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Comparison of models for .1; n/–categories, I

JULIA E BERGNER

CHARLES REZK

While many different models for .1; 1/–categories are currently being used, it
is known that they are Quillen equivalent to one another. Several higher-order
analogues of them are being developed as models for .1; n/–categories. In this
paper, we establish model structures for some naturally arising categories of objects
which should be thought of as .1; n/–categories. Furthermore, we establish Quillen
equivalences between them.

55U40; 55U35, 18D15, 18D20, 18G30, 18C10

1 Introduction

There has been much recent interest in homotopical notions of higher categories. Given
a positive integer n, an n–category has a notion of i –morphisms for all 1� i � n, and
one can consider 1–categories, in which there are i –morphisms for arbitrarily large i .
When such higher categories are considered as having strict associativity and unit laws
on compositions at all levels, then their definitions are straightforward. However, most
examples of interest are better expressed as weak n–categories, where these laws are
only required to hold up to isomorphism, and one needs to impose various coherence
laws. While there have been many proposed models for weak n–categories (often
extending to models for weak 1–categories), the problem of comparing these models
has thus far been intractable.

However, in the world of homotopy theory, models for so-called .1; 1/–categories,
or 1–categories with all i –morphisms invertible for i > 1, have been far more
manageable. Several different approaches were taken, some originating from the idea
of modeling homotopy theories, others with the intent of developing this kind of special
case for higher category theory. While these are by no means the only ones, four models
for .1; 1/–categories have been equipped with appropriate model structures: simplicial
categories by the first author in [8], Segal categories by Hirschowitz and Simpson [18]
and Pelissier [27], quasicategories by Joyal [21] and Lurie [24] and complete Segal
spaces by the second author [30]. They have all been shown to be Quillen equivalent
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to one another in work of the first author [10], Dugger and Spivak [14], Joyal and
Tierney [20; 22] and Lurie [24]; a survey by the first author can be found in [11].

Simplicial categories, or categories enriched over simplicial sets, are probably the
easiest to understand as .1; 1/–categories, especially if we apply geometric realization
and consider topological categories, or categories enriched over topological spaces.
Given any objects x and y in a topological category C , the points of the mapping
space MapC.x;y/ can be regarded as 1–morphisms. Paths between these points are
2–morphisms, but since paths can be reversed, these 2–morphisms are invertible up to
homotopy. Homotopies between these paths are 3–morphisms, and we can continue to
take homotopies between homotopies to see that we have n–morphisms for arbitrarily
large n, all of which are invertible up to homotopy.

Segal categories and quasicategories are two different ways of thinking of weakened
versions of simplicial categories, in which composition of mapping spaces is only
defined up to homotopy. Segal categories are bisimplicial sets with discrete space at
level zero which satisfy a Segal condition, guaranteeing an up-to-homotopy composition.
Quasi-categories, on the other hand, are just simplicial sets, generally described in
terms of a horn-filling condition which essentially gives the same kind of composition
up to homotopy.

Like Segal categories, complete Segal spaces are bisimplicial sets satisfying the Segal
condition, but instead of being discrete at level zero, they satisfy a “completeness”
condition that makes up for it: essentially, the spaces at level zero are weakly equivalent
to the subspace of “homotopy equivalences” sitting inside the space of morphisms. The
Quillen equivalence between the model structure for Segal categories and the model
structure for complete Segal spaces tells us that this completeness condition exactly
compensates for the discreteness of the level zero space in a Segal category.

While .1; 1/–categories have been enormously useful in many ways, Lurie’s recent
proof of the cobordism hypothesis [25] has brought attention to the fact that they are
not always good enough: for some purposes we need higher versions as well. Thus,
we can consider more general .1; n/–categories, or 1–categories with i –morphisms
invertible for i > n. A few models for such objects have been proposed, namely
the Segal n–categories of Hirschowitz–Simpson and Pelissier [18; 27], the n–fold
complete Segal spaces of Barwick and Lurie [25] and the ‚n –spaces of the second
author [31]. The latter model has the advantage that its model structure is cartesian
closed.

One feature of all these models is that they are inductive in nature; beginning with
a known way to think about .1; 1/–categories, some way of defining .1; nC 1/–
categories from .1; n/–categories is given. Our purpose is to look at hybrid inductive
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definitions. More specifically, we begin with ‚n –spaces as .1; n/–categories, but
rather than going on to ‚nC1 –spaces, instead take categories enriched in them as
models for .1; nC 1/–categories. Furthermore, we define a weakened version of
these enriched categories, which can be regarded as an .1; nC 1/–version of Segal
categories (using a different approach than the Hirschowitz–Simpson model) and prove
that the two are Quillen equivalent. In fact, we have two different model structures for
these higher Segal categories.

The model we propose for a higher-dimensional analogue of Segal categories is de-
scribed in terms of functors �op!‚nSp, where ‚nSp denotes the model category
for ‚n –spaces, satisfying the Segal condition and a discreteness condition with respect
to their being �op –diagrams. We show that there exist two model structures, just as we
have for ordinary Segal categories, which are Quillen equivalent to one another, and
that they are in turn Quillen equivalent to the model category of categories enriched
over ‚nSp. This result generalizes the one establishing the Quillen equivalence between
simplicial categories and Segal categories, ie, the case where nD 1 [10]. While only
one of these model structures is necessary for this Quillen equivalence, the other one
is the easier one to describe. Furthermore, we anticipate, as in the .1; 1/–case, that
we will need the second one as we eventually seek to continue the zigzag to establish
the equivalence with ‚nC1 –spaces. These Quillen equivalences will be the subject of
another paper.

Just as in the .1; 1/–category case, there are a number of preliminary results that
need to be established. We first show that we have appropriate model categories
and Quillen equivalences when we restrict to Segal objects and the corresponding
enriched categories which have a fixed set of objects. To do so, we need to show that
rigidification results of Badzioch on algebras over algebraic theories [2] continue to
hold when we take these algebras in categories other than that of simplicial sets. Many
of the arguments used for the case of simplicial sets can still be used in the general
setting. In cases where properties of simplicial sets are not used at all, we usually omit
proofs; where there are more subtle changes to be noted, we have included a proof.

We also make use of our understanding of sets of generating cofibrations in a Reedy
category, as well as the fact, established in a separate manuscript by the authors [13],
that for the category of functors ‚op

n !SSets, the Reedy and injective model structures
coincide. By modifying these generating cofibrations appropriately, we are able to find
a set of generating cofibrations for our more restrictive situation where the objects at
level zero are discrete. From there, we can find the more general model structures and
prove the Quillen equivalence with the enriched categories much as we proved it in the
earlier case.
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1.1 Work still to be done

So far we have not extended the chain of Quillen equivalences to ‚nC1Sp, which would
be the end goal, but there are a couple of possible approaches to doing so. We expect
to show that our model structure for Segal category objects is Quillen equivalent to the
model category of complete Segal objects in ‚nSp, which is in turn Quillen equivalent
to ‚nC1Sp. This last step should use an inductive argument using the characterization
of ‚n as a wreath product of n copies of �, defined by Berger in [6], and be the first in
a chain of Quillen equivalences between ‚nSp and the model structure for Barwick’s
n–fold complete Segal spaces. These results will be the subject of a future paper.

The results of this paper hold for more general cartesian presheaf categories other
than ‚nSp. However, the proofs require a good deal more subtlety, so these results will
be given in a separate paper by the authors [12]. This problem has also been addressed
by Simpson [32].

1.2 Related work

There are other models for .1; n/–categories as well as comparisons being established.
For example, Barwick has defined quasi-n–categories and compared them with ‚n –
spaces; this model is also cartesian closed and therefore lends itself to defining a model
via enrichment over it [3]. In the case where nD 2, Lurie has a model using Verity’s
complicial sets [23; 34]. Generalizing a result of Toën [33], Barwick and Schommer-
Pries have developed a set of axioms which any model for .1; n/–categories must
satisfy [4]. Ayala and Rozenblyum have also given a more geometric model for
.1; n/–categories and have shown that it is Quillen equivalent to ‚nSp [1].

1.3 Outline of the paper

In Section 2 we review some basic material on model categories and simplicial objects,
and in Section 3 we establish a model structure for categories enriched in ‚nSp. In
Sections 4 and 5, we generalize comparisons between Segal categories and simplicial
categories in the fixed object set case to more general Segal category objects and
enriched categories in ‚nSp. Section 6 is devoted to establishing model structures for
Segal category objects and in Section 7 we prove that they are Quillen equivalent to
the model category of enriched categories. In Section 8 we establish a technical result
about fibrations in ‚nSp.

Acknowledgements The authors would like to thank the referee for a careful reading
and helpful suggestions for the improvement of this paper. The first author was partially
supported by NSF grants DMS-0805951 and DMS-1105766, and by a UCR Regents
Fellowship. The second author was partially supported by NSF grant DMS-1006054.
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2 Background

Let � denote the simplicial indexing category whose objects are the finite ordered sets
Œn�D f0< 1< � � �< ng for n� 0. Recall that a simplicial set is a functor �op! Sets,
where Sets denotes the category of sets. Denote by SSets the category of simplicial
sets.

A simplicial space is a functor �op! SSets. A simplicial set X can be regarded as a
simplicial space in two ways. It can be considered a constant simplicial space with the
simplicial set X at each level, and in this case we will also denote the constant simplicial
set by X . Alternatively, we can take the simplicial space, which we denote X t , for
which .X t /n is the discrete simplicial set Xn . The superscript t is meant to suggest
that this simplicial space is the “transpose” of the constant simplicial space.

We recall some basics on model categories. A model category M is a category with
three distinguished classes of morphisms: weak equivalences, fibrations and cofibrations,
satisfying five axioms; see Dwyer and Spaliński [15, 3.3]. Given a model category
structure, one can define the homotopy category Ho.M/, which is a localization of M
with respect to the class of weak equivalences; see Hovey [19, 1.2.1]. An object x in
a model category M is fibrant if the unique map x! � to the terminal object is a
fibration. Dually, an object x in M is cofibrant if the unique map ¿! x from the
initial object is a cofibration.

Recall that an adjoint pair of functors F W C� D WG satisfies the property that, for
any objects X of C and Y of D , there is a natural isomorphism

'W HomD.FX;Y /! HomC.X;GY /:

The functor F is called the left adjoint and the functor G the right adjoint; see
Mac Lane [26, IV.1].

Definition 2.1 [19, 1.3.1] An adjoint pair of functors F WM�N WG between model
categories is a Quillen pair if F preserves cofibrations and G preserves fibrations. The
left adjoint F is called a left Quillen functor, and the right adjoint G is called the right
Quillen functor.

Definition 2.2 [19, 1.3.12] A Quillen pair of model categories is a Quillen equiva-
lence if for all cofibrant X in M and fibrant Y in N , a map f W FX ! Y is a weak
equivalence in D if and only if the map 'f W X !GY is a weak equivalence in M.

We will also need the notion of a simplicial model category M. For any objects X

and Y in a simplicial category M, the function complex is the simplicial set Map.X;Y /.
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A simplicial model category M is a model category M that is also a simplicial category
such that two axioms hold; see Hirschhorn [17, 9.1.6].

Definition 2.3 [17, 17.3.1] A homotopy function complex Maph.X;Y / in a sim-
plicial model category M is the simplicial set Map. zX ; yY / where zX is a cofibrant
replacement of X in M and yY is a fibrant replacement for Y .

Several of the model category structures that we use are obtained by localizing a
given model category structure with respect to a map or a set of maps. Suppose that
P D ff W A! Bg is a set of maps with respect to which we would like to localize a
model category M.

Definition 2.4 A P –local object W is a fibrant object of M such that for any
f W A! B in P , the induced map on homotopy function complexes

f �W Maph.B;W /!Maph.A;W /

is a weak equivalence of simplicial sets. A map gW X ! Y in M is a P –local
equivalence if for every P –local object W , the induced map on homotopy function
complexes

g�W Maph.Y;W /!Maph.X;W /

is a weak equivalence of simplicial sets.

If M is a sufficiently nice model category, then one can obtain a new model structure
with the same underlying category as M but with weak equivalences the P –local
equivalences and fibrant objects the P –local objects [17, 4.1.1].

Suppose that D is a small category and consider the category of functors D! SSets,
or D–diagrams of spaces. We would like to consider model category structures on
the category SSetsD of such diagrams. A natural choice for the weak equivalences in
SSetsD is the class of levelwise weak equivalences of simplicial sets. Namely, given
two D–diagrams X and Y , we define a map f W X ! Y to be a weak equivalence if
and only if for each object d of D , the map X.d/! Y .d/ is a weak equivalence of
simplicial sets.

There is a model category structure SSetsD
f

on the category of D–diagrams with these
weak equivalences and in which the fibrations are given by levelwise fibrations of
simplicial sets. The cofibrations in SSetsD

f
are then the maps of D–diagrams which

have the left lifting property with respect to the maps which are levelwise acyclic
fibrations. This model structure is often called the projective model category structure
on D–diagrams of spaces; see Goerss and Jardine [16, IX, 1.4]. Dually, there is a
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model category structure SSetsDc in which the cofibrations are given by levelwise
cofibrations of simplicial sets, and this model structure is often called the injective
model category structure [16, VIII, 2.4]. In particular, we obtain these model structures
for DD�op , so that the category SSets�

op
is just the category of simplicial spaces.

However, �op is a Reedy category [17, 15.1.2], and therefore we also have the Reedy
model category structure on simplicial spaces [29]. In this structure, the weak equiva-
lences are again the levelwise weak equivalences of simplicial sets. This model structure
is cofibrantly generated, where the generating cofibrations are the maps

@�Œm���Œn�t [�Œm�� @�Œn�t !�Œm���Œn�t

for all n;m� 0, an the generating acyclic cofibrations are the maps

V Œm; k���Œn�t [�Œm�� @�Œn�t !�Œm���Œn�t

for all n� 0, m� 1, and 0� k �m [30, 2.4].

However, for simplicial spaces, the Reedy model structure coincides with the injective
model structure, as follows.

Proposition 2.5 [17, 15.8.7, 15.8.8] A map f W X ! Y of simplicial spaces is a
cofibration in the Reedy model category structure if and only if it is a monomorphism.
In particular, every simplicial space is Reedy cofibrant.

In light of this result, we denote the Reedy model structure on simplicial spaces by
SSets�

op

c . Both SSets�
op

c and SSets�
op

f
are simplicial model categories. In each case,

given two simplicial spaces X and Y , we can define Map.X;Y / by

Map.X;Y /n D HomSSets�op .X ��Œn�;Y /:

The projective model structure SSets�
op

f
is also cofibrantly generated, and a set of

generating cofibrations consists of the maps

@�Œm���Œn�t !�Œm���Œn�t

for all m; n� 0 [16, IV.3.1].

3 Categories enriched in ‚n–spaces

In this section, we begin with a summary of basic definitions and results for ‚n –spaces;
a thorough treatment can be found in [30] for n D 1 and [31] for the general case.
We then establish a model for .1; nC 1/–categories given by categories enriched in
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‚n –spaces. Since ‚n –spaces model .1; n/–categories, the model structure on these
enriched categories is thus a higher-order version of the model structure on simplicial
categories.

3.1 Complete Segal spaces

We begin with the essential definitions when nD 1, where a ‚1 –space is a complete
Segal space.

Definition 3.2 [30, 4.1] A Reedy fibrant simplicial space W is a Segal space if for
each k � 2 the Segal map

'k W Wk !W1 �W0
� � � �W0

W1„ ƒ‚ …
k

is a weak equivalence of simplicial sets.

Theorem 3.3 [30, 7.1] There is a cartesian closed model structure SeSp on the
category of simplicial spaces in which the fibrant objects are precisely the Segal spaces.

Because Segal spaces satisfy this Segal condition, we can regard them as being weakened
versions of simplicial categories and apply appropriate terminology. The objects of a
Segal space W are the elements of the set W0;0 . The mapping space mapW .x;y/ is
given by the fiber of the map

.d1; d0/W W1!W0 �W0

over .x;y/. Since W is Reedy fibrant, the fiber is in fact a homotopy fiber and
therefore the mapping space is homotopy invariant. Two maps f;g 2mapW .x;y/0
are homotopic if they lie in the same component of the mapping space mapW .x;y/.
The space of homotopy equivalences Whoequiv �W1 is defined to be the union of all
the components containing homotopy equivalences. There is a (nonunique) way to
compose mapping spaces, as given explicitly by the second author in [30, Section 4].

The homotopy category of W , denoted Ho.W /, has objects the elements of the set W0;0

and
HomHo.W /.x;y/D �0mapW .x;y/:

The image of a homotopy equivalence of W in Ho.W / is an isomorphism.

We can consider maps between Segal spaces that are similar in structure to Dwyer–Kan
equivalences of simplicial categories; we even give them the same name.
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Definition 3.4 [30] A map f W W !Z of Segal spaces is a Dwyer–Kan equivalence
if

(1) for any objects x and y of W , the induced map mapW .x;y/!mapZ .f x; fy/

is a weak equivalence of simplicial sets,

(2) the induced map Ho.W /! Ho.Z/ is an equivalence of categories.

For a Segal space W , notice that the degeneracy map s0WW0!W1 factors through the
space of homotopy equivalences Whoequiv , since the image of s0 consists of “identity
maps.”

Definition 3.5 [30, Section 6] A Segal space W is a complete Segal space if the
map W0!Whoequiv given above is a weak equivalence of simplicial sets.

Theorem 3.6 [30, 7.2] There is a cartesian closed model structure CSS on the
category of simplicial spaces in which the fibrant objects are precisely the complete
Segal spaces.

3.7 More general ‚n–spaces

We now turn to ‚n –spaces as higher-order complete Segal spaces. We begin by
recalling the definition of the ‚–construction, as first described by Berger [6]. Let C
be a small category, and define ‚C to be the category with objects Œm�.c1; : : : ; cm/

where Œm� is an object of � and each ci is an object of C . A morphism

Œm�.c1; : : : ; cm/! Œq�.d1; : : : ; dq/

is given by .ı; ffij g/ where ıW Œm�! Œq� in � and fij W ci! dj are morphisms in C
indexed by 1� i �m and 1� j � q where ı.i � 1/ < j � ı.i/ [31, 3.2].

Inductively, let ‚0 be the terminal category with a single object and no nonidentity
morphisms, and then define ‚n D‚‚n . Note that ‚1 D�. The categories ‚n have
also been studied in unpublished work of Joyal, using a more direct definition.

Looking at the case of ‚2 , we can think of objects as objects of � whose arrows are
labeled by other objects of �, for example, Œ4�.Œ2�; Œ3�; Œ0�; Œ1�/ can be depicted as

0
Œ2� //1

Œ3� //2
Œ0� //3

Œ1� //4
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but since these labels can also be interpreted as strings of arrows, we get a diagram
such as

0
��
//
HH

��

��

1
��!!

== JJ

��

��

��

2 // 3
""

<<�� 4:

The elements of this diagram can be regarded as generating a strict 2–category by
composing 1–cells and 2–cells whenever possible. In other words, the objects of ‚2

can be seen as encoding all possible finite compositions that can take place in a 2–
category, much as the objects of � can be thought of as listing all the finite compositions
that can occur in an ordinary category.

We can consider functors ‚op
n !Sets, and the most important example is the following.

For any object Œm�.c1; : : : ; cm/, let ‚Œm�.c1; : : : ; cm/ be the analogue of �Œm� in
SSets, ie, the representable object for maps into Œm�.c1; : : : ; cm/.

Here, we consider functors ‚op
n !SSets. Notice that any simplicial set can be regarded

as a constant functor of this kind, and any functor ‚op
n ! Sets, in particular the

representable one given above, can be regarded as a levelwise discrete functor to SSets.
Since, unlike in the case of simplicial spaces, the indexing diagrams in each direction
are different, we can simply use the notation from the original category to denote such
an object. Since ‚op

n is a Reedy category [6], we have the Reedy model structure,
as well as the projective and injective model structures, on the category SSets‚

op
n .

However, we prove in [13] that the injective and Reedy model structures agree here,
just as in the case of simplicial spaces.

Given m� 2 and c1; : : : ; cm objects of ‚n , define the object

GŒm�.c1; : : : ; cm/D colim.‚Œ1�.c1/ ‚Œ0�! � � �  ‚Œ0�!‚Œ1�.cm//:

Referring to the example of the object

Œ4�.Œ2�; Œ3�; Œ0�; Œ1�/

of ‚2 above, we have the representable corresponding to it,

‚Œ4�.Œ2�; Œ3�; Œ0�; Œ1�/:

The corresponding
GŒ4�.Œ2�; Œ3�; Œ0�; Œ1�/

Geometry & Topology, Volume 17 (2013)



.1; n/–categories 2173

picks out the representables for each piece, ‚Œ1�Œ2�, ‚Œ1�.Œ3�/, ‚Œ1�.Œ0�/, and ‚Œ1�.Œ1�/,
glued together along the representables corresponding to the intersection points, given
by ‚Œ0�. If we localize with respect to the inclusion

GŒ4�.Œ2�; Œ3�; Œ0�; Œ1�/!‚Œ4�.Œ2�; Œ3�; Œ0�; Œ1�/;

then an object is local if having these vertical compositions guarantees the existence of
all “horizontal” compositions of 1–cells and 2–cells.

Returning to the general case, there is an inclusion map

se.c1;:::;cm/W GŒm�.c1; : : : ; cm/!‚Œm�.c1; : : : ; cm/:

We define the set

Se‚n
D fse.c1;:::;cm/ jm� 2; c1; : : : ; cm 2 ob.‚n/g:

However, being local with respect to these maps is not sufficient for our purposes, as
it only gives an up-to-homotopy composition at level n. (Returning the case of ‚2 ,
we have not guaranteed that vertical composites exist.) Encoding lower levels of
composition is achieved inductively, using the Segal object model structure on the
category of functors ‚op

n�1
!SSets. This procedure is rather technical, and full details

can be found in [31, Section 8]. The main point is that, if the model structure on the
category of functors ‚op

n�1
! SSets is obtained by localizing with respect to a set S

of maps, we can make use of an intertwining functor V W‚.SSets‚
op
n�1/! SSets‚

op
n

to translate the set S into a set V Œ1�.S/ of maps in SSets‚
op
n . We need to localize

with respect to this set, in addition to those imposing the Segal conditions for level n.

Let S1 D Se� , and for n� 2, inductively define Sn D Se‚n
[V Œ1�.Sn�1/.

Theorem 3.8 [31, 8.5] Localizing the model structure SSets‚
op
n

c with respect to Sn

results in a cartesian model category whose fibrant objects are higher-order analogues
of Segal spaces.

However, we need to incorporate higher-order completeness conditions as well. Con-
sider the functor T W �!‚n defined by

T Œk�.Œm�.c1; : : : ; cm//D Hom�.Œm�; Œk�/

which induces a Quillen pair

T#W SSets�
op

c ! SSets‚
op
n

c WT �
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from which we can reduce to known results for simplicial spaces [31, 4.1]. In particular,
define

Cpt� D fE!�Œ0�g

and, for n� 2,
Cpt‚n

D fT#E! T#�Œ0�g:

Let T1 D Se‚1
[Cpt‚1

and, for n� 2,

Tn D Se‚n
[Cpt‚n

[V Œ1�.Tn�1/:

Theorem 3.9 [31, 8.1] Localizing SSets‚
op
n

c with respect to the set Tn gives a
cartesian model category, denoted ‚nSp.

We refer to the fibrant objects of ‚nSp simply as ‚n –spaces.

3.10 Categories enriched in ‚n–spaces

As complete Segal spaces are known to be equivalent to simplicial categories, establish-
ing them as models for .1; 1/–categories, ‚nC1Sp should be Quillen equivalent to a
model category whose objects are categories enriched in ‚nSp, further strengthening
the view that they are indeed models for .1; nC 1/–categories.

The existence of the appropriate model structure for enriched categories can be regarded
as a special case of a result of Lurie [24, A.3.2.4]; the nD 0 case was proved in [8].

Theorem 3.11 There is a cofibrantly generated model structure on the category ‚nSp–
Cat of small categories enriched in ‚nSp in which the weak equivalences f W C!D
are given by

(W1) HomC.x;y/! HomD.f x; fy/ is a weak equivalence in ‚nSp for any ob-
jects x;y ,

(W2) �0C! �0D is an equivalence of categories, where �0C has the same objects
as C and Hom�0C.x;y/D HomHo.‚nSp/.1; C.x;y//,

and the generating cofibrations are given by

(I1) fUA! UBg where U W ‚nSp!‚nSp–Cat is the functor taking an object A

of ‚nSp to the category with two objects x and y , HomUA.x;y/DA and no
other nonidentity morphisms, and A! B is a generating cofibration of V ,

(I2) ¿! fxg, where fxg denotes the category with one object and only the identity
morphism.
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Proof We need only verify the conditions of [24, A.3.2.4], of which the only non-
straightforward one to check is that weak equivalences are stable under filtered colimits.
Suppose I is a filtered category and F;GW I ! ‚nSp together with a map F ! G

such that for each object i of I , the map F.i/!G.i/ is a weak equivalence in ‚nSp.
Since ‚nSp is a simplicial model category with all objects cofibrant, then it follows
from [17, 18.5.1] that

hocolimI F ! hocolimI G

is a weak equivalence in ‚nSp.

In fact, using the construction of homotopy colimits in a simplicial model category, we
get the same result whether we compute homotopy colimits in SSets‚

op
n (the original

Reedy model category with levelwise weak equivalences) or in ‚nSp, which is a
localization of it. Working levelwise in SSets‚

op
n , we conclude hocolimI F ' colimI F ,

and similarly for G , since this fact is true for filtered diagrams of simplicial sets.
Therefore, we have that colimI F ! colimI G is a weak equivalence in ‚nSp.

Establishing that ‚nSp–Cat is Quillen equivalent to ‚nC1Sp should be achieved via a
chain of Quillen equivalences, of which the ones shown in this paper are the beginning.

3.12 Segal spaces in ‚nSp

We will have need of the following generalizations of the definitions of Segal spaces.

Definition 3.13 A Reedy fibrant functor W W �op!‚nSp is a ‚nSp–Segal space if
the Segal maps

Wk !W1 �W0
� � � �W0

W1„ ƒ‚ …
k

are weak equivalences in ‚nSp for all k � 2.

Theorem 3.14 There is a cartesian closed model structure LS .‚nSp/�
op

on the cate-
gory of functors �op!‚nSp in which the fibrant objects are precisely the Segal space
objects in ‚nSp.

Proof To obtain the model structure, one can localize the Reedy model structure with
respect to the analogues of the maps used to obtain the Segal space model structure.
To show that this model structure is cartesian, we follow the same line of argument as
used by Rezk in [30, Section 10]. First, we establish that any function object W X in
‚nSp�

op
is local, where W is local and W X is defined by

.W X /Œq�.c1;:::;cq/;k D Hom.X �‚Œq�.c1; : : : ; cq/��Œk�;W /:
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Regarding �Œ1� as a levelwise discrete object of ‚nSp�
op

, consider the function
object W �Œ1� for any local object W . Proving that W �Œ1� is again local can be
proved just as in Rezk’s paper, using the notion of covering. Then, for any k � 2,
W �Œk� can be shown to be a retract of W .�Œ1�/k , establishing that W �Œk� is also
local. If Y is any object of ‚nSp, regarded as a constant diagram in ‚nSp�

op
, then

.W �Œk�/Y DW �Œk��Y is again local. Since any object X of ‚nSp�
op

can be written
as a homotopy colimit of objects of the form �Œk��Y , any object of the form W X can
be written as a homotopy limit of a objects of the form W �Œk��Y , and therefore W X

is local.

To complete the proof that this cartesian structure is compatible with the model structure,
we can use the same argument as Rezk, using properties of adjoints.

Given a ‚nSp–Segal space W , and elements x;y 2W0;Œ0� , we can define mapping
objects mapW .x;y/ just as in the case of Segal spaces; they will be ‚n –spaces. As we
have seen above, we can obtain a simplicial space from a ‚n –space via the functor T � .
Applying the diagonal functor to T �mapW .x;y/, we get mapping spaces for W . As a
consequence, it is possible to define the homotopy category Ho.W / of a ‚nSp–Segal
space W , where the objects are the elements of W0;Œ0� and the morphisms are the
components of the mapping spaces. We can then extend the definition of Dwyer–Kan
equivalence to this setting, as follows.

Definition 3.15 A map f W W !Z of ‚nSp–Segal spaces is a Dwyer–Kan equiva-
lence if

� for any objects x and y of W , the induced map mapW .x;y/!mapZ .f x; fy/

is a weak equivalence in ‚nSp,

� the induced functor Ho.W /! Ho.Z/ is an equivalence of categories.

4 Fixed-object ‚nSp–Segal categories and their model struc-
tures

In this section, we first recall basic definitions of Segal categories and generalize them
to those of ‚nSp–Segal categories. We then go on to establish model structures in the
restricted case where all ‚nSp–Segal categories have the same set of objects which is
preserved by all functions.
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4.1 Segal categories

Definition 4.2 [18, Section 2] A Segal precategory is a simplicial space X such that
the simplicial set X0 in degree zero is discrete, ie a constant simplicial set.

Again, we can consider the Segal maps

'k W Xk !X1 �X0
� � � �X0

X1„ ƒ‚ …
k

for each k � 2. Since X0 is discrete, the right hand side is actually a homotopy limit.

Definition 4.3 [18, Section 2] A Segal category X is a Segal precategory such that
each Segal map 'k is a weak equivalence of simplicial sets for k � 2.

There is a fibrant replacement functor L taking a Segal precategory X to a Segal
category LX . We can think of this functor as a “localization,” even though it is not
actually obtained from localization of a different model structure [10, Section 5].

Weak equivalences in this setting, again called Dwyer–Kan equivalences, are the maps
f W X ! Y such that the induced map mapLX .x;y/! mapLY .f x; fy/ is a weak
equivalence of simplicial sets for any x;y 2X0 and the map Ho.LX /! Ho.LY / is
an equivalence of categories.

Theorem 4.4 [10, 5.1, 7.1] There is a model structure SeCatc on the category of
Segal precategories in which the fibrant objects are precisely the Reedy fibrant Segal
categories. The weak equivalences are the Dwyer–Kan equivalences. There is also a
model structure SeCatf with the same weak equivalences in which the fibrant objects
are precisely the projective fibrant Segal categories.

Theorem 4.5 [10, 7.5, 8.6] There is a chain of Quillen equivalences

SC� SeCatf � SeCatc

where SC denotes the model structure on the category of simplicial categories.

We would like to generalize these definitions and their corresponding model structures
to ‚nSp–Segal categories; the goal of this paper is to prove the analogue of the previous
theorem in this setting.
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Definition 4.6 A ‚nSp–Segal precategory is a functor X W�op!‚nSp such that X0

is a discrete object in ‚nSp, ie, a constant ‚n –diagram of sets. It is a ‚nSp–Segal
category if, additionally, the Segal maps

'k W Xk !X1 �X0
� � � �X0

X1„ ƒ‚ …
k

are weak equivalences in ‚nSp for all k � 2.

We denote by ‚nSp�
op

disc the category of ‚nSp–Segal precategories. Notice that if the
Segal maps for X are isomorphisms in ‚nSp, then X is just a ‚nSp–category.

In the remainder of this section, we seek to define model structures on the category of
functors X W �op!‚nSp with the additional requirement that X0 DO , the discrete
object of ‚nSp given by the a fixed set O , and such that all maps between such functors
are required to be the identity on this set. We denote this category ‚nSp�

op

O .

4.7 The projective model structure on ‚nSp�op

O

Our first goal is to prove the following result.

Proposition 4.8 There is a model structure on ‚nSp�
op

O with levelwise weak equiva-
lences and fibrations in ‚nSp, denoted by ‚nSp�

op

O;f .

To prove this theorem, first notice that limits and colimits can be understood in this
category just as they are as in the first author’s work [9, 3.5,3.6], ie, they are taken
in a category in which the object set O at level Œ0� is preserved. We then need
sets of generating cofibrations and generating acyclic cofibrations for this proposed
model structure. The constructions here are generalizations of those for ordinary Segal
categories [9, Section 3].

Just as we did in the case for simplicial sets, we begin by finding suitable sets of
generating cofibrations and generating acyclic cofibrations for the projective model
structure on the category ‚nSp�

op
of all functors X W �op!‚nSp. By definition, a

map f W X ! Y in our proposed model structure is an acyclic fibration if and only
if, for each p � 0, the map fpW Xp! Yp has the right lifting property with respect
to every generating cofibration A! B in ‚nSp. This condition is equivalent to the
having a lift in the following diagram, for any A! B as above and p � 0:

A��Œp� //

��

X

'

��
B ��Œp� //

;;v
v

v
v

v
Y:
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Thus, we can regard the set of such maps

A��Œp�! B ��Œp�

as a suitable set of generating cofibrations for ‚nSp. Similarly, f is a fibration if and
only if each fp has the right lifting property with respect to every generating acyclic
cofibration C !D in ‚nSp. It follows by arguments like the ones given above that a
set of generating cofibrations consists of the maps

C ��Œp�!D ��Œp�:

Because the (constant) ‚n –space at level zero must be preserved, we need a distinct
simplex of each dimension corresponding to each tuple of objects of O . Thus, for any
x D .x0; : : : ;xp/ 2OpC1 , we define �Œp�x to be the p–simplex �Œp�, regarded as
an object of ‚nSp�

op

disc , with .�Œp�x/0 DO ; the vertices of the p–simplex are given
by x , and the other elements of O are added in as 0–simplices so that we have the
requisite O in degree 0. Notice here that we assume that x is ordered by the usual
ordering on iterated face maps. It remains to find an appropriate means of assuring
that each object involved in our generating (acyclic) cofibrations is in fact discrete in
degree zero.

For any object A in ‚nSp, p � 0, and x 2OpC1 , define the object AŒp�;x to be the
pushout of the diagram

A� .�Œp�x/0 //

��

A��Œp�x

��
.�Œp�x/0 // AŒp�;x :

The idea is that AŒp�;x looks as much as possible like A��Œp�x , but has the discrete
set O as the simplicial set at level 0, as required to be in the category in which we are
working.

Thus, we define sets

IO;f D fAŒp�;x! BŒp�;x j p � 0;A! B a generating cofibration in ‚nSpg;

JO;f DfCŒp�;x!DŒp�;x j p � 0;C !D a generating acyclic cofibration in ‚nSpg:

Given these generating sets, Proposition 4.8 can be proved just as in the simplicial
case [9, 3.7].
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4.9 The injective model structure on ‚nSp�op

O

Now, we turn to the other model structure with levelwise weak equivalences, where we
instead have levelwise cofibrations. A useful fact is the following.

Proposition 4.10 The Reedy and injective model structures on ‚nSp�
op

coincide.

Proof The fact that Reedy cofibrations are levelwise cofibrations in ‚nSp follows
from a general result about Reedy categories [17, 15.3.11]. Therefore, it remains to
prove that if f W X ! Y in ‚nSp�

op
satisfies the condition that fnW Xn ! Yn is a

cofibration in ‚nSp, then f is a Reedy cofibration.

We first need to understand what a “codegeneracy” is in ‚n . For simplicity, we look
at ‚2 . Given an object Œk�.c1; : : : ; ck/ in ‚2 , there are two kinds of codegeneracies.
The first is given by a codegeneracy of a ci , regarding ci as an object of �. Using
a “pasting diagram” interpretation of ‚2 , such a codegeneracy amounts to collapsing
one of the 2–cells at horizontal position i . Thus, when we take a simplicial presheaf
on ‚2 , the corresponding degeneracy gives a degenerate 2–cell in a position specified
by the degeneracy map of the ci in �op . We think of such degeneracies as “vertical”
degeneracies.

There is also a kind of “horizontal” degeneracy, but we do not want to allow all
such. Given an object Œk�.c1; : : : ; ck/, a horizontal degeneracy would be given by a
codegeneracy of Œk� in �. But, if we took the i th codegeneracy of Œk�, where ci > 0,
then we would, in effect, we collapsing multiple cells. Thus, we only want to consider
such codegeneracies when ci D 0, ie, the case where there are no 2–cells in position i .

In either case, however, a degeneracy is given by a degeneracy in �op , and therefore
our result about degeneracies in �op continues to hold in ‚op

2
. This argument can be

rephrased as an inductive one, so that it is in fact true for all ‚op
n .

Now, we establish an analogue of [17, 15.8.6] in this situation, namely, that, for every
m� 0, the latching object LmX is isomorphic to the subobject of Xm consisting of
lower-order simplices, ie, objects of Hom.‚Œk�.c1; : : : ; ck/;X /, which are in the image
of a degeneracy operator. However, this fact follows from [17, 15.8.4] and the existence
of a map from .LmX /Œk�.c1;:::;ck/ to the degenerate elements of X�;Œk�.c1;:::;ck/ .

Using this above description of codegeneracies in ‚n , we have that for any object W of
‚nSp, if k � 0, � 2WŒk�.c1;:::;ck/ is nondegenerate if and only if no two degeneracies
of � are equal, the analogue of [17, 15.8.5]. Therefore, it follows that the intersection
of Xm and LmY in Ym is precisely the object LmX . Therefore, the latching map
XmqLmX LmY ! Ym is an monomorphism in ‚nSp, which is precisely the require-
ment for f to be a Reedy cofibration.
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Thus, we can use the Reedy structure to understand precise sets of generating cofi-
brations and generating acyclic cofibrations, but we also know that cofibrations are
precisely the monomorphisms and in particular that all objects are cofibrant.

Proposition 4.11 There is a model structure on ‚nSp�
op

O with levelwise weak equiva-
lences and cofibrations in ‚nSp, denoted by ‚nSp�

op

O;c .

To define sets Ic;O and Jc;O which will be our candidates for generating cofibrations
and generating acyclic cofibrations, respectively, we first recall the generating cofibra-
tions and acyclic cofibrations in the Reedy model structure. The generating cofibrations
are the maps

A��Œp�[B � @�Œp�! B ��Œp�

for all p� 0 and A!B generating cofibrations in ‚nSp, and similarly the generating
acyclic cofibrations are the maps

C ��Œp�[C � @�Œp�!D ��Œp�

for all p � 0 and C !D generating acyclic cofibrations in ‚nSp [17, 15.3].

As in the case of the projective model structure, we need to modify these maps so that
they are in the category where we have O in degree zero. However, the modification here
is done slightly differently. As before, we begin by considering the category ‚nSp�

op

disc of
all Segal precategory objects in ‚nSp and the inclusion functor ‚nSp�

op

disc !‚nSp�
op

.
To force the degree zero space to be exactly the set O , we use the fact that this functor
has a left adjoint, which we call the reduction functor. Given an object X of ‚nSp�

op
,

we denote its reduction by .X /r . Reducing X essentially amounts to collapsing the
space X0 to its set of components and making the appropriate changes to degeneracies
in higher degrees. So, we start by reducing the objects defining the Reedy generating
cofibrations and generating acyclic cofibrations to obtain maps of the form

.A��Œp�[B � @�Œp�/r ! .B ��Œp�/r ;

.C ��Œp�[D � @�Œp�/r ! .D ��Œp�/r :

Then, in order to have our maps fix the object set O , we define a separate such map for
each choice of vertices x in degree zero and adding in the remaining points of O if
necessary. As above, we use �Œp�x to denote the object �Œp� with the .pC1/–tuple x

of vertices. We then define sets

IO;c D f.A��Œp�x [B � @�Œp�x/r ! .B ��Œp�x/r g

for all p � 1 and A! B , and

JO;c D f.C ��Œp�x [D � @�Œp�x/r ! .D ��Œp�x/r g
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for all p � 1 and C !D , where the notation .�/x indicates the specified vertices.

Then, the proof that we do in fact get a model structure can be proved just as in [9, 3.9].

4.12 Localization of these model categories

However, these two model structures are not enough. We need to localize them so
that their fibrant objects are Segal category objects, following [30]. Fortunately, this
process can be done just as in the nD 1 case. Define a map ˛i W Œ1�! Œp� in � such
that 0 7! i and 1 7! i C 1 for each 0� i � p� 1. Then for each p defines the object

G.p/D

p�1[
iD0

˛i�Œ1�

and the inclusion map 'pW G.p/!�Œp�. To obtain the Segal model structure from
the Reedy model structure on the category of functors �op!‚nSp, the localization
is with respect to the coproduct of inclusion maps

' D
a
p�0

.G.p/!�Œp�/:

However, in our case, the objects G.p/ and �Œp� do not preserve the object set. As
before, we can replace �Œp� with the objects �Œp�x , where x D .x0; : : : ;xp/ and
define

G.p/x D

p�1[
iD0

˛i�Œ1�xi ;xiC1
:

Now, we need to take coproducts not only over all values of p , but also over all
p–tuples of vertices. Here, we can regard these objects as giving a diagram of constant
‚n –spaces.

Thus, we localize with respect to the set of maps

fGŒp�x!�Œp�x j p � 0;x 2OpC1
g:

Applying this localization to the model structure ‚nSp�
op

O;f gives a model structure
denoted L.‚nSp/�

op

O;f , and similarly from the model structure ‚nSp�
op

O;c we obtain the
localized model structure L.‚nSp/�

op

O;c .

5 Rigidification of algebras over algebraic theories

In this section we generalize work of Badzioch [2] and the first author [7] concerning
rigidification of simplicial algebras over algebraic theories. These results, which give
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us a convenient framework for understanding fixed-object simplicial categories, were
used to establish the Quillen equivalence between the model structures for simplicial
categories and Segal categories. More specifically, we described simplicial categories as
product-preserving functors from an algebraic theory TOCat to SSets and showed that
Segal categories with a fixed object set were equivalent to such functors which preserve
products only up to homotopy. Here, we want to consider categories enriched, not in
SSets, but in ‚nSp; in the fixed-object case, we can describe these enriched categories
as product-preserving functors TOCat!‚nSp. Therefore, we need to generalize results
about such functors so that they continue to hold when we replace SSets with ‚nSp.

We begin with a review of algebraic theories.

Definition 5.1 [7] Given a set S , an S –sorted algebraic theory (or multisorted
theory) T is a small category with objects T˛n where ˛n D h˛1; : : : ; ˛ni for ˛i 2 S

and n� 0 varying, and such that each T˛n is equipped with an isomorphism

T˛n Š

nY
iD1

T˛i
:

For a particular ˛n , the entries ˛i can repeat, but they are not ordered. In other
words, ˛n is a an n–element subset with multiplicities. There exists a terminal object T0

corresponding to the empty subset of S .

5.2 Strict and homotopy T –algebras in ‚nSp

Definition 5.3 Given an S –sorted theory T , a (strict) T –algebra in ‚nSp is a
product-preserving functor A W T !‚nSp. In other words, the canonical map

A.T˛n/!

nY
iD1

A.T˛i
/;

induced by the projections T˛n ! T˛i
for all 1� i � n, is an isomorphism in ‚nSp.

We denote the category of strict T –algebras in ‚nSp by AlgT‚n
.

Definition 5.4 Given an S –sorted theory T , a homotopy T –algebra in ‚nSp is a
functor X W T !‚nSp which preserves products up to homotopy, ie, for all ˛ 2 Sn ,
the canonical map

X.T˛n/!

nY
iD1

X.T˛i
/

induced by the projection maps T˛n ! T˛i
for each 1� i � n is a weak equivalence

in ‚nSp.
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Given an S –sorted theory T and ˛ 2 S , there is an evaluation functor

U˛W AlgT‚n
!‚nSp

given by
U˛.A/DA.T˛/:

Define a weak equivalence in the category AlgT‚n
to be a map f W A! B such that

U˛.f /WU˛.A/! U˛.B/ is a weak equivalence in ‚nSp for all ˛ 2 S . Similarly,
define a fibration of T –algebras to be a map f such that U˛.f / is a fibration in M
for all ˛ . Then define a cofibration to be a map with the left lifting property with
respect to the maps which are fibrations and weak equivalences.

The following theorem is a generalization of a result by Quillen [28, II.4].

Proposition 5.5 There is a model structure on the category AlgT‚n
with weak equiva-

lences and fibrations given by evaluation functors U˛ for all ˛ 2 S .

Proof The proof follows just as it does for algebras in SSets [7, 4.7].

Let ‚nSpT
f

denote the category of functors T ! ‚nSp with model structure given
by levelwise weak equivalences and fibrations. Similarly, let ‚nSpTc denote the same
category with model structure given by levelwise weak equivalences and cofibrations.
Since the objects of ‚nSp are simplicial presheaves, in particular presheaves of sets,
we can regard the set of maps

P D

�
p˛n W

na
iD1

HomT .T˛i
;�/! HomT .T˛n ;�/

�
as defining a set of maps in ‚nSp given by constant diagrams. Then, we have model
structures L.‚nSp/T

f
and L.‚nSp/Tc given by localizing the model structures ‚nSpT

f

and ‚nSpTc with respect to this set of maps. The following proposition generalizes [7,
4.9].

Proposition 5.6 There is a model category structure L.‚nSpT / on the category
‚nSpT with weak equivalences the P –local equivalences, cofibrations as in SSetsT

f
,

and fibrations the maps which have the right lifting property with respect to the maps
which are cofibrations and weak equivalences.

Here, we use a slight modification of this theorem as follows. We define a model
structure analogous to L.‚nSpT / but on the category of functors T !‚nSp which
send T0 to �Œ0�, as in [9, 3.11]. We denote this category by L.‚nSp/T� .
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Proposition 5.7 Consider the category of functors T ! ‚nSp such that the image
of T0 is �Œ0�. There is a model category structure, on L.‚nSp/T� in which the in
which the fibrant objects are homotopy T –algebras in ‚nSp.

The main theorem of this section is the following, and its proof follows just as in the
case of SSets.

Theorem 5.8 There is a Quillen equivalence of model categories

LW L.‚nSp/T
�;f

//AlgT‚n
WN:oo

5.9 Algebras over the theory of categories with fixed object set

We now look at the algebraic theory that is of use here, namely the theory TOCat of
categories with fixed object set O . Consider the category OCat whose objects are the
small categories with a fixed object set O and whose morphisms are the functors which
are the identity on the objects. There is a theory TOCat associated to this category.
Given an element .˛; ˇ/2O�O , consider the directed graph with vertices the elements
of O and with a single edge starting at ˛ and ending at ˇ . The objects of TOCat are
isomorphism classes of categories which are freely generated by coproducts of such
directed graphs, where coproducts are taken in the category of categories with fixed
object set O . In other words, this theory is .O�O/–sorted.

A product-preserving functor TOCat! Sets is essentially a category with object set O .
In the comparison between simplicial categories and Segal categories with a fixed
object set, we use simplicial algebras TOCat! SSets, which correspond to simplicial
categories, or categories enriched over simplicial sets, with fixed object set O . Here,
we regard strictly product-preserving functors TOCat!‚nSp as categories enriched
over ‚nSp with object set O .

When ‚nSp is additionally a cofibrantly generated model category of simplicial
presheaves, then we can consider the model structure AlgTOCat

‚n
and the related model

structure for homotopy algebras, L.‚nSp/TOCat . The homotopy algebras can be re-
garded as a weaker version of categories enriched over ‚nSp, yet not as weak as the
Segal category objects that we considered in the previous section; our goal is to show
they are all equivalent nonetheless.

The argument of proof used for the following proof is identical to the case of SSets
in [9, Sections 4 and 5].

Theorem 5.10 There is a Quillen equivalence of model categories

L.‚nSp/TOCat
O;f

//L.‚nSp/�
op

O;f :oo
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We also note the following comparison between our two model structures for Segal
objects in ‚nSp.

Proposition 5.11 The identity functor gives a Quillen equivalence

L.‚nSp/�
op

O;f
//L.‚nSp/�

op

O;c :oo

Proof The proof follows since weak equivalences are the same in both model structures
and all the cofibrations in L.‚nSp/�

op

O;f are cofibrations in L.‚nSp/�
op

O;c .

6 Two model structures for Segal category objects

In this section, we remove the restriction that the sets in degree zero are fixed and
establish two different model structures. Unlike in the fixed object case, we can no
longer obtain the desired model structures as a localization of ones with levelwise weak
equivalences. Nonetheless, one will be “injective-like,” in that the cofibrations will be
given levelwise, and the other will be “projective-like,” in that the cofibrations will look
as if they given by a localization of a projective structure. We begin by constructing
sets of generating cofibrations for each.

6.1 Generating cofibrations for the injective-like model structure

Thus, we begin with the generating cofibrations for the Reedy model structure on
‚nSp�

op

c , which are given by

A��Œp�[B � @�Œp�! B ��Œp�;

where A! B ranges over all generating cofibrations in ‚nSp and p � 0. Since
the localization does not change the cofibrations, we can use the Reedy generating
cofibrations as a generating set for ‚nSp. Recall that a map X ! Y is an acyclic
fibration in SSets‚n if, for any object Œq�.c1; : : : ; cq/, the map X.c1;:::;cq/!P.c1;:::;cq/

is an acyclic fibration of simplicial sets, where P.c1;:::;cq/ is the pullback in the diagram

P.c1;:::;cq/
//

��

Y.c1;:::;cq/

��
M.c1;:::;cq/X // M.c1;:::;cq/Y:

Here M.c1;:::;cq/X denotes the matching object for X at Œq�.c1; : : : ; cq/ and analo-
gously for Y [17, 15.2.5].
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The map X.c1;:::;cq/ ! P.c1;:::;cq/ is an acyclic fibration of simplicial sets precisely
when it has the left lifting property with respect to the generating cofibrations for the
standard model structure on SSets, ie, with respect to the maps @�Œm�!�Œm� for
all m� 0. Now, notice that

X.c1;:::;cq/ DMap.‚Œq�.c1; : : : ; cq/;X /;

M.c1;:::;cq/X DMap.@‚Œq�.c1; : : : ; cq/;X /;

where ‚Œq�.c1; : : : ; cq/ is the analogue of �Œq� in SSets, ie, the representable object
for maps into Œq�.c1; : : : ; cq/, and @‚Œq�.c1; : : : ; cq/ is the analogue of @�Œq�. Thus,
we get that

P.c1;:::;cp/ DMap.‚Œq�.c1; : : : ; cq/;Y /

�Map.@‚Œq�.c1;:::;cq/;Y / Map.@‚Œq�.c1; : : : ; cq/;X /:

Putting all this information together, and letting Ec D .c1; : : : ; cq/, we see that X ! Y

is an acyclic fibration in ‚nSp precisely when it has the right lifting property with
respect to all maps

@�Œm��‚Œq�.Ec/[�Œm�� @‚Œq�.Ec/!�Œm��‚Œq�.Ec/:

Recall that .‚nSp/�
op

disc denotes the category of functors �op ! ‚nSp such that the
image of Œ0� is discrete, and that .�/r denotes the reduction functor which, applied
to any object of .‚nSp/�

op
, forces the ‚n –space at level 0 to be discrete. We have a

preliminary set of possible generating cofibrations for this category, given by

..@�Œm��‚Œq�.Ec/[�Œm�� @‚Œq�.Ec/��Œp�[ .�Œm��‚Œq�.Ec/� @�Œp�/r

! ..�Œm��‚Œq�.Ec/��Œp�/r :

As arose in [10, Section 4], some of these maps are not still monomorphisms after apply-
ing the reduction functor. It suffices to take all maps as above where mDqDpD0, and
where m; q � 0 and p � 1. All other maps where pD 0 either result in isomorphisms
(which are unnecessary to include) or maps which are not isomorphisms. For example,
when p D q D 0 and mD 1, we obtain �Œ0�q�Œ0�!�Œ0� after reduction, which is
not a monomorphism. Define

Ic D f..@�Œm��‚Œq�.Ec/[�Œm�� @‚Œq�.Ec//��Œp�[ .�Œm��‚Œq�.Ec//� @�Œp�/r

! ..�Œm��‚Œq�.Ec//��Œp�/r jm; q � 0;p � 1g;

which will be a set of generating cofibrations for one of our model structures.
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6.2 Generating cofibrations for the projective-like model structure

However, this reduction process does not work as well when we seek to find generating
cofibrations for a model structure analogous to the projective model structure on
.‚nSp/�

op
, in which the generating cofibrations are of the form

A��Œp�! B ��Œp�;

where p � 0 and A! B is a generating cofibration in ‚nSp. For some of the maps
A!B (in particular when, using the description of such maps above, mD 1 or qD 1),
reduction does not give the correct map.

Thus, we also need to consider another set, first to prove a technical lemma for our
first model structure, and then to be a set of generating cofibrations for the second
model structure. For any object A in ‚nSp and p � 0, define the object AŒp� to be
the pushout of the diagram

A� .�Œp�/0 //

��

A��Œp�

��
.�Œp�/0 // AŒp�:

Define the set

If D fAŒp�! BŒp� j p � 0;A! B a generating cofibration in ‚nSpg:

6.3 Lifting properties for the sets Ic and If

Let X be a ‚nSp–Segal precategory, and consider the map X ! cosk0X . Denote by
Xp.v0; : : : ; vp/ the fiber of the map

Xp! .cosk0X /p DX
pC1
0

:

Then, for any object A or B as given above (noting that these objects are small in
‚nSp), we get

Hom.AŒp�;X /D Hom.A��Œp�qA��Œp�0 �Œp�0;X /

D Hom.A;Xp/�Hom.A;X pC1

0
/
X

pC1
0

D

a
v0;:::;vp

Hom.A;Xp.v0; : : : ; vp//:

(Notice that by our assumption that X is a ‚nSp–Segal precategory, X0 is a discrete
object of ‚nSp and therefore our abuse of terminology that it has “elements” v0; : : : ; vp
makes sense.)
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We make use of the following facts about fibrations in ‚nSp. We give the proof in
Section 8.

Proposition 6.4 Suppose that X;X 0;Y , and Y 0 are objects of ‚nSp.

(1) If X and Y are both discrete constant diagrams, then any map X ! Y is a
fibration.

(2) If X ! Y and X ! Y be fibrations, then X qX 0! Y qY 0 is a fibration.

The following lemma is the higher analogue of [10, 4.1].

Lemma 6.5 Suppose that a map f W X ! Y of Segal precategory objects has the right
lifting property with respect to the maps in If . Then the map X0! Y0 is surjective,
and each map

Xp.v0; : : : ; vp/! Yp.f v0; : : : ; f vp/

is an acyclic fibration in ‚nSp for each p � 1 and .v0; : : : ; vp/ 2X
pC1
0

.

Proof Using our description of the generating cofibrations of ‚nSp, when mD qD 0,
we get the map ¿!�Œ0�. The fact that X ! Y has the right lifting property with
respect to ¿Œ0�!�Œ0�Œ0� implies that X0! Y0 is surjective.

To prove the remaining part of the statement, we need to show that a dotted arrow lift
exists in all diagrams of the form

A //

��

Xp.v0; : : : ; vp/

��
B //

88ppppppp
Yp.f v0; : : : ; f vp/

for all choices of p � 1 and A! B . By our hypothesis, we have the existence of
dotted arrow lifts

AŒp� //

��

X

��
BŒp� //

>>}
}

}
}

Y:

The existence of such a lift is equivalent to the surjectivity of the map Hom.BŒp�;X/!P ,
where P is the pullback in the diagram

Hom.BŒp�;X / // P //

��

Hom.AŒp�;X /

��
Hom.BŒp�;Y / // Hom.AŒp�;Y /:
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But, as we just showed above, we get

Hom.BŒp�;X /D
a

v0;:::;vp

Hom.B;Xp.v0; : : : ; vp//;

and analogously for the other objects in the diagram. Looking at each component for
each .v0; : : : ; vp/ separately, we can check that surjectivity of this map does indeed
give us the lift that we require.

Lemma 6.6 Suppose that f W X ! Y is a map in .‚nSp/�
op

disc with the right lifting
property with respect to the maps in Ic . Then

(1) the map f0W X0! Y0 is surjective,

(2) for every m� 1 and .v0; : : : ; vm/ 2X nC1
0

, the map

Xm.v0; : : : ; vm/! Ym.f v0; : : : ; f vm/

is a weak equivalence in ‚nSp.

Proof Since f has the right lifting property with respect to the maps in the set Ic ,
it has the right lifting property with respect to all cofibrations. In particular, f has
the right lifting property with respect to the maps in the set If . Therefore, the result
follows by Lemma 6.5.

6.7 The injective-like model structure

In order to give a precise definition of our weak equivalences, we need to define a
“localization” functor L on the category ‚nSp�

op

disc such that, for any object X , LX is
a Segal space object which is also a Segal category object weakly equivalent to X in
LS‚nSp�

op
.

To begin, recall the object G.p/ as defined in Section 4, and consider one choice of
generating acyclic cofibrations in LS‚nSp�

op
, namely, the set

fC ��Œp�[D �G.p/!D ��Œp�g;

where p � 0 and C ! D is a generating acyclic cofibration in ‚nSp. Using these
maps, we can use the small object argument to construct a localization functor.

However, the maps with p D 0 are problematic because taking pushouts along them,
as given by the small object argument, results in objects which are no longer Segal
category objects. Thus, we consider maps as above, but with the restriction that p � 1.
To show that the “localization” functor that results from this smaller set of maps is
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sufficient, in that it still gives us a Segal space object, we can use an argument just like
the one given in [10, Section 5].

Now, we make the following definitions in ‚nSp�
op

disc .

� Weak equivalences are the maps f W X!Y such that the induced map LX!LY

is a Dwyer–Kan equivalence of Segal space objects. (We call such maps Dwyer–
Kan equivalences.)

� Cofibrations are the monomorphisms.

� Fibrations are the maps with the right lifting property with respect to the maps
which are both cofibrations and weak equivalences.

Lemma 6.8 Suppose that f W X ! Y is a map in .‚nSp/�
op

disc with the right lifting
property with respect to the maps in Ic . Then f is a Dwyer–Kan equivalence.

Proof Suppose that f W X ! Y has the right lifting property with respect to the maps
in Ic . By Lemma 6.6, f0WX0! Y0 is surjective and each map

Xm.v0; : : : ; vm/! Ym.f v0; : : : ; f vm/

is a weak equivalence in ‚nSp for m � 1 and .v0; : : : ; vm/ 2 X mC1
0

. To prove
that f is a Dwyer–Kan equivalence, it remains to show that, for any x;y 2 X0 ,
mapLX .x;y/!mapLY .f x; fy/ is a weak equivalence in ‚nSp.

First, we construct a factorization of f as follows. Define ˆY to be the pullback in
the diagram

ˆY //

��

Y

��
cosk0.X0/ // cosk0.Y0/:

Then .ˆY /0 D X0 and, for every m � 1 and .v0; : : : ; vm/ 2 X mC1
0

, there is an
isomorphisms of mapping objects

.ˆY /0.v0; : : : ; vm/Š Ym.f v0; : : : ; f vm/:

Then X ! ˆY is a Reedy weak equivalence and hence a Dwyer–Kan equivalence.
Therefore, it remains to prove that ˆY ! Y is a Dwyer–Kan equivalence, via an
inductive argument on the skeleta of Y .

For any p�0, consider the map ˆ.skpY /! skpY . If pD0, then ˆ.sk0Y / and sk0Y

are actually ‚nSp–Segal objects which can be observed to be Dwyer–Kan equivalent.
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Therefore, assume that the map ˆ.skp�1Y /! skp�1Y is a Dwyer–Kan equivalence
and consider the map ˆ.skpY /! skpY .

We know that skpY is obtained from skp�1Y via iterations of pushouts along maps
AŒm�! BŒm� for A! B a generating cofibration in ‚nSp. Since we need a more
precise formulation, we recall that generating cofibrations in ‚nSp are of the form

@�Œm��‚Œq�.c1; : : : ; cq/[�Œm�� @‚Œq�.c1; : : : ; cq/!�Œm��‚Œq�.c1; : : : ; cq/

for m; q � 0 and c1; : : : ; cq objects of ‚n�1 . So, we have the pushout diagram

�Œm��‚Œq�.c1; : : : ; cq/��Œp�0

��

// �Œm��‚Œq�.c1; : : : ; cq/��Œp�

��
�Œp�0 // .�Œm��‚Œq�.c1; : : : ; cq//Œp�:

Similarly, we obtain .@�Œm��‚Œq�.c1; : : : ; cq/[�Œm�� @‚Œq�.c1; : : : ; cq//Œp� .

For simplicity, assume that we require only one pushout to obtain skpY from skp�1Y ;
here we further simplify by considering the case where m D q D 0, although the
argument can be extended more generally. For this case, we have the pushout diagram

¿ //

��

skp�1Y

��
�Œp� // skpY:

Since we know by our inductive hypothesis that ˆ.skp�1Y /! skp�1Y is a Dwyer–Kan
equivalence, it suffices to establish that ˆ�Œp�!�Œp� is a Dwyer–Kan equivalence. In
the setting where these are levelwise discrete simplicial spaces, this fact was established
in [10, Section 9]. The argument given there continues to hold in the present case,
making use of the fact that the model structure for ‚nSp–Segal spaces is cartesian
(Theorem 3.14).

Theorem 6.9 There is a cofibrantly generated model category structure L‚nSp�
op

disc;c
on the category of ‚nSp–Segal precategories with the above weak equivalences, fibra-
tions, and cofibrations.

For the proof, we use the following result.

Theorem 6.10 (Beke [5, 4.1]) Let M be a locally presentable category, W a full
accessible subcategory of Mor.M/ satisfying the two-out-of-three property, and I a
set of morphisms in M. Suppose that

Geometry & Topology, Volume 17 (2013)



.1; n/–categories 2193

(1) inj.I/�W ,

(2) W \ cof.I/ is closed under pushouts and transfinite composition.

Proof of Theorem 6.9 It suffices to check the conditions of the above theorem. It is not
too hard to show that condition (1) is satisfied with W the class of weak equivalences
as defined. However, to prove the remaining two statements we need the set

Ic D f.A��Œp�[B � @�Œp�/r ! .B ��Œp�/r g;

where A! B are the generating cofibrations in ‚nSp.

Condition (2) was established in Lemma 6.8.

For condition (3), first notice that elements of cof.Ic/ are monomorphisms. Now
suppose that X ! Y is a weak equivalence which is in cof.Ic/, and suppose

X //

��

Z

��
Y // W

is a pushout diagram. Then notice that in the diagram

mapLX .x;y/
//

��

mapLZ .x;y/

��
mapLY .x;y/

// mapLW .x;y/

again has the left hand vertical map a cofibration and weak equivalence in ‚nSp, and
is again a pushout diagram. Furthermore, using the definition of homotopy category in
a ‚nSp–Segal category, it can be shown that the analogous diagram of homotopy cate-
gories is again a pushout diagram. Therefore, weak equivalences which are in cof.Ic/

are preserved by pushouts. A similar argument using mapping objects and homotopy
categories establishes that such maps are preserved by transfinite compositions.

6.11 The projective-like model structure

We now define another model structure with the same weak equivalences, but for which
the cofibrations are given by transfinite compositions of pushouts along the maps of
the generating set If , and the fibrations are then determined.

Theorem 6.12 There is a model structure L.‚nSp/�
op

disc;f on the category of Segal
precategory objects with weak equivalences the Dwyer–Kan equivalences and the
cofibrations given by iterated pushouts along the maps of the set If .
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Proof As before, we show that the conditions of Theorem 6.10 are satisfied. Condition
(1) continues to hold from the previous model structure. A similar proof can be used
to establish condition (2), using Lemma 6.5 and a proof analogous to the one for
Lemma 6.8. Condition (3) works as in the other model structure.

7 Quillen equivalences between Segal category objects and
enriched categories

We now establish Quillen equivalences between the models given in the previous
sections.

Proposition 7.1 The identity functor induces a Quillen equivalence

L.‚nSp/�
op

disc;c
//L.‚nSp/�

op

disc;f :oo

Proof The identity map from L‚nSp�
op

f;disc to L‚nSp�
op

c;disc preserves cofibrations and
acyclic cofibrations, so we get a Quillen pair. The fact that it is a Quillen equivalence
follows then from the fact that weak equivalences are the same in both categories.

Proposition 7.2 There is a Quillen pair

F WL.‚nSp/�
op

f;disc
//
‚nSp–CatWR:oo

The idea here is that the local objects of L.‚nSp/�
op

f;disc are “weak,” in that the condition
for local is given by a weak equivalence of mapping spaces. However, the objects in the
image of R are “strict,” in that they satisfy the same condition but with an isomorphism
of mapping spaces. To formalize this relationship, needed to prove this proposition, we
give the following definition.

Definition 7.3 Let D be a small category, C a simplicial category, and CD the category
of functors D! C . Let S be a set of morphisms in SSetsD . An object Y of CD is
strictly S –local if for every morphism f WA! B in S , the induced map on function
complexes

f �W Map.B;Y /!Map.A;Y /

is an isomorphism of simplicial sets. A map gW C ! D in CD is a strict S –local
equivalence if for every strictly S –local object Y in CD , the induced map

g�W Map.D;Y /!Map.C;Y /

is an isomorphism of simplicial sets.
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Here, we consider functors �op!‚nSp which are discrete at level zero. Notice that
a category enriched in ‚nSp–Cat can be regarded as a strictly local object in this
category when we localize with respect to the map ' described in Section 4. Recall
that a Segal category object is a (nonstrictly) local object when regarded as a Segal
space object �op! ‚nSp. Thus, the enriched nerve functor can be regarded as an
inclusion map

RW ‚nSp–Cat!‚nSp�
op
:

Although we are working in the subcategory of functors which are discrete at level
zero, we can still use the following lemma to obtain a left adjoint functor F to our
inclusion map R, since the construction will always produce a diagram with discrete
set at level zero when applied to such a diagram.

Lemma 7.4 For any small category D and any model category M, consider the
category of all diagrams X W D!M and the category of strictly local diagrams with
respect to the set of maps S D ff W A! Bg. The forgetful functor from the category
of strictly local diagrams to the category of all diagrams has a left adjoint.

Proof This lemma was proved in [7, 5.6] in the case where MDSSets, but the proof
continues to hold if we use a more general simplicial category.

We define F W L.‚nSp/�
op

disc;f !‚nSp–Cat to be this left adjoint to the inclusion map
of strictly local diagrams.

Proof of Proposition 7.2 To prove this proposition, we modify the approach given in
the proof of the analogous result when nD 1 [10, 8.3]. We first show that F preserves
cofibrations. Since F is a left adjoint functor, we know that it preserves colimits, so it
suffices to show that F takes the maps in the set If to cofibrations in ‚nSp–Cat .

Let � denote the terminal object in .‚nSp/�
op

. Since cofibrations are inclusions in
‚nSp, the map ¿! � is a cofibration, and ¿Œ0� ! �Œ0� is already local; in fact it
corresponds to the generating cofibration ¿! fxg in ‚nSp–Cat .

For any generating cofibration A! B , localizing the map AŒ1�! BŒ1� results in the
generating cofibration UA! UB of ‚nSp–Cat . Localizing any other map of If
results in a map in ‚nSp–Cat which is a colimit of maps of this form, and therefore F

preserves cofibrations.

To show that F preserve acyclic cofibrations, we use the Quillen equivalence in the
fixed-object set situation; the argument given in [10, 8.3] still holds in this more general
setting.
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To prove that this Quillen pair is a Quillen equivalence, we use the following theorem,
which is the analogue of [10, 8.5].

Lemma 7.5 For every cofibrant object X in L.‚nSp/�
op

disc;f , the map X ! FX is a
Dwyer–Kan equivalence.

Proof Consider an object in L‚nSp�
op

disc;f of the form
`

i BŒpi � , where B is the target
of a generating cofibration of ‚nSp, and let Y be a fibrant object of L‚nSp�

op

disc;f .
Then notice that .�Œp��B/k D�Œp�k�B since B is regarded as a constant simplicial
diagram. Then

Map.�Œm�; �Œp��B/ŠMap.�Œm�; �Œp�/�Map.�Œm�;B/

ŠMap.G.m/;�Œp�/�Map.G.m/;B/

ŠMap.G.m/;�Œp�;B/;

so �Œp��B is strictly local. By its construction, it follows that
`

i BŒpi � is also strictly
local. In particular, the map a

i

BŒpi �! F

�a
i

BŒpi �

�
is a Dwyer–Kan equivalence.

Now, suppose that X is any cofibrant object. Then it can be written as a colimit of
objects of the above form, and we can assume that it can be written as

X ' colim�opXj ;

where Xj D
`

I BŒpi �. Then, using arguments about mapping spaces and strictly local
objects as in [10, 8.5], we can show that

Map.X;Y /'Map.FX;Y /

for any strictly local fibrant object Y , completing the proof.

Theorem 7.6 The Quillen pair

F WL.‚nSp/�
op

f;disc
//
‚nSp–CatWR:oo

is a Quillen equivalence.

Proof To prove this result, we can use Lemma 7.5 to prove that F reflects weak
equivalences between cofibrant objects. Then, we show that for any fibrant ‚nSp–
category, the map F..RY /c/!Y is a Dwyer–Kan equivalence, where .RY /c denotes
a cofibrant replacement of RY . The proof follows just as in the nD 1 case [10, 8.6].
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8 Fibrations in ‚nSp

In this section we give the proof of Proposition 6.4, establishing properties of fibrations
in ‚nSp.

We begin with the case where nD 1, so that ‚nSp is just CSS , the model structure
for complete Segal spaces.

Proposition 8.1 The statement of Proposition 6.4 holds when nD 1.

Proof Recall that the generating acyclic cofibrations in CSS are of the form

V Œm; k���Œp�t [�Œm��G.p/t !�Œm���Œp�t

or
V Œm; k��Et

[�Œm���Œ0�t !�Œm��Et ;

where m� 1, 0� k �m, p � 0, and E denotes the nerve of the category with two
objects and a single isomorphism between them.

Suppose that X and Y are discrete constant simplicial spaces. To show that any map
X ! Y is a fibration, it suffices to prove that it has the right lifting property with
respect to these two kinds of generating acyclic cofibrations, which is equivalent to the
existence of dotted arrow lifts in the diagrams of simplicial sets

V Œm; k� //

��

Xn

��
�Œm� //

<<x
x

x
x

P //

��

X1 �X0
� � � �X0

X1

��
Yn

// Y1 �Y0
� � � �Y0

Y1;

V Œm; k� //

��

Map.Et ;X /

��
�Œm� //

88q
q

q
q

q
Q //

��

X0

��
Map.Et ;Y / // Y0;

where P and Q denote the pullbacks of their respective lower square diagrams. In
the first diagram, since X and Y are constant, X0 D X1 D Xn and Y0 D Y1 D Yn

for all n � 2, so P D Xn and the right hand vertical map in the upper square is an
isomorphism. Therefore, the necessary lift exists. Similarly, in the second diagram,
we can again use the fact that X and Y are discrete to show that Map.Et ;X /DX0

and Map.Et ;Y /D Y0 , from which it follows that QDX0 and the right hand vertical
map in the upper diagram is an isomorphism, implying the existence of the desired lift.
Therefore, we have established that (1) holds in CSS .
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For (2), suppose that X ! Y and X 0! Y 0 have the right lifting property with respect
to the two kinds of generating acyclic cofibrations. For the first kind, we need to find a
dotted arrow lift in any diagram of the form

V Œm; k� //

��

.X qX 0/n

��
�Œm� //

88r
r

r
r

r
P //

��

.X qX 0/1 �.XqX 0/0 � � � �.XqX 0/0 .X qX 0/1

��
.Y qY 0/n // .Y qY 0/1 �.YqY 0/0 � � � �.YqY 0/0 .Y qY 0/1:

However, since all maps in sight are given by coproducts of maps, we can rewrite the
right hand vertical map in the lower diagram as

.X1�X0
� � ��X0

X1/q.X
0
1�X 0

0
� � ��X 0

0
X 01/! .Y1�Y0

� � ��Y0
Y1/q.Y

0
1�Y 0

0
� � ��Y 0

0
Y 01/:

Since �Œm� is connected, finding a lift reduces to finding a lift on one of the components,
which holds since we have assumed that each component map X !X 0 or X 0! Y 0 is
a fibration. A similar argument can be used to establish the right lifting property with
respect to the second type of acyclic cofibration.

The proof of Proposition 6.4 can then be established via the following inductive result.

Proposition 8.2 If conditions (1) and (2) from Proposition 6.4 hold for ‚n�1Sp, n�2,
then they hold for ‚nSp.

Proof The generating acyclic cofibrations of ‚nSp are of three kinds:

V Œm; k��‚p.c1; : : : ; cp/[�Œm��G.p/.c1; : : : ; cp/!�Œm��‚p.c1; : : : ; cp/

for m� 1, 0� k �m, p � 0, and c1; : : : ; cp objects of ‚n�1 ,

V Œm; k��T#�Œ0�[�Œm��T#E!�Œm��T#�Œ0�;

for m; k as before, and

V Œm; k��V Œ1�.B/[�Œm��V Œ1�.A/!�Œm��V Œ1�.B/;

where A! B is a map in Tn�1 , the set of generating cofibrations for ‚n�1Sp.

Let us first consider the case where X ! Y is a map between discrete constant objects.
Showing that this map has the right lifting property with respect to the first two kinds
of generating acyclic cofibrations is analogous to the proof of Proposition 8.1. For the
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third kind, we need to show the existence of a dotted arrow lift in any diagram of the
form

V Œm; k� //

��

Map.V Œ1�.B/;X /

��
�Œm� //

66nnnnnnn
P //

��

Map.V Œ1�.A/;X /

��
Map.V Œ1�.B/;Y / // Map.V Œ1�.A/;Y /;

where P denotes the pullback of the lower square.

Now, recall from [31] that we can define the mapping object MX .x0;x1/.c1/ to be
the object of ‚n�1Sp defined as the pullback in the diagram

MX .x0;x1/.c1/ //

��

X Œ1�.c1/

��
.x0;x1/ // X Œ0��X Œ0�:

Furthermore, we get

Map.V Œ1�.B/;X /D
a

x0;x1

Map.B;MX .x0;x1//;

and analogously for other objects in the above diagram. Since we have reduced the
problem to the world of ‚n�1Sp, our inductive hypothesis shows that the necessary
lift exists. Hence, condition (1) holds.

The same kind of argument, and again using the ideas of the proof of Proposition 8.1,
we can verify that condition (2) holds as well.
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