
msp
Geometry & Topology 17 (2013) 2595–2600

Erratum for “An elementary
construction of Anick’s fibration”

BRAYTON GRAY

STEPHEN THERIAULT

A misstatement in the key proof in our paper “An elementary construction of Anick’s
fibration” led to an erroneous proof. This is repaired by a slightly longer argument.

55P35, 55P40, 55P45; 55Q51, 55Q52

In [3] we gave an elementary construction of Anick’s space T2n�1 . This is a space
that lies in a fibration sequence

(1) �2S2nC1 �n�! S2n�1 �! T2n�1 �!�S2nC1;

where the composition

�2S2nC1 �n�! S2n�1 E2

�!�2S2nC1

is the .pr /th power map. This construction was carried out for any p > 3 and r > 1.

We also proved in [3, Theorem 4.3] that there is an H –space structure on T2n�1 such
that (1) is an H –fibration. The proof of 4.3 involved induction over the skeleton of
T2n�1 and cycled through 14 steps ..a/; : : : ; .n//. The argument given for the proof
of [3, Theorem 4.3(l)] contained an incorrect statement and is not valid. The purpose
of this note is to supply a correct proof for 4.3(l).

We will abbreviate T2n�1 as T and write T m for the m skeleton of T . Recall that
Wb

a is the collection of all spaces that are of the homotopy type of a simply connected
locally finite wedge of mod ps Moore spaces for a� s � b .

At the point in the induction that we need to prove 4.3(l), we have established the
following facts:

(A) †T 2npk'Gk _Wk with Wk 2WrCk�1
r (4.3(j))

(B) Gk DGk�1[˛k
CP2npk

.prCk/ (4.3(c))

(C) ˛k W P2npk

.prCk/!Gk�1 is divisible by prCk�1 (4.3(c), (e))

(D) †2T 2npk2WrCk
r (4.3(b))
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We will also use various steps in the induction at level k �1. Our task here is to prove:

Theorem 4.3(l) Gk ^T 2npk2WrCk
r

In the discussion of 4.3(l), steps 1 and 2 correctly conclude that Gk�1 ^ T 2npk 2
WrCk�1

r . To complete the proof of 4.3(l), we need to analyze the cofibration sequence
from (B) above:

P2npk

.prCk/^T 2npk ˛k^1���!Gk�1 ^T 2npk �!Gk ^T 2npk

:

P2npk

.prCk/ is a double suspension and consequently P2npk

.prCk/^T 2npk2WrCk
r

by (D) above. Since Gk�1 ^T 2npk2WrCk�1
r it suffices to show that ˛k ^ 1 is null

homotopic. A key ingredient in establishing this is the fact that ˛k ^ 1 is divisible
by prCk�1 .

To clarify the situation, we recall from [3, 4.2] the following:

Lemma 1 [3] Suppose W 2Wb
a and f W Pk.ps/!W is divisible by pb . Write

W 'W1 _W2 with W1 2Wb�1
a and W2 2Wb

b
. Then:

(a) f factors through W2 up to homotopy.

(b) Suppose that W2 is .d � 1/ connected and k < pd . Then f � �.

Proof This follows from the results of Cohen, Moore and Neisendorfer [1] and uses
the Hilton–Milnor Theorem. Details are in [3].

In order to apply this, we need to know the exponents of the torsion in the integral
cohomology of T .

Lemma 2 Let �p.m/ be the number of powers of p in m. Then

H k.T /D
�

Z=prC�p.m/ if k D 2mn,
0 otherwise.

Proof This is implicit in [3] and follows from the integral cohomology Serre spectral
sequence for the fibration

S2n�1 �! T �!�S2nC1

using the divided power relations in H�.�S2nC1/.
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We now apply the Lemma 1 with aD r , b D r Ck � 1 and W DGk�1^T 2npk

. We
write W DW1 _W2 and, by Lemma 2, we have

W2 D P2npk�1C1.prCk�1/^
� p�1_

iD1

P2npk�1i.prCk�1/_P2npk

.prCk/
�

and by Lemma 1(a), ˛k ^ 1 factors through W2 .

Define ADP2npk�1C1.prCk�1/^P2npk�1

.prCk�1/ and write W2'A_B , where
B is 6npk�1�2 connected. We now apply the splitting:

�.A_B/'�A��.B Ì�A/:

Since B Ì�A is 6npk�1�2 connected, the component of ˛k ^ 1 in B Ì�A is null
homotopic by part (b) of Lemma 1; this implies that ˛k ^ 1 factors through A, ie

P2npk�1C1.prCk�1/^P2npk�1

.prCk�1/

' P4npk�1

.prCk�1/_P4npk�1C1.prCk�1/:

Lemma 3 Suppose f W Pm.psC1/!P2n.ps/ has order psC1 . Then m > .4n�2/p .

Proof By [1], there is a decomposition

�P2n.ps/' S2n�1fpsg ��
� _

k>2

P .2n�2/kC3.ps/
�
:

Since the identity of S2n�1fpsg has order ps (see [4]), it follows that some component
of the second factor has order psC1 . By Lemma 1(b) we have m > ..2n� 2/kC 2/p

for some k > 2.

It now follows that ˛k ^ 1 has no essential component in P4npk�1

.prCk�1/ and we
conclude that ˛k ^ 1 factors as

P2npk

.prCk/^T 2npk ˛�! P4npk�1C1.prCk�1/
ˇ�!Gk�1 ^T 2npk

;

where ˇ induces a monomorphism in mod p homology.

We will describe a map  W Gk�1 ^T 2npk ! P4npk�1C1.prCk�1/ with the property
that ˇ is a homotopy equivalence and  .˛k ^ 1/� �. This will complete the proof
that ˛k ^ 1 is null homotopic and Gk ^T 2npk2WrCk�1

r .

The map  is the composition

Gk�1 ^T 2npk�!Gk�1 ^�S2n�1
1^H

pk�1�������!Gk�1 ^�S2npk�1C1

��!Gk�1 ^S2npk�1�! P4npk�1C1.prCk�1/:
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The first map in the composition comes from the projection in the fibration (1), and the
second is the James Hopf invariant. We will describe � in the next proposition. The
fourth map comes from the splitting of †Gk�1 (from (B) and (D)).

Proposition 4 Suppose G is a co–H space. Then the inclusion

G ^X �!G ^�†X

has a left homotopy inverse �W G^�†X !G^X and � commutes with co–H maps.

Proof Let � be the composition

G ^�†X
�^1���!†�G ^�†X '�G ^†�†X

1^���!�G ^†X
�^1��!G ^X;

where � is the co–H structure map and � is an evaluation. Clearly � is a left homotopy
inverse to the inclusion. If �W G!H is a co–H map, there is a homotopy commutative
square:

G
� //

�

��

†�G

†��

��
H

�0 // †�H

(see [2]), so the map � is natural for co–H maps.

We now show that  induces an isomorphism in mod p homology in dimension
4npk�1C 1. We first note that

H4npk�1C1.Gk�1 ^T 2npk

/ŠH2npk�1C1.Gk�1/˝H2npk .T 2npk

/ŠZ=p:

From the description of  and the fact that �� is an epimorphism, it follows that 
induces an isomorphism in this dimension. Since ˇ induces a monomorphism, ˇ
induces an isomorphism in dimension 4npk�1C1. This implies that ˇ is a homotopy
equivalence.

It suffices, then, to show that  .˛k ^ 1/ is null homotopic. We appeal to the con-
struction of  . We will show that the following diagram is homotopy commutative:

P2npk
.prCk / ^ T 2npk //

˛k ^1

��

P2npk^ �S2nC1 //

˛k^1

��

P2npk^ �S2npk�1C1
� //

˛k^1

��

P2npk^ S2npk�1

˛k^1

��
Gk�1^ T 2npk // Gk�1^ �S2nC1 // Gk�1^ �S2npk�1C1

� // Gk�1^ S2npk�1

The composition of the bottom row with the splitting

Gk�1 ^S2npk�1�! P4npk�1C1.prCk/
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is the map  , and the right hand vertical arrow is a suspension of ˛k . By (B) and (D)
in case k � 1, †Gk�1 is a retract of †Gk so †˛k is null homotopic. Consequently
it suffices to show that the diagram is homotopy commutative. The only issue is
resolved by:

Proposition 5 ˛k is a co–H map.

The proof of this result relies on:

Lemma 6 �Gk�1 ��Gk�1 2WrCk�1
r

Proof We use (A) in case k � 1 to see that the space �Gk�1 ��Gk�1 is a retract of
�†T 2npk�1��†T 2npk�1

. Using the James splitting of †�†X , we have for any X

�†X ��†X '
_
i>1
j>1

†X .i/ ^X .j/;

so it suffices to show that †T 2npk�1^ T 2npk�12 WrCk�1
r . However by (A) in

case k � 1,

†T 2npk�1^T 2npk�1 ' .Gk�1 _Wk�1/^T 2npk�1

'Gk�1 ^T 2npk�1 _Wk�1 ^T 2npk�1

;

which is in WrCk�1
r by 4.3(l) and (D) in case k � 1.

Proof of Proposition 5 It is required to show that there is a homotopy commutative
diagram:

P2npk

.prCk/
˛k //

�0
��

Gk�1

�k�1

��
P2npk

.prCk/_P2npk

.prCk/
˛k_˛k // Gk�1 _Gk�1

Let �W P2npk

.prCk/!Gk�1_Gk�1 be the difference between the two sides. Since
�0 is a suspension, � is divisible by prCk�1 . The composition

p2npk

.prCk/
��!Gk�1_Gk�1 �!Gk�1 �Gk�1

is null homotopic, since each component is ˛k �˛k . However there is a splitting [2]

�.Gk�1_Gk�1/'�.Gk�1 �Gk�1/��.�Gk�1 � �Gk�1/
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so � factors through �Gk�1 ��Gk�1 and is divisible by prCk�1 in this space:

P2npk

.prCk/
prCk�1

�����! P2npk

.prCk�1/ �!�Gk�1 � �Gk�1 �!Gk�1_Gk�1

Since �Gk�1 ��Gk�1 2WrCk�1
r by Lemma 6, we can apply Lemma 1 with aD r

and b D r C k � 1. In this case

W2 D�P2npk�1C1.prCk�1/��P2npk�1C1.prCk�1/;

which is 4npk�1�2 connected. Since 2npk <p.4npk�1�1/, � is null homotopic.
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