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A topological splitting theorem for Poincaré
duality groups and high-dimensional manifolds

ADITI KAR

GRAHAM A NIBLO

We show that for a wide class of manifold pairs N;M with dim.M /D dim.N /C1 ,
every �1 –injective map f W N !M factorises up to homotopy as a finite cover of
an embedding. This result, in the spirit of Waldhausen’s torus theorem, is derived
using Cappell’s surgery methods from a new algebraic splitting theorem for Poincaré
duality groups. As an application we derive a new obstruction to the existence of
�1 –injective maps.

20F65, 57N35; 57R67, 57Q20, 57P10

1 Introduction

Conventions We use superscripts to denote real dimension, for example, a manifold
denoted N k has dimension k . Once the dimension is established we omit the super-
script so that the manifold N k is also denoted N . A group G is said to split over a
subgroup H if G has one of the following descriptions:

Case I (Free product with amalgamation) G DG1 �H G2 with G1 6DH 6DG2 .

Case II (HNN extension) G D J�H , J ¤H .

The presence of a group action on a space often allows one to promote an existing
structure to another of a more strictly controlled kind. Examples of this phenomenon
in topology include Papakyriokopoulos’s sphere theorem [18], Waldhausen’s torus
theorem [24], and the geometric superrigidity theorem of Mok et al [15]. In this paper
we propose the following topological result which has features in common with them
all.

Theorem 1 Let N n be a closed, orientable, aspherical topological manifold with n

even and n� 6, satisfying the following properties:

(1) every cellular action of �1.N / on a CAT(0) cubical complex has a global fixed
point,
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(2) the projective class group zK0.C / vanishes for any torsion free finite extension
C of �1.N /.

Given any closed, orientable, aspherical topological manifold M nC1 and any �1 –
injective, continuous function j W N ! M , there is a diagram as follows which
commutes up to homotopy
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oo_ _ _

N 0
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�
�

M 0 oo h //___ M

where:

(1) M 0;N0 are closed, orientable, aspherical, topological manifolds and h; h0 are
homotopy equivalences,

(2) the map pW N0!N 0 is a finite degree cover, and

(3) i W N 0!M 0 is a two sided topological embedding.

The reduced projective class group is conjectured to vanish for all torsion free groups
(see Davis [5, Conjecture H.1.8] for a discussion) so Condition (2) of Theorem is
conjecturally unnecessary. Condition (1) on the other hand is at the heart of the result.
By Sageev’s duality theorem [20] together with Scott’s ends theorem [21] it is equivalent
to the assertion that no covering space of N has more than 1 topological end. This
is central to the proof which proceeds in 2 stages, first to derive a splitting of the
fundamental group of M as an HNN extension or as a non-trivial amalgamated free
product and then to use the splitting to obtain the required decomposition of M . The
first stage is essentially group theoretic and requires condition 1, while the second uses
surgery theoretic techniques which necessitates the restriction to dimensions � 5. The
restriction to even dimensions is unnecessary; however, the surgery methods required for
the odd-dimensional case are more complicated and we address them in a forthcoming
paper.

Subject to the Borel conjecture, there is a more elegant formulation of Theorem 1.
The Borel conjecture, formulated by Armand Borel in 1953 asserts that any homotopy
equivalence between aspherical manifolds should be homotopic to a homeomorphism.
Since the homotopy type and the dimension of an aspherical manifold is determined
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Splitting Poincaré duality groups and high-dimensional manifolds 2205

by its fundamental group the Borel conjecture asserts that the fundamental group is
sufficient to classify aspherical manifolds of any given dimension.

If in Theorem 1, both �1.M / and �1.N / are known to satisfy the Borel conjecture,
or, alternatively, if �1.N / satisfies the Borel conjecture and is square root closed in
�1.M /, then the homotopy equivalences h; h0 are homotopic to homeomorphisms and
the commutative diagram simplifies as below. In this case the theorem asserts that
every �1 –injective codimension 1 map j W N !M factors, up to homotopy, as a finite
cover of a 2–sided embedding.

N

j

��

pıh0

}}{
{

{
{

N 0 � p

iıh !!C
C

C
C

M

Figure 1: When �1.M / and �1.N / satisfy the Borel conjecture the map j

factors up to homotopy as a finite cover, p ı h0 , of an embedding i ı h .

The hypotheses on N are rigidity constraints which, for example, are satisfied when N

is a closed, orientable, Riemannian manifold whose universal cover zN is quaternionic
hyperbolic or the Cayley hyperbolic plane. More generally, by Niblo–Reeves [17],
condition (1) is satisfied whenever �1.N / satisfies Kazhdan’s property (T). By results
of Bartels and Lück [1], condition (2) is satisfied whenever �1.N / is a word hyperbolic
group. Indeed, any finite extension of a hyperbolic group is itself, hyperbolic and
so [1] applies. For the following reasons condition (2) is also satisfied when �1.N / is
CAT(0), that is, it admits a co-compact isometric proper action on a finite-dimensional
CAT.0/ space.

Assume that H D �1.N / admits a co-compact, proper isometric action on a CAT(0)
space X and that C is a finite extension of H . Letting K denote the intersection of
the conjugates of H in C we exhibit C as a finite extension

1!K! C !Q! 1:

By the universal embedding theorem (see Dixon and Mortimer [7, Theorem 2.6A]) C

embeds in the standard wreath product K oQ which acts cocompactly and properly
discontinuously by isometries on the Q–fold direct product X Q of X equipped with
the induced CAT(0) metric. Hence, by [1] the Farrell–Jones conjecture holds for the
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wreath product K oQ. However, as the property of a group satisfying the Farrell–
Jones conjecture is preserved under taking subgroups, we conclude that C satisfies the
Farrell–Jones conjecture. Consequently the projective class group vanishes for every
torsion-free finite extension of �1.N /.

Hence we obtain as a corollary:

The codimension 1 topological rigidity theorem Let M nC1 and N n be closed,
aspherical, orientable topological manifolds with n even and n� 6 such that �1.N / is
either a word-hyperbolic or a CAT(0) group that satisfies Kazhdan’s property (T). If M

satisfies the Borel conjecture then every �1 –injective map j W N !M is a finite cover
of an embedding (up to homotopy).

We regard this as a topological counterpart to the celebrated geometric superrigidity
theorem:

The geometric superrigidity theorem (Mok, Siu and Yeung [15]) Let zN be a
globally symmetric irreducible Riemann manifold of non-compact type. Assume that
either zN is of rank at least 2, or is the quaternionic hyperbolic space of dimension at
least 8 or the hyperbolic Cayley plane. Let H be a cocompact discrete subgroup of the
group of isometries of zN acting freely. Let zM be a Riemann manifold. Let f be a
non-constant H –equivariant harmonic map from zN to zM . When the rank of zN is at
least 2, the Riemann sectional curvature is assumed to be non-positive. When the rank
of zN is one, the complexified sectional curvature is assumed to be nonpositive. Then
the covariant derivative of the differential of f is identically zero. As a consequence,
f is a totally geodesic isometric embedding (up to a renormalization constant).

To compare the two results note that the map j W N !M induces a �1.N /–equivariant
map between the universal covers. The constraint on the curvature of the target zM in
the geometric super rigidity theorem is dropped (together with the requirement that the
target is smooth) in favour of a statement that zM is contractible and �1.M / satisfies
the Borel conjecture. Instead of a harmonic map, we start with a continuous function
which is of codimension 1. The conclusion that the map is totally geodesic up to
renormalisation is replaced by the conclusion that it is a finite cover of an embedding
up to homotopy. Deforming the map j to a harmonic map in the same homotopy
class allows us to combine the conclusions of the two results to see that the embedding
provided by Theorem 1 is homotopic to a totally geodesic surface in M .

The reader may find it helpful in visualising the results in this paper to consider the
analogous statements in lower dimensions. First we consider the case of �1 –injective
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loops on a 2–torus T . The fundamental group �1.T / is free abelian of rank 2 and
so any homotopy class of curves is represented by a pair of integers .m; n/. It is an
elementary fact that a non-trivial curve is homotopic to a simple closed curve if and
only if the pair .m; n/ is coprime, and it follows that in general a curve representing a
pair .a; b/ is homotopic to a degree d cover of the embedded curve representing the
pair .a=d; b=d/ where d D gcd.a; b/. It follows that every closed �1 –injective curve
is homotopic to a finite cover of an embedded loop. This is a direct analogue of the
codimension 1 topological rigidity theorem.

Now, in contrast, consider the case of loops on a hyperbolic surface. Every orientable
hyperbolic surface † admits �1 –injective maps  W S1!† which do not factorise
up to homotopy as a finite cover of an embedding. Recall that the free homotopy
class of a closed loop contains a unique geodesic, and that this minimises the self
intersection number for curves in that class. On the other hand, intersection numbers
are multiplicative on powers, and it follows that any self intersecting closed geodesic
which has intersection number 1 with some simple closed curve provides a loop which
does not finitely cover an embedded loop so the analogous statement fails in this case.
Such surfaces do carry many splitting curves, and these can often be obtained from
immersed totally geodesic curves by the somewhat different methods of cut and paste.

In dimension 3 the situation worsens: the Kahn and Markovic theorem [11] shows
that every hyperbolic 3–manifold contains an immersed �1 –injective surface, however,
there are examples which do not contain any embedded �1 –injective surfaces which
they could cover. For example, in [19], Reid constructs a non-Haken manifold M 3

which admits a finite cover homeomorphic to a hyperbolic surface bundle over S1 . The
fibre in the finite cover yields an immersed surface in M but there are no embedded
surfaces in M which it could cover so there is in general no analogue of the codimension
1 topological rigidity theorem in low dimensions. This leaves open the question of
what happens in dimension nD 4.

The strategy in the proof of Theorem 1 is to first establish the existence of a splitting of
the fundamental group �1.M / over a suitable subgroup using methods from geometric
group theory. This result applies in the context of Poincaré duality groups and is of
independent interest.

Theorem 2 Let G be an orientable PDn group and H be an orientable PDn�1

subgroup of G . If every action of H on a CAT(0) cube complex has a global fixed
point (in particular, by Niblo and Reeves [17], if H satisfies Kazhdan’s property (T)),
then G splits over a subgroup C containing H as a finite index subgroup.

Theorem 2 may be viewed as an analogue of the algebraic annulus and torus theorems
of Kropholler and Roller [13], Dunwoody and Swenson [9]. In a companion paper we
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give a group theoretic application of Theorem 2, obtaining a canonical decomposition
of Poincaré duality groups over codimension 1 property (T) Poincaré duality subgroups.
This may be viewed as an analogue of the algebraic JSJ decomposition studied by
Kropholler [12], Dunwoody and Sageev [8], Scott and Swarup [22] and others.

While Theorem 1 is stated in the topological category the surgery technology applied in
this paper also works in the smooth category and if the map j is smooth then the map
i it constructs is smooth also. We will use this fact to deduce the following obstruction
result from Theorem 1.

Corollary 3 Let M 4dC1 be a closed, orientable, aspherical, smooth manifold such
that d � 2 and the first Betti number b1.M / is zero. Let N 4d be a closed, orientable,
aspherical, smooth manifold with at least one non-zero Pontryagin number such that
�1.N / is either word hyperbolic or a CAT(0) group and satisfies Kazhdan’s property (T).
Then there are no �1 –injective continuous maps f W N !M .

The proof of Theorem 1 relies on ideas from geometric group theory, surgery theory,
homological algebra and rigidity theory and the paper is organised as follows. In
Section 2 we set up and prove the algebraic splitting theorem, Theorem 2, for Poincaré
duality groups. In Section 3 we outline the topological ingredients required for the
proof of the topological splitting theorem, Theorem 1. In Section 4 we present the proof
of Theorem 1, and in Section 5 we give the proof of the obstruction result, Corollary 3.

Acknowledgements The first author was supported by EPSRC grant EP/I020276/1.
The second author was partially supported by a Leverhulme Fellowship.

2 Splitting Poincaré duality groups

In order to set up notation we will first define Poincaré duality groups. For further
details, we refer the reader to Bieri [2] and references therein.

Definition 4 Let R be a commutative ring with unity. A group G is said to be a
duality group of dimension n over R if there is an RG module DG such that for
all k 2 Z and for all RG modules L, one has the following natural isomorphisms
(referred to as duality isomorphisms):

H k.GIL/ŠHn�k.GIDG ˝R L/

Here, G acts diagonally on the tensor product. The module DG is called the dualising
module of G . It is clear that the cohomological dimension over R of such a group is at
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most n. Moreover, taking the module L to be the induced module RG in the duality
isomorphism and applying the Eckmann–Shapiro Lemma, we find that H k.G;RG/D0

for all k ¤ n and H n.G;RG/DDG . This implies that G is a group of type FP over
R; however, much more is true as the following Theorem shows.

Theorem 5 (Bieri [2, Theorem 9.2]) A group G is a duality group of dimension n

over R if and only if the following three conditions hold:

(1) G is of type FP over R,

(2) H k.G;RG/D 0 for k ¤ n,

(3) H n.G;RG/ is flat as an R–module.

Definition 6 A group G is called a Poincaré duality group of dimension n over R

(or a PDn.R/–group, for short) if G is a duality group of dimension n over R and
the dualising module DG is isomorphic to R.

When G is the fundamental group of a closed aspherical manifold M , then Poincaré
duality holds with RD Z and in this case the dualising module is a trivial G –module
if and only if M is orientable. We will follow the convention of writing PDn for
PDn.Z/. In this paper we will consider PDn groups and PDn.F2/ groups. Observe
that every PDn group is also a PDn.F2/ group.

A group is a one-dimensional duality group over Z if and only if it is finitely generated
free. Consequently, a group G is a PD1 group if and only if G Š Z. That every PD2

group is a surface group is a deep theorem due to Bieri, Eckmann, Linnell and Muller.
It is conjectured that every finitely presented PDn group is the fundamental group of a
closed aspherical manifold.

The geometric and algebraic end invariants which play a crucial role in this paper may
be defined in terms of the cohomology groups of a group with exotic coefficients. In
order to define them we will need the following modules.

Let PG denote the collection of all subsets of G . Then, PG is an F2 –vector space
with respect to the operation of symmetric difference. One checks that PG is also a G

module. Moreover, PG Š CoindG
1 F2 . For a subgroup H <G we denote by FH .G/

the F2G –module IndG
HPH :

FH .G/D fA�G WA�HF for some finite set Fg:

Similarly the power set P.HnG/ of HnG and the collection of finite subsets of HnG ,
written F.HnG/ are F2ŒG� modules. In fact, P.HnG/ Š CoindG

H F2 and F.HnG/
Š IndG

H F2 .

We recall the following definitions from Kropholler and Roller [13]:
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Definition 7 For a subgroup H <G the algebraic end invariant is defined as

ze.G;H / WD dimF2
.FH .G/nPG/G

and the geometric end invariant is defined as

e.G;H /D dimF2
.F.HnG//nP.HnG//G :

If H has finite index in G , then coinduction coincides with induction and therefore
e.G;H / D 0 D ze.G;H /. If on the other hand, H is of infinite index, then one can
study the long exact sequence in cohomology corresponding to

0! FH .G/! PG! FH .G/nPG! 0

and an easy computation yields the formula ze.G;H /D 1C dimF2
H 1.G;FH .G//.

We now have all the notation required to state our splitting theorem for PDn groups.

Theorem 2 Let G be an orientable PDn group and H be an orientable PDn�1

subgroup of G . If every action of H on a CAT.0/ cube complex has a global fixed
point, in particular, if H satisfies Kazhdan’s property (T), then G splits over a Poincaré
duality subgroup C containing H as a finite index subgroup.

Proof Let G and H be as in the statement of the theorem. As PDk groups are also
PDk.F2/ groups, we may work over F2 . Since the dualising module H n.G;F2G/ŠF2

is trivial the duality isomorphism gives H k.GIFH .G//ŠHn�k.GIFH .G// for all
k 2 Z. Therefore,

H 1.G;FH .G//ŠHn�1.G;FH .G//ŠHn�1.G; IndG
H .PH //ŠHn�1.H;PH /;

where the last isomorphism is given by the classical Eckmann–Shapiro Lemma.

Using duality isomorphisms for H , we get Hn�1.H;PH /ŠH 0.H;PH /Š F2 . As
ze.G;H /D 1C dimF2

H 1.G;FH .G//, we deduce that ze.G;H /D 2. We now invoke
Kropholler and Roller [13, Lemma 2.5] to get a subgroup H 0 of at most index 2 in H

such that e.G;H 0/= ze.G;H /=2.

Applying Sageev’s construction [20, Theorem 2.3] we obtain a CAT.0/ cube complex
X such that G acts essentially on X and H 0 is the stabiliser of an oriented codimension
1 hyperplane J . As H 0 has finite index in the group H the action of H 0 on the CAT(0)
cube complex J has a global fixed point. One now extracts from the fixed point of
the action, a proper H 0 almost invariant subset B of G such that H 0BH 0 D B (see
Sageev [20, Lemma 2.5]).
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The singularity obstruction SB.G;H
0/, introduced in Niblo [16], is defined as the

collection fg 2G W gB\B¤∅; gBc\B¤∅; gB\Bc ¤∅ and gBc\Bc ¤∅g,
where Bc DGnB . We now apply Kropholler [12, Lemma 4.17] as follows to deduce
that the subgroup Kg DH 0\gH 0g�1 satisfies ze.G;Kg/� 2.

When g 2 .B�/�1\B� then gB \B is a Kg –almost invariant subset.

When g 2 .B�/�1\B then gB \B� is a Kg –almost invariant subset.

When g 2 B�1\B� then gB�\B is a Kg –almost invariant subset.

When g 2 B�1\B� then gB�\B� is a Kg –almost invariant subset.

We will use this to show that the elements of SB.G;H
0/ all lie in the commensurator

of H 0 , allowing us to apply the generalised Stallings’ theorem from Niblo [16].

Claim For any PDn.F2/ group � with subgroup � 0 , if ze.�; � 0/ � 2 then cdF2
� 0

D n� 1.

Let �; � 0 be as in the Claim. If ze.�; � 0/� 2, then � 0 has infinite index in � and so by
Strebel’s theorem cdF2

� 0 � n�1. We will show that in fact we have equality. Suppose
not and cdF2

� 0 � n� 2.

As before ze.�; � 0/ � 2 implies that H 1.�; Ind�
� 0P� 0/ is non-zero. However, by

duality for � and the Eckmann–Shapiro Lemma, we have H 1.�; Ind�
� 0P� 0/ Š

Hn�1.�
0;P� 0/. As cdF2

� 0 � n�2, there is a projective resolution P of F2 by F2�
0–

modules of length n�2. By definition, Hn�1.�
0;P� 0// is the .n�1/th homology of

the complex P ˝F2� 0 P� 0 . Clearly, the latter vanishes, contradicting the fact that
H 1.�; Ind�

� 0P� 0/ is non-zero. This proves the Claim.

Returning to the proof of Theorem 2 we deduce from the Claim that if g 2 SB.G;H
0/

then Kg has the same cohomological dimension as H 0 and as H 0g . It follows, again by
Strebel’s theorem that Kg has finite index in both. Hence, g lies in the commensurator
CommG.H

0/ of H 0 as required. Therefore by Niblo [16, Theorem B], G splits over a
subgroup C commensurable with H 0 and hence with H . More precisely, G is either
a non-trivial amalgamated free product G ŠA�C B or an HNN extension A�C such
that C and H are commensurable.

Now consider the action of G on the Bass–Serre tree for the splitting. Since H

is commensurable with an edge stabiliser, and G acts with no edge inversions, the
subgroup H fixes a vertex v so up to conjugation (and switching the roles of A;B if
necessary in the amalgamated free product case) we may assume that H lies in the
vertex stabiliser A. Having taken a conjugate of the picture to arrange for H <A it is
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still the case that H is commensurable with an edge stabiliser C g for some g , but, a
priori it is not clear that H is commensurable with C itself. Suppose that C g fixes
an edge e so that H \C g fixes both e and v . It then fixes the first edge e0 on the
geodesic from v to e . So the stabiliser of this edge is commensurable with H . Up to
conjugation within A this stabiliser is C , so we may express G as an amalgamated
free product G ŠA�C B or as an HNN extension A�C with H <A and so that H

and C are commensurable.

By Dicks and Dunwoody [6, Theorem V.8.2] we obtain a PDn pair .A; �/, where �
is the set of cosets of C in A. There are two types of PDn pairs, the I –bundle type
where � has two elements and the general type where � is infinite.

As remarked by Kropholler and Roller [13, Section 2.1], if .A; �/ is of general type,
then the subgroup C is self-commensurating in A. If .A; �/ is the I-bundle type and
A acts trivially on � then AD C . So C is self-commensurating in A in both these
cases. As commensurable subgroups have the same commensurators and H <A we
conclude in both these cases that H is a finite index subgroup of C as required.

It remains to consider the situation when .A; �/ is of twisted I –bundle type, that is,
A acts non-trivially on �. Here it is no longer evident that C is self-commensurating
in A and the proof that H is a subgroup of C is slightly different. Recall that �
is a 2-element set and A acts nontrivially on � so that the stabiliser of any point
in � is isomorphic to C . This implies that C has index 2 in A and by Brown [3,
Proposition VIII.10.2], A is a PDn�1 group. We argue that in this case A is non-
orientable, using the following observation.

Observation If .�;�/ is an orientable PDn pair of I –bundle type in which � is an
orientable PDn�1 group then � acts trivially on �.

The proof given here of the observation above is due to Jonathan Cornick and Peter
Kropholler, and we are grateful to them for allowing us to include it. Consider the long
exact sequence of cohomology for the pair with coefficients in the integral group ring
Z� . Cohomology groups with these coefficients inherit an action of � . We obtain the
following short exact sequence

0! Hn�1.�;Z�/! Extn�1
Z� .Z�;Z�/! Hn..�;�/;Z�/! 0:

The orientability of the pair .�;�/ implies Hn..�;�/;Z�/ is isomorphic to the trivial
module Z. The orientability of � implies that Hn�1.�;Z�/ is isomorphic to the
trivial module as well. From this it follows that the action of � on the middle group
Extn�1

Z� .Z�;Z�/ is either trivial or of infinite order.
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Let H be the stabiliser of one of the points of �. Let K be the unique maximal ori-
entable PDn�1 subgroup in H . The action of K on Extn�1

Z� .Z�;Z�/ is trivial and K

has index at most 4 in � . From this it follows that � acts trivially on Extn�1
Z� .Z�;Z�/.

In particular, � acts trivially on �. This establishes the observation.

Returning again to the proof of Theorem 2, we apply the observation with � DA. As
the pair .A; �/ is of twisted I –bundle type, A must be non-orientable, so it has a
non-trivial dualising module D . Brown [3, Proposition VIII.10.2] says that any PDn�1

subgroup of A inherits its dualising module by restriction from the dualising module
of A, so A has a unique maximal orientable PDn�1 subgroup, AC . Since A is not
orientable AC is a proper subgroup and since C is orientable C <AC . Finally since
the index ŒA WC �D 2 we conclude that AC D C . Since H is also orientable, H < C

as required.

3 Prerequisites from surgery theory

In this section (and in particular in Lemmas 8 and 9 below), for a smooth (respectively,
PL or topological) manifold, submanifold means a smooth (respectively, PL locally flat
or topological locally flat) submanifold.

Let M;N be manifolds as in the statement of Theorem 1 and j W N ! M a �1 –
injective map. Then �1.N /; �1.M / satisfy the hypotheses of Theorem 2 providing
a splitting of �1.M / as either an amalgamated free product �1.M / D A�C B or
as an HNN extension A�C where �1.N / < C is a subgroup of finite index. In [4]
Cappell provided tools to geometrise such a splitting. In particular he proved that
if C is square root closed in �1.M / then there is a closed aspherical embedded
submanifold i W N 0 ,!M such that i induces the inclusion of C in �1.M / and, by
Van Kampen’s theorem, induces the splitting of �1.M /. Asphericity then yields the
homotopy commutative Figure 1 of the introduction.

The idea of Cappell’s proof is to use surgery techniques to build a cobordism from M

to a manifold M 0 which does split in the required way. This provides the homotopy
equivalences h; h0 required by Theorem 1 and Cappell’s square root closed hypothesis
on C can be used to promote the homotopy equivalences to a homeomorphism M Š

M 0 , bypassing the need for �1.M / to satisfy the Borel conjecture. Since we prefer
not to invoke either the Borel conjecture or the square root closed hypothesis in our
statement of Theorem 1 it is necessary to unpack the proof of Cappell’s splitting
theorem.

As usual, surgery below the middle dimension requires no additional hypotheses, as is
captured by the following lemma. We have amended the notation to fit our situation:
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Lemma 8 (Cappell [4, Lemma I.1]) Let Y be an .nC1/–dimensional Poincaré
complex and X a codimension 1 sub-Poincaré complex with trivial normal bundle
in Y and with �1.X /! �1.Y / injective. Let M be an .nC 1/–dimensional closed
manifold with f W M ! Y a homotopy equivalence, n � 5. Assume we are given
m< .n� 1/=2; then f is homotopic to a map, which we continue to call f , which is
transverse regular to X (whence N 0Df �1.X / is a codimension 1 submanifold of M )
and such that the restriction f jN 0 W N 0!X induces isomorphisms �i.N

0/! �i.X /,
i �m.

Lemma 9 describes the obstruction to carrying out surgery in the middle dimension
which by Lemma 10 is all that is then required. It is carried by the surgery kernels
Ki.N

0/ defined in [4, Section I.4], and the projective class group zK0.C / appearing in
Lemma 9 below. As recorded in the proof of [4, Lemma I.2], if �i.f

�1.X //! �i.X /

is an isomorphism then Ki.N
0/D 0.

Lemma 9 (Cappell [4, Lemma II.1]) Let nD 2k , M be a closed manifold and Y a
Poincaré complex of dimension .nC 1/. Assume we are given X a sub-Poincaré com-
plex) of dimension n of Y with trivial normal bundle and with C D �1.X / < �1.Y /.
Assume further that f W M ! Y is a homotopy equivalence transverse regular to X

with, writing N 0 D f �1.X /, N 0 connected and �1.N
0/! �1.X / an isomorphism

and Ki.N
0/D 0 for i < k . Then letting Kk.N

0/D P ˚Q denote the decomposition
of ZC modules defined in [4, I.4],

(1) Kk.N
0/ is a stably free ZC module and ŒP �D�ŒQ�. Moreover, in Case I, ŒP �2

ker . zK0.C /! zK0.G1/˚ zK0.G2//, and in Case II, ŒP �2ker . zK0.C /! zK0.J //.

(2) Any finite set of elements of P (respectively, Q) can be represented by embedded
disjoint framed spheres in N 0 for k > 2. The intersection pairing of Kk.N

0/ is
trivial when restricted to P (resp; Q) and QŠ P� . Thus, ŒP �D�ŒP��.

(3) If ŒP �D0, f is homotopic to a map f 0 with N 0Df 0�1.X / !X k –connected
and so that, abusing notation by writing Kk.N

0/DP˚Q for the decomposition
of [4, I.4], P and Q are free ZC –modules.

Applying Lemma 8 up to dimension n=2 � 1 ensures the vanishing of the surgery
kernels Ki.N

0/ while hypothesis (2) of Theorem 1 ensures the vanishing of zK0.C /

so that ŒP �D 0 as required by condition (3) of Lemma 9.

Cappell’s lemmas along with his nilpotent normal cobordism construction allow us
to realise the splitting obtained in Theorem 2 by an embedded submanifold N 0 in a
homotopic manifold M 0 which is aspherical up to the middle dimension. Given that
we are working with Poincaré duality groups the following elementary lemma from
homotopy theory guarantees that this is sufficient to ensure that N 0 is aspherical.
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Lemma 10 Let X n be a closed, orientable manifold and let k be the largest integer
less than or equal to n

2
. Suppose the universal cover zX of X is k –connected and that

G D �1.X / is a duality group of dimension n. Then �i.X /D f0g for all i � 2.

Proof Let X be a manifold as in the statement of the Lemma. Suppose that �i.X /¤

f0g for some i � 2 and choose the smallest such p . Evidently, zX is .p�1/–connected.
By the Hurewicz theorem, Hi. zX /D 0 for all i D 1; : : : ; .p�1/ and �p. zX /Š Hp. zX /.
Observe that kC1�p� n. Duality for orientable non-compact manifolds implies that
Hp. zX / ŠH

n�p
c . zX /. Here, H�c .

zX / refers to the cohomology with compact supports
for zX . We claim that H

n�p
c . zX /ŠH n�p.G;ZG/.

Recall that H i
c .
zX /D lim

�!
K H i. zX ; zX �K/, as K varies over compact subsets of zX

and hence is the i th homology of the complex lim
�!

K Hom.C. zX ; zX �K/;Z/. Note
that every element of lim

�!
K Hom.C. zX ; zX �K/;Z/ is represented by a homomorphism

from C. zX ; zX�K/ to Z for some compact K .

As G acts freely and properly on the universal cover zX with quotient X , we can
consider the partial augmented singular chain complex

Cp. zX /! Cp�1. zX /! � � � ! C0. zX /! Z! 0:

Since zX is .p�1/–connected this is a partial free G–resolution of Z and may be
completed to a projective resolution P . The action of G is proper and so for i < p ,
the cohomology of the co-complex HomG.C. zX /;ZG/ is the cohomology of X with
local coefficients in ZG . Hence this is the i th cohomology of G with ZG coefficients.

We now show that for i < p , HomG.Ci. zX /;ZG/ Š lim
�!

K Hom.Ci. zX ; zX �K/;Z/,
where K varies over compact subsets of zX . Let F 2 HomG.Ci. zX /;ZG/. As a
Z–module map, F W Ci. zX / ! ZG is induced by the assignment � 7!

P
gfg.�/:g ,

where the sum is finite and fg is a module homomorphism from Ci. zX / to Z. A
straightforward computation shows that F is a G –module homomorphism if and only
if fg.�/Df1.g

�1�/ for all g2G . Note that f1 is zero outside of a compact subset K

of zX and hence we have a map HomG.Ci. zX /;ZG/! lim
�!

K Hom.Ci. zX ; zX �K/;Z/
given by F 7!f1 . One checks that this is an isomorphism with inverse coming from the
prescription f 7!

�
F W � 7!

P
g f .g

�1�/:g
�

and hence H
n�p
c . zX /ŠH n�p.G;ZG/.

Finally, putting all the isomorphisms together, �p.X / Š H n�p.G;ZG/. As 0 �

n � p � k � 1 and G is a duality group of dimension n group, H i.G;ZG/ D 0

except possibly when i D n, so in particular H n�p.G;ZG/ D 0 which contradicts
our hypothesis on �p.X /.
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4 Proof of Theorem 1

Proof Let M and N be as in the statement of Theorem 1. Set G D �1.M / and
H D �1.N /. Then G is an orientable PDnC1 group and H is an orientable PDn

subgroup of G and by Theorem 2, G splits over a Poincaré duality subgroup C

containing H as a subgroup of finite index.

It is well known that a group G splits over a subgroup H (in the sense of our convention)
if and only if G acts on an unbounded tree T with a single edge orbit, and so that
H is an edge stabiliser. It follows from the unboundedness of the action that vertex
and edge stabilisers of the action are all of infinite index in G . When the splitting
is a non-trivial amalgamated free product G D A�C B , the subgroups A;B and
C are all of infinite index in G and so, by Strebel’s theorem [23, Theorem 3.2],
the cohomological dimension of each of A;B;C is at most n. Since A;B contain
C which has cohomological dimension n, all three have cohomological dimension
equal to n. Similarly, in the case of the HNN decomposition, the subgroups A;C

have cohomological dimension n. Since n > 2, the Eilenberg–Ganea theorem [10],
applies and the cohomological dimensions of A, B and C are equal to the geometric
dimensions of A, B and C respectively.

We now carry out the standard mapping cylinder construction of an Eilenberg MacLane
space for G . When the group G splits as an amalgamated free product G DA�C B

let XA , XB and XC denote the n–dimensional K.�; 1/ complexes for A, B and C .
Note that these complexes may be taken to be simplicial complexes. Since G;C are
both of type FP, we can apply the Mayer Vietoris sequence, to see that the groups A

and B are also of type FP so we may choose the complexes to be of finite type.

Let �AW XC !XA and �BW XC !XB be maps inducing the inclusions C ,!A and
C ,! B . We construct the mapping cylinders MA;MB of these maps and making
the standard identifications yields a K.�; 1/ for the group G which we will denote
by Y . In the case when G splits as an HNN extension we carry out a similar process
building a K.�; 1/ from XA and XC � Œ�1; 1� by glueing the two ends XC � f˙1g

to XA using maps which induce the two inclusions of C into A defining the HNN
extension. In this case again we denote the K.�; 1/ by Y .

Note that Y is a Poincaré complex, and moreover, the Poincaré subcomplex XC �f0g�

Y cuts the neighbourhood XC � .�1=2; 1=2/ � Y into two components so that the
normal bundle of XC in Y is trivial (see Cappell [4, Introduction]). By construction, the
composition XC!XC�f0g ,!Y is �1 –injective. Applying Lemma 8, we may replace
f (up to homotopy) by a map, which we continue to call f , which is transverse regular
to XC �f0g and such that the restriction of f to N 0D f �1.XC �f0g/!XC induces
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isomorphisms �i.N
0/! �i.XC /, for all i � .n=2� 1/. In particular, �i.N

0/ D 0

for all i D 2; : : : ; .n=2� 1/. Note that the transverse regularity of f ensures that the
pre-image N 0 is a codimension 1 submanifold of M . Our aim is to further modify the
map f so that it remains transverse regular and so that its restriction to N 0 induces an
isomorphism on all homotopy groups, thus making N 0 aspherical.

Recall that n is even so that n D 2k with k � 3. As recorded in the proof of [4,
Lemma I.2], the isomorphisms �i.N

0/! �i.XC /, for all i � .k�1/ ensure that each
of the modules Ki.N

0/ for i � k � 1 vanishes.

Since C is a torsion free finite extension of H , condition (2) of Theorem 1 ensures
the vanishing of zK0.C /. Invoking Lemma 9, we replace f by a map f 0 homotopy
equivalent to f which is transverse regular and such that �1.N

0/Š C where N 0 D

f 0�1.X / and the restriction of f 0 to N 0 is k –connected. In addition, both P and Q

in Kk.N
0/D P ˚Q are free C –modules. This means that one can perform Cappell’s

nilpotent normal cobordism construction on M , a process we will now describe.

Note that cutting M along N 0 we get a decomposition M DMA[N 0 MB in Case I
and M DMA=fN

0
AŠN 0ŠN 0Bg in Case II. The covering of M corresponding to the

image of �1.X /! �1.Y /Š �1.M / is labelled yM and the universal covering of M

is labelled zM . The group C D �1.N
0/ acts by covering transformations on zM , ML

and MR (where zM DML[ zN 0MR ) with quotients being yM , Ml and Mr . Hence,
yM DMl [N 0 Mr . Let I D Œ0; 1� and I 0D Œ�2; 2�. We select a tubular neighbourhood

N 0�I 0 of N 0 in M such that when the lift of N 0 to yM is extended to a lift of N 0�I 0 ,
we have N 0 � f�2g �Ml and N 0 � f2g �Mr .

Let fxig
s
iD1

denote a �1.N
0/–free basis for P and let fyig

s
iD1

denote the dual basis
for Q under the intersection pairing of Kk.N

0/. We choose disjoint framed spheres
fXig

s
iD1

and fYig
s
iD1

representing the bases for P and Q respectively. We can
assume given the choice of bases, that for i ¤ j , Xi \ Yj D ∅ and for any i , Xi

intersects Yi in a point. We kill the spheres Xi by k –surgery on N 0 to obtain a new
manifold N 0

P
yielding a cobordism TP of N 0 with N 0

P
; similarly killing the spheres

Yi by k –surgery we get a cobordism TQ of N 0 with a new manifold N 0
Q

. Clearly,
�1.N

0
P
/ Š C Š �1.N

0
Q
/ and by Lemma 10 both N 0

P
;N 0

Q
are aspherical and thus

homotopy equivalent to XC .

Now consider the trivial cobordism M � I . We will extend it to a cobordism from M

to M 0 by applying the cobordism extension lemma, gluing TP � Œ�2;�1� to M �f1g

along N 0 � Œ�2;�1�� f1g and glueing TQ � Œ1; 2� to M � f1g along M � Œ1; 2�. The
boundary of the resulting manifold T has two components, one being M and the other,
a new manifold M 0 given by

M 0
D .MA[N 0 TP /[N 0

P
TPQ[N 0

Q
.TQ[N 0 MB/;
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M�f1g

M�f0g

MA

TP�idŒ-2;-1�
TQ�idŒ1;2�

TPQ

MB M 0

M
N 0�Œ�2;�1��f0g N 0�f0g�f0g N 0�Œ1; 2��f0g

Figure 2: Extending the trivial cobordism on M via surgery along the spheres
fXig and fYj g .

where

TPQ D .N
0

P � Œ�2;�1�/[N 0
P

TP [N 0 .N 0 � Œ�1; 1�/[N 0 .TQ[N 0
Q

N 0Q � Œ1; 2�/:

Observe that the manifold TPQ sits naturally inside M 0 and gives a cobordism between
N 0

P
and N 0

Q
. Moreover not only are N 0

P
and N 0

Q
homotopy equivalent to XC ,

the cobordism TPQ constructed by filling the spheres ˛i and ˇi is also homotopy
equivalent to XC . The original homotopy equivalence f W M ! Y extends to a map
F W T �M [TP � Œ�2;�1�[TQ� Œ1; 2�! Y � I which restricts first to a homotopy
equivalence M 0 ! Y (see Cappell [4, Lemma II.5]) and further to the homotopy
equivalence TPQ!XC .

Hence we obtain a manifold M 0 which is homotopy equivalent to M and split along
XC � Y via the embedded submanifold we continue to call N 0 . Recall also that H is
a finite index subgroup of C . Hence, there is a finite cover N0 of N 0 with fundamental
group H . As N0 and N are aspherical manifolds with isomorphic fundamental groups
there exists a homotopy equivalence h0 between them. This completes the proof of
Theorem 1.
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5 An obstruction result: Corollary 3

Recall the following classical fact: if M 4dC1 is a smooth manifold such that the first
Betti number b1.M / of M is 0 and N 4d has non-zero signature then there are no
immersions of N into M . This follows using Hirzebruch’s signature theorem: since f
is a codimension 1 immersion, f �W H 4d .M;Q/!H 4d .N;Q/ maps the Hirzebruch
L-class Ld .M / onto Ld .N /. It follows from Poincaré duality that H 4d .M;Q/ is
isomorphic to the torsion free part of H1.M /. Therefore, the vanishing of b1.M /

forces Ld .N / to be zero. However Hirzebruch’s signature theorem says that Ld .N /

is equal to the signature of N . This applies, for example, to show that there are
no codimension 1 immersions of an orientable quaternionic hyperbolic or Cayley
hyperbolic manifold N 4d into a smooth orientable aspherical manifold M 4dC1 with
b1.M /D 0.

Appealing instead to the non-vanishing of Pontryagin numbers, we obtain the following
generalisation as a corollary to Theorem 1, which obstructs the existence of �1 –injective
continuous maps rather than immersions. Note that while our hypotheses on N imply
that it satisfies the Borel conjecture so that we can take the homotopy equivalence h0

to be a homeomorphism, we do not assume in the statement that the target manifold
satisfies the Borel conjecture, nor do we assume Cappell’s square root closed hypothesis,
since in the proof we are applying Theorem 1 in its most general form.

Corollary 3 Let M 4dC1 be a closed, orientable, aspherical, smooth manifold such
that d � 2 and the first Betti number b1.M / is zero. Let N 4d be a closed, ori-
entable, aspherical, smooth manifold with at least one non-zero Pontryagin number
such that �1.N / is either word hyperbolic or a CAT.0/ group and satisfies Kazhdan’s
property (T). Then there are no �1 –injective continuous maps f W N !M .

Proof Carrying out the Cappell surgery arguments in the smooth category, the proof of
Theorem 1 shows that there is a 2–sided embedded smooth submanifold N 0 in a smooth
manifold M 0 homotopy equivalent to M that realises the splitting. Furthermore, since
�1.N / satisfies the Borel conjecture, the map pıh0W N !N 0 is a covering map. Now
if N 0 is separating, write M1 for one of the connected components of the manifold
obtained from cutting M 0 along N 0 . Then M1 is a smooth orientable manifold with
boundary N 0 and hence N 0 bounds orientably. This means that all Pontryagin numbers
for N 0 must vanish. On the other hand we are assuming that N has at least one non-
zero Pontryagin number (for the case when N is quaternionic or Cayley hyperbolic,
see Lafont and Roy [14]). Since Pontryagin numbers vary multiplicatively with degree
on covering maps the Pontryagin numbers of N 0 are also non-zero and so N 0 cannot
bound orientably. This means that N 0 cannot be separating and so intersection with
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N 0 yields an element of infinite order in the first cohomology of M 0 . By duality and
the universal coefficients theorem the first Betti number b1.M

0/ and hence b1.M / is
non-zero.
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