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Proof of the Arnold chord conjecture
in three dimensions, II

MICHAEL HUTCHINGS

CLIFFORD HENRY TAUBES

In “Proof of the Arnold chord conjecture in three dimensions, I” [12], we deduced the
Arnold chord conjecture in three dimensions from another result, which asserts that
an exact symplectic cobordism between contact three-manifolds induces a map on
(filtered) embedded contact homology satisfying certain axioms. The present paper
proves the latter result, thus completing the proof of the three-dimensional chord
conjecture. We also prove that filtered embedded contact homology does not depend
on the choice of almost complex structure used to define it.

53D40, 57R58

1 Introduction

The main goal of this paper is to prove that an exact symplectic cobordism between
contact 3–manifolds induces a map on (filtered) embedded contact homology (ECH)
satisfying certain axioms. This result appears here as Theorem 1.9, and was previously
stated in Hutchings and Taubes [12, Theorem 2.4], where it was used to prove the Arnold
Chord Conjecture in three dimensions. This result also has additional applications, for
example it gives rise to new obstructions to symplectic embeddings in four dimensions;
see Hutchings [8]. Along the way to proving Theorem 1.9, we will also prove that
filtered ECH does not depend on the choice of almost complex structure used to define
it (Theorem 1.3 below). Although this paper is a sequel to [12], we will not use anything
from the latter paper except for some basic definitions. We begin by briefly reviewing
these definitions. For more about ECH, see Hutchings [7; 4] and the references therein.

1.1 Embedded contact homology

Let Y be a closed oriented 3–manifold. (For simplicity, all 3–manifolds in this paper
are assumed connected except where otherwise stated.) Let � be a contact form on
Y , let R denote the associated Reeb vector field, and let � D Ker.�/ denote the
associated contact structure. Assume that � is nondegenerate, ie, all Reeb orbits are
nondegenerate.
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2602 Michael Hutchings and Clifford Henry Taubes

Let J be an almost complex structure on R�Y such that J is R–invariant, J.@s/DR

where s denotes the R coordinate, and J sends � to itself, rotating � positively with
respect to the orientation on � given by d�. We call such an almost complex structure
symplectization-admissible. The reason for the terminology is that the noncompact
symplectic manifold .R�Y; d.es�// is called the “symplectization” of .Y; �/. Note
that a symplectization-admissible almost complex structure is equivalent to an almost
complex structure J on � that rotates positively with respect to d�. In particular, the
space of symplectization-admissible almost complex structures is contractible.

Given a generic symplectization-admissible structure J , and given � 2H1.Y /, the
embedded contact homology ECH�.Y; �; �IJ / is the homology of a chain complex
ECC�.Y; �; �IJ / defined as follows. Recall that an orbit set is a finite set of pairs
‚ D f.‚i ;mi/g, where the ‚i are distinct embedded Reeb orbits, and the mi are
positive integers. The homology class of the orbit set ‚ is defined by

Œ‚� WD
X

i

mi Œ‚i � 2H1.Y /:

The orbit set ‚Df.‚i ;mi/g is called admissible if miD 1 whenever ‚i is hyperbolic,
ie, the linearized Reeb flow around ‚i has real eigenvalues. Define ECC�.Y; �; �IJ /
to be the free Z=2–module generated by admissible orbit sets ‚ with Œ‚� D � .
Although ECH can also be defined over Z, see Hutchings and Taubes [11, Section 9],
in this paper we always use Z=2 coefficients for simplicity.

To specify the differential @ on the chain complex, we need the following:

Definition 1.1 Given a symplectization-admissible J , and given orbit sets ‚ D
f.‚i ;mi/g and ‚0 D f.‚0j ;m

0
j /g, define a “J –holomorphic curve from ‚ to ‚0”

to be a J –holomorphic curve in R� Y (whose domain is a possibly disconnected
punctured compact Riemann surface) with positive ends at covers of ‚i with total
multiplicity mi , negative ends at covers of ‚0j with total multiplicity m0j , and no other
ends. Here a positive end of a holomorphic curve at a (not necessarily embedded)
Reeb orbit  is an end that is asymptotic to the cylinder R�  as the R coordinate
s !C1. A negative end is defined analogously with s ! �1. Let MJ .‚;‚0/

denote the moduli space of J –holomorphic curves from ‚ to ‚0 , where two such
curves are considered equivalent if they represent the same current in R� Y , up to
translation of the R coordinate.

Given admissible orbit sets ‚ and ‚0 with Œ‚� D Œ‚0� D � , the differential coeffi-
cient h@‚;‚0i 2 Z=2 is defined to be the mod 2 count of J –holomorphic curves in
MJ .‚;‚0/ with “ECH index” equal to 1. For the definition of the ECH index, see
Hutchings [5; 6]. If J is generic, then @ is well-defined and @2 D 0, as shown in
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Proof of the Arnold chord conjecture in three dimensions, II 2603

Hutchings and Taubes [10, Section 7]. A symplectization-admissible almost complex
structure that is generic in this sense will be called ECH–generic here.

The ECH index defines a relative Z=d.c1.�/C2 PD.�// grading on the chain complex,
where d denotes divisibility in H 2.Y IZ/=Torsion. However the grading will not play
a major role in this paper.

It is shown in Taubes [21; 22; 23; 24] that ECH is isomorphic to a version of Seiberg–
Witten Floer cohomology as defined by Kronheimer and Mrowka [13]. The precise
statement is that there is a canonical isomorphism of relatively graded Z=2–modules1

(1) ECH�.Y; �; �IJ /'bHM
��
.Y; s�;�/:

Here bHM
�

denotes Seiberg–Witten Floer cohomology with Z=2 coefficients, and s�;�
denotes the spin-c structure s� CPD.�/ on Y , where s� denotes the spin-c structure
determined by oriented 2–plane field � ; see Example 2.1.

1.2 Filtered ECH

If ‚D f.‚i ;mi/g is an orbit set, its symplectic action or length is defined by

(2) A.‚/ WD
X

i

mi

Z
‚i

:

Since J is symplectization-admissible, it follows that the ECH differential decreases
the action, ie, if h@‚;‚0i ¤ 0 then A.‚/ > A.‚0/. Thus for any real number L,
it makes sense to define the filtered ECH, denoted by ECHL

� .Y; �; �IJ /, to be the
homology of the subcomplex ECCL

� .Y; �; �IJ / of the ECH chain complex spanned
by ECH generators with action less than L.

There are various natural maps defined on filtered ECH. First, if L<L0 then there is
a map

(3) {
L;L0

J
W ECHL

� .Y; �; �IJ / �! ECHL0

� .Y; �; �IJ /

induced by the inclusion of chain complexes. The usual ECH is recovered as the
direct limit

(4) ECH�.Y; �; �IJ /D lim
L!1

ECHL
� .Y; �; �IJ /:

In addition, if c is a positive constant, then there is a canonical “scaling” isomorphism

(5) sJ W ECHL
� .Y; �; �IJ /

'
�! ECHcL

� .Y; c�; �IJ
c/;

1Ordinarily bHM
�

is defined over Z – see [13] – and it is shown in [23] that one can lift the isomorphism
(1) to Z coefficients.
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where J c is defined to agree with J when restricted to the contact planes � . This
is because the chain complexes on both sides have the same generators, and the
self-diffeomorphism of R�Y sending .s;y/ 7! .cs;y/ induces a bijection between
J –holomorphic curves and J c –holomorphic curves.

Note that to define ECHL
� .Y; �; �IJ /, one does not need the full assumption that � is

nondegeneric and J is ECH–generic, but only the following conditions:

Definition 1.2 The contact form � is L–nondegenerate if all Reeb orbits of length
less than L are nondegenerate, and if there is no orbit set2 of action exactly L. Given
an L–nondegenerate contact form �, a symplectization-admissible almost complex
structure J for � is ECHL –generic if the genericity conditions from [11] hold for orbit
sets of action less than L so that the ECH differential @ is well-defined on admissible
orbit sets of action less than L and satisfies @2 D 0.

1.3 J –independence of filtered ECH (statement)

We now state a theorem asserting that filtered ECH and the various maps on it do not
depend on J . Before stating the result, let us recall precisely what it means to say that
objects or maps between them are independent of choices.

Let fGi j i 2 Ig be a collection of groups indexed by some index set I . We say that
“the groups Gi are canonically isomorphic to each other”, or “Gi does not depend
on i ”, if for every pair i1; i2 2 I there is a canonical isomorphism �i1;i2

W Gi1

'
!Gi2

,
such that �i2;i3

ı�i1;i2
D �i1;i3

for every triple i1; i2; i3 2 I . In this case all the groups
Gi are canonically isomorphic to a single group G . Specifically one can define G to
be the disjoint union of the groups Gi , modulo the equivalence relation that g 2Gi1

is
equivalent to �i1;i2

.g/ 2Gi2
, with group operation induced by the operations on the

groups Gi .

Now let fHj j j 2 J g be another such collection of groups that are canonically
isomorphic to a single group H via isomorphisms  j1;j2

W Hj1

'
!Hj2

as above. Then
a collection of maps ffi;j W Gi ! Hj j i 2 I; j 2 J g induces a well-defined map

2The condition that there is no orbit set of action exactly L is not needed to define filtered ECH, but it
will be convenient to choose L this way when we relate filtered ECH to Seiberg–Witten Floer cohomology,
starting in Lemma 2.3.
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f W G!H provided that the diagram

Gi1

fi1;j1 //

'�i1;i2

��

Hj1

 j1;j2 '

��
Gi2

fi2;j2 // Hj2

commutes for all i1; i2 2 I and j1; j2 2 J .

With these conventions, we now have:

Theorem 1.3 Let Y be a closed oriented connected 3–manifold, and let � 2H1.Y /.

(a) If � is an L–nondegenerate contact form on Y , then ECHL
� .Y; �; �IJ / does not

depend on the choice of ECHL–generic J, so we can denote it by ECHL
� .Y; �; �/.

(b) If L < L0 and if � is L0–nondegenerate, then the maps i
L;L0

J
in (3) induce a

well-defined map

(6) iL;L0
W ECHL

� .Y; �; �/ �! ECHL0

� .Y; �; �/:

(c) If � is a nondegenerate contact form on Y , then ECH�.Y; �; �IJ / does not
depend on the choice of ECH–generic J , so we can denote it by ECH�.Y; �; �/.

(d) If c > 0, then the scaling isomorphisms sJ in (5) induce a well-defined isomor-
phism

(7) sW ECHL
� .Y; �; �/

'
�! ECHcL

� .Y; c�; �/:

(e) The isomorphism (1) does not depend on J and so determines a canonical
isomorphism

(8) ECH�.Y; �; �/'bHM
��
.Y; s�;�/:

The proof of Theorem 1.3 uses Seiberg–Witten theory, similarly to parts of the proof
of the isomorphism (1), and is given in Section 3.

Remark 1.4 Although this is not necessary for the proof of the chord conjecture,
the proof of Theorem 1.3 works just as well with Z coefficients by [23]. Parts (a)–
(d) of Theorem 1.3 also hold for disconnected three-manifolds, by a straightforward
modification of the proof.
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At times it is convenient to ignore the homology class � in the definition of ECH, and
simply define

(9) ECH�.Y; �/ WD
M

�2H1.Y /

ECH�.Y; �; �/:

This is the homology of a chain complex ECC�.Y; �IJ / generated by all admissible
orbit sets, and by (8) this homology is canonically isomorphic (as a relatively graded
Z=2–module) to

bHM
��
.Y / WD

M
s2Spinc.Y /

bHM
��
.Y; s/:

Note that while ECH�.Y; �/ is a topological invariant of Y , the filtered version
ECHL

� .Y; �/ depends strongly on � and L.

1.4 Exact symplectic cobordisms

If YC and Y� are closed oriented (connected) 3–manifolds, our convention is that a
“cobordism from YC to Y�” is a compact oriented smooth 4–manifold with @X D
YC�Y� . Such a cobordism induces a map of ungraded Z=2–modules

(10) bHM
�
.X /W bHM

�
.YC/ �!bHM

�
.Y�/:

If �˙ are nondegenerate contact forms on Y˙ , we define

(11) ˆ.X /W ECH�.YC; �C/ �! ECH�.Y�; ��/

to be the map on ECH obtained by composing the map (10) on Seiberg–Witten Floer
cohomology with the canonical isomorphism (8) on both sides.

If .Y˙; �˙/ are as above, an exact symplectic cobordism from .YC; �C/ to .Y�; ��/
is a pair .X; !/, where X is a cobordism from YC to Y� , and ! is a symplectic form
on X , such that there exists a 1–form � on X with d� D ! and �jY˙ D �˙ . A
1–form with these properties is called a Liouville form for .X; !/. When we wish to
specify a Liouville form, we denote the exact symplectic cobordism by .X; �/, and we
continue to write ! D d�.

When .X; !/ is an exact symplectic cobordism as above, we would like to relate the
map (11) to holomorphic curves. To prepare for this, let � be a Liouville form. This
determines a Liouville vector field V characterized by {V !D �. If "> 0 is sufficiently
small, then the flow of V starting on Y� for times in Œ0; "� defines a diffeomorphism

(12) N� ' Œ0; "��Y�;
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where N� is (the closure of) a neighborhood of Y� . If s denotes the Œ0; "� coordinate
in (12), then �D es�� on N� . Likewise we obtain a neighborhood

(13) NC ' Œ�"; 0��YC

of YC in which �D es�C . Using the identifications (12) and (13), one can then glue
symplectization ends to X to obtain the “completion”

(14) X WD ..�1; 0��Y�/[Y� X [YC .Œ0;1/�YC/;

which is a noncompact symplectic 4–manifold.

Note that the completion (14) depends on the Liouville form in the following sense:
If �0 is another Liouville form for ! , then the obvious identification between the
completions (14) for � and �0 is a homeomorphism, and will be a diffeomorphism if
� and �0 agree near @X .

Definition 1.5 An almost complex structure J on X is cobordism-admissible if it is
!–compatible on X , and if it agrees with symplectization-admissible almost complex
structures JC for �C on Œ0;1/�YC and J� for �� on .�1; 0��Y� .

Given a cobordism-admissible J , and given (not necessarily admissible) orbit sets
‚CDf.‚Ci ;m

C
i /g in YC and ‚�Df.‚�j ;m

�
j /g in Y� , we define a “J –holomorphic

curve in X from ‚C to ‚�” analogously to Definition 1.1, and denote the moduli space
of such curves by MJ .‚C; ‚�/, where two such curves are considered equivalent
if they represent the same current in X . More generally, we make the following
definition:

Definition 1.6 Let J , J˙ be as in Definition 1.5. A broken J –holomorphic curve
from ‚C to ‚� is a collection of holomorphic curves fCkg1�k�N called “levels”,
and (not necessarily admissible) orbit sets ‚kC and ‚k� for each k , such that there
exists k0 2 f1; : : : ;N g such that:

� ‚kC is an orbit set in .YC; �C/ for each k�k0 , ‚k� is an orbit set in .Y�; ��/
for each k � k0 , ‚NCD‚C ; ‚1�D‚� and ‚k�D‚k�1;C for each k > 1.

� If k > k0 then Ck 2MJC.‚kC; ‚k�/, if k <k0 then Ck 2MJ�.‚kC; ‚k�/,
and Ck0

2MJ .‚k0;C; ‚k0;�/.

� If k ¤ k0 then Ck is not R–invariant (as a current).

Let MJ .‚C; ‚�/ denote the moduli space of broken J –holomorphic curves from
‚C to ‚� as above.
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Note that MJ .‚C; ‚�/ is a subset of MJ .‚C; ‚�/ corresponding to broken curves
as above in which the number of levels N D 1. (It is perhaps a misnomer to use the
term “broken” when there is just one level.)

We would now like to relate the map (11) to broken J –holomorphic curves in X ,
where J is cobordism-admissible.

1.5 Statement of the main theorem

Let .X; �/ be an exact symplectic cobordism from .YC; �C/ to .Y�; ��/, and assume
that the contact forms �˙ are nondegenerate. Fix a cobordism-admissible almost
complex structure J on X that restricts to symplectization-admissible almost complex
structures JC on Œ0;1/�YC and J� on .�1; 0��Y� , as in Definition 1.5. We now
recall some definitions from [12].

Product cylinders If the cobordism .X; �/ and the almost complex structure J on X

are very special, then X may contain regions that look like pieces of a symplectization,
in the following sense:

Definition 1.7 A product region in X is the image of an embedding Œs�; sC��Z!X ,
where s� < sC and Z is an open 3–manifold, such that:

� fs˙g �Z maps to Y˙ , and .s�; sC/�Z maps to the interior of X .

� The pullback of the Liouville form � on X to Œs�; sC��Z has the form es�0 ,
where s denotes the Œs�; sC� coordinate, and �0 is a contact form on Z .

� The pullback of the almost complex structure J on X to Œs�; sC��Z has the
following two properties: First, the restriction of J to Ker.�0/ is independent
of s . Second, J.@=@s/D f .s/R0 , where f is a positive function of s and R0

denotes the Reeb vector field for �0 .

Given a product region as above, the embedded Reeb orbits of �˙ in fs˙g �Z are
identified with the embedded Reeb orbits of �0 in Z . If  is such a Reeb orbit, then
we can form a J –holomorphic cylinder in X by taking the union of Œs�; sC��  in
Œs�; sC��Z with .�1; 0��  in .�1; 0��Y� and Œ0;1/�  in Œ0;1/�YC .

Definition 1.8 We call a J –holomorphic cylinder as above a product cylinder.

Composition of cobordisms If .XC; �C/ is an exact symplectic cobordism from
.YC; �C/ to .Y0; �0/, and if .X�; ��/ is an exact symplectic cobordism from .Y0; �0/

to .Y�; ��/, then we can compose them to obtain an exact symplectic cobordism
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.X� ıXC; �/ from .YC; �C/ to .Y�; ��/. Here X� ıXC is obtained by gluing X�

and XC along Y0 analogously to (14), and �jX˙ D �
˙ .

Homotopy of cobordisms Two exact symplectic cobordisms .X; !0/ and .X; !1/

from .YC; �C/ to .Y�; ��/ with the same underlying four-manifold X are homotopic
if there is a smooth one-parameter family of symplectic forms f!t j t 2 Œ0; 1�g on X

such that .X; !t / is an exact symplectic cobordism from .YC; �C/ to .Y�; ��/ for
each t 2 Œ0; 1�.

Theorem 1.9 Let .YC; �C/ and .Y�; ��/ be closed oriented connected 3–manifolds
with nondegenerate contact forms. Let .X; �/ be an exact symplectic cobordism from
.YC; �C/ to .Y�; ��/. Then there exist maps of ungraded Z=2–modules

(15) ˆL.X; �/W ECHL
� .YC; �C/ �! ECHL

� .Y�; ��/

for each real number L, such that:

(Homotopy invariance) The map ˆL.X; �/ depends only on L and the homotopy
class of .X; !/.

(Inclusion) If L<L0 then the following diagram commutes:

ECHL
� .YC; �C/

ˆL.X ;�/ //

{L;L0

��

ECHL
� .Y�; ��/

{L;L0

��

ECHL0

� .YC; �C/
ˆL0 .X ;�/ // ECHL0

� .Y�; ��/

(Direct limit)

lim
L!1

ˆL.X; �/Dˆ.X /W ECH�.YC; �C/ �! ECH�.Y�; ��/;

where ˆ.X / is as in (11).

(Composition) If .X; �/ is the composition of .X�; ��/ and .XC; �C/ as above with
�0 nondegenerate, then

ˆL.X� ıXC; �/DˆL.X�; ��/ ıˆL.XC; �C/:

(Scaling) If c is a positive constant then the following diagram commutes:

ECHL
� .YC; �C/

ˆL.X ;�/ //

s '

��

ECHL
� .Y�; ��/

s '

��

ECHcL
� .YC; c�C/

ˆcL.X ;c�/ // ECHcL
� .Y�; c��/
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(Holomorphic curves) Let J be a cobordism-admissible almost complex structure
on X such that JC and J� are ECHL –generic. Then there exists a (noncanonical)
chain map

ŷ W ECCL
� .YC; �C;JC/ �! ECCL

� .Y�; ��;J�/

inducing ˆL.X; �/, such that if ‚C and ‚� are admissible orbit sets for .YC; �C/
and .Y�; ��/ respectively with action less than L, then:

(i) If there are no broken J –holomorphic curves in X from ‚C to ‚� , then
h ŷ‚C; ‚�i D 0.

(ii) If the only broken J –holomorphic curve in X from ‚C to ‚� is a union of
covers of product cylinders, then h ŷ‚C; ‚�i D 1.

Our proof of Theorem 1.9 uses Seiberg–Witten theory. While it would be natural to try
to define the maps ˆL.X; �/ more directly by counting (broken) holomorphic curves
in X with ECH index 0, there are substantial technical difficulties with this approach;
see the discussion in [4, Section 5.5].

Remark 1.10 The maps ˆL.X; �/ respect the decomposition (9) in the this sense:
The image of ECH�.YC; �C; �C/ has a nonzero component in ECH�.Y�; ��; ��/
only if �C 2 H1.YC/ and �� 2 H1.Y�/ map to the same class in H1.X /. This
follows from part (i) of the holomorphic curves axiom (or more simply by keeping
track of the spin-c structures in the construction of ˆL.X; �/).

Remark 1.11 Part (ii) of the holomorphic curves axiom includes the case where ‚˙

and the product region are empty, in which case there is a unique holomorphic curve,
namely the empty set. It then follows that ˆL.X; �/ sends the ECH contact invariant
for .YC; �C/ (the class in ECH represented by the empty set of Reeb orbits) to the
ECH contact invariant for .Y�; ��/.

Remark 1.12 If we allow YC and Y� to be disconnected, then all of Theorem 1.9
except for the direct limit axiom still holds, by a straightforward modification of the
proof. (The statement of the direct limit axiom does not make sense in this case because
the relevant Seiberg–Witten Floer cohomology needed to define the map ˆ.X / has
not been defined for disconnected three-manifolds).

Remark 1.13 We expect that Theorem 1.9 also holds with Z coefficients. Note that
the cobordism maps on Seiberg–Witten Floer homology defined in [13] depend on a
choice of “homology orientation” of the cobordism. However we expect to be able to
define cobordism maps on ECH without choosing a homology orientation, as this works
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in those cases where ECH cobordism maps can be defined by counting holomorphic
curves; cf Latschev and Wendl [14, Lemma A.14]. The direct limit axiom should then
hold for a suitable homology orientation.

The rest of this paper is organized as follows. Section 2 reviews the definition of
Seiberg–Witten Floer cohomology and discusses how to perturb the relevant Seiberg–
Witten equations using a contact form. Section 3 relates filtered ECH to a filtered
version of Seiberg–Witten Floer cohomology and proves Theorem 1.3. Section 4
reviews the construction of cobordism maps on Seiberg–Witten Floer cohomology
and introduces a perturbation of the relevant Seiberg–Witten equations on an exact
symplectic cobordism using the symplectic form. Section 5 proves all of Theorem 1.9,
except for the holomorphic curves axiom, which is proved in Section 6, and using
some results relating Seiberg–Witten solutions on exact symplectic cobordisms to
holomorphic curves, which are proved in Section 7.
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2 Seiberg–Witten Floer cohomology and contact forms

We now review how to define Seiberg–Witten Floer cohomology, with the Seiberg–
Witten equations perturbed by a contact form.

2.1 Seiberg–Witten Floer cohomology

We begin by briefly reviewing the relevant parts of the definition of Seiberg–Witten
Floer cohomology. We follow the conventions in the book by Kronheimer and Mrowka
[13], which explains the full details of this theory.

Let Y be a closed oriented (connected) 3–manifold, and let g be a Riemannian metric
on Y . A spin-c structure on Y consists of a rank 2 Hermitian vector bundle S over
Y , whose sections are called spinors, together with a bundle map clW T Y ! End.S/,
called Clifford multiplication, such that

(16) cl.a/ cl.b/C cl.b/ cl.a/D�2ha; bi

for a; b 2 TyY , and
cl.e1/ cl.e2/ cl.e3/D 1
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when .e1; e2; e3/ is an oriented orthonormal basis for TyY . We denote the spin-c
structure by s D .S; cl/. Two spin-c structures .S; cl/ and .S0; cl0/ are considered
equivalent if there is a bundle isomorphism �W S

'
! S0 respecting the Clifford multipli-

cations, meaning that cl0.v/�. /D �.cl.v/ / for v 2 TyY and  2 Sy . The set of
spin-c structures is then an affine space over H 2.Y IZ/. The definition of the action is
that if e 2H 2.Y IZ/, then

(17) .S; cl/C e WD .S˝Le; cl˝1/;

where Le denotes the complex line bundle with c1.Le/D e . If sD .S; cl/ is a spin-c
structure, we define c1.s/ WD c1.S/ 2H 2.Y IZ/.

A spin-c structure is also equivalent to a lift of the frame bundle of T Y from a principal
SO.3/–bundle to a principal U.2/–bundle. The set of spin-c structures on Y does not
depend on the metric g .

Example 2.1 An oriented 2–plane field � on Y determines a spin-c structure s� as
follows. The spinor bundle is given by

SDC˚ �;

where C denotes the trivial complex line bundle on Y , and � is regarded as a Hermitian
line bundle using its orientation and the metric on Y . Clifford multiplication is defined
as follows: if .e1; e2; e3/ is an oriented orthonormal basis for TyY such that .e2; e3/

is an oriented orthonormal basis for �y , then in terms of the basis .1; e2/ for S ,

cl.e1/D

�
i 0

0 �i

�
; cl.e2/D

�
0 �1

1 0

�
; cl.e3/D

�
0 i

i 0

�
:

Now fix a spin-c structure .S; cl/. A spin-c connection is a connection AS on S which
is compatible with Clifford multiplication in the following sense: If v is a section of
T Y and  is a spinor, then

(18) rAS.cl.v/ /D cl.rv/ C cl.v/rAS ;

where rv denotes the covariant derivative of v with respect to the Levi-Civita con-
nection. A spin-c connection AS is equivalent to a (Hermitian) connection A on the
determinant line bundle det.S/. Note that adding an imaginary-valued 1–form a to A
has the effect of adding a=2 to AS . A spin-c connection AS , identified in this way
with a connection A on det.S/, determines a Dirac operator DA , which is defined to
be the composition

(19) C1.Y IS/
rAS
���! C1.Y IT �Y ˝S/

cl
�! C1.Y IS/:
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Here Clifford multiplication is extended to cotangent vectors by using the metric on Y

to identify T �Y with T Y .

Now fix an exact 2–form � on Y . The Seiberg–Witten equations with perturbation
� concern a pair .A; ‰/, where A is a connection on det.S/ and ‰ is a spinor. The
equations are

(20)
DA‰ D 0;

�FA D �.‰/C i��:

Here � denotes the Hodge star, FA denotes the curvature of A, and � W S! iT �Y is
a quadratic bundle map defined by

�.‰/.v/D hcl.v/‰;‰i

for ‰ 2 Sy and v 2 TyY . A pair .A; ‰/ solves the Seiberg–Witten equations (20) if
and only if it is a critical point of the functional a� on the set of pairs .A; ‰/ defined by

(21) a�.A; ‰/ WD �
1

8

Z
Y

.A�A0/^ .FACFA0
� 2i�/C

1

2

Z
Y

hDA‰;‰i:

Here A0 is any reference connection on det.S/; changing this reference connection
will add a constant to the functional (21).

The gauge group G WD C1.Y IS1/ acts on the set of pairs .A; ‰/ by

(22) u � .A; ‰/ WD .A� 2u�1du;u‰/;

and this action preserves the set of solutions to the Seiberg–Witten equations. Two
solutions are considered equivalent if one is obtained from the other by the action of the
gauge group. A solution .A; ‰/ is called reducible if ‰� 0, and irreducible otherwise.
If the exact 2–form � is suitably generic, then there are only finitely many irreducible
solutions to (20) (modulo gauge equivalence), each of which is cut out transversely in
an appropriate sense. Fix such a 2–form �.

The chain complex for defining Seiberg–Witten Floer cohomology (with Z=2 coeffi-
cients) can be decomposed into submodules (not subcomplexes)

bCM
�
DbCM

�

irr˚
bCM
�

red:

Here bCM
�

irr is the free Z=2–module generated by the irreducible solutions, while
bCM
�

red is a more complicated term arising from the reducibles. The details of the
reducible part bCM

�

red do not concern us here, because soon we will be restricting
attention to a certain subcomplex of bCM� , for a particular perturbation �, which lives
entirely within bCM

�

irr as explained in the proof of Lemma 2.3 below.
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For the same reason, our primary interest is in the part of the chain complex differential
that maps bCM

�

irr to itself. To describe this, let .AC; ‰C/ and .A�; ‰�/ be two
solutions to the equations (20). An instanton from .A�; ‰�/ to .AC; ‰C/ is a smooth
one-parameter family of pairs .A.s/; ‰.s// parametrized by s 2R, where A.s/ is a
connection on det.S/ and ‰.s/ is a spinor, satisfying the equations

(23)

@

@s
‰.s/D�DA.s/‰.s/;

@

@s
A.s/D��FA.s/C �.‰.s//C i��;

lim
s!˙1

.A.s/; ‰.s//D .A˙; ‰˙/:

A solution to these equations is a downward gradient flow line of the functional
(21) from .A�;  �/ to .AC;  C/. Here the metric on the space of pairs .A; ‰/ is
induced by the Hermitian inner product on S together with 1=4 of the L2 inner
product on �1.Y I iR/. The gauge group C1.Y IS1/ again acts on the space of such
instantons. Also R acts on the space of instantons by translating the s coordinate.
If .A˙; ‰˙/ are irreducible, then the coefficient of .A�; ‰�/ in the differential of
.AC; ‰C/ counts index 1 instantons from .A�; ‰�/ to .AC; ‰C/, modulo gauge
equivalence and translation of s . Here the “index” is the local expected dimension
of the moduli space of instantons modulo gauge equivalence. The index defines a
relative Z=d.c1.s//–grading on the chain complex, such that the differential increases
the grading by 1.

All we need to know about the rest of the differential is that if .AC; ‰C/ is irreducible,
and if there is no index one instanton to .AC; ‰C/ from a reducible solution .A�; ‰�/,
then the differential sends .AC; ‰C/ to an element of bCM

�

irr . Here when .A�; ‰�/ is
reducible, the index is defined to be the local expected dimension of the moduli space
of instantons modulo gauge equivalence that have the same asymptotic decay rate as
s!�1.

In general, to obtain transversality of the moduli spaces of instantons as needed to
define the differential, some “abstract” perturbations of equations (20) and (23) are
required. These are described in [13, Chapter 11], where a Banach space P of such
perturbations is defined. Below, an abstract perturbation is one from P , a small abstract
perturbation is one with small P –norm, and a generic abstract perturbation is one from
a residual subset (depending on context) of P . As noted previously, if the exact 2–form
� in (20) is suitably generic, then there are only finitely many irreducible solutions to
(20), and these are all cut out transversely. For such a choice of �, the generic abstract
perturbation needed to define the differential can be chosen to vanish to any given order
on the irreducible solutions to (20), and in particular so that the generators of bCM

�

irr
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are unchanged, ie, every solution to the perturbed version of (20) is a solution to the
unperturbed version and vice-versa; see [21, Section 3h, Part 5]. When � is generic
in this sense, we always assume that the abstract perturbations needed to define the
differential (and also the cobordism maps reviewed in Section 4.1) are chosen this way.
The abstract perturbations then have little conceptual role in the arguments below – see
Proposition 3.1(c) and also [21, Theorem 4.4] – so we usually suppress them from the
notation.

We denote the homology of this chain complex by bHM
�
.Y; sIg; �/. The homologies

for different choices of .g; �/ (and abstract perturbations) are canonically isomorphic
to each other. The isomorphisms between the homologies for different choices are a
special case of the cobordism maps reviewed in Section 4.1. Thus the homologies for
different choices are canonically isomorphic to a single Z=2–module, which is denoted
by bHM

�
.Y; s/.

2.2 Perturbing the equations using a contact form

Now suppose � is a contact form on Y . Choose an almost complex structure J on
the contact planes � as needed to define a symplectization-admissible almost complex
structure on Y ; see Section 1.1. The choices of � and J determine a metric g on Y

such that Reeb vector field R has length 1 and is orthogonal to the contact plane field
� , on which the metric is given by

(24) g.v; w/D 1
2
d�.v;Jw/:

In this metric one has

(25) j�j D 1; d�D 2��:

Remark 2.2 The factor of 1=2 in (24) and the factor of 2 in (25) could probably be
dropped, but we have included these factors for consistency with the papers Taubes
[19; 21] and their sequels.

With these choices made, if sD .S; cl/ is any spin-c structure, then there is a canonical
decomposition

(26) SDE˚K�1E

into eigenbundles of cl.�/, where E is the Ci eigenbundle, and K�1 denotes the
contact structure � , regarded as a Hermitian line bundle via J . When E is the trivial
line bundle C , one recovers Example 2.1. In this case it turns out that there is a
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distinguished connection AK�1 on K�1 such that DA
K�1

.1; 0/D 0. In the general
case, a connection A on det.S/DK�1E2 can be written as

(27) ADAK�1 C 2A;

where A is a connection on E . Using (27), we henceforth identify a spin-c connection
with a Hermitian connection A on E (instead of with a connection A on det.S/ as in
Section 2.1), and denote its corresponding Dirac operator by DA .

As in [21], given a spin-c structure s as above, we consider, for a connection A on E

and a section  of S , the following version of the Seiberg–Witten equations:

(28)
DA D 0;

�FA D r.�. /� i�/� 1
2
�FA

K�1
C i��:

Here r is a positive real number (which below we will take to be very large), and
� is an exact 2–form satisfying certain conditions described in the next paragraph.
Under the identification (27), the equations (28) are equivalent to the Seiberg–Witten
equations (20) with perturbation

(29) �D�r d�C 2�;

if we rescale the spinor by

(30) ‰ D
p

2r  :

The 2–form � above is a suitably generic exact smooth 2–form from a certain Banach
space � of such forms defined in [21]. The precise details of � are not relevant here;
we just need to recall the following facts. First, � is dense in the space of smooth
exact 2–forms. Also � is a Banach subspace of P , meaning that if � 2�, then the
equations (28) without further perturbation, together with the corresponding version of
(23), namely (31) below, constitute one of the “abstract perturbations” from P . The
P –norm of an element of � controls its derivatives to all orders. We always assume
that the form � in (29) has P –norm less than 1 and C 0 –norm less than 1=100. Also
the space � can be chosen so as to contain d�, and this is assumed below.3 Finally,
the spaces � and P depend on the metric, and thus on the pair .�;J /. However �
and P can be chosen so as to define smooth Banach space bundles over the space of
metrics. We do not indicate this dependence of � and P on the metric in the notation
below.

The version of the Seiberg–Witten Floer chain complex obtained from solutions to
(28) for a given data set .�;J; r; �/ and abstract perturbation from P (if necessary

3The fact that d� 2� will be used in the proof of Lemma 5.7.
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to obtain suitable transversality) is denoted below by bCM
�
.Y; sI�;J; r/. Here we

are suppressing � and the abstract perturbation from the notation. The corresponding
Seiberg–Witten Floer cohomology is denoted by bHM

�
.Y; sI�;J; r/. The irreducible

component bCM
�

irr of the chain complex is generated by irreducible solutions to (28). If
.AC;  C/ and .A�;  �/ are two such irreducible solutions, then the component of
.A�;  �/ in the differential of .AC;  C/ counts index 1 solutions to a correspondingly
perturbed version of the equations

(31)

@

@s
 .s/D�DA.s/ .s/;

@

@s
A.s/D��FA.s/C r.�. .s//� i�/� 1

2
�FA

K�1
C i��;

lim
s!˙1

.A.s/;  .s//D .A˙;  ˙/;

modulo gauge equivalence and s–translation.

2.3 The energy filtration

When r above is large, the chain complex bCM
�

has (up to some level) a filtration
analogous to the symplectic action filtration on ECH. This works as follows. If .A;  /
is a solution to (28), define the energy

(32) E.A/ WD i

Z
Y

�^FA:

The idea is that given an ECH generator ‚, if r is sufficiently large then there is
a corresponding irreducible solution .A;  / to (28) for which the zero set of the E

component of  (see equation (26)) is close to the Reeb orbits in ‚, the curvature FA

is concentrated in a radius O.r�1=2/ neighborhood of the Reeb orbits in ‚, and the
energy E.A/ is approximately 2�A.‚/.

This motivates defining the following analogue of the filtered ECH chain complex
ECCL

� from Section 1.2: If L is a real number, define bCM
�

L to be the submod-
ule of bCM

�

irr generated by irreducible solutions .A;  / to (28) with E.A/ < 2�L.

Lemma 2.3 Fix Y; �;J as above and L2R. Suppose that � has no orbit set of action
exactly L. Fix r sufficiently large, and a 2–form � 2� with P –norm less than 1 so
that all irreducible solutions to (28) are cut out transversely. Then for every s and for
every sufficiently small generic abstract perturbation:

(a) bCM
�

L.Y; sI�;J; r/ is a subcomplex of bCM
�
.Y; sI�;J; r/.
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(b) If L0 <L and if there is no orbit set with action in the interval ŒL0;L�, then the
inclusion

bCM
�

L0.Y; sI�;J; r/ �!bCM
�

L.Y; sI�;J; r/

is an isomorphism of chain complexes.

Proof First observe that if r is sufficiently large then all solutions .A;  / to the
perturbed Seiberg–Witten equations (28) with E.A/ < 2�L are irreducible, because
it follows from (28) that the energy of a reducible solution .A; 0/ to (28) is a linear,
increasing function of r .

Now if we fix the spin-c structure s, then part (a) of the lemma follows from the first bul-
let in [21, Theorem 4.4], and part (b) of the lemma follows from [21, Proposition 4.12].
Lemma 2.3 (without the spin-c structure fixed) then follows from Lemma 2.4 below.

Lemma 2.4 Given a real number E , there exists an integer � such that if r is suf-
ficiently large, then at most � spin-c structures admit solutions .A;  / to (28) with
E.A/ < E .

Proof Let .A;  / be a solution to (28) for some spin-c structure s. It follows from
the curvature equation in (28) and the a priori estimates on  in [24, Lemma 2.3] that
if r is sufficiently large, then the L1 –norm of FA over Y is bounded by c0C c1E.A/,
where c0 and c1 are independent of r and s. This implies the lemma, because a bound
on the L1 –norm of FA gives an upper bound on the absolute values of the pairings of
c1.s/ with a set of generators for H2.Y /.

When Lemma 2.3 is applicable, we denote the homology of the subcomplex
bCM
�

L.Y; sI�;J; r/ of bCM
�
.Y; sI�;J; r/ by bHM

�

L.Y; sI�;J; r/. If r is larger than
some .�;J /–dependent constant, then this homology does not depend on the 2–
form �, the small abstract perturbation, or r . This follows from [21, Lemma 4.6],
and a generalization is proved in Lemma 3.4 below. We always assume that r is
sufficiently large as above so that bHM

�

L.Y; sI�;J; r/ is well-defined and independent
of r , although we keep r in the notation. We will see in Section 3 that this homology
is isomorphic to ECHL

��.Y; �;PD.s� s�/IJ /.

3 SWF cohomology and (filtered) ECH

We now explain the relation between filtered ECH and the filtered version of Seiberg–
Witten Floer cohomology defined in Section 2.3. Along the way we review the con-
struction of the isomorphism (1) between ECH and bHM

�
and prove Theorem 1.3 on

the J –independence of filtered ECH.
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3.1 L–flat approximations

In order to define a chain map from the filtered ECH chain complex to the Seiberg–
Witten Floer chain complex, it is convenient to modify the pair .�;J / so that it has a
certain nice form in a tubular neighborhood of each Reeb orbit of symplectic action
less than L. Specifically, we say that the pair .�;J / is L–flat if near each Reeb orbit
of length less than L it satisfies the conditions in [21, Equation (4.1)]. (We do not need
to recall these conditions in detail here.) The reasons for introducing this condition are
discussed in [21, Section 5c, Part 2]. In particular, we have the following key fact:

Proposition 3.1 Fix Y; �;J and L 2 R. Suppose that � is L–nondegenerate; see
Definition 1.2. Then for all r sufficiently large, and for all � 2H1.Y /, the following
hold:

(a) There is a canonical map from the set of generators of bCM
�

L.Y; s�;� I�;J; r/ to
the set of orbit sets in the homology class � of length less than L.

(b) If .�;J / is L–flat, then the generators of bCM
�

L.Y; s�;� I�;J; r/ are cut out
transversely, and the map in part (a) is a bijection from the set of these generators
to the set of admissible orbit sets in the homology class � of length less than L.

(c) Suppose .�;J / is L–flat and J is ECHL –generic. Fix a 2–form � from �

with P –norm less than 1, and fix a small generic abstract perturbation. Then the
bijection in part (b) induces an isomorphism of relatively graded chain complexes

(33) ECCL
� .Y; �; �IJ /

'
�!bCM

��

L .Y; s�;� I�;J; r/:

Proof Part (a) follows directly from [19, Section 6]. Part (b) follows from [21,
Theorem 4.2], and part (c) follows from the second bullet of [21, Theorem 4.4].

The basic picture for part (a) is that when r is large, generators .A;  / of bCM
�

L have
FA concentrated near a collection of Reeb orbits as described preceding Lemma 2.3,
and this defines the map from generators of bCM

�

L to orbit sets with symplectic action
less than L. The idea for part (c) is then that the instantons that define the differential
on the right hand side of (33) correspond in a similar manner to the holomorphic curves
that define the differential on the left hand side of (33).

To make use of the above proposition, we need to suitably approximate an arbitrary
pair .�;J / by an L–flat pair.

Definition 3.2 Let � be an L–nondegenerate contact form, and let J be an ECHL –
generic symplectization-admissible almost complex structure for �. An L–flat ap-
proximation to .�;J / is an L–flat pair .�1;J1/, which is the endpoint of a smooth
homotopy f.�t ;Jt / j t 2 Œ0; 1�g with .�0;J0/D .�;J / such that:
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(i) For each t 2 Œ0; 1�, �t is an L–nondegenerate contact form, and Jt is an
ECHL –generic symplectization-admissible almost complex structure for �t .

(ii) The Reeb orbits of �t with length less than L, and their lengths, do not depend
on t .

We will see in Lemma 3.6 below that L–flat approximations always exist. Note that if
f.�t ;Jt /g is a homotopy as in Definition 3.2, then by condition (i) there is a canonical
isomorphism of chain complexes

(34) ECCL
� .Y; �; �IJ /

'
�! ECCL

� .Y; �1; �IJ1/;

induced by the canonical identification of generators from condition (ii). Combining
this with the isomorphism (33) for .�1;J1/, we conclude that if .�1;J1/ is an L–
flat approximation to .�;J /, and if r is sufficiently large, then there is a canonical
isomorphism of chain complexes

(35) ECCL
� .Y; �; �IJ /

'
�!bCM

��

L .Y; s�;� I�1;J1; r/:

3.2 Deforming � and J

We now state and prove a key lemma regarding the behavior of bHM
�

L under certain
special deformations of � and J .

Definition 3.3 An admissible deformation is a smooth 1–parameter family � D

f.�t ;Lt ;Jt ; rt / j t 2 Œ0; 1�g such that for all t 2 Œ0; 1�:

� �t is an Lt –nondegenerate contact form on Y .

� Jt is a symplectization-admissible almost complex structure for �t .

� rt is a positive real number.

The following is a slight generalization of [21, Lemmas 4.6 and 4.16].

Lemma 3.4 Let � D f.�t ;Lt ;Jt ; rt / j t 2 Œ0; 1�g be an admissible deformation. If
the real numbers frtg are sufficiently large, then for any s 2 Spinc.Y /, the admissible
deformation � induces an isomorphism

(36) ˆ�W bHM
�

L0
.Y; sI�0;J0; r0/

'
�!bHM

�

L1
.Y; sI�1;J1; r1/

with the following properties:

(a) ˆ� is invariant under homotopy of admissible deformations.

(b) If �1 and �2 are composable admissible deformations, then ˆ�1ı�2
Dˆ�1

ıˆ�2
.
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(c) The diagram

(37)

bHM
�

L0
.Y; sI�0;J0; r/

ˆ� //

��

bHM
�

L1
.Y; sI�1;J1; r/

��
bHM
�
.Y; sI�0;J0; r/

// bHM
�
.Y; sI�1;J1; r/

commutes, where the vertical arrows are induced by the inclusions of chain
complexes, and the bottom arrow is the canonical isomorphism on Seiberg–
Witten Floer cohomology.

(d) If for all t 2 Œ0; 1�, the pair .�t ;Jt / is Lt –flat and Jt is ECHLt –generic, then
under the isomorphism (35), the map ˆ� is induced by the isomorphism of chain
complexes

ECCL0
��.Y; �0;PD.s� s�/IJ0/ �! ECCL1

��.Y; �1;PD.s� s�/IJ1/

determined by the canonical bijection on generators.

Proof As explained in [13], the canonical isomorphism on Seiberg–Witten Floer
cohomology at the bottom of (37) is induced by a chain map which is defined from
a suitable 1–parameter family of data sets that interpolates between those used to
define the two chain complexes. Various relevant aspects of this are summarized in
[21, Section 3h]. In the case at hand, the relevant 1–parameter family of data sets has
the form

fDt D .�t ;Jt ; rt ; �t ; pt / j t 2 Œ0; 1�g:

Here f�t j t 2 Œ0; 1�g is a smooth family of 2–forms in � with P –norm less than 1,
and fpt j t 2 Œ0; 1�g is a generic smooth family of abstract perturbations with small P –
norm. More precisely, recall from Section 2.2 that � and P are smooth Banach space
bundles over the space of metrics on Y ; the families f�tg and fptg are sections of the
restrictions of these bundles to the path of metrics determined by f.�t ;Jt /g. The family
fptg can and should be chosen so that for generic t 2 Œ0; 1�, the necessary transversality
holds so that the Seiberg–Witten Floer chain complex bCM

�
.Y; sI�t ;Jt ; rt / is defined.

To prove parts (a)–(c), let N be a large positive integer, and choose numbers 0 D

t0 < t1 < � � � < tN D 1 with ti � ti�1 < 2=N for each i D 1; : : : ;N , such that the
chain complex bCM

�
is defined for each data set Dti

. As explained in [21, Section 3h
Part 3], if fpt j t 2 Œ0; 1�g is generic then for each i D 1; : : : ;N , the family of data sets
parametrized by t 2 Œti�1; ti � can be used to define a chain map

(38) yIi W
bCM
�
.Y; sI�ti�1

;Jti�1
; rti�1

/ �!bCM
�
.Y; sI�ti

;Jti
; rti

/:
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Let Ii denote the map on bHM
�

induced by yIi . The canonical isomorphism on the
bottom of (37) is then given by the composition IN ı � � � ı I1 .

Since Lt varies continuously with t , it follows from a compactness argument that
there exists " > 0 such that for each t 2 Œ0; 1�, the contact form �t has no orbit set
with action in the interval ŒLt � ";Lt C "�. If N is sufficiently large, then for each i

and for each t 2 Œti�1; ti �, we have jLt �Lti�1
j< ", and in particular the contact form

�t has no orbit set of action exactly Lti�1
. It then follows from [21, Lemma 4.6] that

if the numbers frtg are sufficiently large, then yIi restricts to a chain map

bCM
�

Lti�1
!bCM

�

Lti�1

which induces an isomorphism

bHM
�

Lti�1
.Y; sI�ti�1

;Jti�1
; rti�1

/
'
�!bHM

�

Lti�1
.Y; sI�ti

;Jti
; rti

/:

Finally, it follows from Lemma 2.3(b) that, again if the numbers frtg are sufficiently
large, then there is an isomorphism

bHM
�

Lti�1
.Y; sI�ti

;Jti
; rti

/
'
�!bHM

�

Lti
.Y; sI�ti

;Jti
; rti

/

induced by the inclusion of one chain complex into the other, depending on which of
Lti�1

and Lti
is larger. We now define

ˆ�jŒti�1;ti �
W bHM

�

Lti�1
.Y; sI�ti�1

;Jti�1
; rti�1

/
'
�!bHM

�

Lti
.Y; sI�ti

;Jti
; rti

/

to be the composition of the above two isomorphisms, and

ˆ� WDˆ�jŒtN�1;tN �
ı � � � ıˆ�jŒt0;t1�

:

A two-parameter version of the above subdivision construction, again using [21,
Lemma 4.6] and assuming that the numbers frtg are sufficiently large, shows that
the map ˆ� on homology is independent of the choices made above and satisfies the
homotopy invariance property (a). Properties (b) and (c) are then immediate from the
construction.

We now show that property (d) holds for a given f.�t ;Jt ;Lt /g provided that frtg

is sufficiently large. By Lemma 2.4, we can fix the spin-c structure s. Arguing by
contradiction, suppose that for each positive integer j we have a path frj ;t j t 2 Œ0; 1�g
for which property (d) fails, with limj!1mint2Œ0;1� rj ;t DC1.

For each j , for each positive integer k , choose a path fpj ;k;t j t 2 Œ0; 1�g of abstract
perturbations suitable for defining the map ˆ� , such that the following hold for each
j ; k; t :
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(i) pj ;k;t has P –norm less than k�1 .

(ii) There are no pj ;k;t –instantons that have negative index between generators of
bCM
�

Lt
.Y; sI�t ;Jt ; rj ;t /. (This can be arranged by the Sard–Smale Theorem as

in [19, Section 7].)

Now fix j and k . Since property (d) fails for frj ;tg, it follows that if we construct
the corresponding map ˆ� using fpj ;k;tg, then for each N in the construction of ˆ� ,
there exists i 2 f1; : : : ;N g such that the corresponding chain map yIi as in (38) is not
the canonical bijection of generators. Taking N !1, a compactness argument using
(ii) then finds tj ;k 2 Œ0; 1� and an index zero, non-R–invariant pj ;k;tj ;k –instanton dj ;k

between two generators of

bCM
�

Ltj ;k
.Y; sI�tj ;k ;Jtj ;k ; rj ;tj ;k /:

For each j , pass to a subsequence of the k ’s such that the sequence ftj ;kg converges to
tj 2 Œ0; 1�. Next pass to a subsequence of the j ’s such that tj converges to t� 2 Œ0; 1�.

Given the doubly indexed sequence fdj ;kg of pj ;k;tj ;k –instantons constructed above,
the argument in [24, Section 8(b)] can now be repeated almost verbatim4 to conclude the
following: There exists a broken Jt� –holomorphic curve in R�Y between two genera-
tors of ECCLt�

� .Y; �t� IJt�/, with each level non-R–invariant as in Definition 1.6, and
with total ECH index zero. But this contradicts the fact that Jt� is ECHLt� –generic;
see Hutchings and Sullivan [9, Corollary 11.5] or Hutchings [4, Proposition 3.7].

We can now deduce that bHM
�

L.Y; sI�;J; r/ does not depend on J or r .

Corollary 3.5 Suppose � is an L–nondegenerate contact form and s is a spin-c struc-
ture on Y . Then the relatively graded Z=2–modules bHM

�

L.Y; sI�;J; r/ for different r

and J (where r is sufficiently large with respect to �;L;J ) are canonically isomorphic
to a single relatively graded Z=2–module bHM

�

L.Y; �; s/, with the following properties:

(a) Inclusion of chain complexes induces a well-defined map

bHM
�

L.Y; �; s/ �!bHM
�
.Y; s/:

(b) If L<L0 and if � is also L0–nondegenerate, then inclusion of chain complexes
induces a well-defined map

bHM
�

L.Y; �; s/ �!bHM
�

L0.Y; �; s/:

4Here one uses the stability condition in Remark 7.2 below to deal with the fact that tj depends on j .
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(c) If c > 0 then there is a canonical “scaling” isomorphism

(39) sW bHM
�

L.Y; �; s/
'
�!bHM

�

cL.Y; c�; s/:

Proof Since the space of symplectization-admissible almost complex structures for �
is contractible, it follows that if ri is sufficiently large with respect to Ji for i D 0; 1,
then Lemma 3.4(a) provides a well-defined isomorphism

bHM
�

L.Y; sI�;J0; r0/
'
�!bHM

�

L.Y; sI�;J1; r1/;

induced by an admissible deformation of the form � D f.�;L;Jt ; rt /g. By Lemma
3.4(b), these isomorphisms satisfy the necessary composition property to identify the
modules

bHM
�

L.Y; sI�;J; r/

for different J; r with a single relatively graded Z=2–module bHM
�

L.Y; �; s/.

Property (a) now follows immediately from Lemma 3.4(c). Property (b) follows
similarly from the construction of the maps ˆ� .

To prove property (c), fix J and fix r sufficiently large with respect to J . Consider
the admissible deformation

(40) �c WD f..1� t C ct/�; .1� t C ct/L;J; r/g:

Here we are regarding J as an almost complex structure on � , so that the same J can
be used for any positive multiple of �. By Lemma 3.4, the admissible deformation
(40) induces an isomorphism

ˆ�c
W bHM

�

L.Y; sI�;J; r/
'
�!bHM

�

cL.Y; sI c�;J; r/:

We claim that this isomorphism induces a well-defined isomorphism as in (39). To
prove this, we need to check that given another pair .J 0; r 0/, if �0c is the primed
analogue of (40), then the diagram

bHM
�

L.Y; sI�;J; r/
ˆ�c //

ˆ�1

��

bHM
�

cL.Y; sI c�;J; r/

ˆ�2

��
bHM
�

L.Y; sI�;J
0; r 0/

ˆ
�0c // bHM

�

cL.Y; sI c�;J
0; r 0/

commutes. Here �1 D f.�;L;Jt ; rt /g and �2 D f.c�; cL;Jt ; rt /g, where f.Jt ; rt /g

is a homotopy from .J; r/ to .J 0; r 0/. We now observe that both �0c ı �1 and �2 ı �c

are homotopic through admissible deformations to

f..1� t C ct/�; .1� t C ct/L;Jt ; rt /g;
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and so commutativity of the above diagram follows from Lemma 3.4(a), (b).

Below, when we are not concerned with the spin-c structure, we write

bHM
�

L.Y; �/ WD
M

s2Spinc.Y /

bHM
�

L.Y; �; s/:

3.3 The filtered isomorphism

We now define an isomorphism from filtered embedded contact homology to filtered
Seiberg–Witten Floer cohomology, and describe how it behaves under scaling and
inclusion of chain complexes. To obtain a canonical isomorphism, we will need the
following lemma:

Lemma 3.6 [21, Proposition B.1] If � is L–nondegenerate and if J is ECHL –
generic, then there exist “preferred” L–flat approximations to .�;J /, and for each
preferred L–flat approximation .�1;J1/ there exist “preferred” homotopies f.�t ;Jt / j

t 2 Œ0; 1�g as in Definition 3.2, such that:

(a) If .�1;J1/ is a preferred L–flat approximation, then any two preferred homo-
topies for .�1;J1/ are homotopic through admissible deformations.

(b) If .�0
1
;J 0

1
/ and .�1

1
;J 1

1
/ are two preferred L–flat approximations, then they

are connected by a homotopy of L–flat pairs f.��
1
;J �

1
/ j � 2 Œ0; 1�g with the

following properties:
(i) The Reeb orbits of ��

1
do not depend on � .

(ii) f.��
1
;J �

1
/ j � 2 Œ0; 1�g is homotopic through admissible deformations to the

composition of a preferred homotopy for .�1
1
;J 1

1
/ with the inverse of a

preferred homotopy for .�0
1
;J 0

1
/.

(c) For every " > 0, there exists a preferred L–flat approximation .�1;J1/ with a
preferred homotopy f.�t ;Jt /g such that each .�t ;Jt / agrees with .�;J / except
within distance " of the Reeb orbits of action less than L.

Part (c) of the above lemma will be used in Section 6.3.

We can now relate filtered ECH to filtered Seiberg–Witten Floer cohomology:

Lemma 3.7 Suppose that � is L–nondegenerate and J is ECHL –generic. Then for
all � 2H1.Y /, there is a canonical isomorphism of relatively graded Z=2–modules

(41) ‰L
W ECHL

� .Y; �; �IJ /
'
�!bHM

��

L .Y; �; s�;�/

with the following properties:
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(a) If L < L0 , if � is L0–nondegenerate, and if J is ECHL0 –generic, then the
diagram

ECHL
� .Y; �; �IJ /

‰L
//

{
L;L0

J

��

bHM
��

L .Y; �; s�;�/

��

ECHL0

� .Y; �; �IJ /
‰L0

// bHM
��

L0 .Y; �; s�;�/

commutes, where {
L;L0

J
is the inclusion-induced map (3), and the right arrow is

the inclusion-induced map in Corollary 3.5(b).

(b) If c > 0, then the diagram

ECHL
� .Y; �; �IJ /

‰L
//

sJ

��

bHM
��

L .Y; �; s�;�/

s

��

ECHcL
� .Y; c�; �IJ /

‰cL
// bHM

��

cL.Y; c�; s�;�/

commutes, where sJ is the scaling isomorphism (7), and s is the scaling isomor-
phism in Corollary 3.5(c).

Proof Let .�1;J1/ be a preferred L–flat approximation to .�;J /, and let f.�t ;Jt / j

t 2 Œ0; 1�g be a preferred homotopy from .�;J / to .�1;J1/. If r is sufficiently large,
then by (35) we have a canonical isomorphism

ECHL
� .Y; �; �IJ /

'
�!bHM

��

L .Y; s�;� I�1;J1; r/:

By Lemma 3.4, the admissible deformation

(42) �1 D f.�1�t ;L;J1�t ; r/ j t 2 Œ0; 1�g

determines an isomorphism

(43) ˆ�1
W bHM

��

L .Y; s�;� I�1;J1; r/
'
�!bHM

��

L .Y; s�;� I�;J; r/:

By Lemmas 3.6(a) and 3.4(a), the map (43) does not depend on the choice of preferred
homotopy. Let

�‰L
W ECHL

� .Y; �; �IJ /
'
�!bHM

��

L .Y; s�;� I�;J; r/

denote the composition of the previous two isomorphisms. We claim that �‰L induces
a well-defined map ‰L as in (41).
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We first show that �‰L does not depend on the choice of preferred L–flat approximation.
Given two preferred L–flat approximations .�0

1
;J 0

1
/ and .�1

1
;J 1

1
/, let f.��

1
;J �

1
/ j � 2

Œ0; 1�g be a homotopy of L–flat pairs provided by Lemma 3.6(b). By Lemma 3.4(a),
(b), the isomorphisms (43) for the two preferred L–flat approximations differ by the
isomorphism

ˆ�2
W bHM

��

L .Y; s�;� I�
0
1;J

0
1 ; r/

'
�!bHM

��

L .Y; s�;� I�
1
1;J

1
1 ; r/

induced by the admissible deformation

�2 D f.�
�
1;L;J

�
1 ; r/ j � 2 Œ0; 1�g:

Applying Lemma 3.4(d) to the latter path then shows that the two versions of �‰L

defined using the two preferred L–flat approximations agree.

We now show that ‰L does not depend on the choice of r . Suppose that r; r 0 are
both sufficiently large to define the isomorphism �‰L . To prove that the versions of
‰L defined using r and r 0 agree, it is enough to show that the following diagram
commutes:

ECHL
� .�;J /

' // bHM
��

L .�1;J1; r/
ˆ�1 //

ˆ�3

��

bHM
��

L .�;J; r/

ˆ�4

��

ECHL
� .�;J /

' // bHM
��

L .�1;J1; r
0/

ˆ
�0

1 // bHM
��

L .�;J; r 0/

Here we have dropped Y and � from the notation, the horizontal isomorphisms on the
left are given by (35), the admissible deformation �0

1
is defined as in (42) but with r

replaced by r 0 , and

�3 D f.�1;L;J1; .1� t/r C t r 0/ j t 2 Œ0; 1�g;

�4 D f.�;L;J; .1� t/r C t r 0/ j t 2 Œ0; 1�g:

The left square commutes by Lemma 3.4(d). The right square commutes by Lemma
3.4(a), (b), because both �4 ı �1 and �0

1
ı �3 are homotopic through admissible

deformations to

f.�1�t ;L;J1�t ; .1� t/r C t r 0/ j t 2 Œ0; 1�g:

This completes the proof that ‰L is well-defined.

To prove that ‰L satisfies property (a), choose a preferred L0–flat approximation
.�1;J1/ to define ‰L0 . Then this is also a preferred L–flat approximation that can be
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used to define ‰L . It now suffices to show that the diagram

ECHL
� .�;J /

' //

{
L;L0

J
��

bHM
��

L .�1;J1; r/
ˆ�1 //

��

bHM
��

L .�;J; r/

��

ECHL0

� .�;J /
' // bHM

��

L0 .�1;J1; r/

ˆ
�00

1 // bHM
��

L0 .�;J; r/

commutes. Here �00
1

is defined as in (42) but with L replaced by L0 , and the vertical
arrows in the diagram are induced by inclusions of chain complexes. Now the left
square commutes by the definition of the isomorphism (33), while the right square
commutes by a straightforward analogue of Lemma 3.4(c).

To prove property (b), let us further drop r from the notation and consider the diagram:

ECHL
� .�;J /

' //

sJ

��

ECHL
� .�1;J1/

' //

sJ1

��

bHM
��

L .�1;J1/
ˆ�1 //

ˆ
�1

c
��

bHM
��

L .�;J /

ˆ�c

��

ECHcL
� .c�;J /

' // ECHcL
� .c�1;J1/

' // bHM
��

cL.c�1;J1/

ˆ�c
1 // bHM

��

cL.c�;J /

Here �c was defined in (40), �1
c denotes the analogue of (40) for .�1;J1/, and �c

1
is

obtained from (42) by multiplying the contact forms and L by c . Also the horizontal
isomorphisms on the left are induced by (34), and the horizontal isomorphisms in the
middle are induced by (33). By definition, the composition of the horizontal arrows in
the top row of the above diagram is ‰L , and the composition of the horizontal arrows
in the bottom row is ‰cL . So to prove property (b) it is enough to show that the above
diagram commutes. The left square commutes at the chain level because each map in
the left square sends each admissible orbit set to itself. The middle square commutes
by Lemma 3.4(d). The right square commutes by Lemma 3.4(a), (b), because both
�c ı �1 and �c

1
ı �1

c are homotopic to

f.1� t C ct/�1�t ; .1� t C ct/L;J1�t ; r/ j t 2 Œ0; 1�g

through admissible deformations.

3.4 J –independence of filtered ECH (proof)

We now have enough machinery in place to prove Theorem 1.3, asserting that ECH
and ECHL do not depend on the choice of almost complex structure used to define
them.
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Proof of Theorem 1.3 We may assume, by slightly decreasing L if necessary, that
there is no orbit set of action exactly L. Part (a) then follows from the canonical
isomorphism (41) given by Lemma 3.7. Part (b) follows from Lemma 3.7(a). Part (c)
follows from part (b) by taking direct limits. Part (d) follows from Lemma 3.7(b). Part
(e) follows from the definition of the isomorphism between ECH and bHM

�
reviewed

in Section 3.5 below.

Remark 3.8 ECH has various additional structures on it that we are not using in this
paper, for example a degree �2 map U . It is shown in [25] that these agree with
analogous structures on Seiberg–Witten Floer cohomology under the isomorphism
determined by (41) (see Section 3.5 below). Consequently the proof of Theorem 1.3
shows that these additional structures are also independent of J .

3.5 The full isomorphism

We are now in a position to write down the full isomorphism from embedded contact
homology to Seiberg–Witten Floer cohomology.

Let Y be a closed oriented connected 3–manifold with a nondegenerate contact form
�, and fix � 2H1.Y /. By Lemma 3.7, if � has no orbit set of action L, then for each
� 2H1.Y / there is a well-defined isomorphism

(44) ECHL
� .Y; �; �/

'
�!bHM

��

L .Y; �; s�;�/:

By Corollary 3.5(a), there is a well-defined map

(45) bHM
��

L .Y; �; s�;�/ �!bHM
��
.Y; s�;�/:

We now define

(46) T L
W ECHL

� .Y; �; �/ �!
bHM
��
.Y; s�;�/

to be the composition of the maps (44) and (45) above.

If L<L0 , then it follows from Lemma 3.7(a) that

T L
D T L0

ı {L;L0 ;

where {L;L0 is the inclusion-induced map (6). This means that it makes sense to define

(47) T W ECH�.Y; �; �/ �!bHM
��
.Y; s�;�/

to be the direct limit over L of the maps T L in (46). The main theorem of [21] (after
passing to Z=2 coefficients) can now be stated as follows:
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Theorem 3.9 [21] The map T in (47) is an isomorphism of relatively graded Z=2–
modules.

Knowing that (44) is an isomorphism, the rest of the proof of Theorem 3.9 amounts to
showing that the maps (45) induce an isomorphism

lim
!

bHM
��

L .Y; �; s�;�/
'
�!bHM

��
.Y; s�;�/I

see [21, Theorem 4.5]. (This is not immediately obvious because one has to increase r

as one increases L in order to define the left hand side; see Section 2.3.)

4 Seiberg–Witten Floer cobordism maps
and symplectic forms

We now review from [13, Chapter 24] the maps on Seiberg–Witten Floer cohomology
induced by a (smooth) cobordism. We then introduce a perturbation of the relevant
Seiberg–Witten equations on an exact symplectic cobordism using the symplectic form.

4.1 Smooth cobordisms

Let YC and Y� be closed oriented (connected) three-manifolds. Let X be a cobordism
from YC to Y� as in Section 1.4.

Given some metric on X , a spin-c structure on X is a lift of the frame bundle of TX

from SO.4/ to
Spinc.4/D Spin.4/�Z=2 U.1/:

This is equivalent to a Hermitian vector bundle SD SC˚S� , where SC and S� each
have rank 2, together with a Clifford multiplication clW TX ! End.S/ satisfying (16),
such that cl.v/ exchanges SC and S� for each v 2 TX , and

cl.e1/ cl.e2/ cl.e3/ cl.e4/D

�
�1 0

0 1

�
on SC˚S� whenever .e1; e2; e3; e4/ is an oriented orthonormal basis for TxX . The
set Spinc.X / of isomorphism classes of spin-c structures on X is an affine space over
H 2.X IZ/, with the action as in (17), which does not depend on the choice of metric.
Given a spin-c structure on X , a spin-c connection is defined as in (18). A spin-c
connection AS is equivalent to a Hermitian connection A on det.SC/ D det.S�/,
and adding an imaginary-valued 1–form a to A adds a=2 to AS . As in (19), the
connection A defines a Dirac operator

DAW C
1.X IS˙/ �! C1.X IS�/:
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A spin-c structure s on X restricts to a spin-c structure sjY˙ on Y˙ as follows. Let
v denote the outward pointing unit normal vector to YC , and the inward pointing
unit normal vector to Y� . If S D SC ˚ S� is the spin bundle for s with Clifford
multiplication cl, then we define the spin bundle SY˙

for sjY˙ to be

(48) SY˙
WD .SC/jY˙

with the Clifford action T Y ! End.SY˙
/ given by cl.v/�1 cl.�/.

If s is a spin-c structure on X with s˙ WD sjY˙ , then there is a cobordism map (of
ungraded Z=2–modules)

(49) bHM
�
.X; s/W bHM

�
.YC; sC/ �!bHM

�
.Y�; s�/:

We now review the basic formalism of the definition of this map; the details are
explained in [13]. Choose a metric g˙ , exact 2–form �˙ , and abstract perturbation
p˙ as needed to define the chain complex bCM

�
.Y˙; s˙Ig˙; �˙/. One defines a chain

map

(50) bCM
�
.YC; sCIgC; �C/ �!bCM

�
.Y�; s�Ig�; ��/

as follows. Attach cylindrical ends to X to obtain

X WD ..�1; 0��Y�/[Y� X [YC .Œ0;1/�YC/:

Choose a metric g on X that on the ends agrees with the product of the standard metric
on .�1; 0� or Œ0;1/ with the chosen metric g˙ on Y˙ . Choose a self-dual 2–form
� on X that on each end agrees with the self-dual part of (the pullback of) �˙ , namely
1
2
.�˙C��˙/, where � denotes the Hodge star on X . The spin-c structure on X has a

canonical extension over X , so that on each end, SC and S� are both identified with
the boundary spinor bundle, and if s denotes the .�1; 0� or Œ0;1/ coordinate, then
cl.@s/W SC

'
! S� preserves the identifications with the boundary spinor bundle.

We now consider solutions to the Seiberg–Witten equations on X . These equations
concern a pair .A; ‰/, where A is a connection on det.SC/ and ‰ is a section of SC .
Without abstract perturbation terms (which we will describe shortly), the equations are

(51)
DA‰ D 0;

FCA D
1
2
�.‰/C i�:

Here FCA denotes the self-dual part of the curvature FA , and �W SC!
V2
C T �X is a

quadratic bundle map defined by

�.‰/.v; w/D�1
2
hŒcl.v/; cl.w/�‰;‰i
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for ‰ 2 .SC/x and v;w 2 TxX . The gauge group C1.X IS1/ acts on the set of
solutions, again by (22).

A connection A on det.SC/ is in temporal gauge on the ends if on .�1; 0��Y� and
Œ0;1/�YC one has

(52) rA D
@

@s
CrA.s/;

where A.s/ is a connection on the bundle det.SY˙
/ over the 3–manifold Y˙ , depend-

ing on s . Any connection can be placed into temporal gauge by an appropriate gauge
transformation. After this has been done, the equations (51) on the ends are equivalent
to the instanton equations (23).

To define cobordism maps, we also need to consider abstract perturbations of the
equations (51). Suppose that pC and p� are abstract perturbations for use in defining
the perturbations of the equations (20) and (23) on YC and Y� . It is explained in
[13, Chapter 11] how these are extended as an abstract perturbation p over all of X .
The resulting perturbation of (51) agrees on .�1; 0�� Y� or Œ0;1/� YC with the
corresponding perturbation of (23) via p� or pC . Any such extension must be suitably
generic in order to use the solutions of the perturbed version of (51) to define the chain
map (50). In particular, a nonzero extension may be necessary even when p� and pC
are both zero.

Let .A˙; ‰˙/ be solutions to the three-dimensional Seiberg–Witten equations (20)
for .Y˙; s˙Ig˙; �˙/. We are interested in solutions to the abstract perturbation of the
four-dimensional Seiberg–Witten equations (51) that on the ends are in temporal gauge
and satisfy the convergence conditions

(53)
lim

s!1
.A.s/; ‰.s//D .AC; ‰C/ as s!C1 on Œ0;1/�YC;

lim
s!�1

.A.s/; ‰.s//D .A�; ‰�/ as s!�1 on .�1; 0��Y�:

A solution to the perturbed equations (51) satisfying (53) will be called an “instanton
from .A�; ‰�/ to .AC; ‰C/”. We often denote an instanton as above by d and
write djs WD .A.s/; ‰.s// and c˙ WD .A˙; ‰˙/. Every instanton has an index, which
is the expected dimension of the corresponding component of the moduli space of
instantons (with the same asymptotic decay rate as s!C1 or s!�1 if .AC; ‰C/
or .A�; ‰�/, respectively, is reducible) modulo gauge equivalence. The component of
the chain map (50) from an irreducible generator .AC; ‰C/ to an irreducible generator
.A�; ‰�/ counts index zero instantons from .A�; ‰�/ to .AC; ‰C/ modulo gauge
equivalence. All we need to know about the remaining components of (50) is the
following: if .AC; ‰C/ is irreducible, and if there are no index zero instantons to
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.AC; ‰C/ from a reducible .A�; ‰�/, then the chain map (50) sends .AC; ‰C/ to
an element of bCM

�

irr.Y�; : : :/.

Although the chain map (50) may depend on the abstract perturbations, the induced
map on homology

(54) bHM
�
.X; sIg; �/W bHM

�
.YC; sCIgC; �C/ �!bHM

�
.Y�; s�Ig�; ��/

does not. To show that this map does not depend on the extension p of pC and
p� , given a homotopy of extensions p one defines a chain homotopy between the
corresponding chain maps by counting index �1 instantons. The proof that the map
(54) does not depend on pC or p� either is a special case of a more general argument,
which we will outline shortly.

In the special case when X is a product cobordism Œ0; 1�� Y , the maps (54) define
the canonical isomorphisms that prove that bHM

�
.Y; sIg; �/ does not depend5 on g

or � (or the abstract perturbations that we are suppressing from the notation). The
necessary composition property for these isomorphisms follows from the following
more general composition property. Let XC be a cobordism from YC to Y0 , let X�

be a cobordism from Y0 to Y� , and let X DX�[Y0
XC be the composite cobordism

from YC to Y� . If s˙ 2 Spinc.X˙/, if .g˙; �˙/ are choices to define the cobordism
map on X˙ , and if .g; �/ are choices to define the cobordism map on X , then

(55) bHM
�
.X�; s�Ig�; ��/ ıbHM

�
.XC; sCIgC; �C/

D

X
fs2Spinc.X / j sjX˙Ds˙g

bHM
�
.X; sIg; �/:

Note here that the sum on the right is well-defined, because by [13, Proposition 24.6.6]
the cobordism map (54) is nonzero for only finitely many spin-c structures on X .
Equation (55) is proved by “stretching the neck” along Y0 and counting index �1

instantons to define a chain homotopy between the corresponding chain maps.

The special case of (55) when XC and X� are both product cobordisms gives the
composition property needed to show that bHM

�
.Y; s/ is well-defined. The special case

of (55) when just one of XC or X� is a product cobordism then implies that the map
(54) induces a well-defined map (49). With these identifications, (55) now translates to

(56) bHM
�
.X�; s�/ ıbHM

�
.XC; sC/D

X
fs2Spinc.X / j sjX˙Ds˙g

bHM
�
.X; s/:

5[21, Section 3h] says more about this in the case when g and � are determined by a contact form as
in (28) and (31).
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One can also combine the cobordism maps (49) into a single cobordism map

(57) bHM
�
.X / WD

X
s2Spinc.X /

bHM
�
.X; s/W bHM

�
.YC/ �!bHM

�
.Y�/:

The composition property (56) implies that

bHM
�
.X /DbHM

�
.X�/ ıbHM

�
.XC/:

Note that when X is not a product, the cobordism map (57) generally does not preserve
the relative gradings, although there is a weaker relation between the gradings of the
inputs and outputs of this map explained in [13, Section 3.4]. We will simply regard
(57) as a map of ungraded Z=2–modules.

4.2 Perturbing the equations on an exact symplectic cobordism

We now introduce a useful perturbation of the four-dimensional Seiberg–Witten equa-
tions on an exact symplectic cobordism. This is closely related to the perturbation of
the three-dimensional Seiberg–Witten equations defined in Section 2.2.

Let .YC; �C/ and .Y�; ��/ be closed oriented (connected) 3–manifolds with contact
forms. Let .X; �/ be an exact symplectic cobordism from .YC; �C/ to .Y�; ��/. Re-
call the notion of “cobordism-admissible almost complex structure” from Definition 1.5.
Below it will be convenient to work with a slightly stronger notion. Note that if " > 0

is as in (12) and (13), then the completion X in (14) contains subsets identified with
.�1; "��Y� and Œ�";1/�YC .

Definition 4.1 An almost complex structure J on X is strongly cobordism-admissible
if it is !–compatible on X , and if it agrees with symplectization-admissible almost
complex structures JC for �C on Œ�";1/�YC and J� for �� on .�1; "��Y� , for
some " > 0 as in (12) and (13).

Given " and J as above, we define a 1–form z� on X as follows. Fix a smooth
increasing function ��W .�1; "� ! .�1; "� with ��.s/ D 2s for s � "=10 and
��.s/ D s for s > "=2. Likewise fix a smooth increasing function �CW Œ�";1/!
Œ�";1/ with �C.s/D s for s � �"=2 and �C.s/D 2s for s � �"=10. Now define

(58) z� WD

8<:
e���� on .�1; "��Y�;

� on X n ..Œ0; "��Y�/[ .Œ�"; 0��YC//;

e�C�C on Œ�";1/�YC:

Write z! D dz�; this is a symplectic form on all of X . Also, J is z!–compatible on all
of X .
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Remark 4.2 It would be more usual to define z� by extending the 1–form � on all of
X to agree with es�C on Œ0;1/�YC , and with es�� on .�1; 0��Y� . We are using
the more nonstandard 1–form (58) because of the factors of 2 discussed in Remark 2.2.

We next define a metric g on X as follows. Let g˙ denote the metric on Y˙ determined
by �˙ and J˙ as in Section 2.2. Fix a smooth positive function �� on .�1; "� such
that ��.s/D 2e2s for s � "=10 and ��.s/D 2 for s � "=2. Likewise fix a smooth
positive function �C on Œ�";1/ such that �C.s/D 2 for s��"=2 and �C.s/D 2e2s

for s � �"=10. Also require that6

(59) �˙.s/ 2 Œ3=2; 5=2� for ˙s 2 Œ0; "�:

Define a positive function � on X to equal �� on .�1; "� � Y� , to equal �C on
Œ�";1/�YC , and to equal 2 on the rest of X . Define a metric g on X by

(60) g. � ; � /D ��1
z!. � ;J. � //:

Note that g agrees with the product metric with g˙ on the ends Œ0;1/ � YC and
.�1; 0��Y� . Also, z! is self-dual with respect to g and has norm jz!jD

p
2 � . Define

y! D
p

2 z!=jz!j D ��1z! .

Let s be a spin-c structure on X with spinor bundle SDSC˚S� . There is a canonical
decomposition

(61) SC DE˚K�1E

into eigenbundles of cl.y!/, where E is the �2i eigenbundle, and K denotes the
canonical bundle of .X;J /. Note that on Œ0;1/� YC or .�1; 0�� Y� , under the
identification (48), this splitting agrees with the splitting determined by Clifford mul-
tiplication by �C or �� as in (26). When E is the trivial line bundle C , there is
a distinguished connection AK�1 on K�1 such that DA

K�1
.1; 0/ D 0. As in the

three-dimensional case (27), this allows us to identify a spin-c connection for a general
spin-c structure with a Hermitian connection A on the corresponding line bundle E .

Now choose exact 2–forms �˙ on Y˙ as in Section 2.2, and let � be an exact 2–form
on X that agrees with �˙ on the ends. For the arguments later in this paper we need
to choose � so that its derivatives up to some sufficiently large (but constant) order
have absolute value less than 1=100. Let �� denote the self-dual part of �. We now
consider, for a connection A on E and a section  of SC , the following version of

6The condition (59) will be used in Lemma 7.6.
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the four-dimensional Seiberg–Witten equations on X :

(62)
DA D 0;

FC
A
D

r

2
.�. /� i y!/�

1

2
FC

A
K�1
C i��:

Here r is a positive real number, which will be taken to be very large below. The
equations (62) are equivalent to the equations (51) with perturbation

(63) �D�r y!C 2��

after rescaling the spinor as in (30). On Œ";1/ � YC and .�1;�"� � Y� , if A is
in temporal gauge, then the equations (62) are equivalent to the perturbed instanton
equations (31) (with a ˙ subscript on �). Thus we can use the equations (51) (with
appropriate small abstract perturbations) to define a chain map

(64) bCM
�
.X; sI�;J; r/W bCM

�
.YC; sCI�C;JC; r/ �!bCM

�
.Y�; s�I��;J�; r/:

Here s˙ denotes the restriction of s2 Spinc.X / to Y˙ . In general we expect the chain
map (64) to depend on the choice of � (and on the choice of abstract perturbations),
although as explained in Section 4.1 the induced map on homology does not.

5 ECH cobordism maps

The goal of this section is to define the maps on (filtered) ECH induced by an exact
symplectic cobordism, and to prove that they satisfy all of the axioms in Theorem 1.9,
except for the holomorphic curves axiom, which will be proved in Section 6.

5.1 Cobordism maps and holomorphic curves (statements)

We now state some key properties of the map on Seiberg–Witten Floer cohomology
induced by an exact symplectic cobordism with the Seiberg–Witten equations perturbed
as in Section 4.2. To simplify notation we henceforth ignore the decomposition via
spin-c structures, as in (57), although it is straightforward to insert spin-c structures
into the discussion below.

The following proposition asserts that the instantons that are used to define the chain map
(64) give rise to broken holomorphic curves, and in particular respect the symplectic
action filtration. It also proves similar statements for certain chain homotopies, for which
we need the following strengthening of the notion of “homotopy of exact symplectic
cobordisms” defined in Section 1.5:
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Definition 5.1 Two exact symplectic cobordisms .X; �0/ and .X; �1/ from .YC; �C/

to .Y�; ��/ with the same underlying four-manifold X are strongly homotopic if there
is a smooth one-parameter family of 1–forms f�t j t 2 Œ0; 1�g on X such that .X; �t /

is an exact symplectic cobordism from .YC; �C/ to .Y�; ��/ for each t 2 Œ0; 1�, and
there exists " > 0 such that the identifications (12) and (13) for �t do not depend on t .

Note that the last condition in the above definition ensures that the completions (14) of
.X; �t / for different t are diffeomorphic via the obvious identification.

Proposition 5.2 Fix L 2 R, closed connected contact 3–manifolds .YC; �C/ and
.Y�; ��/ such that �˙ are L–nondegenerate, symplectization-admissible almost com-
plex structures J˙ for �˙ , 2–forms �˙ on Y˙ with P –norm less than 1, and generic
perturbations p˙ on Y˙ as needed to define the chain complexes bCM

�
.Y˙I�˙;J˙; r/.

(a) Let .X; �/ be an exact symplectic cobordism from .YC; �C/ to .Y�; ��/. Suppose
J is a strongly cobordism-admissible almost complex structure on X that restricts
to JC on Œ0;1/� YC and to J� on .�1; 0�� Y� . Let � be a small exact 2–form
on X extending �˙ , and let p be a generic extension of p˙ over X . Assume that
r is sufficiently large, and that p˙ and p are sufficiently small for the given r . Let
d be a solution to the corresponding perturbed version of (62) with index 0 and with
E.cC/ < 2�L. Then:

(i) E.c�/ < 2�L.

(ii) There exists a broken J –holomorphic curve from ‚C to ‚� , where ‚˙ is the
orbit set determined by c˙ via Proposition 3.1(a).

(b) Let f.X; �t / j t 2 Œ0; 1�g be a strong homotopy of exact symplectic cobordisms
from .YC; �C/ to .Y�; ��/. Let f.Jt ; �t ; pt / j t 2 Œ0; 1�g be a one-parameter family of
choices as in part (a) with fptg generic. Suppose that r is sufficiently large and that p˙
and each pt are sufficiently small for the given r . Let t 2 Œ0; 1� and let d be a solution
to the corresponding perturbed version of (62) with index �1 and with E.cC/ < 2�L.
Then E.c�/ < 2�L.

Proposition 5.2 is proved in Section 7 below. We can now define cobordism maps on
filtered Seiberg–Witten Floer cohomology:

Corollary 5.3 Let .X; �/ be an exact symplectic cobordism from .YC; �C/ to
.Y�; ��/, where �˙ is L–nondegenerate. Let J˙ be a symplectization-admissible
almost complex structure for �˙ . Suppose r is sufficiently large. Fix 2–forms �˙
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with P –norm less than 1 and fix sufficiently small abstract perturbations p˙ as needed
to define the chain complexes bCM

�
.Y˙I�˙;J˙; r/. Then there is a well-defined map

(65) bHM
�

L.X; �/W
bHM
�

L.YCI�C;JC; r/ �!
bHM
�

L.Y�I��;J�; r/;

depending only on X; �;L; r;J˙; �˙; p˙ , with the following properties:

(a) If L0 <L and if �˙ is also L0–nondegenerate, then the diagram

bHM
�

L0.YCI�C;JC; r/
bHM

�

L0 .X ;�/ //

��

bHM
�

L0.Y�I��;J�; r/

��
bHM
�

L.YCI�C;JC; r/
bHM

�

L.X ;�/ // bHM
�

L.Y�I��;J�; r/

commutes, where the vertical arrows are induced by inclusions of chain com-
plexes.

(b) Likewise the diagram

(66)

bHM
�

L.YCI�C;JC; r/

��

bHM
�

L.X ;�/ // bHM
�

L.Y�I��;J�; r/

��
bHM
�
.YCI�C;JC; r/

// bHM
�
.Y�I��;J�; r/

commutes, where the bottom arrow is the Seiberg–Witten Floer cobordism map
induced by (64).

(c) If f.Xt ; �t / j t 2 Œ0; 1�g is a strong homotopy of exact symplectic cobordisms
from .YC; �C/ to .Y�; ��/, and if r is sufficiently large, then

bHM
�

L.X; �0/DbHM
�

L.X; �1/:

Note that for now the map bHM
�

L.X; �/ may depend on r;J˙; �˙; p˙ , although these
choices are not indicated in the notation. Proposition 5.5 below will show that in fact
bHM
�

L.X; �/ is independent of these choices.

Proof Choose a strongly cobordism-admissible almost complex structure J on X

extending JC and J� , and choose small perturbations � and p extending �˙ and
p˙ , as needed to define the chain map (64). Summing over spin-c structures, we then
have a chain map

(67) bCM
�
.YCI�C;JC; r/ �!bCM

�
.Y�I��;J�; r/;
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whose induced map on homology is the bottom arrow in (66). It follows from
Proposition 5.2(a) that if r is sufficiently large, and if the perturbations are sufficiently
small, then the chain map (67) restricts to a chain map

(68) bCM
�

L.YCI�C;JC; r/ �!
bCM
�

L.Y�I��;J�; r/:

We define bHM
�

L.X; �/ to be the map on homology induced by (68).

We now show that bHM
�

L.X; �/ does not depend on the choice of extensions J; �; p

of J˙; �˙; p˙ over X . Given two choices of extensions, we can choose a homotopy
between them. This homotopy induces a chain homotopy between the corresponding
maps (67), which counts index �1 instantons that appear during the homotopy. It
follows from Proposition 5.2(b) that if r is sufficiently large, then this chain homotopy
maps bCM

�

L to bCM
�

L (here we are ignoring the gradings as usual), and hence restricts
to a chain homotopy between the corresponding maps (68).

Properties (a) and (b) above now hold by construction. One proves property (c) by
using Proposition 5.2(b) to define a chain homotopy.

The induced maps on bHM
�

L constructed above behave nicely under composition of
exact symplectic cobordisms:

Proposition 5.4 Suppose .X; �/ is the composition of an exact symplectic cobordism
.X�; ��/ from .Y0; �0/ to .Y�; ��/ with an exact symplectic cobordism .XC; �C/

from .YC; �C/ to .Y0; �0/, where �˙ and �0 are L–nondegenerate. Let J˙ and J0

be symplectization-admissible almost complex structures for �˙ and �0 . Let �˙; �0

be 2–forms from the Y˙;Y0 versions of � with P –norm less than 1, fix r sufficiently
large, and let p˙; p0 be sufficiently small generic abstract perturbations as needed to
define the chain complexes bCM

�
. Then the maps in Corollary 5.3 for these data satisfy

bHM
�

L.X; �/D
bHM
�

L.X
�; ��/ ıbHM

�

L.X
C; �C/:

Proposition 5.4 is proved in Section 7 using a neck stretching argument.

5.2 Invariance of cobordism maps

The goal of this subsection is to prove the following proposition, asserting that the
map bHM

�

L.X; �/ defined in Corollary 5.3 depends only on X; �;L, and not on the
additional choices made in its definition.
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Proposition 5.5 Let .X; �/ be an exact symplectic cobordism from .YC; �C/ to
.Y�; ��/ where �˙ is L–nondegenerate. Then the map defined in Corollary 5.3
induces a well-defined map

bHM
�

L.X; �/W
bHM
�

L.YC; �C/ �!
bHM
�

L.Y�; ��/;

where bHM
�

L.Y˙; �˙/ is defined as in Corollary 3.5.

To prepare for the proof of this proposition, we need the following lemma, which relates
the maps on bHM

�

L induced by exact product symplectic cobordisms to the canonical
isomorphisms between different versions of bHM

�

L .

Lemma 5.6 Let � D f.�t ;Lt ;Jt ; r/ j t 2 Œ0; 1�g be an admissible deformation as in
Definition 3.3. Assume further that:

� �t D ft�0 , where f W Œ0; 1��Y !R>0 satisfies @f=@t < 0 everywhere.

� dLt=dt � 0.

Let .X; �/ be the product exact cobordism .Œ�1; 0��Y; ��s/ from .Y; �0/ to .Y; �1/.
Suppose r is sufficiently large. Fix small perturbations �i ; pi for i D 0; 1 as needed to
define the chain complexes bCM

�
for t D 0; 1. Then the cobordism map bHM

�

L0
.X; �/

in Corollary 5.3 is the composition

bHM
�

L0
.Y I�0;J0; r/

ˆ�
��!bHM

�

L1
.Y I�1;J1; r/ �!bHM

�

L0
.Y I�1;J1; r/;

where ˆ� is the isomorphism from (36), and the map on the right is induced by the
inclusion of chain complexes.

Proof The proof has two steps.

Step 1 We start by making choices as in the proof of Lemma 3.4 to define ˆ� .
Choose a path of data f.�t ; pt / j t 2 Œ0; 1�g from .�0; p0/ to .�1; p1/, where �t is
a 2–form from � with P –norm less than 1, and pt is a small abstract perturbation
such that the data Dt D .�t ;Jt ; r; �t ; pt / is suitable for defining the chain complex
bCM
�
.Y I�t ;Jt ; r/ for generic t 2 Œ0; 1�. Let N be a large positive integer, and choose

numbers 0 D t0 < t1 < � � � < tN D 1 such that ti � ti�1 < 2=N and such that
bCM
�
.Y; sI�ti

;Jti
; r/ is defined for each i D 1; : : : ;N .

To shorten the notation below, write bHM
�

L.t/ to denote bHM
�

L.Y I�t ;Jt ; r/. Also,
for t < t 0 let bHM

�

L.Œt; t
0�/ denote the cobordism map induced by the portion of the

cobordism parametrized by Œ�t 0;�t � � Y , and let �Œt;t 0� denote the portion of the
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admissible deformation parametrized by the interval Œt; t 0�, reparametrized by the
interval Œ0; 1�.

Choose N sufficiently large that �ti
has no orbit sets of action in the interval ŒLti

;Lti�1
�

for each i D 1; : : : ;N . Then for r sufficiently large, the lemma holds for the portion
of the cobordism parametrized by Œ�ti ;�ti�1��Y . That is, the cobordism map

(69) bHM
�

Lti�1
.Œti�1; ti �/

equals the composition

bHM
�

Lti�1
.ti�1/

ˆ�Œti�1;ti �

�������!bHM
�

Lti
.ti/ �!bHM

�

Lti�1
.ti/;

where the map on the right is induced by the inclusion of chain complexes. The reason
is that the map on the right is an isomorphism on the chain level by Lemma 2.3(b), so
that the cobordism map (69) actually maps to bHM

�

Lti
.ti/. Then the cobordism map

(69), regarded as a map to bHM
�

Lti
.ti/, agrees with ˆ�i

by the definition of the latter.

Step 2 We now show by induction on i that the lemma holds for the portion of the
cobordism parametrized by Œ�ti ; 0��Y . The case i D 1 follows from Step 1. Now let
i > 1 and suppose the claim is true for i �1. We need to show that the cobordism map

bHM
�

L0
.Œ0; ti �/

agrees with the composition

bHM
�

L0
.0/

ˆ�Œ0;ti �
�����!bHM

�

Lti
.ti/ �!bHM

�

L0
.ti/;

where the arrow on the right is induced by inclusion.

By Proposition 5.4 we have

bHM
�

L0
.Œ0; ti �/DbHM

�

L0
.Œti�1; ti �/ ıbHM

�

L0
.Œ0; ti�1�/:

And by Lemma 3.4(b) we have

ˆ�Œ0;ti � Dˆ�Œti�1;ti �
ıˆ�Œ0;ti�1�

:

So by the inductive hypothesis and Step 1, we just need to show that the diagram

bHM
�

L0
.ti�1/

bHM
�

L0
.Œti�1;ti �/

// bHM
�

L0
.ti/

bHM
�

Lti�1
.ti�1/

OO

bHM
�

Lti�1
.Œti�1;ti �/

// bHM
�

Lti�1
.ti/

OO
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commutes, where the vertical arrows are induced by inclusion. But this holds by
Corollary 5.3(a).

We can now prove Proposition 5.5. The latter is an immediate consequence of the
following lemma:

Lemma 5.7 Let .X; �/ be an exact symplectic cobordism from .YC; �C/ to .Y�; ��/,
where �˙ is L–nondegenerate. Let fJ t

˙
j t 2 Œ0; 1�g be a one-parameter family of sym-

plectization-admissible almost complex structures for �˙ . Suppose that frt j t 2 Œ0; 1�g

is a sufficiently large one-parameter family of real numbers. Let

.�0
˙; p

0
˙/ and .�1

˙; p
1
˙/

be small perturbations as needed to define the chain complexes bCM
�

for t D 0; 1. Then
the versions of bHM

�

L.X; �/ for t D 0; 1 fit into a commutative diagram

(70)

bHM
�

L.YC; �C;J
0
C; r0/

ˆ�C

'
//

bHM
�

L.X ;�/tD0

��

bHM
�

L.YC; �C;J
1
C; r1/

bHM
�

L.X ;�/tD1

��
bHM
�

L.Y�; ��;J
0
�; r0/

ˆ��

'
// bHM

�

L.Y�; ��;J
1
�; r1/;

where ˆ�˙ is the isomorphism from Lemma 3.4, and

�˙ D f.�˙;L;J
t
˙; rt / j t 2 Œ0; 1�g:

Proof First note that because d�˙ is in the space � for Y˙ (see Section 2.2), a
small change in r can be effected by a change in �C and �� . Thus, by the homotopy
properties in Lemma 3.4(a), (b), it is enough to prove the lemma in the case when rt

does not depend on t ; let us write rt D r .

To prove the lemma for constant r , it is enough to do so in the special case when
.J t
�; �

t
�; p

t
�/ do not depend on t ; let us denote these by .J�; ��; p�/. (The case when

.J t
�; �

t
�; p

t
�/ do depend on t , but .J t

C; �
t
C; p

t
C/ do not, is proved by a symmetrical

argument, and these two cases together imply the general case.)

Let " > 0 be as in (12) and (13), so that a neighborhood of YC in .X; �/ is identified
with .Œ�"; 0�� YC; e

s�C/. Choose " sufficiently small so that �C has no orbit sets
with action in the closed interval Œe�"L;L�. We can decompose the exact cobordism
X DX 0 ıXC , where XC D Œ�"; 0��YC , and X 0 is the closure of X nXC . Make
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choices .J0; �0; p0/ as needed to define the chain complex bCM
�
.YC; e

�"�C;J0; r/.
We now have a commutative diagram:

bHM
�

L.YC; �C;J
0
C; r/

ˆ�C //

ˆ�0

��

bHM
�

L.YC; �C;J
1
C; r/

ˆ�1

��
bHM
�

e�"L.YC; e
�"�C;J0; r/

��

bHM
�

e�"L.YC; e
�"�C;J0; r/

��
bHM
�

L.YC; e
�"�C;J0; r/

bHM
�

L.X
0;�/

��

bHM
�

L.YC; e
�"�C;J0; r/

bHM
�

L.X
0;�/

��
bHM
�

L.Y�; ��;J�; r/
bHM
�

L.Y�; ��;J�; r/

Here
�0 D f.e

�"t�C; e
�"tL; yJt ; r/ j t 2 Œ0; 1�g;

where f yJt j t 2 Œ0; 1�g is a path of almost complex structures from J 0
C to J0 . The admis-

sible deformation �1 is defined analogously. The top square in the diagram commutes by
Lemma 3.4(a), (b). The vertical arrows in the middle of the diagram are induced by the
inclusion of chain complexes. By Lemma 5.6, the composition of the two vertical arrows
on the upper left is the cobordism map bHM

�

L.X
C; es�C/ defined by Corollary 5.3

from the choices .J 0
C; �C; pC; r/ and .J0; �0; p0; r/. Then by Proposition 5.4, the

composition of the three vertical arrows on the left is bHM
�

L.X; �/tD0 . Likewise, the
composition of the three vertical arrows on the right is bHM

�

L.X; �; /tD1 . Thus the
above diagram gives the desired commutative diagram (70).

This completes the proof of Proposition 5.5.

We also note the following special case of Lemma 5.7, which is needed in Section 5.3:

Corollary 5.8 Suppose X is a product cobordism .Œ�"; 0��Y; es�/ where " > 0, the
variable s denotes the Œ�"; 0� coordinate, and � is an L–nondegenerate contact form
on Y . Then bHM

�

L.X; e
s�/ is the composition

bHM
�

L.Y; �/
s
�!bHM

�

e�"L.Y; e
�"�/ �!bHM

�

L.Y; e
�"�/;

where s is the scaling isomorphism from Corollary 3.5(c), and the right arrow is the
inclusion-induced map from Corollary 3.5(b).
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Proof Choose a symplectization-admissible almost complex structure J for �, and
let r be large. The claim then follows by applying Lemma 5.6 to the admissible
deformation �Df.e�"t�; e�"tL;J; r/ j t 2 Œ0; 1�g, because ˆ� agrees with the scaling
isomorphism s by the definition of the latter in the proof of Corollary 3.5(c).

5.3 Construction of ECH cobordism maps

We now begin the proof of Theorem 1.9 by defining the map (15) on filtered ECH
induced by an exact symplectic cobordism.

Let .X; �/ be an exact symplectic cobordism from .YC; �C/ to .Y�; ��/, and assume
that �C and �� are nondegenerate. Fix a real number L. Without loss of generality,
we can assume (by slightly decreasing L if necessary) that �C and �� do not have
any orbit sets of action exactly L. By Proposition 5.5, we have a well-defined map

(71) bHM
�

L.X; �/W
bHM
�

L.YC; �C/ �!
bHM
�

L.Y�; ��/:

On the other hand, by Lemma 3.7 we have canonical isomorphisms

(72) ECH L
� .Y˙; �˙/

'
�!bHM

��

L .Y˙; �˙/:

Definition 5.9 Define a map of ungraded Z=2–modules

(73) ˆL.X; �/W ECHL
� .YC; �C/ �! ECHL

� .Y�; ��/

to be the composition of the map (71) with the isomorphisms (72).

We now prove all of Theorem 1.9 except for the holomorphic curves axiom:

Proposition 5.10 The map (73) satisfies the homotopy invariance, inclusion, direct
limit, composition and scaling axioms in Theorem 1.9.

Proof The inclusion axiom follows from Lemma 3.7(a) and Corollary 5.3(a). The
direct limit axiom follows from Corollary 5.3(b). The composition axiom follows from
Proposition 5.4.

To prove the homotopy invariance axiom, let f.X; !t / j t 2 Œ0; 1�g be a homotopy
of exact symplectic cobordisms, let �0 be a Liouville form for !0 , and let �1 be a
Liouville form for !1 . We need to show that ˆL.X; �0/ D ˆ

L.X; �1/. Since the
space of Liouville forms for a given exact symplectic cobordism .X; !/ is affine linear,
there is no obstruction to connecting �0 and �1 by a smooth one-parameter family
f�t j t 2 Œ0; 1�g of 1–forms on X such that �t is a Liouville form for !t . Next, fix
" > 0 such that there are disjoint neighborhoods (12) and (13) for each �t . We can
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then find a smooth one-parameter family f't j t 2 Œ0; 1�g of diffeomorphisms of X with
'0 D idX and 't j@X D id@X such that 't pulls back the neighborhoods (12) and (13)
for �t to those for �0 . Then f.X; '�t �t / j t 2 Œ0; 1�g is a strong homotopy from .X; �0/

to .X; '�
1
�1/ as in Definition 5.1. By Corollary 5.3(c), ˆL.X; �0/Dˆ

L.X; '�
1
�1/.

Now the diffeomorphism '1 extends to a symplectomorphism between the completions
(14) of .X; �1/ and .X; '�

1
�1/, and so by construction ˆL.X; '�

1
�1/Dˆ

L.X; �1/.

To prove the scaling axiom, let .X; �/ be an exact symplectic cobordism from .YC; �C/

to .Y�; ��/, where the contact forms �˙ are nondegenerate and have no orbit sets of
action L. Write c D e�" , and assume without loss of generality that " > 0. We need
to show that the upper square in the diagram

ECHL
� .YC; �C/

ˆL.X ;�/ //

s

��

ECHL
� .Y�; ��/

s

��

ECHe�"L
� .YC; e

�"�C/
ˆe�"L.X ;e�"�/ //

{e�"L;L

��

ECHe�"L
� .Y�; e

�"��/

{e�"L;L

��

ECHL
� .YC; e

�"�C/
ˆL.X ;e�"�/ // ECHL

� .Y�; e
�"��/

commutes, where s denotes the scaling isomorphism (7) for c D e�" .

Since the composition of two scaling isomorphisms is a scaling isomorphism, we may
assume without loss of generality that " is sufficiently small so that �˙ has no orbit set
of action in the interval ŒL; e"L�. Then the lower vertical arrows in the above diagram
are isomorphisms by Lemma 2.3(b). Also, by the inclusion axiom, the lower square
commutes. So to prove that the upper square commutes, it is enough to show that the
outer rectangle commutes.

For this purpose consider the product exact cobordisms .XCD Œ�"; 0��YC; e
s�C/ and

.X�D Œ�"; 0��Y�; e
s��/. By Corollary 5.8 and Lemma 3.7(a), (b), the compositions

of the vertical arrows in the above diagram are given by

(74) ˆL.X˙; es�˙/D {e�"L;L
ı sW ECHL

� .Y˙; �˙/ �! ECHL
� .Y˙; e

�"�˙/:

So to prove that the outer rectangle in the above diagram commutes, it is enough to
prove that the square

ECHL
� .YC; �C/

ˆL.X ;�/ //

ˆL.XC;es�C/

��

ECHL
� .Y�; ��/

ˆL.X�;es��/

��

ECHL
� .YC; e

�"�C/
ˆL.X ;e�"�/ // ECHL

� .Y�; e
�"��/
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commutes. By the composition axiom, this is equivalent to the assertion that

(75) ˆL..X; e�"�/ ı .XC; es�C//Dˆ
L..X�; es��/ ı .X; �//:

But these two compositions of exact symplectic cobordisms are homotopic through
exact symplectic cobordisms from .YC; �C/ to .Y�; e�"��/ if " is sufficiently small
as in (12) and (13). Thus equation (75) follows from the homotopy axiom.

6 Proof of the holomorphic curves axiom

Let .X; �/ be an exact symplectic cobordism as in the statement of Theorem 1.9. To
complete the proof of Theorem 1.9, we now prove that the maps ˆL.X; �/ defined in
Section 5.3 satisfy the holomorphic curves axiom. For this purpose fix a cobordism-
admissible almost complex structure J on X as in the statement of the holomorphic
curves axiom. Let J˙ denote the symplectization-admissible almost complex structure
that J determines on R�Y˙ , and assume that this is ECHL –admissible.

In the analysis in this section, we adopt the convention that c denotes a positive constant
whose value may increase from one appearance to the next.

6.1 Reduction to the strongly cobordism-admissible case

The first step in the proof of the holomorphic curves axiom is to reduce to the case
where J is strongly cobordism-admissible; see Definition 4.1. The latter condition
ensures that the chain map (68) is defined, and will also be convenient in Section 6.3.

Lemma 6.1 To prove the holomorphic curves axiom, it suffices to prove it in the
special case when J is strongly cobordism-admissible.

Proof Assume that the holomorphic curves axiom is true in the strongly cobordism-
admissible case, and let J be any (not necessarily strongly) cobordism-admissible
almost complex structure. Fix L such that �C and �� have no ECH generators of
action exactly L. Choose " > 0 sufficiently small that �C has no ECH generators
with action in the interval ŒL; e"L�, and �� has no ECH generators with action in the
interval Œe�"L;L�. Define an exact cobordism

X 0 D .Œ�"; 0��Y�; e
s��/ ıX ı .Œ0; "��YC; e

s�C/

from .YC; e
"�C/ to .Y�; e�"��/.

We use the cobordism-admissible almost complex structure J on X to define a strongly
cobordism-admissible almost complex structure J 0 on X 0 as follows. Note that there
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is a natural identification X 0 DX , sending .�1; 0��Y� and Œ0;1/�YC in X 0 to
.�1;�"��Y� and Œ";1/�YC in X . Under this identification, the almost complex
structure J on X is not quite cobordism-admissible for X 0 , because on the ends J.@s/

is not the Reeb vector field, but rather the Reeb vector field times e˙" . To repair
this defect, choose a diffeomorphism 'CW Œ0;1/! Œ0;1/ such that 'C.s/D s for
s close to 0, and d'C.s/=ds D e�" for s � "=2. Likewise choose a diffeomorphism
'�W .�1; 0�! .�1; 0� such that '�.s/D s for s close to 0, and d'�.s/=ds D e"

for s��"=2. Define a diffeomorphism �W X !X by setting �jX D idX and defining
�.s;y/ D .'C.s/;y/ on Œ0;1/ � YC and �.s;y/ D .'�.s/;y// on .�1; 0� � Y� .
Now J 0 WD ��J is a strongly cobordism-admissible almost complex structure on X 0 .
Furthermore, product regions for X 0 with respect to J 0 correspond to product regions
for X with respect to J .

By hypothesis, the holomorphic curves axiom holds for .X 0;J 0/, so there is a chain
map

ŷ 0W ECCL
� .YC; e

"�C;JC/ �! ECCL
� .Y�; e

�"��;J�/

which induces ˆL.X 0/ and fulfills conditions (i) and (ii) in the holomorphic curves
axiom. To deduce the holomorphic curves axiom for .X;J /, define a chain map ŷ by
composing ŷ 0 with the composition

(76) ECCL
� .YC; �C;JC/ �! ECCe"L

� .YC; e
"�C;JC/ �! ECCL

� .YC; e
"�C;JC/

on the left, and the composition

(77) ECCL
� .Y�; e

�"��;J�/ �! ECCe"L
� .Y�; ��;J�/ �! ECCL

� .Y�; ��;J�/

on the right. In each of (76) and (77), the left arrow is the scaling isomorphism, and the
right arrow is the inverse of the map induced by inclusion of chain complexes (which
is an isomorphism since we chose " sufficiently small). Each of the compositions (76)
and (77) is the obvious geometric identification of generators, and so since ŷ 0 satisfies
conditions (i) and (ii) in the holomorphic curves axiom, it follows that ŷ satisfies these
conditions as well. Finally, it follows from (74) and the composition axiom that ŷ

induces the map ˆL.X /, as required.

Assume henceforth that J is strongly cobordism-admissible.

6.2 The L–flat case

We now prove the holomorphic curves axiom in the special case when .�C;JC/ and
.��;J�/ are L–flat. In this case, define a chain map

(78) ŷ W ECCL
� .YC; �CIJC/ �! ECCL

� .Y�; ��IJ�/
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by composing the chain map (68) for r large (and some choice of small 2–form � and
small abstract perturbation p) with the isomorphisms of chain complexes (33) on both
sides.

Proposition 6.2 If .�C;JC/ and .��;J�/ are L–flat, then there exists an abstract
perturbation p such that the chain map ŷ in (78) fulfills the holomorphic curves axiom.

Proof We need to show that conditions (i) and (ii) in the holomorphic curves axiom
hold for this ŷ . It follows immediately from Proposition 5.2(a) that condition (i) holds.

To prove (ii), suppose that ‚C is a generator of ECCL
� .YC; �CIJC/ in a product

region, and let ‚� denote the corresponding generator of ECCL
� .Y�; ��IJ�/. Let

C‚ 2MJ .‚C; ‚�/ denote the corresponding union of product cylinders. We need
the following proposition:

Proposition 6.3 Suppose that .�C;JC/ and .��;J�/ are L–flat, and let ‚˙ , C‚
be as above. If r is sufficiently large then:

(a) There exists a solution d‚ D .A‚;  ‚/ to the equations (62) (without abstract
perturbation) such that on the ends, lims!˙1 d‚ corresponds to ‚˙ via (33).

(b) The operator Dd‚ obtained from linearizing the equations (62) at d‚ (this is
the p D 0 case of the operator in [21, Equation (3.9)]) has index 0 and trivial
cokernel.

(c) If C‚ is the only broken J –holomorphic curve from ‚C to ‚� , then the
instanton d‚ in (a) is unique up to gauge equivalence.

Proof (a) If ‚˙ is the empty set, then this is proved similarly to [20, Proposition
4.3], giving a solution d∅D .A∅;  ∅/ such that lims!˙1 d∅ corresponds to the empty
set via (33), and j 0j � 1� �r�1 and jFA0

j � � everywhere for some r –independent
constant � .

In the general case, this is proved by repeating the construction in [22, Section 4–7]
with cosmetic changes. We now briefly summarize this construction.

One starts as in [22, Section 5a] by building a complex line bundle E over X and a
pair .A�;  �/ consisting of a connection on E and a section of SC D E˚K�1E

(see (61)) that are close to solving (62). The bundle E is such that there is a section
of E whose zero set with multiplicity is given by C‚ . On the complement of a small
radius neighborhood of C‚ , the bundle E is identified with the trivial line bundle,
and .A�;  �/ is close to the instanton .A∅;  ∅/ constructed above. Near a product
cylinder R�  , where .;m/ is an element of the orbit set ‚˙ , the pair .A�;  �/ is
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determined by a map vW R�  ! Cm . Here Cm denotes the moduli space of degree
m vortices on C . The space Cm is naturally diffeomorphic to Cm with coordinates
.�1; : : : ; �m/; see [22, Section 2] for details. The map v is required to be asymptotic to
0 2Cm when the R coordinate s goes to ˙1. It is also required to satisfy a certain
nonlinear Cauchy–Riemann equation. For each collection of maps v satisfying these
conditions, a gluing construction in [22, Section 5] then perturbs the corresponding
pair .A�;  �/ to an instanton.7

When mD 1, it turns out that the unique solution v for .;m/ is given by the constant
map R�  ! 0 2 C . If m > 1, and thus  is elliptic, let T denote the symplectic
action of  . Then the L–flatness and “product region” assumptions imply that a
neighborhood of R �  can be identified with R � .R=T Z/ �C with coordinates
s; t; z , so that the Reeb vector field is given by RD @t , and the Liouville form � is
given by

�D es
��

1�
2�R
T
jzj2

�
dt C

i

2
.z dz� z dz/

�
:

Here R is a constant, the “rotation number”, which is irrational by the nondegeneracy
assumptions. Meanwhile, J@s D f .s/@t and J@z D i@z , where the function f .s/ is
positive and equal to constants when s� 0 and s� 0. (This is only slightly different
from the symplectization context of [22], where one would have f � 1.) Now the key
point is that in this case, similarly to [22], the nonlinear Cauchy–Riemann equation
that vD .�1; : : : ; �m/ has to satisfy is linear, namely the equation

.f �1@sC i@t /�qC
2�Rq

T
�q D 0:

Thus this equation has a (unique) solution v with the required asymptotics

lim
s!˙1

v.s; � /D 0;

namely v� 0. In conclusion, we obtain a (unique) solution v for each product cylinder
.R� ;m/ in C‚ , and this gives rise to the desired instanton.

(b) This follows similarly to the proof of nondegeneracy in [23, Theorem 1.2].

(c) Suppose that C‚ is the only broken J –holomorphic curve from ‚C to ‚� .
We need to show that if r is sufficiently large then d‚ is the unique (up to gauge
equivalence) solution to (62) such that lims!˙1 @‚ corresponds to ‚˙ via (33).

7The argument in [22] is complicated in order to handle non-R–invariant holomorphic curves having
multiple ends converging to (covers of) the same Reeb orbit, or ends converging to multiple covers of a
Reeb orbit. For the union of product cylinders C‚ , one can avoid these complications and instead use (with
appropriate cosmetic changes) the simpler construction in Taubes [17], which constructs a Seiberg–Witten
solution from a holomorphic torus with self-intersection number zero in a closed symplectic manifold.
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Suppose d0 D .A0;  0/ is another such instanton. First observe that for any ı > 0,
if r is sufficiently large then we must have 1� j 0j < ı on the complement of the
radius ı neighborhood of C‚ . Otherwise Proposition 7.1 would imply that there
is a “generalized broken J –holomorphic curve” (see Section 7.1) from ‚C to ‚�

containing a point not on C‚ , contradicting our hypothesis.

Using the above observation, the arguments in [24, Section 6] carry over8 to show that
d0 is gauge equivalent to d‚ . The idea is that d0 must be obtained from the gluing
construction in (a), and uniqueness for the instanton then follows because the solutions
v to their respective nonlinear Cauchy–Riemann equations are unique and cut out
transversely.

To complete the proof of Proposition 6.2, we need to show that if C‚ is the only broken
J –holomorphic curve from ‚C to ‚� , then

(79) h ŷ‚C; ‚�i D 1 2 Z=2:

Let c˙ denote the Seiberg–Witten Floer generator corresponding to ‚˙ via (33). Recall
that to define the chain map (78), one fixes small abstract perturbations p˙ as necessary
to define the Seiberg–Witten chain complexes for Y˙ , and extends these perturbations
over X as in [13, Chapter 24] to obtain a small perturbation p as needed to perturb the
equations (62). Recall from Section 2.1 that we choose the perturbations p˙ so that
c˙ are still solutions to the perturbed version of the Seiberg–Witten equations (20).
Likewise the perturbation p can be chosen to vanish to second order on the instantons
d‚ given by Proposition 6.3, so that these are transverse solutions to the perturbed
version of the instanton equations (62). A limiting argument similar to Step 2 of the
proof of Proposition 5.2 in Section 7.6 now shows that if r is sufficiently large and
if p˙ and p are sufficiently small, then any other solution d0 to the corresponding
perturbed version of (62) with lims!˙ d0 D c˙ is gauge equivalent to d‚ . It follows
that (79) holds as desired.

6.3 The non-L–flat case

To prove the holomorphic curves axiom in the non-L–flat case, we reduce to the L–flat
case by defining a sequence of modified exact symplectic cobordisms f.X; �n/gnD1;2;:::

between L–flat pairs, equipped with strongly cobordism-admissible almost complex
structures Jn , such that .�n;Jn/ converges to .�;J / in an appropriate sense. Fix "> 0

as in Definition 4.1. We can then write X DX�ıX 0ıXC , where X�D Œ0; "��Y� and

8As in the proof of part (a), the argument needed here can be simplified from that in [24] and differs
only cosmetically from analogous arguments in [17].
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XC D Œ�"; 0��YC and �jX˙ D es�˙ . Here s denotes the Œ�"; 0� or Œ0; "� coordinate
as usual. The idea of the construction is to define .�n;Jn/ by suitably modifying
.�;J / on X˙ , and in neighborhoods of product regions. The construction has four
steps.

Step 1 To begin the construction, fix a positive integer n. Let U˙ denote the set of
points in Y˙ that are within distance 1=n of a Reeb orbit with action less than L,
as measured using some arbitrary metrics on Y˙ . By Lemma 3.6(c), there exists a
preferred homotopy f.�t

˙
;J t
˙
/ j t 2 Œ0; 1�g on Y˙ where .�0

˙
;J 0
˙
/D .�˙;J˙/, the

pair .�1
˙
;J 1
˙
/ is L–flat, and .�t

˙
;J t
˙
/ agrees with .�˙;J˙/ on Y˙ nU˙ . To ensure

smooth gluing below, let us reparametrize the homotopy so that .�t
˙
;J t
˙
/D .�˙;J˙/

for t in a neighborhood of 0, and .�t
˙
;J t
˙
/D .�1

˙
;J 1
˙
/ for t in a neighborhood of 1.

Also, we can assume that if a component of U˙ is contained in Z where Œs�; sC��Z

is a product region, then

e�sC�t
C D e�s��t

�; J t
CjKer.�0/ D J t

�jKer.�0/

on this component.

Keep in mind that .�t
˙
;J t
˙
/ depends on n, although we do not indicate this in the

notation. We will need the following estimates on this n–dependence:

Lemma 6.4 There exists an n–independent constant c > 0 such that the homotopy
f.�t
˙
;J t
˙
/g above can be chosen so that@�t

˙

@t


C 1

;

@J t
˙

@t


C 0

� cn�1;(80) @�t
˙

@t


C 2

;

@J t
˙

@t


C 1

� c:(81)

Proof Let  W R=T Z! Y˙ be a Reeb orbit of action less than L. Recall from [21,
Equation (2-1)] that there exists a disk D �C about the origin and an extension of 
to an embedding 'W .R=T Z/�D! Y˙ such that:

� If t denotes the R=T Z coordinate and z denotes the C coordinate, then

(82) '��0
˙ D .1� 2�jzj2��z2

��z2/ dt C
i

2
.z dz� z dz/C � � � ;

where � and � are respectively real and complex valued functions on R=T Z,
and the unwritten terms are O.jzj3/.

� At z D 0, the restriction of J˙ to � is the standard almost complex structure
on C .
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By [21, Equation (2-11)], �1
˙

differs from �0
˙

only in the � terms and higher order
terms in (82), and these differences occur only where jzj � c=n. It follows that
�1
˙
��0
˙

satisfies the C 1 and C 2 bounds in (80) and (81), and because of the way a
preferred homotopy is constructed in [21, Appendix A], @�t

˙
=@t also satisfies these

bounds.

It also follows from [21, Equation (2-11)] and the second bullet point above that J 1
˙

and J 0
˙

agree along  , and therefore their difference is O.jzj/. Since their difference
is supported where jzj � c=n, it follows from this and the cutoff construction of J 1

˙
in

[21, Appendix A] that J 1
˙
�J 0
˙

satisfies the C 0 and C 1 bounds in (80) and (81). It
then follows from the construction of a preferred homotopy that @J t

˙
=@t also satisfies

these bounds.

As a first step to defining �n , define a 1–form �0n on X by

�0n WD

8̂<̂
:

es�1C"�1s
C on XC D Œ�"; 0��YC;

� on X 0;

es�1�"�1s
� on X� D Œ0; "��Y�:

It follows from (80) that if n is sufficiently large (which we assume that it is), then
.X; �0n/ is an exact symplectic cobordism from .YC; �

1
C/ to .Y�; �1

�/.

Step 2 We now relate the maps on ECH induced by .X; �/ to those induced by .X; �0n/.

Lemma 6.5 The following diagram commutes:

(83)

ECHL
� .YC; �C/

' //

ˆL.X ;�/
��

ECHL
� .YC; �

1
C/

ˆL.X ;�0n/

��

ECHL
� .Y�; ��/

' // ECHL
� .Y�; �

1
�/

Here the horizontal arrows are induced by the canonical isomorphism of chain com-
plexes (35).

Proof Let ‰C and ‰� denote the top and bottom arrows in (83). By the composition
axiom we have

ˆL.X; �0n/Dˆ
L.X�; �0n/ ıˆ

L.X 0; �0n/ ıˆ
L.XC; �0n/;

ˆL.X; �/DˆL.X�; �/ ıˆL.X 0; �/ ıˆL.XC; �/:
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Since �0n agrees with � on X 0 , it then suffices to show that

ˆL.XC; �/DˆL.XC; �0n/ ı‰C;(84)

ˆL.X�; �0n/D‰� ıˆ
L.X�; �/:(85)

To prove (84), observe that by Lemmas 5.6, 3.4(a), (b) and 3.7, we have a commutative
diagram:

ECHL
� .YC; �C/

‰C //

s

��

ECHL.YC; �
1
C/

ˆL.XC;�0n/

��

ECHe�"L
� .YC; e

�"�C/
{ // ECHL

� .YC; e
�"�C/

By (74), the composition { ı s in the above square is equal to ˆL.XC; �/.

To prove (85), by Lemmas 5.6, 3.4(a), (b) and 3.7 again, we have a commutative
diagram:

ECHe�"L
� .Y�; ��/

s //

'

��

ECHL
� .Y�; e

"��/

ˆL.X�;�0n/
��

ECHe�"L
� .Y�; �

1
�/

{ // ECHL
� .Y�; �

1
�/

Here the left vertical arrow is induced by (35). Similarly to Lemma 3.4(c), the latter
map fits into a commutative diagram:

ECHe�"L
� .Y�; ��/

{ //

'

��

ECHL
� .Y�; ��/

‰�
��

ECHe�"L
� .Y�; �

1
�/

{ // ECHL
� .Y�; �

1
�/

Combining the above two diagrams gives a commutative diagram:

ECHe�"L
� .Y�; ��/

s //

{

��

ECHL
� .Y�; e

"��/

ˆL.X�;�0n/
��

ECHL
� .Y�; ��/

‰� // ECHL
� .Y�; �

1
�/

By (74) again, the composition { ı s�1 in the above square is equal to ˆL.X�; �/.

Step 3 We now construct a strongly cobordism-admissible almost complex structure
J 0n for .X; �0n/. On X 0 we take J 0n D J . To define J 0n on X˙ , write t D 1˙ "�1s ,
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and let Rt
˙

denote the Reeb vector field associated to �t
˙

. As a step towards defining
J 0n , define an almost complex structure J 00n on X˙ by

(86) J 00n
@

@s
DRt

˙; J 00n jKer.�t
˙
/ D J t

˙jKer.�t
˙
/:

It follows from (80) and (81) that

(87) kJ 00n �JkC 0 � cn�1; kJ 00n kC 1 � c:

It also follows from (80) that if n is sufficiently large, then J 00n is d�0n –tame. However
J 00n is not necessarily d�0n –compatible, except near s D 0;�". We can measure the
failure of compatibility by a 2–form � on X˙ defined by

�.v1; v2/ WD d�0n.v1;J
00
n v2/� d�0n.v2;J

00
n v1/:

By (80) and (81), we have
k�kC 1 � cn�1:

Now �, regarded as a bundle map from the space of almost complex structures on X˙

to the space of real .1; 1/–forms, is transverse to 0 at each fiber. It then follows from
the inverse function theorem and (87) that if n is sufficiently large, then we can find
a d�0n –compatible almost complex structure J 0n that agrees with J 00n near s D 0;�",
and that satisfies

(88) kJ 0n�JkC 0 � cn�1; kJ 0nkC 1 � c:

Step 4 The last step in the construction is to replace .�0n;J
0
n/ by a pair .�n;Jn/,

which is better behaved with respect to product regions. Let us call an embedded Reeb
orbit  in YC a “product Reeb orbit (with respect to .X; �;J /)” if  � fsCg �Z

where Œs�; sC��Z is a product region in X (with respect to � and J ). Fix ı > 0 such
that if  is a product Reeb orbit with action less than L, then:

(i) If Z denotes the radius ı neighborhood of  , then Œs�; sC��Z is a product
region in X for some s�; sC .

(ii)  has distance at least 2ı from all other Reeb orbits in YC with action less
than L.

Lemma 6.6 If n > ı�1 , then there is a 1–form �n on X such that .X; �n/ is an
exact symplectic cobordism from .YC; �

1
C/ to .Y�; �1

�/, and a strongly cobordism-
admissible almost complex structure Jn on X for �n , with the following properties:

(a) The exact symplectic cobordisms .X; �n/ and .X; �0n/ from .YC; �
1
C/ to

.Y�; �
1
�/ are homotopic in the sense of Section 1.5.
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(b) If  is a product Reeb orbit in YC of action less than L with respect to
.X; �;J /, then the radius ı neighborhood of  is contained in a product region
for .X; �n;Jn/.

(c) .�n;Jn/ agrees with .�0n;J
0
n/ on X nX , and on the complement in X of the

product regions Œs�; sC� �Z where Z is the radius 1=n neighborhood of a
product Reeb orbit in YC of action less than L.

(d) kJn�JkC 0 � cn�1 and kJnkC 1 � c .

Proof Let  be a product Reeb orbit in YC with action less than L, and let Œs�; sC��Z

be the corresponding product region as in (i) above. By the construction of �t
˙

, the
1–forms e�sC�t

C and e�s��t
� agree on Z , so let us denote this 1–form simply by

�t
0

. Now on Œs�; sC��Z , replace �0n by

�n WD es�1
0:

To construct Jn on Œs�; sC��Z , recall from the construction of J 1
˙

that the restrictions
of J 1

C and J 1
� to Ker.�1

0
/ agree. Let Rt

0
denote the Reeb vector field associated to �t

0
,

and recall from the definition of “product region” that on this region, J.@=@s/D fR0
0

where f is some function of s , which, by the definition of “strongly cobordism-
admissible”, equals es near s D s˙ . Now define Jn on this region by

Jn
@

@s
D fR1

0; JnjKer.�1
0
/ D J 1

˙jKer.�1
0
/:

Let .�n;Jn/ be obtained by modifying .�0n;J
0
n/ as above for each product Reeb orbit

of action less than L. These satisfy properties (a), (b) and (c) by construction, and
property (d) follows from (80), (81) and (88).

We now state a lemma implying that if the hypothesis of (i) or (ii) in the holomor-
phic curves axiom holds for .X; �;J /, then it also holds for .X; �n;Jn/ when n is
sufficiently large. Consider pairs .‚C; ‚�/, where ‚˙ is an ECH generator for �˙
of action less than L. Recall from Definition 3.2 that ‚˙ corresponds to an ECH
generator for �1

˙
of action less than L, and we denote this also by ‚˙ . Let A denote

the set of pairs .‚C; ‚�/ for which there exists no broken J –holomorphic curve from
‚C to ‚� . Let An denote the set of pairs .‚C; ‚�/ for which there exists no broken
Jn –holomorphic curve from ‚C to ‚� . Let B denote the set of pairs .‚C; ‚�/ for
which the only broken J –holomorphic curve from ‚C to ‚� is a union of covers of
product cylinders. Let Bn denote the set of pairs .‚C; ‚�/ for which the only broken
Jn –holomorphic curve from ‚C to ‚� is a union of covers of product cylinders.

Lemma 6.7 If n is sufficiently large, then A�An and B � Bn .
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Lemma 6.7 is proved by a Gromov compactness argument in Section 6.4 below.
Assuming this, we can now give:

Proof of the holomorphic curves axiom (strongly cobordism-admissible case) Let
n be sufficiently large as in Lemmas 6.6 and 6.7. Define a chain map

ŷ W ECCL
� .YC; �CIJC/ �! ECCL

� .Y�; ��IJ�/

as the composition

ECCL
� .YC; �CIJC/! ECCL

� .YC; �
1
CIJ

1
C/

! ECCL
� .Y�; �

1
�IJ

1
�/! ECCL

� .Y�; ��IJ�/:

Here the first map is the canonical isomorphism of chain complexes (35) for YC ,
the second map is the chain map (78) for the cobordism .X; �n;Jn/, and the third
map is the inverse of the canonical isomorphism of chain complexes (35) for Y� . By
Lemmas 6.5 and 6.6(a) and the Homotopy Invariance axiom, the chain map ŷ induces
the map ˆL.X; �/ on homology.

To prove that ŷ fulfills conditions (i) and (ii) in the holomorphic curves axiom, we
must show that if .‚C; ‚�/ 2 A then h ŷ‚C; ‚�i D 0, and if .‚C; ‚�/ 2 B then
h ŷ‚C; ‚�iD1. If .‚C; ‚�/2A (resp. B ), then by Lemma 6.7 we have .‚C; ‚�/2
An (resp. Bn ), and by Proposition 6.2 applied to .X; �n;Jn/ we have h ŷ‚C; ‚�iD 0

(resp. 1).

6.4 Gromov compactness

We now prove Lemma 6.7. Continuing with the setting of Section 6.3, it is enough to
show the following:

Lemma 6.8 Let ‚˙ be ECH generators for �˙ of action less than L. Suppose that
.n1; n2; : : : / is an increasing infinite sequence of positive integers such that for each
n 2 fn1; n2; : : : g there exists a broken Jn –holomorphic curve un 2MJn.‚C; ‚�/.
Then:

(a) After passing to a subsequence, the broken Jn –holomorphic curves un converge
(in the sense of [5, Section 9], using currents instead of maps) to a broken
J –holomorphic curve u 2MJ .‚C; ‚�/.

(b) If u is a union of covers of product cylinders, then so is un for all sufficiently
large n.
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To clarify assertion (a), note that by construction, the Liouville forms �n and � on X

have the same Liouville vector field near @X , and so there is a canonical diffeomorphism
between the completions (14) of .X; �n/ and .X; �/, which is the identity on each of
the three subsets in (14).

To prove Lemma 6.8, note first that part (b) follows quickly from part (a). The reason
is that if u is a union of covers of product cylinders, then by Lemma 6.6(b), if n is
sufficiently large then each level of un is either (i) a Jn –holomorphic curve in X from
‚C to ‚� contained in a product region for .X; �n;Jn/, or (ii) a J 1

˙
–holomorphic

curve in R�Y˙ from ‚˙ to itself. In case (ii), since d�1
˙

is pointwise nonnegative
on any J 1

˙
–holomorphic curve, and zero only where the holomorphic curve is tangent

to R cross the Reeb flow, it follows by Stokes’ Theorem that any level of type (ii) maps
to a union of R–invariant cylinders, and in particular does not exist by the nontriviality
condition in our definition of “broken holomorphic curve”. So there is only a level of
type (i), and the same argument shows that this maps to a union of product cylinders.

To prove Lemma 6.8(a), first note that the arguments for [5, Lemma 9.8] can be used
with only minor notational changes to see that it is enough to prove the following
assertion about unbroken holomorphic curves:

Lemma 6.9 Let ‚˙ be ECH generators for �˙ of action less than L. Suppose
that .n1; n2 : : : / is an increasing sequence of positive integers such that for each
n 2 fn1; n2; : : : g there is a Jn –holomorphic curve Cn 2MJn.‚C; ‚�/. Then:

(a) After passing to a subsequence, the Jn –holomorphic curves Cn converge as
currents on X to a J –holomorphic curve C 2MJ .‚0C; ‚

0
�/ for some orbit

sets ‚0
˙

for �˙ .

(b) Let sn be a sequence of positive real numbers with limn!1 sn D 1. Let
C 0n � Œ�sn; sn��YC denote the translate by �sn of the intersection of Cn with
Œ0; 2sn��YC �X . Then after passing to a subsequence, the curves C 0n converge
as a current to a JC–holomorphic curve in R � YC between some orbit sets
for �C .

(c) Likewise, let sn be a sequence of negative real numbers with limn!1 snD�1.
Let C 0n � Œsn;�sn�� Y� denote the translate by �sn of the intersection of Cn

with Œ2sn; 0� � Y� � X . Then after passing to a subsequence, the curves C 0n
converge as a current to a J�–holomorphic curve in R�Y� between some orbit
sets for �� .

Note that this lemma does not directly follow from standard Gromov compactness
results, because the sequence fJng does not converge to J in C 1 ; we just have C 0

convergence and a C 1 bound from Lemma 6.6(d).

Geometry & Topology, Volume 17 (2013)



2658 Michael Hutchings and Clifford Henry Taubes

Proof of Lemma 6.9 We will just prove part (a), as the proofs of parts (b) and (c) are
essentially the same. The argument has three steps.

Step 1 We first obtain convergence to some current (which we will later show is
J –holomorphic).

Let †�X denote the union of the product cylinders R� , where  is a product Reeb
orbit of length less than L, the half-cylinders Œ�";1/� C , where C is a Reeb orbit
of �C of length less than L, and the half-cylinders .�1; "��� , where � is a Reeb
orbit of �� of action less than L. Let †1=n �X denote the radius 1=n neighborhood
of †. By construction, .�n;Jn/ agrees with .�;J / on X n†1=n .

Observe that by Stokes’ Theorem,Z
Cn\..�1;0��Y�/

d�1
�C

Z
Cn\X

d�nC

Z
Cn\.Œ0;1/�YC/

d�1
CD

Z
‚C

�1
C�

Z
‚�

�1
��L:

It follows from this that for any compact set K � X , the area of Cn \K has an n–
independent upper bound. It now follows from the compactness theorem for currents –
see Federer [2, 4.2.17] or Morgan [15, Theorem 5.5] – that we can pass to a subsequence
so that fCng converges weakly as a current to an integral rectifiable current C with
locally finite 2–dimensional Hausdorff measure.

Lemma 6.10 The convergence to C is pointwise in the sense that

(89) lim
n!1

�
sup

x2C\K

dist.x;Cn/C sup
x2Cn\K

dist.x;C /
�
D 0

for every compact set K �X .

Proof This is proved by copying the arguments in Taubes [18, Section 5c] and using
Lemma 6.11 below.

Given � > 0 and x 2 Cn , let an.x; �/ denote the integral of d� over the subset of Cn

with distance less than or equal to � from x .

Lemma 6.11 There exists a constant � > 1 such that for all n > � and x 2 Cn , if
��1 > � > �0 > 0, then

an.x; �/ > �
�1.�=�0/2an.x; �

0/:

Proof It follows from Lemma 6.6(d) that Jn is tamed by d� for all sufficiently large
n. Moreover, if j � j denotes the metric determined by d� and J , then there exists a
constant ı > 0 such that if n is sufficiently large then d�.v;Jnv/ � ıjvj

2 . One can
then apply Ye [27, Theorem 2.1].
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Step 2 We now recall a criterion for C to be J –holomorphic.

Let D denote the closed unit disk. Call a smooth map � W D ! X admissible if
�.@D/�X nC .

Definition 6.12 (cf [18, Section 6a]) A positive cohomology assignment is an as-
signment, to each admissible map � , of an integer I.�/, satisfying the following
conditions:

(a) I.�/D 0 if the image of � is disjoint from C .

(b) If �0 and �1 are admissible maps that are homotopic through admissible maps,
then I.�0/D I.�1/.

(c) If � is admissible and if �W D!D is a smooth map so that �W @D! @D is a
degree k covering, then I.� ı�/D kI.�/.

(d) Suppose that � is admissible and that ��1.C / is contained in the interior of
a finite disjoint union

`
i Di where each Di is the image of an orientation-

preserving embedding �i W D!D . Then I.�/D
P

i I.� ı �i/.

(e) If � is a J –holomorphic embedding whose image intersects C , then I.�/ > 0.

If there exists a positive cohomology assignment, then it follows as in [24, Lemma 4.4]
that C is a J –holomorphic subvariety of X . The arguments in [5, Lemma 9.8] then
show that C is an element of MJ .‚0C; ‚

0
�/ for some ‚0

˙
.

Step 3 To complete the proof of Lemma 6.9, we define a positive cohomology
assignment I as follows. If � W D! C is an admissible map, then it follows from the
pointwise convergence (89) that �.@D/ is disjoint from Cn whenever n is sufficiently
large. It then follows from the convergence of currents that the intersection number of
D with Cn is independent of n when n is sufficiently large. Define I.�/ to be this
intersection number.

Conditions (a)–(d) in Definition 6.12 follow directly from the definition of I , together
with the fact that Cn converges to C both as a current and pointwise in the sense of
(89). Condition (e) is immediate in the special case when � maps to X n†, because
then Cn is J –holomorphic in a neighborhood of �.D/ for all sufficiently large n. In
particular, it follows from [24, Lemma 4.4] that C \ .X n†/ is a J –holomorphic
submanifold on the complement of a discrete set. This last fact can also be deduced
from standard Gromov compactness theorems – see eg Hummel [3], Wolfson [26], Ye
[27] – since the intersection of C with any compact subset of X n† is a pointwise
limit of J –holomorphic subvarieties.
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It remains to prove condition (e) when �.D/ is allowed to intersect †. By [18,
Lemma 5.5], any holomorphic disk (without boundary constraint) can be perturbed
to a holomorphic disk that is transverse to †. So by conditions (a) and (d), we can
reduce to the case where �.D/ has small radius and intersects † only at its center
point, transversely, which is also in C . To prove property (e) in this case, we use the
following lemma, which allows us to perturb a family of J –holomorphic disks to a
family of Jn –holomorphic disks.

Lemma 6.13 Let D1;D2 be disks centered at the origin in C , and let �W D1�D2!

X be a map such that �jD1�fz2g
is a J –holomorphic embedding for each z2 2D2 , and

��1.†/D f0g �D2 . After replacing D1 by a sufficiently small radius subdisk, given
� >0, if n is sufficiently large, then there exists a smooth map 'nW Œ0; 1��D1�D2!X

with the following properties:

� 'n.0; � ; � /D � .

� For each z2 2D2 , the map 'n.1; � ; z2/ is an embedding with Jn –holomorphic
image.

� supt2Œ0;1�;z12D1;z22D2
dist.�.z1; z2/; 'n.t; z1; z2// < � .

Granted Lemma 6.13, the proof of property (e) is completed as follows. Let � W D1!X

be an admissible map that intersects † only at its center point, transversely, which is
also in C . By [18, Lemma 5.5], we can then find �W D1�D2!X as in Lemma 6.13
such that � restricts to a diffeomorphism from a neighborhood of .0; 0/ to an open set
U in X . We can shrink D1 as in Lemma 6.13, and also shrink D2 , so that �jD1�fz2g

is admissible for all z2 2D2 . By the pointwise convergence (89), if n is sufficiently
large, then Cn intersects U . It follows that if " in Lemma 6.13 is chosen sufficiently
small, and if n is sufficiently large, then 'n.1; � ; z2/ intersects Cn for some z2 2D2 .
Moreover, it follows from the pointwise convergence (89) that if " is sufficiently small
and n is sufficiently large then 'n.1; � ; z2/ is homotopic to � through disks whose
boundaries do not intersect Cn . Therefore I.�1/ equals the intersection number of Cn

with 'n.1; � ; z2/ when " is sufficiently small and n is sufficiently large. Since the latter
disk is Jn –holomorphic and intersects Cn , we conclude that I.�1/ > 0 as desired.

Proof of Lemma 6.13 To simplify notation we will just prove the lemma in the case
when D2 is a point, and we will drop z2 from the notation and write D DD1 . The
lemma in the general case then follows by noting that the estimates used to prove the
lemma when D2 is a point vary continuously with a smooth family of holomorphic
disks. So let �W D!X be a holomorphic map such that ��1.†/D f0g; we need to
show that after replacing D by a smaller radius disk, given " > 0, if n is sufficiently
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large then there exists 'nW Œ0; 1��D!X such that 'n.0; � /D� , the map 'n.1; � / is an
embedding with Jn –holomorphic image, and supt2Œ0;1� supz2D dist.�.z/; 'n.t; z//<� .
We do so in five steps.

Step 1 We first write down the equations we need to solve in a convenient coordinate
system.

We can choose complex coordinates .z; w/ for a neighborhood of �.0/ in X with
the following properties: First, the intersection of D with this neighborhood is given
by w D 0. Second, each constant z slice is J –holomorphic. Third, the J version of
T 1;0X is spanned by

(90) dzC �dz; dwC  dz;

where � and  are smooth functions that obey j�. � ; w/j C j . � ; w/j � cjwj. Such
coordinates can be found in a neighborhood of any point on a J –holomorphic curve in
an almost complex 4–manifold, as explained in [18, Section 5d]. Similarly to (90), the
Jn version of T 1;0X is spanned by

(91) dzC �n dzC�n dw; dwC n dzC �n dw;

where �n; �n; n; �n are smooth functions. By Lemma 6.6(d), these satisfy j�n�� jC

j�njC jn�  jC j�nj � cn�1 , and the first derivatives of �n� � , �n , n�  and �n

are bounded in absolute value by c .

Now fix r > 0 such that the coordinates z and w are defined where both have norm
less than 2r , and replace D with the disk .wD 0; jzj � r/. Let �W D!C be a smooth
function with j�j< r . It follows from (91) that the graph wD �.z/ is Jn –holomorphic
if and only if

@�

@z
C n� �n

@�

@z
C �n

@�

@z
C .�nn� �n�n/

@�

@z
C�n

�
@�

@z

@�

@z
�
@�

@z

@�

@z

�
D 0:

It proves useful to rewrite the above equation in the schematic form

(92) @�

@z
C  � �

@�

@z
C r0C r1.�;r�/C r2.�;r�/:

Here r0D .n� /jwD0 is a function of z with jr0j�cn�1 and with first derivatives that
are bounded in absolute value by c . Meanwhile r1.a; � / for fixed a is a z–dependent
affine linear function that obeys jr1.a; b/j � cn�1.jajC jbj/. The first derivatives of
r1.a; � / are bounded in absolute value by c . Finally, r2.a; � / for fixed a is a quadratic
function of its second entry with jr2.a; b/j � cn�1jbj2 . The first derivatives of r2 with
respect to both z and a are bounded in absolute value by c . Also observe that since
��1.†/Df0g, it follows that for any ı > 0, if n is sufficiently large then r0D 0 where
jzj> ı .
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To prove Lemma 6.13, it now suffices to show that for every " > 0, if n is sufficiently
large then there exists a solution �n to the equation (92) with j�nj< ". One can then
define 'n.t; z/D .z; w D t�n.z//.

Step 2 We will solve (92) using a fixed point construction in a certain Banach space
H of C 1 functions.

To define the Banach space H , fix once and for all a number � 2 .0; 1=16/. If V is
any finite-dimensional normed vector space over C , define a norm k � k˘ on the space
of bounded smooth functions f W C! V by

kf k2˘ WD sup
z2C

sup
�2Œ0;1�

���
Z
jz0�zj<�

jf .z0/j2:

Now let C denote the space of smooth functions �W C!C that are holomorphic on
the complement of the unit disk and that satisfy limjzj!1 �.z/D 0. Define a norm
k � k� on C by

k�k� WD kr�k2Ckr�k˘Ckrr�k˘:

Finally, define H to be the completion of C with respect to the norm k � k� . The
following lemma about H will be needed below:

Lemma 6.14 H is a subset of the Hölder space C 1;�=2 , and the inclusion H!C 1;�=2

is a bounded linear map of Banach spaces.

Proof By Morrey [16, Theorem 3.5.2], there exists a constant c (depending on � )
such that

(93) j�j � ckr�k˘; jr�j � ckrr�k˘;

and the exponent �=2 Hölder norm of jr�j is also bounded by ckrrk˘ .

Step 3 (of the proof of Lemma 6.13) Fix a smooth function �W C ! Œ0; 1� that is
equal to 1 on the disk of radius r=4 and equal to 0 outside of the disk of radius r=2.
Given � 2 C , a standard use of the Green’s function for @ on C finds a unique solution
T D T .�/ 2 C of the equation

(94) @T

@z
D��

�
 � �

@�

@z
C r0C r1.�;r�/C r2.�;r�/

�
:

Here r1 and r2 should be extended arbitrarily for jwj> r so that they still satisfy the
estimates from Step 1. It follows from (94), using (93) and [16, Theorems 3.5.2 and
5.4.1], that

(95) kT k� � c
�
kr0k1Ckrr0k˘C n�1

k�k�Ck�k
2
�

�
:

Geometry & Topology, Volume 17 (2013)



Proof of the Arnold chord conjecture in three dimensions, II 2663

Step 4 Fix " > 0 and let H" �H denote the ball of radius " centered at the origin.
We claim that if n is sufficiently large, then the map � 7! T .�/ maps H"\ C to itself.
By (95), it is enough to show that

(96) krr0k˘ <
1
2
c�1"

if n is sufficiently large, where c here denotes the same constant as in (95). To do so,
recall that for any ı > 0, if n is large enough then r0 is supported in the disk of radius
ı . Then the bound jrr0j � c implies that for each z we haveZ

jz0�zj<�

jrr0.z
0/j2 � c min.�2; ı2/:

It follows that krr0k˘ � cı1��=2 . By taking ı sufficiently small, we conclude that
the desired inequality (96) holds if n is sufficiently large.

Step 5 By Step 4, for any ">0, if n is sufficiently large then T k.0/2H" for all k�0.
By Lemma 6.14 and the Arzelà–Ascoli Theorem, the sequence fT k.0/gkD0;1;::: then
converges uniformly in the C 1 topology to a C 1 function �. Since the convergence
is in C 1 , the limit function � obeys (92). Also, elliptic bootstrapping shows that � is
in fact C1 . Finally, by (93) we have j�j < c", where c does not depend on ". As
explained at the end of Step 1, this completes the proof of Lemma 6.13.

7 Cobordism maps and holomorphic curves (proofs)

To complete the unfinished business, this section proves Propositions 5.2 and 5.4, which
were used in Section 5 to define the map on bHM

�

L induced by an exact symplectic
cobordism.

7.1 Statement of Proposition 7.1

Propositions 5.2 and 5.4 will be deduced from Proposition 7.1 below, which describes
how Seiberg–Witten solutions in a cobordism give rise to holomorphic curves. The
statement of Proposition 7.1 requires the following preliminaries.

The Seiberg–Witten action functional Let Y be a closed oriented 3–manifold with
a contact form �, and let J be a symplectization-admissible almost complex structure
on R�Y . These determine a metric on Y according to the conventions in Section 2.2.
Fix a spin-c structure and recall the splitting (26).

As noted in Section 2.2, solutions to our perturbed Seiberg–Witten equations (31) on
R�Y correspond to gradient flow lines of the functional (21), under the identifications
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(27), (29) and (30). However it will be convenient below to regard these solutions as
gradient flow lines of a different functional a on connections on E and sections of S
defined by

(97) a.A;  / WD 1
2
.cs.A/� r E.A//C e�.A/C r

Z
Y

hDA ; i;

where the terms in (97) are defined as follows.

Choose a reference (Hermitian) connection AE on the line bundle E . An arbitrary
connection A on E differs from AE by an imaginary-valued 1–form. We define the
Chern–Simons functional

cs.A/ WD �

Z
Y

.A�AE/^ d.A�AE/� 2

Z
Y

.A�AE/^
�
FAE
C

1
2
FA

K�1

�
:

Here AK�1 is the distinguished connection on K�1 defined in Section 2.2. Also,
E.A/ in (97) is the energy defined in (32), and

e�.A/ WD i

Z
Y

.A�AE/^�:

The functionals (21) and (97) differ by a constant as follows: If we make the identifica-
tions (27), (29) and (30), and choose A0 DAK�1 C 2AE , then

(98) a�.A; ‰/D a.A;  /C
i r

2

Z
Y

FAE
^�:

Geometric setup Proposition 7.1 is applicable to two geometric setups:

Case 1 The first geometric setup, which is needed for Proposition 5.2, is where .X; �/
is an exact symplectic cobordism from .YC; �C/ to .Y�; ��/. In this case let X denote
the completion of X as in (14). Let us denote the ends of X by E� WD .�1; 0��Y�
and EC WD Œ0;1/�YC . Also let s�W X ! R denote the piecewise smooth function
that agrees with the .�1; 0� coordinate on E� , agrees with the Œ0;1/ coordinate on
EC , and equals 0 on X .

Recall from Section 4.2 that to write down the Seiberg–Witten equations (62) on X ,
we need to choose a strongly cobordism-admissible almost complex structure J on
X – see Definition 4.1 – that restricts to symplectization-admissible almost complex
structures J˙ for �˙ on E˙ . Then � and J determine a metric g on X , as well as
the 2–form y! that appears in (62). We also need to choose small exact 2–forms �˙
on Y˙ , and a small exact 2–form � on X that restricts to �˙ on E˙ .

Case 2 The second geometric setup, which is needed for Proposition 5.4, considers
the composition .X; �/ of exact symplectic cobordisms .XC; �C/ from .YC; �C/
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to .Y0; �0/ and .X�; ��/ from .Y0; �0/ to .Y�; ��/. For the purposes of “neck
stretching”, given R� 0 consider the diffeomorphic manifold

(99) XR DX�[
[

f�Rg�Y0

.Œ�R;R��Y0/[
[
fRg�Y0

XC:

Define the completion XR as usual by attaching ends E� D .�1; 0��Y� and EC D
Œ0;1/�YC to XR . We now specify how to write down a version of the Seiberg–Witten
equations (62) on XR .

To start, define s�W XR!R as follows. Let s˙� W X
˙!R denote the function defined

in Case 1 above. Then define s� to agree with s�� �R on E�[X� , to agree with the
Œ�R;R� coordinate on Œ�R;R��Y0 , and to agree with sC� CR on XC[ EC .

Let z�˙ denote the 1–form on the completion X˙ defined in (58). Define a 1–form
z�R on XR by

(100) z�R D

8<:
e�2Rz�� on E�[X�;

e2s��0 on Œ�R;R��Y0;

e2Rz�C on XC[ EC:

When R is fixed, we usually denote z�R simply by z�. Define z! D dz� as before. Note
that .XR; z�jXR

/ is an exact symplectic cobordism from .YC; e
2R�C/ to .Y�; e�2R��/.

However, below, references to the “length” of Reeb orbits on Y˙ refer to the length as
defined by �˙ , which does not depend on R. We denote this length as usual by A.

Let J˙ and J0 be symplectization-admissible almost complex structures for �˙ and
�0 respectively. Let J˙ be strongly cobordism-admissible almost complex structures
on X˙ restricting to J˙ and J0 on the ends. These determine a strongly cobordism-
admissible almost complex structure J on XR , which agrees with J˙ on E˙[X˙ ,
and which agrees with J0 on Œ�R;R��Y0 .

Let g˙ be the metric on X˙ determined by �˙ and J˙ as in Section 4.2. These extend
to a metric g on XR that agrees with g˙ on E˙[X˙ , and which on Œ�R;R��Y0

agrees with the R–invariant metric on R�Y0 determined by �0 and J0 according to
the conventions in Section 2.2. Using the metric g , define y! WD

p
2z!= jz!j as before.

Finally, let �˙ and �0 be small exact 2–forms on Y˙ and Y0 . Let �˙ be small exact
2–forms on X˙ as in Case 1 that restrict to �˙ and �0 on the ends. These determine
an exact 2–form � on XR , which restricts to �˙ on E˙[X˙ , and which restricts to
�0 on Œ�R;R��Y0 .

Below, when we wish to consider both geometric setups simultaneously, we let X�
denote X in Case 1 and XR in Case 2. Likewise, X� denotes X or XR as appropriate.
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Variations in the data Proposition 7.1 considers variations in the given data .�;J; �/.
To clarify, fix "> 0 for use in defining neighborhoods as in (12) and (13) of the positive
and negative boundaries of X in Case 1 or X˙ in Case 2, and for defining the data
on their completions as in Section 4.2. A “variation” then consists of data .�0;J 0; �0/,
which are constrained to be usable above for given data .�˙;J˙; �˙/ (and .�0;J0; �0/

in Case 2), with the further requirement that �0 agree with � on the above boundary
neighborhoods. The proposition refers to a “neighborhood” of .�;J; �/; this consists
of data .�0;J 0; �0/ as above in a C1–Fréchet neighborhood of .�;J; �/.

Index and action difference Let d be a instanton solution to (62) on X� . We now
introduce two numbers associated to d, which will be needed below.

First, let id denote the index of the instanton d. This is the Fredholm index of the
operator Dd obtained from linearizing the equations (62) at d.

Second, recall that the solutions to the perturbed Seiberg–Witten equations in (28) are
the critical points of the “Seiberg–Witten action” functional (97) on the space of pairs
.A;  /. As in Section 4.1, let c˙ denote the s�!˙1 limit of d. Let a˙ denote the
Y˙ version of the action functional. We then define

Ad WD a�.c�/� aC.cC/:

Note that while the functionals a˙ are generally not gauge invariant, the quantity Ad

is still gauge invariant.

Spinor decomposition If  is a section of SC , we write  D .˛; ˇ/, where ˛ and
ˇ respectively denote the E and K�1E components of  in the decomposition (61).

Generalized broken J –holomorphic curves If ‚˙ are orbit sets in Y˙ , we define
a generalized broken J –holomorphic curve from ‚C to ‚� to be a collection of
holomorphic curves fCkg1�k�N as in Definition 1.6, but with one difference: Recall
that in Definition 1.6 the curves Ck for k > k0 are in R� YC , the curve Ck0

is in
X� , and the curves Ck for k < k0 are in R�Y� . The difference is that now we do
not mod out by R–translation of the curves Ck in R�Y˙ for k ¤ k0 . Note that if
k > k0 we can then identify Ck \ .Œ0;1/�YC/ with a subset of X� , and if k < k0

we can likewise identify Ck \ ..�1; 0��Y�/ with a subset of X� .

Proposition 7.1 Fix a data set consisting of .�;J; �/. Let K�1 be given, and assume
that all Reeb orbits of �˙ (and �0 in Case 2) of length less than or equal to .2�/�1K
are nondegenerate. Then there exist:

(i) � � 1,

(ii) a neighborhood of the given data set, and
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(iii) given ı > 0, a number �ı � 1,

such that the following holds: Take r � �ı and a data set from the given neighborhood
(and take any R in Case 2) so as to define (62) on X� . Let dD .A;  D .˛; ˇ// denote
an instanton solution to this version of (62) with Ad �Kr or id > �Kr . Assume also
that E.cC/�K . Then:

� E.c�/� E.cC/C ı .

� Each point in X� where j˛j � 1� ı has distance less than �r�1=2 from ˛�1.0/.

� There exist
(a) a positive integer N � � and a partition of R into intervals I1 < � � �< IN ,

each of length at least 2ı�1 , with Œ�1; 1�� Ik0
, and

(b) a generalized broken J –holomorphic curve fCkg1�k�N in X� from an
orbit set ‚C in YC to an orbit set ‚� in Y�

such that for each k D 1; : : : ;N , with the above identifications of subsets of Ck

with subsets of X� , we have

sup
z2Ck\s�1

� .Ik/

dist.z; ˛�1.0//C sup
z2˛�1.0/\s�1

� .Ik/

dist.Ck ; z/ < ı:

In particular, ‚˙ is the orbit set determined by c˙ under the map in Proposition
3.1(a).

Remark 7.2 The constants � and �ı in Proposition 7.1 can be chosen to be stable,
by which we mean that they satisfy the conclusions of the proposition for data in
some neighborhood of the given data .�;J; �/. Various lemmas in the proof of
Proposition 7.1 below also refer to constants that are stable in this sense. In general,
we omit proofs of stability, as these follow from the proofs below with only cosmetic
changes.

7.2 Preliminaries to the proof of Proposition 7.1

An analogue of Proposition 7.1 for a symplectization R�Y with R–invariant .J; �/
was proved in [24, Proposition 5.5]. A slight difference is that [24, Proposition 5.5]
applies only to a single data set .�;J; �/, while Proposition 7.1 applies to every
suitable data set .�0;J 0; �0/ in some neighborhood of a given .�;J; �/ and to every
R where applicable. The proof of Proposition 7.1 below mostly follows the proof of
[24, Proposition 5.5], indicating the necessary modifications for our situation. Before
starting the proof, we need to make a few more definitions.
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The spectral flow function

Returning to the setting of the beginning of Section 7.1, given r � 1, a pair cD .A;  /
of a connection on E and a section of S determines a self-adjoint operator Lr;c defined
in [22, Equation (3.8)]. Roughly speaking this operator is the Hessian of a at c (after
modding out by gauge transformations). Let us call a pair .r; c/ nondegenerate if the
corresponding operator Lr;c has trivial kernel.

Now fix a reference pair c� such that the pair .1; c�/ is nondegenerate, and fix r � 1. If
c is such that the pair .r; c/ is nondegenerate, then we define the spectral flow function
f .c/ to be the spectral flow from L1;c� to Lr;c .

If the spin-c structure has non-torsion first Chern class, ie, if c1.det.S// is not torsion
in H 2.Y IZ/, then the functional a is not invariant under the action of the gauge group
C1.Y IS1/, and neither is the spectral flow function f . However the combination

(101) af . � / WD a. � /� 2�2f . � /

is always gauge invariant.

Index and spectral flow

Returning to the setting of Proposition 7.1, we now relate the index of an instanton
to the spectral flow functions on Y˙ . Fix a spin-c structure S on X� and let E be
defined by the splitting (61). Fix a reference pair d� D .A�;  �/ of a connection on E

and a section of SC with the following properties: First, the restriction to the ˙s > 1

portion of X� is pulled back from a configuration c˙� on Y˙ . Second, require that the
pair .r D 1; c˙�/ is nondegenerate in the sense described above. This guarantees that
the operator Dd� is Fredholm. (Note that this operator is defined regardless of whether
d� solves the Seiberg–Witten equations (62).) Let {� denote the index of Dd� . Let f˙
denote the spectral flow function on Y˙ defined using c˙� as the reference pair.

If d is an instanton solution to (62) with nondegenerate s�!˙1 limits c˙ , then it
follows from [1] that its index is given by9

(102) id D i�CfC.cC/�f�.c�/:

7.3 Estimates on instantons

To begin the proof of Proposition 7.1, we now establish various estimates for instanton
solutions to (62) on X� , parallel to [24, Section 3], where analogous estimates are
derived for instantons on a symplectization. Assume in what follows that .�˙;J˙; �˙/

9In a symplectization with R–invariant .J; �/ , one can take d� to be independent of the R factor, so
that i� D 0 . In this case id agrees with the quantity fd in [24].
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(and .�0;J0; �0;R/ in Case 2) are given. Fix data .�;J; �/ as in Section 7.1. Below,
c0 denotes a number that is greater than 1, that is stable in the sense of Remark 7.2,
and that does not depend on any given solution to (28) or (62) or on the value of r

used to define these equations. The value of c0 can increase from one appearance to
the next.

Lemma 7.3 (cf [24, Lemma 3.1]) There exists a stable � � 1 such that if r � � and
if .A;  D .˛; ˇ// is an instanton solution to (62) on X� , then

j˛j � 1C �r�1;

jˇj2 � �r�1.1� j˛j2/C �2r�2:

Proof This follows from the maximum principle as in [24, Lemma 3.1], using the
corresponding inequalities in the 3–dimensional case [19, Lemma 2.2] to obtain the
necessary bounds as s!˙1.

Lemma 7.4 (cf [24, Lemma 3.2]) There exists a stable � � 1 with the following
property: Suppose that r � � and that dD .A;  / is an instanton solution to (62) on
X� with Ad � r2 or id � �r2 . Then jFAj � �r .

Proof Copy the proof of [24, Lemma 3.2], replacing [24, Lemma 3.3] in that argument
with Lemma 7.5 below.

To state the next lemma, let rA denote the covariant derivative on SC DE˚K�1E

determined by the connection A on E together with the distinguished connection
AK�1 on K�1 from Section 4.2. Note that under the identification (27), the difference
rA�rA 2�

1.X�IEnd.SC// is bounded in C 0 and does not depend on A.

Lemma 7.5 (cf [24, Lemma 3.3]) There exists a stable � � 1 with the following
property: Suppose that r � � and that dD .A;  / is an instanton solution to (62) on
X� with Ad � r2 or id � �r2 . Let I �R denote an interval of length 2. ThenZ

s�1
� .I /

.jFAj
2
C r jrA j

2/� �r2:

The proof of Lemma 7.5 requires two additional lemmas. To state these, let I0 D f0g

in Case 1 and let I0 D f�R;Rg in Case 2. On s�1
� .R n I0/, define two 1–forms by

(103)
B.A; / WD �FA� r.�. /� ia/� i��C 1

2
�FA�1

K
;

EA WD FA

�
@

@s
; �
�
:
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Here � denotes the three-dimensional Hodge star, a denotes the relevant contact form
(�˙ or �0 ), and s denotes the R coordinate on R�Y˙ or R�Y0 . Also let rA;s denote
the covariant derivative with respect to the connection rA on SC in the direction @=@s .
We then have:

Lemma 7.6 (cf [24, Lemma 3.4]) There exists a stable � � 1 such that if r � � and
if dD .A;  / is an instanton solution to (62), then the following hold:

(a) Suppose that sC � s� are in the same component of R n I0 . Then

(104) a.djs�Ds�/� a.djs�DsC/

D
1

2

Z
s�2Œs�;sC�

.jEAj
2
CjB.A; /j2C 2r.jrA;s j

2
CjDA.s�/ j

2//:

Here a denotes the functional (97) on YC , Y� or Y0 as appropriate.

(b) In Case 1,

(105) ��1

Z
X

�
jFAj

2
C r jrA j

2
�
� �a

�
dj@X

�
C �r;

where a
�
dj@X

�
WD a

�
djf0g�YC

�
�a
�
djf0g�Y�

�
. In Case 2, analogous inequalities

hold with X replaced by X� or XC .

(c) If sC; s� 2R n I0 and sC > s� then:

��1

Z
s�1
� Œs�;sC�

.jFAj
2
C 2r jrA j

2/

� a.djs�Ds�/� a.djs�DsC/C �.sC� s�/r
2
C �r:

(d) 1

2

Z
s�1
� .RnI0/

.jEAj
2
CjB.A; /j2C 2r.jrA;s j

2
CjDA j

2//

� a.c�/� a.cC/C �r:

Proof (a) We can apply a gauge transformation to put the connection A into temporal
gauge (52) on s�1

� Œs�; sC�. Equation (104) then becomes

(106) a.djs�Ds�/� a.djs�DsC/

D
1

2

Z
s�1
� Œs�;sC�

�ˇ̌̌
@A

@s�

ˇ̌̌2
CjB.A; /j2C 2r

�ˇ̌̌
@ 

@s�

ˇ̌̌2
CjDA.s�/ j

2
��
:

This is equivalent to the first equation in [24, Lemma 3.4]. An alternate way to
understand this equation is to recall that .A.s�/;  .s�// is a downward gradient flow
line of the functional a in (97). In particular, the L2 gradient of a at .A;  / is
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.B.A; /;
p

2rDA /. Equation (106) then follows from the fact that if  .s/ is a
downward gradient flow line of a function f then

(107) f .s�/�f .sC/D
1

2

Z
s2Œs�;sC�

�
krf k2Ck@=@sk2

�
:

(b) We just consider Case 1 since the proof in Case 2 is the same. Recall that our
solution .A;  / to (62) corresponds to a solution .A; ‰/ of (51) via (27), (30) and (63).
Identify Y˙ with f0g �Y˙ in X . By (98), a.d@X / differs by an O.r/ constant from
a�.d@X / WD a�C.dYC/� a��.dY�/, so it is enough to prove the claim with a.d@X /

replaced by a�.d@X /.

Recall from Section 4.2 that y! D ��1 dz� where � W X ! Œ3=2; 5=2� is a smooth
function with � j@X D 2. Now start with the Bochner–Weitzenböck formula

D�ADA‰ Dr
�
ArA‰C

1

2
cl.FCA /‰C

s

4
‰;

where s denotes the scalar curvature of X . Putting in the Dirac equation DA‰ D 0

from (51), multiplying the resulting equation by � , taking the inner product with ‰
and integrating by parts gives

(108) 0D

Z
X

� jrA‰j
2
C

1

2

Z
X

�hcl.FCA /‰;‰iC
1

4

Z
X

�sj‰j2C

Z
X

hd�˝‰;rA‰i

C 2

Z
YC

hDAjYC
‰;‰i � 2

Z
Y�

hDAjY�
‰;‰i:

Second, taking the norm square of the curvature equation in (51), multiplying by � ,
and integrating over X gives

(109) 0D

Z
X

� jFCA j
2
C

1

2

Z
X

� j‰j4C

Z
X

� j�j2

�

Z
X

�hcl.FCA /‰;‰i � 2

Z
X

�hFCA ; i�iC

Z
X

�hcl.i�/‰;‰i:

Third, by (21) and Stokes’ Theorem we have

(110) a�.dj@X /D
1

8

Z
X

�
jFCA j

2
� jF�A j

2
CFA0

^FA0

�
C

1

2

Z
YC

hDAjYC
‰;‰i �

1

2

Z
Y�

hDAjY�
‰;‰i

C
1

4

Z
YC

.A�A0/^ i�C�
1

4

Z
Y�

.A�A0/^ i��:
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Here A0 is any reference connection on det.S/ over X extending the chosen reference
connections over YC and Y� , and �˙ denotes the perturbation (29) for Y˙ .

Adding two times equation (108) to equation (109) and subtracting eight times equation
(110) gives

(111) �8a�.dj@X /

D 2

Z
X

� jrA‰j
2
C

Z
X

�
.� � 1/jFCA j

2
CjF�A j

2
�
C

Z
X

hd� ˝‰;rA‰i

C
1

2

Z
X

�sj‰j2�

Z
X

FA0
^FA0

C
1

2

Z
X

� j‰j4C

Z
X

�hcl.i�/‰;‰iC
Z

X

� j�j2

� 2

Z
X

�hFCA ; i�i � 2

Z
YC

.A�A0/^ i�CC 2

Z
Y�

.A�A0/^ i��:

On the right side of (111), in the first term we have jrA‰j
2 D 2r jrA j

2 CO.r/,
since .2r/�1=2j‰j D j j DO.1/ by Lemma 7.3; in the second term we have FA D

2FACO.1/; and in the third term we have

hd� ˝‰;rA‰i � �
1

100
jrA‰j

2
� c0j‰j

2;

where j‰j2 is O.r/ by Lemma 7.3. The second line on the right side of (111) is O.r/

by Lemma 7.3 again. Using ‰ D
p

2r .˛; ˇ/ and (63), we can expand the sum of the
integrands in the third line of the right side of (111) as � times

1
2
j‰j4Chcl.i�/‰;‰iC j�j2 D 2r2..j˛j2� 1/2C 2j˛j2jˇj2C 2jˇj2Cjˇj4/

Chcl.2i��/‰;‰i � 4rhy!;��iC 4j��j
2;

which is O.r/ by Lemma 7.3. Since the 2–forms �˙ on Y˙ extend over X to the
exact 2–form �r dz�C 4�, the fourth line on the right side of (111) can be rewritten
using Stokes’ Theorem as

(112) 2

Z
X

FA0
^ i.r dz�� 4�/C

Z
X

�
hFCA ; 4i��iC hF�A ; 8i�i

�
:

The first term in (112) is O.r/. Since we assumed in Section 4.2 that j�j � 1=100, the
second term in (112) is bounded from below by �1

10

R
X .jF

C

A j
2C jF�A j

2/, so we can
combine this with the second term in the first line on the right hand side of (111) to
obtain the desired inequality (105).
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(c) By part (b), it is enough to show that the stated inequality holds when sC and s�
are in the same component of R n I0 . We can further replace the functional a by a�0

,
where �0 denotes the perturbation (29) for YC , Y� or Y0 as appropriate.

As in (107), we have

a�0
.ds�Ds�/� a�0

.ds�DsC/D
1

2

Z
s�1
� Œs�;sC�

�
1

4

ˇ̌
��FA.s�/C �.‰.s�//C i��0

ˇ̌2
CjDA.s�/‰j

2
C

1

4
j@sAj2Cj@s‰j

2
�
:

Expanding the first term in the integrand, and using the Bochner–Weitzenböck formula
for the three-dimensional Dirac operator DA.s�/ on constant s� slices to expand the
second term in the integrand, the right hand side becomes

1

2

Z
s�1
� Œs�;sC�

�
1

4
jFAj

2
CjrA‰j

2
C

s

4
j‰j2C

1

4
j�.‰.s�//j

2

C
1

4
j�0j

2
C

1

2
h�.‰.s�//; i��0i �

1

2
h�FA.s�/; i��0i

�
:

The sum of the first two terms in the integrand is jFAj
2C2r jrA j

2CO.r/. The third
and fourth terms are O.r/ by Lemma 7.3, the fifth term is O.r2/ by (29), and likewise
the sixth term is O.r3=2/. The last term is O.r2/ because j�FA.s�/j � 2jFCA j, which
is O.r/ as noted in the proof of (b).

(d) This follows immediately from (a) and (b).

Continuing with the proof of Lemma 7.5, note that the case Ad� r2 follows immediately
from Lemma 7.6(a)–(c). To deal with the remaining cases we need:

Lemma 7.7 (cf [22, Lemma 3.5]) There exists a stable constant � � 1 such that if
dD .A;  / is an instanton solution to (62), then

a.c�/� a.cC/� �2�2idC
r

2
.E.AC/�E.A�//

C �r2=3.ln r/�
�
1CjE.AC/j

4=3
CjE.A�/j

4=3
�
:

Proof By equations (101) and (102) we have

a.c�/� a.cC/D af .c�/� af .cC/� 2�2.id� i�/:

The lemma then follows from [21, Proposition 4.10].

Proof of Lemma 7.5 Using Lemmas 7.6(a), (d) and 7.7, the arguments in the proof of
[24, Lemma 3.3] establish the assertions of Lemma 7.5 if dist.I; I0/� T D c0.ln r/c0 .

Geometry & Topology, Volume 17 (2013)



2674 Michael Hutchings and Clifford Henry Taubes

To deal with the remaining cases, we will restrict to Case 1, as the proof in Case
2 is very similar. By what was just said, there exist points s� 2 Œ�T � 2;�T � and
sC 2 ŒT;T C 2� such that

(113)
Z

s�Ds˙

�
jFAj

2
C r jrA j

2
�
� c0r2:

Now let AE˙
denote the reference connection on EjY˙ used to define the functional

a in (97) for Y˙ . It is convenient below to choose the reference connection AE˙ so
that FAE

˙
C

1
2
FA

K�1
is harmonic on Y˙ . Choose identifications of E�j.�1;0��Y�

and ECjŒ0;1/�YC with the pullbacks of E� and EC respectively. Extend AE˙ to a
reference connection AE on E over X such that on .�1; 0��Y� and Œ0;1/�YC ,
with respect to the above identifications, we have

(114) rAE
D @sCrAE

˙
:

Let

(115) �E WD
i

�

�
FAE
C

1

2
FA

K�1

�
:

This is a closed form that represents the cohomology class 1
2
c1.s/. Write ADAECya.

We claim that

(116)
ˇ̌
a.djs�Ds�/� a.djs�DsC/

ˇ̌
� c0

ˇ̌̌̌Z
s�Ds�

ya^ �E �

Z
s�DsC

ya^ �E

ˇ̌̌̌
C c0r2:

To prove (116), note that the functional a on Y˙ is invariant under nullhomotopic
gauge transformations. Thus to evaluate a.ds�DsC/ or a.ds�Ds�/, we may assume that
yajs�Ds˙ D � C ya

0 where � is harmonic, ya0 is co-closed, and ya0 is orthogonal to the
space of harmonic forms on Y˙ , so thatZ

s�Ds˙

�E ^ yaD

Z
s�Ds˙

�E ^ � and kya0kL2
1
� c0kdya

0
kL2 :

By (113), the last inequality implies that kya0kL2
1
� c0r , and (113) also implies that

krA js�Ds˙kL2 � c0r1=2 . Putting these last two inequalities and Lemma 7.3 into
(97), we obtain

a.djs�Ds˙/D i�

Z
s�Ds˙

ya^ �E CO.r2/;

from which (116) follows.
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Applying Stokes’ Theorem to the right hand side of (116), and using the fact that j�Ej

and jFAE
j enjoy r –independent upper bounds, we obtain

a.djs�Ds�/� a.djs�DsC/� c0T 1=2

�Z
s�1
� Œs�;sC�

jFAj
2

�1=2

C c0T C c0r2:

It follows from this and Lemma 7.6(c) that if r is larger than some stable constant, thenZ
s�1
� Œs�;sC�

jFAj
2
� c0T r2:

Putting this inequality back into the previous one, we obtain

a.djs�Ds�/� a.djs�DsC/� c0r2:

It follows from this and Lemma 7.6(a), (b) that

(117) a.djs�Ds0�/� a.djs�Ds0
C
/� c0r2

whenever s� � s0� � s0C � sC . When s0C � s0� D 2, using Lemma 7.6(c) with (117)
proves the remaining cases of Lemma 7.5.

We will also need counterparts of the estimates in [24, Lemmas 3.6–3.10, 4.3]. Since
these lemmas and their proofs carry over almost verbatim to our setting, we will
not repeat them here, but just note the following modifications: First, the constants
� provided by these lemmas are stable. The constant �q provided by [24, Lemma
3.6] is also stable, although the neighborhood of stability may depend on q . Second,
Œx;y��M is to be replaced by s�1

� Œx;y�, and R�M is to be replaced by X� . Third, fd
is to be replaced by id . Finally, @

@s
A˙BA is to be replaced by F˙

A
, the (anti-)self-dual

part of the curvature FA .

7.4 Instantons and holomorphic curves

We now establish counterparts of results from [24, Section 4]. The latter explains how
instantons can be used to define parts of holomorphic curves.

We need to introduce the following notation. Continue with the geometric setup from
Section 7.1. If .A;  D .˛; ˇ// is an instanton solution to the perturbed Seiberg–Witten
equations (62) on X� , define a function M W R!R by

M .s/ WD r

Z
s�1
� Œs�1;sC1�

�
1� j˛j2

�
:

The idea of this function is that an r –independent upper bound on M will allow
us to find, for large r , a holomorphic curve near the zero locus of ˛ whose area in
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s�1
� Œs� 1; sC 1� is approximately 1

2�
M .s/. In particular, the propositions to follow

assume certain upper bounds on M ; we will establish upper bounds on M later in
Section 7.5.

Meanwhile, continuing with the notation, define a connection yA on E by

yA WDA� 1
2
.˛rA˛�˛rA˛/:

Note that this has curvature

F yA D .1� j˛j
2/FA�rA˛^rA˛:

Below, on the subsets of X� that are identified with .�1; 0��Y� or Œ0;1/�YC , or
Œ�R;R��Y0 in Case 2, let �Y denote the pullback of the relevant contact form �˙
or �0 on Y˙ or Y0 .

Proposition 7.8 (cf [24, Proposition 4.1]) Given ı > 0 and K� 1, there exist a stable
� � 1 and a neighborhood of the given data set .�;J; �/ such that the following holds:
Let r � � , and let dD .A;  D .˛; ˇ// be an instanton solution to (62) as defined with
a data set from this neighborhood of .�;J; �/ (and any R in Case 2). Assume that
Ad � r2 or id � �r2 . Let I be a connected subset of R of length at least 2ı�1C 16

such that M . � /�K on I . Let I � I be a connected set of points with distance at least
7 from the boundary of I and length 2ı�1 . Then:

� Each point in s�1
� .I/ where j˛j � 1� ı has distance at most �r�1=2 from ˛�1.0/.

� There exists a finite set C of pairs of the form .C;m/ where C is a closed, irre-
ducible J –holomorphic subvariety in a neighborhood of the closure of s�1.I/, m

is a positive integer, and the subvarieties C for different elements of C are distinct,
such that:

(a) sup
z2

S
.C;m/2C

C\s�1
� .I /

dist.z; ˛�1.0// C sup
z2˛�1.0/\s�1

� .I /

dist
�

z;
[

.C;m/2C

C

�
< ı .

(b) Let � be a 2–form on X� with support in s�1
� .I/ such that j�j � 1 and jr�j �

ı�1 . Then ˇ̌̌̌
i

2�

Z
s�2I

� ^F yA �
X

.C;m/2C

m

Z
C

�

ˇ̌̌̌
� ı:

(c) Let IY � I denote a component of the subset of I where the distance to I0 is at
least 2. Then X

.C;m/2C

m

Z
C\s�1

� .IY /

d�Y � �:
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Proof The proof of the first bullet differs only in notation from the proof of the first
bullet of [24, Proposition 4.1], except for the following change: Violation of the first
bullet requires sequences f.�n;Jn; �n/gnD1;2;::: and frn;An;  n/gnD1;2::: , as well as a
sequence fRngnD1;2;::: in Case 2, where f.�n;Jn; �n/gnD1;2;::: converges to .�;J; �/,
the pair .An;  n/ solves the version of (62) defined using .�n;Jn; �n; rn;Rn/, and the
rest of the assumptions on the sequence are the same as in [24]. Note that the stability
of the constants � provided by the lemmas in Section 7.3 must be used to obtain the
contradiction that proves the first bullet.

The proof of the second bullet is obtained by similarly modifying the proof of the
second bullet of [24, Proposition 4.1], using the stability of the constants � , and making
the usual notational changes to replace R�M in [24] by X� here. In particular, the
form ds ^ aC 1

2
�a in [24, Equation (4.5)] is to be replaced by y! here.

The following proposition is similar to Proposition 7.8, but with the interval I expanded.

Proposition 7.9 (cf [24, Proposition 4.5]) Given K � 1, suppose that each Reeb
orbit with length � K=2� of �˙ , and of �0 in Case 2, is nondegenerate. Then
there exists � � 1, and given ı > 0 there exist �ı � 1 and a neighborhood of the
given data set .�;J; �/ such that the following holds: Suppose that r � �ı and that
dD .A;  D .˛; ˇ// is an instanton solution to (62) as defined with a data set from this
neighborhood of .�;J; �/ (and any R in Case 2). Assume that Ad � r2 or id � �r2 .
Let I �R be a connected set of length at least 4ı�1C 16 such that M . � /�K on I .
Assume in addition that I0\ I has distance at least 4

3
ı�1 from @I . Let I � I denote

the set of points with distance at least 7 from the boundary of I . Then:

� Each point in s�1
� .I/ where j˛j � 1�ı has distance less than �r�1=2 from ˛�1.0/.

� There exist:

(1) A positive integer N �� and a cover ID
SN

kD1 Ik where each Ik is a connected
open set of length at least 2ı�1 , such that Ik \ Ik0 D∅ when jk � k 0j> 1. If
jk�k 0j D 1, then Ik\Ik0 has length between 1

128
ı�1 and 1

64
ı�1 . Finally, each

boundary point of each Ik has distance at least ı�1 from I0\ I .

(2) For each k 2 f1; : : : ;N g, a finite set Ck of pairs .C;m/ where m is a positive in-
teger and C is a closed irreducible J –holomorphic subvariety in a neighborhood
of s�1
� .Ik/. The subvarieties C for different elements of Ck are distinct.

These are such that:

(a) sup
z2

S
.C;m/2Ck

C\s�1
� .Ik/

dist.z; ˛�1.0// C sup
z2˛�1.0/\s�1

� .Ik/

dist
�

z;
[

.C;m/2Ck

C

�
< ı .
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(b) Let I 0 � Ik be an interval of length 1 and let � be a 2–form on s�1
� .I 0/ with

j�j � 1 and jr�j � ı�1 . Thenˇ̌̌̌
i

2�

Z
s�2I 0

� ^F yA�
X

.C;m/2Ck

m

Z
C\s�1

� .I 0/

�

ˇ̌̌̌
� ı:

(c)
X

.C;m/2Ck

m

Z
C\.X��s�1

� .I0//

d�Y < � .

� Suppose that I is unbounded from above. Fix EC �K , and require nondegenerate
Reeb orbits only for length at most 1

2�
EC . Assume also that E.cC/� EC . Then the

preceding conclusions hold with � depending on K and EC , and with �ı depending
only on K , EC and ı . Moreover, if I DR then E.c�/� ECC ı .

Proof The first bullet follows from the first bullet in Proposition 7.8. The proof of the
rest of Proposition 7.9 is a slight modification of the proof of [24, Proposition 4.5]. The
latter proof has five parts. The first two parts establish [24, Lemma 4.6, Corollary 4.7,
Lemma 4.8], which are applicable here with the contact manifold M in [24] replaced
by Y˙ or Y0 here. The third part of the proof of [24, Proposition 4.5] has the following
analogue here:

Lemma 7.10 (cf [24, Lemma 4.9]) Given K � 1, suppose that each Reeb orbit with
length at most K=2� of �˙ , and �0 in Case 2, is nondegenerate. Given also " > 0,
there exists � � 1 and a neighborhood of the given data set .�;J; �/ such that the
following holds: Suppose that r � � and that d D .A;  D .˛; ˇ// is an instanton
solution to (62) as defined with a data set in this neighborhood of .�;J; �/ (and any R

in Case 2), with Ad � r2 or id � �r2 . Let I � R n I0 denote a connected subset of
length at least 16 such that M . � /�K on I . Let I denote the set of integers k such
that Œk; kC 1� 2 I and

i

2�

Z
s�1
� Œk;kC1�

d�Y ^F yA � ":

Let I 0 be a component of I n
S

k2I Œk; kC 1�. Then

i

2�

Z
s�1
� .I 0/

d�Y ^F yA � �"
2:

Proof Copy the proof of [24, Lemma 4.9]. Wherever the latter proof invokes lemmas
from [24, Section 3], replace these as indicated in Section 7.3 above.
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The fourth part of the proof of [24, Proposition 4.5] carries over with only notational
changes to deduce the second bullet in Proposition 7.9 from Proposition 7.8.

The fifth part of the proof of [24, Proposition 4.5] carries over to prove the third bullet
in Proposition 7.9, with the following modification: The key step is to show that given
"0> 0, if r is sufficiently large, then if k�< kC are integers in I with kC�k�<"

�1
0

,
then

(118) i

2�

Z
s�1
� .kC;kCC1/

ds ^�Y ^F yA�
i

2�

Z
s�1
� .k�;k�C1/

ds ^�Y ^F yA > �"0:

If the intervals .k�; k�C 1/ and .kC; kCC 1/ are in the same component of R n I0 ,
then the inequality (118) follows from an integration by parts in [24, Section 4d, Part
5]. So to complete the proof, we just need to prove (118) when k�C 1D kC 2 I0 . To
simplify notation, restrict to Case 1, so that k�C 1D kC D 0. The aforementioned
integration by parts can be used to show that the integrals on the left hand side of (118)
satisfy ˇ̌̌̌

i

2�

Z
s�1
� .k˙;k˙C1/

ds ^�Y ^F yA�
i

2�

Z
f0g�Y˙

�C ^F yA

ˇ̌̌̌
<
"0

3

if r is sufficiently large. So to prove (118), it is enough to show that

i

2�

Z
X

d�^F yA > �
"0

3

if r is sufficiently large. This last inequality follows from the a priori estimates in
Lemma 7.3 and [24, Lemma 3.8].

7.5 Proof of Proposition 7.1

We now carry over material from [24, Section 5] to our setting and prove Proposition 7.1.
The proof of Proposition 7.1 uses the following proposition, which is similar to the
IDR case of Proposition 7.9, but with the assumption on M replaced by an assumption
on E.cC/.

Proposition 7.11 (cf [24, Proposition 5.1]) Fix K � 1 and EC � K . Assume all
Reeb orbits of �˙ , and �0 in Case 2, of length at most 1

2�
EC are nondegenerate. Then

there exists � � 1, and given ı > 0 there exist �ı � 1 and a neighborhood of the
given data set .�;J; �/ such that the following holds: Suppose that r � �ı and that
dD .A;  D .˛; ˇ// is an instanton solution to (62) as defined with a data set in this
neighborhood of .�;J; �/ (and any R in Case 2). Assume that Ad �Kr or id ��Kr .
Assume also that E.cC/�EC . Then:

Geometry & Topology, Volume 17 (2013)



2680 Michael Hutchings and Clifford Henry Taubes

� E.c�/� ECC ı .

� The first two bullets of Proposition 7.9 hold with I DR.

Proof This follows from Proposition 7.9 if we can show that given an instanton
solution d to (62) with Ad � Kr or id � �Kr and E.cC/ < EC , there exists an
r –independent upper bound on M . � / when r is sufficiently large. We now explain
how to obtain such a bound on M by modifying the arguments in [24, Section 5],
which obtain an analogous bound on M when X� DR�M .

First note that our assumptions imply that

(119) Ad < c0.KC 1/r:

To prove (119), we can assume that id > �Kr , and this implies that

a.c�/� a.cC/ < af .c�/� af .cC/C c0Kr:

By [21, Proposition 4.11], the assumption E.cC/ <K implies that af .cC/ > �c0Kr ;
see (134) below. Meanwhile, an almost verbatim version of an argument from [24,
Section 5d] proves that af .c�/� c0 when id > �Kr . The inequality (119) follows.

We now explain how to obtain a bound on M .s/ when s � RC 2. If the interval
Œs; sC 1� does not intersect I0 , define

E.s/ WD i

Z
s�1
� Œs;sC1�

ds ^�Y ^FA:

When s �RC 2, we will first obtain a bound E.s/, and then use this to bound M .s/.

To obtain bounds on E, we need three inequalities. To state these, recall the reference
connection AE from (114) and the 2–form �E defined from its curvature in (115).
Let u˙W Y˙! S1 , and also u0W Y0 ! S1 in Case 2, be gauge transformations. If
s >R, write the connection component of uC � d as AE CyaC , and define

pC.s/ WD �i

Z
s�1
� .s/

yaC ^ �E :

Here and below, our convention is that RD 0 in Case 1. Define p�.s/ analogously if
s < �R, and define p0 analogously in Case 2 if �R< s <R.

The first inequality asserts that if s >RC 3, then

(120) r E.s� 1/� �c0a.uCcC/C c0.r C a.djs�DRC3/� a.cC//

C c0r2=3 sup
x�s

jE.x/j4=3C c0 sup
Œs;sC1�

jpCj:

Geometry & Topology, Volume 17 (2013)



Proof of the Arnold chord conjecture in three dimensions, II 2681

The second inequality asserts that if s < s0 <�R�3, then for suitable s� 2 Œs
0; s0C1�

we have

(121) r E.s� 1/� �c0a.u�djs�Ds�/C c0.r C a.c�/� a.ds�Ds�//

C c0r2=3 sup
x2Œs;s��

jE.x/j4=3C c0 sup
Œs;sC1�

jp�j:

Here s� is “suitable” if O.s�/ �
R s0C1

s0 O.s�/ ds� , where O.s/ is defined in (126)
below. The third inequality asserts that in Case 2, if �RC 3< s < s0 <R� 3, and if
s0 2 Œs

0; s0C 1� satisfies O.s0/�
R s0C1

s0 O.s�/ ds� , then

(122) r E.s� 1/� �c0a.u0djs�Ds0
/C c0.r C a.djs�D�RC3/� a.djs�Ds0

//

C c0r2=3 sup
x2Œs;s0�

jE.x/j4=3C c0 sup
Œs;sC1�

jp0j:

The inequalities (120)–(122) are all proved analogously to [24, (5-18)].

To exploit the inequalities (120)–(122), we need appropriate bounds on the terms that
do not involve E. � /. We first observe that the action differences in (120)–(122) are
bounded by

(123)

a.djs�DRC3/� a.cC/� c0.KC 1/r;

a.c�/� a.djs�Ds�/� c0.KC 1/r;

a.djs�D�RC3/� a.djs�Ds0
/� c0.KC 1/r:

To prove (123), first use Lemma 7.6(a), (b) to see that each action difference is bounded
from above by AdC c0r , and then use (119).

To bound the remaining terms in (120), the discussion in [24, Section 5d] finds a gauge
transformation uCW YC! S1 such that a.uCcC/ > �c0ECr and lims!1 jpCj � c0 .
The first of these conditions allows us to replace (120) by

(124) E.s� 1/� c0.1CK/C c0r�1=3 sup
x�s

jE.x/j4=3C c0r�1 sup
Œs;sC1�

jpCj

for s �RC 3. The arguments in [24, Section 5d] can be applied verbatim using (124)
to give the bound E.s/� c0K for s �RC 2. The arguments in [24, Section 5d] also
explain why this last bound implies that M .s/� c0K for s �RC 2.

It remains to bound M .s/ for s�RC2. Let t� 2 f�R;Rg and suppose that E (where
defined) and M have been bounded above by c0 on Œt�C 2;1/. Let t�� D �1 if
R< 10 or t� D�R, and let t�� D�RC 2 otherwise. We now explain how to extend
a bound of this sort on M and E to the interval .t��;1/, in two steps. Applying this
procedure once if R< 10, and twice if R� 10, will give the desired bound on M .s/

for all s 2R.
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Step 1 This step bounds E (where defined) and M on Œt�� 100; t�C 2�.

For s 2R n I0 , define

E.s/ WD i

Z
s�1
� .s/

�Y ^FA:

Recall that dz�D � y! where � W XR!R agrees with 2e2s� on s�1
� .RnI0/. Now use

Stokes’ Theorem and (62) to see that

(125) E.s/D ie�2s

Z
s�1
� .s/

z�^FA D ie�2s

Z
s�1
� .�1;s�

� y! ^FA

D re�2s

Z
s�1
� .�1;s�

�.1� j˛j2Cjˇj2/CO.1/:

Integrating this equation over s 2 Œt�C 2; t�C 3� (or a slight upward translation of this
interval as needed to avoid I0 ) and using the a priori bounds in Lemma 7.3 shows that
the bound on E.s/ for s � t�C 2 gives rise to a bound on M on Œt�� 100; t�C 2�.

Similarly to (125), if s� < sC are in R n I0 then

E.sC/� e�2.sC�s�/E.s�/D re�2sC

Z
s�1
� Œs�;sC�

�.1� j˛j2Cjˇj2/CO.1/:

Using this equation and Lemma 7.3 shows that the bound on E.s/ for s � t�C2 gives
rise to a bound on E (where defined) on Œt�� 100; t�C 2�.

Step 2 We now extend the bounds on E and M over Œt��; t� � 100�. We assume
below that t�� < t�� 100.

For s 2R n I0 define

(126) O.s/ WD

Z
s�1
� .s/

�
jB.A; /j2C r jDA.s/ j

2
�
;

where B.A; / was defined in (103). Also, define O.s/ D
R sC1

s O.s�/ ds� when
Œs; sC1� does not intersect I0 . Write Y D Y� when t��D�1 and Y D Y0 when t��
is finite. There exists sY 2 Œt�� 100; t�� 99� such that O.sY /�O.t�� 100/. Then

(127) O.sY /�O.t�� 100/� 2AdC c0r � c0.KC 1/r

by Lemma 7.6(d) and the inequality (119).

Next, note that there is a map uY W Y ! S1 such that the connection component of
uY �djsY

can be written as AECyaY where yaY is a co-closed, i –valued 1–form on Y

whose L2 orthogonal projection to the space of harmonic 1–forms is bounded by c0 .
Combining this with (121) or (122) as appropriate with s0 D t�� 100, and using the
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bound (127) on O.sY / and the bound on E.s/ for s 2 Œt��100; t��2�, the arguments
leading to [24, Equation (5.14)] can be used to obtain a lower bound

(128) a.AE CyaY /� �c0r:

To continue, extend the map uY to all of Œt��; t� � 99� to be independent of s� , and
replace d on this portion of X� by uY �d. It follows from (123), (128), and the relevant
inequality (121) or (122) with s� or s0 set equal to sY , that for s 2 Œt��; t�� 100� we
have

(129) E.s� 1/� c0.1CK/C c0r�1=3 sup
x2Œs;sY �

jE.x/j1=3C c0r�1 sup
Œs;sC1�

jpY j:

Here pY denotes p� or p0 as appropriate. Moreover, we have

(130) jpY j � c0K on Œt�� 100; t�� 99�:

To see why (130) is true, note that by our choice of uY we have jpY .sY /j � c0 .
Meanwhile, [24, Lemma 3.9] bounds the derivative of the function s 7! jpY .s/j by
c0.1CjM.s/j/. Integrating this derivative bound and applying the conclusions from
Step 1 gives (130).

Granted (129) and (130), arguments from [24, Section 5d] can be used in an almost
verbatim fashion to bound E on Œt��; t�� 100� by c0K . One just needs to replace all
references to the s!1 limit of d by ds�Dt��100 . As noted previously, arguments
from [24, Section 5b] can be used with this bound on E to bound M by c0K on
Œt��; t�� 100�.

Proof of Proposition 7.1 The first two bullets of Proposition 7.1 follow immedi-
ately from Proposition 7.11. The third bullet of Proposition 7.1 is deduced from
Proposition 7.11 in the same way that the third bullet of [24, Proposition 5.5] is
deduced from Proposition 5.1 in [24, Section 5e].

7.6 Proof of Propositions 5.2 and 5.4

Proof of Proposition 5.2 (a) We consider Case 1 of the geometric setup in Section 7.1.
If the perturbations p˙ and p are zero, then assertion (a) follows immediately from
Case 1 of Proposition 7.1. For the case when the perturbations p˙ and p are not zero,
the proof has two steps.

Step 1 We claim that if r > c0 and if the P –norm of p is bounded by c�1
0

, then an
instanton d as in (a) satisfies

(131) a.c�/� a.cC/ < .c0C 2�L/r:
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Here and below, a.c˙/ denotes the sum of the action functional (97) for Y˙ and the
abstract perturbation p˙ . To prove (131), first note that the same integration by parts
that proves Lemma 7.6(a), (b) implies that

(132) a.c�/ > a.cC/� c0r

if the P –norm of p is bounded by c�1
0

. (See also the remark after [13, Proposition
24.6.4].) Since d has index 0, it follows from (101), (102) and (132) that

(133) af .c�/ > af .cC/� c0r:

Here f denotes the spectral flow function on Y˙ defined using p˙ . Meanwhile, by
[21, Proposition 4.11] we have

(134) af .cC/D�
1
2
r E.cC/.1C o.1//:

By this and (133) we have af .c�/ > �.c0C 2�L/r . Consequently [21, Proposition
4.11] can be invoked a second time to give

(135) af .c�/D�
1
2
r E.c�/.1C o.1//:

On the other hand, [24, Lemma 2.3] implies that E.c�/>�c0 . This together with (135)
implies that af .c�/ < c0r . Since d has index 0, it follows from this last inequality
and (134) that (131) holds.

Step 2 Now let r be large, and assume to get a contradiction that the conclusion of
Proposition 5.2(a) is false. Then there exist data .J; �/ and a sequence of perturbations
fpkgkD1;2;::: with limk!1 pk D 0, for which there is an instanton dk with index 0

and E.ckC/ < 2�L such that assertion (i) or (ii) in Proposition 5.2(a) fails. Here ck˙

denotes the s!˙1 limit of ck . By passing to a subsequence we may assume that
ckC does not depend on k , so that we can denote it by cC .

Now (131) applies to each dk to give

(136) a.ck�/� a.cC/ < .c0C 2�L/r:

Consequently, [13, Proposition 24.6.4] implies that the sequence of instantons
fdkgkD1;2;::: has a subsequence that converges in the sense of [13, Section 26] to
a broken trajectory, from cC to some generator c� , that is defined using the equations
(62) on X and (31) on R�Y˙ , without abstract perturbations. In particular, we can
pass to a further subsequence so that ck� D c� for all k . Let fdngnD1;:::;N denote the
ordered set of instantons that comprise the limiting broken trajectory. Let cn

˙
denote

the s!˙1 limit of dn . These limits satisfy c1
� D c� , cN

C D cC and cn
C D cnC1

� for
1� n<N .
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There is a unique n0 such that dn0 is an instanton on X . By Lemma 7.6(a), (b), we
have a.cn0

� / > a.cn0

C /� c0r , and by [24, Lemma 3.4] we have a.cn
�/ > a.cn

C/ for all
n¤ n0 . These inequalities together with (136) imply that a.cn

�/�a.c
n
C/� c0r for each

n. Consequently, if r is sufficiently large, then Proposition 7.1 applies to dn0 , and [24,
Proposition 5.5] applies to dn for each n¤ n0 , to produce a broken J –holomorphic
curve. These propositions (or the existence of these broken J –holomorphic curves)
also imply that E.c�/ < 2�L if r is sufficiently large. The concatenation of these N

broken J –holomorphic curves is a broken J –holomorphic curve from ‚C to ‚� ,
where ‚˙ is determined by c˙ via Proposition 3.1(a). It follows that if r is sufficiently
large, then assertions (i) and (ii) in Proposition 5.2(a) are true for each dk . This is the
desired contradiction.

(b) This is essentially the same as the proof of (a), the only difference being that in
Step 2, one now considers a sequence fdkg of instantons that solves the perturbed
equations (62) for the data corresponding to some tk 2 Œ0; 1�. One then passes to a
subsequence such that limk!1 tk D t� . The arguments in [13, Section 24] can be
used to show that the sequence of instantons dk has a subsequence that converges
to a broken trajectory for the data corresponding to t D t� . Now the constants in
Lemma 7.6 and Proposition 7.1, because they are stable, can be chosen to work for
the data corresponding to all t 2 Œ0; 1�. Thus if r is sufficiently large (independently
of the value of t�/, then the rest of the proof of (a) can be repeated verbatim to prove
part (b).

Proof of Proposition 5.4 We now consider Case 2 of the geometric setup in Section 7.1.
Recall the 1–form z�R on XR defined in (100). Define a 1–form �0 on X to agree
with z�0 on Œ�"; "�� Y0 , where " was fixed in Section 7.1, and to agree with � on
the rest of X . Note that the exact symplectic cobordism .X; �0/ from .YC; �C/ to
.Y�; ��/ is strongly homotopic to .X; �/. So by Corollary 5.3(c), if r is sufficiently
large then bHM

�

L.X; �/D
bHM
�

L.X; �
0/. Thus to prove Proposition 5.4, it is enough to

show that if r is sufficiently large then

(137) bHM
�

L.X; �
0/DbHM

�

L.X
�; ��/ ıbHM

�

L.X
C; �C/:

To prove (137), we fix r large and vary R in Case 2. Let p˙; p0 be abstract perturbations
as needed to define the respective Seiberg–Witten Floer chain complexes on Y˙;Y0 .
Extend these to abstract perturbations p˙ on X˙ as needed to define chain maps
that induce bHM

�

L.X
˙; �˙/; denote these chain maps by ˆ˙ . The perturbations p˙ ,

with suitable cutoff functions, then determine an abstract perturbation pR on X R , as
explained in [13, Section 11, Section 24.1] (see [13, Equation (24.1)]). Let

ˆRW
bCM
�

L.YCI�C;JC; r/ �!
bCM
�

L.Y�I��;J�; r/
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denote the chain map defined by counting index 0 instantons on X R . (One may need
to perturb pR to obtain transversality, in which case the chain map will depend on this
perturbation.) It follows as in the proof of Proposition 5.2(a) that if r is sufficiently
large, then for any R, if the abstract perturbations are sufficiently small then ˆR is
defined.

When RD 0, the induced map on homology is

.ˆ0/� DbHM
�

L.X; �
0/;

because by construction .X 0; z�0/D .X ;��0/. On the other hand, for R>0 the manifold
.X R; z�R/ is obtained by gluing .X�;���/ with the s � R part of the positive end
removed to .XC;��C/ with the s � �R part of the negative end removed. It then
follows from [13, Proposition 26.1.6] that there exists R0 such that if R�R0 , then
ˆR is defined without any further perturbation of pR , and

ˆR Dˆ� ıˆC:

So to complete the proof of (137), it is enough to show that the chain maps

ˆ0; ˆR0
W bCM

�

L.YCI�C;JC; r/ �!
bCM
�

L.Y�I��;J�; r/

are chain homotopic. To construct the desired chain homotopy one counts index �1

instantons in the family fXR j R 2 Œ0;R0�g with a generic small family of abstract
perturbations. If r is sufficiently large, then this chain homotopy will be well defined
as in the proof of Proposition 5.2(b).
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