uniform control on the

derivative g0n of gn increases with n, so that the sequence of tangent vectors .1;g0n.x//
converges to a vector .1; ˛/ contained in the direction Es.p/. Our claim follows, and
moreover, the curve g

p
1 is tangent to the stable direction Es that we have defined

in �C .

Pushing along the flow, we obtain a foliation ƒs in M of codimension one which is C 1

outside the vertical orbits. Observe that this foliation induces a C 1 one-dimensional
foliation on T . This foliation admits closed leaves (the circles �s

0
) and all other leaves

in T spiral towards these closed leaves. There is no Reeb component.

Reversing the flow direction, we construct a codimension-one foliation ƒu . These
two foliations are transverse to T and T 0 . Moreover, there are transverse one to the
other: indeed, in T , near lu

0
the foliation ƒs is very close to A�1.�/, whereas ƒu

is very close to �. Iterating by powers of ' this works in all of T . Moreover,
the stable (respectively unstable) manifolds of the vertical orbits are leaves of ƒs

(respectively ƒu ), and their union is dense in M . The foliations ƒs and ƒu are the
natural candidates for being the stable and unstable foliations of ‰� .

Let q be a point in T . If q is in �s
1 , ie the stable manifold of a vertical orbit, then

the leaf of ƒs containing q is obviously in the stable manifold of q : for t big enough,
the vectors tangent to ƒs.q/ at q are divided at least by two by the differential of ‰t

�
.
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Now assume that q lies in �C , ie that all iterates 'n.q/ are defined. Vectors tangent to
the leaf of q lies in C 0

0
.'n.q///, hence are exponentially contracted. It follows that ƒs

is the stable foliation for ‰� , and similarly, ƒu is the unstable foliation.

Conclusion There are stable and unstable foliations of ‰� , which is a (possibly
one-prong) pseudo-Anosov flow.

Observe that the flow is a 1–prong pseudo-Anosov flow if and only if X admits vertices
of degree 2. If there are only 2–prong orbits before the last gluing, ie if all vertices
of X have valence 4, then ‰� is an Anosov flow. If there are no 1–prong orbits,
then ‰� is a pseudo-Anosov flow.

This proves Theorem C.

Remark Notice that this produces infinitely many examples of pseudo-Anosov flows
in nonorientable graph manifolds. These are obtained by appropriate arrangements of
orientation reversing gluing maps from tori T to T 0 .

An interesting subclass of the class of flows constructed here is the class where the
graph X is a circle: all the vertices have degree two, that is all the vertical orbits are
1–prong. Observe that condition (II) implies that the surface † must be an annulus.
The intermediate gluing N.X / is then one of the manifolds Nk . The resulting manifold
M.X;A/ is then a torus bundle over the circle (k must be even by the discussion
above).

Since the only requirement on A is that it does not preserve the vertical direction, we
obtain in particular the following.

Corollary 8.1 In any torus bundle over S1 which is not T 3 there are 1–prong pseudo-
Anosov flows with any even number of 1–prong orbits.

In particular notice that there are infinitely many one-prong such examples in nil
manifolds. The fundamental groups of these manifolds have polynomial growth as
opposed to exponential growth, which is obtained by taking a hyperbolic linear map A.

Remark In the construction of periodic Seifert fibered pieces in this section the
following happens: For every vertical orbit ı in the piece and for every quadrant W

associated to ı , then W contains a lozenge Z with a corner in ı . This is not true for
every periodic Seifert fibered piece with respect to a pseudo-Anosov flow. It follows
that the construction in this section does not attain all possible periodic Seifert fibered
pieces. In particular in the construction in this section the neighborhoods of the periodic
pieces always have boundaries which are transverse to the flow. This does not occur in
general periodic pieces. For instance it does not occur for the class of examples (1) in
the beginning of this section.
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Dehn surgery Once the examples in family (2) are constructed, then one can perform
any Dehn surgery on the vertical orbits. As long as the new meridian is not the original
longitude, the resulting flow will be a (possibly one-prong) pseudo-Anosov flow. In
addition each middle step manifold is still Seifert fibered, so the resulting manifolds
are still graph manifolds. This tremendously expands the class of examples in graph
manifolds.

Figure 5: A fat graph surface generating a Seifert piece N.X / with one sided
incompressible tori, hence N.X / is nonorientable.

Orientability of the manifolds N.X/ in the middle gluing step Here we produce
some examples so that N.X / has all boundary components tori (hence orientable) and
still N.X / is not orientable. Before we describe the examples, recall that a cycle in X

corresponds to a chain of Birkhoff annuli in N.X /. If the cycle has even length then
the orientations agree in the end and we obtain a Birkhoff torus in the corresponding
manifold N.X /. If the cycle has odd length we obtain a Birkhoff Klein bottle.

For the first example consider the fat graph in Figure 5. The graph X has 2 vertices and 4
edges. Each embedded cycle in X has length two, hence each such cycle generates
an embedded, incompressible Birkhoff torus in N.X /. The drawing is a figure of an
immersion of † in the plane, except for the two crosses which mean that the band does
a half twist. It is easy to check that this surface has Euler characteristic �2, the surface
is nonorientable and it has two boundary components. Hence † is a Klein bottle minus
two disks. Each boundary cycle has edge length 4, generating an embedded torus in
the boundary of N.X /. There is one incoming boundary component and one outgoing
boundary component. The direction incoming to outgoing is given by the arrows across
any “fat edge” in the fat graph; see Figure 5. These constructions were introduced by
Russ Waller in [50]. The cycles of length two in X which traverse exactly one band
with a half twist generate a torus in N.X / which is one sided. A half twist exchanges
the boundary sides. There are 4 such tori. Hence N.X / is not orientable. In this

Geometry & Topology, Volume 17 (2013)



Pseudo-Anosov flows in toroidal manifolds 1949

example N.X / is a product bundle over †, that is N.X / is the product (Klein bottle
minus two disks) times the circle.

This is an example where every gluing which follows along a boundary component
preserves orientation, but they also induce other gluings, some of which are orientation
reversing.

Figure 6: A fat graph surface generating a Seifert piece N.X / with two
sided, incompressible Klein bottles, hence N.X / is nonorientable.

The second example has fat graph described in Figure 6. The graph X has 2 vertices
and 6 edges. Four edges go from one vertex to the other and each of the other two edges
are self connecting from a vertex to itself. The surface † is orientable and the figure is
an immersion of † in the plane. The surface is a torus minus four disks. There are two
outgoing boundary components, of edge length six and two respectively. It follows that
each of them generates a torus in the boundary of N.X /. Similarly for the incoming
boundary components. Each self connecting edge generates an incompressible, two
sided Klein bottle, hence again N.X / is nonorientable. The Seifert fibration in N.X /

does not have singular fibers, but is not orientable.

It is also very easy to construct examples with cycles of odd length 3 or more and
which are two sided. This generates more complicated two sided Klein bottles. For
the sake of space we do not describe those in detail here. Clearly all these examples
can be glued to other pieces along the transverse boundary to generate examples of
pseudo-Anosov flows.
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Corollary 8.2 There are examples of pseudo-Anosov flows in graph manifolds having
one sided incompressible tori. There are also examples having two sided, incompress-
ible Klein bottles.

We already alluded to examples of embedded, incompressible Klein bottles before: the
geodesic flow of a nonorientable hyperbolic surface has those. For example consider
the collection of unit vectors along an orientation reversing geodesic. But the manifold
is orientable and the Klein bottle is one sided. Likewise this is also what happens in
the Bonatti–Langevin example [9].

9 Questions and comments

Some of the important questions not directly addressed in this paper are the following.

(1) Free Seifert fibered pieces Let P be one such piece. One fundamental question
is the following: Is there is a representative for P with boundary a union of Birkhoff
tori so that the flow restricted to P is up to finite covers topologically equivalent to the
geodesic flow on a hyperbolic surface with boundary? A geodesic flow on a surface
with boundary is the restriction of the geodesic flow to the unit tangent bundle of a
compact surface with boundary a union of closed geodesics. Nothing is known in the
case of general pseudo-Anosov flows. In the case of smooth Anosov flows, this has
been analysed by the first author and proved to be true in almost all circumstances
when the Anosov flow ˆ is R–covered [4].

Along these lines one very important, but vaguely phrased question is: suppose that P

is a free Seifert piece. Is there no singular orbit in the middle of P ? The geodesic flow
on the unit tangent bundle of a surface with boundary has no singular orbits, so any
singular orbit would have to be in the “boundary” of this piece. Perhaps the formulation
should be that any singular orbit in the piece has to be homotopic into the boundary of
the piece.

Recall the structure and examples of periodic Seifert pieces: certainly they can have
singular orbits which are in some way not removable from the piece. Notice also that
periodic pieces and free pieces can occur in the same flow: we described examples in
the beginning of Section 8.

In any case the dynamics in free Seifert fibered pieces should be much more complex
than in periodic Seifert pieces. For example the Handel–Thurston example flows [31]
are obtained from geodesic flows, by cutting along a Birkhoff torus, the set of unit
vectors along a separating geodesic of the surface and gluing with a shearing. Each
piece is a free Seifert piece. Notice that there are infinitely many closed orbits entirely
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contained in each piece: they correspond to all closed geodesics contained in that piece
of the surface. In fact there are uncountable many orbits of the flow entirely contained
in this piece.

(2) Periodic Seifert pieces In Section 8 we produced many examples with periodic
Seifert pieces where the boundary of each piece is transverse to the flow. What happens
in general? We obtained partial answers in Section 6, but the general picture is not
known yet.

(3) The atoroidal case The first author has done extensive work [16; 20] in the closed
atoroidal case (where in fact by Perelman’s work [40; 41; 42], M is hyperbolic).
The questions addressed in that analysis were more of a geometric nature: Exactly
when is the flow is quasigeodesic? Can the flow yield geometric information about the
asymptotic or large scale geometric structure of the universal cover? There is not a
general structure theorem in such manifolds, even in particular manifolds.

As mentioned in the introduction the atoroidal, nonclosed case is effectively unknown.
Still there are examples in manifolds with two atoroidal pieces; the Franks–Williams
examples are obtained as follows: start with a suspension Anosov flow in a manifold N

and do a derived from Anosov construction [24]. This transforms a periodic orbit
(which is hyperbolic type) into (say) a repelling orbit. Remove a neighborhood of this
orbit to produce a manifold N1 with a semiflow which is incoming along the boundary.
Let N2 be a copy of N1 with a reversed flow. Franks and Williams show examples
of gluings of N1 to N2 which yield Anosov flows in the resulting manifold M . N1

and N2 are both atoroidal and the torus decomposition of M is N1[N2 . Notice that
these flows are not transitive.

Surely the Franks and Williams examples can be generalized to a certain extent. One
fundamental remaining question is whether there are examples of pseudo-Anosov or
Anosov flows in toroidal manifolds, so that the flow is transitive and there are nontrivial
atoroidal pieces. Are there also examples with mixed behavior? That is, examples with
atoroidal and Seifert pieces? Finally: what is the general structure of pseudo-Anosov
flows restricted to atoroidal pieces? For example can one always show that the boundary
tori are isotopic to transverse tori? This is not the case for Seifert pieces.
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