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Uniqueness of Lagrangian self-expanders

JASON D LOTAY
ANDRE NEVES

We show that zero-Maslov class Lagrangian self-expanders in C” that are asymptotic
to a pair of planes intersecting transversely are locally unique if # > 2 and unique if
n=2.

53D12; 53C44

1 Introduction

Self-similar solutions to mean curvature flow model the flow behaviour near a singularity.
If the initial condition for the flow is a zero-Maslov class Lagrangian in C”, it is well
known (Neves [17, Corollary 3.5]) that self-shrinkers are trivial (ie, stationary solutions)
and so the ones left to study are self-expanders. These are Lagrangians L C C” so
that L; = \/E L is a solution to mean curvature flow.

Moreover, it is shown in Neves and Tian [19] that blow-downs of eternal solutions
to Lagrangian mean curvature flow (like translating solutions for instance) are self-
expanders for positive time. Thus if one wants to understand whether or not non-trivial
translating solutions can occur as blow-ups of finite time singularities of Lagrangian
mean curvature flow, it is important that we understand self-expanders first.

Another related perspective on self-expanders is that they are the simplest solutions to
mean curvature flow that start on cones and hence could be seen as models for starting
the flow with singular initial condition.

The first examples of Lagrangian self-expanders were constructed in Anciaux [1] and
Lee and Wang [13; 14]. In [10], Joyce, Lee and Tsui generalized these constructions
and in particular they found, for any two Lagrangian planes P;, P, C C" satisfying
an angle criterion, explicit examples of zero-Maslov class Lagrangians asymptotic to
these planes. They are diffeomorphic to S”~! xR and can be seen as the equivalent of
Lawlor necks for the self-expander equation. The construction in [10] is quite general
and provides examples that are asymptotic to non-stationary cones and examples that
have Maslov class. Further examples were constructed in Castro and Lerma [3].
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Given a Lagrangian cone in C” that is graphical over a real plane and such that the
Hessian of the potential function has eigenvalues uniformly in (—1, 1), Chau, Chen
and He [4] showed there is a unique graphical Lagrangian self-expander asymptotic to
that cone.

Let Py, P, C C” be two Lagrangian planes intersecting transversely, denote the space
of bounded smooth functions with compact support by C5°(C") and let H" be n—
dimensional Hausdorff measure. We let P; + P, denote the varifold whose support is
given by the union of the planes P; U P5.

Definition 1.1 We say the self-expander L is asymptotic to Lo = Py + P, if

lim dH" =/ dH"
t—0 /\/EL ¢ Lo d)

for all ¢ € C°(C").
In this paper we first show local uniqueness.

Theorem A Assume that neither Py + P, nor Py — P, are area-minimizing.

Let L be a smooth zero-Maslov class Lagrangian self-expander in C" asymptotic to
P+ Ps.

There exist Ry > 0 and ¢ > 0 so that any smooth zero-Maslov class Lagrangian
self-expander that is

e asymptotic to Py + P,,

e e—closein C? to L in Bg,.

coincides with L.

The idea for the proof of Theorem A is classical. We show that the linearization of the
self-expander equation defines a Banach space isomorphism and then we apply the
Inverse Function Theorem to obtain local uniqueness.

When n = 2 we improve this result and show global uniqueness.

Theorem B Assume that neither P, + P, nor Py — P, are area-minimizing.

Smooth zero-Maslov class Lagrangian self-expanders asymptotic to Py + P, are unique
and thus coincide with one of the examples found by Joyce, Lee and Tsui.

Geometry & Topology, Volume 17 (2013)
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Remark 1.2 It is known that special Lagrangians in C? that are asymptotic to a pair
of planes are unique modulo scaling and rigid motions. This uses the fact that, after
a hyperkihler rotation of the complex structure, special Lagrangian surfaces become
holomorphic curves. No similar characterization holds for Lagrangian self-expanders,
and hence the need for a different idea in Theorem B.

Moreover, without the smoothness assumption the uniqueness statement does not hold,
as can be seen in Nakahara [15].

We now briefly describe the idea behind the proof of Theorem B.

The key result is to show Theorem 6.1, which says that the set of self-expanders in
C? that are asymptotic to a pair of transverse planes is compact. Assuming this result,
the idea, given a pair of planes P;, P, as in Theorem B, is to deform P, into a plane
0> so that the Lagrangian angle remains constant and Py, O, become equivariant, ie,
share the same S'—symmetry. From Theorem A we can accompany the deformation
of the planes with a (local) deformation of any self-expander L asymptotic to P; + P5.
Theorem 6.1 ensures that this local deformation can be carried all the way until we
obtain a self-expander Q asymptotic to Py 4+ Q5. Since P;, O, are equivariant, it is
simple to show that Q is unique (see Lemma 7.1) and hence L must have been unique
as well.

Roughly speaking, the proof of Theorem 6.1 rests on the fact that every non-trivial
special Lagrangian cone in C2 has area-ratios not smaller than two, but the area-ratios
of any self-expander as in Theorem B are strictly smaller than two, ie, the area-ratios
are too small for a singularity to develop.

Organization In Section 2 we introduce the basic concepts.

In Section 3 we show that zero-Maslov class self-expanders asymptotic to a transverse
intersection of planes have exponential decay outside a compact set.

In Section 4 we develop the Fredholm theory for the linearization of the self-expander
equation.

In Section 5 we show that zero-Maslov class self-expanders in C” that are asymptotic
to a transverse intersection of a non-area-minimizing pair of planes are locally unique.
This implies Theorem A.

In Section 6 we show that, given a compact set of transversely intersecting non-area-
minimizing pairs of planes in C?2, the family of zero-Maslov class self-expanders in
C? asymptotic to those pairs of planes is also compact.
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In Section 7 we use the work of the previous section and Section 4 to show global unique-
ness for zero-Maslov class self-expanders in C? that are asymptotic to a transverse
intersection of a non-area-minimizing pair of planes. This proves Theorem B.
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2 Basic theory and notation

Consider C" with its usual complex coordinates z; = xj +iyj, for j =1,...,n,
complex structure J, Kiéhler form o = Z?:l dxj Ady; and holomorphic volume
form  =dz; A---Adzy. Observe that the Liouville form A =} 7_, (x;d y; — y;dx;)
satisfies dA = 2w.

Let L be a connected Lagrangian in C"; that is, L is a (real) n—dimensional subman-
ifold of C” such that w|;, = 0. Let x denote the position vector on L, let V be the
(induced) Levi-Civita connection on L and let H be the mean curvature vector on L.
We adopt the convention that H is the trace of the second fundamental form on L.
Standard Euclidean differentiation is denoted by V.

Notice that A is trivially a closed 1-form on L. We say that L is exact if there exists
B € C°(L) suchthat df = A|L.

Since 2|7, is a unit complex multiple of the volume form at each point on L, we may
define the Lagrangian angle  on L by the formula Q|7 = e?vol; . We also have
the relation H = JV@ (cf Thomas and Yau [22, Lemma 2.1]). The Maslov class on
L is defined by the cohomology class of df, so L has zero-Maslov class if 0 is a
single-valued function.

Observe that, since TC"|;, = TL & NL, we may decompose any vector v on L into
tangential and normal components, denoted v " and v respectively.

Definition 2.1 We say that L is a self-expander if H = kx= for some « > 0. By
rescaling L we may assume that k = 1.

Geometry & Topology, Volume 17 (2013)
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The importance of self-expanders L with H = x= is that L; = /2t L for t > 0
solves mean curvature flow.

We have the following basic properties of self-expanders.

Lemma 2.2
(i) Lagrangian self-expanders with zero-Maslov class are exact.

(i) Let L be a zero-Maslov class self-expander. Then L is a self-expander with
H = x= ifand only if B + 6 is constant.
Proof Let L satisfy H = x. Since H = JV#, one sees that
Vo=—JxbH)=—Jx)T,
s0 A|z, = —d@. This proves the first property.
To prove the second property note that
H-x'=0=Vi+Jxt =0=Vo+(Ux) =0 V@O +B)=0. O

Let Py, P, be two Lagrangian planes intersecting transversely. From Ilmanen [7,

Section 7.2], there exists a constant Cy such that whenever a self-expander L is
asymptotic to P; 4+ P, then

(1) H"(LNBR) <CoR" forall R>0,
where Bg will always denote Bg(0), the ball of radius R about 0 in C”.
In this paper, all self-expanders L we consider have the following properties:

e L is Lagrangian with zero-Maslov class.
e L has H=x".

e [ is asymptotic to Ly = P; + P,, where Pq, P, are transversely intersecting
Lagrangian planes.

We abuse notation and often identity the varifold Ly = P; + P, with its support
Lo=PiUP;.

A key tool in studying self-expanders is the backwards heat kernel.

Definition 2.3 Given any (x¢,/) in C” x R, we consider the backwards heat kernel

oL
_ 41 —1)
(2) CD(XO»Z)(XJ)— (47‘((1—1))"/2 .

Geometry € Topology, Volume 17 (2013)
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Given a solution (L;);~¢ to mean curvature flow and xy € C”, [ > 0, we consider
3 O.) = [ Dxo.x.0)aH"

L
Note that when L; = +/2¢ L, where L is a self-expander, we have that ®,(xo, /) is

finite for 0 < ¢ </ due to (1) (see Ecker [5, Lemma C.3]).

Definition 1.1 implies that for all xo € C" and / > 0

) lim © (xo./) = / ®(x0, 1) dH" = Oy(x0,1).
t—

Lo

Moreover, we have from Huisken’s monotonicity formula [6] that
5) Os(x9,!) < Og(xg.l +1) forall xoeC",t>0,/>0.

We conclude this section with the following observation. Given P;, P, transverse
planes we have

(6) @0(X0,1) =/ (D(X(),l) dH" <2 forall [ >0
Pi+P>

unless xo = 0. One consequence of this observation is the following:

Lemma 2.4
e The self-expander L is embedded.
e There is ¢y depending only on L¢ so that

H"(L N By(x)) <cyr" forall r>0andxeC"

Proof Suppose that L is immersed. Then there exists xo € L where

lim ©1 (xg,6) > 2.
§—~0 2

By (5), making ¢t = % and / — 0, we obtain
2 < Og(xo.3)
and so, by (6), xo = 0 and equality holds in the equation above. In this case,
2 < lim ©,(0,8) <Op(xg, 3) =2
§—>0 2
and so equality holds in Huisken’s monotonicity formula. Hence L is also a self-
shrinker (ie, H = —xJ-) andthus H=x1t=0as L isa self-expander. Therefore, L

must be a cone but, because L is asymptotic to Ly, this is only possible if L = L,
which then contradicts the assumption that L is smooth. This proves the first property.

Geometry & Topology, Volume 17 (2013)



Uniqueness of Lagrangian self-expanders 2695

In what follows ¢ denotes a constant depending only on 7. By (5) and (6)

H"(L N By (x))

- §c®l/z(x,r2) §c®o(x,r2+%) <2c. a
r

3 Exponential decay

In this section we show that the self-expander L converges exponentially fast to L
outside a compact set. This naturally coincides with the behaviour of the relevant
self-expanders in [10], but is in marked contrast to special Lagrangian Lawlor necks,
which only converge at rate O(r!=") to their asymptotic planes.

Let Gz (n,C") denote the set of all Lagrangian planes in C”, which has a natural
topology when viewed as the homogeneous space U(n)/O(n). Consider the open
subset of G (n,C") x G (n, C") given by

Gn={(P1. P2) € GL(n,C") x G (n,C") | P1 N P, ={0}}.
Given a compact set K C G, we denote by S(K) the set of all self-expanders which
are asymptotic to Lo = P; + P,, with (P, P;) € K.

Theorem 3.1 For every compact set K C G, and k € N, thereis Ry >0, C and b
so that for all L € S(K) we find y € C*°(L¢ \ Bp,) satisfying

L\ Byg, C{x+JVY(x)|x € Lo\ Bgr,} CL\Bg, )2
and

1Vl ek Lo\Br) = Ce™"®  forall R> R;.

Proof The next proposition says that if L is locally graphical over Lg\ Bg, for some
Ry and the local graph is asymptotic to zero in the C k+1_norm, then we can find
R; large so that L is a global graph over L \ Bg, and the graph has its C k _norm
decaying exponentially fast.

Proposition 3.2 Fix Ry > 2rg > 0, k € N, a compact set K C G, and a decreasing
function Dy = Dy (r) tending to zero at infinity.
Suppose that for every L € S(K) and yo € L \ Bg, we can find xo € L and
¢: Lo N Bayry(xo) — C”
so that
o the CKk+1 (B2, (x0))—norm of ¢ is bounded by Dy (|yol),

e LN ﬁro(yo) Cix+JVo(x)|xeLyn By, (x0)}, where §r0(y0) denotes
the intrinsic ball of L with radius ry and centered at yy.

Geometry € Topology, Volume 17 (2013)
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Then there exist Ry, C, b, and an open set B C C" with compact closure, depending
onry, Ry, Dy and K, such that for every L € S(K) we can find y € C*° (Lo \ Bg,)
with

(7 L\BC{x+JVy(x)|xeLo\Bg,}
and
®) 1V llcrro\Bg) = Ce™"®  forall R > R;.

Proof From the hypotheses of the proposition, for every L € S(K) and R, sufficiently
large we can find an open set B C C" with compact closure and a projection map

L L\§—>L0\B§1.
We claim we can choose R; = R (rg, Ro, Cy) so that 7y is a diffeomorphism when
restricted to nL_l (Lo\Bg,)-

Suppose not. Then we can find L! € S(K) with Lf) = Pf + Pé tending to Py + P»,
X; in Lf)\BRO such that |x;| — oo as i — o0, and nL_il (xi) D {yi,zi} where y; # z;
forall 7.

By hypothesis, there exists 8y > 0 such that L N Bjs,(x;) contains the graphs of
functions f;, g; on B, (x,-)ﬂLg with f;(x;) = y; and g;(x;) = z; for all i . Therefore,
recalling @ given in (2), Huisken’s monotonicity formula implies

©) /L O824 byawr > /L (1. 8%) aH”

0
> / d(x;,8%) dH"
LiNBas, (x;)

D(x;, 82) dH"

>

/graph(fi )Ugraph(g;)

zz/ O (xi.8%) dH,
B(SO (xl)nLlo

where the last inequality comes from the fact that LS is a union of planes.

Since Lg tends to P; + P, with Py N P, = {0} and |x;| — oo, we have from the
hypothesis of the proposition that L —x; tends to either Py or P,. We assume that the
first case occurs and so, after translating by —x;, Bs,(x;) N L’(') tends to Bg,(0) N Py.
Thus, letting i — oo and then § — 0, we obtain from (9) that

1=[ 0, 1) dH" = 2.
Py

Geometry & Topology, Volume 17 (2013)
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This proves the claim.

The fact that 77, is a diffeomorphism implies the existence of a smooth vector field X
on Lo\ Bg, thatis tangent to Lo \ Bg, so that, for some open set B,

L\B={x+JX(x):x€ Lo\ Bg,}.

Since L is Lagrangian, it is standard to see that X = Vi locally. We need to make
sure that ¥ is defined globally on L \ Bg, . Recall the primitive B for the Liouville
form A on L. Set B = ﬁon]jl and define ¥ on Lo\ Bg, by

¥(x) = 3((X(x), x) = B(x)),

using the standard Euclidean inner product (-, -). Then, for every vector v tangent to
Lo we have

(Vi (x). v) = (Vo X, x) + (X (x),v) — (VB(x), V)
= L((Vo X, x) + (X (x),v) = A(v + I VX (x)))

since VB(x) = VB(x + JX(x)) and dB = A|L, and hence

(Vlﬂ(x), v) = %((VUX, X))+ (X(x),v) —{(Jx—X(x),v+ vaX(x)))
= (X(x),v) — %(Jx, v) + %(X(x), J VyX(x)).
Observe that (Jx,v) =0 since L is a pair of Lagrangian planes and thus x is tangent
to Lo and orthogonal to Jv. Furthermore, (X(x),J Vy,X(x)) = 0 because V, X

has no component orthogonal to Lo as Lg is a union of planes. Thus Vi = X, the
decomposition (7) holds, and for R > R,

(10) V¥ llcrt1 Lo\ Bg) = Pi(R—1),
where Dy, is our given decreasing function by hypothesis.

We now wish to prove (8). Let Sy be a connected component of Lg \ {0}, ie, So
is a Lagrangian plane minus the origin, and let .S be the connected component of
L\ Bg, asymptotic to Sy given by the graphical decomposition in (7). After changing
coordinates so that Sy is identified with a real plane, we consider the following vector-
valued function defined on §':

n
= ) ad
=(JVy¢)ony =i — e C".
y=(Vi)ong ;y,ayj

Geometry € Topology, Volume 17 (2013)
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Let A = —d*d be the analyst’s Laplacian (or Laplace-Beltrami operator) acting on
functions on L. For j =1,...,n we have on S that

.0 2

Calculating with respect to the induced metric on S and recalling that x is the position
vector on L, we see that, since L is a self-expander,

PP =(y.x)=(.xD)+p.x")=(y. H +(p.x") = (y, H) + 1(V|y|*.x).
Thus, if we define
(11) L(p) = Ad+ (x,Vp)—2¢

for suitably differentiable functions ¢ on S, where all quantities are computed with
respect to the induced metric on S, we see that

Ly 0.
We are now in the position to construct a barrier for |y |? and deduce (8).

Set p(x) = exp(—|x|*/2), an ambient function on C”. Since L is a self-expander, we
have that

A(x|?) =2n+2(H, x) =2n+2|x*|>.
Therefore one sees that, on L,

o o
Ap= —EA(IXIZ) + ZIVIXIZI2 =p(jx T[> —n—|x*).

Moreover,
(Vp.x)=—plx"|?
and so
(12) Lp)=p(xT*—n—2—|x]*) <—(n+2)p.

Let &€ > 0 and using (10) choose C = C(rg, Ry, Dy ) so that
= 2
1¥1?=|(Vy)omr|” < Cexp(—|x|>/2) on dS.

Set 5 =¢&+Cp. Forall R sufficiently large we have |y|> < on SN3{R; < |x| < R}
because |y |? tends to zero at infinity by hypothesis. Furthermore, using £(]y|?) > 0
and (12), we have

LE—y1*)=Lp—y|*)—2e<0

Geometry & Topology, Volume 17 (2013)
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and thus the maximum principle implies that
ly|?> <e+ Cexp(—|x|?/2) on SN{R; < |x| < R}.
Letting R — oo and then ¢ — 0, we conclude that
¥[* < Cexp(~[x|*/2) on S.

Recall that on S we have y = (J V) oz . Therefore we can add a constant to
and find some other constant C = C(rg, R, D) so that, after integration,

[¥(x)| < Cexp(—1|x|?) forall x € So\ Bg,.

As the C**1 norm of ¥ in Sp\ Bg , 1s bounded, it follows from standard interpolation
inequalities for Holder spaces (see eg Krylov [11, Theorem 3.2.1]) that, for some
further constant C = C(rg, Rg, D),

2
||W||Ck(L0\BR) = C CXP(—CIR )
for some constant @ > 0 and any R > R;.
We can argue in the same manner for each connected component of L \ Bg, and

conclude the desired result. O

We now make an observation concerning © given in (3). Given L’ € S(K), we denote
by ®%(x¢,/) the Gaussian density ratios (3) evaluated at L.

Lemma 3.3 Let L’ be a sequence in S(K) and (x;);en a sequence of points in C"
with |x;| tending to infinity. Then, for all [ > 0,

lim ©)(x;,1) <1
1—>00
with equality only if lim;_, o dist(x;, Lf)) =0.
Proof We have L{) = P{ + Pé and write x; = ai1 + bi1 = ai2 + bl-z, where alj € Pf

and (alj, bl.j) =0for j=1,2. Weset Q; = Lf) — x; , where we mean that we translate
Lf) by the vector given by x;. We have

(13) min{|b} |, [b?|} = dist(x;, L) = dist(0, Q).

Suppose first that limsup;_, ., |bl-1| = limsup;_, |bl.2| = +o00. We then have
dist(0, Q;) tending to infinity and so

lim ®O¢(x;,/) = lim / ®(0,1)dH" = 0.
i—00 i—00 /0,

Geometry € Topology, Volume 17 (2013)
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Otherwise, without loss of generality, limsup;_, |bl.1 | < oo, and necessarily
lim inf; o0 |a}| = 400. Note that we must also have lim inf;_, oo |bi2| = 400 because
otherwise we could extract a subsequence of (P{, P;) converging to a pair of planes
intersecting along a line.

Therefore Q; sequentially converges to Py + b, ie, an affine plane parallel to some
plane Pp, where b = lim; oo bl.l is orthogonal to P;. Thus

lim @3(x,-,1)=/ ®(0, l)dH”:f O(—b, 1) dH"
1—>00 P1+b Pl

|b|? / n |b|?
—exp[-—) | @ H" = exp(—2-) <1
exp( i)l (0,7)d exp| —— ,

with equality only if » = 0. This proves the desired result. |

We can now finish the proof of Theorem 3.1. The idea is to show that the hypotheses
of Proposition 3.2 are satisfied for all L € S(K).

First we claim that
(14) lim sup{dist(x, Lg) | L € S(K),x € L\ Bgr}=0.
R—o00
Indeed, if we choose any sequence L’ € S(K) and pick x; € L' with |x;| tending to
infinity, we have from (5) that
L= lim O}, (xi,r) < lim O(x;,r + 3) = Op(xi, 7)
and thus
. 1 1
ll_l)rgo O (x4, 5) > L
The claim now follows from Lemma 3.3.

Second we claim the existence of Ry > 0 so that the C>® norm of L\ B R, 1s uniformly
bounded for all L € S(K). Indeed, with g9 > 0 fixed, we obtain from Lemma 3.3 the
existence of R; so that for all L € S(K) we have

Op(x,2) <14¢y forall |x|> R;/2
and so, for all #,/ € [0, 1] we have
Of(x,]) <Op(x,/ +1) <Bp(x,2) <14¢y forall |x|> Ry/2.
White’s Regularity Theorem [23, Theorem 3.1] implies the desired claim.

From the first and second claim we see that given r > 0 and ¢ > 0 we can find R, so
that for all L € S(K) and x € L\ Bg, we have that B,(x) N L is e—close in C%* to
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a ball of radius r in L. Elliptic regularity implies that for every k € N we can choose
R, larger so that l§, (x) N L is e—close in C¥T1® to a ball of radius r in L¢. Thus,
for every k € N, we can find rg, Rg, and Dy so that the hypotheses of Proposition 3.2
are satisfied for all L € S(K). This implies the desired result. O

4 Fredholm theory

In this section we develop the Fredholm theory for the operator

L(p) = A¢p+(x.V¢)—2¢

defined on the self-expander L, which already arose in (11). The relevant spaces to
consider are given below.

Definition 4.1 For k € Z1, let H*(L) denote the Sobolev space W*2(L) with norm

: )
161k = ( IVj¢|2dH”)
)

Let Hff (L) denote the subspace of H¥(L) such that the norm

||¢||HA—(Z/ Vg d%"+2/ Vig) d%")2

is finite. Here the symbol (xT,V/¢) means that we form a tensor by contracting
x " and V/¢ using the Euclidean metric; for example, (x T, V) is given by viewing
V¢ as a vector using the Euclidean metric and then taking its inner product with x T
Thus (x T, VJ/¢)?2 is the square norm of the tensor (x|, V/¢). Both H¥ and Hff are
Banach spaces (in fact, Hilbert spaces).

Our first result, which shows the utility of Definition 4.1, is the following.
Proposition 4.2 The map L: Hf *2(L) — Hk (L) is well-defined and continuous.

Proof From Theorem 3.1 we have that every derivative of the second fundamental
form of L is uniformly bounded. Thus if 7" is a tensor on L we have from the Bochner
formula and Gauss equation that

(15) VAT = AVT +C; VT +Cy « T,
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where Cy, C; are two uniformly bounded tensors (depending only on L) and A x B
denotes any contraction of tensor A with tensor B. Moreover, using the fact that
H =x* on L we also have

(16) Vix",T)=(x",VT)+ Co* T,
where Cj is another uniformly bounded tensor which depends only on L.
We can use (15) and (16) inductively to conclude that for all i € N and ¢ € CS’O(L)
we have
i
(17) ViL(p) = AVig+ (x T VIFIg) + > Ci+ Vg,
=0

where the C; are uniformly bounded tensors. Thus for all i € N we can find a positive
constant ¢; = ¢;(L) so that

i+2

/ |VIL(p)|? dH" Sci(Z[ |Vj¢|2d7-£”+/(xT,Vi+1¢)2dH”).
L . JL L
j=0
It follows that £ defines a continuous map from Hff T2(L) to H*(L). a

Theorem 4.3 The map £: H2(L) —> L?(L) is an isomorphism.

Proof We start by proving the existence of a positive constant Cy = Cy(L, n) so that
for all ¢ in H2(L) we have

(18) 161132 < CO/L 1L(@)1> dH" = CollL($)]7 - -

Using the fact that H = x* on L, we have
19) divx' =n+|xt?
and so direct computation shows that
(20) 2p(x. V) = div(x "¢?) — (n + [x )7,
Thus
—/L£(¢)¢ dH" = /L Vo> + Q2 +n/2+ x> /2)¢p> dH"
and so, since —L(¢)¢ < |L(¢)|*> + %qﬁz, we obtain

1) /L|V¢|2dH” < /L L) .
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Moreover, if A is the second fundamental form of L,

2
(22) Ag¢(x,Ve) = div(V¢(xT, Vo) —xT%)

2
+ |V;P| (I’l—2+ |xL|2)— (H,A(V¢,V¢)>

and combining (22) with (20) we obtain
(23) /L L) dH" = /L (A@) + (x, V) + (1 + 2+ [x-2)|Vg 2 "
+ 2/ (n+2+|xtP)p2dH" — 2[ (H, A(V$,V)) dH".
L L

From the Bochner formula and Gauss equation there is a constant ¢ = ¢(#) so that on
L we have
IVAG — AVY| < c|4]*|Vg.

Observing that
div(V2(V¢,-)) = (AV, Vo) +|V24|%,
div(AGV) = (VAP, Vo) + (Ad)>2,
we thus see that
(24) IV261* < (Ap)* +div (V>$(V§,-) — ApV) + |4 [Vo|*.

Inserting (24) in (23), we have
25) /|v2¢|2+<x,w>>2+|V¢|2+¢2dH"
L
5/ |£(¢)|2d7-[”+(c+2)/ |4|?|Vg|> dH".
L L

From Theorem 3.1 we know that | 4|? is uniformly bounded on L and so we have
from (21) the existence of a constant C = C(L, n) so that

/ |A]2|Vg|2dH" < C / |L($)|* dH".
L L
This last inequality and (25) imply (18) at once.

The immediate consequence of (18) is that L is injective. It also follows that its
range is closed for the following reason. If v; = L(¢;) is a sequence converging in
L?(L) to v, then (18) implies (¢;);en is a Cauchy sequence in HZ(L) and thus
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sequentially converging to ¢ € H2(L). Naturally, £(¢) = v since £ is continuous by
Proposition 4.2.

We now argue that £ is surjective. In order to do so we compute the formal adjoint £*
of L. Using (19) we have, for every u,v € C*°(L),

(26) (x, Vu)v = div(x Tuv) — (n + |x T |P)uv — (x, Vo)u.
Hence, if ¢ € C§°(L) and n € C*(L),

[ comanr = [ p(an— (e Vi) -+ 154+ 2m) e,
L L
which means

27) L*(n) = An—(x, V) — (n+ x> +2)n.

Suppose that £ is not surjective. Since its range is closed we can find n € L?(L)
non-zero such that

[ L(p)ndH" =0 forall ¢ € C5°(L).
L

Elliptic regularity implies that 7 is smooth and hence a solution to £*(n) = 0. The
next lemma implies that n = 0 which is a contradiction.

Lemmad4.4 Ifne C®(L)NL?*(L) and L*(n) =0, then n = 0.

Proof We start by arguing that n € H'!(L). For each R > 0 consider a cut-off function
¢r € C5°(C") so that

28)  0<¢r=1, @rlBz =1, supp(¢r) < Bor. [Vorl=<coR™",
for some universal constant ¢ .
Using (26) with u = n?/2 and v = ‘ﬁe we have
0=-— /L LY (mngR dH" = /L Vil ok + (% + 2) g dH"
n?
+/(vn,v¢§)ndﬂn—/ (x,Vogr)—dH".
L L 2
We have for some universal constant ¢ and all € > 0 that

/(vn,v¢§)nd?{"5ce/ |vn|2¢§dH”+£/ n? dH"
L L & JL
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and thus we find another uniform constant ¢ so that
2
/ Vn2p3 dH" < c/ (x, Vo) 'L ann + c/ n? dH".
L L 2 L
The term (x, V¢12Q) is uniformly bounded (independent of R) by (28) and so

/ |Vn2p% dH" Sc/ n? dH"

L L

for some other universal constant ¢. Letting R tend to infinity we obtain that n €
HY(L).

We now show that n = 0. Set

-1
f(r)=/ P AH + (24 5) / V[2 dH".
LNB, 2 LNB,

The idea is to show that
(29) (2 + %)f(r) <rf'(r) foralmostall r >2+ % )

If true, we obtain from integrating (29) that, for all r > r1> 2 + %,

24+(n/2)

OENONES

As n € H'(L) the function f is uniformly bounded, which contradicts the inequality
above unless f = 0, which means 1 = 0.

Hence to complete the proof we need to show (29). Applying integration by parts to
the identity

/ L¥mMndH" =0
LNB,

and using (20) with ¢ = n we obtain

2 no XY 1 T o \2 2 1
T Y AT
LB, 2 2 2 JonB,)

where v is the outward unit normal to the boundary of L N B, . Therefore

60 (2+5) 0= pawied  pvelane!
2 2 JacLnB,) (L

r

5—"“2”95 n* dH"! +%9§ |V dH" 1
d(LNBy) d(LNBy)
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On the other hand using the co-area formula we have, for almost all r,

: 2 |x] - ny~1 2 x| 1
1) = 9§ n? 2L - (2 +Z IV dH"
aLnBy X7 2) 9(LNB,) [xT|

—1
2 ¢ 7]2 dHn_l + (2 + E) ¢ |V1,]|2 dHn_l.
3(LNB,) 2 3(LNB,)

Combining this inequality with (30) we obtain that (29) holds for almost all
r>=2+4+7. O

Applying Lemma 4.4 shows that £ is surjective, completing the proof of Theorem 4.3.
O

Corollary 4.5 The map L: Hf *t2(L) — H¥(L) is an isomorphism for all k € N .

Proof We proceed by induction where the case k& = 0 follows from Theorem 4.3.
Assume Corollary 4.5 holds for some & € N. Thus £ is injective and given v €
H**t1(L) c H*(L) there is ¢ € HFT2(L) so that £(¢) = v. We need to show that
¢ e Hf *3(L) in order to prove the corollary.

Set T =Vk +1¢ and recall that A acting on T is given by the trace of V27 '. From
(17) there exists a constant C; = C;(L,n, k) so that

(€3] IAT +(x T, VT) 7. = Ci(l913, w1+ L@ k1)-

Next we argue that, for some constant C, = C,(L,n, k),

(32) /(AT, Vo T)dH" 5(:2/ VTP + T2 dH".
L L

Reasoning as in (22), there is a universal constant ¢ = c¢(n, k) so that
vT|?

‘(AT, V,rT) —div((VT, V,.tT) —xT%)'

< c|VTPA+ AP+ x5 +e| T IVT |14 |x ).

From Theorem 3.1 we have that |A|? and | H|? = |x1|? have exponential decay, so

|A|?|x| and |A|?> 4 |x*|? are uniformly bounded on L. Thus we can find a constant
Cy, = Cy(L,n, k) so that

VT|?
(AT, V, +T) —div((VT, V,rT) —xT%) <G(VT*+ T,

which implies, after integration, inequality (32).
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Combining (31) with (32), we have

(33) IATIZ, +1(x T, V). < C3(||¢>||12q§+z L@ N gar1)

for some C3 = C3(C;, C,). Using the Bochner formula and the fact that |A|? is
uniformly bounded on L we can find a constant C4 = C4(L, n, k) so that
IV2T (72 < AT |72+ CallVT I3 -

Combining this inequality with (33) we obtain
1912 s = Cs (112 k2 + IL@)pus)

for some constant Cs, which implies that ¢ € Hf +3(L) as required. |

S Local uniqueness
In this section we prove the local uniqueness of zero-Maslov class Lagrangian self-
expanders L asymptotic to transverse pairs of multiplicity one planes Ly = P; + P5.

Recall the definition of G, in Section 3 and consider a smooth path (P;(s), P>(s)) € Gy,
with P;(0) = Py and P,(0) = P,. We assume that the difference of the Lagrangian
angles 9(P1 (s)) — 9(P2 (s)) is constant.

Theorem 5.1 Given a zero-Maslov class self-expander L asymptotic to Lo = P1+ P»,
there is Ro > 0, 59 > 0 and ¢ > 0 so that zero-Maslov class self-expanders L* that
satisty

e L® is asymptotic to L = Py(s) + P(s) for some |s| < so,
e L%ise—closein C? to L in Bg,.

exist and are unique. The family (L*)|s <y, is continuous in c?e,

We achieve this by studying the deformation theory of L and applying the Implicit
Function Theorem.

We start by constructing the tubular neighbourhoods of Lo and L that we require and
derive some basic properties.
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Symplectic preliminaries

The cotangent bundle of a Lagrangian N has a natural symplectic structure, which is
exact, meaning that there is a tautological one form v € A1(T*N) so that if wy is the
tautological symplectic form on T* N, then dt = —wp . The form 7 is determined by
the following property: if & € A'(N) and we consider the natural map : N — T*N,
then E*t = 2. We remark that on R2” = T*R”", ¢ = > yidx; and hence T is
different from the Liouville form A.

~

For 8 € A'(N), we let T'g denote the section of 7*N given by x — (x, E(x)).

A symplectomorphism ®: (M;,dA) — (M,,dA,) between exact symplectic mani-
folds is called exact if ®*(A,)— A is exact.

In particular, in the case of R” € C”, the map from T*R” to C”" given by

(34) (x =(X1,...,Xn), Zyj(x)dxj) = (X1 +ivi, ..., Xn+iyn)

j=1
is an exact symplectomorphism identifying the zero section with the real R” in C”.

The construction of the tubular neighbourhood of Ly = P; U P, is elementary. Without
loss of generality we may assume that P; is the real R” C C”" and that P, = A -R”
where 4 = diag(eiel, LN Naturally, we may define symplectomorphisms
V;: T*P; — C" for j = 1,2, where W, is given by (34) and W, = A o W, . Clearly,
there exists ¢ > 0 so that if

35) Vi ={(x.£(x)) € T*(P; \ {0} : [E(x)| < 2¢|x]}

then ¥, (V) NW,(V,) = @. This choice ensures that we can allow for rotations of P;
and P, in a tubular neighbourhood that is symplectomorphic to an open neighbourhood
in T*(Lo \ {0}), so we have the following.

Lemma 5.2 Set:
s Vo=ViUV, ST*(Lo\{0}).
o To=W (V)UYW (V) € C".
* Wy Vo — To defined by Woly, = V.
Then Vy and Ty are open tubular neighbourhoods of Ly \ {0} and W, is a symplecto-

morphism preserving the Liouville form. Moreover, any small rotation of either of the
planes P; or P, remains in Ty .
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We now use Vy, Ty and ¥y to construct our tubular neighbourhoods of L. The point
will be to ensure that the symplectomorphism we construct is compatible with the
standard symplectomorphism (34) over the planes.

By Theorem 3.1, there is R; > 0 and an open set B C C” with compact closure so

that B
L\B={x+JVy(x):x€ Lo\ Bpg,}

for some ¥ € C®(Lo\ Bg,) whose C?* norm decays exponentially. In particular, we
may assume by making R larger if necessary that |dv/(x)| <¢|x| forall x € Lo\ Bg, .
Let

(36) mw: Lo\ Bg, > L\ B, n(x)=x+JVy(x)
so that 7*: T*(L\ B) — T*(Lo \ Bg,) is an isomorphism.

Proposition 5.3 Recall the notation of Lemma 5.2. There exist
e open neighbourhoods VCVofLinT*L,
e open tubular neighbourhoods TCTofLinCn,
e an exact symplectomorphism V: V — T with ¥|p =idy and T= \11(17),

such that

37) 7*(V) = {(x,E(x)) € T*(Lo \ Br,) : |E(x)| < ¢|x|} S Vo,
7*(V) = {(x,E(x)) € T*(Lo \ Bg,) : |E(x)] < L¢|x]},

and

(38)  Wo(r*)! (x,6(x)) = Wo(x,dy(x)+&(x)) forall (x,§) enx*(V).

Proof Recall that L is embedded by Lemma 2.4.

Since L is Lagrangian, the normal bundle NL of L is isomorphic to 7* L so we may
consider the exponential map exp acting on 7*L. Given any compact K C L, we
may apply the usual tubular neighbourhood theorem to give open neighbourhoods of
K in T*K and C” that are diffeomorphic via exp. Moreover, exp and its derivative
act as the identity on K. In particular, exp* A = Az on K, where Ay is the Liouville
formon T*L.

We may define V and W over L \ B via (37) and (38) so that W(V) is a tubular
neighbourhood of L\ B. Using the exponential map over the remainder of L, we can
extend to open neighbourhoods V, T of L in T*L and C”" and a diffeomorphism
®: V — T such that ® and W agree over L\ B.
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As 7 in (36) is a diffeomorphism, the map 7*: T*(L \ B) - T*(Lo \ Bg,) is a
symplectomorphism preserving the tautological 1-form (see, for example, Cannas da
Silva [20, Theorem 2.1]). Since W preserves the Liouville form, we see that on L\ B
we have ®*A — Ay = day for some smooth function «y,. We can smoothly cut-off
the function ay so that it is defined on 7* L and vanishes over a compact subset of
L. Hence ® is an exact symplectomorphism outside some compact set. The idea now
is to essentially use Moser’s trick to perturb ® over a compact set to a global exact
symplectomorphism.

Define
Ar=0—-0)(Ap +dag) +1d*A,

so that
di; =2(1—-0wp +2tP*w

is a closed nondegenerate 2—form on V for all 7 € [0, 1]. Using nondegeneracy, we
can uniquely solve
XiadAy = A +dap — O*A

pointwise for X;. Since ®*A = Ay +day, over L\ B, we see that X; is zero outside
a compact set, so we may solve for a smooth vector field X; on V for all ¢ € [0, 1]
by shrinking V' if necessary. Moreover, L (viewed as the zero section) is Lagrangian
with respect to wz, and ®*w, so we may deduce that dA;|;, = 0 and hence X;|; =0
as well.

Define diffeomorphisms f; on V such that fy =id and (f—t f: = X:o f;. Then
%ft*k, = (A —Ap —dap +d(X;0A) + X odAs) = d f5 (Xiahy).

We deduce that f*®*A —Ap = f*A1 — f Ao +dar is exact. Moreover the diffeo-
morphism /7 acts as the identity on L and on V over L\ B. Hence we have an exact
symplectomorphism W = ®o f1: V — T which satisfies (37) and (38). The remainder
of the proposition follows by taking appropriate open subsets of V and T . a

Write C2 (Y) and CliC(I?) for the spaces of locally C? 1-forms E with graph I'g CV

loc
~

and I'g C V respectively. We use similar notation for C2° (V). For E € CI(Z)C(V) we
define a C2—embedding f%: L — T by

SE) = ¥(x, E(x))
so that € (L) is the deformation of L given by Z.

We note that f'& (L) is Lagrangian if and only if d& = 0.
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However, we want to restrict ourselves to exact zero-Maslov class deformations f = (L)
since, by Lemma 2.2, we know that if f E(L)isa self-expander it must be exact. This
motivates the next lemma.

Lemma 5.4 Let L' = fE(L) with 8 € C2.(V). Then L’ is exact and zero-Maslov
class if and only if & = d¢ for some ¢ € C2_(L) with Tgp C V.

Moreover, if we set

o ¢ defined on T so that ¢(¥(x, ) = ¢(x),

e H(L®) the mean curvature of L = f599(L) and A® the pullback to L of the
Laplacian on L*,

o 0% the pullback to L of the Lagrangian angle of f9¢(L), and
o B? the pullback to L of the primitive of the Liouville form of f4¢(L),

then ¢ and B? can be given, respectively, by

1 _
6% (x) = B(x) + /0 AG(x) — (H(L*), V) ooy s

and
1

B (x) = Bx) — 26 (x) + /O (. V) s a0 d.

We also have

s¢ —
do = Ap—(H.V§),
ds s=0
s¢ J—
dp = —2¢ + (x, Vo) + (H, V).
ds s=0

Proof We first show that exactness of /= (L) corresponds to exactness of E. It suf-
fices to see that (fE)*(3_F_, yi dx;) is exact because that differs from —(f&)*(A/2)
by an exact form. Since W is an exact symplectomorphism there exists a function «y,
on T*L such that &* (Z?:l Vi dx,') = 7 +day . By definition, /% = Wo & so

n n
(fE)*(Zyi dxi) = E*o\IJ*(Zyi dxi) = 8%t +dar) =E +dE*(ap).

i=1 i=1
Hence fZ(L) is exact if and only if E is exact.

We now compute the stated identities for f%. Consider the vector field on T*L
given by
Xlerg) = (0.dp(x)) € Tie iy (T L),
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the function ¢ on T*L given by ¢(x §) =¢(x),and X =W, (X ) a vector field on
T. We have X ,U*w = —d¢ and so, because ¢p o W = ¢ we obtain X = J V¢ on
T . As a result we have

d ~ P
ade(p(x) = "D*|(x,sd¢)(X) = X|ded>(x) =J V(]blfsdaﬁ(x)-
Therefore we obtain
L= ()L ggh = (S AT TP A) + T T 20)
= (/*1?)*d((x.V¢)) —2dé.

In light of this formula we see that if we define

1 —
B (x) = B(x) — 26(x) + /0 (. V) oo oy d.

we have (f9?)*A = dB? and, since L is a self-expander,

dps¢
ds s=0

=—2¢ + (x, Vo) = —2¢ + (x,V¢) + (x1,V¢)

= —2¢ + (x, Vo) + (H. V).

We now show that the zero-Maslov class condition imposes no condition on E = d¢.
We have ( /594¢)*(Q) = ¢! (£599)*volrs where ¢?" is an S!-valued function on L.

If the deformation vector X were orthogonal to L*, we would have by [22, Lemma 2.3]
that
dos
ds

= A4,

The fact that X might have a tangential component along L® implies

dos
ds

= A9+ (X, (/*19)V0°) = ¢ + (JX, H(L")) = A'¢ — (H(L®), V).

Therefore, integrating this equation for 6% together with the initial condition 6° = @
allows us to define a (single-valued) function on each L* that is the Lagrangian angle.
In particular, f9¢(L) has zero-Maslov class and we can set

1 _
6% (x) = 0(x) + [0 ASG(x) — (H(L®), V)| iy d.

The equation for (f—sGsd’ was computed above. |

Geometry & Topology, Volume 17 (2013)



Uniqueness of Lagrangian self-expanders 2713

Proof of Theorem 5.1

Consider smooth rotations P (s) and P,(s) of the planes P; and P, respectively, so
that the planes remain Lagrangian and the difference of their Lagrangian angles stays
the same. In that case we find a one parameter family of matrices Bj(s), B,(s) € U(n)
with

e Pi(s) = Bi(s)- P1 and Py(s) = Ba(s)- P2,

e Bi(s)B;'(s) € SU(n) and B;(0) = B,(0) =id,

o det B (s) =det By(s) = ¢'?C)  where 6(s) is a smooth function with 6(0) = 0.

Consider G: C" — C", a one-parameter group of diffeomorphisms with Go = id,
Gs(x) = Bi(s)(x) on Wy (V1) \ Bg, and Gs(x) = Ba(s)(x) on U5(V2) \ Bg,.

From Proposition 5.3 we can find so so that for all |s| < sy and d¢ € Clzc(I?) we have
Ggso f49(L) C T. In this case we define the C? embedding

FI95 LT, f995(x) = Gy o W(x,dp(x)).

Given ¢ € Clgc(L) so that d¢ € CI(ZJC(I’/\) and |s| < 5o, we set LS = f¢5(L).
Thus, by Lemma 5.4 we know that L#> is an exact zero-Maslov class Lagrangian
and we consider its Lagrangian angle 6% and primitive for the Liouville form B¢
pulled-back to L, which are given by Lemma 5.4.

If ¢ has strong enough decay then L% is asymptotic to Ly = Py(s) + Pa(s). For
simplicity we write L? = L#0, g% = %0 and 9% = 6¢-0.

Lemma 2.2 shows that L% is a self-expander with H = x= if and only if -5 4 99>
is constant. This motivates our definition of a deformation map.

Definition 5.5 We define a function F on functions ¢ € ClgC(L) such that d¢ €
CI(Z)C(I?) and |s| < s¢ by

F(p.s) = % +6%5 —0(s).
We also let F(¢) = F(¢,0).

We now compute the linearisations of F' and F at zero, whose kernels will govern
infinitesimal deformations of L. We have in fact already encountered the key operator
in (11).
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Lemma 5.6 For ¢ € C2(L) and s € R,
dFlo(p) = L(#) = Ad +(x, V) =29,
dF|0,0)(¢.5) = L($) + 5.

where y is a smooth function with compact support.

Proof Since F acts on a pair (¢, s), we may decompose

dﬁ|(0,0)(¢, s)=d; ﬁ|(0,0)(¢) + d21?|(0,0)(S)-

From Lemma 5.4 we have
d
dFlo(@) = = (B +0')]1=0 = Ag + (x. Vo) — 29

Thus d; Fl(0,0)(¢) = L(¢).

We note that we can find oy € CGX(L) so that L% = f4% (L) and thus, using
Lemma 5.4 again, we obtain

~ d
42 Fl(0.0)(5) = (B + 01— — 50'(0) = 5(L (@) ~0'(0)
for some o € C22(L). We now argue that y = L(o) — 6’(0) has compact support and

this finishes the proof of the lemma.

On each connected component of 7'\ Bg, , Gs belongs to U(n) and we have §%% =
0 + 6(s) and B%° — B a constant ¢(s) for all |s| < s¢. Next we argue that ¢(s) = 0
for all |s| < s¢, which implies that

F(0,5)=0% +B% —0(s) =0 +0(s)+B—0(s) =0
outside a compact set, so y indeed has compact support.

Recall the diffeomorphism 7 given in (36). From Proposition 5.3 we see that, by
choosing a larger R; if necessary, we can find xs, ¥y € C*°(Lo \ Bg,) with xo =0,
Yo = V¥, respectively, so that, for all x € Lo\ Bg, and |s| < s¢, we have

SO (m(x)) = Gy 0 Wo(x,d(x)) = Yo (x,d x5 + dyrg(x)).

Note that y is a homogeneous quadratic polynomial and the C? norm of v/, decays
exponentially. Therefore we have from Lemma 5.4 that

c(s) = B (w(x)) = B(m(x)) = =25 + (x, V) + o(x| 7).

Since x; is a homogeneous quadratic, we have —2x + (x, V x5) = 0 and thus c¢(s) =0
for all |s| < s9. |
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We show that the nonlinear map F is well-defined for ¢ in some open ball about zero
in HX*2(L) for all k large.

Proposition 5.7 If k > 1 4 %, there exists &g > 0 so that
F: Bey(0) C HFT2(L) > H¥(L) and F: Bg,(0) x (=so.50) — H*(L)

are well-defined.

Proof If k > 1475 then the Sobolev Embedding Theorem implies that /' kt2c, 3.
for some a € (0, 1) with & <k —1— 7, so there is an open set containing zero in
H**2 on which F is defined. The existence of &y so that F(¢) and F (¢, s) are
defined for ¢ € B;,(0) and |s| < s¢ is then immediate as H,I,f+2 c Hk+2,

We need to show that F and F take B¢, (0) into H k(L). Note that the conditions
satisfied by Gy € U(n) in T \ Bg, imply that, outside Bg,, 695 = 6% + 6(s) and
B differs from B? by a constant c(¢, s). Since ¢ tends to zero at infinity in C3, we
have that c(s, ¢) = c(s), and we saw in the proof of Lemma 5.6 that c(s) = 0. Thus
B is identical to B% and so F (¢,s) and F(¢) are identical functions outside B, .
Hence, we only need to argue that F takes Bg,(0) into H kL.

Notice that 8¢ depends only on the tangent space of L?, and thus on V¢ and V2¢.
Thus we can consider a smooth function of its arguments Qg (x, y, z) so that

6% (x) = 0(x) + Ap(x) — (H, V) + Qg (x, Vo (x), V?h(x)).

Using the expression for the linearisation of #? given in Lemma 5.4 and arguing as in
Joyce [9, Proposition 2.10], we conclude that Qg , 9, Qg and 0, Qg vanish at (x, 0, 0).

From the expression for % given in Lemma 5.4 we see that we can find a smooth
function of its arguments Qg(x, y) so that

B?(x) = B(x) + (x, Vo (x)) =20 (x) + (H, V) + Op(x, Vo (x)).

Using the expression for the linearisation of 8¢ given in Lemma 5.4 and again arguing
as in [9, Proposition 2.10], we conclude that Qg and dy Qg vanish at (x,0).

Therefore, since F(0) =6 + =0, we see that
F($)(x) = L($)(x) + O(x. Vo (x). VZ¢(x)).

where QO = Q(x, y, z) is a smooth function of its arguments such that Q, 9,0 and
0, Q all vanish at (x,0,0). Observe that Q(x, y, z) does not directly depend on ¢ (x).
By Proposition 4.2 it is now enough to show that Q takes Bg,(0) into H kL.
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Let ¢ € Bg,(0) be a smooth function with compact support. We derive estimates for n
given by n(x) = Q(x, Vo (x), V2¢(x)). Since Q and its first derivatives in y and z
vanish when ¢ =0,

(39) ()] = CE)(IVP()? + V2 (x)]?)

for some non-negative function C on L. Our first objective is to show that C is
bounded.

Recall we have a diffeomorphism 7: Lo\ Bg, — L\ B and set ¢p9 = *(¢), Fo(¢) =
7*(F(¢)). From Proposition 5.3 we have

o0 (x)) = Wo(x,dy (x) +dgo(x))

andsoon Lo\ Bg, wehave Fy(¢) = Qg’ + ,Bg’, where 9(? and ,Bg are the pull backs
of the Lagrangian angle and primitive for A on the graph of d¢g +dv over Lo \ Bg, .
Thus,

Fo(9)(x) = Lo(o + ¥)(x) + Qo (x, V(go + ¥)(x), V(o + V) (x)),

where L is the operator given in (11) calculated on Lo and Qy is a function with the
same properties as Q. Since we are working over the planes L, we compute

n
BY = Po+(x.Vigo+ V) —2po+¥) and 6 =6+ Y tan~' (1))
j=1
where (1, ..., [y are the eigenvalues of Hess (¢pg+1v), and 6y, B¢ are the Lagrangian
angle and primitive for the Liouville form on L. Thus, because we have chosen
B + Bo = 0, we have

n
Qo (x. V(go + ¥)(x). V(o + ¥)(x)) = D tan™" (1) (x) — Ao + ¥)(x).
j=1
From this explicit formula, we deduce that Q¢ and all its derivatives are bounded on
Lo\ Bg, . Moreover, the decay of |(3x)?Qo(x, y,z)| is controlled by |y|> + |z|2.
The exponential decay of v in Theorem 3.1 implies Q and Q differ by terms with
exponential decay and so we have that Q and all its derivatives are bounded on L, and
that the x derivatives of Q satisfy

(40) [(0x)7 0 (x. Vg (x), VZ(x))| < COIVP(x)|* + [V (x)|?)

for some constants C?. In particular, we can choose C(x) = C independent of x in
(39) and we deduce that

InllLz = Cligllczl@l g2 -

Geometry & Topology, Volume 17 (2013)



Uniqueness of Lagrangian self-expanders 2717

Since any element of Hf *2 has bounded C2 norm and lies in H?, we deduce that Q
maps B, (0) into L?.

Now let j € {1,...,k}. Our aim is to show that V/7 lies in L2. By the chain rule,

@D [Vinl=j! D7 100%0)°0:)° 0
a,b,c>0
a+b+c<j

b c
x > [TV o) [TIV™ (V2.
=1

My, Mp Ny, ne=>1 i=1
at+mi+-+mp+n|+-+ne.=j

If j = a in the sum in (41), the products are trivial and we can use (40) to show
that the corresponding terms lie in L2. Therefore we now assume that j > a. Let
qi,---,9p,¥1,- - ., e be positive constants so that

b c
1 1
42 —+ — =1
“@ Lyt
Applying Holder’s inequality to (41), we see that

(43) f IV/p|? dH"
L
b

1/qi
< > Cla.b.co) > ]‘[(/mef(v(p)ﬁfhd%”)

a,b,c>0 MY yeeesp A1, ie>1 i=1
a+b+c<j at+mi+-+mp+nit-tne=j

c 1/r;
<TT( [ 1vmv e anr)

=1

for some constants C(a, b, ¢) determined by j and the derivatives of Q, which are
bounded.

Given a section o of a vector bundle with a connection D over L that lies in H5 N L®®
we have by Cantor [2, Theorem 3] that

(44) [ 17 awr < ol P ol

L
for some constant C independent of o, whenever s > p. (Notice that the results in [2]
apply since L is complete, has injectivity radius bounded away from zero and bounded

sectional curvature.) Choosing ¢; = (j —a)/m; and r; = (j —a)/n;, we see that (42)
holds and we can apply (44) to deduce that there exists some constant C, independent
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of ¢, so that
45) / 97 (V)P M < CIVSI2L G125,
(46) / IV (V2)2 AH" < C V21221012 e

Therefore, substituting (45) and (46) into (43) we see that there exists a constant
C(j, Q. ll¢llc2) so that

/wamzw <C(, Q. Illc) 11342

Since this holds for all smooth compactly supported ¢ € B.(0) we see that n € H/
whenever ¢ € H/ 72N C? for j =1,...,k. The result for F follows. O

We can now prove the following local uniqueness result.

Theorem 5.8 Letk > 1+ 2 5. There exist 0 < &1 < ¢&p and 0 < sy =< 59 so that for
each |s| < s there exists a unique ¢(s) € Bg, (0) C Hk+2(L) so that F(¢ (s), )
where s — ¢ (s) is continuous.

Moreover, if (¢.s) € Bg,(0) x (—s1, 1) then L% is a self-expander with H = x1 if
and only if ¢ = ¢(s).

Proof By Proposition 5.7, F: Bg0 (0) x (=S¢, S0) = H¥*(L) is well-defined and L%
is a self—expander if and only if F (¢, s) is constant. However, if ¢ € B¢, (0) then
F (¢,5)eC1(L)NL?*(L) by the Sobolev Embedding Theorem and so |F (¢,8)(x)|—0
as |x| — oo. Hence L% is a self-expander if and only if F(q’) s)=0.

By Lemma 5.6, dF |(0,0)(¢,5) = L(¢) +sy and y has compact support. Corollary 4.5
implies that d F|(0,0) L: H, +2(L) — H¥(L) is an isomorphism. Thus

dF|0.0: H*2(L)xR — H*(L)

is surjective. Moreover, there exists unique I" € Hff *2(L) such that £(T') = -y, SO
d F'|(o,0) has a 1-dimensional kernel.

Applying the Implicit Function Theorem for Banach spaces (Lang [12, Chapter X1V,
Theorem 2.1]), we see that there exist &; < gg, 51 < 5o and a unique continuous map
s ¢(s) so that

ﬁ_l(O) N (BEI(O) X (—sl,sl)) = {(d)(s),s) DSl < Sl}.

The result follows. O
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We now finish the proof of Theorem 5.1.

From Theorem 5.8 we obtain, for all |s| < s7, the existence of a zero-Maslov class self-
expander L* asymptotic to Ly = Py(s) + P2(s). The family (Ls)5/<s, is continuous
in C2:%,

To show uniqueness, apply Theorem 3.1 with £ = 3 and
K = {(Pl (), PZ(S))}Islfsl C Gy

to obtain the existence of & and Ry so that if N* is a self-expander asymptotic to Ly
that is e—close in C2 to L in Bg,, then N*¥ = L% for some ¢ € Bg,. Theorem 5.8
implies N* is unique and equal to L*. m|

6 Compactness theorem in C?

We now restrict to the situation where the self-expander is asymptotic to transverse
planes in C2. The reason is that it is only in C? where a Lagrangian cone with density
strictly less than 2 must be a plane. For n > 2, the Harvey—Lawson U(1)”~! —invariant
special Lagrangian cone in C” has density strictly between 1 and 2.

Consider M = G (2,C?) x Gr(2,C?), where Gr.(2,C?) denotes the set of all
multiplicity one Lagrangian planes in C2. Define

SL={(Py, P;) e M | Py + P, or P; — P, is area-minimizing}
and
(47) A={(P1,P) e M| PN P, ={0}}\SL.

Since (Pq, P) € M lies in SL if and only if the sum of the angles between P; and
P, is an integer multiple of 7, we see that A is an open subset of M .

The aim of this section is to prove the following compactness result.

Theorem 6.1 Pick a compact set K C A. The set

S(K) = {L € C?| L is a zero-Maslov class Lagrangian self-expander
that is asymptotic to Py + P,, where (P, P;) € K}

is compact in the C>* topology.

Proof Let (L');cn be a sequence of self-expanders in S(K) asymptotic to Lf) =
Pf + Pé. Setting L! = +/2¢ L?, we thus have a sequence (L’;)zzo of solutions to
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Lagrangian mean curvature flow that are smooth for all # > 0. From Lemma 2.4 we
have uniform area bounds for (L%);>¢ and so Ilmanen [8, Theorem 7.1] implies that
we can consider a subsequence that converges weakly to an integral Brakke motion

(Lt)e>0-

It also follows from [8, Theorem 7.1] that, for almost all 7 > 0, L’; admits a subsequence
that converges to L, as an integral varifold and so 2¢tH = x* on L;. Furthermore,
Radon measure convergence implies that L; = /27 L; /2 for all # > 0. In particular,
L/, is an integral varifold with H = x1 and we denote it simply by L.

Compactness of K implies that, after passing to another subsequence, (P!, Pé) con-
verges to (Pq, P;) € K. Our objective is to show that L € S(K).

We first show that L is asymptotic to Lo = Py + P;.

Lemma 6.2 Thereis Ry > 0 and € C*°(Lg \ Bg,) so that

L\ Byg, C{x+J VY (x)|x € Lo\ Bry} CL\ Bgy2
and, for some b > 0,
bR

[Vl c3.e(ry\BR) = Ofe as R — oo.

Moreover, L'\ BRg, convergesto L\ Bg, in C*% asi — oo.

Proof The lemma follows from Theorem 3.1 applied to (L?);eN . |
We can now deduce that L is asymptotic to L.

Lemma 6.3 As Radon measures, L; — Lo ast — 0.

Proof Given & > 0 small we obtain from Lemma 6.2 that, for all ¢ sufficiently small,
L\ By Cix+JYi(x)|x € Lo\ Be} CLs\ By,

where the C%® norm of the vector field Y; tends to zero as t — 0. Thus,

lim pdH?> = | pdH?
t—>0t Jr, Lo
for all ¢ € C°(C?). m|

The next proposition is one of the key steps to ensure that L is smooth.

Proposition 6.4 L is not a stationary varifold.
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Proof Assume L is stationary. Then L needs to be a cone because x- = H =0. Thus
L;=+/2t L has H =0 forall ¢ > 0 and we obtain from Lemma 6.3 that L = P; + P;.
The goal for the rest of this proof is to show that L must be area-minimizing and this
gives us a contradiction because (Py, P;) € SL.

Since L’ is a self-expander we have (from varifold convergence) that for every r > 0

lim |xt2dH? = / Ixt2dH? =0
100 JLINB, LNB,
and thus, for all » > 0,
(48) lim (IH> + |x1?)dH? = lim 2lxt?)dH? =0.
i—~oo JLinB, 1= JLiNB,

Lemma 6.5 The following properties hold:

(1) There is dy > 0 so that for every R > 0, every i sufficiently large, and every
open subset A of L' N B4 with rectifiable boundary we have

(HZ(A))% <dyH'(34).
(i) Thereis Ry > 0 so that for all R > Ry and all i sufficiently large
L' N By is connected and 8(Li N B3zg) C 0B3pR.
(iii) There is ¢ > 0 so that for all i sufficiently large we have

sup [67] = sup |B'| <c.
Li Li

Proof We first prove (i). From the Michael-Simon Sobolev inequality (see Simon
[21, Theorem 18.6])

() =co [ 1H]+cn! @)
A

for some universal constant ¢ > 0. In this case we have

(H2()E < co(H2 ()" 2( [A |H|2)2 oM (34)

and so we get the desired claim because for all i sufficiently large we have (due to

(48))
cgf |H|? 5%.
L'NB4R

Property (ii) follows from Lemma 6.2.
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Finally, we prove property (iii). Given y; € L', denote by B, (yi) the intrinsic ball in
L' of radius 7 and set ¥;(r) = H*(B,(y;)). From (i) we see that for almost all r

(i(1)2 < doM' (9B, (7)) = dovl(r).

Integrating the above inequality implies the existence of d; > 0, depending only on
dyp, so that forall R > 0

(49) H2(B, (1)) = dir? forall y; € Byg N L  and r < R.

Choose B*, the primitive for the Liouville form |z ;» so that Bi4+0"=0 (L isa
self-expander). Combining the uniform area bounds given in Lemma 2.4 with (49), we
have that the intrinsic diameter of L’ N B is uniformly bounded for all i sufficiently
large. Hence, if x, y € L' N By and y is a path in L' N B connecting x to y, we
have

ﬂ%m—ﬁoo=[A5Rw@mw»
Y

Thus the oscillation of 8% in L? N Bg is uniformly bounded. The angle 6’ = —B can
always be chosen so that its range in L’ N By intersects the interval [0, 277] and so we
obtain that ' = —B’ is uniformly bounded in Bg.

From Lemma 6.2 we know that / = —B! are uniformly bounded outside a large ball
and thus are uniformly bounded on L’. a

We can now finish the proof of Proposition 6.4. Recall that L = P + P, in the varifold
sense and, if necessary, we can change the orientation of one of the planes so that
the identity also holds in the current sense. We want to show that L = P; + P is
area-minimizing.

‘We know that for all R > 0,
lim |H> 4+ [x T2 dH?> =0
1—>o0 Ji NBr
and |x+| = |VB| is uniformly bounded in Bg. From Lemma 6.5 we have that all
conditions necessary to appl}_/ Neves’ [16, Proposition A.1] are met and so we conclude
the existence of a constant B and R; such that, for all ¢ € C§° (C?),

lim (B — B)*pdH? =0.
1—>00 LiﬂBRz

Hence
lim 0"+ B)2pdH> =0

i—>00 LiﬂBRz
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for all ¢ € Cgo (C 2_). We deduce, from [16, Proposition 5.1], that L has constant
Lagrangian angle —f and is thus area-minimizing, providing our required contradiction.
O

Using the fact that L is not stationary, we now show that L satisfies the conditions of
White’s Regularity Theorem. It is in this lemma that we use the fact that » =2 in a
crucial way. Recall the definition of Gaussian density in (3).

Lemma 6.6 Given gy > 0 small, there is § > 0 so that

O:y,H) =<1+ %O forevery [ <68t, y e C?and t > 0.

Remark 6.7 We briefly sketch the idea. The first step is to find § so that ©4,,(y,/) <2
for all y € C™ and / < §. This follows because the monotonicity formula implies that
O12(0.1) = Og(y. 1 + %) < 2 with equality only if L is a self-shrinker centered at
the origin. In the latter case, because L is a self-expander, we obtain that L must
be stationary, which contradicts Proposition 6.4. Thus, the strict inequality holds as
claimed.

The second step is to show that if ©y/,(y;, ;) > 1+ % for some sequence §; tending
to zero, then we can blow-up L and obtain a stationary Lagrangian varifold L that
is not a plane. Then we blow-down L to obtain a stationary Lagrangian cone C that
must have Gaussian density at the origin bigger than 1 + 870. Since we are in C2,
this forces the Gaussian density at the origin to be at least two, which we then show
contradicts the first step.

Proof It suffices to prove the lemma for ¢ = % because L; = +/2t L.

In what follows we will constantly use the fact that, because P; intersects P, trans-
versely,

/ ®(p,l)dH* <2 forall [ >0and y #0,
P+ P>

with equality holding if y = 0.

First step We start by arguing the existence of ¢; > 0 such that, for every / < 2 and
yE€ C2,

(50) / Oy, HdH* <2—c7 .
L
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From the monotonicity formula for Brakke flows [7, Lemma 7],

(51) /cb(y I)dH? + //L, (x=»t

2(l+§— 1)

2
O(y. [+ 5 —1)dH*dr

:/ By, [+ 1) dH2 <2,
P+ P>

Suppose there is a sequence y; and /; with 0 </; <2 such that

/ Oy ) dHE>2— L
L l

Then, by (51),

f S b+ Yyanr =21
P+ P> l

and so yi must converge to zero.

Assuming without loss of generality that /; converges to [, we have again from (51)
that

A

2
0,7+ 4 —1)dH*dt

2(1 -I- —1)
1L |2
= lim / / (x — yl) CD(yi,ll'+%—l) dH?ds
i—o00 L 204+ 1 —1)
<2—1lim | ®(y;i.l})dH>=0
i—oo JI
and thus
xJ_
H+ ——F—-=0 onL,foralmostall € [0, %]
2(1 + 5 —l)

Combining this with the fact that H = x1/(2¢) on L, we obtain that L must be
stationary, which contradicts Proposition 6.4. Thus (50) must hold.

Second step To finish the proof we argue again by contradiction and assume the
existence of sequences ()j)jeN in C? and (§;) jeN converging to zero so that

&
(52) ®%(y,~,5,-)21+3°.

From the monotonicity formula for Brakke flows [7, Lemma 7] we have

&o
/ <I>(yj,5j+%)d7{22®1/2(yj,5j)21_,_7_
P+ P>
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Note that the sequence (|yj|)jen is bounded by a positive constant My, because
otherwise we could find a subsequence so that

lim O(yj. 8 +3) < 1.
J 7O JP+P,

Consider the sequence of blow-ups

p=s (L —yj) with 5> 0.

1/24s6;
A standard diagonalization argument allows us to consider a subsequence Zﬁ = l~,§ ()
such that, forall 1 </ < j,

(53) _1 §/~_ ®(0,7) dHZ—/ O(yj,18;)dH* < L
I I L j

Thus, for every r > 0,

1 1/248
/ /~ |H|*dH*ds = 57" / _ |H|? dH?dt
o JLinB, 1/2 Ly0B 5, ()

1/2486;
— 57! / / ‘ ‘ AH2dt < 385,

where ¢, depends on r and M. Therefore

1
_lim/ /~ |HI?dH?*ds =0
J—>oo Jo JLINB,

and so (L )0<s<1 converges to an integral Brakke flow (Ls)0<s<1 with Ly = L for
all s and L a stationary varifold. From [16, Proposition 5.1] we conclude that Lisa
union of special Lagrangian currents (the Lagrangian angle is uniformly bounded by
Lemma 6.5(iii)).

From (52) and (53) we have

/ ®(0,1)dH2 > 1+ 2
| 2

and so L cannot be a plane with multiplicity one. The blow-down

C =limeg L, where g >0,
i—0
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is a union of Lagrangian planes (as these are the only special Lagrangian cones in C?)
and so

lim [ ®0,653)dH? = lim [ _®0,1)dH> = / ®(0,1)dH?* > 2.
L ! C

i—00 00 Jg; L

From (53) this implies that one can find / such that for every j sufficiently large we

have

2—L§/;'q)(07[)d7_[2§/ d)(yj,ISj)deJri_,
2a L L j

This contradicts (50). O
We may now complete the proof of Theorem 6.1. From Lemmas 6.2 and 6.6 we have
that, for all i sufficiently large,

@’;(y,l) <1l4¢gy forevery I <8t, yeC?andt>0,
where @ (y,/) is the Gaussian density (3) of L.

White’s Regularity Theorem [23] implies uniform C?* bounds for Li1 /2 and so
L = Ly, is a smooth multiplicity one self-expander asymptotic to P; + P, with
(Py, P;) € K and Lli/z converges to L in C>%. Hence, L € S(K) as we wanted to
show. |

7 Uniqueness theorem in C?

We first prove the uniqueness for self-expanders that are asymptotic to planes P; + P»,
where P; and P, share the same S'—symmetry.

Equivariant case

We say a Lagrangian surface N C C? is equivariant if there is a curve y: R — C or
y:[0,00) — C so that

N ={(y(s)cosa, y(s)sina) | s e R, € [0, 27]} C C2.

Consider the ambient function © = X1y, — y2x1. The relevance of this function is that
an embedded Lagrangian N is equivariant if and only if N C 1 ~1(0) (see Neves [18,
Lemma 7.1] for instance).

Studying the o.d.e. arising from H = x-, Anciaux [1] showed that given two equivariant
planes Py, P,, there is a unique equivariant Lagrangian self-expander L asymptotic
to Lo= P+ P>.
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Lemma 7.1 Suppose that L is a zero-Maslov class Lagrangian self-expander asymp-
totic to Ly = Py + P,, where Py, P, are equivariant planes. Then L is equivariant.
In particular, it is unique.

Proof From [17, Lemma 3.3] we know that along L; = +/2¢ L,

d 2 2 2
—pu?=Apu?=2|Vul*
Pl o =2[Vpul

Using the evolution equation above in Huisken’s monotonicity formula we have that,
fort <1,

o w2®(0,1—1)dH? <0.
t L,

From Theorem 3.1 we see that

lim | p?>®0,1—17)dH? = / w2 ®0,1)dH?* =0
t=>0Jr, P +P;

because P;, P, are equivariant. Thus
/ p2®0,1—¢)dH> =0
L,

for all £ < 1 and this implies the desired result. a

General case
Consider the set A C G1.(2,C?) x G (2,C?) defined in (47):
A ={(P1, Py)| PyN Py=1{0}}\SL.

Theorem 7.2 Given (Py, P,) € A there is a unique zero-Maslov class self-expander
L that is asymptotic to Ly = Py + P;.

Remark 7.3 The existence of such self-expanders was proven by Joyce, Lee and Tsui
in [10]. Explicit formulae for the self-expanders are given in [10, Theorem C].

Proof Choose a basis of C? so that P; is the real plane and
Py ={(e""x,e"%y) | x,y €R}.

Set
Pz(S) — {(eiel—is(el—ez)/Zx’€i92+is(91—92)/2y) | X,y € R}
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The key properties of (P, P,(s)) are that

e (P, Py(s)) € A forall 0 <s <1 and the Lagrangian angle of P,(s) is constant,
e P Cu ' (0)and Py(1) C u=1(0).

Consider the compact subset of A given by K = {(P;, P2(s))}o<s<1 and recall

S(K)={L € C?| L is a zero-Maslov class Lagrangian self-expander
that is asymptotic to Py + P,, where (Py, P,) € K}.

Consider the obvious projection map 7: S(K) — [0, 1].

From [10, Theorem C] we know that 7 is surjective. By Theorem 5.1, one may choose
a suitable topology on S(K) so that 7 is a local diffeomorphism. By Theorem 6.1,
S(K) is also compact with respect to this topology. Therefore x is a covering map.
However, by Lemma 7.1, we have that 7~!(1) consists of a single element and so 7
is a diffeomorphism. In particular, 77 ~!(0) consists of a single element. O
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