

Erratum for "An elementary construction of Anick's fibration"

BRAYTON GRAY STEPHEN THERIAULT

A misstatement in the key proof in our paper "An elementary construction of Anick's fibration" led to an erroneous proof. This is repaired by a slightly longer argument.

55P35, 55P40, 55P45; 55Q51, 55Q52

In [3] we gave an elementary construction of Anick's space T_{2n-1} . This is a space that lies in a fibration sequence

(1)
$$\Omega^2 S^{2n+1} \xrightarrow{\pi_n} S^{2n-1} \longrightarrow T_{2n-1} \longrightarrow \Omega S^{2n+1},$$

where the composition

$$\Omega^2 S^{2n+1} \xrightarrow{\pi_n} S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1}$$

is the $(p^r)^{\text{th}}$ power map. This construction was carried out for any $p \ge 3$ and $r \ge 1$.

We also proved in [3, Theorem 4.3] that there is an H-space structure on T_{2n-1} such that (1) is an H-fibration. The proof of 4.3 involved induction over the skeleton of T_{2n-1} and cycled through 14 steps $((a), \ldots, (n))$. The argument given for the proof of [3, Theorem 4.3(1)] contained an incorrect statement and is not valid. The purpose of this note is to supply a correct proof for 4.3(1).

We will abbreviate T_{2n-1} as T and write T^m for the m skeleton of T. Recall that \mathcal{W}_a^b is the collection of all spaces that are of the homotopy type of a simply connected locally finite wedge of mod p^s Moore spaces for $a \le s \le b$.

At the point in the induction that we need to prove 4.3(1), we have established the following facts:

(A)
$$\Sigma T^{2np^k} \simeq G_k \vee W_k$$
 with $W_k \in \mathcal{W}_r^{r+k-1}$ (4.3(j))

(B)
$$G_k = G_{k-1} \cup_{\alpha_k} CP^{2np^k}(p^{r+k})$$
 (4.3(c))

(C)
$$\alpha_k: P^{2np^k}(p^{r+k}) \to G_{k-1}$$
 is divisible by p^{r+k-1} (4.3(c), (e))

(D)
$$\Sigma^2 T^{2np^k} \in \mathcal{W}_r^{r+k}$$
 (4.3(b))

Published: 18 September 2013

We will also use various steps in the induction at level k-1. Our task here is to prove:

Theorem 4.3(l)
$$G_k \wedge T^{2np^k} \in \mathcal{W}_r^{r+k}$$

In the discussion of 4.3(1), steps 1 and 2 correctly conclude that $G_{k-1} \wedge T^{2np^k} \in \mathcal{W}_r^{r+k-1}$. To complete the proof of 4.3(1), we need to analyze the cofibration sequence from (B) above:

$$P^{2np^k}(p^{r+k}) \wedge T^{2np^k} \xrightarrow{\alpha_k \wedge 1} G_{k-1} \wedge T^{2np^k} \longrightarrow G_k \wedge T^{2np^k}.$$

 $P^{2np^k}(p^{r+k})$ is a double suspension and consequently $P^{2np^k}(p^{r+k}) \wedge T^{2np^k} \in \mathcal{W}_r^{r+k}$ by (D) above. Since $G_{k-1} \wedge T^{2np^k} \in \mathcal{W}_r^{r+k-1}$ it suffices to show that $\alpha_k \wedge 1$ is null homotopic. A key ingredient in establishing this is the fact that $\alpha_k \wedge 1$ is divisible by p^{r+k-1} .

To clarify the situation, we recall from [3, 4.2] the following:

Lemma 1 [3] Suppose $W \in \mathcal{W}_a^b$ and $f \colon P^k(p^s) \to W$ is divisible by p^b . Write $W \simeq W_1 \vee W_2$ with $W_1 \in \mathcal{W}_a^{b-1}$ and $W_2 \in \mathcal{W}_b^b$. Then:

- (a) f factors through W_2 up to homotopy.
- (b) Suppose that W_2 is (d-1) connected and k < pd. Then $f \sim *$.

Proof This follows from the results of Cohen, Moore and Neisendorfer [1] and uses the Hilton–Milnor Theorem. Details are in [3].

In order to apply this, we need to know the exponents of the torsion in the integral cohomology of T.

Lemma 2 Let $v_p(m)$ be the number of powers of p in m. Then

$$H^{k}(T) = \begin{cases} Z/p^{r+\nu_{p}(m)} & \text{if } k = 2mn, \\ 0 & \text{otherwise.} \end{cases}$$

Proof This is implicit in [3] and follows from the integral cohomology Serre spectral sequence for the fibration

$$S^{2n-1} \longrightarrow T \longrightarrow \Omega S^{2n+1}$$

using the divided power relations in $H^*(\Omega S^{2n+1})$.

Geometry & Topology, Volume 17 (2013)

We now apply the Lemma 1 with a=r, b=r+k-1 and $W=G_{k-1}\wedge T^{2np^k}$. We write $W=W_1\vee W_2$ and, by Lemma 2, we have

$$W_2 = P^{2np^{k-1}+1}(p^{r+k-1}) \wedge \left(\bigvee_{i=1}^{p-1} P^{2np^{k-1}i}(p^{r+k-1}) \vee P^{2np^k}(p^{r+k}) \right)$$

and by Lemma 1(a), $\alpha_k \wedge 1$ factors through W_2 .

Define $A = P^{2np^{k-1}+1}(p^{r+k-1}) \wedge P^{2np^{k-1}}(p^{r+k-1})$ and write $W_2 \simeq A \vee B$, where B is $6np^{k-1}-2$ connected. We now apply the splitting:

$$\Omega(A \vee B) \simeq \Omega A \times \Omega(B \rtimes \Omega A).$$

Since $B \rtimes \Omega A$ is $6np^{k-1}-2$ connected, the component of $\alpha_k \wedge 1$ in $B \rtimes \Omega A$ is null homotopic by part (b) of Lemma 1; this implies that $\alpha_k \wedge 1$ factors through A, ie

$$P^{2np^{k-1}+1}(p^{r+k-1}) \wedge P^{2np^{k-1}}(p^{r+k-1})$$

$$\simeq P^{4np^{k-1}}(p^{r+k-1}) \vee P^{4np^{k-1}+1}(p^{r+k-1}).$$

Lemma 3 Suppose $f: P^m(p^{s+1}) \to P^{2n}(p^s)$ has order p^{s+1} . Then $m \ge (4n-2)p$.

Proof By [1], there is a decomposition

$$\Omega P^{2n}(p^s) \simeq S^{2n-1}\{p^s\} \times \Omega \Big(\bigvee_{k \ge 2} P^{(2n-2)k+3}(p^s)\Big).$$

Since the identity of $S^{2n-1}\{p^s\}$ has order p^s (see [4]), it follows that some component of the second factor has order p^{s+1} . By Lemma 1(b) we have $m \ge ((2n-2)k+2)p$ for some $k \ge 2$.

It now follows that $\alpha_k \wedge 1$ has no essential component in $P^{4np^{k-1}}(p^{r+k-1})$ and we conclude that $\alpha_k \wedge 1$ factors as

$$P^{2np^k}(p^{r+k}) \wedge T^{2np^k} \xrightarrow{\alpha} P^{4np^{k-1}+1}(p^{r+k-1}) \xrightarrow{\beta} G_{k-1} \wedge T^{2np^k},$$

where β induces a monomorphism in mod p homology.

We will describe a map $\gamma\colon G_{k-1}\wedge T^{2np^k}\to P^{4np^{k-1}+1}(p^{r+k-1})$ with the property that $\gamma\beta$ is a homotopy equivalence and $\gamma(\alpha_k\wedge 1)\sim *$. This will complete the proof that $\alpha_k\wedge 1$ is null homotopic and $G_k\wedge T^{2np^k}\in \mathcal{W}_r^{r+k-1}$.

The map γ is the composition

$$G_{k-1} \wedge T^{2np^k} \longrightarrow G_{k-1} \wedge \Omega S^{2n-1} \xrightarrow{1 \wedge H_{p^{k-1}}} G_{k-1} \wedge \Omega S^{2np^{k-1}+1}$$

$$\xrightarrow{\xi} G_{k-1} \wedge S^{2np^{k-1}} \longrightarrow P^{4np^{k-1}+1}(p^{r+k-1}).$$

The first map in the composition comes from the projection in the fibration (1), and the second is the James Hopf invariant. We will describe ξ in the next proposition. The fourth map comes from the splitting of ΣG_{k-1} (from (B) and (D)).

Proposition 4 Suppose G is a co-H space. Then the inclusion

$$G \wedge X \longrightarrow G \wedge \Omega \Sigma X$$

has a left homotopy inverse ξ : $G \wedge \Omega \Sigma X \rightarrow G \wedge X$ and ξ commutes with co–H maps.

Proof Let ξ be the composition

$$G \wedge \Omega \Sigma X \xrightarrow{\nu \wedge 1} \Sigma \Omega G \wedge \Omega \Sigma X \simeq \Omega G \wedge \Sigma \Omega \Sigma X \xrightarrow{1 \wedge \epsilon} \Omega G \wedge \Sigma X \xrightarrow{\epsilon \wedge 1} G \wedge X,$$

where ν is the co-H structure map and ϵ is an evaluation. Clearly ξ is a left homotopy inverse to the inclusion. If $\phi \colon G \to H$ is a co-H map, there is a homotopy commutative square:

$$G \xrightarrow{\nu} \Sigma \Omega G$$

$$\phi \downarrow \qquad \qquad \Sigma \Omega \phi \downarrow$$

$$H \xrightarrow{\nu'} \Sigma \Omega H$$

(see [2]), so the map ξ is natural for co–H maps.

We now show that γ induces an isomorphism in mod p homology in dimension $4np^{k-1}+1$. We first note that

$$H_{4np^{k-1}+1}(G_{k-1} \wedge T^{2np^k}) \cong H_{2np^{k-1}+1}(G_{k-1}) \otimes H_{2np^k}(T^{2np^k}) \cong \mathbb{Z}/p.$$

From the description of γ and the fact that ξ_* is an epimorphism, it follows that γ induces an isomorphism in this dimension. Since β induces a monomorphism, $\gamma\beta$ induces an isomorphism in dimension $4np^{k-1}+1$. This implies that $\gamma\beta$ is a homotopy equivalence.

It suffices, then, to show that $\gamma(\alpha_k \wedge 1)$ is null homotopic. We appeal to the construction of γ . We will show that the following diagram is homotopy commutative:

The composition of the bottom row with the splitting

$$G_{k-1} \wedge S^{2np^{k-1}} \longrightarrow P^{4np^{k-1}+1}(p^{r+k})$$

Geometry & Topology, Volume 17 (2013)

is the map γ , and the right hand vertical arrow is a suspension of α_k . By (B) and (D) in case k-1, ΣG_{k-1} is a retract of ΣG_k so $\Sigma \alpha_k$ is null homotopic. Consequently it suffices to show that the diagram is homotopy commutative. The only issue is resolved by:

Proposition 5 α_k is a co-H map.

The proof of this result relies on:

Lemma 6
$$\Omega G_{k-1} * \Omega G_{k-1} \in \mathcal{W}_r^{r+k-1}$$

Proof We use (A) in case k-1 to see that the space $\Omega G_{k-1} * \Omega G_{k-1}$ is a retract of $\Omega \Sigma T^{2np^{k-1}} * \Omega \Sigma T^{2np^{k-1}}$. Using the James splitting of $\Sigma \Omega \Sigma X$, we have for any X

$$\Omega \Sigma X * \Omega \Sigma X \simeq \bigvee_{\substack{i \geqslant 1 \\ j \geqslant 1}} \Sigma X^{(i)} \wedge X^{(j)},$$

so it suffices to show that $\Sigma T^{2np^{k-1}} \wedge T^{2np^{k-1}} \in \mathcal{W}_r^{r+k-1}$. However by (A) in case k-1,

$$\Sigma T^{2np^{k-1}} \wedge T^{2np^{k-1}} \simeq (G_{k-1} \vee W_{k-1}) \wedge T^{2np^{k-1}}$$

$$\simeq G_{k-1} \wedge T^{2np^{k-1}} \vee W_{k-1} \wedge T^{2np^{k-1}},$$

which is in W_r^{r+k-1} by 4.3(1) and (D) in case k-1.

Proof of Proposition 5 It is required to show that there is a homotopy commutative diagram:

$$P^{2np^{k}}(p^{r+k}) \xrightarrow{\alpha_{k}} G_{k-1}$$

$$\downarrow^{\nu'} \downarrow \qquad \qquad \downarrow^{\nu_{k-1}} \downarrow$$

$$P^{2np^{k}}(p^{r+k}) \vee P^{2np^{k}}(p^{r+k}) \xrightarrow{\alpha_{k} \vee \alpha_{k}} G_{k-1} \vee G_{k-1}$$

Let $\Delta \colon P^{2np^k}(p^{r+k}) \to G_{k-1} \vee G_{k-1}$ be the difference between the two sides. Since ν' is a suspension, Δ is divisible by p^{r+k-1} . The composition

$$p^{2np^k}(p^{r+k}) \xrightarrow{\Delta} G_{k-1} \vee G_{k-1} \longrightarrow G_{k-1} \times G_{k-1}$$

is null homotopic, since each component is $\alpha_k - \alpha_k$. However there is a splitting [2]

$$\Omega(G_{k-1} \vee G_{k-1}) \simeq \Omega(G_{k-1} \times G_{k-1}) \times \Omega(\Omega G_{k-1} * \Omega G_{k-1})$$

Geometry & Topology, Volume 17 (2013)

so Δ factors through $\Omega G_{k-1} * \Omega G_{k-1}$ and is divisible by p^{r+k-1} in this space:

$$P^{2np^k}(p^{r+k}) \xrightarrow{p^{r+k-1}} P^{2np^k}(p^{r+k-1}) \longrightarrow \Omega G_{k-1} * \Omega G_{k-1} \longrightarrow G_{k-1} \vee G_{k-1}$$

Since $\Omega G_{k-1} * \Omega G_{k-1} \in W_r^{r+k-1}$ by Lemma 6, we can apply Lemma 1 with a = r and b = r + k - 1. In this case

$$W_2 = \Omega P^{2np^{k-1}+1}(p^{r+k-1}) * \Omega P^{2np^{k-1}+1}(p^{r+k-1}),$$

which is $4np^{k-1}-2$ connected. Since $2np^k < p(4np^{k-1}-1)$, Δ is null homotopic. \Box

References

- [1] **FR Cohen**, **JC Moore**, **JA Neisendorfer**, *The double suspension and exponents of the homotopy groups of spheres*, Ann. of Math. 110 (1979) 549–565 MR554384
- [2] **T Ganea**, Cogroups and suspensions, Invent. Math. 9 (1970) 185–197 MR0267582
- [3] **B Gray**, **S Theriault**, *An elementary construction of Anick's fibration*, Geom. Topol. 14 (2010) 243–275 MR2578305
- [4] **J Neisendorfer**, *Properties of certain H–spaces*, Quart. J. Math. Oxford Ser. 34 (1983) 201–209 MR698206

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago 851 S Morgan Street, Chicago, IL 60607-7045, USA

School of Mathematics, University of Southampton Southampton SO17 BJ, UK

brayton@uic.edu, S.D.Theriault@soton.ac.uk

http://homepages.math.uic.edu/~brayton/,

http://www.southampton.ac.uk/maths/about/staff/sdt1u11.page

Received: 24 March 2013 Revised: 24 April 2013

