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On some convex cocompact groups
in real hyperbolic space

MARC DESGROSEILLIERS

FRÉDÉRIC HAGLUND

We generalize to a wider class of hyperbolic groups a construction by Misha Kapovich
yielding convex cocompact representations into real hyperbolic space.

20E26, 20F67, 22E40, 51F15, 57M20; 20F55, 20F65, 20H10, 53C23

1 Introduction

In this paper we study discrete cocompact isometry groups of CAT.�1/ polygonal
complexes, and try to represent them faithfully as convex cocompact groups of Hp

(for some large integer p ). The case of a (large) polygon of finite groups was first
handled by Misha Kapovich in [19]. In fact the argument of Kapovich generalizes to a
much wider class of groups. We now present more precisely our results.

1.1 Background on Coxeter groups and polygonal complexes

Recall that a group � < Isom.Hp/ is convex-cocompact provided � acts properly
on Hp and is cocompact on the convex hull of its limit set. Equivalently, any orbital
map � ! Hp , sending 
 to 
x , is a quasi-isometric embedding. More generally
for any geodesic metric space Y we say that a representation �W � ! Isom.Y / is
convex-cocompact whenever there exists a closed convex subspace Z � Y which
is invariant under � and the �–action on Z is proper and cocompact. (Recall that
a subspace Z � Y is convex if any geodesic segment with endpoints inside Z is
entirely contained inside Z .) When the metric space Y is hyperbolic in the sense of
Gromov and � is convex cocompact in Y , it follows that � is word-hyperbolic (see
Gromov [13] or Ghys and de la Harpe [12] for references on hyperbolic groups). In
particular when a group is convex cocompact in Hp then it is a word-hyperbolic group.
The converse problem is then:

What kind of word-hyperbolic groups are convex cocompact in Hp ?
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The above question is extremely general and we will focus on a very particular class
of groups. Any convex cocompact group of Hp inherits the Haagerup property of
Isom.Hp/ (see Faraut and Harzallah [10]), so we must investigate the class of word-
hyperbolic groups with this property.

Recall first that Coxeter groups correspond to presentations of the form

W D hs1; : : : ; sr j .si/
2
D 1; .sisj /

mij D 1i:

Precisely the data here are: a graph G on the set f1; : : : ; rg, and for each edge fi; j g
of G a natural number mij � 2. When fi; j g is not an edge and i ¤ j there is no
relation involving si ; sj , by convention we set mij D1. When i D j we set mij D 1.
The pair .W;S D fs1; : : : ; sr g/ is called a Coxeter system.

Every Coxeter group has the Haagerup property (see Bozejko, Januszkiewicz and
Spatzier [5]). Many Coxeter groups are word-hyperbolic, but very few of these can
be discrete cocompact in Hp , since their visual boundary is almost never a sphere.
To be more precise a Coxeter group .W;S/ is always a discrete cocompact group of
automorphism of its Davis complex †.W;S/ (see Davis [8] for the construction of
†.W;S/ as a combinatorial object). Moussong proved that †.W;S/ always admits a
CAT.0/ metric and proved that when W does not contain “obvious” free abelian groups
of rank � 2, then †.W;S/ has a CAT.�1/ metric, and thus W is word-hyperbolic.
See Moussong’s thesis [20] for the geometrization of †.W;S/; we refer to Bridson
and Haefliger [6] for the general facts on CAT.0/ and CAT.�1/ metric spaces, which
generalize Hadamard manifolds. For example the word-hyperbolicity of W follows
from the assumption

for all i; j with i ¤ j ; mij � 4:

A natural question is then:

Are word-hyperbolic Coxeter groups convex cocompact in some Hp ?

This question appears for example in Kapovich’s survey [18], where Kapovich notices
that some hyperbolic Coxeter groups cannot be realized as convex cocompact reflection
subgroups, a fact discovered by Felikson and Tumarkin [11]. In his thesis [20] and
in [21], Moussong had already given examples of hyperbolic Coxeter groups that are
not discrete cocompact in hyperbolic space Hp .

In this paper we obtain the following.

Theorem 1.1 Let G denote any finite graph of girth � 4. Let m � 4 be any integer.
Let W .G;m/ be the Coxeter group with one generating involution sv for each vertex v
of G , and one relation .svsw/m D 1 for each edge fv;wg of G .

Then W .G;m/ is convex-cocompact in some Hp .
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(We insist that the CAT.�1/ Davis complex †.W .G;m// is two-dimensional.)

Warning The representation we get is not by reflections, in the sense that the generators
sv do not act by reflections on Hp . We do not know whether a (discrete, convex
cocompact) reflection-representation exists.

To obtain Theorem 1.1 we first consider a very particular class of two-dimensional
Coxeter groups:

Lemma 1.2 For m � 4 let W .p;m/ denote the Coxeter group with p generating
involutions s1; : : : ; sp , and relations .sisj /

m D 1 (for any pair i; j with i ¤ j ).

Then W .p;m/ is convex-cocompact in Hp�1 . Moreover the convex-cocompact repre-
sentation W .p;m/! Isom.Hp�1/ extends to a faithful convex-cocompact representa-
tion Aut.†.W .p;m///! Isom.Hp�1/.

(The group Aut.†.W .p;m/// above is simply the semi-direct product of W .p;m/

with the symmetric group of its p generators.)

Our argument consists in simply checking that the Tits form of W .p;m/ has signature
.p� 1; 1/. Note that the Tits–Witt representation sends the generators to reflections.

We are in fact interested in groups that have a priori nothing to do with Coxeter groups:
discrete cocompact groups of two-dimensional objects.

For us a polygonal complex is a cell complex X of dimension two such that

(i) the 1–skeleton X 1 is a metric graph where each edge has length 1,

(ii) each 2–cell is a regular euclidean convex polygon (thus called a polygon of X ),

(iii) the attaching map of a polygon P is a local isometry @P !X 1 , and

(iv) the link of a 0–cell is a combinatorial graph: it has no loops (this follows from
(ii)) and no multiple edges.

The complex is even-gonal provided each polygon has an even number of edges. The
complex is k –gonal provided each polygon has k edges.

For any polygonal complex we consider the following combinatorial quantities:

(i) n.X / denotes the minimum of the number of sides of a polygon of X .

(ii) �.X / denotes the minimum of the girth of the links of vertices of X .
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It is easily seen that if n.X /� 6 (respectively, 7) or �.X /� 6 (respectively, 7) then X

admits a locally CAT.0/ (respectively, CAT.�1/) metric. It is not seldom that discrete
cocompact groups of simply-connected polygonal complexes with n.X / D 3 have
property .T / of Kazhdan, which is strongly opposite to Haagerup property, and thus
these kinds of groups cannot be convex cocompact in Hp . We thus concentrate on the
case when � is a discrete cocompact group of automorphisms of a simply-connected
even-gonal complex X with n.X /� 6. In this case it is well-known that X has natural
“hyperplanes” and thus � has the Haagerup property.

The last notion we need was introduced by Haglund and Wise in [16], to which we refer
for details. In the present paper we say a group � is cubically special provided there is
a right-angled Coxeter group .W;S/ (a Coxeter group all of whose finite mij are equal
to 2), and a convex subcomplex X � †.W;S/ such that � � W , and the CAT.0/
cube complex X is invariant and cocompact under � . It happens that being cubically
special is related to strong subgroup separability properties, where we recall a subgroup
is called separable if it is an intersection of finite index subgroups. Combining [16,
Theorem 7.3 and Theorem 8.13] we obtain, in the context of polygonal complexes, the
following.

Theorem 1.3 Let � be a discrete cocompact automorphism group of an even-gonal
complex X with either n.X / � 8, or n.X / � 6 and �.X / � 4. Then the hyperbolic
group � is virtually cubically special if and only if every quasi-convex subgroup of �
is separable.

What we call here “cubically special” was simply named “special” (or C –special)
in [16]. The reason is that in the present paper we consider CAT.0/ complexes built
of even polygons that are more general than squares, and we define special actions
on these kinds of complexes. Having a special action on an even polygonal complex
results in a convex cocompact representation in some related Coxeter group. This
group is a 2–dimensional Coxeter group but it is no longer right-angled in general. We
have been able to represent this kind of 2–dimensional Coxeter groups into Isom.Hp/,
whereas we couldn’t find interesting representations for 2–dimensional right-angled
Coxeter groups.

It turns out that in the context of hyperbolic complexes and groups the two notions of
special actions are virtually equivalent, although one of them looks like it is a strict
generalization of the other.

1.2 Statements of the results

Our main result relates uniform lattices of even-gonal complexes and two-dimensional
word-hyperbolic Coxeter groups:
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Theorem 1.4 Let � be a uniform lattice of a simply-connected even-gonal complex
X with n.X /� 6 and �.X /� 4. Assume � is virtually cubically special.

There is a Coxeter group .W;S/, with n.X /�2mij for i¤j , and a convex-cocompact
faithful representation �W �!Aut.†.W;S// whose image is virtually contained in W .

All mij can be chosen to be finite, and we still get a convex-cocompact representation
provided n.X /� 8.

If furthermore all polygons of X have the same number of sides, say 2m, then the
target Coxeter group W can be choosen to equal W .p;m/ (for some large number p ).

Combining the above theorem with Lemma 1.2 we obtain the following.

Theorem 1.5 Let X be a simply-connected 2m–gonal complex with m � 4 and
�.X /� 4.

If � is a virtually cubically special uniform lattice of X then there is a faithful convex-
cocompact representation �W �! Isom.Hp/.

We note that Theorem 1.1 is an immediate application of the above theorem, since the
Davis complex of W .G;m/ satisfies the geometric assumptions, and word-hyperbolic
Coxeter groups are virtually cubically special by Haglund–Wise [17].

We also (essentially) recover Kapovich’s Theorem on even-gons of finite groups (see
Kapovich [19, Theorem 1.1]). Indeed the universal cover of a 2m–gon of finite groups
is a simply-connected 2m–gonal complex X with bipartite vertex links. It follows that
�.X /� 4 and also that � is virtually cubically special, according to a deep result of
Dani Wise (see Wise [26; 27] and the translation in the cubically special language in
Haglund–Wise [16]). So our Theorem 1.5 applies (provided m� 4). Moreover it can
be checked that Kapovich’s representation �! Isom.Hp�1/ actually factors as the
composite of our �!Aut.†.W .p;m/// and our Aut.†.W .p;m///! Isom.Hp�1/.
(In fact our construction still yields Kapovich’s representation when mD 3, but in this
case the methods developed in this paper do not allow to reprove that the representation
is convex cocompact. We observe this convex cocompactness result was established in
Kapovich’s paper using an argument that is more elaborate than the one used for the
generic case m� 4.)

We emphasize that both Theorems 1.4 and 1.5 provide a representation of the whole
group � , even when � has torsion: it is not a virtual representation.

We want also to insist that when a word-hyperbolic group is virtually cubically special
then by definition it is related to some right-angled Coxeter group. But in general this
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Coxeter group is neither hyperbolic nor is it two-dimensional, so Theorem 1.4 requires
a bit more of work.

Dani Wise has proved that when a CAT.0/ polygonal complex X satisfies n.X /� 6

and has bipartite vertex-links then any uniform lattice of X is virtually cubically
special (see Wise [26; 27] and Haglund–Wise [16]). This applies in particular to
two-dimensional Tits-buildings (with n.X /� 8). Note the girth of bipartite graphs is
at least four. Thus using Theorem 1.5 we obtain:

Corollary 1.6 Let X be a simply-connected 2m–gonal complex with m� 4. Assume
X is a Tits building (that is: all vertex-links are isomorphic to a given generalized
�–gon, � � 2), or more generally all vertex-links of X are bipartite graphs.

Then any uniform lattice of X has a faithful convex-cocompact representation �W �!
Isom.Hp/.

We note that for p D 2m � 8 the above applies in particular when X D Ipq , the
right-angled hyperbolic building all of whose chambers are regular right-angled p–
gons and all of whose edges are contained in q polygons. In that case Marc Bourdon
had already been constructing a convex cocompact representation for a certain graph
products of finite groups �pq acting geometrically on Ipq (see Bourdon [4]). The
new thing we get here is that the pair .I.2m/q; �.2m/q/ embeds equivariantly into
.†.W .m; r//;W .m; r// for some r (which can be computed more or less explicitly
in this case).

The representations in both Theorems 1.4 and 1.5 have a geometric companion.

In Theorem 1.4 there is a combinatorial map X ! †.W;S/ (sending polygons
to polygons) which is equivariant under our � ! Aut.†.W;S//. This map is an
isometric embedding for the combinatorial distances on the 1–skeleta, but not an
isometric embedding for the usual CAT.0/ metrics. In Lemma 1.2 the representation
W .p;m/! Isom.Hp�1/ also has a geometric companion: there is an equivariant
map †.W .p;m//!Hp�1 such that the image of each polygon of †.W .p;m// is
an isometric copy of some regular 2m–gon of H2 .

Thus in Theorem 1.5 the representation � < Aut.X /! Isom.Hp/ is polygonal in
the sense that there is an equivariant locally injective map X ! Hp sending each
polygon of X to a regular planar polygon of Hp . A priori one could search for more
general convex-cocompact representations, by requiring for example that there exists
an equivariant locally injective map X 1!Hp that maps two “parallel” edges of X 1

to two segments bisected by the same hyperplane of Hp .
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1.3 Using “virtually Haken”

Shortly after this paper was submitted Ian Agol proved that any uniform lattice of
a Gromov-hyperbolic CAT.0/ cube complex is in fact virtually cubically special
(see Agol, Groves and Manning [1]). Since the square subdivision of the polygonal
complexes we consider are hyperbolic CAT.0/ square complexes we can combine
Agol’s Theorem together with Theorem 1.5:

Theorem 1.7 Let X be a simply-connected 2m–gonal complex with m � 4 and
�.X /� 4.

Let � be a uniform lattice of X . Then � has a faithful convex-cocompact representation
�W �! Isom.Hp/.

1.4 Concluding remarks and questions

The results in this paper show that the Coxeter groups W .p;m/ contain as quasi-
convex subgroups a lot of groups acting geometrically on negatively curved polygonal
complexes. Similarly the polygonal complexes †.W .p;m// contain (equivariantly) a
lot of homogeneous 2m–gonal complexes. This is a remarkable universality property
of the so-called Gromov polyhedra †.W .p;m// (see Haglund [14]).

We obtain a class of word-hyperbolic Coxeter groups generalizing W .p;m/ by demand-
ing that all mst be finite but allowing them to vary. Easy signature computations show
that when the variation of the mst is “small” with respect to the number of generators
then the Tits form is still of signature .p�1; 1/. We thus propose the following.

Conjecture 1 If a Coxeter group .W;S/ has 4 �mst <C1 for every s ¤ t , then
W is convex-cocompact in Hp .

However we warn the reader that one cannot hope the above representations would
be by reflections. We give a family of counterexamples in Corollary 4.25, where the
coefficients mst take two distinct values.

Conjecture 1, together with Theorem 1.4 and Agol’s Theorem, would imply the follow-
ing conjecture.

Conjecture 2 Any uniform lattice of a simply-connected even-gonal complex X , with
n.X /� 8 and �.X /� 4 is convex-cocompact in Hp .

In fact Conjecture 1 and the quotient Lemma 5.13 could be used to deduce the following
conjecture.

Geometry & Topology, Volume 17 (2013)



2438 Marc Desgroseilliers and Frédéric Haglund

Conjecture 3 If a Coxeter group .W;S/ has 4 �mst � C1 for every s ¤ t , then
W is convex-cocompact in Hp .

We would like to get rid of the assumption �.X /� 4 in Conjecture 2 above. However
it is not always possible to map polygonally a CAT.�1/ 2m–gonal complex X with
�.X /D 3 to a Davis complex †.W .p;m//. Indeed X may have non-trivial holonomy
in the following sense (see Haglund [14]). There is a 2m–gon P in X and a sequence
P1;P2; : : : ;P2m of polygons such that:

(i) P1\P; : : : ;P2m\P are the consecutive edges of @P .

(ii) P1\P2 is an edge, P2\P3 is an edge, : : : , P2m�1\P2m is an edge (these
edges are adjacent to P ).

(iii) P2m\P1 is a vertex (of P ).

Question If � is a virtually special uniform lattice of a holonomy free 2m–gonal
complex X with m � 4, does the pair .X; �/ embed equivariantly in some pair
.†.W .p;m//;W .p;m//?

A positive answer applied to certain of the counterexamples in Corollary 4.25 would
imply the following.

Conjecture 4 There are word-hyperbolic Coxeter groups .W;S/ which are convex-
cocompact in some Hp , but which do not have faithful reflection-representations in
any Hr .

1.5 Organization of the paper

In Section 2 our goal is to describe and study the hyperplanes and ramified hyperplanes
in even-gonal complexes. We conclude this section by giving some more definitions
on Coxeter groups.

In Section 3 we give local small-cancellation type conditions on a polygonal map
f W X!Y that force f W X 1!Y 1 to be a global isometric embedding (Proposition 3.2).

In Section 4 we present more or less classical facts about real hyperbolic reflection
groups. In particular we give necessary and sufficient conditions on a Poincaré polyhe-
dron under which the associated reflection group is convex cocompact (Theorem 4.7).
We then recall the definition of the Witt–Tits quadratic form. Applying Theorem 4.7 we
then explain when the Witt–Tits representation is convex-cocompact in real hyperbolic
space (under the assumption that the Witt–Tits quadratic form has hyperbolic signature;
see Proposition 4.15). As an application we deduce Lemma 1.2 (see Corollary 4.22)
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In Section 5 we define special actions on polygonal complexes. We show that if a
uniform lattice � of an even-gonal complex X with �.X / � 4 acts specially then
there is a naturally associated 2–dimensional Coxeter system .W;S/ and an isometric
embedding of the pair .X; �/ inside .†.W;S/;W /. We check that if � is virtually
cubically special then it also has a finite index subgroup which acts specially on the
polygonal complex X (see Corollary 5.4), and in fact we can even get arbitrarily
good lower bounds for the embedding radius of ramified hyperplanes. Combining this
result with Lemma 1.2 and Proposition 3.2 we conclude this section with a proof of
Theorem 1.4.

Acknowledgements We would like to thank the referee for his remarks. During the
writing of this article the first author was partially supported by Agence Nationale de
la Recherche (grant number ANR-10-BLAN 0116).

2 Geometry of even-gonal complexes

(In this section all polygonal complexes are locally compact.)

2.1 Non-positive curvature conditions

Definition 2.1 (Piecewise euclidean metric) Let X be a polygonal complex.

By definition the 2–cells of X have a euclidean metric (and each edge of a polygon of
X has unit length). We may thus consider on X the induced length metric, which we
call the piecewise euclidean metric on X .

Let X;Y be polygonal complexes. A map f W X ! Y is combinatorial provided it
sends isometrically an edge (respectively, a polygon) of X onto an edge (respectively,
a polygon) of Y .

Definition 2.2 (Non-positive and negative curvature conditions) We say a polygonal
complex is non-positively curved provided its piecewise euclidean metric is locally
CAT.0/.

We say a polygonal complex is negatively curved provided it is non-positively curved,
and moreover the piecewise euclidean metric has no embedded euclidean open disk
through vertices.

Let X be a polygonal complex. For each vertex v of X and each k –gon P through v
we assign the length ˛.v;P /D �.1� 2

k
/ to the edge of link.v;X / corresponding to
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P . This turns link.v;X / to a metric graph and we denote by �eucl.v;X / its systole.
Specifically �eucl.v;X / is the infimum of all sums ˛.v;P1/C � � �C˛.v;P`/, where
P1; : : : ;P` is a locally injective cycle of polygons around v . We set �eucl.X / D

infv2X 0 �eucl.v;X /.

We quote the following well-known result relating curvature and systole:

Lemma 2.3 (Bridson–Haefliger [6, Lemma 5.6]) Let X be a polygonal complex.
Then X is non-positively curved (negatively curved) if and only if �eucl.X / � 2�

(> 2� ).

If X is non-positively curved and simply connected it is a CAT.0/ space (see Bridson–
Haefliger [6]) and thus we say X is a CAT.0/ polygonal complex.

Definition 2.4 (Local largeness) We say X is large at vertices if the minimum of
the girths of vertex-links is at least four: �.X /� 4.

We say X is large-gonal if the smallest number of sides of a polygon is at least six:
n.X /� 6.

We say X is locally large if it is large at vertices and moreover the smallest number of
sides of a polygon is at least four: �.X /� 4 and n.X /� 4.

Using Lemma 2.3 we have the following relations between local largeness conditions
and curvature conditions:

Lemma 2.5 Let X be a polygonal complex.

(i) Assume X is large-gonal. Then X is non-positively curved .

(ii) Assume X is large at vertices. Then X is non-positively curved if and only if
X is locally large. If furthermore X is even-gonal, then X is negatively curved
if and only if X is large-gonal.

Since we do not really use the CAT.0/ metric in this article the following could be
considered to be a definition:

Lemma 2.6 (Combinatorial characterization of local isometries) Let X;Y be polyg-
onal complexes with n.Y /� 4. A combinatorial map f W X ! Y is a local isometry
if and only if f is locally injective and moreover f .link.v;X // is a full subgraph of
link.f .v/;Y /.
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Proof The statement is local, so it suffices to prove it for CW–complexes X;Y ,
where X is a subcomplex of Y , and Y has a single vertex v and is obtained as
a union of euclidean planar convex angular sectors, glued along rays at v . By the
assumption “n.Y /� 4” the angle at the vertex of these sectors are � �

2
. Using that the

sectors are non-acute and the so-called Alexandrov’s Lemma (see Bridson–Haefliger [6,
Lemma 2.6]) we then make the following key observation:

Let p;p0 be two points on distinct rays r; r 0 at v , with p ¤ v and p0 ¤ v . If r [ r 0

does not bound an angular sector of Y , then the geodesic between p;p0 is the union
of two segments contained inside r [ r 0 .

If link.v;X / is not a full subgraph of link.v;Y / then there are two rays r; r 0 of X at
v whose images in Y are boundary rays of some sector S of Y , but r [ r 0 does not
bound a sector of X . Then for any two points p 2 r �fvg and p0 2 r 0�fvg there is a
shorter path in S between p and p0 , and so X is not isometrically embedded.

Assume conversely X is not isometrically embedded in Y . So there are points p;p0

in X with dY .p;p
0/ < dX .p;p

0/. Note first p ¤ v and p0 ¤ v . A geodesic 
 of Y

between p and p0 is a finite concatenation of geodesic segments of the sectors. So
we may assume p;p0 belong to rays r; r 0 at v . Applying once more the observation
above we deduce that there must exist an angular sector in Y bounding r [ r 0 .

So the advantage when working with triangle-free polygonal complexes is that usual
CAT.0/ notions have a combinatorial characterization.

A subcomplex Y �X is locally convex if the inclusion map Y !X is a local isometry.
It is a standard fact that a local isometry with CAT.0/ target is in fact a global isometry
from its CAT.0/ source onto its image (see Bridson–Haefliger [6, Proposition 4.14]).
So when X is a CAT.0/ polygonal complex any locally convex subcomplex Y �X

is in fact a geodesically convex subspace, and thus we say Y is a convex subcomplex.

2.2 Square subdivision

In this paper we will employ the expression square complex instead of the heavier
4–gonal complex.

Let P denote a euclidean convex polygon with n cyclically ordered vertices v1; : : : ; vn

(and the usual convention that vnC1 D v1 ). Add an additional vertex v0 in the interior
of P , subdivide each edge ŒviviC1� of @P by adding a vertex wi in its interior, and
then add the edges Œv0w1�; : : : ; Œv0wn�. The resulting square complex is the square
subdivision of P and is denoted by P� . So P� consists of n unit squares.
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Let X denote any polygonal complex. We may perform the square subdivision of
each polygon of X individually, and then glue the subdivided polygons along the
(subdivided) edges coming from the 1–skeleton of X , thus producing a square complex
which we call the square subdivision of X and which we denote by X� . Note a vertex
v of X is still a vertex of X� , and moreover we have link.v;X /D link.v;X�/.

We then observe that the square subdivision X� is non-positively curved if and only if
X is locally large (n.X /� 4 and �.X /� 4). We leave the verification of the following
easy result to the reader:

Lemma 2.7 Let f W X ! Y be a combinatorial map of polygonal complexes. Then
there is a naturally induced combinatorial map f�W X�! Y� . If moreover n.Y /� 4

then f� is a local isometry if and only if f is a local isometry.

2.3 Straight and ramified hyperplanes of even-gonal complexes

Hyperplanes in even-gonal complexes have been used since a long time; see for example
Haglund [14]. To define his representations Kapovich introduced what we call below
ramified hyperplanes (see Kapovich [19]).

Definition 2.8 (Hyperplanes of an even-gon) Let P be an polygon with 2m edges,
and let e1; e2; : : : ; e2m be a cyclic enumeration of the edges of P . As usual we consider
the indices modulo 2m so that e2mC1 D e1 .

Let e be an edge of P : the radial segment of P at e is the straight euclidean segment
joining the center of P to the midpoint of e .

We say ei and eiCm are parallel in P . So P has m parallelism classes of edges. A
straight hyperplane of P (or simply a hyperplane of P ) is the union of radial segments
at ei and eiCm . Thus P has m hyperplanes.

Any two edges ei ; eiC2` whose indices differ by an even number are said to be even-
parallel in P . Since P is an even-gon e1 and e2 are not even-parallel, and P has
exactly two even-parallelism classes of edges. A ramified hyperplane of P is the union
of radial segments at ei ; eiC2; : : : ; eiC2k ; : : : . Thus P has two ramified hyperplanes.

We will use the expression straight hyperplanes to insist on the difference with ramified
hyperplanes. When we use the word hyperplane alone, it always means straight
hyperplane. Note that when P is a square ramified hyperplanes are straight.
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Definition 2.9 (Hyperplanes of an even-gonal complex) Let X be an even-gonal
complex. The disjoint union of the hyperplanes of polygons of X naturally maps to X :G

h hyperplane of P
P polygon of X

h!X

We then identify two points p; q 2
F

h;P h if they have the same image in X and
moreover pD q is the midpoint of an edge of X . The resulting quotient graph H.X / is
the space of hyperplanes of X . Its connected components are the immersed hyperplanes
of X . Since radial segments have a length each immersed hyperplane is a metric graph.

Definition 2.10 (Hyperplanes neighborhoods) Let X be an even-gonal complex.
The disjoint union of the polygons of X marked by their hyperplanes naturally maps
to X : G

P polygon of X
h hyperplane of P

P � fhg !X

and we identify two edges a in P � fhg and a0 in P 0 � fh0g if a; a0 map to the same
edge in X and moreover the midpoint of a D a0 is an extremity of both h and h0 .
We denote by N.H.X // the resulting quotient polygonal complex. There is a natural
map i W H.X /! N.H.X //, and it is compatible with both maps H.X /! X and
N.H.X //!X .

Lemma 2.11 The family of orthogonal projections P � fhg ! h induces a map
r W N.H.X //!H.X / such that r ı i D id. In particular i is injective and it induces
a 1–1 identification between the connected components of H.X / and the connected
components of N.H.X //.

For every immersed hyperplane H of X we will thus denote by N.H / the connected
component of N.H.X // containing H , and we call N.H / the polygonal neighborhood
of H .

Lemma 2.12

(i) Both maps i W H.X /!N.H.X // and H.X /!X are local isometries.

(ii) Assume the even-gonal complex X is large at vertices (�.X / � 4), then
N.H.X //!X is a local isometry.
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Sketch proof The retraction map r W N.H.X //!H.X / is clearly 1–Lipschitz, thus
i W H.X /!N.H.X // is a local isometry. Since N.H.X //!X is a local isometry
in the neighborhood of every point of H.X /, it thus follows by composition that
H.X /!X is a local isometry as well.

Assume now �.X /� 4 and let xv be a vertex of N.H.X //, and denote by v its image
in X . Let P be a polygon of X containing v , and let h be a hyperplane of P such
that xv is the image of v � fhg. We let a; a0 denote the two edges of @P which are
perpendicular to h at their midpoint. If v 62 a[ a0 , then in fact link.xv;N.H.X ///
identifies with link.v;P /, and this edge is obviously a full subgraph of link.v;X /.
Else v 2 a[a0 , say v 2 a. Consider the polygons P1DP; : : : ;Pk of X which contain
a. Then link.xv;N.H.X /// identifies with

S
i link.v;Pi/' Star.a; link.v;X //. Now

any subgraph of diameter two in a graph of girth � 4 has to be full.

Using the previous lemma and the standard incompressibility of local isometries in
non-positive curvature we get:

Corollary 2.13 (Haglund–Paulin [15]) Let X be a CAT.0/ even-gonal complex.
Then every immersed hyperplane embeds in X . Its image is a convex subtree of X that
disconnects X into two connected components.

If moreover X is large at vertices then the union of polygons of X meeting a given
hyperplane is a convex subcomplex.

Another classical fact is that the hyperplanes of a CAT.0/ polygonal complex explain
the combinatorial distance on the 1–skeleton:

Theorem 2.14 Let X be a CAT.0/ even-gonal complex. The combinatorial distance
between two vertices of the 1–skeleton X 1 equals the number of hyperplanes separating
the vertices. Moreover an edge-path .e1; : : : ; e`/ of X 1 is a combinatorial geodesic
between its endpoints if and only if the sequence of hyperplanes it crosses at each edge
ei has no repetition.

We refer to Haglund–Paulin [15] for an argument. Sometimes using hyperplanes
is easier, so the combinatorial distance on X 1 is more adapted than the CAT.0/
distance on X . Note however that if there is an upper bound for the number of
vertices in a polygon and on the number of edges containing a vertex in the CAT.0/
polygonal complex X , then the inclusion .X 1; dcomb/! .X; deucl/ is a quasi-surjective
quasi-isometry. The upper bounds clearly exist if X admits a cocompact group of
automorphism.

We now define the (immersed) ramified hyperplanes of an even-gonal complex.
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Definition 2.15 (Ramified hyperplanes and their neighborhoods) Let X be a non-
positively curved even-gonal complex. The disjoint union of the ramified hyperplanes
of polygons of X naturally maps to X :G

h a ramified hyperplane of P
P polygon of X

h!X

and identify two points p; q 2
F

h;P h if they have the same image in X and moreover
p D q is the midpoint of an edge of X . The resulting quotient graph Hr .X / is the
space of ramified hyperplanes of X . Its connected components are the immersed
ramified hyperplanes of X .

Consider also: G
P polygon of X

h a ramified hyperplane of P

P � fhg !X

and identify two edges a in P � fhg and a0 in P 0 � fh0g if a; a0 map to the same
edge in X and moreover the midpoint of aD a0 belong to both h and h0 . We denote
by N.Hr .X // the resulting quotient polygonal complex. There is a natural map
i W Hr .X / ! N.Hr .X //, and it is compatible with both maps Hr .X / ! X and
N.Hr .X //!X .

In order to study the immersed ramified hyperplanes of the non-positively curved
even-gonal complex X , it is convenient to work with the square subdivision X� of X .
Indeed we note that a ramified hyperplane h of an even-gon P is a subcomplex of P� .
This turns h to a metric graph whose edges have unit length. Note there is a retraction
P�! h which projects orthogonally each square C of P� onto its unit edge C \ h.

We will consider the induced combinatorial maps

Hr !X�; Hr !N�.Hr .X //; N�.Hr .X //!X�;

where N�.Hr .X // denotes the square subdivision of N.Hr .X //.

Lemma 2.16 The family of retractions P��fhg!h induces a map r W N�.Hr .X //!

Hr .X / such that r ı i D id. In particular i is injective and it induces a 1–1 identifica-
tion between the connected components of Hr .X / and the connected components of
N.Hr .X //.

For every immersed ramified hyperplane H of X we will denote by N.H / the
connected component of N.Hr .X // containing H , and we call N.H / the polygonal
neighborhood of H . We also consider the square subdivision N�.H /�N�.Hr .X //.
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Lemma 2.17 Let X be an even-gonal complex with �.X / � 4. For any immersed
ramified hyperplane H the combinatorial maps H ! N�.H /, N�.H /! X� and
H !X� are local isometries.

Proof The retraction r W N�.Hr .X //! Hr .X / is 1–Lipschitz, thus in fact H !

N�.H / is a global isometric embedding.

For every vertex xv of N.Hr .X // let v be its image inside X , and let P be a polygon
of X with a ramified hyperplane h such that xv is the image of a vertex of P � fhg.
Then v is contained in precisely one edge a of P that intersects h. The natural
map N.Hr .X // ! X then induces an identification of link.xv;N.Hr .X /// with
Star.a; link.v;X //. This is a full subgraph of link.v;X / since �.X / � 4. Thus
N.Hr .X //!X is a local isometry.

It follows by Lemma 2.7 that N�.H /!X� is a local isometry and by composition
so is H !X� .

Corollary 2.18 Let X be a CAT.0/ even-gonal complex with �.X /� 4.

(i) Each ramified hyperplane H embeds as a convex subcomplex of X� . Moreover
N�.H / is a convex subcomplex of X� , and N.H / is also a convex subcomplex
of X .

(ii) Let a; b be two distinct edges at a vertex v . Then the (ramified) hyperplanes
H;K cutting a; b are distinct. More precisely if a; b are linked in link.v;X /
then H \K is the center of the polygon spanned by a and b , and if a; b are not
linked in link.v;X / then H \K D∅.

Proof (i) By Lemma 2.17 the map H !X� is a local isometry, and by assumption
its target is CAT.0/. It follows that H embeds as a convex subcomplex of X� .

Similarly we get that N�.H / is a convex subcomplex of X� , and we deduce by
Lemma 2.7 that N.H / is a convex subcomplex of X .

(ii) Assume first a; b span a polygon P . Let r; s be the radial segments of P at a; b .
So H is the (ramified) hyperplane that contains r and K is the (ramified) hyperplane
that contains r . By convexity of H �X� we see that H cannot contain s . It follows
that H \P is the (ramified) hyperplane of P containing r . Similarly K\P is the
(ramified) hyperplane of P containing s . So H \K\P is the center p of P . Since
H \K is convex and contains p as an isolated point it follows that H \K D fpg.

Assume now that a; b are unlinked in link.v;X /. Thus the union � of the two half-
edges of a; b containing v is a geodesic segment of X . The endpoints of � are in
H;K but � itself is not contained in a (ramified) hyperplane since it contains a vertex.
By convexity of (ramified) hyperplanes we deduce that H ¤K .
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We note that the hexagonal tesselation of the euclidean plane has only three ramified
hyperplanes, which are not at all simply-connected. So the assumption �.X /� 4 is
essential in the Lemma above.

2.4 Intersection and osculation of hyperplanes

Proposition 2.19 (Intersections) Let X be a CAT.0/ even-gonal complex (with
�.X /� 4), and let H;H 0 be two (ramified) hyperplanes of X . Then either:

(i) N.H /\N.H 0/D∅.

(ii) N.H /\N.H 0/ is a non empty subgraph of X 1 .

(iii) N.H /\N.H 0/ is the union of a single polygon P with a subgraph of X 1 .

(iv) H DH 0 .

In case (ii) we have H \H 0 D∅. In case (iii) we have H \H 0 D fpg, where p is the
center of P . Moreover under the assumption �.X /� 4 we have N.H /\N.H 0/DP .

Proof Assume N.H /\N.H 0/ 6D∅. Both (ramified) hyperplanes H;H 0 are convex
subspaces of X (of X� ). Thus H \H 0 is a convex subtree of H (the edges are
the radial segments). We note that N.H /\N.H 0/ contains a polygon if and only
if H \H 0 contains the center of this polygon: in particular if H \H 0 D ∅ then
N.H /\N.H 0/ is a subgraph of X 1 .

If H \H 0 contains a point that is not the center of a polygon, then H \H 0 contains
a radial segment and thus H DH 0 . So if H \H 0 contains two distinct points then
H D H 0 . It follows that if H \H 0 6D ∅ then either H D H 0 or there is a polygon
P with center p such that H \H 0 D fpg, in which case P is obviously the single
polygon contained inside N.H /\N.H 0/.

Assume �.X / � 4 and H \H 0 is the center p of a polygon P . We know P is
contained in the convex subcomplex N.H /\N.H 0/. We claim that P is a connected
component of N.H /\N.H 0/, which implies N.H /\N.H 0/D P . So assume by
contradiction that a is an edge of N.H / \ N.H 0/ such that a \ P is a vertex v .
Since a � N.H / there is a polygon Q of N.H / such that a �Q. Since P;Q are
non-disjoint polygons of N.H / it follows that P \Q is an edge b (with b\H ¤∅).
Similarly there is a polygon Q0 of N.H 0/ which contains a and such that P \Q0 is
an edge b0 with b0\H 0 ¤∅. If b D b0 then H DH 0 , contradicting H \H 0 D fpg.
So we have found a cycle of length 3 in link.v;X /: this contradicts �.X /� 4.
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Definition 2.20 (Intersecting, crossing, osculating) Let H;H 0 be two (ramified)
hyperplanes of a CAT.0/ even-gonal complex (with �.X / � 4). We say H;H 0

intersect if H \H 0 ¤∅. We say H;H 0 cross if they intersect and are distinct. We
say H;H 0 osculate if N.H /\N.H 0/¤∅, but H;H 0 do not intersect.

By Proposition 2.19 H;H 0 cross if and only if H \H 0 is the center of a polygon and
H;H 0 osculate if and only if N.H /\N.H 0/ is a non-empty subgraph of X 1 .

Lemma 2.21 (Nearby hyperplanes) Let X be a CAT.0/ even-gonal complex with
�.X / � 4, and let a; b be two distinct edges of X adjacent to some vertex v . Let
H;K denote the (ramified) hyperplanes dual to a; b . Then H ¤K and moreover:

(i) H and K intersect if and only if a; b are adjacent vertices of link.v;X /.

(ii) H and K osculate if and only if a; b are non-adjacent vertices of link.v;X /.

Proof Clearly N.H /\N.K/ contains v . So H;K either intersect or they osculate,
and the Lemma follows from Corollary 2.18(ii).

Remark 2.22 (The dual cubulation) Let X be a CAT.0/ even-gonal complex. Using
the family of hyperplanes of X there is a naturally defined embedding of graphs
X 1!C 1 , where C is a CAT.0/ cube complex (see Nica [23] and Chatterji–Niblo [7]).
Moreover the hyperplanes of X are in 1–1 correspondence with the hyperplanes of C ,
through the identification of parallelism classes of edges in both X and C . The cubes
of C correspond to certain configurations of pairwise intersecting hyperplanes.

It is easy to describe C when X is locally large. For each 2m–gon P of X the
m hyperplanes of X cutting P are pairwise intersecting, and in C we must add an
m–cube containing @P as a combinatorial equator. These are the only (maximal) cubes
to add to X 1 in order to get C in that case.

Indeed since X is locally large the hyperplanes are convex subcomplexes of the CAT.0/
complex X� and when they intersect they meet with right angle. We deduce that if
H1;H2; : : : ;Hk is any family of pairwise intersecting hyperplanes of X , then there is
a polygon P such that all hyperplanes Hi of the family cut P .

2.5 Two-dimensional and two-spherical Coxeter groups

Definition 2.23 (The Cayley graph, the Cayley 2–complex and the Davis complex)
Let .W;S/ be a Coxeter system.

The Cayley graph of .W;S/ is the graph G.W;S/ defined as follows: The set of
vertices is W . There is an edge between w and wsi for any w 2W and any generator
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si 2 S . Note that edges are labeled in S (or in I ). Observe this version of Cayley
graphs is adapted to a group generated by involutions since it has a single edge between
two adjacent vertices (unlike in the classical definition).

We now describe the Cayley 2–complex of .W;S/. This is an even-gonal complex
†2.W;S/ obtained as follows. The 1–skeleton of †2.W;S/ is the Cayley graph
G.W;S/. For any pair i; j with mij < 1 and any 2mij –cycle c whose labels
alternate between i and j there is a polygon bounding c .

The Davis complex of .W;S/ is a polyhedral complex †.W;S/ whose 2–skeleton is
the Cayley complex †2.W;S/, with additional higher-dimensional cells corresponding
to (cosets of) finite subgroups generated by subsets of S (of cardinality > 2). For more
details see Davis [8].

Observe that the Cayley 2–complex is connected and simply-connected. In his the-
sis [20], Moussong defined a piecewise euclidean metric on the Davis complex, and
showed that it is indeed CAT.0/. In particular the Davis complex is contractible.

Observe that the left multiplication induces an action of W by polygonal automorphisms
onto †2.W;S/. This action is simply-transitive on vertices.

Definition 2.24 (2–dimensional) We say a Coxeter system .W;S/ is 2–dimensional
provided for any subset T � S with jT j � 3 the Coxeter system .WT ;T / is infinite.
This is equivalent to requiring that the Cayley 2–complex equals the Davis complex.
In this case †2.W;S/ is already a CAT.0/ even-gonal complex.

When .W;S/ is 2–dimensional we will thus omit the superscript 2, write †.W;S/

instead of †2.W;S/, and refer to this polygonal complex as to the Davis complex.

Definition 2.25 (2–spherical) A Coxeter system .W;S/ where all the mij are finite
is called 2–spherical. This is equivalent to demanding that the vertex links in †2.W;S/

be complete graphs.

Without using Moussong’s criterion a very simple systole computation in the links of
vertices gives:

Lemma 2.26 Let .W;S/ be a Coxeter system such that mij � 3 for all i; j . Then
.W;S/ is 2–dimensional (in other words †2.W;S/ is CAT.0/ and equal to †.W;S/).

Moreover .W;S/ is word-hyperbolic iff †.W;S/ is negatively curved, which happens
exactly when there is no subset fi; j ; kg � S with mij Dmjk Dmki D 3.
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We now recall the key-point about the combinatorial geometry in Coxeter systems
(for these classical results see Bourbaki [3]). Recall first that for each edge e of the
Cayley graph G.W;S/ joining elements w and ws , the element t WDwsw�1 is called
a reflection of .W;S/. The set of fixed points of the reflection t is the set of midpoints
of certain edges (including e ), it is called the hyperplane dual to e . We will denote it
by He or Ht . Then G.W;S/ nHe has two connected components.

Theorem 2.27 (Hyperplane characterization of combinatorial geodesics) Suppose
that .e1; e2; : : : ; en/ is an edge-path in the Cayley graph of a Coxeter system .W;S/,
and let H1; : : : ;Hn be the hyperplanes of G.W;S/ dual to e1; : : : ; en .

Then .e1; e2; : : : ; en/ is a combinatorial geodesic if and only if there is no repetition in
the sequence .H1; : : : ;Hn/. The combinatorial distance between two vertices is the
number of hyperplanes which separate them.

We conclude this section by describing geometrically a natural finite extension of a
Coxeter group. So let .W;S/ be a 2–dimensional Coxeter system, so that the Davis
complex †.W;S/ is a nice CAT.0/ even-gonal complex.

We denote by Autdiag.W;S/ the finite group of permutations f W S ! S such that for
each i; j we have mf .si /f .sj / Dmij . There is a natural embedding Autdiag.W;S/!

Aut.W /, and the corresponding automorphisms of W are called diagram automor-
phisms. We denote by �W the semi-direct product of W with Autdiag.W;S/ (this is an
abuse of notation since �W depends on S ). Note the diagram automorphisms preserve
the set of generating reflections, so the action of Autdiag.W;S/ onto W extends to an
action on the Davis complex †.W;S/.

Lemma 2.28 (Identifying �W ) The group Autdiag.W;S/ normalizes W inside the
group Aut.†.W;S//, and the action by conjugation of f 2 Autdiag.W;S/ onto W <

Aut.†.W;S// coincides with the natural action by diagram-automorphisms.

The normalizer of W in Aut.†.W;S// is generated by W and Autdiag.W;S/, and it
is isomorphic with �W .

Proof For f 2 Autdiag.W;S/ let yf denote the corresponding automorphism of
†.W;S/. Let w 2W and let x 2†.W;S/. Then

yf .wx/D f .w/ yf .x/:

Indeed this relation is true for x 2†0.W;S/DW and moreover the automorphisms
of †.W;S/ are entirely determined by their restriction to W .
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We deduce the following conjugation formula:

For v 2W; . yf ıw ı yf �1/.vx/D yf .wf �1.v/ yf �1.x//D f .w/vx:

In other words we have yf ıw ı yf �1 D f .w/ (in Autdiag.W;S/).

The subgroup generated by W and Autdiag.W;S/ inside Aut.†.W;S// is then iso-
morphic with �W since using the simple-transitivity of W on †0.W;S/ we see that
W \Autdiag.W;S/D f1g.

It remains to prove that any automorphism 'W †.W;S/!†.W;S/ that normalizes
W is inside W:Autdiag.W;S/. Let w0 2W D †0.W;S/ be the image under ' of
the origin 1 2W D†0.W;S/. We set '0 D .w0/

�1 ı ' . So '0 normalizes W and
fixes the origin 1. In particular '0 induces a permutation f of the edges at 1. These
edges are labelled by generators s 2 S , so f is in fact a permutation of S . Since '0

is a polygonal automorphism it preserves the number of sides of the polygons adjacent
to the origin. In other words f 2 Autdiag.W;S/.

Clearly '0 D
yf on the star of 1 in †.W;S/. So the automorphism of W induced by

f and by '0 coincides on the generating set S , and therefore for any vertex w 2W

we have
yf .w/D '0.w/:

We conclude that '0 D
yf on the whole of †.W;S/.

3 Quasi-isometric embedding CAT.0/ large-gonal complexes

Definition 3.1 (Corners) A corner of order k in a polygonal complex X is a con-
nected subgraph of the boundary of a polygonal face of X that contains kC 1 edges.
For k D 1 we simply say a corner, and for k D 2 we say a double corner.

Let f W X ! Y be a polygonal map of polygonal complexes.

We say f W X ! Y has no missing corner provided for any combinatorial path .a; b/
of X with a¤ b , if the edges f .a/; f .b/ form a corner of Y , then a; b form a corner
of X .

We say f W X ! Y has no missing double corner provided for any combinatorial path
.a; b; c/ of X with a¤ b; b ¤ c , if the edges f .a/; f .b/; f .c/ form a double corner
of Y , then a; b; c form a double corner of X .

We say f W X ! Y has no missing half-cell provided for any edge-path � of X of
length kC 1, if f .�/ is a corner of order k inside a 2.kC1/–gon of Y , then � is a
corner of order k inside a 2.kC1/–gon of X .
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Observe a polygonal map f W X ! Y is an isometric embedding for the CAT.0/
metrics if and only if it has no missing corner.

Proposition 3.2 Let X;Y denote two CAT.0/ even-gonal complexes. Let f W X!Y

be a polygonal map.

Assume f is locally injective and furthermore f has no missing half-cell.

Then f W X .1/! Y .1/ is an isometric embedding (where the 1–skeleta are equipped
with the combinatorial distance).

Proof Assume by contradiction for some integer n� 1 there is a geodesic edge path
.Ee1; : : : ; Een/ of X that f maps to a non-geodesic path, and let n be the smallest such
integer. Since f is locally injective we have n� 2.

Two of the edges f .e1/; : : : ; f .en/ are dual to the same hyperplane K of Y . By
minimality of n both subpaths .f .Ee1/; : : : ; f .Een�1// and .f .Ee2/; : : : ; f .Een// are
geodesic. Thus f .e1/ and f .en/ are dual to the same hyperplane K . By the combi-
natorial convexity of the polygonal neighborhood N.K/ the combinatorial geodesic
.f .Ee1/; : : : ; f .Een�1// is entirely contained inside N.K/.

Since f is locally injective, the edge f .e2/ is not dual to the hyperplane. Since f .e2/

is contained inside N.K/ there is a polygon Q of Y that contains both f .e1/ and
f .e2/. Let e0 be the edge of Q which is opposite to f .e1/. Then the locally injective
path .f .Ee1/; : : : ; f .Een�1// must touch e0 : there is some integer m� n� 1 such that
.f .Ee1/; : : : ; f .Eem// describes half of the polygon Q and ends in an extremity of e0 .

Since f has no missing half-cell there is a polygon P of X which contains the path
.Ee1; Ee2; : : : ; Eem/. Then f .P /DQ and moreover f .e/D e0 , where e denotes the edge
of P that is opposite to e1 . Note emC1¤ e since .Ee1; : : : ; Een/ is a geodesic edge path.
Let Ee be the orientation of e such that the endpoint is the vertex of em\ emC1 .

The path .Ee; EemC1; : : : ; Een/ is still geodesic in X 1 , its image is not a geodesic, contra-
dicting the minimality of our n.

Corollary 3.3 Let X;Y denote two CAT.0/ even-gonal complexes with �.Y / � 6

and let f W X ! Y be a locally injective polygonal map with no missing double
corner. Then f induces an isometric embedding X 1! Y 1 (thus it is a quasi-isometric
embedding).

Proof Indeed since �.Y / � 6 we note that no missing corner implies no missing
half-cell. We then apply Proposition 3.2.
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We will use Corollary 3.3 above in case when all vertex links of Y are complete graphs,
and �.X /� 4: so any combinatorial map X ! Y has missing corners, but it will be
possible to find combinatorial maps with no missing double corner. Thus even when
there cannot exist any local isometry X ! Y , it may possible to find an isometric
embedding X 1! Y 1 .

Remark 3.4 There is a similar statement for CAT.0/ cube complexes.

Namely let f W X ! Y be a combinatorial locally injective map. Assume there exists
an integer R � 1 such that f has no missing rectangle Œ0;R�� Œ0; 1� of size R� 1

and is an isometric embedding on combinatorial geodesics of length �RC 1. Then
f W X 1!Y 1 is an isometric embedding. The case RD1 corresponds to the assumption
that f W X ! Y be a local isometry of CAT.0/ cube complex.

4 Real hyperbolic convex cocompact Coxeter groups

Coxeter groups correspond to certain kinds of presentations (see Section 1). In this
section we study methods to produce real hyperbolic convex cocompact Coxeter groups.

4.1 Reflection subgroups in Hp

A major source of examples of Coxeter groups is given by discrete reflection groups
in real hyperbolic space (meaning discrete subgroups of Isom.Hp/ generated by
reflections).

We will identify Hp with˚
.x1; : : : ;xp;xpC1/ 2RpC1

ˇ̌
x2

1 C � � �Cx2
p �x2

pC1 D�1; xpC1 > 0
	
:

For vectors EuD .x1; : : : ;xp;xpC1/; EvD .y1; : : : ;yp;ypC1/ we denote by hhEu; Evii the
inner product in Rp;1 : so hhEu; Evii D x1y1 C � � � C xpyp � xpC1ypC1 . And hEu; Evi
denotes the standard inner product in RpC1 .

Definition 4.1 (Hyperbolic polyhedra, Poincaré polyhedra) A hyperbolic polyhedron
P is a (non empty) intersection of finitely many closed half-spaces of some real
hyperbolic space Hp (we allow P DHp ). A face of P is a hyperbolic polyhedron F

such that F � P and P nF is connected. The span of a face F is the smallest totally
geodesic subspace of Hp containing F . The dimension of F is the dimension of its
span. We will always assume that the span of P is the whole ambient space Hp .
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Note P has finitely many faces. The relative boundary of a face F is the union @relF

of all faces F 0 < F with F 0 ¤ F . The relative interior of F is then the subspace
IntrelF WD F n @relF .

The boundary hyperplanes of P are the finitely many hyperplanes H1; : : : ;Hr of Hp

such that Hi \P is a codimension one face of P , which we will always denote by
P1; : : : ;Pr . The defining half-spaces of P are the half-spaces X1; : : : ;Xr of Hp

such that @Xi DHi and P �Xi . We will always denote by Eni the vector of Rp;1 that
is orthogonal to Hi , of unit length, and that points outside the half-space Xi . Note
that for any p 2Hi the vector Eni belongs to the tangent space at p .

The Gram matrix of P consists in the r�r –matrix Gram.P / of all inner products
hhEni ; Enj ii.

We say P is a Poincaré polyhedron provided any two codimension one faces Pi ;Pj

are either disjoint, or intersect along a codimension two face of P , and moreover the
angle between the unit normal vectors Eni ;�Enj is of the form �

mij
(for some integer

mij � 2 depending on the intersecting faces Pi ;Pj ).

Note in our definition a Poincaré polyhedron P is a simple polyhedron: the links
of faces are simplices. Note also that when two codimension-one faces Pi ;Pj of a
hyperbolic polyhedron P intersect at some point p then the unit normal outgoing
vectors Eni ; Enj are both in the tangent space of p , and then hhEni ; Enj ii D hEni ; Enj i. The
angle between the unit normal vectors Eni ;�Enj is nothing else than the dihedral angle of
P between Hi and Hj at p . So the condition on P for being a Poincaré polyhedron
can be rephrased as follows: for any pair of intersecting codimension 1 faces Pi ;Pj ,
the coefficient hhEni ; Enj ii of the Gram matrix is � cos. �

mij
/ (which is > �1).

Theorem 4.2 (Poincaré’s Theorem) Let P �Hp denote a Poincaré polyhedron, and
let H1; : : : ;Hr denote the boundary hyperplanes. Let s1; : : : ; sr denote the reflections
along H1; : : : ;Hr , and let W D W .P / < Isom.Hp/ be the group generated by
s1; : : : ; sr .

Then P is a strict fundamental domain for the action of W onto Hp (any W–orbit
intersect P in a single point) and in particular every relation in W on the generators
s1; : : : ; sr can be deduced from the relations

.sisj /
mij D 1:

In other words .W; fs1; : : : ; sr g/ is a Coxeter system.

Moreover the stabilizer of any face F of P is the finite subgroup WF generated by all
reflections si along a boundary hyperplane Hi that contains F .
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The above theorem contains the spherical and euclidean versions as special cases. For
an argument see Ratcliffe [24, Theorems 7.1.3 and 7.1.4]. Note that the subgroup
WF is the reflection group associated with the Poincaré polyhedron PF obtained
by intersecting the closed half-spaces containing P and bounded by some boundary
hyperplane Hi which contains F . Any finite group of isometries of Hp has a fixed
point, thus each finite subgroup of W is conjugate in one of the finite subgroups WF .

Observe also that two disjoint faces Pi ;Pj of a Poincaré polyhedron P span disjoint
hyperplanes. This follows since in a Coxeter system .W;S/ the order of sisj is infinite
if and only if mij is infinite. It is then easy to check that the unit normal vector Eni ; Enj

satisfy hhEni ; Enj ii ��1. So we may characterize Poincaré polyhedra by a criterion using
the Gram matrix:

A simple hyperbolic polyhedron P is a Poincaré polyhedron if and only if the
off-diagonal entries of Gram.P / are either � �1 or of the form � cos. �

mij
/.

Definition 4.3 (Non-obtuse polyhedra) Let P �Hp be a polyhedron with boundary
hyperplanes H1; : : : ;Hr . We say P is non-obtuse provided for any pair of intersecting
facets Pi ;Pj the dihedral angle of Hi ;Hj is � �

2
.

Poincaré polyhedra are examples of non-obtuse polyhedra.

Lemma 4.4 (Geometry of non-obtuse polyhedra) Let P �Hp be a non-obtuse poly-
hedron and let H be a boundary hyperplane of P . We denote by Q the corresponding
codimension one face: Q WD P \H .

(i) For any point x 2 P the orthogonal projection of x onto H belongs to Q.

(ii) We set Q? D fx 2Hp j the orthogonal projection of x onto H belongs to Qg.
Then P �Q? and Q? is a hyperbolic polyhedron.

(iii) For any point x 2H the orthogonal projection of x onto P belongs to Q.

Proof (i) Let xi be the point of the closed subset Pi which is nearest to x . We must
show that d.x;xi/D d.x;Hi/.

We may and will assume that x ¤ xi . So let � denote the (non-trivial) geodesic
segment from xi to x . By convexity � �P . We must prove that � is perpendicular to
Hi at xi . Let Eu be the unit tangent vector of � at xi , let Si be the hypersphere of the
unit sphere of the tangent space of Hp at xi corresponding to the hyperplane Hi , and
finally let E�i be the unit vector at xi that is orthogonal to Hi and points toward P .

Assume by contradiction that the distance between Eu and Si is < �
2

. Let then … be
the totally geodesic plane of Hp through xi , whose tangent space at xi is generated
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by .Eu; E�i/. Let also Ev be the unit vector of the tangent space of … at xi that is
perpendicular to E�i and such that Eu lies in the cone generated by E�i and Ev .

The open half-line R of … starting at xi and directed by Ev is disjoint from Pi ,
otherwise � wouldn’t be minimizing. Since R�Hi we must also have R\P D∅.
So let Hk be a boundary hyperplane of P through xi that separates R from � . Let
E�j be the unit vector at xi that is normal to Hk and points inside P .

The vector E�j is not orthogonal to … and moreover the orthogonal projection E�0j of
E�j onto the plane generated by .Eu; E�i/ has positive coordinate along E�i and negative
coordinate along Ev .

This implies that the dihedral angle between Hi and Hk is obtuse, a contradiction.

(ii) The inclusion P �Q? follows by the first part of the Lemma. Either QDH ,
in which case Q? DHp . Or Q is an intersection of H –half-spaces G1; : : : ;Gs . We
then have Q? D

Ts
kD1.Gk/

? , and each .Gk/
? is a closed half-space of Hp .

(iii) We now prove the third statement. For x 2 H let y denote the orthogonal
projection of x onto P , and let z denote the orthogonal projection of x onto Q? .

Clearly Q? is invariant under the orthogonal reflection along H . It follows that z 2H .
So z 2 H \Q? . We note H \Q? D Q so that z 2 Q � P . Since P � Q? we
conclude that y D z .

Corollary 4.5 Let P �Hp be a non-obtuse polyhedron with boundary hyperplanes
H1; : : : ;Hr .

(i) Any face F < P is a non-obtuse polyhedron (of Span.F /).

(ii) For any point x 2 P and any face F < P , the orthogonal projection of x onto
Span.F / belongs to F .

(iii) For any two faces F;G of P , either F \G ¤ ∅, or Span.F /\ Span.G/ D
∅. In the latter case either d.F;G/ D 0 or d.F;G/ > 0 and there exists
a geodesic segment � � P connecting orthogonally the faces F;G so that
d.Span.F /;Span.G//D d.F;G/ > 0.

Proof (i) To show that a face F is non-obtuse it suffices by induction to handle the
case when F has codimension one. So let H be a boundary hyperplane of P such that
F DH \P . The boundary hyperplanes of F in its span H are the intersections with
H of the boundary hyperplanes Hi of P which intersect transversally H . Let En; Eni ; Enj

be the unit vectors at some point x 2 F \Hi \Hj , such that En; Eni ; Enj are orthogonal
to H;Hi ;Hj and are going out of P . Consider the decomposition Eni D E�i C �i En
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where E�i ? En and �i 2R. The non-obtuse condition yields �i � 0. Similarly we have
Enj D E�j C�j En with E�j ? En and �j � 0. Now hE�i ; E�j i D hEni ; Enj i��i�j and it follows
that the dihedral angle between H \Hi and H \Hj inside F is non-obtuse.

(ii) The second statement follows by induction on codim.F /, using Lemma 4.4 (since
faces are non-obtuse polyhedra by (i)), as well as the following standard fact:

Let F1 and F2 be two totally geodesic subspaces of Hp , and let pi denote
the orthogonal projection onto Fi . If F1 � F2 , then p1 D p1 ıp2 .

(iii) Let us prove the last stated trichotomy. So assume F;G are faces of P with
F \G D ∅. Assume by contradiction that Span.F /\ Span.G/ contains a point x .
Let y denote the orthogonal projection of x onto P . For every boundary hyperplane
H of P containing F we have y 2H \P by the third part of Lemma 4.4. It follows
that y 2 F . By symmetry y 2G , which contradicts F \G D∅.

Assume moreover d.F;G/> 0. Since F;G are closed convex subsets of Hp it follows
that there are points p; q 2 F;G such that d.p; q/ D d.F;G/. Let � � P be the
geodesic segment joining p and q . By (ii) the point q is the orthogonal projection of
p onto Span.G/, and similarly p is the orthogonal projection of q onto Span.F /, so
we are done.

In the situation of Poincaré’s Theorem we obtain a geometrically finite Coxeter group
W .P /: P has only finitely many faces. In general W .P / might contain parabolic
elements. We will now give conditions under which W .P / is convex-cocompact.

Lemma 4.6 Let P �Hp denote a Poincaré polyhedron, let H1; : : : ;Hr denote the
boundary hyperplanes, and let W be the group generated by the reflections si along
Hi . Let F;G be disjoint faces of P .

(i) If d.F;G/ > 0 then @1 Span.F /\ @1 Span.G/D∅.

(ii) If d.F;G/ D 0 then @1 Span.F / \ @1 Span.G/ ¤ ∅ and W is not convex
cocompact.

In either cases Span.F /\Span.G/D∅.

Here as usual for a subspace X �Hp we denote by @1X the set of points � 2Sp�1D

@1Hp which are in the closure of X .
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Proof The third part of Corollary 4.5 tells us that Span.F /\Span.G/D∅.

(i) When d.F;G/ > 0 the third assertion in Corollary 4.5 insures that

d
�

Span.F /;Span.G/
�
D d.F;G/ > 0

and thus @1 Span.F /\ @1 Span.G/D∅.

(ii) Assume now d.F;G/D 0. Since d.F;G/D 0 and F \G D ∅ it follows that
@1 Span.F /\ @1 Span.G/¤∅. So let � 2 @1 Span.F /\ @1 Span.G/. The whole
subgroup … generated by WF and WG fixes � and in fact preserves all horospheres
based at � .

Observe that the fixed point set of … equals Span.F /\ Span.G/, so it is empty. It
follows that … is infinite. Thus … contains an element g of infinite order, which
preserves all horospheres based at � . We deduce that no orbital map hgi!Hp;gn 7!

gnx is a quasi-isometric embedding, and so W is not convex-cocompact.

Two faces F;G of a hyperbolic polyhedron P are said to be asymptotic if F \G D∅
and d.F;G/D 0.

Theorem 4.7 (Convex cocompact reflection groups of Hp ) Let P �Hp denote a
Poincaré polyhedron and let W be the group generated by the reflections along the
boundary hyperplanes of P .

Then W < Isom.Hp/ is convex cocompact if and only if P has no pair of asymptotic
faces.

We are certain that this result is familiar to certain people working in the field but we
couldn’t find a reference. So we provide a proof of the theorem in the next section.

4.2 Proof of Theorem 4.7: convex cocompactness when there is no pair of
asymptotic faces

The existence of an asymptotic pair of faces in the Poincaré polyhedron P prevents
W DW .P / from being convex cocompact: this has been established in Lemma 4.6.

We now assume that P has no pair of asymptotic faces. In fact we only assume that no
face is asymptotic with a codimension-one face: the convex-cocompactness statement
holds true under this weaker assumption. We denote by H1; : : : ;Hr the boundary
hyperplanes of P .

We choose a point x in the interior of P . Then by Poincaré’s Theorem the orbital map
W 3 w 7! w:x 2Hp is injective, and we identify W with the orbit fwxgw2W . We
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show that W is convex cocompact, by proving that the orbital map is a quasi-isometric
embedding (W is equipped with its word metric j � jS ).

We work with the tiling of Hp by W–translates of P : HpD
S
w2W wP . A hyperplane

of the tiling is a hyperplane of the form wHi �Hp . Since Hi is the fixed point set
of the hyperbolic reflection si , the conjugate wsiw

�1 is again a hyperbolic reflection
and its fixed point set is precisely wHi .

At the end of this section we establish the following three results:

Lemma 4.8 (The word distance is the hyperplane distance) The number of hyper-
planes of the tiling separating wx from w0x equals jw0�1wjS .

Lemma 4.9 (Pencil of hyperplanes) There exists a positive integer M > 0 such that
for any w;w0 2W , the set R of hyperplanes of the tiling separating wx from w0x

contains a subset T with jT j � 1
M
jRj, and moreover two distinct hyperplanes in T

are disjoint.

Lemma 4.10 (No pair of asymptotic hyperplanes) There exists a positive constant
D D D.P / such that for any two hyperplanes H;H 0 of the tiling we have either
H \H 0 ¤∅ or d.H;H 0/�D .

We now use these three results to finish the argument.

We will show that there is a positive constant c > 0 such that for w;w0 2W we have

(�) dHp .wx; w0x/� cjw0�1wjS

(the reverse inequality is not a problem). It is enough to work with w ¤ w0 .

Let R be the set of hyperplanes of the tiling which separate wx from w0x . By
Lemma 4.8 we have

(1) jRj D jw0�1wjS :

By Lemma 4.9 there exists a subset T �R such that

(2) jT j �
1

M
jRj;

and moreover two distinct hyperplanes in T are disjoint. The geodesic segment �
of Hp from wx to w0x crosses successively the hyperplanes of T , so we may write
T D fH1; : : : ;Hng and � meets first H1 , then H2 and so on. It follows that

dHp .wx; w0x/� dHp .wx;H1/C dHp .H1;H2/

C � � �C dHp .Hn�1;Hn/C dHp .Hn; w
0x/

� 2d.x; @P /C .n� 1/D;
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where D is the constant of Lemma 4.10. Up to replacing D by min.D; d.x; @P // we
have thus

(3) dHp .wx; w0x/� nD:

Combining (1), (2) and (3) we obtain the relation (�) with c D D
M

.

We finally turn to the proof of the remaining statements. We will consider an embedded
copy of the Cayley graph G.W;S/ inside Hp . We first embed the set of vertices by
the orbital map w 7! wx . Note that the injectivity of this map follows by Poincaré’s
Theorem 4.2, since x is in the interior of P . We then map each edge Œw;ws� by a
constant speed geodesic segment joining wx to wsx , thus getting a W–equivariant map
G.W;S/!Hp . We now check that this map is injective. The midpoint q of Œw;ws�

maps to the midpoint m of Œwx; wsx�. Observe that m belongs to both tiles wP and
wsP since by Lemma 4.4 the orthogonal projection of wx onto the hyperplane of fixed
points of wsw�1 belongs to wP . It follows that the intersection of Œwx; wsx� with
the interior of wP is the segment Œwx;mŒ, and similarly the intersection of Œwx; wsx�

with the interior of wsP is the segment �m; wsx�.

Assume now two points y;y0 inside two edges Œw;ws� and Œw0; w0s0� of G.W;S/ get
identified inside Hp , and let z denote their common image. We may assume y 2 �w; q�

and y0 2 �w0; q0� (with q; q0 the midpoints of Œw;ws�; Œw0; w0s0�). If y¤ q (or y0¤ q0 )
then wx and w0x are contained in the interior of the same tile and thus wx Dw0x , so
in fact w D w0 . Moreover Œwx; z�D Œw0x; z� and it follows by extending the geodesic
segment until we reach the boundary of the tile that mDm0 . By extending further this
geodesic we get that wsx D w0s0x , so that ws D w0s0 , and finally y D y0 .

To finish the argument assume y D q and y0 D q0 . Since the orthogonal projection
of the whole polyhedron wP onto the hyperplane H D Fix.wsw�1/ belongs to the
codimension-one face F DH \wP (Lemma 4.4), and because x is interior to P we
deduce that the point m (midpoint of Œwx; wsx�) belongs to the relative interior of
F . Similarly m is in the relative interior of H \wsP . Moreover wP and wsP are
the only two tiles containing m. It follows that fw;wsg D fw0; w0s0g, and so y D y0 .
This concludes the proof of the injectivity of the map G.W;S/!Hp .

Proof of Lemma 4.8 Let .w0 D w;w1; : : : ; wn D w
0/ be a combinatorial geodesic

in .W;S/ from w to w0 . For i D 1; : : : ; n set ti D wiw
�1
i�1

. The ti are pairwise
distinct reflections of .W;S/. We now consider the sequence of tiles P0Dw0P;P1D

w1P; : : : ;Pn D wnP . Two consecutive tiles intersect. So if a hyperplane H of the
tiling separates wx from w0x then it must separate the interior of two consecutive tiles
Pi�1;Pi . It then follows that H contains the relative interior of the codimension-one

Geometry & Topology, Volume 17 (2013)



On some convex cocompact groups in real hyperbolic space 2461

face Pi�1\Pi . Thus the reflection along H is ti . So the number of hyperplanes of
the tiling separating wx from w0x is the combinatorial distance dS .w;w

0/.

Proof of Lemma 4.9 As we have just seen the hyperplanes of R correspond to the
half-spaces of .W;S/ which separate w from w0 . Moreover two hyperplanes of the
tiling are disjoint iff the product of the corresponding reflections is of infinite order.
We now let X be the CAT.0/ cube complex associated to the wall-space .W;S/, as
in Niblo–Reeves [22]. In particular the 1–skeleton of X contains the Cayley graph of
.W;S/ as a totally geodesic subgraph.

Niblo and Reeves showed that there exists a positive constant M DM.W;S/ such
that any family of M C 1 hyperplanes of the Cayley graph contains a pair of nested
hyperplanes (see [22, Lemma 3]). This shows that the Niblo–Reeves cube complex
has dimension �M . Recall that the hyperplanes (resp, half-spaces) of X correspond
bijectively to the walls (resp, half-spaces) of .W;S/. Moreover in this construction,
crossing walls correspond to intersecting hyperplanes.

So to conclude the argument it is enough to prove the following:

Lemma 4.11 (Pencils in finite-dimensional cube complexes) Let X be a CAT.0/
cube complex of dimension M . Then for any two vertices v; v0 2 X 0 at distance
n there is a family T of hyperplanes of X separating v from v0 such that any two
hyperplanes of T are disjoint and moreover jT j � 1

M
n.

We will in fact construct T as a sequence of hyperplanes with the additional property
that two consecutive hyperplanes have non-disjoint cubical neighborhoods.

Proof of the cubical statement Let e1; : : : ; ed be the edges of X at v which are
the initial edges of combinatorial geodesics from v to v0 . Then it is well known that
e1; : : : ; ed span a cube Q1 at v . In particular d �M . Let v1 be the vertex opposite
to v inside Q.

If v1 D v
0 we are done. Otherwise, let R (resp, R1 ) be the set of hyperplanes of X

separating v from v0 (resp, v1 from v0 ). Then RDR1 t fH1; : : : ;Hdg, where Hi

is the hyperplane dual to ei . By induction there is a set T1 �R1 such that any two
hyperplanes of T1 are disjoint, T1 contains a hyperplane K1 adjacent to v1 , and

jT1j �
1

M
jR1j D

1

M
.jRj � d/�

1

M
jRj � 1:

One of the hyperplanes Hi cutting Q must be disjoint from K1 , otherwise there would
exist a .dC1/–cube Q0 at v1 cut by all hyperplanes H1; : : : ;Hd ;K1 . Then there
would be one more edge at v sitting on a geodesic from v to v0 (through v1 ). The set
T D T1[H1[ � � � [Hd has the desired properties.
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This completes the proof of Lemma 4.9.

Proof of Lemma 4.10 Let "1 denote the smallest of the distances d.F;G/ where
F;G are disjoint faces of P , and F has codimension one. Under the assumption on
P we note that "1 is positive.

Let H;H 0 be two hyperplanes of the tiling such that H \H 0 D∅. We show that for
.x;x0/ 2 H �H 0 we have d.x;x0/ � D D min.˛0; "1

2
/ where ˛0 D ˛0.P / is some

positive constant that we will choose later.

So let .x;x0/ 2H �H 0 . Up to letting W act on the situation we may assume x 2 P

and H is a boundary hyperplane of P . The corresponding face is F D P \H . Up to
moving slightly both x and x0 we may assume each point of the segment Œx;x0� is
contained in at most one of the hyperplanes of the tiling. Note that under this genericity
assumption F has codimension one. Up to applying the reflection along H we may
also assume that H separates the interior of P from x0 .

We can order the hyperplanes of the tiling which cut Œx;x0�, namely H0;H1; : : : ;H` , in
such a way that the sequence xiDHi\Œx;x

0� is increasing from x to x0 . Note H0DH

and H` DH 0 . None of the open geodesic segments �xi ;xiC1Œ meets a hyperplane of
the tiling, so there exists a (unique) tile PiC1 such that Œxi ;xiC1�� PiC1 . The face
spanned by xi in both Pi and PiC1 has codimension one, and we denote it by Fi .
For example F0 D F .

We also consider the non-increasing sequence of faces defined inductively by G0DF0 ,
GiC1DGi\FiC1 . Let kC1 be the integer such that Gk ¤∅ and GkC1D∅ (recall
H` \H0 D∅).

We may assume k > 0. For k D 0 means that Œx0x1� is a geodesic segment joining
two disjoint codimension-one faces of P1 . It follows that d.x0;x1/ � "1 and thus
d.x;x0/� "1 .

Let N be the total number of hyperplanes of the tiling whose intersection with P is
non-empty (note N is bounded by a number depending only on the isomorphism class
of the Coxeter system .W;S/). Let also ˛ > 0 denote some positive constant, that we
will specify later.

Either one the distances d.xi ;xiC1/; i D 0; 1; : : : ; k � 1 is at least ˛
N

. In that case we
have d.x;x0/� ˛0 where we define ˛0 D ˛

N
.

So from now on we assume that all distances d.xi ;xiC1/; i D 0; 1; : : : ; k�1 are < ˛
N

.
Thus d.x0;xi/ < ˛ for i D 1; : : : ; k . We will prove that in this case x is near to Gk .
We first retract the situation inside P as follows. For each i D 0; 1; : : : ; k the reflection
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sHi
maps the tile PiC1 onto Pi , and fixes pointwise both faces Gi and GiC1 . The

retraction map �i W Pi ! P is then defined inductively by �1 D sH0 jP1
; : : : ; �iC1 D

�i ı sHi jPiC1
; : : : . Note each �i is the restriction of an isometry. The retractions �i

and �iC1 agree on Fi . Each face Fi is sent to a codimension-one face F 0i of P . We
note that for each i D 0; 1; : : : ; k we have Gi D F 0

0
\ F 0

1
\ � � � \ F 0i . In particular

Gk D F 0
0
\F 0

1
\ � � � \F 0

k
.

By retracting the points xi we find that d.x;F 0i / � ˛ and thus d.x;H 0i / � ˛ where
H 0i denote the boundary hyperplane of P spanned by F 0i . The Poincaré polyhedron
P is simple so the dimension of G is p� .kC 1/, and the span of G coincides with
H 0

0
\ � � � \H 0

k
. We argue that there is a function ˛G W .0;C1/! .0;C1/ such that

if a point y of Hp is at distance � ˛.r/ of each hyperplane H 0
0
;H 0

1
; : : : ;H 0

k
then y

is r –near to the intersection of the Hi .

We can now specify the value of ˛ : we choose ˛ DminG a proper face of P ˛G.
"1

2
/.

With this choice of ˛ our point x is "1

2
–near to the span of G . Since P is non-obtuse

it follows that the orthogonal projection p of x onto the span of G belongs to G .
The tile Pk contains both faces Fk and FkC1 , and G � Fk . So the distance from
p 2G to xkC1 2FkC1 is � "1 (recall FkC1 has codimension one). We conclude that
d.x;xkC1/�

"1

2
and we are done.

We note that we can slightly simplify the characterization of convex cocompact reflection
groups:

Theorem 4.12 (Convex cocompact reflection groups II) Let P � Hp denote a
Poincaré polyhedron and let W be the group generated by the reflections along the
boundary hyperplanes of P .

Then W is convex cocompact if and only if

(i) W is word-hyperbolic, and

(ii) P has no pair of asymptotic codimension-one faces.

Proof If W is convex cocompact then it is a hyperbolic group, and by Theorem 4.7
there is no pair F;G of asymptotic faces, where F has codimension one and G has
arbitrary codimension.

Conversely assume W is word-hyperbolic but not convex cocompact. Then by
Theorem 4.7 there is a codimension-one face F and a face G such that F \G D∅
but d.F;G/ D 0. Then G is an intersection of k codimension-one faces: G D

P \H1 \ � � � \Hk , and we may choose G so that k is minimal. Let H0 be the
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boundary hyperplane of P such that F DH0\P . We will show k D 1 which is the
conclusion we need.

Let then � 2 @1Hr�1 be a point belonging to both @1F and @1G . Let us now
consider a horosphere of Hr�1 centered at � , which we denote by H� . It follows that
each reflection sHi

for i D 0; 1; : : : ; k preserves H� , and so does the whole group W 0

generated by these reflections.

As a discrete isometry group of euclidean space W 0 is virtually abelian. But .W;S/

is assumed to be hyperbolic, so either W 0 is finite or W 0 is virtually Z.

Since F \G D∅ the group W 0 must be infinite.

So the only remaining possibility is that W 0 is virtually Z. Assume by contradiction
that k > 1. Since d.H0;Hi/D 0 it follows by minimality of k that H0 \Hi ¤ ∅.
Note .W 0;S 0 D fsH0

; sH1
; : : : ; sHk

g/ is a Coxeter system where any two reflections
sHi

; sHj
generate a finite group. By the work of Davis and Meier [9] the infinite

Coxeter system .W 0;S 0/ is one-ended, a contradiction.

4.3 Constructions using the Witt–Tits quadratic form

In this section we use the so-called Witt–Tits quadratic form for two opposite purposes:

(i) Construct families of convex cocompact reflection groups in hyperbolic space.

(ii) Construct new families of word-hyperbolic Coxeter groups which cannot be
represented as discrete reflection group in hyperbolic spaces.

Definition 4.13 (The Witt–Tits quadratic form) For any (abstract) Coxeter system
.W;S D fs1; : : : ; sr g/ with Coxeter matrix .mij /1�i;j�r let B denote the bilinear
form on Rr defined by B.ei ; ej / D � cos. �

mij
/. The corresponding quadratic form

q.W ;S/ is called the Witt–Tits form. When the signature of the Witt–Tits form is
.r � 1; 1/ we say the Witt–Tits quadratic form is hyperbolic. In this case there is a
Poincaré polyhedron P inside Rr�1;1 whose Gram matrix is precisely given by the
B.ei ; ej /. Unit vectors normal to the codimension-one faces of P are just the vectors
of the standard basis of Rr�1;1 . We call P the Witt–Tits polyhedron of .W;S/ (see
also Vinberg [25]). Using the reflections along the sides of P we get a representation
of .W;S/ into Isom.Hr�1/, which we call the Witt–Tits representation. So having a
hyperbolic Witt–Tits quadratic form is one way to get a reflection group.

Lemma 4.14 (Pairs of asymptotic hyperplanes in the Witt–Tits polyhedron) Assume
the Witt–Tits form is hyperbolic and r �3. Then the hyperplanes Hi ;Hj are asymptotic
exactly when B.ei ; ej /D�1.
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Proof The non-zero vector ei C ej is isotropic (so it defines a point � in @1Hr�1 )
and orthogonal to both ei and ej (so � 2 @1Hi \ @1Hj ).

So the Witt–Tits representation is convex cocompact only if all coefficients mij are
finite, in other words .W;S/ is 2–spherical.

Proposition 4.15 (Convex cocompact Witt–Tits representation) Suppose .W;S D

fs1; : : : ; sr g/ is a Coxeter system with a Witt–Tits quadratic form of signature .r�1; 1/.

Then the Witt–Tits representation is convex cocompact if and only if

(i) W is 2–spherical, and

(ii) W is word-hyperbolic.

Proof The two conditions are clearly necessary. The converse holds by applying
Theorem 4.12.

We note that the Witt–Tits polyhedron may have to appear in any representation by
reflection of a Coxeter system.

Lemma 4.16 Let P � Hp be a Poincaré polyhedron with boundary hyperplanes
H1; : : : ;Hr and let W be the group generated by the set S D fsH1

; : : : ; sHr
g of

reflections. Let En1; : : : ; Enr denote the unit vectors of Rp;1 which are orthogonal to
H1; : : : ;Hr and point outwards of P . Let EV �Rp;1 be the linear subspace spanned
by En1; : : : ; Enr . Set V DHp \ EV . We denote by G the Gram matrix of P and by B

the matrix of the Witt–Tits quadratic form.

(i) V �Hp is empty or a totally geodesic W–invariant subspace. The action of W

on the orthogonal complement of EV is trivial. The matrices G and B have the
same coefficient in the place i; j provided Hi \Hj ¤∅ (in other words: mij

is finite). In particular if .W;S/ is 2–spherical then G D B .

(ii) V ¤ ∅ iff W is infinite and not virtually euclidean. In that case we obtain
a hyperbolic Poincaré polyhedron Q � V by setting Q D V \P , which we
call the core of P . The r boundary hyperplanes of the polyhedron Q� V are
H1\V; : : : ;Hr \V and the Gram matrix of Q is G .

(iii) Assume W is not virtually abelian. Then the Gram matrix G is non-degenerate,
and the dimension of EV is r if and only if G is non singular.
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Proof (i) This is obvious.

(ii) By homogeneity V D∅ precisely when the quadratic form of Rp;1 is � 0 on EV .
Either it is positive on EV n fE0g, in which case W is finite. Or EV intersects the set of
isotropic vectors along a line, corresponding to a unique point � 2 @1Hp . Thus all
reflections sHi

fix � , and W is virtually abelian.

So assume now that V ¤ ∅. Since V is W–invariant each hyperplane Hi has a
non-empty intersection with V . For x 2 V \Hi the plane spanned by x and Eui is
contained inside EV and it intersects Hp along an infinite geodesic line that leaves Hi

orthogonally. So in fact Hi \ V is a hyperplane of V . For x 2 P we consider the
decomposition x D EvC En with Ev 2 EV and En orthogonal to EV . Since V \Hp ¤∅ the
quadratic form of Rp;1 has hyperbolic signature on EV , and thus it is positive definite
on the subspace orthogonal to EV . It follows that En has non-negative norm and so Ev
has negative norm. In other words Ev defines a point v in V . Moreover for each i we
have hhEv; Eniii D hhx; Eniii, so v 2 P . The intersection QD P \V is thus non-empty,
and it is bounded by the V –hyperplanes V \Hi . We note that the vectors Eni are in
EV , are normal to the V –hyperplanes V \Hi , and are pointing outwards Q. It follows
that GramQDG .

(iii) Assume W is not virtually abelian. Then either EV is a euclidean subspace, or it
is a hyperbolic subspace of .Rp;1; hh�ii/. In both cases the restriction of the bilinear
form hh�ii is non degenerate.

Assume first one of the Eni is a linear combination of the others. Then the i th line of
G is the corresponding linear combination of the others lines of G , so G is singular.
Conversely assume the i th line – say, the first line – is a linear combination of the
others lines of G . It means that there are real numbers �2; : : : ; �r such that Eu WD
En1 �

P
k>1 �k Enk satisfies hhEu; Eniii D 0 for each i . Since EV is spanned by the Eni it

follows that Eu is in the kernel of the hyperbolic bilinear form of Rp;1 restricted to EV .
Under our assumption we get EuD E0, so the dimension of EV is < r .

Corollary 4.17 (2–spherical implies rigidity of the core) Let P �Hp be a Poincaré
polyhedron with boundary hyperplanes H1; : : : ;Hr and let W be the group generated
by the set of reflections S D fsH1

; : : : ; sHr
g. Assume W is infinite, not virtually

abelian and .W;S/ is 2–spherical. Assume moreover that B is non-singular. Then
the Witt–Tits quadratic form is hyperbolic, the core Q of P is non empty and it is
isometric to the Witt–Tits polyhedron. The action of W onto the span V of Q in Hp

is conjugate to the Witt–Tits representation.

So under the assumptions of the Corollary there is essentially one possible representation
of .W;S/ as a discrete reflection group.
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Corollary 4.18 Let .W;S/ be an abstract 2–spherical Coxeter system with non
degenerate Witt–Tits form. Assume W is word-hyperbolic and non elementary.

Then .W;S/ can be realized as a discrete reflection group in some real hyperbolic
space Hp if and only if the signature of the Witt–Tits form is .r � 1; 1/.

In that case W preserves a totally geodesic subspace V of Hp of dimension r �1, the
action of W onto V is conjugate to the Witt–Tits representation and the action on the
orthogonal complement of V is trivial. Moreover W is convex cocompact on both V

and Hp .

The equivalence stated in this corollary appears in Felikson–Tumarkin [11] who also
refer to Vinberg [25, Lemma 12]. We thank Anna Felikson for telling us about the
rigidity phenomenon for 2–spherical Poincaré polyhedra in hyperbolic space.

In the rest of this section we will compute the signature of the Witt–Tits quadratic form
under certain type of assumptions which will usually imply that all coefficients mij

are large (for i ¤ j ).

So for r � 3 we consider a r � r Coxeter matrix M D .mij /. (Recall this means
M is symmetric, mii D 1 and for i ¤ j we have mij 2 f2; 3; 4; : : : g [ f1g.) Let
.W;S D fs1; : : : ; sr g/ be the associated Coxeter system. Let B be the matrix of the
Witt–Tits quadratic form.

Definition 4.19 (m–large, m–small) Let m � 2 be some natural number. We say
the Coxeter matrix M is m–large if mij �m for any pair .i; j / with i ¤ j . We say
M is m–small if mij �m for any pair .i; j / with i ¤ j .

The following is clear:

Lemma 4.20 Assume the matrix M is 4–large, r � 3 and all the mij are finite. Then
.W;S/ is a hyperbolic non elementary 2–spherical Coxeter system.

In fact it suffices to assume that M is 3–large and there is no triple fi; j ; kg with
mij Dmjk Dmik D 3.

Proposition 4.21 (Examples of hyperbolic Witt–Tits form)

(i) Assume all mij are infinite for i¤j (and r � 3 as usual). Then B is hyperbolic.

(ii) For any r � 3 there is a natural number m.r/� 4 such that if the r � r Coxeter
matrix M is m.r/–large then B is hyperbolic.

(iii) Assume all mij are equal to some fixed number m � 4 for i ¤ j . Then B is
hyperbolic. This is still true if for i ¤ j all the mij are equal to 3 and r � 4.
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Combining Corollary 4.18, Lemma 4.20 and Proposition 4.21(iii) we obtain:

Corollary 4.22 (The Coxeter group W .p;m/) For p 2N;p� 3 and m2N;m� 3,
let M.p;m/ be the p�p Coxeter matrix all of whose off-diagonal entries are m. Let
W .p;m/ be the associated Coxeter group.

The signature of the corresponding Witt–Tits form is .p� 1; 1/ unless mD p D 3.

For m � 4 the Witt–Tits representation of W .p;m/ is convex cocompact in Hp�1 .
For mD 3 and p � 4 it is not.

In Kapovich [19] another reflection representation for W .p;m/ is considered, but it
occurs in Hp . Kapovich needs this specific representation because it allows the use
of right-angled polygons, which in turn lead to quasi-isometric embedding results.
Nevertheless the core of the polyhedron considered in [19] is isometric to the Witt–Tits
polyhedron.

For the next result let us denote by 3W .p;m/ the semi-direct product of W .p;m/ with
Sp . (Note the action of Sp on the generating set fs1; : : : ; spg extends to an action by
automorphisms of W .p;m/ because all the mij are equal to the same number m.)

Proposition 4.23 (Extending the representation) Let p2N;p�3 and m2N;m�4.
The Witt–Tits representation of W .p;m/ on Hp�1 extends to a convex cocompact
representation of 3W .p;m/.

This completes the proof of Lemma 1.2.

Proof Since W .p;m/� Isom.Hp�1/ is already convex cocompact by Corollary 4.22
and �3W .p;m/ WW .p;m/

�
<1

it is sufficient to prove that the action of W .p;m/ extends to 3W .p;m/.

We note that the permutation group Sp acts on the standard basis by preserving the
Witt–Tits quadratic form of W .p;m/. This induces an isometric action of Sp on
Hp�1 that preserves the Witt–Tits polyhedron by permuting the codimension-one faces.
Clearly Sp\W .p;m/DfIdHp�1g and Sp normalizes W .p;m/. Moreover the action
of Sp by conjugation on W .p;m/ is the action by diagram automorphisms. It follows
that the subgroup of Isom.Hp�1/ generated by Sp and W .p;m/ is isomorphic to
3W .p;m/.
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4.4 Computation of signatures, proof of Proposition 4.21 and new exam-
ples

In this section we fix a natural number r � 3. We consider a regular graph G with
vertex set f1; : : : ; rg, and we denote by k its valency (note that k � r � 1). Let A be
the adjacency matrix of G , and let xA be the adjacency matrix of the complementary
graph. Thus Ir CAC xA is the r � r matrix J whose entries are all equal to 1.

Now let a; xa 2 Œ0I 1�; a � xa be fixed real numbers, and let us consider the r � r real
symmetric matrix B D Ir � aA�xa xA. We study the signature of the quadratic form

QG;a;xaW X 7!
t XBX

or in other words we study the sign of the eigenvalues of B . We use the decomposition

B D .1Cxa/Ir C .xa� a/A�xaJ:

When aD cos. �
m
/ and aD xa (or equivalently G is the complete graph) the matrix B

is the matrix of the Witt–Tits form of W .r;m/. So the computation below will prove
Proposition 4.21. But we want to study also Coxeter systems where the off-diagonal
coefficients mij can take two distinct values. Our examples are in the same spirit
as the examples of Benoist and de la Harpe [2], but our Coxeter systems will not be
right-angled.

Let U denote the r –column all of whose entries are equal to 1. Since G is k –regular
we have

BU D .1Cxa/U C .xa� a/kU � rxaU D Œ.1� akC .1C k � r/xa/�U:

So U is an eigenvector and the corresponding eigenvalue is

�U D�Œ.ak � 1/Cxa..r � 1/� k/�:

Note �U < 0 in the cases we will be interested in. For example since xa� a we have
.ak � 1/C xa..r � 1/� k/ � a.r � 1/, so when a � 1

2
and r � 4 we have �U < 0.

When r D 3 and either a > 1
2

or aD 1
2

and xa > a we still have �U < 0. We could
also assume xa> 1

.r�1/�k
.

Now if V is any column whose sum of components is zero (in other words: if V is in
the kernel of J ), we have

BV D .1Cxa/V C .xa� a/AV:

Note that since G is regular we have JAD kJ and so the term AV is still in the kernel
of J . We deduce that the kernel of J is invariant under B . Since on ker J we have

BV D .1Cxa/V C .xa� a/AV
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our initial eigenvalue problem for B reduces to the corresponding problem for the
matrix T D .1C xa/Ir C .xa � a/A (restricted to the invariant subspace ker J ). In
other words up to an affine transformation we are really studying the spectrum of the
adjacency matrix of G .

For instance when G is the complete graph on r vertices, then AD J � Ir , and we
deduce that for V 2 ker J we have BV D .1C a/V , so that the signature of Q is
.r � 1; 1/.

This proves part (i) and (iii) of Proposition 4.21. Part (ii) follows from (i) by a standard
continuity argument.

We now assume G is bipartite, and let V be the vector with entries 1 on black vertices
and �1 on white vertices. Then AV D�kV so that

BV D .1Cxa/V C .xa� a/AV D .1Cxa� k.xa� a//V;

so A has a second negative eigenvalue, provided k is large enough with respect to
xa� a: specifically k > .1Cxa/=.xa� a/. The discussion above leads to the following:

Lemma 4.24 For fixed numbers 1
2
� a< xa� 1 let k be any natural number such that

k > .1Cxa/=.xa� a/. Let r D 2k and let G be the complete bipartite graph on kC k

vertices. Precisely: in G the integers i < j are connected by an edge iff 1� i � k and
kC 1� j � 2k .

Then the signature of the quadratic form QG;a;xa is .r � 2; 2/. In particular QG;a;xa is
not degenerate and not hyperbolic.

Proof Let …� be the plane spanned by the vector U all of whose entries are 1, and
the vector V whose entries are 1 on the first k coordinates, and �1 on the last k

coordinates. By the previous discussion and the assumption k > .1Cxa/=.xa� a/ we
have QG;a;xa < 0 on …� .

Now let EC be the subspace consisting in vectors X such that the sum of the k first
coordinates is 0, and the sum of the k last coordinates is 0 too. Observe dim.EC/D
2.k � 1/D r � 2. Moreover since X 2 ker.J / we have

BX D .1Cxa/X C .xa� a/AX:

Clearly AX D 0 so that BX D .1Cxa/X . Thus QG;a;xa > 0 on EC .
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Corollary 4.25 Let m;m0 be natural numbers with 4�m<m0 . Let k be any natural
number such that

k >
1C cos

�
�
m0

�
cos

�
�
m0

�
� cos

�
�
m

� :
Let r D 2k and let G be the complete bipartite graph on k C k vertices. Consider
the Coxeter system .W;S/ of rank r with mij D m if i; j are linked inside G , and
mij Dm0 when i; j are linked inside the complementary graph of G .

Then .W;S/ is word hyperbolic, but does not act by reflection on Hp in any dimension.

Note the contrast with the case when all off-diagonal entries are the same number
m� 4, that is the case of W .r;m/.

5 Faithful representation of large even-gonal groups into two-
dimensional Coxeter groups

5.1 Various complications for the action of a group on the set of hyper-
planes

Let X be a simply-connected even-gonal complex such that all polygons have at least
four sides, and all vertex links have girth � 4. Let � be an automorphism group of X .

In this section we adapt the various definitions leading to the notion of a special action
on a CAT.0/ cube complex (see Haglund–Wise [16]) to the present context, where
ramified hyperplanes are allowable. We then study variations around it.

Since X is even-gonal and CAT.0/ we may consider the family H of its straight
hyperplanes. And since X is furthermore large at vertices we may also consider the
family R of its ramified hyperplanes.

For H a hyperplane in either H or R:

(i) The group � has a self-intersection at H provided there is some 
 2 � such
that 
H and H intersect.

(ii) The group � has a self-osculation at H provided there is some 
 2 � such that

H and H osculate.

For H;K two hyperplanes both in either H or R:

(iii) The group � has an inter-osculation at H;K provided H and K osculate and
there is some 
 2 � such that 
K and H intersect.
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(iv) (Here we assume H;K are ramified hyperplanes) The group � has an am-
biguous intersection at H;K provided H and K intersect at the center of a
2m–gon and there is some 
 2 � such that 
K and H intersect at the center of
a 2m0–gon with m0 ¤m.

Definition 5.1 (Special action) The action of � on R (resp, H) is special provided
none of the above complications arise: � has no self-intersection, no self-osculation,
no inter-osculation and no ambiguous intersection (this is required only for pairs of
ramified hyperplanes).

When X is 2m–gonal (for example a square complex) then any automorphism group
� � Aut.X / acts without ambiguous intersections.

Note also that when X is a CAT.0/ square complex we have R D H so the two
notions of special actions coincide, and we recover the notion of a C –special group as
in Haglund–Wise [16]. In fact considering the action of � onto the Sageev CAT.0/
cube complex Y associated with the (straight) hyperplanes we note that the � –action
on Y is cubically special if and only if the � –action on H is special. Indeed the
hyperplanes of X and Y are in 1–1 correspondence, intersections of pairs of hyperplane
occur in X iff they occurs in Y , and the same equivalence holds true for osculations
(since �.X /� 4).

We will consider another kind of situation that is relevant to our context:

For H a hyperplane in R:

(i 0 ) The group � has a self-osculation at distance 1 at H provided there is some

 2 � such that the polygonal neighborhoods of 
H and H are disjoint but
connected by an edge.

(ii 0 ) The group � has a self-osculation at distance � n at H provided there is some

 2 � such that 
H ¤H but the polygonal neighborhoods of 
H and H are
connected by a combinatorial path of length � n.

Thus for example self-intersection or self-osculation at H amounts to self-osculation
at distance 0 at H .

Definition 5.2 (Strongly clean) The action of the group � on R has no self-osculation
at distance � n provided there is no ramified hyperplane H at which it has a self-
osculation at distance � n.

The action of the group � on R is strongly clean provided it has no self-osculation at
distance � 1.
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Lemma 5.3 (Separability properties imply virtually special) Let X be a locally
compact simply-connected even-gonal complex with �.X /� 4. Let � act cocompactly
on X .

(i) If the stabilizers of the ramified hyperplanes are separable subgroups of � then
for any integer n� 0 the group � has a finite index subgroup � 0 whose action
on R has no self-intersection and no self-osculation at distance � n.

(ii) If double cosets of crossing ramified hyperplane stabilizers are closed in the
profinite topology then � has a finite index subgroup � 00 whose action has no
inter-osculation and no ambiguous intersection.

Note the corresponding statement for straight hyperplanes appears in [16] (except of
course for the non ambiguous intersections). We provide a complete argument for the
convenience of the reader.

Proof (i) Let H 2 R be a ramified hyperplane, and let N.H / be its polygonal
neighborhood. We define Bn.H; �/D fg 2 � j there is a combinatorial path of length
� n connecting N.H / with g.N.H //g.

Then Bn.H; �/ is a union of double cosets modulo the stabilizer �H of H in � :

Bn.H; �/D �H b1�H t � � � t�H bk�H :

Note the union is finite because under the assumptions �H is cocompact on H .
By separability, let � 0

1
be a finite index subgroup containing �H and disjoint from

fb1; : : : ; bkg. Clearly Bn.H; �
0
1
/ D ∅. This means that � 0

1
does not self-intersect

H , and has no self-osculation at distance � n at H . The same properties hold for
any finite index subgroup of � 0

1
; in particular we may replace � 0

1
by a finite index

subgroup � 0.H / which is normal in � .

Choose such a finite index normal subgroup � 0.H / for each ramified hyperplane of a
finite family that intersects each orbit of � in R (recall � is cocompact on X ).

Then the intersection of the finitely many subgroups � 0.H / yields a finite index
subgroup � 0 whose action on R has no self-intersection and no self-osculation at
distance � n.

(ii) We now assume that for each crossing pair .H;K/ of ramified hyperplanes the
double coset �H�K is closed in the profinite topology.

So let H;K be crossing ramified hyperplanes and define Cross.H;K; �/Dfg2� jgK

and H are crossingg. Note 12Cross.H;K; �/, and by cocompactness there are finitely
many elements c0 D 1; c1; : : : ; c` such that

Cross.H;K; �/D �H c0�K t�H c1�K t � � � t�H c`�K :
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By separability let N be a finite index normal subgroup such that

�H�K \

� [̀
iD1

ciN

�
D∅:

We define � 00
2
D�H N and observe that � 00

2
is a finite index subgroup of � that contains

�H . Moreover we claim that

Cross
�
H;K; � 002

�
D �H

�
�K \�

00
2

�
:

Indeed for g 2 Cross.H;K; � 00
2
/ we may write g D hcik for some i D 0; 1; : : : ; `

and with h 2 �H ; k 2 �K , and since g 2 � 00
2

we also have g D h0n with h0 2 �H

and n 2N . It then follows that cikn�1k�1 D h�1h0k�1 . Thus ciN \�H�K is not
disjoint, i D 0 and k D h�1h0n 2 � 00

2
\�K .

As a consequence � 00
2

has the following property: for g 2 � 00
2

such that gK crosses H

at the center of a polygon P 0 , there exists 
 2 �H such that 
P D P 0 (in particular
P and P 0 have the same number of sides);

Note the above property remains true for any finite index subgroup of � 00
2

. In particular
we may replace � 00

2
by a finite index subgroup � 00.H;K/ that is normal in � .

Choose such a finite index normal subgroup � 00.H;K/ for each pair of crossing ramified
hyperplanes of a finite family that intersects each orbit of � in f.H;K/ 2R�R such
that H;K cross g.

Then the intersection of the finitely many subgroups � 00.H;K/ yields a finite index
subgroup � 00 whose action on R has no ambiguous intersections.

In the construction of � 00
2

above we may also choose the finite index normal subgroup
N so that �H�K \.

Ss
iD1diN /D∅, where d1; : : : ds are finitely many elements such

that if gK osculates H then g 2
SiDs

iD1�H di�K . The same argument as above shows
that � 00

2
has no inter-osculation at .H;K/. It follows that � 00 has no inter-osculation

on R.

Corollary 5.4 (Cubically special implies polygonally special) Let X be a locally
compact simply-connected even-gonal complex with �.X /� 4. Assume X is Gromov-
hyperbolic. Let � � Aut.X / be a discrete cocompact subgroup.

If � is virtually cubically special then � has a finite index normal subgroup whose
action on the set of ramified hyperplanes of X is special and strongly clean.

Proof Since � is virtually cubically special and Gromov-hyperbolic it follows by [16]
that each quasi-convex subgroup and each double coset of quasiconvex subgroups is
separable. We conclude by applying Lemma 5.3.
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5.2 The Coxeter group associated to an action without ambiguous inter-
section

In this section we assume X is a CAT.0/ even-gonal complex with �.X / � 4. Let
� � Aut.X / be a group acting without ambiguous intersection. We explain how to
associate to the � –action onto X a Coxeter system .W;S/ .D .W .�;X /;S.�;X ///.

5.2.1 Generators For each ramified hyperplane H 2R we denote by ŒH � the orbit
of H in R under � . For each such orbit let sŒH � denote a generating involution. We
let S.X; �/D fsŒH � jH 2Rg. So when � is cocompact the generating set S.X; �/

is finite.

5.2.2 Relations Consider the map mW fH;Kg 7! N [ f1g that sends a pair of
distinct ramified hyperplanes H;K to the number mH ;K D k if N.H /\N.K/ is a
2k –gon, and to mH ;K D1 otherwise (that is: when H \K D∅).

Let H;K be two crossing ramified hyperplanes, so that N.H /\N.K/ consists in
some polygon P with 2m sides. Since � acts without ambiguous intersection for any
two crossing ramified hyperplanes H 0;K0 with H 0 2 ŒH �;K0 2 ŒK� the intersection
N.H 0/\N.K0/ consists in a single polygon P 0 having again 2m sides. This means
that the map fH;Kg 7!mH ;K induces a map on the set of pairs of distinct orbits of
ramified hyperplanes. We denote it by mŒH �;ŒK � , and extend as usual this map on the
full set of pairs by setting mŒH �;ŒH � D 1.

We then impose the relations

.sŒH �sŒK �/
mŒH �;ŒK � D 1

and denote by .W .�;X /;S.�;X // the corresponding Coxeter system.

5.2.3 The W–distance For each combinatorial path � D .v0; v1; : : : ; vn/ we define
the W–length of � (denoted lengthW .�/) to be the product s.v0;v1/s.v1;v2/ : : : s.vn�1;vn/

where s.vi ;viC1/D 1 if vi D viC1 and otherwise s.vi ;viC1/ is the generator sŒH � where
ŒH � is the � –orbit of the ramified hyperplane dual to the edge joining vi to viC1 .

Lemma 5.5 (Properties of the W–length)

(i) For g 2 � we have lengthW .g�/D lengthW .�/.

(ii) For concatenable paths �1; �2 we have

lengthW .�1�2/D lengthW .�1/ lengthW .�2/:

(iii) If � and � 0 are homotopic with fixed extremities then

lengthW .�/D lengthW .�
0/:
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Proof We give an argument only for the third property. Since X is simply-connected
there is a sequence .�0 D �; �1; : : : ; �k D �

0/ such that �i and �iC1 differ by one
of the three types of elementary moves:

(i) .: : : ; v; v; : : : /$ .: : : ; v; : : : /,

(ii) .: : : ; v; w; v; : : : /$ .: : : ; v; : : : /,

(iii) polygonal move (or “exchange condition”); see below.

The homotopy invariance of the W–length is obvious in the case of the two first
moves. Thus it suffices to consider the case when � and � 0 are two complementary
paths of the boundary of a polygon P . Let H;K be the two ramified hyperplanes
dual two edges of P . Then .sŒH �sŒK �/

mH;K D 1 and this can be reformulated as
lengthW .�/D lengthW .�

0/.

Corollary 5.6 (W–distance) There is a map ı .D ıW /W X 0 �X 0!W such that

(i) for any combinatorial path � from p to q we have ı.p; q/D lengthW .�/,

(ii) for any three vertices p; q; r we have ı.p; r/D ı.p; q/ı.q; r/, and

(iii) for any two vertices p; q and any element g 2 � we have ı.gp;gq/D ı.p; q/.

The above map ıW we call the W–distance on X 0 .

5.2.4 Morphisms � !W and polygonal maps X !†.W ;S / For any vertex
p 2X 0 we consider two maps:

fpW X
0
�!W 'pW � �!W

q 7�! ıW .p; q/ 
 7�! ıW .p; 
p/

Lemma 5.7 (i) 'p is a morphism and 'q D ı.p; q/
�1'pı.p; q/.

(ii) fp defines a simplicial map X 1!†1.W;S/.

(iii) fp is 'p –equivariant.

Proof We use Corollary 5.6.

(i) We have

'p.
1
2/D ıW .p; 
1
2p/D ıW .p; 
1p/ıW .
1p; 
1
2p/D 'p.
1/'p.
2/:

For two vertices p; q in X and for 
 2 � we have

'q.
 /D ıW .q; 
q/D ıW .q;p/ıW .p; 
p/ıW .
p; 
q/D ıW .p; q/
�1'p.
 /ıW .p; q/:

Geometry & Topology, Volume 17 (2013)



On some convex cocompact groups in real hyperbolic space 2477

(ii) Assume q; q0 are the endpoints of an edge e . If H is the ramified hyperplane
dual to e then ıW .q; q0/D sŒH � . Thus

fp.q
0/D ıW .p; q

0/D ıW .p; q/ıW .q; q
0/D fp.q/sŒH �:

It follows that fp.q/; fp.q
0/ are the endpoints of an edge of †.W;S/.

(iii) We have

fp.
q/D ıW .p; 
q/D ıW .p; 
p/ıW .
p; 
q/D 'p.
 /fp.q/:

Thus for each choice of a basepoint p in X we get a morphism 'pW �!W , which
we call a special representation.

5.2.5 Naturality of the construction

Theorem 5.8 (Normalizer extension) Let X be a CAT.0/ even-gonal complex with
�.X /� 4. Assume S� � Aut.X / has a normal subgroup � whose action on X has no
ambiguous intersections.

Let .W;S/ be the Coxeter group associated with the � –action on X . Then for each
choice p of a base vertex in X there is a natural action of S� onto †.W;S/ with the
following properties:

(i) The morphism x'pW
S� ! Aut.†.W;S// extends 'pW � � Aut.X / ! W �

Aut.†.W;S//.

(ii) The image of S� in Aut.†.W;S// normalizes W .

(iii) fpW X
1!†1.W;S/ is x'p –equivariant.

Proof Since � is normal in S� it follows that S� acts on the set S of � –orbits in
the set R of ramified hyperplanes. For each x
 2 S� let �.x
 / be the corresponding
permutation of S . If ŒH �; ŒK� have representative H;K such that N.H /\N.K/ is a
2m–gon P then for x
 2S� we have N.x
H /\N.x
K/D x
P , a 2m–gon again. Thus
the permutation morphism �W S�!S.S/ extends to a morphism �W S�! Aut.W;S/.
Note � D idW on � . Note also that for any combinatorial path � and any element
x
 2 S� we have

lengthW .x
�/D �.x
 /.lengthW .�//:

It follows that ıW .x
p; x
q/D �.x
 /.ıW .p; q//.

Let p denote a fixed vertex inside X . For each x
 2 S� we define an automorphism
x'p.x
 / 2 Aut.†.W;S//. We first define x'p.x
 / as a permutation of †0.W;S/DW ,
by setting

x'p.x
 /.w/D ıW .p; x
p/�.x
 /.w/:
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Observe that

x'p.x
1x
2/.w/D ıW .p; x
1x
2p/�.x
1x
2/.w/

D ıW .p; x
1p/ıW .x
1p; x
1x
2p/�.x
1/�.x
2/

D ıW .p; x
1p//�.x
1/ŒıW .p; x
2p/��.x
1/Œ�.x
2/.w/�

D x'p.x
1/Œx'p.x
2/.w/�:

Thus x'pW � ! S.W / is indeed a morphism. We then note that for each x
 2 S�
the permutation x'p.x
 / defines a simplicial automorphism of †1.W;S/. Indeed for
s D sŒH � 2 S we have

x'p.x
 /.ws/D ıW .p; x
p/�.x
 /.ws/

D ıW .p; x
p/�.x
 /.w/�.x
 /.s/

D x'p.x
 /.w/sŒx
H �:

This computation indeed shows that two edges having the same S –label (say: s ) are
mapped to two edges with the same label (�.x
 /.s/). Thus x'p.x
 / extends to a unique
automorphism of the Davis complex †.W;S/, and moreover x'pW

S�!Aut.†.W;S//

is a morphism.

Note that for any 
 2 � and any w 2W we have

x'p.
 /.w/D ıW .p; 
p/�.
 /.w/D ıW .p; 
p/w D 'p.
 /w:

Thus x'p extends 'p .

It remains to check that x'p.x
 / normalizes W � Aut.†.W;S//. So let w 2 W �

Aut.†.W;S// and let us compute the x'p.x
 /–conjugate of w . For g2W D†0.W;S/

we have

Œx'p.x
 / ıw ı x'p.x
 /
�1�.g/D x'p.x
 /

�
wx'p.x


�1/.g/
�

D x'p.x
 /
�
wıW .p; x


�1p/�.x
�1/.g/
�

D ıW .p; x
p/�.x
 /
�
wıW .p; x


�1p/�.x
�1/.g/
�

D ıW .p; x
p/�.x
 /.w/�.x
 /
�
ıW .p; x


�1p/
�
g:

Thus x'p.x
 /ıwı x'p.x
 /
�1 acts on †0.W;S/ as the multiplication by an element of W

(namely ıW .p; x
p/�.x
 /.w/�.x
 /.ıW .p; x

�1p//). It follows that x'p.x
 / normalizes

W inside Aut.†.W;S//.

Remark 5.9 The naturality statement above holds also for virtually special actions on
CAT.0/ cube complexes. In other words if S� acts geometrically on a CAT.0/ cube
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complex X and has a finite index subgroup � whose action is special (C –special in the
sense of [16]), then each special representation 'pW �!W .�;X / extends naturally to
a morphism x'pW

S�! Aut.†.W .�;X // whose image is contained in the normalizer
of W .�;X /.

5.3 The special representation is faithful and convex cocompact when the
action is special

Proposition 5.10 Let X be a CAT.0/ even-gonal complex with �.X / � 4. Let
� � Aut.X / be a group acting without ambiguous intersections. Let .W;S/ .D

.W .�;X /;S.�;X /// be the associated Coxeter system.

Then (for each vertex p 2 X 0 ) the map fpW X
1 ! †1.W;S/ extends to a local

isometry fpW X !†.W;S/ if and only if the � –action is special.

Proof The argument is the same as for actions on CAT.0/ cube complexes. Here are
more details.

Claim 1 fpW X
1 ! †1.W;S/ is locally injective iff the �–action on the set of

ramified hyperplanes has no self-intersection and no self-osculation.

Indeed let a; b be two distinct edges through some vertex q 2 X 0 . Let x;y de-
note the endpoints of a; b distinct from q . Recall fp.x/ D fp.q/ıW .q;x/ and
fp.y/ D fp.q/ıW .q;y/. Thus f .a/ D f .b/ if and only if ıW .q;x/ D ıW .q;y/.
And by construction of ıW we have ıW .q;x/D ıW .q;y/ if and only if the ramified
hyperplanes dual to a; b are in the same � –orbit. According to Lemma 2.21 this
corresponds either to a self-intersection (when a; b are adjacent in link.q;X /) or to a
self-osculation (when a; b are not adjacent in link.q;X /).

Now assume that fpW X
1! †1.W;S/ is locally injective. For any 2m–gon P of

X let H;K be the two ramified hyperplanes through the center of P . Since � has
no self-intersection we have ŒH � ¤ ŒK�, and thus a boundary path � winding once
around @P is mapped under fp to a closed edge path of length 2mD 2mŒH �ŒK � , whose
edge-labels alternate between sŒH � and sŒK � . Thus fp.�/ is the boundary path of some
2–cell of †.W;S/. In other words fpW X

1!†1.W;S/ extends to a polygonal map
fpW X !†.W;S/.

Claim 2 Assuming that fpW X
1 ! †1.W;S/ is locally injective, the polygonal

extension fpW X !†.W;S/ is a local isometry if and only if the � –action on the set
of ramified hyperplanes has no inter-osculation.

Geometry & Topology, Volume 17 (2013)



2480 Marc Desgroseilliers and Frédéric Haglund

Indeed fp fails to be a local isometry at some vertex q exactly if there are two edges
a; b containing q such that a; b are not contained in a polygon of X but fp.a/; fp.b/

are contained in a polygon of †.W;S/. This latter condition exactly means that there
exists g 2 � such that gH crosses K , where H;K denote the ramified hyperplanes
dual to a; b . Since a; b are not contained in a polygon of X the ramified hyperplanes
H;K are osculating by Lemma 2.21). Thus � has an inter-osculation at H;K .

Combining Corollary 5.4, Proposition 5.10 and Theorem 5.8 we obtain:

Corollary 5.11 Let X be a Gromov-hyperbolic CAT.0/ even-gonal complex with
�.X / � 4. Assume S� � Aut.X / is a discrete cocompact subgroup and that S� is
virtually cubically special. Then:

(i) S� has a finite index normal subgroup � whose action on X has no ambiguous
intersections and whose action on the set of ramified hyperplanes of X is special
and strongly clean.

(ii) Let .W;S/ be the Coxeter group associated with the � –action on X . Then (for
each base vertex p 2X ) there is a monomorphism x'pW

S�!Aut.†.W;S// and
there is a x'p –equivariant isometric embedding fpW X !†.W;S/. Moreover
the image of S� is contained in the normalizer of W inside Aut.†.W;S//.

Observe that so far we have proved the first part of Theorem 1.4. Yet the target Coxeter
group W is not 2–spherical in general. The additional property of strong cleanliness
will be used to remedy this. But let us first make the following:

Remark 5.12 (Equivalence of the two notions of virtually special) Let X be a
CAT.0/ even-gonal complex with n.X / � 8 and �.X / � 4 and let � be a discrete
cocompact subgroup of Aut.X /. Then � is virtually cubically special if and only if �
has a finite index subgroup whose action on X has no ambiguous intersections and
whose action on the set of ramified hyperplanes of X is special.

The ) direction follows from Corollary 5.11 above. The ( direction follows since
by Proposition 5.10 the group � is virtually convex cocompact in a Coxeter group
with all mij at least 4, and by Haglund–Wise [17] every hyperbolic Coxeter group is
virtually cubically special.

5.4 Constructing a convex cocompact 2–spherical representation

The goal of this section is to complete the proof Theorem 1.4.
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Lemma 5.13 (Embedding a subcomplex in a Coxeter quotient) Let .W;S/ be a
Coxeter system all of whose finite mij are �3, so that †.W;S/ is a CAT.0/ polygonal
complex.

Let X �†.W;S/ be a convex subcomplex. Assume that for any i; j with mij DC1

the connected components of the forest X \†1
ij .W;S/ have diameter �Dij � 1.

Choose arbitrary numbers Mij �Dij for each pair i; j with mij DC1. If mij <1

set Mij Dmij . Let .V;S/ be the Coxeter system with Coxeter matrix .Mij /. Then the
polygonal map †.W;S/!†.V;S/ induces an isometric embedding X 1!†1.V;S/.

Here †1
ij .W;S/ denotes the subgraph of the 1–skeleton †1.W;S/ whose edges have

label either i or j . Since mij D1 each component of †1
ij .W;S/ is a line.

Proof The polygonal map X !†.V;S/ has no missing half-cell and thus we may
apply Proposition 3.2.

Lemma 5.14 (Geometry of strongly clean) Let � denote a uniform lattice of a
CAT.0/ even-gonal complex X , with �.X / � 4. Assume � acts on R in a special
and strongly clean way.

Let .W;S/ be the Coxeter system associated with the � –action and consider the
polygonal embedding fpW X !†.W;S/ (for some fixed vertex p 2X 0 ).

Then for any i; j with mij DC1 the connected components of the forest fp.X /\

†1
ij .W;S/ have diameter � 2.

Proof Let .xa; xb; xc/ be an edge path of length 3 in †1
ij .W;S/. Assume the labels of

xa; xc are i , and the label of xb is j , and assume moreover that xaD fp.a/; xb D fp.b/

are contained in fp.X /. Let v be the vertex of b not contained in a. We denote by
H .H 0/ the ramified hyperplanes dual to a .b/. The label i .j / corresponds to the
� –orbit of H .H 0/.

To conclude we claim that the ramified hyperplane K dual to any edge e containing
v does not receive the label i . Indeed if a[ e is contained in some polygon of X ,
then a[ b is contained in the same polygon and this contradicts mij D1. So a[ e

is contained in no polygon of X , and (since e is connected to a through the edge b )
this implies that e is not in the polygonal neighborhood N.H / of H . Then since
the action of � is strongly clean and N.K/ is connected to N.H / by the edge b we
deduce that K is not in the same � –orbit as H .
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Proof of Theorem 1.4 Let S� denote a uniform lattice of a CAT.0/ even-gonal
complex X , with �.X /� 4 and n.X /� 6. Assume S� is virtually cubically special.

Apply Corollary 5.11 to produce a finite index normal subgroup � whose action on
X is special (with associated Coxeter system .W;S/) and strongly clean. Extend the
� –action on †.W;S/ to a S� –action as in Corollary 5.11.

Choose some finite natural number m� 3: for example set mD n.X /=2. Observe that
when all polygons of X have the same number of sides – say 2m� 6 – the previous
formula yields precisely m.

Let .V;S/ be the 2–spherical Coxeter system obtained by replacing by m each infinite
mij in the Coxeter matrix of .W;S/. Any automorphism of the diagram of .W;S/ is
still an automorphism of the diagram of .V;S/, and thus the quotient map W ! V

induces a surjection of the semi-direct product of W with Autdiag.W;S/ onto the semi-
direct product of V with Autdiag.V;S/. In other words the morphism W !V extends
to a morphism Normalizer.W;Aut.†.W;S///! Normalizer.V;Aut.†.V;S/// (see
Lemma 2.28). And thus we can extend the composition �!W ! V to a morphism
S� ! Normalizer.W;Aut.†.W;S///! Normalizer.V;Aut.†.V;S///. By applying
successively Lemma 5.14 and Lemma 5.13 we deduce that the composition X !

†.W;S/ ! †.V;S/ is injective. By equivariance it follows that the morphism
S�! Aut.†.V;S// is also injective.

When n.X / � 8 then .V;S/ is hyperbolic and thus convex cocompactness follows
since S� preserves the quasi-isometrically embedded subcomplex X .
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