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Discrete primitive-stable representations
with large rank surplus

YAIR N MINSKY

YOAV MORIAH

We construct a sequence of primitive-stable representations of free groups into
PSL2.C/ whose ranks go to infinity, but whose images are discrete with quotient
manifolds that converge geometrically to a knot complement. In particular this
implies that the rank and geometry of the image of a primitive-stable representation
imposes no constraint on the rank of the domain.

57M60; 57M50, 57M05

1 Introduction

Let Fn denote the free group on n generators, where n� 2. The space

Hom.Fn;PSL2.C//

of representations of Fn into PSL.2;C/ contains within it presentations of all hy-
perbolic 3–manifold groups of rank bounded by n, and so is of central interest in
three-dimensional geometry and topology. On the other hand there is also an interesting
dynamical structure on Hom.Fn;PSL2.C// coming from the action of Aut.Fn/ by
precomposition (see Lubotzky [12]). The interaction between the geometric and
dynamical aspects of this picture is still somewhat mysterious, and forms the motivation
for this paper.

(Note that it is natural to identify representations conjugate in PSL2.C/, so that in fact
we often think about the character variety X .Fn/ and the natural action by Out.Fn/,
the outer automorphism group of Fn . This distinction will not be of great importance
here.)

In Minsky [15] the notion of a primitive-stable representation �W Fn ! PSL2.C/
was introduced. The set PS.Fn/ � X .Fn/ of primitive stable conjugacy classes is
open and contains all Schottky representations (discrete, faithful convex-cocompact
representations), but it also contains representations with dense image, and nevertheless
Out.Fn/ acts properly discontinuously on PS.Fn/. This implies, for example, that
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Out.Fn/ does not act ergodically on the (conjugacy classes of) representations with
dense image.

Representations into PSL2.C/ whose images are discrete torsion-free subgroups give
rise to hyperbolic 3–manifolds, and when the volume of the 3–manifold is finite we
know by Mostow–Prasad rigidity that the image of the representation depends uniquely,
up to conjugacy, on the isomorphism type of the fundamental group. Such a group
admits many presentations, each of which then gives rise to a conjugacy class of
representations of some free group into PSL2.C/. Hence it makes sense to ask whether
a presentation of such a 3–manifold group is or is not primitive-stable.

It is not hard to show that primitive-stable presentations of closed 3–manifold groups
do exist, and such presentations are constructed in this paper, but we are moreover
concerned with the relationship between the rank of the presentation and the rank of
the group.

Our goal will be to show that the rank of the presentation can in fact be arbitrarily
higher than the rank of the group, and more specifically:

Theorem 1.1 There is an infinite sequence of representations �r W Fnr
! PSL2.C/,

where nr D n0C 2r , so that:

(1) Each �r has discrete and torsion-free image.

(2) Each �r is primitive-stable.

(3) The quotient manifolds Nr D H3=�r .Fnr
/ converge geometrically to N1 ,

where N1 is a knot complement in S3 .

In particular note that, because the quotient manifolds converge geometrically to a
fixed finite volume limit, the rank as well as the covolume of the image groups remains
bounded while nr !1 (see eg Thurston [18]), hence:

Corollary 1.2 There exists R such that, for each n, there is a lattice in PSL2.C/ with
rank bounded by R, which is the image of a primitive stable representation of rank
greater than n.

As the reader might guess our construction involves a sequence of Dehn fillings of a knot
complement, and in particular the manifolds Nr are in infinitely many homeomorphism
types. Thus we are currently unable to answer the following natural question:

Question 1.3 Is there a single lattice G � PSL2.C/, which has primitive stable
presentations of arbitrarily high rank?
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To put this in context we note that (as follows from [15, Lemma 3.2]) simply adding
generators to a non-Schottky representation that map to the group generated by the
previous generators immediately spoils the property of primitive stability. Thus the
existence of primitive stable presentations is delicate to arrange.

On the other hand, we do not have examples in the other direction either:

Question 1.4 Are there any lattices in PSL2.C/ which do not have any primitive
stable presentations?

The only tool we have for proving primitive-stability involves Heegaard splittings,
which must satisfy a number of interacting conditions. It would be interesting to know
if this is always the case:

Question 1.5 Is every primitive stable presentation of a closed hyperbolic 3–manifold
group geometric, ie, does it arise from one side of a Heegaard splitting?

Outline of the construction

Our starting point is a class of knots supported on surfaces in S3 in a configuration
known as a trellis, as previously studied by Lustig and Moriah [13]. The surface † on
which such a knot K is supported splits S3 into two handlebodies. For appropriately
chosen special cases we find that the complement S3 XK is hyperbolic, and that the
representation obtained from one of the handlebodies is primitive stable. Most of the
work for this is done in Section 5, about which we remark more below.

To our chosen examples we can apply flype moves (as used by Casson and Gordon; see
Moriah and Schultens [16, Appendix]), which are isotopies of the knot that produce
new trellis projections, with higher genus. We show that these new projections still
yield primitive stable representations.

Hence our knot complement S3XK admits a sequence of homomorphisms �r
1W Fnr

!

�1.S
3 XK/ with ranks nr !1, all of which are primitive stable. However, these

maps are not surjective.

To address this issue we perform Dehn fillings on S3XK , obtaining closed manifolds
equipped with surjective homomorphisms from Fnr

. Thurston’s Dehn Filling Theorem
tells us that, fixing the flype index r and letting the Dehn filling coefficient go to infinity,
we eventually obtain hyperbolic manifolds, and the corresponding representations �r

m

converge to �r
1 . Since primitive stability is an open condition we eventually obtain

our desired primitive stable presentations. Note that m cannot be chosen independently
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of r , because the open neighborhoods in the representation spaces for Fr cannot
necessarily be chosen uniformly.

Section 2 provides a little bit of background on hyperbolic 3–manifolds. In Section 3, we
discuss primitive stability and prove Proposition 3.5, which gives topological conditions
for primitive stability of a representation arising from a Heegaard splitting where a
knot on the Heegaard surface has been deleted. The proof of this is an application of
Thurston’s Covering Theorem, and of the main result of [15].

In Section 4 we introduce trellises and our notation for knots carried on them, recall a
theorem from Lustig and Moriah [13], and discuss horizontal surgeries.

In Section 5 we show that, under appropriate assumptions, a knot carried by a trellis
satisfies the conditions of Proposition 3.5, and moreover the same is true for the
configurations obtained by flype moves on this knot. Theorem 5.2 establishes that
the knot complements we work with are hyperbolic. Intuitively one expects that
complicated diagrams such as we are using should “generically” yield hyperbolic knots,
but the proof turns out to be somewhat long and painful. We perform a case-by-case
analysis of the features of the knot diagram, which is complicated by various edge
effects in the trellis. This analysis shows that the manifold has no essential tori, and the
same techniques also apply, in Proposition 5.10, to show that the exterior handlebody
annulus pair determined by a flyped trellis is never an I –bundle, which is also one of
the conditions needed in Proposition 3.5.

The level of generality we chose for our family of examples, for better or worse, is
restricted enough to simplify some of the arguments in Section 5, but still broad enough
to allow a wide variation. It is fairly clear that the construction should work for an
even wider class of examples, but satisfying primitive stability, hyperbolicity, as well
as the no–I –bundle condition is tricky and the resulting complication of our arguments
would have diminishing returns for us and our readers.
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2 Cores and ends of hyperbolic manifolds

In this section we review the basic structure of hyperbolic 3–manifolds and their ends.
This will be applied in Section 3.

A compact core of a 3–manifold N is a compact submanifold C of N whose inclusion
is a homotopy-equivalence. Scott [17] showed that every irreducible 3–manifold with
finitely generated fundamental group has a compact core.

Let N DH3=� be an oriented hyperbolic 3–manifold where � is a discrete torsion-
free subgroup of PSL2.C/, and let N 0 denote N minus its standard (open) cusp
neighborhoods. Each cusp neighborhood is associated to a conjugacy class of maximal
parabolic subgroups of � , and its boundary is an open annulus or a torus. For each
component T of @N 0 let T 0 be an essential compact subannulus when T is an annulus,
and let T 0 D T if T is a torus.

The relative compact core theorem of McCullough [14] and Kulkarni and Shalen [11]
implies:

Theorem 2.1 There is a compact core C � N 0 such that @C \ T D T 0 for every
component of @N 0 .

We call C a relative compact core, and call P D @C \ @N 0 the parabolic locus on its
boundary.

Suppose that the components of @C XP are incompressible. Then Bonahon showed in
[2, Proposition 1.3] that the components of N 0 XC are in one-to-one correspondence
with the components of @C XP , and each of them is a neighborhood of a unique end
of N 0 . Note that C can be varied by isotopy and by choice of the annuli T 0 , so that
an end can have many neighborhoods.

We say that an end of N 0 is geometrically finite if it has a neighborhood that is entirely
outside of the convex core of N (where the convex core of N is the smallest closed
convex subset of N whose inclusion is a homotopy equivalence).

Bonahon’s Tameness Theorem [2] shows that every end of N 0 is either geometrically
finite or simply degenerate. We will not need the definition of this property, but will
use the fact that it has Thurston’s Covering Theorem as a consequence. The Covering
Theorem will be described and used in the proof of Proposition 3.5.

We remark that something similar to all this holds when @C XP is compressible via
the solution to the Tameness Conjecture by Agol [1] and Calegari and Gabai [4], but
we will not need to use this.
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3 Primitive stable representations

In this section we summarize notation and facts from [15], and prove Proposition 3.5,
which gives a sufficient condition for certain representations arising from knot comple-
ments to be primitive stable.

Fix a generating set fX1; : : : ;Xng of Fn and let � be a bouquet of oriented circles
labeled by the Xi . We let B D B.�/ denote the set of bi-infinite (oriented) geodesics
in � . Each such geodesic lifts to an Fn –invariant set of bi-infinite geodesics in the
universal covering tree z� . The set B admits a natural action by Out.Fn/.

An element of Fn is called primitive if it is a member of a free generating set, or
equivalently if it is the image of a generator Xi by an element of Aut.Fn/. Let
P DP.Fn/ denote the subset of B consisting of geodesic representatives of conjugacy
classes of primitive elements. Note that P is Out.Fn/–invariant.

Given a representation �W Fn! PSL2.C / and a basepoint x 2H3 , there is a unique
map ��;x W z�!H3 mapping a selected vertex of z� to x , that is �–equivariant, and
map each edge to a geodesic.

Definition 3.1 A representation �W Fn ! PSL2.C / is primitive-stable if there are
constants K; ı 2 R and a basepoint x 2H3 such that ��;x takes the leaves of P to
.K; ı/–quasi geodesics in H3 .

The property of primitive stability of a representation is invariant under conjugacy
in PSL2.C / and action by Aut.Fn/. We define PS.Fn/ to be the set of (conjugacy
classes of) primitive-stable representations.

It is easy to see that Schottky representations are primitive stable; indeed, the Schottky
condition is equivalent to saying that the map ��;x is a quasi-isometric embedding on
the entire tree at once.

Definition 3.2 Given a free group F.X / D F.X1; : : : ;Xn/ on n generators and a
cyclically reduced word w D w.X1; : : : ;Xn/ the Whitehead graph of w with respect
to the generating set X , denoted Wh.w;X /, is defined as follows: The vertex set of
the graph consists of 2n points labeled by the elements of X˙ � fX˙1

i g. For each
sub-word U V in w or its cyclic permutations, where U;V 2X˙ , we place an edge
between the points U and V �1 .

Definition 3.3 We say that a graph � is cut point free if it is connected and contains
no point p 2 � so that � Xp is not connected.
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It is a theorem of Whitehead [19; 20] that if u 2 Fn is a cyclically reduced primitive
word then Wh.u;X / is not cut point free.

If H is a handlebody and 
 is a curve in @H , for a generating system X for �1.H /,
let Wh.
;X / denote Wh.Œ
 �;X /, where Œ
 � is a reduced word in X˙ representing 

in �1.H /.

The main result of [15] states:

Theorem 3.4 [15, Theorem 4.1] If �W �1.H /! PSL2.C/ is discrete, faithful and
geometrically finite, with a single cusp c such that Wh.c;X / is cut point free for some
set of generators X of �1.H /, then � is primitive stable.

We will use this theorem to prove the following proposition, which in turn will be a step
in the proof of Theorem 1.1. Here and in the rest of the paper, we let NX .Y / denote a
closed regular neighborhood of Y in X , and NX .Y / its interior. If the ambient space
X is understood, we abbreviate to N .Y /. When we say a manifold with boundary is
hyperbolic we mean its interior admits a complete hyperbolic structure.

Proposition 3.5 Let M be a closed 3–manifold with a Heegaard splitting M D

H1 [† H2 , where † D @H1 D @H2 . Let 
 � † be a simple closed curve so that
M1 DM XN .
 / is a hyperbolic manifold and:

(1) The group �1.H1/ has a generating set x D fx1; : : : :xng so that the Whitehead
graph Wh.
;x/ is cut point free.

(2) The subsurface †XN .
 / is incompressible in M1 .

(3) The manifold pair .H2;N†.
 // is not an I –bundle.

Let �H1 D H1 �N .
 / and let i0W �H1 !M1 be the map induced by the inclusion
of H1 ! M , and �W �1.M1/ ! PSL2.C/ be a holonomy representation for the
hyperbolic structure on int.M1/. Then the representation �D � ı i0

� given by

�1.�H1/
i0
�
�! �1.M1/

�
�! PSL2.C/

is primitive stable.

Since �H1 is a deformation retract of H1 we can naturally identify �1.H1/ with
�1.�H1/.
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Remark In the proof we will establish the hypotheses of Theorem 3.4 for the repre-
sentation �D � ı i0

� . Condition (2) allows us to satisfy the injectivity hypothesis on � .
Condition (3), together with Thurston’s Covering Theorem and Lemma 3.8, will tell us
that � is geometrically finite. Condition (1) gives us the hypothesis on the Whitehead
graph. The condition that 
 is the only parabolic of � requires an additional argument
in Lemma 3.7.

The following lemma is used in the proof of Lemma 3.7, but may be of independent
interest.

Lemma 3.6 Let 
 be a simple curve in the boundary of a handlebody H of genus at
least 2. Let ˇ be a curve in @H which intersects 
 exactly once, and is null-homotopic
in H . Then @H X 
 is compressible.

Proof Note first that if ˇ is simple then 
 is primitive: ˇ bounds an embedded disk
D , and the complement of a regular neighborhood of D[
 is a handlebody of positive
genus, and hence contains a second compressing disk.

If ˇ bounds a singular immersed disk D , consider the proof of Dehn’s Lemma. In
the tower construction, the immersion of D lifts to a map j W D! zN , where zN is
a 3–manifold whose boundary consists of 2–spheres. Since D is contractible, the
composition of j with the sequence of double covers is one-to-one on the nonsingular
points of the immersion. Thus, the intersection of 
 with a small neighborhood of
ˇ lifts to a single arc a crossing a regular neighborhood of the lift j .ˇ/ in @ zN . We
then take a boundary component ˇ0 of this regular neighborhood, which intersects a

at most once.

Now we descend the tower of covers, doing a surgery on ˇ0 at each step. Thus the
resulting simple curve in @H intersects 
 at most once. If it is disjoint from 
 we are
done, and if it intersects 
 we apply the first paragraph.

Lemma 3.7 Let M be a closed 3–manifold with a Heegaard splitting M DH1[†H2 ,
where †D @H1 D @H2 . Let 
 �† be a simple closed curve such that the subsurface
†XN .
 / is incompressible in M1 DM XN .
 /. Suppose that M1 is a hyperbolic
manifold and �W �1.M1/! PSL2.C/ is a corresponding holonomy representation.
Then the group generated by the element �.Œ
 �/ is up to conjugacy the unique maximal
parabolic subgroup in �.�1.H1//.

Proof Let ˇ be a curve in the interior of H1XN .
 / representing a parabolic element
in �.�1.H1//. Therefore there is a singular annulus ˛W S1 � Œ0; 1�!M1 , which on
a0 � S1 � f0g is a parametrization of ˇ , and maps a1 � S1 � f1g to the torus @M1 .
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Perturb ˛ , if need be, so that ˛ t†XN .
 /, and choose it to minimize the number of
components of ˛�1.†/. Now using the fact that †XN .
 / is incompressible in M1 ,
we may assume that all components of ˛�1.†/ are essential simple closed curves in
S1 � Œ0; 1�, or arcs in S1 � Œ0; 1� with both end points on a1 . We will next show that
such arcs do not occur.

Let ı�S1� Œ0; 1� be an outermost arc of ˛�1.†/. The points @ı bound an arc ı0� a1

such that ı[ı0 bounds a disk ��S1� Œ0; 1�. The image ˛.�/ is contained in exactly
one of either H1 or H2 ; call it Hk .

Let B be the annulus @M1\Hk . The arc ı0 is properly immersed by ˛ in B . If its
endpoints are on the same component of @B , we could homotope ı0 rel endpoints to @B .
This allows us deform ˛ in a neighborhood of ı0 , so that ˛�1.†/, in a neighborhood
of �, becomes a closed loop. This loop can be removed, again because †XN .
 / is
incompressible, contradicting the choice of ˛ .

If the endpoints of ı0 are on different components of @B , let 
 0 be a core of B . Then
the singular disk ˛.�/, after a homotopy near ı0 , intersects 
 0 in a single point. By
Lemma 3.6, †X
 is compressible, which is a contradiction. We conclude that ˛�1.†/

contains no arc components.

The essential simple closed curves in ˛�1.†/ partition S1 � Œ0; 1� into sub-annuli,
each of which maps into either H1 or H2 . Order the annuli as A0;A1; : : : ;Am ,
where Am is adjacent to a1 . The handlebody Hk \M1 together with the annulus
Bk DHk \@M1 is a manifold pair with incompressible relative boundary †XN .
 /,
and the restriction ˛jAm

is a singular annulus in the pair .Hk\M1;Bk/ for k D 1 or
k D 2. The characteristic submanifold theory of manifold pairs in Jaco and Shalen [9]
tells us that the annulus ˛jAm

is homotopic through proper annuli to an annulus in
one of the characteristic Seifert pairs of .Hk \M1;Bk/. Since our manifold is a
handlebody that contains no incompressible tori, the Seifert pairs must be I –bundles,
and it follows that the annulus ˛jAm

is homotopic as a map of pairs into Bk . More
precisely, this statement is an immediate consequence of the “Mapping Theorem” and
the discussion that follows in [9, Chapter III, pages 55–58] (see also Bonahon [3],
Jaco [8] and Johannson [10]). Since a1 maps to a power of the core of the annulus Bk ,
we conclude that ˛ restricted to the other boundary component of Am is homotopic
through †XN .
 / to the same power of 
 . Thus after a homotopy we may reduce the
number of intersections of ˛ with †.

By induction we obtain a map ˛W S1 � Œ0; 1�!M1 which avoids † and therefore
homotopes ˇ to a power of 
 within H1 . This concludes the proof.

Proof of Proposition 3.5 Consider the manifold N DH3=�.�1.H1//, which is the
cover of M1 corresponding to �.�1.H1//.
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After an isotopy in M1 , we can arrange that 
 lies on the boundary of the cusp
tube, and H1 meets the tube only in the annulus C.
 /DN .
 /\ @H1 . Lifting this
embedding to N yields an embedding i W H1!N 0 DN XQ, which takes C.
 / to
the boundary of a cusp tube Q. By Lemma 3.7, Q is the unique cusp of N , and it
follows from this that i.H1/ is a relative compact core for N 0 (see Section 2). In
particular, the ends of N 0 are in one-to-one correspondence with the components of
@H1 X 
 .

Moreover, the Tameness Theorem of Bonahon [2] tells us that each end of N 0 is either
geometrically finite or simply degenerate. We wish to rule out the latter. This can be
done by a fairly standard argument involving Thurston’s Covering Theorem, but we
provide some details for completeness. See also [6].

Let W be a component of @H1XN .
 /. If the end EW of N XQ associated to W is
simply degenerate, then Thurston’s Covering Theorem (see [5] and [18]) implies that
the covering map 'W N !M1 is virtually an infinite-cyclic cover of a manifold that
fibers over the circle. That is, there are finite covers pW yN !N and qW �M1!M1 ,
such that �M1 fibers over the circle and in the commutative diagram

yN

p

��

� // �M1
q

��
N

' // M1

the map � is the associated infinite cyclic cover. In particular, yN minus its parabolic
cusps is a product �W �R where @ �W �R is the preimage of the cusp boundary of N .

Since i.H1/ is homotopy-equivalent to N , its preimage �H1 D p�1.i.H1// is con-
nected, and compact because p is a finite cover. Thus it is a core of yN , and must be
of the form �W � Œ0; 1� up to isotopy.

Lemma 3.8 If F is an orientable compact surface (not a sphere or a disk) and

pW .F � Œ0; 1�; @F � Œ0; 1�/! .B;P /

is a covering of pairs, then B is an I –bundle, and the cover is standard, ie, respects the
I –bundle structures.

Proof Suppose that D0D p.F �f0g/ and D1D p.F �f1g/ are distinct components
of @B XP . Then any loop ˛ in B based at D0 lifts to an arc with both endpoints on
F � f0g. This arc retracts to F � f0g, so downstairs ˛ retracts to D0 . We conclude
that D0! B is surjective on �1 . It is also injective, since it is the inclusion of an
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incompressible surface followed by a covering map. By a theorem of Waldhausen (see
for example [7, Theorem 10.2]) B is a product G � Œ0; 1�. Now it is clear that p is
standard, in particular it is induced by a cover F !G .

If D0DD1 , consider the subgroup H <�1.B/ corresponding to loops based at x 2D0

that lift to arcs whose endpoints are on the same boundary component of F � Œ0; 1�.
This index 2 subgroup corresponds to a degree 2 cover r W . yB; yP /! .B;P /, in which
D0 lifts to two homeomorphic copies since �1.D0/ <H . Now p factors through a
cover ypW F � Œ0; 1�! yB , which by the previous paragraph is standard. In particular
yB is a product. It now follows from Hempel [7, Theorem 10.3] that r is exactly the

standard covering from a product I –bundle to a twisted I –bundle.

Applying this lemma to the covering �H1 ! i.H1/, we see that .H1;C.
 // is a
(possibly twisted) I –bundle where C.
 / is the sub-bundle over the boundary of the
base surface. The component W of @H1XN .
 / is also a component of @H2XN .
 /,
hence if it is degenerate we apply the same argument to the cover associated to H2 , to
conclude that .H2;C.
 // is also an I –bundle. This contradicts Condition (3) of the
theorem, and so concludes the proof that no end of N XQ is simply degenerate.

Hence � is geometrically finite with one cusp, which satisfies the cut point free condition
(by hypothesis (1)). Theorem 3.4 implies that � is primitive stable.

4 Links carried by a Trellis

Links carried by a trellis were first defined in [13]. We reproduce the definition here
for the convenience of the reader, but we also make some changes in notation.

A trellis is a connected graph T in a vertical coordinate plane P �R3 that consists of
horizontal and vertical edges only, and whose vertices have valence 2 or 3 and are of
the type pictured in Figure 1.

Figure 1: Allowable vertex types in a trellis

Given a labeling of the vertical edges by integers, we can describe a knot or link on
the boundary of a regular neighborhood of T , by giving a standard picture for the
neighborhood of each vertex and edge. This is done in Figure 2. Note that one of
each combinatorial type of vertex is pictured, the rest being obtained by reflection in
the coordinate planes orthogonal to P . The integer label for a vertical edge counts
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the number of (oriented) half-twists. The pieces fit together in the obvious way. In
the discussion to follow we will consistently use right/left and top/bottom for the
horizontal and vertical directions in P , which is parallel to the page, and front/back
for the directions transverse to P and closer/farther from the reader, respectively. In
particular P cuts the regular neighborhood of T into a front and a back part.

If a is the function assigning to each vertical edge e its label a.e/, we denote by KŒa�

the knot or link obtained as above. We say that KŒa� is carried by T .

Since T is planar and connected, its regular neighborhood in R3 is a handlebody
H1 DN .T / embedded in the standard way in S3 , which we identify with the one-
point compactification of R3 . The complement H2 D S3�N .T / of int.H1/ is also
a handlebody. The pair .H1;H2/ is a Heegaard splitting of S3 , which we call a
Heegaard splitting of the pair .S3;KŒa�/, or a trellis Heegaard splitting. We refer to
H1 as the inner handlebody and to H2 as the outer handlebody of this splitting. We
denote the surface which is their common boundary by †. Let g.T / denote the genus
of H1 and H2 .

a

Figure 2: Local types for the link carried by a trellis. The vertical tube carries
a 2 Z half-twists (aD 3 is pictured).

4.1 Nice flypeable trellises

Every maximal connected union of horizontal edges of T is called a horizontal line. A
trapezoidal region bounded by two horizontal lines and containing only vertical edges
in its interior is called a horizontal layer.

A trellis is brick-like of type .b; c/ if it is a union of b layers each containing c squares
arranged in such a way so that:
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(1) Vertical edges incident to a horizontal line (except the top and bottom lines)
point alternately up and down.

(2) Layers are alternately “left protruding” and “right protruding”, where by left
protruding we mean that the leftmost vertical edge is to the left of the leftmost
vertical edges in the layers both above and below it. The definition for right
protruding and for the top and bottom layers is done in the obvious way.

Figure 3: A brick-like trellis

A trellis is flypeable (see Figure 4) if it is obtained from a brick-like trellis in the
following way: Choose 1< i < b , and in the i th layer choose a contiguous sequence
of squares D1; : : : ;Dr not including the leftmost or rightmost square. Now remove all
vertical edges incident to the squares from the layers above and below. See Figure 4
for an example.

A trellis is nice flypeable if 2< i < b� 1 and the squares D1; : : : ;Dr do not include
the two leftmost or the two rightmost squares.

Given a flypeable trellis carrying a knot or link K , a flype is an ambient isotopy of K

that is obtained as follows: Let R be the union of the squares D1; : : : ;Dr including
their interiors. We call R the flype rectangle. Let B be a regular neighborhood of
R. We choose B so that it contains all subarcs of K winding around the edges of R

except for the horizontal arcs of K that travel in the back of † along the horizontal
edges of R. Hence @B intersects K in four points (see Figure 5).

A flype will flip the box B by 180 degrees about a horizontal axis leaving all parts
of the knot outside a small neighborhood of B fixed. This operation changes the
projection of K in P by adding a crossing on the left and a crossing on the right side
of the box. These crossings have opposite signs.
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D1 D2 D3

Figure 4: A nice flypeable trellis

B

Figure 5: The box B contains a portion of the knot associated to adjacent
vertical edges, but excludes the horizontal arcs passing in the back (dotted).

B

Figure 6: Local picture of K2 , a double-flype move on K . Note that the
genus of the new trellis that carries K2 is bigger by 4 than the genus of the
trellis that carried K .

The projection of K obtained after a flype is carried by a new trellis. It differs from T
in that there is a new vertical edge on the left side of R and another new one on the
right side of R, one with twist coefficient 1 and the other one with �1. The flype will
be called positive if the coefficient of the left new edge is positive. A positive/negative
flype iterated jr j times will be called a r –flype, r 2 Z, (see Figure 6). Denote the
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image of K after the r –flype by Kr and the new trellis with the new 2jr j vertical
edges by T r . Similarly we will denote N .T r / by H r

1
and @H r

1
by †r . Notice that

g.T r /D g.T /C 2jr j.

The following restatement of [13, Theorem 3.4] describes the embedding of Kr in †r

under suitable assumptions:

Theorem 4.1 Let T be a flypeable trellis and let K DKŒa� � S3 be a knot or link
carried by T with twist coefficients given by a. Assume that a.f /� 3 for all vertical
edges f and that for the two vertical edges e; e0 immediately to the left and right of the
flype rectangle we have a.e/; a.e0/� 4. Then for all r 2 Z, the surface †r XKr Œa� is
incompressible in both the interior and the exterior handlebodies H r

1
;H r

2
.

4.2 Horizontal surgery on knots carried by a trellis

In our construction we will need K to be a knot. The number of components of K is
determined by the residues a.e/ mod 2, and it is easy to see that if K has more than
one component then the number can be reduced by changing a.e/ mod 2 at a column
where two components meet. Hence a given trellis always carries knots with arbitrarily
high coefficients. We will assume from now on that K is a knot.

The embedding of K in † defines a framing, in which the longitude �† is a boundary
component of a regular neighborhood of K in †. We let K†.p=q/ denote the result
of p=q surgery on S3 XK with respect to this framing.

In particular K†.1=m/, for m 2 Z, will be called a horizontal Dehn surgery on K

with respect to †. Note that it has the same effect as cutting S3 open along † and
regluing by the mth power of a Dehn twist on K .

It is interesting to note that a flype does not change this framing, ie,

K†.p=q/DKr
†r .p=q/

for all p=q (see [13]). This is because the effects on the framing from the new crossings
on both sides of the flypebox cancel each other out. We will not, however, need this
fact in our construction.

5 Satisfying conditions for primitive stability

In this section we will consider representations for manifolds obtained from diagrams
of flyped knots on a nice flypeable trellis. We show that they are hyperbolic and that
they satisfy the hypotheses required by Proposition 3.5.
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5.1 Whitehead graph

Fix r 2 Z. Let fe1; : : : ; enr
g denote the set of vertical edges of T r not including

the rightmost one in each layer. Each ei is dual to a disk �i in H r
1

, and note that
these disks cut H r

1
into a 3–ball, hence nr D g.H r

1
/. Let xi be the generator of

�1.H
r
1
/D Fnr

, which is dual to �i and let X D fx1; : : : ;xnr
g be a set of generators

for Fnr
. The curve Kr � @H r

1
contains no arc that meets any disk �i from the same

side at each endpoint without meeting other �j in its interior, and it follows that Kr

determines a cyclically reduced word ŒKr � in the generators X .

Lemma 5.1 The Whitehead graph Wh.ŒKr �;X / is cut point free for each r 2 Z.

Proof A regular neighborhood of each �i in H r
1

is bounded by two disks �˙i . Let
Q denote H r

1
minus these regular neighborhoods. Then Kr \Q is a collection of

arcs corresponding to the edges of the Whitehead graph, and the disks �˙i represent
the vertices. After collapsing each disk to a point we get the Whitehead graph itself.
Since Kr meets each �i in exactly two points, this graph is necessarily a 1–manifold
that is embedded in the plane P as in Section 4.

If we temporarily include the cocore disks of the rightmost columns, doubling them
and collapsing to points as above, we obtain, along each horizontal level of the trellis, a
circle. The original Whitehead graph is recovered from this union of circles by splicing
together successive circles along the rightmost columns. We conclude that it is a single
circle, and in particular cut point free.

5.2 Hyperbolicity

Next we prove the hyperbolicity of our knot complements:

Theorem 5.2 Let T be a nice flypeable trellis and let K DKŒa� � S3 be a knot or
link carried by T . Assume that a.f / � 3 for all vertical edges f . Assume further
that the pair of edges .e; e0/ at the sides of the flype region have twist coefficients
a.e/; a.e0/� 4. Then X D S3 XN .K/ is a hyperbolic manifold.

Note that this gives us hyperbolicity of S3 XN .Kr / for all r 2 Z, since fKr g are all
isotopic.

Proof Recall that in a manifold pair .M;P /, an essential annulus is a properly
embedded �1 –injective annulus in .M; @M XP / that is not properly homotopic into
P or into @M X P (see eg [8]). We say that .M;P / is acylindrical if it contains
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Figure 7: A representative nice flypeable trellis carrying a knot

no essential annuli. Recall further that H1 and H2 are the interior and exterior
handlebodies, respectively, of the trellis on which K is defined. We first reduce the
theorem to statements about annuli in H2 :

Lemma 5.3 If the manifold pair .H2;N†.K// is acylindrical, then X has no essential
tori.

Proof Let T � X be an incompressible torus, and let us prove that it is boundary-
parallel. Choose T to intersect the surface †XN .K/ transversally and with a minimal
number of components.

The intersection T \ .† X N .K// must be non-empty since handlebodies do not
contain incompressible tori. Since K satisfies the conditions of Theorem 4.1, the
surface †XN .K/ is incompressible in both the inner and outer handlebodies H1 and
H2 .

The intersection T \† cannot contain essential curves in †XN .K/ that are inessential
in T and essential curves in T that are inessential in †XN .K/, as this would violate
the fact that both surfaces are incompressible. Curves that are inessential in both
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surfaces are ruled out by minimality. Hence T \Hi (i D 1; 2) is a collection of annuli
in T which are incompressible in Hi XN .K/. By minimality they are not parallel to
@Hi XN .K/.

By the hypothesis of the lemma, T \H2 is a union of concentric annuli parallel to a
neighborhood of K in @H2 .

Suppose first that there is a single such annulus A, which is parallel to a neighborhood
A1 of K in @H2 D @H1 . The torus T 0 D T XA[A1 is contained in H1 , and must
compress because there are no incompressible tori in handlebodies. Therefore it bounds
a solid torus V �H1 so that the intersection V \ @H1 is A1 .

Let A2D @V X int.A1/ be the complementary annulus. It is incompressible, and hence
cuts H1 into two submanifolds V;W with free fundamental group, hence handlebodies.
Note that the genus of W is at least 2. Recall that an annulus in the boundary of a
handlebody is primitive if its core curve intersects a compressing disk in a single point.
We claim that A2 cannot be primitive in W . If it were, then @W XA2 would be
compressible, but this is just †XA1 , which is incompressible by hypothesis.

This implies that A2 must be primitive in V , because gluing two handlebodies along an
annulus produces a handlebody only if the annulus is primitive to at least one side: the
double of the annulus is a torus in the doubled handlebody, which must be compressible,
and the compressing disk gives a boundary compression in the original handlebody,
which implies that the annulus is primitive on the side of that compression.

Since A2 is primitive in V , it is parallel to A1 in H1 , which means that T is an
inessential torus in M1 , so we are done.

Now if T \H2 consists of more than one annulus, then one of the annuli, together with
a neighborhood of K , bounds a solid torus U in H2 that contains all of the other annuli.
Naming the annuli B1; : : : ;Bn , where B1 is the outermost, let U 0 denote U minus a
regular neighborhood of B1 , so that U 0 contains B2[� � �[Bn , and let H 0

1
DH1[U 0 .

We can isotope K through U 0 to a knot K0 on @H 0
1

, so that the isotopy intersects T

in a disjoint union of cores of B2; : : : ;Bn . Now H 0
2
D cl.M XH 0

1
/ intersects T in

the single annulus B2 , and we can apply the previous argument to show that T bounds
a solid torus V in which K0 is primitive. If n is even, then K is outside V , so that T

is inessential already. If n is odd then K is inside V , and since the isotopy from K to
K0 passed through a sequence of disjoint curves in T , we conclude that K is itself
primitive in V . Hence again T is inessential.

Proposition 5.4 Let K be a knot carried by a nice flypeable trellis so that a.e/ � 3

for every vertical edge e . Then there are no essential annuli in .H2;N†.K//.
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Before we prove this proposition we need some definitions and notation. The proof
will be somewhat technical and enumerative, but the notation and data we will set up
will then be useful in proving Proposition 5.10 which applies to the flyped case.

Denote by D the collection of disks in P that are the bounded regions of P XNP .T /.
The front side of each D 2D will be denoted by DC and the back side by D� . Set�DD fDC;D� WD 2Dg, the set of “disk sides”. The number of vertical edges of T
adjacent to the top (resp. bottom) edge of a disk D is denoted by tv.D/ (resp. bv.D/).
Each D 2D is contained in a single component of P X T , and we sometimes abuse
notation by calling this larger disk D as well.

Proof of Proposition 5.4 It is a consequence of the “Mapping Theorem” and following
discussion in [9, Chapter III, pages 55–58], that if we have an essential singular annulus
we have an embedded such annulus. Hence assume that A is a properly embedded
incompressible annulus in .H2;N†.K//, which is not parallel to @H2 XN .K/. We
will show that it is parallel to a neighborhood of K in @H2 and hence not essential.

The proof will be in two stages. In the first step we will show that, after isotopy,
any such annulus A can be decomposed as a cycle of rectangles where two adjacent
rectangles meet along an arc of intersection of A with D . In the second step we show
that a cycle of rectangles must be parallel to the knot. Throughout we will abuse
notation by referring to [D2DD as just D .

Step 1 The disks of D are essential disks in the outer handlebody H2 , and H2XN .D/
is a 3–ball. Note that the disk-sides in �D can be identified with disks of @N .D/ that
lie in the boundary of this ball. Isotope A to intersect D transversally and with a
minimal number of components. The intersection must be nonempty, as otherwise A

will be contained in a 3–ball and will not be essential. No component of A\D can
be a simple closed curve, since this would either violate the fact that A is essential, or
allow us to reduce the number of components in A\D by cutting and pasting.

Let E denote the set of components of †X .K[D/. By [13, Lemma 2.2] we have that
each E 2 E is a 2–cell, and that the intersection of @E with any disk D 2D is either:

(1) empty, or

(2) consists of precisely one arc, or

(3) consists of precisely two arcs along which E meets D from opposite sides of P .

(One can also obtain these facts from the enumeration that we will shortly describe of
all local configurations of E , and in fact we will generalize this later).
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We claim the arcs of intersection in A\D must be essential in A: If not, consider an
outermost such arc ı which, together with a subarc ˛ � @A, bounds a sub-disk �1 in
A. Let D be the component of D containing ı . By transversality, a neighborhood of
ı in �1 exits P from only one side, and hence both ends of ˛ meet ı from the same
side of P . The arc ˛ is contained in a single component E of †X .K [D/. If @E
meets D in more than one arc then, by (3), above, it does so from opposite sides of P .
Hence the endpoints of ˛ can meet only one such arc in @E . Since E is a polygon, ˛
and a subarc 
 of @D\ @E together bound a sub-disk �2 �E . Now 
 and ı must
bound a sub-disk �3 in D . The union �1[�2[�3 is a 2–sphere in the complement
of K , which bounds a 3–ball in X . Hence we can isotope A to reduce the number of
components in A\D in contradiction to the choice of A. We conclude that all arcs of
A\D are essential in A.

As the intersection arcs in A\D are essential in A they cut it into rectangles. We can
summarize this structure in the following lemma:

Lemma 5.5 After proper isotopy in .H2;N†.K//, an incompressible annulus A

intersects D in a set of essential arcs, which cut A into rectangles. The boundary of a
rectangle can be written as a union of arcs ı1; ı2 �A\D , and arcs ˛1; ˛2 � @A, so
that ˛1 and ˛2 are contained in distinct components E1;E2 2 E .

What remains to prove is just the statement that the components E1 and E2 of E
containing ˛1 and ˛2 , respectively, are distinct.

Choose an arc ı of A\D , and let D be the disk in D containing ı . We claim that
@ı separates the points of K\ @D on @D . For if not, then ı would define a boundary
compression disk for A in H2 which misses K . After boundary compressing A we
will obtain (since A is not parallel to @H2 XN .K/) an essential disk ��H2 with
@��†XN .K/, which contradicts Theorem 4.1.

Now for a rectangle R of A nD , since each ıi in @R separates K\ @D on @D , the
arcs ˛1 and ˛2 meet @D in different arcs of @D XK . Using transversality as before,
˛1 and ˛2 exit D from the same side of P , and hence by properties (1–3) above
(from [13, Lemma 2.2]), they cannot be contained in the same component E of E . We
conclude that E1 ¤E2 . This completes the proof of Lemma 5.5.

We will adopt the notation .De1
1 ;D

e2
2 ;E1;E2/ to describe the data that determine a

rectangle up to isotopy, where Dei
i 2

�D and Ei 2 E . That is, the rectangle meets Di

along its boundary arcs ıi on the sides determined by ei , and the arcs ˛i are contained
in Ei . We call a rectangle trivial if E1 and E2 are adjacent along a single sub-arc of
KXD . This is because the rectangle can then be isotoped into a regular neighborhood
of this sub-arc.
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Step 2 We now show that if H2 D S3 XN .T /, where T is a nice flypeable trellis,
one cannot embed in @H2 XN .K/ a sequence of non-trivial rectangles R, as above,
which fit together to compose an essential annulus A.

We first prove the following lemma:

Lemma 5.6 If .De1
1 ;D

e2
2 ;E1;E2/ determines a non-trivial rectangle then D1;D2

are contained in a single layer of the trellis.

After this we will prove Lemma 5.7, which enumerates the types of nontrivial rectangles
that do occur, and Lemma 5.9, which describes the ways in which rectangles can be
adjacent along their intersections with D . We will then be able to see that the adjacency
graph of nontrivial rectangles contains no cycles, which will complete the proof of
Proposition 5.4.

The proof will be achieved by a careful enumeration of how disk-sides in �D are
connected by regions in E . We will examine each type of disk in D on a case by case
basis. For each disk we will consider only its connection to disks along E regions
meeting it on the top and sides. The complete picture can be obtained using the fact
that a 180ı rotation in P of a nice flypeable trellis is also a nice flypeable trellis (see
Figure 7).

Proof of Lemma 5.6 We use the following notation:

(1) Connectivity The symbol

D˙
E
 !D˙1 ; : : : ;D

˙
n

where D˙;D˙
1
; : : : ;D˙n 2

�D and E 2 E , means that E meets the disks
D;D1; : : : ;Dn on the indicated sides. (Although the asymmetry of treating
one disk differently from the others seems artificial here, it is suited to the order
in which we enumerate cases.)

(2) Disk coordinates When considering a given disk D we will use relative “carte-
sian” coordinates Di;j for D and its neighbors, where D DD0;0 , i indicates
layer and j enumerates disks in a layer from left to right.

(3) E region coordinates The E region adjacent to the top edge of a disk will
always be enumerated by E0 . Regions along the left and right edges will be
enumerated in a clockwise direction by consecutive integers. Note that we do
not enumerate the regions near the bottom of a disk and they can be understood
by symmetry.
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First we enumerate adjacencies for “front” disks DC . In each case we will give a
precise figure for the local configuration and a list of connectivity data, which can be
verified by inspection.

Middle disks

Begin with disks that are not leftmost or rightmost in their layer. Cases will be separated
depending on the top valency of the disk in question.

D1;0
D1;1

D0;�1 D0;0 D0;1 D0;p

E0
E1

E�1 Ev E2 Eu

D1;0 D1;q

D0;�1 D0;0 D0;1

E0
E1

E�1 Ev E2 Eu

(A1)(a)

(A1)(b)

Figure 8: This figure describes the case discussed in (A1)(a) and (A1)(b).

(A1) tv.D/ D 1. The neighborhood of the top edge of D D D0;0 is described in
Figure 8.
Note that there are two cases, depending on whether tv.D0;1/ is zero or not.

(a) tv.D0;1/D 0:

DC
0;0

E0
 !DC

1;0
;DC

0;�1

DC
0;0

E1
 !DC

1;0
;DC

0;1
; : : : ;DC

0;p
;DC

1;1

DC
0;0

Ej

 !DC
0;1
; 2� j � u

DC
0;0

Ek
 !DC

0;�1
; v � k � �1
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(b) tv.D0;1/ > 0:

DC
0;0

E0
 !DC

1;0
;DC

0;�1

DC
0;0

E1
 !DC

1;0
;DC

1;1

DC
0;0

E2
 !DC

0;1
;DC

1;1
; : : : ;DC

1;q

DC
0;0

Ej

 !DC
0;1
; 3� j � u

DC
0;0

Ek
 !DC

0;�1
; v � k � �1

(A2) tv.D/ > 1 (see Figure 9). Note that D1;s is not the rightmost disk in its layer,
by the nice flypeable condition.

DC
0;0

E0
 !DC

1;0
; : : : ;DC

1;s
;DC

0;�1

DC
0;0

E1
 !DC

1;s
;DC

1;sC1

DC
0;0

E2
 !DC

1;sC1
;DC

0;1

DC
0;0

Ej

 !DC
0;1
; 3� j � u

DC
0;0

Ek
 !DC

0;�1
; v � k � �1

D1;�1 D1;s D1;sC1

D0;�1 D0;0
D0;1

E0
E1

E2

E�1 Ev Eu

Figure 9: The case where tv.D/ > 1 , discussed in (A2)

(A3) tv.D/D 0.

(a) D is not in the top row (see Figure 10). In this case D can be one of a
sequence D0;s; : : : ;D0;0; : : : ;D0;t , .s � 0� t/ of disks whose top edge is
adjacent to the bottom edge of D1;0 . If it is not the rightmost one in the
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sequence (ie, t > 0) then:

DC
0;0

E0
 !DC

0;�1

DC
0;0

E1
 !DC

1;0
;DC

1;1
;DC

0;s�1
;DC

0;s
; : : : ;DC

0;t

DC
0;0

E2
 !DC

0;1

DC
0;0

Ej

 !DC
0;1
; 3� j � u

DC
0;0

Ek
 !DC

0;�1
; v � k � �1

If D is the rightmost disk in the sequence (ie, t D 0) then replace

DC
0;0

E2
 !DC

0;1
by DC

0;0

E2
 !DC

0;1
;DC

1;1
:

D1;0 D1;1

D0;s�1 D0;s
D0;�1 D0;0 D0;1 D0;t D0;tC1

E2E0

E1

E�1 Ev Eu

Figure 10: The case where tv.D/D 0 , discussed in (A3)(a)

(b) If D is in the top row (see Figure 11) then the region E1 connects DC
0;0

to
all disks in the layer as well as to the back of the leftmost disk:

DC
0;0

E1
 !D�0;s;D

C

0;s
; : : : ;DC

0;t
;

where s < 0< t and t � sC 1D c . The other connections are the same as
in case .a/.

D0;s D0;�1
D0;0

D0;1 D0;t

E1
E0

E�1
E2

Figure 11: The case where tv.D/D 0 , discussed in (A3)(b)
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Edge disks

We now consider disks that are either leftmost or rightmost in their layer.

(A4) Let D0;0 be the right disk in the top layer. This case is as in case (A3)(b) except
that we set t D 0. The region E2 now connects DC

0;0
to the back side D�

0;i
of

all disks in the top layer, and we replace

DC
0;0

Ej

 !DC
0;1
; 3� j � u

by

DC
0;0

Ej

 !D�0;0; 3� j � u:

(A5) Let D0;0 be the left disk in a top layer. This case is as in case (A3)(b) except
that we set s D 0. Now Ek , v � k � 0, connects DC

0;0
to D�

0;0
.

The following cases do not occur in top or bottom layers.

(A6) Let D0;0 be the rightmost disk in a layer protruding to the left (see Figure 12).

DC
0;0

E0
 !DC

0;�1
;DC

1;0

DC
0;0

E1
 !DC

1;0
;D�1;0

DC
0;0

E2
 !D�1;0;D

�
0;s; : : : ;D

�
0;0

DC
0;0

Ej

 !D�0;0; 3� j � u

DC
0;0

Ek
 !DC

0;�1
; v � k � �1

where D0;s is the leftmost disk in the layer.

D1;�1 D1;0

D0;s D0;�1 D0;0

E0

E1

E�1

E2

Figure 12: Rightmost disk in layer protruding to the left, as discussed in (A6)
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(A7) Let D0;0 be the leftmost disk in a layer protruding to the left (see Figure 13).

DC
0;0

E0
 !D�0;0;D

C

1;0

DC
0;0

E1
 !DC

1;0
;DC

1;1

DC
0;0

E2
 !DC

0;1
;DC

1;1

DC
0;0

Ej

 !DC
0;1
; 3� j � u

DC
0;0

Ek
 !D�0;0; v � k � �1

Note that tv.D0;1/D 1 since we have a nice flypeable trellis.

D1;0 D1;1

D0;0 D0;1

E0

E1
E2

E�1 E3

Figure 13: Leftmost disk in layer protruding to the left, as discussed in (A7)

(A8) Let D0;0 be the rightmost disk in a layer protruding to the right (see Figure 14).

DC
0;0

E0
 !D�1;�1;D

C

0;�1

DC
0;0

E1
 !DC

1;t
;D�1;t : : : ;D

�
1;�1

DC
0;0

E2
 !D�0;s; : : : ;D

�
0;0;D

C

1;t

DC
0;0

Ej

 !D�0;0; 3� j � u

DC
0;0

Ek
 !DC

0;�1
; v � k � �1

where D0;s and D1;t are the leftmost disks in their layers.

(A9) Let D0;0 be the leftmost disk in a layer protruding to the right (see Figure 15).
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D1;t D1;�1

D0;s D0;�1 D0;0

E0

E�1

E1

E2

Figure 14: Rightmost disk in layer protruding to the right, as discussed in (A8)

Note that tv.D0;1/D 1 as we have a nice flypeable trellis.

DC
0;0

E0
 !D�0;0;D

C

1;0

DC
0;0

E1
 !DC

1;0
;DC

1;1

DC
0;0

E2
 !DC

0;1
;DC

1;1

DC
0;0

Ej

 !DC
0;1
; 3� j � u

DC
0;0

Ek
 !D�0;0; v � k � �1

D1;0 D1;1

D0;0
D0;1

E0 E2

E�1

E1

Figure 15: Leftmost disk in layer protruding to the right, as discussed in (A9)

Now consider disks of type D� (see Figure 16):

In the back of each layer there are two “long” regions F and F 0 , which meet every back
disk in its top or bottom edge, respectively. In addition, in every interior column there is
a sequence of regions that meet only the two adjacent disks to the column. The regions
that meet the leftmost or rightmost columns (including F and F 0 ) give connections
from back disks to front disks in the same or adjacent layers. These connections were
given in the discussion of the front disks.
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Figure 16: Configuration on the back of H1 . The sub-arcs of the knot are
indicated by the dashed arcs.

The cases described above, together with their 180ı rotations, give all possible connec-
tions between disks. For example, the connections along the bottoms of the disks in
cases (A4) and (A5) are obtained as rotations of the connections in cases (A6)–(A9).

It can now be checked that any time two E regions connect disks that are not in the
same layer then these regions are adjacent along a single arc of KXD . Here are some
examples of this analysis:

In case (A1)(a) the only connections between DC
0;0

and disks in a different row are:

DC
0;0

E0
 !DC

1;0

DC
0;0

E1
 !DC

1;0

DC
0;0

E1
 !DC

1;1

Note that E0 and E1 are adjacent along a single arc and hence the rectangle determined
by the first two lines is trivial.
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In case (A2) the only connections between DC
0;0

and disks in a different row are:

DC
0;0

E0
 !DC

1;0
; : : : ;DC

1;s�1

DC
0;0

E0
 !DC

1;s

DC
0;0

E1
 !DC

1;s

DC
0;0

E1
 !DC

1;sC1

DC
0;0

E2
 !DC

1;sC1

Here the connections in the first line do not belong to any rectangle. The second and
third line define a trivial rectangle, and so do the third and fourth.

In case (A7) the only connections between DC
0;0

and disks in a different row are:

DC
0;0

E0
 !DC

1;0

DC
0;0

E1
 !DC

1;0

DC
0;0

E1
 !DC

1;1

DC
0;0

E2
 !DC

1;1

Here the first and second lines define a trivial rectangle as do the third and fourth.

Finally, let D� be a back disk in the middle of a layer protruding to the left. It is
connected to the rightmost front disk of the layer below using the connections in (A8)
second line, and to the rightmost back disk of the layer above using the connections in
(A6) third line. None of these connections is part of a rectangle.

The remaining cases are similar (for the global picture it is helpful to consult Figure 7),
and an inspection of them completes the proof of the lemma.

We now compile a list of the nontrivial rectangles. First we list nontrivial rectangles
from front disks to front disks.

(B1) Consider disks that share a vertical column e (see Figure 17). The disks will be
numbered D0;0 and D0;1 . The E regions will be numbered clockwise around
D0;0 starting from the top.

(a) tv.D0;1/ > 0, bv.D0;0/ > 0:
We obtain a rectangle for (DC

0;0
;DC

0;1
;Ei ;Ej ), where 2� i < j � a.e/.
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(b) tv.D0;1/D0, bv.D0;0/D0: We obtain a rectangle for (DC
0;0
;DC

0;1
;Ei ;Ej ),

where 1� i < j � a.e/C 1.
(c) tv.D0;1/D 0, bv.D0;0/ > 0:

We obtain a rectangle for (DC
0;0
;DC

0;1
;Ei ;Ej ), where 1� i < j � a.e/.

(d) tv.D0;1/ > 0, bv.D0;0/D 0:
This case is obtained from the previous one by a 180ı rotation.

In all preceding cases the rectangles are nontrivial when j � i � 2.

D0;0 D0;1
D0;0

D0;1 D0;0
D0;1

E1
E2

Ea.e/

E1
E2

Ea.e/
Ea.e/C1

E1

E2

Ea.e/

(B1)(a) (B1)(b) (B1)(c)

Figure 17: Case (B1). For each subcase one example rectangle is indicated
by a simple closed curve tracing out its boundary. In (a), .i; j /D .2; a.e// .
In (b), .i; j /D .1; a.e/C 1/ . In (c), .i; j /D .1; a.e/� 2/ .

(B2) Consider a sequence of disks in a layer that is contained in a flype box or is in
a top or bottom layer that is adjacent to a flype box. In such cases we obtain a
sequence D0;0; : : : ;D0;p so that

tv.D0;k/D 0; 1� k � p;

bv.D0;k/D 0; 0� k � p� 1:

We obtain a nontrivial rectangle (DC
0;0
;DC

0;p
;E1;E�1 ). Note that the case

p D 1 already appears in case (B1).

We now consider rectangles that connect back disks to back disks. The back of every
layer has the same structure, which can be seen in Figure 16: There are two “long”
E regions denoted by F;F 0 , which meet every disk on its top and bottom edge,
respectively. Given a column e there is a sequence of at least two regions that connect
the disks adjacent to e , which we number F1; : : : ;Fa.e/�1 from top to bottom.

(B3) For any two D0;p;D0;q in a layer, there is a rectangle (D�
0;p
;D�

0;q
;F;F 0 ).
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D0;0 D0;1 D0;p

E1

E�1

Figure 18: Case (B2)

(B4) Let e be the column between D0;p and D0;pC1 , and F1; : : : ;Fa.e/�1 the
associated regions. Moreover write F0 D F and Fa.e/ D F 0 . These determine
rectangles

.D�0;p;D
�
0;pC1;Fi ;Fj /; 0� i < j � a.e/;

which are nontrivial when j � i � 2.

We now consider rectangles that connect front disks to back disks. These occur at the
right and left edges of the trellis.

In (B5)–(B10), let D be a rightmost or leftmost disk in a layer, and let e be the column
to its right or left, respectively. We number the regions meeting DC clockwise around
D , with E0 meeting the top edge. We then have the following rectangles, all of which
can be seen in Figures 7 and 16:

(B5) Let D be a rightmost disk in a left protruding inner layer. There are rectangles:

.DC;D�;Ei ;Ej /; 2� i < j � a.e/

Note that DC connects to the back of the first disk in the layer through only
one region, hence there is no corresponding rectangle.

(B6) Let D be a rightmost disk in a right protruding inner layer. There are rectangles:

.DC;D�;Ei ;Ej /; 2� i < j � a.e/

(B7) Let D be a rightmost disk in a right protruding bottom layer. There are
rectangles:

.DC;D�;Ei ;Ej /; 2� i < j � a.e/C 1

(B8) Let D be a leftmost disk in a right protruding bottom layer. There are rectangles:

.DC;D�;Ei ;Ej /; �a.e/C 2� j < i � 0
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(B9) Let D be a leftmost disk in a right protruding top layer. There are rectangles:

.DC;D�;Ei ;Ej /; �a.e/C 2 � j < i � 1

(B10) Let D be a rightmost disk in a right protruding top layer. There are rectangles:

.DC;D�;Ei ;Ej /; 2� i < j � a.e/

All remaining cases are obtained from the above by a 180ı rotation of the plane P .
The rectangles are non-trivial when j � i � 2.

Lemma 5.7 All nontrivial rectangles are described in cases (B1)–(B10).

Proof By Lemma 5.6, we need to consider only rectangles between disks contained
in a single horizontal layer. The proof is then a case by case inspection, using the same
data and techniques as the proof of Lemma 5.6.

Two rectangles RD .D
e1

1
;D

e2

2
;E1;E2/, and R0 D .D

e3

3
;D

e4

4
;E3;E4/, where ei 2

f˙1g; i D 1 : : : ; 4, will be called adjacent along D2 if the following holds:

(1) D2 DD3 and e2 D�e3 , and

(2) the arcs of intersection E1\D2;E2\D2 are equal to the arcs of intersection
E3\D3;E4\D3 .

This condition captures the combinatorial aspects of an adjacency of rectangles in the
annulus A.

If after renumbering R and R0 are adjacent along one of the disks, we say that they
are adjacent.

Lemma 5.8 There are no adjacencies between trivial and non-trivial rectangles.

Proof An inspection of cases (B1)–(B10) shows that given a non-trivial rectangle
R D .D

e1

1
;D

e2

2
;E1;E2/, the arcs of intersection E1 \Di and E2 \Di for each

i D 1; 2 are separated by at least two points of K\ @Di . Since for a trivial rectangle
these arcs are always separated by just one such point, there can be no adjacencies
between trivial and nontrivial rectangles.

The adjacency graph of rectangles will be the graph whose vertices are rectangles,
where we place and edge between R and R0 , labeled by D , whenever R and R0 are
adjacent along D . Formally speaking, a pair rectangles might have distinct adjacencies
labeled by the same disk. However, the arguments in Lemma 5.9 show that this never
occurs in our setting.
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Lemma 5.9 In the adjacency graph of rectangles, every cycle contains only trivial
rectangles.

Proof By Lemma 5.8, if a cycle contains any trivial rectangle then it contains only
trivial rectangles. Hence it suffices to restrict to the subgraph of nontrivial rectangles
and show that it contains no cycles.

Wrapping around each vertical column there are (several) sequences of adjacent rectan-
gles. Consider for example case (B1)(a). A front rectangle indexed by .i; j /, i � 3, is
adjacent to a back rectangle from case (B4) indexed by .i �2; j �2/. If i �2� 2 then
this rectangle is adjacent to a front rectangle indexed by .i � 2; j � 2/. If i � 2 � 1

there are no further adjacencies. Hence any such chain terminates in a rectangle that
has no further adjacencies and thus is not part of a cycle.

Similar arguments apply to the rest of case (B1), with one proviso: If tv.D0;1/D 0 and
a back rectangle is indexed by .1; j /, then it is adjacent to one further front rectangle
indexed by .1; j / (see Figure 17 Case (c)), but that rectangle meets D0;1 in two vertical
arcs on opposite edges. Any rectangle involving D�

0;1
meets it either in vertical arcs on

the same edge of @D0;1 (cases (B4)–(B10)), one vertical arc and one horizontal edge
(case (B4)), or in horizontal edges (case (B3)). Hence the chain terminates at this point.

A front rectangle in case (B2) again meets its disks along vertical arcs on opposite
edges, and so is not adjacent to any rectangle.

In cases (B5)–(B10), a similar analysis to that of case (B1) holds. Note that in these
cases rectangles are not divided into “front” and “back”: rather, each rectangle wraps
around from front to back.

Every adjacency of a back rectangle must be to a rectangle of type already discussed,
hence back rectangles cannot be a part of a cycle either.

Every incompressible annulus A� .H2;N .K// determines a cycle of rectangles in
the adjacency graph, and Lemma 5.9 implies that all these rectangles are trivial. Hence
the annulus is parallel to the knot. This finishes the proof of Proposition 5.4.

Lemma 5.3 together with Proposition 5.4 and Thurston’s Haken Geometrization Theo-
rem complete the proof of Theorem 5.2.

5.3 Ruling out I –bundles

In order to apply Proposition 3.5 to the proof of Theorem 1.1, we need to further show
that .H r

2
;N†r .Kr // is not an I –bundle. We do this in the following lemma:
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Proposition 5.10 For each r 2 Z the manifold pair .H r
2
;N†r .Kr // is not an I –

bundle.

Proof For r D 0 this is a consequence of Proposition 5.4. The rest of the proof will
be given for r > 0. The case r < 0 will follow from the usual 180ı rotation.

In this case it is easy to see that .H r
2
;N†r .Kr // does in fact contain essential annuli.

In particular Lemma 5.8 fails because now there are columns with a.e/D 1 and this
allows adjacencies between trivial and nontrivial rectangles.

The idea is to prove that there is a union of (one or two) embedded essential annuli in
.H r

2
;N†r .Kr //, which separates .H r

2
;N†r .Kr // into two components, one of which

contains no essential annuli. This is impossible in an I –bundle, since an I –bundle
does not have a non-trivial JSJ decomposition (see [9]) hence the proposition follows.

Consider the rectangular closed curve labeled � in Figure 19. Let �C (�� ) denote the
curve in the front (back) of † lying in front of (back of) � . The curves �C , �� bound
disks denoted by �F and �B in H r

2
, whose projection to P is the disk � bounded

by � . The points between �F and �B which project to � form a 3–ball denoted by
Bfl called the flype box.

�

Figure 19: Constructing the flype box for r D 2 . The disk � is shaded and
� is its boundary.

Let Y DBfl[NS3.K/, where we choose the neighborhood N .K/ so small so that Y

is a genus two handlebody. Note that AD @Y \H r
2

is a union of one or two annuli,
depending on K . Furthermore set�H r

1 DH r
1 [Y; �H r

2 D S3
X int.�H r

1 /:

Note also that A separates H r
2

into two components, one of which has closure �H r
2

.
We now show that the manifold pair .�H r

2
;A/ contains no essential annuli.

The core of A is a link yKr on y†r D @�H r
1
D @�H r

2
. The link yKr is carried by a new

trellis �T r where Bfl is replaced by a single vertical column (see Figure 20). The
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D1;�1 D1;0 D1;1

D0;�1 D0;0 D0;1 D0;2

D�1;�1 D�1;0

G1 G2 G3
G4

G0

E2

Figure 20: The new trellis �T r , obtained by amalgamating the flype box and
the columns it meets into one new column. The new column is here between
D0;0 and D0;1 .

projection into P of Kr outside Bfl is equal to the projection of yKr outside this
column.

We apply the same techniques as in the proof of Lemma 5.6. Note that there are four
front E regions G0;G1;G2;G3 whose configurations are somewhat different. The
other front E regions stay the same. The back E regions stay the same but note that
in the back of the new column there are no “small” regions connecting just D�

0;0
and

D�
0;1

, because there is only one arc in that column.

Note by inspection that all E regions are disks and that every region intersects each
disk side in �D in at most a single arc. In other words this recovers conditions (1–3)
coming from Lemma 2.2 of [13], as used in Step 1 of Proposition 5.4. Therefore we
can apply the same proof as in Step 1 to conclude that any annulus in .�H r

2
;A/, after

suitable isotopy, is decomposed into a cycle of rectangles.

An inspection of the diagram yields the following new nontrivial rectangles. (There are
also rectangles that have appeared in previous cases, and which are not listed below.)

Front rectangles

(C1) .DC
�1;�1

;DC
�1;0

;G0;Ei/, i � 3 The regions Ei are in the column between
D�1;�1 and D�1;0 , as indicated in Figure 20.

(C2) .DC
0;1
;DC

1;1
;G0;G4/

Back rectangles

We denote the “long” back regions in the layer of D0;0 by F and F 0 , as in case (B3).
We also enumerate the “small” back regions in the column between D0;0 and D0;�1
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as F�1
1
; : : : ;F�1

q , and similarly the “small” back regions in the column between D0;1

and D0;2 as F1
1
; : : : ;F1

p . We then obtain:

(C3) .D�
0;1
;D�

0;i
;F;F 0/, i ¤ 0

(C4) .D�
0;0
;D�

0;i
;F;F 0/, i ¤ 1

The last two cases are of a type already discussed in (B4), but we mention them here
because we must analyze their potential interaction with the new rectangles.

(C5) (a) .D�
0;1
;D�

0;2
;F;F1

j /, 2� j � p and
(b) .D�

0;1
;D�

0;2
;F 0;F1

j /, 1� j � p� 1

(C6) (a) .D�
0;0
;D�

0;�1
;F;F�1

j /, 2� j � q and
(b) .D�

0;0
;D�

0;�1
;F 0;F�1

j /, 1� j � q� 1

Note that the E region G0 connects a large number of disks, namely DC
�1;�1

, DC
�1;0

,
DC

1;0
, DC

1;1
, DC

0;0
, DC

0;1
and DC

0;2
. However only a few of these participate in nontrivial

rectangles as indicated in (C1) and (C2).

The rectangles in case (C1) are not adjacent to any rectangle along D�1;0 using the
same argument as in case (B1) in the proof of Lemma 5.9. The rectangle in (C2) is
adjacent along D0;1 to a rectangle in case (C5)(b), for j D 1. That rectangle has no
further adjacencies and hence cannot participate in a cycle.

In case (C3) the rectangles are adjacent on one side to a trivial rectangle. However
on the other side they have no further adjacencies since there are no front rectangles
meeting opposite horizontal edges of a disk (see the analysis of (B3) in Lemma 5.9).
Case (C4) is handled similarly.

Case (C5)(a) The rectangles in this case have no adjacencies along D0;1 . The rectan-
gles in case (b) have no adjacencies along D0;2 .

Case (C6)(a) The rectangles there have no adjacencies along D0;�1 . In case (b) the
rectangles have no adjacencies along D0;0 .

The cases above together with the analysis in Lemma 5.9 show that non-trivial rectangles
cannot participate in cycles. This proves that there are essential annuli in .�H r

2
;A/ and

this completes the proof of the proposition.

Remark The following simpler argument for proving Proposition 5.10 in some cases
was pointed out to us by Saul Schleimer. Note that H1 is always an I –bundle over a
surface F1 . Suppose that F1 is non-orientable (we can always obtain such an example
from an orientable one by adding one twist to a trellis column disjoint from the flype
box). If H2 is also an I –bundle then its base surface F2 joins F1 along the knot to
make an embedded non-orientable closed surface in S3 , which is impossible.
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6 Finishing the proof

We can now assemble the previous results to produce a sequence of primitive stable dis-
crete faithful representations with rank going to infinity which converges geometrically
to a knot complement.

Proof of Theorem 1.1 Let K � S3 be a knot carried by a nice flypeable trellis T
and satisfying the conditions of Theorem 4.1. The manifold M1 D S3 �N .K/ is
hyperbolic by Theorem 5.2, so we have a discrete faithful representation �W �1.M1/!

PSL2.C/.

For each r 2 N , consider the decomposition of M1 along †r XN .Kr / into two
handlebodies

V r
DH r

1 XN .K
r / and W r

DH r
2 XN .K

r /:

Let ir
� W �1.V

r /! �1.M1/ be induced by the inclusion map. Recall that �1.V
r /D

Fnr
, where nr D n0C 2r .

(1)

�1.M1/

�

''

qm

��

�1.V
r /

ir
�

77

�r
m //_____________ PSL2.C/

�1.K†r .1=m//

�m

77

We let K†r .p=q/ denote the p=q Dehn filling of Kr with respect to the framing of
†r as in Section 4.2, where we have abbreviated K†r DKr

†r . For each m 2 Z, let
qmW �1.M1/! �1.K†r .1=m// be the quotient map induced by surgery.

By Thurston’s Dehn Filling Theorem, for large enough jmj the manifolds K†r .1=m/

are hyperbolic, and there are discrete faithful representations �mW �1.K†r .1=m//!

PSL2.C/ such that the representations �m ı qm converge to �. Moreover the quotient
manifolds converge geometrically to M1 .

Because the surgered manifold K†r .1=m/ is obtained by an m–fold Dehn twist on
Kr , the images of V r and W r determine a Heegaard splitting for this manifold, and
in particular the map qm ı ir

� is surjective.

Letting m!1, the representations �r
m D �m ı qm ı ir

� converge to �r
1 D � ı ir

� .

The representation �r
1 satisfies the hypotheses of Proposition 3.5: Hypothesis (1)

(a cut point free Whitehead graph) follows from Lemma 5.1, hypothesis (2) (incom-
pressibility of †r XKr ) follows from Theorem 4.1, and hypothesis (3) (the manifold
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pair .W r ;N .Kr /\ @W r / is not an I –bundle) follows from Proposition 5.10. We
conclude, by Proposition 3.5, that �r

1 is primitive stable.

Since the primitive stable set PS.Fnr
/ is open (see Minsky [15]), for each r there

exists mr such that �r
mr

is primitive stable as well. In particular the image of �r � �r
mr

is the whole group �mr
.�1.K†r .1=mr //, and by choosing mr sufficiently large for

each r , this sequence of groups converges geometrically to �.�1.M1// as r !1.
This is the desired sequence of representations.
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