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Regularity results for pluriclosed flow

JEFFREY STREETS

GANG TIAN

In [27] the authors introduced a parabolic flow of pluriclosed metrics. Here we give
improved regularity results for solutions to this equation. Furthermore, we exhibit
this equation as the gradient flow of the lowest eigenvalue of a certain Schrödinger
operator, and show the existence of an expanding entropy functional for this flow.
Finally, we motivate a conjectural picture of the optimal regularity results for this
flow, and discuss some of the consequences.
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1 Introduction

Let .M 2n;J / be a complex manifold, and let ! denote a Hermitian metric on M .
The metric ! is pluriclosed if

@@! D 0:

Consider the initial value problem:

(1-1)
@

@t
! D @@�!C @@�!C

p
�1

2
@@ log det g;

!.0/D !0:

This equation was introduced in Streets and Tian [27] as a tool for understanding
complex, non-Kähler manifolds. Equation (1-1) falls into a general class of flows of
Hermitian metrics, and as shown in Streets and Tian [28], solutions to (1-1) exist as long
as the Chern curvature, torsion and covariant derivative of torsion are bounded. This
is analogous to the long-time existence theorem by R Hamilton [14, Theorem 14.1],
which states that the Ricci flow with any initial data has a solution on Œ0;T /, where
either T D1 or the curvature of the solution blows up at time T . A natural problem
is whether or not we can drop the hypothesis that the torsion and its first covariant
derivative is bounded at a finite singular time for (1-1). In the case nD 2, we showed
in [27] that a bound on the Chern curvature suffices to show long-time existence.
The difficulty in general arises from the fact that the induced evolution equation on
the Chern curvature involves the torsion and its derivatives. Our crucial observation
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2390 Jeffrey Streets and Gang Tian

for overcoming this difficulty is that the Bismut connection is a much more natural
connection for studying (1-1).

In this paper, we will give sharper long-time existence theorems for (1-1). We will
also prove some useful regularity theorems and paint a more concrete picture for the
conjectural existence and singularity formation for the flow (1-1). Furthermore, by
giving an interesting interpretation of the flow using the Bismut connection, we exhibit
a remarkable relationship of (1-1) to mathematical physics. Specifically, we show that
up to gauge equivalence (1-1) is the renormalization group flow of a nonlinear sigma
model with nonzero B –field. As a consequence we derive that (1-1) is a gradient flow,
and exhibit a certain entropy functional. Finally, we discuss some applications of our
conjectural picture to understanding the topology of Class VII surfaces.

We start by recalling the Bismut connection. Let .M 2n; !;J / be a complex manifold
with pluriclosed metric. Let D denote the Levi-Civita connection. Then the Bismut
connection r is defined via

hrX Y;Zi D hDX Y;ZiC 1
2
dc!.X;Y;Z/;

where dc!.X;Y;Z/ WD d!.JX;J Y;JZ/. Let � denote the curvature of this connec-
tion, and let P denote the Chern form of this connection, ie, in complex coordinates:

Pij D�
k
ijk
:

Finally, let PC denote the Ricci form associated to the Chern connection. One can
calculate (Alexandrov and Ivanov [1]) that

P D PC
� dd�!:

In particular, this implies that a solution to (1-1) may be expressed as

(1-2) @

@t
! D�P1;1;

where P1;1 denotes the projection of P onto .1; 1/–forms. This is a convenient
framework for understanding solutions to (1-1). In particular, with the clarifying lens
of this connection, we are able to show that (1-1) is the gradient flow of the first
eigenvalue of a particular Schrödinger operator. First generalize the notation slightly
and let .M n;g/ be a Riemannian manifold, and let T denote a three-form on M . Let

F.g;T; f /D
Z

M

�
R� 1

12
jT j2Cjrf j2

�
e�f dV:

Furthermore set
�.g;T /D inf

ff j
R
M e�f dVD1g

F.g;T; f /:
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Regularity results for pluriclosed flow 2391

In Section 6 we exhibit Equation (1-1) as the gradient flow of �.

Theorem 1.1 Let .M 2n; !;J / be a complex manifold with pluriclosed metric. Let
!.t/ denote the solution to (1-1) with initial condition ! , and let g.t/ be the associated
metric, and T .t/ the torsions of the associated Bismut connections. Let Met denote
the space of smooth metrics on M , and let

M WD
f.g;T / j g 2Met;T 2ƒ3; dT D 0g

DiffC.M /
;

where DiffC is the group of oriented diffeomorphisms of M , acting naturally on g

and T . The pair .g.t/;T .t// is a solution of the gradient flow of � acting on M.

More specifically, we show that after pulling back by the one-parameter family of dif-
feomorphisms generated by the Lee forms of the time dependent metrics, Equation (1-1)
is unmasked as the B–field renormalization group flow of string theory. This flow
has been previously studied, and admits the generalization � of the Perelman energy
(Oliynyk, Suneeta and Woolgar [21]). Furthermore an expanding entropy functional
for this flow was discovered by the first named author [26], which hence is monotone
for solutions to (1-1) as well. These observations show that any breather solution is
automatically a gradient soliton (Corollary 6.11), and furthermore imply strong results
on certain long-time solutions.

Turning to the regularity theory, we show that a bound on the Bismut Ricci curvature
suffices to obtain long-time existence for solutions of (1-1).

Theorem 1.2 Let .M 2n; !.t/;J / be a solution to (1-1) on Œ0; �/. SupposeZ �

0

sup
M�ftg

jP1;1
j dt <1:

Then the solution extends smoothly past time � .

This theorem is analogous to a result of N Sesum for the Ricci flow [25, Theorem 2],
and already represents a significant improvement, as we have reduced the regularity
requirement to understanding the Ricci-type curvature of a specific connection.

The theory of Kähler Ricci flow is considerably more developed than the general study
of Ricci flow. One of key reasons for this is the reduction of the Kähler Ricci flow to
a scalar equation. Inspired by this, we will introduce a certain potential function �
along a solution to (1-1) and prove a regularity theorem in term of this potential and
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the torsion. Let .M 2n; z!;J / be a complex manifold with pluriclosed metric, and let
!.t/ be a solution to (1-1). We define

(1-3)
@

@t
� ��� D tr! z! � n;

�.0/D 0:

Here � is the canonical Laplacian associated to the time dependent metric !.t/, ie,
� D tr! @@. It follows from standard parabolic theory that � exists on the same
time interval that !.t/ exists. More generally, one may define this with respect to
a one-parameter family of background metrics z!.t/. Related quantities for Monge–
Ampère-type equations on almost Kähler surfaces were considered in Weinkove [33].

Theorem 1.3 Let .M 2n; zg;J / be a compact complex manifold and suppose g.t/ is
a solution to (1-1) on Œ0; �/ and suppose there is a constant C such that:

sup
M�Œ0;�/

j�j � C; sup
M�Œ0;�/

jT j2 � C:

Then g.t/! g.�/ in C1 , and the flow extends smoothly past time � .

This represents a significant reduction of the regularity requirement for solutions to
(1-1), effectively reducing the question to understanding the behavior of the potential
function and the torsion. The proof involves applying the maximum principle to
carefully chosen quantities. Going further, one would like to understand what the
optimal existence and regularity theorems are for (1-1). For this we again take a cue
from the study of Kähler Ricci flow. Suppose .M 2n; !0;J / is a Kähler manifold, and
recall the Kähler Ricci flow equation:

(1-4)
@

@t
! D

p
�1

2
@@ log det g;

!.0/D 0:

Associated to a solution !.t/ of (1-4) is an ODE in H 2.M;R/, which has solution:

Œ!.t/�D Œ!0�� tc1.M /:

The optimal regularity theorems for Kähler Ricci flow assert that as long as the solution
to the ODE above remains in the Kähler cone, the solution exists up to that time (Tian
and Zhang [32]; see also Tian [31]). An essential ingredient of these theorems is the
reduction of Kähler Ricci flow to a scalar equation, then exploiting the estimates of the
Monge–Ampère equation using the maximum principle.
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Keeping with this theme, observe that a pluriclosed metric defines a class in the Aeppli
cohomology group:

H1;1

@C@
D
fKer @@W ƒ1;1

R !ƒ
2;2
R g

f@˛C @˛ j ˛ 2ƒ0;1g
:

Define the space P@C@ to be the cone of the classes in H
@C@

that contain positive-
definite elements. Solutions to Equation (1-1) clearly define ODEs in H

@C@
1;1 , and

it is natural to conjecture (see Conjecture 5.2) that the maximal existence time is
characterized by the first time at which the boundary of P@C@ is reached. If true, this
would have strong implications on complex surfaces since the cone P@C@ is essentially
characterized on complex surfaces in terms of the action of the class in H

@C@
on curves.

More precisely, if � is a pluriclosed (1,1)–form on a complex non-Kähler surface
.M 4;J /, then � 2 P

@C@
if and only if (1)

R
M � ^ 
0 > 0, (2)

R
D � > 0 for every

effective divisor with negative self-intersection. Here 
0 is the kernel of the projection
map from the .1; 1/ Bott–Chern cohomology of M to H 1;1 , explained further in
Section 5.

To further illustrate the significance of the cone P@C@ , we show in Section 5 that as
long as the solution to the associated ODE remains in the interior of P , solutions to
(1-1) on complex surfaces may be canonically reduced to solutions of a certain PDE on
˛ 2ƒ0;1 , and an ODE on  2ƒ1;1 . Specifically, we can find a background metric zg
so that, setting !.t/D !.0/C @˛C @˛C , one has the solution to (1-1) reduced to:

(1-5)

@

@t
˛ D @�!!C

p
�1

4
@ log !

n

z!n
;

@

@t
 D�c1.zg/;

˛.0/D ˛0;  .0/D  0:

This equation may be taken as an ansatz for Equation (1-1) in any dimension. We
discuss some further properties of this equation in Section 5.

Finally, in Section 7 we examine nonsingular solutions to (1-1), suitably normalized,
on Class VIIC surfaces. By exploiting certain monotone quantities we show that
a positive resolution of the conjectural picture of singularity formation outlined in
Section 5 implies the existence of a curve on a Class VIIC surface. Due to the results
of Nakamura [20], and Dloussky, Oeljeklaus and Toma [9], the classification of such
surfaces reduces to finding sufficiently many curves. In particular we show that our
conjectural picture implies the classification of Class VIIC surfaces with b2 D 1. This
is discussed further in Section 7.

Here is an outline of the rest of the paper. In Section 2 we establish certain differential
inequalities for solutions to (1-1), which are inspired by the theory of the complex
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Monge–Ampère equation, which can be used to establish uniform bounds on the metric.
Next in Section 3 we derive a C 1 estimate for the metric along solutions to (1-1) under
certain hypotheses. Building on these estimates, in Section 4 we give the proofs of
Theorems 1.2 and 1.3. In Section 5 we outline a conjectural picture of formation of
singularities of solutions to (1-1) in any dimension, and further clarify this picture in
the case of complex surfaces. In Section 6 we show that (1-1) is a gradient flow, and
show the existence of an entropy functional. In Section 7 we derive some consequences
of the conjectural regularity picture developed in Section 5, and Section 8 is a brief
conclusion.
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2 L1 uniform metric estimate

In this section we derive differential inequalities and produce a priori estimates for the
metric along a solution to (1-1) that are similar in spirit to the Laplacian estimates for
the solution to the complex Monge–Ampère equation. We will fix a one-parameter
family of background metrics z!.t/ and assume that they are uniformly bounded on
the time interval of consideration. Furthermore, we set

 WD
@

@t
z!:

Finally, � will always denote the solution to (1-3) taken with respect to z!.t/.

Lemma 2.1 Let .M 2n; !;J / be a complex manifold with pluriclosed metric. Then
in local complex coordinates:

P1;1.!/
kl
Dgij

�
�g

kl;ij
Cgmngkn;iglm;j

�
�gmngpq

�
gmq;k�gkq;m

��
g

np;l
�g

lp;n

�
Proof As exhibited in [27], one has an expression

P1;1.!/
kl
D�S

kl
CQ1

kl
;

where
S

kl
D gij�

ijkl
and Q1

kl
D gmngpqTkmqT

lnp
;
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where � and T are the curvature and torsion of the Chern connection, respectively.
The lemma then follows from direct calculations.

Lemma 2.2 Let .M 2n; z!.t/;J / be a complex manifold with a one-parameter family
of pluriclosed metrics. Let !.t/ denote a solution to (1-1). Then in local complex
coordinates:

@

@t
trz! ! D zg

klgij
�
g

kl;ij

�
� zgklgij gmngkn;iglm;j

C zgklgmngpq
�
gmq;k �gkq;m

��
g

np;l
�g

lp;n

�
� h ;!iz! ;

@

@t
log

!n

z!n
D� log

!n

z!n
Cgklgmngpq

�
gmq;k �gkq;m

��
g

np;l
�g

lp;n

�
C tr! @@ log det zg� trz!  ;

@

@t
tr! z! D giqgpj grs

�
�gpq;rsCguvgpv;r guq;s

�
zgij

�giqgpj grsguv
�
grv;p �gpv;r

��
@qgus � @sguq

�
zgij C tr!  :

Proof Starting from Lemma 2.1, we compute

@

@t
trz! ! D�zg

klP1;1.!/
kl
� h ;!iz!

D zgklgij
�
g

kl;ij

�
� zgklgij gmngkn;iglm;j

C zgklgmngpq
�
gmq;k �gkq;m

��
g

np;l
�g

lp;n

�
� h ;!iz! :

Using a general calculation we have

@

@t
log

!n

z!n
D tr!

�
@

@t
!
�
� trz!

�
@

@t
z!
�
:

Thus:

@

@t
log

!n

z!n
D gklgij g

kl;ij
�gklgij gmngkn;iglm;j

Cgklgmngpq
�
gmq;k �gkq;m

��
g

np;l
�g

lp;n

�
� trz!  

D� log!n
Cgklgmngpq

�
gmq;k �gkq;m

��
g

np;l
�g

lp;n

�
� trz!  

D� log
!n

z!n
Cgklgmngpq

�
gmq;k �gkq;m

��
g

np;l
�g

lp;n

�
C tr! @@ log det zg� trz!  
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Lastly we compute:

@

@t
tr! z! D giqgpj P

1;1
pq zgij C tr!  

D giqgpj grs
�
�gpq;rsCguvgpv;r guq;s

�
zgij

�giqgpj grsguv
�
grv;p �gpv;r

��
@qgus � @sguq

�
zgij C tr!  

We next record a lemma fixing certain canonical coordinates for g .

Lemma 2.3 [13, Lemma 2.1] Fix .M 2n; zg;J / a complex manifold with Hermitian
metric, and g another Hermitian metric on M . For p 2 M , there exist complex
coordinates near p such that

zgij .p/D ıij ; @j zgii D 0; gij D gii ıij :

Proposition 2.4 Let .M 2n; z!.t/;J / be a compact complex manifold with a one-
parameter family of pluriclosed metrics, and suppose !.t/ is a solution of (1-1) and �
is a solution to (1-3). Fix a constant A> 0 and let

F D log trz! ! �A�:

There is a constant C D C.zg/ such that�
��

@

@t

�
F � �

X
i

1

trz! !
gmngpq

�
gmq;i �giq;m

��
gnp;i �gip;n

�
C .A�C / tr! z!C

h ;!iz!

trz! !
�An:

Proof Fix a point p 2M , choose coordinates for zg centered at p as in Lemma 2.3
and compute

� trz! ! D gij@i@j

�
zgklg

kl

�
D

X
i;k

giig
kk;ii
� 2<

�X
i;j ;k

gii
zg
jk;i

gkj ;i

�
CO..tr! z!/.trz! !//:

Plugging this calculation into the result of Lemma 2.2, we conclude:�
��

@

@t

�
trz! ! D�2<

�X
i;j ;k

gii
zg
jk;i

gkj ;i

�
C

X
k

giigmm
�
gkm;igkm;i

�
�gmngpq

�
gmq;i �giq;m

��
gnp;i �gip;n

�
CO..tr! z!/.trz! !//Ch ;!iz! :
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Using the properties of Lemma 2.3 we can estimate:ˇ̌̌̌
�2<

X
i;j ;k

gii
zg
jk;i

gkj ;i

ˇ̌̌̌
�

X
i;j¤k

giigjj gkj ;igkj ;i
CO..tr! z!/.trz! !//

Next let us apply the properties of the coordinates in Lemma 2.3 and the Cauchy–
Schwarz inequality twice to yield:

j@ trz! !j2g
trz! !

D
1

trz! !

X
i;j ;k

gii@igjj@igkk

D
1

trz! !

X
j ;k

X
i

q
gii @igjj

q
gii @igkk

�
1

trz! !

X
j ;k

�X
i

gii
j@igjj j

2

� 1
2
�X

i

gii
j@igkk

j
2

� 1
2

D
1

trz! !

�X
j

�X
i

gii
j@igjj j

2

� 1
2
�2

D
1

trz! !

�X
j

p
gjj

�X
i

giigjj
j@igjj j

2

� 1
2
�2

�

X
i;j

giigjj@igjj@igjj

Finally we can now conclude:

X
k

giigmm
�
gkm;igkm;i

�
�
j@ trz! gj2g

trz! !
� 2<

�X
i;j ;k

gii
zg
jk;i

gkj ;i

�
� �O..tr! z!/.trz! !//

Combining the above calculations yields the result.

Proposition 2.5 Let .M 2n; z!.t/;J / be a compact complex manifold with a one-
parameter family of pluriclosed metrics and suppose !.t/ is a solution of (1-1), and �
is a solution to (1-3). Fix a constant A> 0 and let

F D log trz! ! � log !
n

z!n
�A�:

There is a constant C D C.zg/ such that�
��

@

@t

�
F � .A�C / tr! z! �

h ;!iz!

trz! !
� trz!  �An:
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Proof Starting from the result of Proposition 2.4 and using Lemma 2.2 we immediately
conclude:�
��

@

@t

�
F � gklgmngpq

�
gmq;k �gkq;m

��
g

np;l
�g

lp;n

�
�

1

trz! !
gmngpq

�
gmq;i �giq;m

��
gnp;i �gip;n

�
C.A�C / tr! z!C

h ;!iz!

trz! !
� trz!  �An

Let Tkmq D gmq;k �gkq;m . The first term above is then jT j2 . Likewise, if we choose
coordinates at a point such that zgij D ıij and g is diagonalized, specifically gii D �i ,
then

1

trz! !
�

1

�i

for any i . Thus:

�
1

trz! !
gmngpq

�
gmq;i �giq;m

� �
gnp;i �gip;n

�
D�

1

trz! !

X
i

gmngpqTimqTinp

� �

X
i

giigmngpqTimqTinp

D�jT j2

The proposition follows.

Proposition 2.6 Let .M 2n; z!.t/;J / be a compact complex manifold with a one-
parameter family of pluriclosed metrics and suppose !.t/ is a solution of (1-1). Then
in local complex coordinates:�
��

@

@t

�
tr! z! D grsgivguqgpj guv;r gpq;s zgij

� 2<
�
grsgiqgpj gpq;s zgij ;r

�
Cgrsgij

zgij ;rs

Cgiqgpj grsguv
�
grv;p �gpv;r

��
gus;q �guq;s

�
zgij � tr!  

Proof We directly compute:

� tr! z! D grs@r@s

h
gij
zgij

i
D grs@r

h
�giqgpj gpq;s zgij Cgij

zgij ;s

i
D grs

h
givguqgpj guv;r gpq;s zgij Cgiqgpvguj guv;r gpq;s zgij

�giqgpj gpq;rs zgij �giqgpj gpq;s zgij ;r �giqgpj gpq;r zgij ;sCgij
zgij ;rs

i
Geometry & Topology, Volume 17 (2013)



Regularity results for pluriclosed flow 2399

Combining this with the result of Lemma 2.2 yields the result.

Proposition 2.7 Let .M 2n; z!.t/;J / be a compact complex manifold with a one-
parameter family of pluriclosed metrics and suppose !.t/ is a solution of (1-1) on
Œ0; �/, and � is a solution to (1-3). There is a constant C D C.zg;  / > 0 such that

trz! ! � CeC.tClog.!n=z!n/C�/:

Proof Let F D log trz! ! � log.!n=z!n/�A� �Bt , where the constants A and B

are to be determined. Using Proposition 2.5 we obtain:�
��

@

@t

�
F � .A�C / tr! z! �

h ;!iz!

trz! !
� trz!  �AnCB

Now we note that jh ;!iz! j � j jz! j!jz! � C j jz! trz! ! . Thus we have:�
��

@

@t

�
F � .A�C �C j jz!/�AnCB

Choosing A sufficiently large with respect to the constants and j jz! and then choosing
B D nA yields �

��
@

@t

�
F � 0:

By the maximum principle, for any t < � we conclude supM F.t/� supM F.0/. The
result follows.

3 C 1 metric estimate

In this section we derive certain differential inequalities for the Chern connection along
a solution to (1-1). These estimates are inspired by Calabi’s third-order estimate of
the potential function for the complex Monge–Ampère equation, and similar estimates
for the Kähler Ricci flow were considered in Phong, Sesum and Sturm [23]. Fix
.M 2n; zg;J / a Hermitian manifold and let g denote another Hermitian metric on M .
Let h denote the endomorphism of the tangent bundle:

hi
j D zg

ikg
kj

Let
‡ Drhh�1 and W D j‡ j2 D gij gklgmn‡

m
ik ‡

n
jl
;

where the first lowered index on the tensor ‡ D rhh�1 is that arising from the
derivative. The tensor ‡ is the difference of the Chern connections induced by zg and
g . In particular one observes that

r‡ D z���:
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Lemma 3.1 Let .M 2n; zg;J / be a Hermitian manifold, let g denote another Hermitian
metric on M , and let W be defined as above. Then:

�W D
ˇ̌
r‡

ˇ̌2
Cjr‡ j2

Cgij gklgmn

�
�gqpT r

jp�
n
qrl
�rj Sn

l
Cgpqrp

z�n
qjl

�
‡m

ik C conjugate

C‡m
ik

�
S ir gklgmn‡

n
rl
Cgij Skr gmn‡

n
jr �gij gklSrm‡

m
jl

�
Proof First we compute

�W D gij gklgmn

h
�‡m

ik‡
n
jl
C‡m

ik�‡
n
jl

i
C
ˇ̌
r‡

ˇ̌2
C
ˇ̌
r‡

ˇ̌2
:

Next we commute derivatives to see:

�‡n
jl D gpq

rqrp‡
n
jl

D gpq
h
rprq‡

n
jl ��

r
qpj‡

n
rl ��

r
qpl‡

n
jr C�

n
qpr‡

r
jl

i
D�‡n

jl CSr
j ‡

n
rl CSr

l ‡
n
jr �Sn

r ‡
r
jl

Finally we observe using a general formula for curvatures of Hermitian metrics that:

�‡n
jl D gqp

rprq‡
n
jl

D gqp
rp

�
z�n

qjl ��
n
qjl

�
D gqp

�
�rj�

n
qpl �T r

jp�
n
qrl Crp

z�n
qjl

�
D�rj Sn

l �gqpT r
jp�

n
qrl Cgqp

rp
z�n

qjl

Combining these calculations yields the result.

Proposition 3.2 Let .M 2n; zg;J / be a Hermitian manifold, let g denote a solution to
(1-1), and let W be defined as above. Then:�
��

@

@t

�
W D jr‡ j2Cjr‡ j2

Cgij gklgmn

�
�gqpT r

jp�
n
qrl
�rj Qn

l
Cgpqrp

z�n
qjl

�
‡m

ik

C conjugate

C‡m
ik

�
.Q1/ir gklgmn‡

n
rl
Cgij .Q1/kr gmn‡

n
jr �gij gklQ1

rm‡
m
jl

�
Proof First observe the variational equation:

@

@t

�
rhh�1

�
Dr

�
h�1

�
@

@t
h
��
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It follows from Lemma 3.1 that for a general variation one has:�
��

@

@t

�
W

D jr‡ j2Cjr‡ j2

Cgij gklgmn

�
�gqpT r

jp�
n
qrl
�rj Sn

l
�rj

�
h�1 Ph

�n
l
Cgpqrp

z�n
qjl

�
‡m

ik

C conjugate

C‡m
ik

��
h�1 Phir

CS ir
�
gklgmn‡

n
rl

Cgij
��

h�1 Ph
�kr
CSkr

�
gmn‡

n
jr �gij gkl

�
h�1 PhrmCSrm

�
‡m

jl

�
Plugging in Pg D�P1;1 D�S CQ1 yields the result.

Proposition 3.3 Let .M 2n; zg;J / be a Hermitian manifold, let g denote a solution
to (1-1) on Œ0; �/, and let W be defined as above. Suppose there exists a constant K

such that
1

K
zg � g.t/�Kzg

for all t 2 Œ0; �/. Then there is a constant C.K; zg/ such that:�
��

@

@t

�
W � �C

�
1CW CjT j2W

�
Proof We start by noting that r‡ D�� z�; thus, jr‡ j2 � 1

2
j�j2 �C j z�j2 . Also,

by orthogonally projecting ‡ onto its skew symmetric part, one observes that:

jr‡ j2Cjr‡ j2 � 1
2
jrT j2C 1

2
jrT j2�C jr zT j2

�
1
2
jrT j2C 1

2
jrT j2�C W

Thus, starting from the result of Proposition 3.2 we first estimate using the Cauchy–
Schwarz inequality:

gij gklgmngpq
rp
z�n

qjl‡
m
ik D g �g�1

�
zr z�C‡ � z�

�
�‡

� C.K/
�
j zr z�j2gCW

�
� C.K; zg/.1CW /

Next we estimate:

jgij gklgmngpqT r
jp�

n
qrl‡

m
ik j � C jT jj�jj‡ j

� � j�j2C
C

�
jT j2j‡ j2

� � j�j2C
C

�
jT j2W
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Similarly, we have:

jgij gklgmnrj Qn
l ‡

n
ik j � C

�
jrT jC jrT j

�
jT jj‡ j

� �
�
jrT j2CjrT j2

�
C

C

�
jT j2W:

Finally, one clearly has

‡m
ikQir gklgmn‡

n
rl
� C jT j2W;

and likewise for the rest of the terms. Choosing � sufficiently small and combining
these estimates yields the result.

4 Regularity theorems

In this section we give the proofs of the regularity theorems stated in the introduction.
We start by giving the proof of Theorem 1.2.

Lemma 4.1 Let .M 2n; !.t/;J / be a solution to (1-1) on a finite time interval Œ0; �/
and suppose: Z �

0

ˇ̌̌̌
@g

@t

ˇ̌̌̌
<1

Then there is a C 0 metric !.�/ such that limt!� !.t/D !.�/ in C 0 .

Proof This is in Hamilton [14, Lemma 14.2].

Proposition 4.2 Let .M 2n; !.t/;J / be a solution to (1-1) on Œ0; �/. Suppose !.t/!
!.�/ in C 0 , ie, the limit at time � exists as a C 0 metric. Then in fact !.t/ is bounded
in C 1 and for all p <1 there are constants Cp such thatZ

M

j�.!� /j
p
� Cp:

Proof For the C 1 norm on metrics we choose finitely many local coordinate patches
to cover M and take the supremum over the coordinate derivatives in all these charts.
It is equivalent to choose a fixed connection r0 and use the covariant derivative with
respect to that fixed connection.

Suppose that f!.t/g is unbounded in C 1 . Let �.x; t/ D jr0!j. Then for some
sequence .xi ; ti/, where ti! � , we have supM �.ti/ is achieved at xi , and moreover
goes to infinity. By choosing a subsequence we may assume that xi converges to some
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point x 2M . By choosing a coordinate chart around x , and translating coordinates
for i sufficiently large we may assume that supz � D ˛i is attained at z D 0. Now
choose new coordinates w D ˛iz . Since ! is converging in C 0 , it follows that

(4-1) lim
i!1

Z
fjwj<1g

� D 0:

One may express the system (1-1) in local coordinates as:

(4-2) @

@t
!ij �gkl@k@l!ij D !

�1
�!�1

�
@!�2

�
The right hand side of the equation is uniformly bounded in C 0 on Œ0; �/, hence each
coordinate function is the solution to a uniformly parabolic equation with continuous
coefficients and bounded right hand side. It follows by Lieberman [19, Theorem 7.13]
that on fjwj< 1� �g we have j!jH p

2
<1 for all p .

Choosing p > 2n, and applying the Sobolev inequality, we attain a uniform C 1

bound for !.ti/, and moreover a convergent subsequence at time � . But then, for this
subsequence, (4-1) implies that limi!1 �.ti/wD0 D 0, a contradiction. It follows that
!.t/ is bounded in C 1 . Now applying the above regularity argument to ! in local
coordinates around any point yields again the H

p
2

bound on ! for all p , and hence
the curvature � is bounded in Lp for all p .

Proof of Theorem 1.2 We now proceed with the main argument. Suppose that the
statement of the theorem were false. Then let .M 2n; !.t/;J / be a solution to (1-1) on
Œ0; �/ satisfying Z �

0

ˇ̌̌̌
@g

@t

ˇ̌̌̌
<1:

By Lemma 4.1 we conclude the existence of a C 0 limit metric !.�/. By Proposition 4.2
we conclude that in fact !.t/ is a C 1 metric and furthermore one has uniform Lp

bounds on the curvature as t ! � . By [28, Theorem 1.1], if we can show a uniform
bound on the C 0 norm of curvature and torsion, we can conclude smooth convergence
of the metrics as t ! � . By the general short-time existence result for these equations,
we conclude that � is not the maximal existence time, providing the contradiction.

So, we can differentiate (4-2) to yield:

@

@t
.r0!/ijk �gpq@p@q.r0!/ijk D !

�1
�!�1

� .@! � @2!/

By the discussion above, the right hand side is uniformly bounded in Lp , so again
we conclude that ! is uniformly bounded in H

p
3

. Choosing p sufficiently large and
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applying the Sobolev inequality, we conclude a uniform C 0 bound on �, T and rT ,
and the theorem follows.

Now we give the proof of Theorem 1.3.

Proof Consider the differential inequality of Proposition 2.4. First we note that

1

trz! !
gmngpq

�
gmq;i �giq;m

��
gnp;i �gip;n

�
� jT j2:

Applying the maximum principle, since � and jT j2 are bounded we conclude there is
a uniform upper bound on trz! ! . In particular, there is a constant K such that

g.t/�Kzg:

Also, by using Lemma 2.2, if F D log.det g= det zg/CA� , we compute that

@

@t
F ��F CjT j2C .A�C / tr! z! � n:

In particular, for A chosen sufficiently large we conclude by the maximum principle

inf
M�Œ0;�/

log
det g

det zg
� �C.j�j/:

We thus conclude there is a uniform lower bound for g.t/ on Œ0; �/ by the arithmetic-
geometric mean. Again using that the torsion is bounded, we may apply the maximum
principle to the differential inequality in Proposition 3.3 to conclude there is a uniform
C 1 bound on g.t/ on Œ0; �/. Equation (1-1) is strictly parabolic in local complex
coordinates, with bounded C 1 norm, so uniform C k estimates follow from the Schauder
theory for all k , and the theorem follows.

Let us finish this section with a few remarks on the nature of the potential function
� . First, Theorem 1.3 even provides a slightly different perspective on the regularity
of Kähler Ricci flow. In this case the torsion vanishes for all time, so one only has
to check that the potential function is bounded. It is clear by applying the maximum
principle to (1-3) that if Z �

0

sup
M

tr! z! <1

then the flow will extend past time � . This condition can be checked in certain settings.
Also, in the general non-Kähler setting the function � is automatically bounded on
certain background manifolds. Consider the following lemma.
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Lemma 4.3 Let .M 2n; z!;J / be a complex manifold and suppose z! is Kähler and
moreover z�� 0, in the sense of sections of End.ƒ1;1/. Let !.t/ denote a solution to
(1-1) on Œ0; �/. Then there is a constant C > 0 so that

tr! z! � C;

j�j � C�:

Proof From Proposition 2.6, if z! is Kähler we can choose coordinates where @i zgjk
D

0 and simplify, since Q1 � 0:�
��

@

@t

�
tr! z! � �grsgij z�ijrs

� 0:

Applying the maximum principle proves the uniform upper bound for tr! z! , and then
the bound for � follows immediately applying the maximum principle to (1-3).

Since z! is Kähler, P is just the Ricci form, hence the hypotheses are satisfied on
complex tori or Kähler manifolds with negative curvature operator. Note of course
that we are not assuming ! is Kähler. This bound suggests that the function � is
quite natural to introduce, and furthermore suggests that its possible blowup is not
related to any “local” singularity model since it is bounded on these natural background
manifolds.

5 Conjectural picture of singularity formation

The notion of the Kähler cone in H 2.M;R/\H 1;1.M;C/ is crucial to understanding
the structure of solutions of Kähler Ricci flow. Recall from the introduction that along
a solution to Kähler Ricci flow the Kähler class satisfies an ODE, depending on the
normalization. Clearly a necessary condition for existence of the flow is that this ODE
stay in the Kähler cone. As mentioned in the introduction, this condition is in fact
sufficient [32, Proposition 1.1]. It is natural to conjecture that a similar phenomenon is
at play guiding the singular behavior of solutions of (1-1).

First of all recall from the introduction that:

H1;1

@C@
D

˚
Ker @@W ƒ1;1

R !ƒ
2;2
R

	˚
@˛C @˛ j ˛ 2ƒ0;1

	
This is known as the .1; 1/ Aeppli cohomology group and one basic fact is that this
space is finite-dimensional, as can be seen by constructing the necessary short exact
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sequence of coherent sheaves. Let the positive cone inside H
@C@
1;1 be:

P
@C@
D
˚
Œ�� 2H1;1

@C@
j 9 2 Œ��;  > 0

	
It is clear that a necessary condition for a solution to (1-1) to exist is that the class
Œ!t �D Œ!0� tc1� 2 P@C@ . We state this for emphasis.

Proposition 5.1 Let .M 2n;g0;J / be a compact complex manifold with pluriclosed
metric. Let:

�� WD sup
t�0

˚
t
ˇ̌
Œ!0� tc1� 2 P@C@

	
Let � denote the maximal existence time of the solution of (1-1) with initial condition
g0 . Then

� � ��:

Furthermore, in analogy with Kähler Ricci flow, it is natural to conjecture that mem-
bership in this cone suffices for existence.

Conjecture 5.2 (Weak existence conjecture) Let .M 2n;g0;J / be a compact com-
plex manifold with pluriclosed metric. Let:

�� WD sup
t�0

ft j Œ!0� tc1� 2 P@C@g

Then the solution to (1-1) with initial condition g0 exists on Œ0; ��/, and �� is the
maximal time of existence.

Let us note here that this we are implicitly making this conjecture, and the two related
conjectures below, for any normalization of (1-1), ie, the volume normalized version of
(1-1) or other possible normalizations. A stronger version of this conjecture would be
that there are uniform C1 estimates on !.t/ depending on d.Œ!.t/�; @P

@C@
/, where

this means distance with respect to some metric defined on H
@C@
1;1 . Let us also state

this for emphasis.

Conjecture 5.3 (Strong existence conjecture) Let .M 2n;g0;J / be a compact com-
plex manifold with pluriclosed metric. Let !.t/ be the solution to (1-1) with initial
condition !0 . Let t be such that Œ!0 � tc1� 2 P

@C@
. Then there exist uniform C1

estimates on !.t/ depending on !0; t and d.Œ!.t/�; @P
@C@

/. Moreover, there exist
uniform bounds on the curvature and diameter of !.t/.
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It is possible to characterize P@C@ using more calculable cohomological criteria in the
case of non-Kähler complex surfaces, which will allow us to derive some consequences
of Conjecture 5.3. Our Theorem 5.6 follows by combining the positivity result of
Buchdahl [4] on non-Kähler surfaces (see also Lamari [18]), and further related results
of Teleman [30]. Let us start by stating the main theorem of Buchdahl [5], which
represents the main technical difficulty of Theorem 5.6.

Theorem 5.4 [5, Main Theorem] Let .M 4; !;J / be a complex surface with pluri-
closed metric ! . Suppose � 2ƒ1;1 is pluriclosed and satisfies:

�
R

M � ^� > 0

�
R

M � ^! > 0

�
R

D � > 0 for every irreducible effective divisor with D �D < 0

Then there exists f 2 C1.M / such that �C
p
�1@@f > 0.

For the statement of Theorem 5.6 we need some further background. Recall the
Bott–Chern cohomology group:

H
1;1
BC D

fKer d W ƒ
1;1
R !ƒ3

Rg

i@@ƒ0
R

Also, define the groups:

B
1;1
R D dfƒ1

Rg\ƒ
1;1
R

H
1;1
R D

fKer d W ƒ
1;1
R !ƒ3

Rg

B
1;1
R

Lemma 5.5 Let .M 4; !;J / be a complex surface with pluriclosed metric. Then there
are exact sequences

0 �!
B

1;1
R

i@@ƒ0
R

�!H
1;1
BC �!H

1;1
R �! 0;

0 �! i@@ƒ0
R �! B

1;1
R �!R;

where the final map above is given by the L2 inner product with ! .

Proof We include the elementary proof for convenience. The first exact sequence is
tautological. For the second sequence, fix � 2 B

1;1
R satisfyingZ

M

�^! D 0:
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It follows from the maximum principle that the adjoint of tr! @@ has kernel only
constant functions since the adjoint operator annihilates constants. Thus by standard
theory we can now solve �uD tr! �. Thus i@@u�� is exact, and also anti-self-dual
since its inner product with ! vanishes. Thus it vanishes, and the lemma follows.

Furthermore (see Teleman [30, Lemma 2.3]), if b1.M / is odd, the space

� D
B

1;1
R

i@@ƒ0
R

is identified with R via the L2 inner product with ! . Let 
0 denote a positive generator
of � . Since the space of pluriclosed metrics on M is connected, this orientation of �
is well-defined.

Theorem 5.6 Let .M 4;J / be a complex non-Kähler surface. Suppose � 2ƒ1;1 is
pluriclosed. Then Œ�� 2 P@C@ if and only if:

�
R

M � ^ 
0 > 0

�
R

D � > 0 for every effective divisor with negative self-intersection

Proof Suppose � … P@C@ . Since the image of @C @ is closed in ƒ1;1
R ˝L2.M /

[4, Lemma 1], one may apply the Hahn–Banach Theorem to conclude the existence
of a positive closed current P such that P .�/ � 0. We claim that the current P is
represented by a convex linear combination of Œ
0� and irreducible effective divisors of
negative self-intersection. This is [30, Corollary 3.6], and we include a sketch of the
proof for convenience. First we note that using arguments from complex analysis one
can show that the set of irreducible effective divisors of negative self-intersection is
finite [30, Remark 3.3]. Let C denote the cone generated by 
0 and this finite set in
H

1;1
BC . If P … C , there exists a linear hyperplane separating P from C . Specifically

we can find an element of the dual space, represented by pairing against a pluriclosed
form  , such that:Z

M

 ^ 
0 > 0;

Z
D

 > 0; P . /D

Z
M

 ^P < 0:

One can show by direct inspection that  C t
0 satisfies the criteria of Theorem 5.4,
hence there is f such that  C i@@f > 0, and so since P is positive, P . / � 0, a
contradiction.

The following proposition shows that Conjecture 5.2 implies long-time existence of
solutions to (1-1) on minimal Class VII surfaces.
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Proposition 5.7 Let .M 4; !0;J / be a minimal Class VII surface with pluriclosed
metric. Then for all t � 0:

Œ!0� tc1.�/� 2 P@C@

Proof By the above theorem it suffices to show the integral inequalities of Theorem 5.6
for ! � tc1.�/, t arbitrary. Since 
0 is exact the first inequality is trivial. Also, for
any effective divisor D we know that

R
M c1.D/^ c1 � 0, henceZ

D

! � tc1 �

Z
D

! > 0:

The result follows.

Let us furthermore describe how we expect the presence of rational curves to enter into
the singularity formation of solutions to (1-1) on Class VII surfaces. As can be seen by
elementary calculations of the evolution of the degree, one has that solutions to (1-1)
on Class VII surfaces have volume growing at least quadratically in time. Furthermore,
the area of divisors will grow as K �D , where K is the canonical class. This pairing
is always nonnegative, and is zero on rational curves. Thus, if we renormalize to
fix the volume, the boundary of the cone P

@C@
should be reached by collapsing a

curve. This is made clearer in Section 7 where we examine nonsingular solutions.
One can observe at this point though that according to our characterization of P@C@
in Theorem 5.6, the boundary may be reached, after volume normalizing, by having
limt!1

R
M !.t/^ 
0 D 0. In other words, perhaps it is this condition that fails, and

not the presence of a curve satisfying K �D D 0. The following proposition effectively
negates this possibility.

Proposition 5.8 Let .M 4;J / be a complex non-Kähler surface. Suppose � 2ƒ1;1

is pluriclosed, and satisfies:

�
R

M � ^� > 0

�
R

M � ^ 
0 � 0

�
R

D � > 0 for every effective divisor with negative self-intersection

Then � 2 P@C@ .

Proof Fix z! a pluriclosed metric on M . Note that � 2 P@C@ if and only if  WD
�C a
0 2 P@C@ . Now observe that, for a> 0:Z

M

 ^ D

Z
M

� ^�C 2a

Z
M

� ^ 
0 > 0:
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Also, since
R

M z! ^ 
0 > 0, we may choose a large enough so thatZ
M

 ^ z! D

Z
M

� ^ z!C a

Z
M


0 ^ z! > 0:

Finally, since 
0 is d –exact Z
D

 D

Z
D

� > 0:

Therefore  satisfies all three conditions of Buchdahl’s positivity criterion [5, page
1533], so there is a function f such that  C i@@f > 0. The proposition follows.

In light of this proposition, we make a final conjecture, specializing Conjecture 5.3
to the case nD 2. Note that every pluriclosed metric satisfies

R
M � ^ 
0 > 0, so the

second condition of Proposition 5.8 is automatically satisfied at any potentially singular
time for a solution to (1-1).

Conjecture 5.9 (Strong existence conjecture for surfaces) Let .M 4;g0;J / be a
compact complex surface with pluriclosed metric. Let !.t/ be the solution to (1-1)
with initial condition !0 . Suppose !.t/ exists on Œ0; �/ and that:

� lim
t!�

Z
M

! ^! > 0.

� There exists A> 0 so that

1

A
< lim

t!�

Z
D

! <A

for every effective divisor with negative self-intersection.

Then there exists a uniform bound on the curvature of !.t/ depending on A, and
moreover the curvature remains bounded after the diameter is rescaled to unit size.

Furthermore, suppose !.t/ is the solution to volume-normalized pluriclosed flow with
initial condition !0 . Suppose !.t/ exists on Œ0; �/ and that there exists A> 0 so that

lim
t!�

1

A
<

Z
D

! <A

for every effective divisor with negative self-intersection. Then there exists a uniform
bound on the curvature of !.t/ depending on A, and moreover the curvature remains
bounded after the diameter is rescaled to unit size.
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Next we want to exploit this cohomology picture to reduce solutions to (1-1) to an
equation on a one-form. We show that under certain cohomological conditions related
to the Frölicher spectral sequence, solutions to Equation (5-1) automatically reduce
to solutions to a certain equation on one-forms defined below. These cohomological
conditions are automatically satisfied in the case of complex surfaces. We start with
some preliminary lemmas.

Lemma 5.10 Let .M 4;J / be a complex surface. Then the map

@W H 1.�1/!H 1.�2/

is the zero map.

Proof This argument is adapted from arguments in Barth, Hulek, Peters and Van de
Ven [2, IV Section 2]. Let S denote the sheaf of closed holomorphic 1–forms on M .
There is an exact sequence of sheaves:

0 �!CM �!OM
d
�! S �! 0

Since holomorphic forms on complex surfaces are closed, there is an exact sequence of
cohomology groups:

0 �!H 0.�1/ �!H 1.M;C/ �!H 1.OM /
@
�!H 1.�1/

It follows from the signature theorem and the Riemann–Roch formula (see [2, Theorem
IV 2.7]) that b1 D h1;0C h0;1 . Therefore the third map above is surjective, and hence
the last map is the zero map. Applying Stokes’ Theorem and Serre duality we can
conclude that @W H 1.�1/!H 1.�2/ is also the zero map.

Lemma 5.11 Let .M 4;J / be a complex surface and suppose h0;2D 0. Let ˛ 2ƒ2;1

be a d –exact .2; 1/–form. Then there exists 
 2ƒ2;0 such that ˛ D @
 .

Proof Since by assumption ˛ is exact, we conclude that

˛ D dˇ D d.ˇ2;0
Cˇ1;1

Cˇ0;2/D @ˇ2;0
C @ˇ1;1

C @ˇ1;1
C @ˇ0;2;

where the remaining terms vanish for dimensional reasons. Decomposing this equation
into types yields the two equations:

˛ D @ˇ2;0
C @ˇ1;1;

0D @ˇ1;1
C @ˇ0;2:
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Note that ˇ0;2 defines a class in H 0;2.M /. Since h0;2 D 0, there exists �0;1 such
that ˇ0;2 D @�. We therefore conclude that

0D @
�
ˇ1;1
� @�0;1

�
:

Therefore ˇ1;1� @�0;1 defines a class in H 1;1.M /. Now, by Lemma 5.10 we know
that @W H 1.�1/!H 1.�2/ is the zero map. Therefore @g.ˇ1;1 � @�0;1g/D @ˇ1;1

represents the zero class in H 1.�2/Š H 2;1.M /. Therefore there exists �2;0 such
that @ˇ1;1 D @�2;0 . Plugging this back into the above equation yields

˛ D @ˇ2;0
C @�2;0

and the result follows.

Lemma 5.12 Let .M 4;J / be a complex surface. Then:

Kerf@W ƒ2;0
!ƒ2;1

g\ Imf@W ƒ1;0
!ƒ2;0

g D f0g

Proof Let � D @˛ , @� D 0, ˛ 2 ƒ1;0 . A general calculation for complex surfaces
shows that for any metric g , j�j2 dVg D � ^� . Thus

k�k2
L2 D

Z
M

� ^� D

Z
M

� ^ @˛ D 0

by Stokes’ Theorem.

Lemma 5.13 Let .M 4; !;J / be a complex surface with pluriclosed metric. Suppose
b1 is odd and h0;2 D 0. Then Œ@!�¤ 0 2H 3.M;C/ and Œ@!�¤ 0 2H 2;1.M /.

Proof Suppose that @! is a d –exact form. By Lemma 5.11 we conclude that @!D@ˇ .
Note this also holds trivially if we assume Œ@!� D 0 2 H 2;1.M /. Now, ˇ 2 ƒ0;2

obviously satisfies @ˇD 0. However, since h0;2D 0 one can write ˇD @˛ . Therefore
@! D @@˛ and, taking conjugates, @! D @@˛ . Let z! D ! � @˛� @˛ . One computes
directly that

d z! D .@C @/.! � @˛� @˛/

D @! � @@˛C @! � @@˛

D 0:

Since the .1; 1/ component of z! is positive definite, it follows thatZ
M

z! ^ z! > 0:

Since b1 is odd, the intersection form of M is negative definite [2, Theorem IV.2.14],
so this is a contradiction.
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Theorem 5.14 Let .M 4; !;J / be a complex surface with pluriclosed metric satisfy-
ing h0;1 � 1. Let:

B D �c1.!/C @ˇC @ˇ 2 �c1 2H@C@

Suppose z! D !C @˛C @˛ is a solution to

(5-1) @@�
z! z!C @@

�
z! z!C

p
�1

2
@@ log det zg D B:

Then

(5-2) ˇ D @�
z! z!C

p
�1

4
@ log

det zg
det g

:

Proof Taking @ of Equation (5-1) yields

0D @@@�
z! z! � @@ˇ

or equivalently
0D @

�
@@�
z! z! � @ˇ

�
:

Therefore @@�
z!
z! � @ˇ is a @–closed, @–exact .2; 0/–form. Using Lemma 5.12 we

conclude that @@�
z!
z! � @ˇ D 0. Conjugating yields @

�
@�
z!
z! � ˇ

�
D 0. Thus we may

write the Hodge decomposition of @�
z!
z! �ˇ with respect to �

@;!
as

@�
z! z! �ˇ D hC @f;

where h 2H 0;1 . Next we claim that h vanishes. Once we know this, differentiating
and plugging into (5-1) yields f D �.

p
�1=4/@ log.det zg= det g/ and the theorem

follows. First of all, if h0;1 D 0 this is trivial, and since this observation holds in
general dimension we record this as Proposition 5.15 below. Next suppose h0;1 D 1.
We compute: Z

M

hh; @�!!i! dV D

Z
M

h@�
z! z! �ˇ� @f; @

�
!!i! dV

First observe Z
M

h@f; @�!!i! dV D

Z
M

h@@f; !i! dVg

D

Z
M

@@f ^!

D 0

by Stokes’ Theorem, using that @@! D 0. Next we computeZ
M

h�ˇ; @�!!i! dV D

Z
M

h�@ˇ; !i! dV D

Z
M

h�
1
2
.@ˇC @ˇ/; !i
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since ! is real. Also we compute using (5-1):Z
M

h@�
z! z!; @

�
!!i! dV D

Z
M

h@@�
z! z!;!i! dV

D

Z
M

˝
1
2

�
@@�
z! z!C @@

�
z! z!
�
; !
˛
!

dV

D

Z
M

˝
1
2

�
c1.z!/� c1.!/C @ˇC @ˇ

�
; !
˛
!

dV

D

Z
M

˝
1
2

�
@ˇC @ˇ

�
; !
˛
!

dV;

where in the last line we used that c1.z!/� c1.!/D @@� and used that ! is orthogonal
to the image of @@ since it is pluriclosed. It follows thatZ

M

hh; @�!!i! dV D 0:

However, by Lemma 5.13, Œ@!�¤ 0, and h2;1 D 1 by Serre duality, therefore there
is a nonzero constant a such that Œ@!�D Œa� h� (since h is @�–closed, �h defines a
cohomology class). Thus

0D

Z
M

hh; @�!!i D

Z
M

h�h; @!i D a

Z
M

jhj2:

Therefore, hD 0.

Proposition 5.15 Let .M 2n; !;J / be a complex manifold with pluriclosed metric
satisfying h0;1 D 0 and

Kerf@W ƒ2;0
!ƒ2;1

g\ Imf@W ƒ1;0
!ƒ2;0

g D f0g:

Let:
B D �c1.!/C @ˇC @ˇ 2 �c1 2H@C@

Suppose z! D !C @˛C @˛ is a solution to

(5-3) ˆ.z!/D B:

Then:

ˇ D @�
z! z!C

p
�1

4
@ log

det zg
det g

Proof The proof is clear from the proof of Theorem 5.14.
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Theorem 5.14 may be applied to reduce solutions to (1-1) on surfaces.

Theorem 5.16 Let .M 4;g0;J / be a pluriclosed surface. Say the solution to (1-1)
with initial condition g0 exists on a maximal time interval Œ0;T /;T < 1. Fix a
background metric � and express

!.t/D !0C @˛.t/C @˛.t/� tc1.�/:

Then ˛ satisfies:
@

@t
˛ D @�!!C

p
�1

4
@ log

det zg
det g

Proof We differentiate the expression for !.t/ and use equation (1-1) to compute:

@ P̨ C @ P̨ � c1.�/D�ˆ.!/

One may apply Theorem 5.14 with ˇ D P̨ to conclude the result.

Thus we have canonically reduced solutions to (1-1) to solutions of this equation,
coupled to an ODE. There is a natural gauge to equation (1-5).

Definition 5.17 Given .M 2n;g;J / a complex manifold with Hermitian metric g , let
˛ 2ƒ0;1 and let  2ƒ1;1; d D 0. Let:

(5-4) Œ˛;  �D
˚
.˛Cˇ; � @ˇ� @ˇ/

ˇ̌
ˇ 2ƒ0;1; @ˇ D 0

	
We will refer to Œ˛;  � as the gauge equivalence class of .˛;  /.

Proposition 5.18 Let .˛.t/;  .t// be a solution to (1-5). Then .˛.t/;  .t// is gauge-
equivalent to a pair .z̨.t/; z .t// such that z̨.t/ solves a parabolic equation.

Proof We find a gauge near time t D 0 for which z̨.t/ solves a parabolic equation.
We take the @–Hodge decomposition of ˛.t/ with respect to !0 . Specifically, consider

˛.t/D @�!0
�.t/C�.t/C @f .t/;

where @�.t/D @�!0
� D 0. Define

z̨.t/D ˛.t/��.0/� @f .0/;

z .t/D  .t/� @
�
�.0/C @f .0/

�
� @

�
�.0/C @f .0/

�
:

Note that by construction @�!0
z̨.t/ D 0. Also, note that z! D !0C @z̨ C @z̨ C z by

construction as well. Furthermore, we have that:

@

@t
z̨jtD0 D @

�
!0
!0C

p
�1

4
@ log

!n
0

�n
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Our aim is to show that the right hand side is an elliptic operator for ˛ . For a given
metric ! we have the general coordinate formula:

.@�!!/j D

p
�1

2
gpq

�
@qgpj � @j gpq

�
Likewise we have:�p

�1

4
@ log !

n

�n

�
j
D

p
�1

4

�
gpq@j gpq � �

pq@j�pq

�
Specializing these two formulas to the case z! D !C @z̨ C @z̨ C z , we compute:�
@�
z! z!C

p
�1

4
@ log z!

n

�n

�
j

D

p
�1

2
zgpq

�
@q

�
@p z̨j C @j z̨p

�
� @j

�
@p z̨qC @q z̨p

��
C

p
�1

4
zgpq

�
@j

�
@p z̨qC @q z̨p

��
CO.@z̨/

D

p
�1

2
zgpq@p@q z̨j C

p
�1

4
zgpq@j@q z̨p �

p
�1

4
zgpq@j@p z̨q

Now, using the condition @�!0
z̨ D 0, we compute that

0D @j@
�
!0
z̨ D gpq@j@p z̨qCO.@z̨/:

Likewise since @�!0
z̨ D0 we have gpq@j@q z̨pDO.@z̨/. Since zg.0/Dg0 we conclude

that: �
@�
z! z!C

p
�1

4
@ log

z!n

�n

�
j

.0/D

p
�1

2
zgpq@p@q z̨j

which is a strictly elliptic operator. The result follows.

6 Pluriclosed flow as a gradient flow

In this section we exhibit that (1-1) is the gradient flow of the first eigenvalue of a
certain Schrödinger operator associated to the time-dependent metric. What we actually
show is that, after pulling back a solution to (1-1) by the one-parameter family of
diffeomorphisms generated by the vector field dual to the Lee form, one produces a
solution to the renormalization group flow of a nonlinear sigma model arising in string
theory (see Polchinski [24, 108–112]). This surprising fact both exhibits a connection
between pluriclosed flow and mathematical physics, and from another point of view
produces a large class of interesting examples of the renormalization group flow.
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Let us recall some notation from the introduction. Fix .M 2n;g;J / a complex manifold
with pluriclosed metric. Let r denote the Bismut connection, Rc the Ricci tensor of
the Bismut connection, Rcg the Ricci curvature of g , T the torsion of r , and

� D�Jd�!

the Lee form of ! . Lastly, as in the introduction, let P denote the representative of
c1.M;J / associated to the Bismut connection r . We need to show some identities
relating these tensors. We start by recording some basic calculations which appear
in Ivanov and Papadopoulos [16]. It is important to remember below that Rc is not
symmetric, and P is not .1; 1/.

Lemma 6.1 [16, Proposition 3.1] Let .M 2n;g;J / be a pluriclosed structure. Then:

Rcg.X;Y /D Rc.X;Y /C 1
2
d�T .X;Y /C 1

4

2nX
iD1

g.T .X; ei/;T .Y; ei//

P .X;Y /D Ric.X;J Y /CrX �.J Y /

Rc.Y;JX /CRc.X;J Y /D�.rX �/.J Y /�rY .�/.JX /

P .JX;J Y /�P .X;Y /D d�T .JX;Y /� dr�.JX;Y /

where dr is the exterior derivative induced by r .

Proof Note that the tensor � from [16] vanishes when @@! D 0. The third line is [16,
(3.9)].

Let H.X;Y / WD P1;1.JX;Y /. In particular, note that (1-1) is equivalent to:

(6-1) @

@t
g D�H

Lemma 6.2 Let .M 2n;g;J / be a pluriclosed structure. Then:

H.X;Y /D 1
2
ŒRc.X;Y /CRc.JX;J Y /CrX �.Y /CrJX �.J Y /�

Proof We directly compute using Lemma 6.1:

H.X;Y /D P1;1.JX;Y /

D
1
2
ŒP .JX;Y /CP .JJX;J Y /�

D
1
2
ŒP .JX;Y /�P .X;J Y /�

D
1
2
ŒRic.JX;J Y /C .rJX �/.J Y /�Ric.X;JJ Y /� .rX �/.JJ Y /�

D
1
2
ŒRic.X;Y /CRic.JX;J Y /C .rX �/.Y /C .rJX �/.J Y /�
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Proposition 6.3 Given .M 2n; !.t/;J / a solution to (1-1), one has

@

@t
g D

�
�Rcg

C
1
4

2nX
iD1

g.T .X; ei/;T .Y; ei//�
1
2
L�]g

�

where �] is the vector field dual to � , taken with respect to the time varying metric.

Proof Using the third line of Lemma 6.1, we compute:

Ric.JX;J Y /C .rJX �/.J Y /D�Ric.Y;JJX /� .rY �/.JJX /

D Ric.Y;X /C .rY �/.X /

Plugging this into Lemma 6.2 yields:

2H.X;Y /D Ric.X;Y /CRic.Y;X /C .rX �/.Y /C .rY �/.X /

The first two terms are twice the symmetric part of Ric, which is easily computed from
the first line of Lemma 6.1. It remains to show that the last two terms are L�]g . To do
this we compute in coordinates, if � denotes the connection coefficients of the Bismut
connection and �LC the Levi-Civita connection,

ri�j D @i�j ��
k
ij�k D @i�j �

�
�LC

C
1
2
T
�k
ij
�k DDi�j �T k

ij�k ;

where of course D denotes the Levi-Civita derivative. But T is totally skew, thus:

ri�j Crj�i DDi�j CDj�i �
1
2
T k

ij�k �
1
2
T k

ji�k DDi�j CDj�i D .L�]g/ij

Proposition 6.4 Given .M 2n; !.t/;J / a solution to (1-1), one has:

@

@t
T D 1

2

�
�LB;g.t/T �L�]T

�
Proof Recall that T D dc! , where dc D i.@� @/. Therefore:

@

@t
T D

@

@t
dc! D�dc.P1;1/

Now note that, since P is closed:

0D dP

D .@C @/.P1;1
CP2;0

CP0;2/

D @P1;1
C @P1;1

C @P2;0
C @P2;0

C @P0;2
C @P0;2
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By examining types we conclude from this the equations:

0D @P2;0
D @P0;2

@P1;1
D�@P2;0

@P1;1
D�@P0;2

It follows that

�dc.P1;1/D�i.@� @/.P1;1/D i@P0;2
� i@P2;0:

For convenience, set  Dd�T �dr�: Now fix local complex coordinates, and compute
using the last line of Lemma 6.1:�

i@P0;2
�
ijk
D�

i

2
@i

�
d�T .J@j ; @k

/� dr�.J@j ; @k
/
�

D�
1
2
@i

�
d�T .@j ; @k

/� dr�.@j ; @k
/
�
D�

1
2

�
@ 0;2

�
ijk

Likewise we can compute:�
�i@P2;0

�
ijk
D

i

2
@i

�
d�T .J@j ; @k/� dr�.J@j ; @k/

�
D�

1
2
@i

�
d�T .@j ; @k/� dr�.@j ; @k/

�
D�

1
2

�
@ 2;0

�
ijk

Note that it is a consequence of the last line of Lemma 6.1 that  1;1 D 0. In particular,
we have 1

2
 D �2;0C �0;2 and so

@ 2;0
D @ 0;2

D 0:

Collecting these calculations yields

�dcP1;1
D�

1
2
d D�1

2

�
dd�T � ddr�

�
:

Since T is closed, it follows that dd�T D��LB;g.t/T . Finally, we observe a formula
for dr� :

.dr�/ij Dri�j �rj�i

D @i�j �
�
�LC

C
1
2
T
�k
ij
�k � @j�i C

�
�LC

C
1
2
T
�k
ji
�k D

�
d� � �] T

�
ij

It follows from the Cartan formula and the fact that T is closed that:

ddr� D d
�
d� � �] T

�
D�d

�
�] T

�
D�L�]T C �]

�
dT

�
D�L�]T

Therefore �dcP1;1 D
1
2
Œ�LB;g.t/�L�]T �.
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Theorem 6.5 Let .M 2n; z!.t/;J / be a solution to (1-1). Let X.t/ D 1
2
z�] , where ]

means the vector dual taken with respect to the time-varying metric, and let �t denote
the one-parameter family of diffeomorphisms generated by X.t/. Let zT denote the tor-
sion of the time-varying Bismut connections. Let .g.t/;T .t//D .��.zg/.t//; ��t . zT /.t//.
Then

(6-2)

@

@t
g D�Rcg

C
1
4
H;

@

@t
T D 1

2
�LBT;

where Hij D gklgmnTikmTjln .

Proof This follows from a standard calculation using Propositions 6.3 and 6.4.

As noted above, the system of equations (6-2) arises naturally in physics as the renor-
malization group flow of a nonlinear sigma model. By extending Perelman’s energy
functional [22] to this coupled system, Oliynyk, Suneeta and Woolgar showed that
(6-2) is the gradient flow of a nonlinear Schrödinger operator [21]. To discuss this let
us generalize the notation slightly. As in the introduction, let .M n;g/ be a Riemannian
manifold, and let T denote a three-form on M . Let

F.g;T; f /D
Z

M

�
R� 1

12
jT j2Cjrf j2

�
e�f dV:

Furthermore set
�.g;T /D inf

ff j
R
M e�f dVD1g

F.g;T; f /:

Proposition 6.6 (e[21, Proposition 3.1]) The gradient flow of � is

(6-3)

@

@t
g D�2 RcC1

2
H� 2r2f;

@

@t
T D�LBT � d.rf T /;

where f satisfies the conjugate heat equation

(6-4) @

@t
f D��f �RC

1

4
jT j2:

For concreteness sake we now record the proof of Theorem 1.1.

Proof Clearly Equation (6-3) is diffeomorphism equivalent to (6-2). By combining
Proposition 6.6 with Theorem 6.5, we obtain the statement of Theorem 1.1.
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Furthermore, Feldman, Ilmanen and Ni gave a generalization [11] of Perelman’s steady
and shrinking entropies to an entropy modeled on expanding solitons. Surprisingly,
this expanding entropy has an extension to (6-2), as shown by the first named author.
Define

WC.g;T;u; �/D
Z

M

�
�

�
jruj2

u
CRu�

1

12
jT j2u

�
Cu log u

�
dV

D

Z
M

h
�
�
jrfCj

2
CR�

1

12
jT j2

�
�fCC n

i
u dV;

where fC is implicitly defined by uD e�fC=.4��/n=2 .

Theorem 6.7 [26, Theorem 6.2] Let .M n;g.t/;T .t// be a solution to (6-2) on
Œt1; t2� and suppose u.t/ is the solution to (6-4). Let:

vC D
h
.t � t1/.2�fC� jrfCj

2
CR�

1

12
jT j2/�fCC n

i
u

Then:�
@

@t
C��RC

1

4
jT j2

�
vC

D 2.t � t1/
�ˇ̌̌

Rc�1

4
HCr2fCC

g

2t

ˇ̌̌2
C

1

4
jd�T �rfC T j2

�
uC

1

6
jT j2u

Corollary 6.8 Let .M n;g.t/;T .t// be a solution to (6-2) on Œt1; t2� and suppose u.t/

is a solution to the conjugate heat equation. Then:

@

@t
WC.g.t/;T .t/;u.t/; t � �1/D

Z
M

2u

�
.t � t1/

ˇ̌̌
Rc�1

4
HCr2fCC

g

2.t � t1/

ˇ̌̌2
C

1

4
.t � t1/

ˇ̌
d�T �rfC T

ˇ̌2
C

1

12
jT j2

�
dV

We can derive further corollaries from these results, akin to the “ruling out of breathers”
statements discovered by Perelman [22]. First recall two definitions.

Definition 6.9 We say that a solution to (6-2) is a breather if there are times t1 < t2 ,
a constant ˛ > 0 and a diffeomorphism � such that ˛g.t1/D �

�g.t2/. The breather
is steady, shrinking or expanding if ˛ D 1; ˛ < 1 or ˛ > 1, respectively.

Definition 6.10 We say that a solution to (6-2) is a gradient soliton if there is a
function f and a constant � so that:

0D Rc�1

4
HCr2f ��g;

0D�LBT � d.rf T /:
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The soliton is steady, shrinking or expanding if �D 0; � > 0 or � < 0, respectively.

Corollary 6.11 Any solution to (6-2) that is a steady breather is a steady soliton. Any
solution to (6-2) that is an expanding breather is an Einstein metric with T � 0.

Proof The first statement follows immediately from Proposition 6.6. For the second,
we note that Theorem 6.7 clearly implies that an expanding breather is an expanding
soliton, and moreover T � 0. Thus g.t/ is an expanding Ricci soliton, which are
known to be negative constant Einstein metrics, a result originally due to Hamilton
[15].

7 Nonsingular solutions

In this section we derive a strong topological consequence of the conjectural regularity
picture of solutions to (1-1) by ruling out nonsingular solutions of (1-1) on Class VIIC

surfaces.

Theorem 7.1 Suppose Conjecture 5.9 holds. Then any Class VIIC surface contains
an irreducible effective divisor of nonpositive self-intersection.

Proof We want to examine the volume-normalized version of (1-1). Let:

 .!/D

R
M tr!

�
@@�!!C @@

�
!!C .

p
�1=2/@@ log det g

�
dVR

M dV

The volume normalized pluriclosed flow is:

(7-1)
@

@t
! D @@�!!C @@

�
!!C

p
�1

2
@@ log det g�

1

n
 !;

!.0/D !:

Let .M 4;J / be a complex surface of Class VIIC . Note that by the theorem of
Gauduchon [12], there are always pluriclosed metrics on complex surfaces, so we can
find an initial condition for (7-1). If M contains no irreducible divisor of nonpositive
self-intersection, then Conjecture 5.9 automatically implies that the solution to (7-1)
with any initial condition exists for all time with a uniform bound on curvature that
moreover persists after scaling the diameter to unit size. Note that this implies the
diameter is in fact bounded, for if not, by rescaling the diameter to unit size, we would
produce a sequence of metrics with bounded curvature and volume approaching zero,
which by Cheeger, Fukaya and Gromov [7], and Cheeger, Gromov and Taylor [8]
would force �.M /D 0, but �.M /D b2 > 0.
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We want to derive a contradiction from the existence of such a flow. To do this we first
identify the qualitative behavior of the corresponding solution to (1-1). Specifically,
using monotone quantities we see that this solution exists for all time with volume
growing quadratically. Thus to obtain the solution to (7-1) we must be uniformly
scaling down this metric, and we will finish the proof by applying the expanding
entropy formula. We begin with a definition and a series of lemmas.

Definition 7.2 Let .M 2n;g;J / be a Hermitian manifold. Let the degree of .M;g/ be

(7-2) d D deg.M;g/ WD

Z
M

hc1.M /; !i D

Z
M

�
�

p
�1

2
@@ log det g

�
^!n�1:

More generally, given L a line bundle over M , define

(7-3) deg.L/ WD
Z

M

c1.L/^!n�1:

Note that the definition of degree is typically made with respect to a fixed Gauduchon
metric, ie, a metric satisfying @@!n�1 D 0, so that the value does not depend on the
representative of c1 . In the case nD 2, Gauduchon metrics are the same as pluriclosed
metrics, and the evolution of the degrees of line bundles is particularly clean.

Lemma 7.3 Let .M 4;g.t/;J / be a solution to (1-1) on a complex surface, and let L

be a line bundle over M . Then

@

@t
deggt

.L/D�c1.L/ � c1.M /:

Lemma 7.4 Let .M 4;g.t/;J / be a solution to (1-1). Then the volume of g.t/

satisfies
@

@t
Vol.g.t//D 2

Z
M

j@�!j2� d:

Next we would like to specialize these to the case of Class VII surfaces.

Lemma 7.5 Let .M 4;g.t/;J / be a solution to (1-1) on a Class VII surface with
b2 D n. Then

degg.t/.M /D degg.0/.M /C nt:

Proof This follows immediately from Lemma 7.3 and the fact that for Class VII
surfaces, c2

1
D�n.
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Proposition 7.6 Let .M 4;J / be a compact Class VIIC surface. Suppose !.t/ is a
solution to (7-1) on M � Œ0;1/ with uniformly bounded curvature. Then the corre-
sponding solution to (1-1) exists on Œ0;1/.

Proof Suppose the corresponding solution to unnormalized flow existed on Œ0; �/; � <
1. First note that the degree of M remains finite on Œ0; �/. However, to rescale to get
the volume normalized flow we must be rescaling by a factor going to infinity since the
curvature must be blowing up, and we have assumed the volume-normalized flow is
nonsingular. Thus the volume must be going to zero. Using Lemma 7.4 we see that at
some point the degree must be positive. But this condition is preserved, since the degree
grows linearly by Lemma 7.5. In taking the rescaling limit, this says that the degree
must go to infinity as t !1 in the volume normalized flow. Since by assumption the
volume normalized equation has bounded curvature, this is a contradiction.

Proposition 7.7 Let .M 4;J / be a compact Class VIIC surface. Suppose z!.t/ is a
solution to (7-1) on M � Œ0;1/ with uniformly bounded curvature. Then if !.t/ is the
corresponding solution to (1-1), there exists a constant C such that

1

C
.1C t2/� Vol.g.t//� C.t2

C 1/:

Proof By assumption the corresponding solution to (7-1) has bounded curvature, and
of course bounded volume. It follows that the scale-invariant quantity d=Vol1=2 is
bounded along the solution to (7-1). Thus this quantity is bounded along (1-1) as well.
By Lemma 7.5 it follows that

d.0/C nt D d.t/� C Vol.g.t//1=2

with n> 0. The lower bound for Vol.g.t// follows by squaring the above inequality.
Next we note the evolution equation for the degree under (7-1). In particular one has

@

@t
deg.M /D�c2

1 C deg.M /2� 2 deg M

Z
M

j@�!j2:

Since
R

M j@
�!j2 is bounded, it easy follows that limt!1 deg.M / > � > 0 for some

� > 0. It follows that the scale invariant quantity deg.M /=V 1=2 � � > 0. Thus this
inequality holds for the unnormalized flow as well, hence

d.0/C nt D d.t/� �Vol.g.t//1=2:

The upper volume bound now follows, completing the proof.
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We now give the proof of the theorem. From the proposition above we see that the
solution to (7-1) is uniformly equivalent to a solution of

(7-4)
@

@t
! D @@�!!C @@

�
!!C

p
�1

2
@@ log det g�!;

!.0/D !:

Moreover, this solution has uniformly bounded curvature and diameter. We claim that
there exists a uniform lower bound on the injectivity radius as well. If there exists a
sequence of points .xi ; ti/ with ti!1 such that injgti

.xi/! 0, then since there is a
uniform diameter bound it follows from [8] that injgti

.x/! 0 for all points x 2M .
In particular, the manifold M admits a sequence of metrics collapsing with bounded
curvature, which by [7] implies that �.M / D 0. But for .M 4;J / a complex Class
VIIC surface one has �.M /D b2.M / > 0, so this is a contradiction, and so the lower
injectivity radius bound follows.

Thus we can construct a blowdown limit for the unnormalized flow. Let �i !1

and set

gi.t/ WD
1

�i
g.�i t/

defined for t > 1=�i . By the estimates we have shown and the compactness theorem
of [26], there is a subsequence of f.M;gi.t/;J /g, converging in the Cheeger–Gromov
sense to a limiting pluriclosed flow f.M1;g1.t/;J1/g. Since WC is invariant under
the blowdown rescaling, and is monotone increasing and bounded above, it is clear
that WC is constant along g1 , which thus must be an expanding soliton, and hence
is a Kähler–Einstein metric. In particular, we have that .M1;g1.1/;J / is a Kähler
manifold. By the Hodge decomposition, since .M1;J1/ is Kähler we have that
b1.M1/ is even. On the other hand, by the diameter and injectivity radius bounds, we
have that M ŠM1 and b1.M /D 1. This is a contradiction, finishing the proof.

By general theory [20, Lemma 2.2] the curve is either a rational curve, rational curve
with double point or an elliptic curve. If the curve is elliptic, the manifold is known
(Nakamura [20], and Enoki [10]). Furthermore, Class VIIC surfaces that contain b2

rational curves automatically contain a global spherical shell by the result of Dloussky,
Oeljeklaus and Toma [9]. Therefore we see that Conjecture 5.9 implies the classification
of Class VIIC surfaces with b2D 1, a theorem obtained by Teleman using gauge theory
[29]. Furthermore it implies a concrete complex analytic conclusion on any Class VIIC

surface. It seems likely that a more detailed analysis of the limit points can yield the
entire classification of Class VIIC surfaces as a consequence of Conjecture 5.9.
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8 Conclusion

Given the results contained herein, Equation (1-1) clearly seems to be a very natural
parabolic equation on complex manifolds. By the results of [27], the corresponding
elliptic (static) equation, ie,

(8-1) P1;1
D �!;

seems very closely related to the Kähler–Einstein condition, and we further seen here
the relationship of solutions to (1-1) and the topological and complex structure of
surfaces. While there are only a few large classes of examples of complex manifolds of
dimension n� 3 admitting pluriclosed (but not Kähler) geometries, it seems likely that
understanding the existence problem for static metrics in higher dimensions will have
relevance. We take the time here to observe some further structural results for static
metrics in any dimension. First of all, we recall the Bochner formula for holomorphic
forms on complex manifolds.

Theorem 8.1 (Kobayashi and Wu [17], and Bochner [3]) Let .M 2n;g;J / be a
Hermitian manifold. Fix � a holomorphic .p; 0/–form. Then

(8-2) �j�j2 D jr�j2Cjr�j2ChS ı �; �i:

Here, � D tr! @@ is the canonical Laplacian and r is the Chern connection. Also,
S ı � is the natural action induced on ƒp;0 of an endomorphism of T 1;0 . In particular,
in coordinates:

.S ı �/i1���ip
D

1

p!

pX
jD1

Sk
ij
�i1���ij�1kijC1���ip

Corollary 8.2 [16, Corollary 4.4]

� Let .M 2n; !;J / be a compact complex manifold with �c1D 0. Suppose ! is a
static metric, which necessarily has s� 0. Then every holomorphic .p; 0/–form
is parallel with respect to the Chern connection.

� Let .M 2n; !;J / be a compact complex manifold with �c1 > 0. Suppose !
is a static metric, which necessarily has s � c > 0. Then H 0.M; ƒp/ D 0,
p D 1; : : : ; n.

Note that in the second part of the above corollary, we mean c1 > 0 as a class in
the Aeppli cohomology group H

@C@
1;1 as defined in Section 5. These are precisely the

corollaries to his conjecture observed by Calabi [6] in the Kähler setting, indicating
that (1-1) is a very natural extension of the Calabi–Yau/Kähler Ricci flow theory. We
close with a final vanishing result for static metrics:
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Proposition 8.3 Let .M 2n;g;J / be a complex manifold with either c1D 0 or c1> 0,
with g a static metric. Then either g is Kähler or hn�1;0 D 0.

Proof Since Q1 � 0, and � � 0 by the assumption on the first Chern class, (8-1)
clearly implies that S �Q1 . Therefore by applying the maximum principle to (8-2)
we conclude that every holomorphic section � of ƒn�1;0 is parallel with respect to the
Chern connection. In particular, it is of constant norm. If g is not Kähler, there is a
point p 2M where the torsion tensor does not vanish identically. Specifically, we can
pick complex coordinates where S , and hence Q1 , are diagonalized. Without loss of
generality T12j ¤ 0. Thus

Q1

11
> 0; Q1

22
> 0;

(see Lemma 2.1 for the expression of Q1 ). It follows that S.p/ � Q1.p/ is n� 1

positive at p . By the form of the Bochner formula (8-2), if � does not vanish we
conclude that �j�j2.p/ > 0, contradicting that � is parallel.
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