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Coupled equations for Kähler metrics
and Yang–Mills connections

LUIS ÁLVAREZ-CÓNSUL

MARIO GARCÍA-FERNÁNDEZ

OSCAR GARCÍA-PRADA

We study equations on a principal bundle over a compact complex manifold coupling
a connection on the bundle with a Kähler structure on the base. These equations
generalize the conditions of constant scalar curvature for a Kähler metric and Hermite–
Yang–Mills for a connection. We provide a moment map interpretation of the
equations and study obstructions for the existence of solutions, generalizing the
Futaki invariant, the Mabuchi K–energy and geodesic stability. We finish by giving
some examples of solutions.
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Introduction

In this paper we consider a system of partial differential equations coupling a Kähler
metric on a compact complex manifold and a connection on a principal bundle over
it. These equations, inspired by the Hitchin–Kobayashi correspondence for bundles
and the Yau–Tian–Donaldson conjecture for constant scalar curvature Kähler (cscK)
metrics, intertwine the curvature of a Hermitian–Yang–Mills (HYM) connection on the
bundle and the scalar curvature of a Kähler metric on the manifold.

To write our equations explicitly, let X be a smooth compact manifold and let G be
a compact real Lie group with Lie algebra g. Let E be a principal G–bundle over
X . We fix a positive definite inner product . � ; � / on g invariant under the adjoint
representation. Let �k be the space of smooth k –forms on X . Considering the space
�k.ad E/ of smooth k –forms on X with values in the adjoint bundle ad E , the inner
product of g induces a pairing

(0.1) �p.ad E/��q.ad E/ �!�pCq;

that we write simply as ap ^ aq for any aj 2 �
j .ad E/, j D p; q . The unknown

variables of the equations are a Kähler structure .g; !;J / on the base X and a con-
nection A on E , where g , ! and J are respectively the metric, the symplectic form
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and the complex structure. We will say that a Kähler structure .g; !;J / on X and a
connection A on E satisfy the coupled Kähler–Yang–Mills equations with coupling
constants ˛0; ˛1 2R if:

(0.2)
ƒFA D z;

˛0SgC˛1ƒ
2.FA ^FA/D c:

�
Here Sg is the scalar curvature of g , FA is the curvature of A, z is an element
of g that is invariant under the adjoint G–action and c is a real number. The
precise values of z and c are determined by the topology of E , the cohomology
class of ! and the coupling constants ˛0; ˛1 (see Remark 1.2 and (2.49)). The map
ƒW �p;q.ad E/!�p�1;q�1.ad E/ is the contraction operator acting on .p; q/–type
valued forms determined by the Kähler structure. In the sequel, we will refer to (0.2)
simply as the coupled equations.

A link with holomorphic geometry is provided by the additional integrability condition

(0.3) F
0;2
A
D 0

between the complex structure J on the base and the connection A. Here F
0;2
A

denotes
the .0; 2/ part of the curvature, regarded as an .ad E/–valued smooth form on X . Let
Gc be the complexification of the group G . When (0.3) holds, the pair .J;A/ endows
the associated principal Gc –bundle Ec DE �G Gc with a structure of holomorphic
principal bundle over the complex manifold .X;J /.

The moment map interpretations of the constant scalar curvature equation for a Kähler
metric (cscK) and the HYM equation provide a guiding principle, leading to (0.2).
Indeed, equations (0.2) have an interpretation in terms of a moment map. This is the
subject of Section 1 and Section 2. As observed by Fujiki [21] and Donaldson [17], the
cscK equation has a moment map interpretation in terms of a symplectic form ! on the
smooth compact manifold X . The group of symmetries of the theory for cscK metrics
is the group H of Hamiltonian symplectomorphisms. This group acts on the space J i

of integrable almost complex structures on X that are compatible with ! , and this
action is Hamiltonian for a natural symplectic form !J on J i . The moment map
interpretation of the HYM equation was pointed out first by Atiyah and Bott [4] for the
case of Riemann surfaces and generalized by Donaldson [15] to higher dimensions.
Here one considers the symplectic action of the gauge group G of the bundle E on
the space of connections A endowed with a natural symplectic form !A . Relying on
these two previous cases, the phase space for our theory is provided by the subspace of
the product

(0.4) P � J i
�A

Geometry & Topology, Volume 17 (2013)



Coupled equations for Kähler metrics and Yang–Mills connections 2733

defined by the condition (0.3). Our choice of symplectic structure is the restriction to
P of the symplectic form

(0.5) !˛ D ˛0!J C 4˛1!A;

for a pair of non-zero coupling constants ˛ D .˛0; ˛1/ 2R2 .

Consider now the extended gauge group zG defined as the group of automorphisms of
the bundle E covering Hamiltonian symplectomorphisms of X . This is a non-trivial
extension

(0.6) 1 �! G �! zG �!H �! 1;

where G is the group of automorphisms of E covering the identity on X , and H , as
above, is the group of Hamiltonian symplectomorphisms of X . The group zG acts on
P and in Proposition 2.1 we show that this action is Hamiltonian for any value of
the coupling constants, we compute a moment map �˛ , and show that its zero locus
corresponds to solutions of (0.2). The coupling between the metric and the connection
occurs as a direct consequence of the structure of zG . So, away from its singularities,
the moduli space of solutions is given by the symplectic quotient:

(0.7) M˛ D �
�1
˛ .0/= zG:

Furthermore, !˛ is a Kähler form on P when ˛1=˛0 > 0, for a natural zG–invariant
complex structure on P . Hence under this condition on the coupling constants, the
smooth locus of the moduli space of solutions (0.7) inherits a Kähler structure.

We see that our problem merges the well-studied theories of Hermitian–Yang–Mills
connections (obtained for ˛1=˛0 > 0) and constant scalar curvature Kähler metrics
(which correspond to ˛1=˛0 D 0) into a unique theory. We thus expect the Kähler
moduli spaces obtained in our symplectic reduction process to have a rich geometry
and topology. In Section 2.3 we prove that (0.2) arise also as absolute minima of a
purely Riemannian functional for G –invariant Riemannian metrics on the total space
of E , providing a link to the classical Kaluza–Klein theory.

In Section 3, which is in some sense the heart of the paper, we undertake the study of
obstructions for the existence of solutions to (0.2), generalizing the Futaki invariant,
the Mabuchi K–energy and geodesic stability that appear in the cscK theory (Futaki
[22], Mabuchi [41], and Chen [11]). We do this geometrically, by considering the
following framework. We first fix a cohomology class � 2H 2.X;R/ and a smooth
principal Gc–bundle Ec!X . Let � be the Lie group given by those Gc–equivariant
diffeomorphisms of Ec that cover an element in the connected component of the identity
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of the diffeomorphism group of X . In Section 3.1, we associate an infinite-dimensional
canonical �–equivariant double fibration

(0.8)

C
�B

��

�Z

��
B Z

to the data .X; �;Ec/. Here B is the space of pairs .!;H /, where ! 2 � is a
symplectic form on X and H is a reduction of Ec to the maximal compact subgroup
G � Gc , and Z is a space parametrising holomorphic structures I on Ec inducing
a complex structure J on X . The space of compatible pairs C � B �Z is defined
as those elements of the product which induce a Kähler structure on X . Using the
results of Section 2, in Section 3.1 we prove that the fibres of �B are (formally) Kähler
manifolds endowed with Hamiltonian group actions.

As a preliminary step for the study of obstructions in Section 3.3, we prove in Section 3.2
that the fibres of �Z are infinite-dimensional symmetric spaces (that is, each fibre has
a canonical torsion-free affine connection r with covariantly constant curvature), with
holonomy group contained in the extended gauge group. Note that the fibre BI of �Z
over I 2 Z is

(0.9) BI DKJ �R;

where KJ is the space of Kähler forms on .X;J / in the class � and R is the space
of G–reductions of Ec . When specialized to the case of trivial Gc , we recover the
symmetric space structure constructed by Mabuchi [42] and rediscovered by Semmes
[51] and Donaldson [18]. Our construction follows closely Donaldson’s in [18, Sec-
tion 2]. A special feature of the symmetric space structure on BI is that in general it
does not carry any canonical compatible Riemannian structure (see Remark 4.4). A
technical assumption in our construction is that the G–invariant metric in g used to
define (0.1) extends to a Gc–invariant symmetric bilinear pairing

gc
˝ gc

�!C;

where gc is the complexification of g.

In Section 3.3 and 3.4 we construct an ˛–Futaki character

FI W Lie Aut.Ec ; I/ �!C;

which is a complex character of the Lie algebra of the automorphism group of the
holomorphic principal bundle .Ec ; I/ and which vanishes when (0.2) is satisfied, and
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an ˛–K–energy
MI W BI �!R;

which is convex along geodesics on BI and bounded from below when (0.2) is satisfied,
provided that the symmetric space BI is geodesically convex. Furthermore, we motivate
a definition of geodesic stability of the orbit � �I and conjecture a link with (0.2) when
�I is finite. We give explicit formulae for the character FI , the functional MI and
the geodesic equation on BI . When specialized to the case in which Gc is trivial,
we recover the Futaki character [22], the Mabuchi K–energy [41] and the notion of
geodesic stability [11; 18] used in the study of the cscK equation for Kähler metrics.
The contents of Section 3.4 will be used in Example 5.9 to provide an explicit situation
in which there cannot exist solutions to the coupled equations.

We would like to point out that the framework developed in Section 3 is rather general
and may be applied to other situations, in particular, to equations with a further coupling
with Higgs fields.

In Section 4, we establish sufficient conditions for the existence of solutions to the
coupled equations near a given solution, when the coupling constants and the Kähler
cohomology class are deformed while the complex structure of the base manifold
remains fixed. Our approach is based on a generalization of techniques developed by
LeBrun and Simanca [38; 39] for the corresponding problem in the cscK theory. We fix
a complex structure on X and a structure I of a holomorphic principal Gc–bundle on
Ec , and consider the space of solutions .!;H / of (0.2) with ! in a fixed cohomology
class � and fixed ˛0; ˛1 . Then we study the behaviour of this space with respect to
deformations of the coupling constants and the Kähler class in a parameter space:

(0.10) .˛0; ˛1; �/ 2R2
�H 1;1.X;R/:

Before doing this, in Section 4.1 we introduce the notion of extremal pairs .!;H /.
They are analogues in our theory of Calabi’s extremal metrics in Kähler geometry. In
particular, an extremal pair .!;H /, with ! 2�, is a solution of (0.2) if and only if the
˛–Futaki character associated to I and � vanishes (Proposition 4.2). In Section 4.3
we study the linearization of (0.2) and in Section 4.4 we prove that when ˛1=˛0 > 0,
any solution of the coupled equations (0.2) can be deformed into an extremal pair, for
small deformations in the parameter space (0.10) (Theorem 4.10). In Section 4.5 we
obtain a criterion for the existence of solutions of (0.2) in the weak coupling limit
˛1! 0, ie, for 0< j˛1=˛0j � 1 (Theorem 4.18).

In Section 5 we discuss some examples of solutions of (0.2) and explain how the
existence of solutions to the limit case ˛0D0 can be applied, using results of Y J Hong in
[30], to obtain cscK metrics on ruled manifolds. As for the examples, in Section 5.1 we
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deal with the case of vector bundles over Riemann surfaces and projectively flat bundles
over Kähler manifolds satisfying a topological constraint. In both situations, the coupled
system (0.2) reduces to the limit case ˛1 D 0 (cscK equation and HYM equation).
When dimC X > 1, we use Theorem 4.10 to deform the Kähler class and provide
non-trivial examples of solutions. In Section 5.2 we consider homogeneous Hermitian
holomorphic vector bundles over homogeneous Kähler manifolds. In Section 5.3 we
discuss some (well known) examples of stable bundles over Kähler–Einstein manifolds
where Theorem 4.18 applies. Section 5.3 provides examples of solutions in which
the Kähler metric is not cscK and also examples where the invariant FI obstructs the
existence of solutions for small ratio of the coupling constants.

Coupled equations for metrics and connections have of course been studied for a long
time in the context of unified field theories in physics and more recently in string theory
(see eg Li and Yau [40]). They have also been considered in the context of Riemannian
geometry, like the Einstein–Maxwell equations on 4–manifolds studied in LeBrun [37].
Our motivation, however, for this work has been to find a Kähler analogue of these
situations. Another important motivation for us comes from the relation with algebraic
geometry, in particular with the moduli problem for pairs consisting of a polarised
manifold and a holomorphic bundle over it. Despite its intrinsic mathematical interest
and its relevance in theoretical physics, the latter problem has been little explored,
probably due to the hard technical difficulties that arise in the algebro-geometric
approach as soon as the complex dimension of the base is greater than 1 (see Gieseker
and Morrison [27], Caporaso [9], and Pandharipande [46] for the case of curves, and
Huang [31], and Schumacher and Toma [50] for higher dimensions). Throughout this
paper we hope to show that the study of our coupled equations provides a reasonable
differential-geometric approach to the moduli problem for bundles and varieties, giving
compelling evidence of the existence of a Hitchin–Kobayashi correspondence for the
coupled equations as has been conjectured in García-Fernández [25].

Since this paper was finished, there have been several developments in the theory of
the coupled Kähler–Yang–Mills equations. Keller and Tønnesen-Friedman [32] have
found solutions on line bundles over complex threefolds (with positive ratio ˛ > 0) that
do not admit any cscK metric in the class of the polarisation. The second author, jointly
with C Tipler, has recently found new examples of solutions [26], by deformation of the
holomorphic structure on a homogeneous bundle over P1 �P1 . More remarkably, an
interesting relation between the coupled equations and physical equations, describing
gravitating vortices over a Riemann surface, has been recently found by the authors
[2]. These vortices represent the coupling of gravity and a condensed matter system
and are known in the physics literature as cosmic strings (or topological defects) in the
Abelian Higgs model. Based on classical results by Y Yang [60], this relation provides
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a plethora of solutions of the coupled equations in P1�P1 and a explicit (conjectural)
description of the moduli space (0.7) and the stability condition for this particular case.
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1 Hamiltonian action of the extended gauge group

In this section we define the extended gauge group zG of a bundle over a compact
symplectic manifold, an extension of the infinite-dimensional Lie groups involved in
the moment map problems for the HYM and the cscK equation. We show that the
action of zG on the space of connections of the bundle is Hamiltonian and compute
an equivariant moment map. Symplectic reductions by Lie group extensions have
been studied in the literature in various degrees of generality (see Marsden, Misiołek,
Ortega, Perlmutter and Ratiu [43] and references therein). Previous work includes
split group extensions and more general ones, although it seems that the moment map
calculations of Section 1.3, based on Proposition 1.3, have not been previously made
(cf [43, Section 3.2]).
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1.1 The Hermitian–Yang–Mills equation

First we set out some notation in order to review the moment map interpretations of
the HYM equation. Let X be a compact symplectic manifold of dimension 2n, with
symplectic form ! , G a real compact Lie group with Lie algebra g, and E a smooth
principal G–bundle over X , with the G–action on the right. In the sequel !Œk� will
denote !k=k!. The spaces of smooth k –forms on X and smooth k –forms with values
in any given vector bundle F on X are denoted by �k and �k.F /, respectively. Fix
a positive definite inner product on g, invariant under the adjoint action, denoted

. � ; � /W g˝ g �!R:

This product induces a metric on the adjoint bundle ad E DE �G g, which extends to
a bilinear map on .ad E/–valued differential forms (we use the same notation as in [4,
Section 3])

(1.11) �p.ad E/��q.ad E/ �!�pCq
W .ap; aq/ 7�! ap ^ aq:

We consider the operator

(1.12)
ƒDƒ! W �

k
�!�k�2;

 7�! !]y ;

where ] is the operator acting on k –forms induced by the symplectic duality ]W T �X!
TX and y denotes the contraction operator. Its linear extension to �k.ad E/ is also
denoted ƒW �k.ad E/!�k�2.ad E/ (we use the same notation as, eg, in [15]).

Let A be the set of connections on E . This is an affine space modelled on �1.ad E/,
with a left action of the gauge group G of E , ie, the group of G–equivariant dif-
feomorphisms of E covering the identity map on X . The 2–form on A defined by

(1.13) !A.a; b/D

Z
X

a^ b ^!Œn�1�

for a; b 2 TAAD�1.ad E/, A 2A, is a G–invariant symplectic form. As observed
by Atiyah and Bott [4] when X is a Riemann surface and by Donaldson [15; 16] in
higher dimensions, the G–action on A is Hamiltonian, with equivariant moment map
�G W A! .LieG/� given by

(1.14) h�G.A/; �i D

Z
X

� ^ .ƒFA� z/!Œn�;
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for A 2A, � 2 LieG D�0.ad E/, where FA 2�
2.ad E/ is the curvature of A 2A

and z is an element of the space

(1.15) zD gG

of elements of g that are invariant under the adjoint G–action, that we identify with
sections of ad E . Recall that the moment map satisfies

dh�G ; �i D Y�y!A

for all � 2 LieG , where Y� is the vector field on A generated by the infinitesimal
action of � , and equivariance means that, for all g 2 G and A 2A,

�G.g �A/D Ad.g�1/��G.A/:

Suppose now that X is a Kähler manifold, with Kähler form ! and complex structure
J . Consider the complexification Gc of G and the associated principal Gc–bundle
Ec DE �G Gc , where G acts on Gc by left multiplication. There is a distinguished
G–invariant subspace

(1.16) A1;1
J
�A

consisting of connections A with FA2�
1;1
J
.ad E/, or equivalently satisfying F

0;2
A
D0,

where �p;q
J
.ad E/ denotes the space of .ad E/–valued smooth .p; q/–forms with

respect to J and F
0;2
A

is the projection of FA into �
0;2
J
.ad E/. This space is in

bijection with the space of holomorphic structures on the principal Gc–bundle Ec over
the complex manifold .X;J / (see Singer [52]).

Definition 1.1 A connection A 2A1;1
J

is called Hermitian–Yang–Mills if it satisfies
the Hermitian–Yang–Mills equation

(1.17) ƒFA D z:

Remark 1.2 The element z 2 z in the right-hand side of (1.17) is determined by the
cohomology class � WD Œ!� 2 H 2.X / and the topology of the principal bundle E .
This follows after applying .zj ; � / to (1.17), for an orthonormal basis fzj g of z� g,
and then integrating over X , we obtain

(1.18) z D
X

j

hzj .E/[�
Œn�1�; ŒX �i

Vol�
zj :

Here, �Œk� WD�k=k!, Vol� WD
R
X !Œn�Dh�Œn�; ŒX �i and zj .E/ WD Œzj^FA�2H 2.X /

is the Chern–Weil class associated to the G –invariant linear form .zj ; � / on g, which
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only depends on the topology of the bundle E (see Kobayashi and Nomizu [36, Ch XII,
Section 1]).

The moduli space of Hermitian–Yang–Mills connections is defined as the set of classes
of gauge equivalent solutions to (1.17). This coincides with the quotient

(1.19) ��1
G .0/=G;

where �G is now the restriction of the moment map to A1;1
J

. Away from its singularities,
A1;1

J
inherits a complex structure compatible with !A and hence a Kähler structure.

Thus the smooth locus of A1;1
J

is a Kähler manifold endowed with a Hamiltonian
G–action and hence, away from singularities, the moduli space of Hermitian–Yang–
Mills connections can be constructed as a Kähler reduction, which, if non-empty, is a
finite-dimensional Kähler manifold.

1.2 Hamiltonian actions of extended Lie groups

Consider a general extension of Lie groups

(1.20) 1 �! G �
�! zG

p
�!H �! 1:

We will describe now, under certain assumptions, the Hamiltonian action of zG on a
symplectic manifold, in terms of G and H . In the next section we will apply this
general set up to the case in which the symplectic manifold is the space of connections
of a bundle and zG is the extended gauge group mentioned in the introduction; this may
explain the notation.

The extension (1.20) determines an extension of Lie algebras

(1.21) 0 �! LieG �
�! Lie zG

p
�! LieH �! 0;

where the use of the same symbols � and p should lead to no confusion. Note that the
short exact sequence (1.21) does not generally split as a sequence of Lie algebras, but
it always does as a short exact sequence of vector spaces. Let W �Hom.Lie zG;LieG/
be the affine space of vector space splittings. Since G � zG is a normal subgroup, there
is a well-defined zG–action on W , given by

g � � WD Ad.g/ ı � ıAd.g�1/ for g 2 zG; � 2W:

Let A be a manifold with an action of the “extended” Lie group zG . Suppose that
there exists a zG–equivariant smooth map � W A!W . Let !A be a symplectic form
on A preserved by the zG–action. Using � , we will characterise the existence of a
zG–equivariant moment map for this action in terms of G and H . The case considered
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in this paper (see Section 1.3) is an example where such a � exists. Observe that if
A is a point, then � determines an isomorphism Lie zG Š LieG Ì LieH , which shows
that in this case the existence of � is a very strong condition.

Suppose that the zG–action is Hamiltonian, with zG–equivariant moment map � zG W A!
.Lie zG/� . We can use � to decompose this map into two pieces corresponding to LieG
and LieH . Consider �? uniquely defined by Id�� ı � D �? ıp , where � and p are
given in (1.20). Then the map

W �! Hom.LieH;Lie zG/;

� 7�! �?;

is zG–equivariant, where the zG–action on Hom.LieH;Lie zG/ is given by

g � �? D Ad.g/ ı �? ıAd.p.g�1//

for g 2 zG . Moreover, the map

�?W A �! Hom.LieH;Lie zG/

is zG–equivariant and we can decompose the moment map as

(1.22) h� zG ; �i D h� zG ; ���iC h� zG ; �
?p.�/i;

for all � 2 Lie zG , where the summands in the right hand side define a pair of zG–
equivariant maps �G W A! .LieG/� , �� W A! .LieH/� , given by

h�G ; �i WD h� zG ; ��i for all � 2 LieG;

h�� ; �i WD h� zG ; �
?�i for all � 2 LieH:

Note that since G is a normal subgroup of zG , we can require the map �G to be
zG–equivariant. It is now straightforward from the moment map condition for � zG to
check that �G is a moment map for the G–action on A, ie, dh�G ; �i D Y�y!A for all
� 2 LieG . In order to see that �� satisfies a similar infinitesimal condition, giving our
characterization of Hamiltonian zG–action, we first introduce some notation. Given a
smooth map �W A! Lie zG , Y� denotes the vector field on A given by

(1.23) Y�jA WD
d

dt jtD0
exp.t�A/ �A;

for all A 2A. In particular, � W A!W induces a map

Y�? W LieH �!�0.TA/;
� 7�! Y�?�:
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Note also that, by definition, d� is a zG–invariant Hom.LieH;LieG/–valued 1–form
on A.

Proposition 1.3 The zG–action on A is Hamiltonian if and only if the action of G � zG
on A is Hamiltonian, with a zG–equivariant moment map �G W A! .LieG/� , and there
exists a smooth zG–equivariant map �� W A! .LieH/� satisfying

(1.24) Y�?�y!A D h�G ; hd�; �iiC dh�� ; �i;

for all � 2 LieH . In this case, a zG–equivariant moment map � zG W A! .Lie zG/� is
given by

(1.25) h� zG ; �i D h�G ; ��iC h�� ;p.�/i for all � 2 Lie zG:

Proof To prove the “only if” part it remains to check (1.24). This follows by definition,
differentiating in (1.22) and using that

dh�G ; ��i D hd�G ; ��iC h�G ; hd�; �ii;

Y�y! D Y��y!CY�?�y! with � WD p.�/;

where the first equation is obtained applying the chain rule, and the second one holds
because � D ��C �?� and Y� is linear in � . The “if” part is straightforward from the
statement and is left to the reader.

Note that condition (1.24) for �� generalizes the usual infinitesimal condition Y�y!AD

dh�H; �i (� 2H) for moment maps �H for the induced H–action on A when the
Lie group extension (1.20) splits.

1.3 The extended gauge group action on the space of connections

We apply now the general theory developed in Section 1.2 to compute the moment
map for the action of the extended gauge group of a bundle over a compact symplectic
manifold, on the space of connections.

Let X be a compact symplectic manifold of dimension 2n, with symplectic form ! . Let
G be a Lie group and E be a smooth principal G –bundle on X , with projection map
� W E!X . Let H be the group of Hamiltonian symplectomorphisms of .X; !/ and
Aut E be the group of automorphisms of the bundle E . Recall that an automorphism
of E is a G –equivariant diffeomorphism gW E!E . Any such automorphism covers
a unique diffeomorphism LgW X!X , ie, a unique Lg such that � ıgD Lgı� . We define
the Hamiltonian extended gauge group (to which we will simply refer as extended
gauge group) of E ,

zG � Aut E;
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as the group of automorphisms that cover elements of H . Then the gauge group of
E , already defined in Section 1.1, is the normal subgroup G � zG of automorphisms
covering the identity.

The map zG
p
�!H assigning to each automorphism g the Hamiltonian symplectomor-

phism Lg that it covers is surjective. To show this, let h 2H . By definition there exists
a Hamiltonian isotopy Œ0; 1��X !X W .t;x/ 7! ht .x/ from h0D Id to h1D h, which
is the flow of a smooth family of vector fields �t 2 LieH , ie, with dht=dt D �t ı ht

(see eg McDuff and Salamon [45, Section 3.2]). Choose a connection A on E . Let
�t 2 Lie zG be the horizontal lift to E of �t given by A. The vector fields �t are
G –invariant so their time-dependent flow gt exists for all t 2 Œ0; 1� and the gt W E!E

are G–equivariant. Since �t is a lift of �t to E , its flow gt covers ht (ie, ht D Lgt ),
so in particular gt 2

zG for all t and g1 2
zG covers hD h1 . Thus p is surjective. We

thus have an exact sequence of Lie groups

(1.26) 1 �! G �
�! zG

p
�!H �! 1;

where � is the inclusion map.

Remark 1.4 Note that the sequence (1.26) is exact even when the structure group
G and the base manifold X are non-compact. The crucial fact is that H lies in the
identity component of the diffeomorphism group Diff X of X (see Abbati, Cirelli,
Manià and Michor [1] for further details).

There is an action of Aut E , and hence of the extended gauge group, on the space A of
connections on E . To define this action, we view the elements of A as G –equivariant
splittings AW TE! VE of the short exact sequence

(1.27) 0 �! VE �! TE �! ��TX �! 0;

where VE D ker d� is the vertical bundle. Using the action of g 2 Aut E on TE , its
action on A is given by g �A WD g ıA ıg�1 . Any such splitting A induces a vector
space splitting of the Atiyah short exact sequence

(1.28) 0 �! LieG �
�! Lie.Aut E/

p
�! Lie.Diff X / �! 0

(cf [4, equation (3.4)]), where Lie.Diff X / is the Lie algebra of vector fields on X

and Lie.Aut E/ is the Lie algebra of G –invariant vector fields on E . This splitting is
given by maps

(1.29) �AW Lie.Aut E/ �! LieG; �?A W Lie.Diff X / �! Lie.Aut E/

such that �ı �AC �?A ıpD Id, where �A is the vertical projection given by A and �?
A

the horizontal lift of vector fields on X to vector fields on E given by A.
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Lemma 1.5 Let A 2 A, � 2 Lie.Aut E/ and L� WD p.�/ 2 Lie.Diff X /. Then the
infinitesimal action Y�jA 2 TAAD�1.ad E/ of � on A is given by

(1.30) Y�jA D�dA.�A�/� L�yFA;

where dAW �
k.ad E/!�kC1.ad E/ is the covariant derivative associated to A.

Proof By the Leibniz rule, for all v 2�0.TE/,

d

dt jtD0

�
et�
ıA ı e�t�.v/

�
D �AŒ�; v�� Œ�; �Av�D �AŒ�; v� �Av�;

where in the second equality we have used the fact that � covers a vector field L� on
X , so that the vector field Œ�; �Av� is vertical. It is easy to see that this expression is
tensorial in v , so at each point of E it only depends on its projection ��v . Hence the
vector Y�jA 2 TAA, regarded as an element of �1.ad E/, is given by

Y�jA.y/D �AŒ�; �
?
A y�D Œ�A�; �

?
A y�C �AŒ�

?
A
L�; �?A y�

D .�dA.�A�/� L�yFA/.y/;

for any y 2�0.TX /, where we have used the formulae

(1.31) yydA� D Œ�
?
A y; ��; FA.y;y

0/D��AŒ�
?
A y; �?A y0�

(see the equation before (4.2) and the equation after (3.4) in [4] and note that we are
using a different sign convention for the curvature).

The splitting (1.29) restricts to a splitting of the exact sequence

(1.32) 0 �! LieG �
�! Lie zG

p
�! LieH �! 0

induced by (1.26). Following the notation of Section 1.2, it is easy to see that the map

(1.33)
� W A �!W;

A 7�! �A;

is a zG–equivariant smooth map. It is also clear that the zG–action on A is symplectic,
for the symplectic form (1.13). The methods of Section 1.2 apply here to provide a
moment map. To see this, we use the isomorphism of Lie algebras

(1.34) LieHŠ C10 .X /;

where LieH is the Lie algebra of Hamiltonian vector fields on X and C1
0
.X / is

the Lie algebra of smooth real functions on X with zero integral over X with re-
spect to !Œn� , with the Poisson bracket. This isomorphism is induced by the map

Geometry & Topology, Volume 17 (2013)



Coupled equations for Kähler metrics and Yang–Mills connections 2745

C1.X /! LieHW � 7! �� , which to each function � assigns its Hamiltonian vector
field �� , defined by

(1.35) d� D ��y!:

Proposition 1.6 The zG–action on A is Hamiltonian, with equivariant moment map
� zG W A! .Lie zG/� given by

(1.36) h� zG ; �i D h�G ; ��iC h�;p.�/i for all � 2 Lie zG;

where �G W A! .LieG/� and � W A! .LieH/� are given by

(1.37)
h�G ; ��i.A/D

Z
X

�A� ^ .ƒFA� z/!Œn�;

h�; ��i.A/D�
1

4

Z
X

�.ƒ2.FA ^FA/� 4ƒFA ^ z/!Œn�;

for all A 2A, � 2 C1
0
.X /.

Proof The result follows, by Proposition 1.3, from the facts that �G and � are zG–
equivariant, which is immediate from (1.37) by the change of variable theorem, and
the map � defined by (1.37) satisfies (1.24). To show this, let � 2 Lie.Aut E/, A 2A
and note that (1.30) also applies to maps �W A! Lie.Aut E/ (with Y�jA defined by
(1.23)). In particular,

Y�?
A
�.A/D��yFA for � 2 LieH:

The Hom.LieH;LieG/–valued 1–form d� on A is given by

d�.a/W LieH �! LieG;
� 7�! hd�.a/; �i D a.�/;

for A 2A and a 2 TAAD�1.ad E/. Observe that the quantity

�0.A/D

Z
X

.�A� ^ z��ƒFA ^ z/!Œn�

is locally constant on A, so it is enough to assume z D 0. To see this, we use the path
At DAC ta to calculate

d

dt jtD0
�0.AC ta/D

Z
X

a.��/^ z!Œn���dAa^ z!Œn�1�

D

Z
X

a^ zd� ^!Œn�1�
��dAa^ z!Œn�1�

D 0:
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Here we have used the identity dFAt
=dt D dAa for t D 0 and integration by parts,

combined with the equality

a^ z d� ^!Œn�1�
D a.��/^ z!Œn�:

Assuming z D 0, for the last term of the right hand side of (1.24), we have

ƒ2.FA ^FA/!
Œn�
D 2FA ^FA ^!

Œn�2�:

Using now the Bianchi identity dAFA D 0, a similar calculation as before shows that

(1.38) dh�; �i.a/D�
1

2

d

dt jtD0

Z
X

� .FAt
^FAt

/^!Œn�2�

D�

Z
X

� dAa^FA ^!
Œn�2�

D

Z
X

.�y!/^ a^FA ^!
Œn�2�:

To compute the integral in the last equality, note that .a^FA/^!
n�1D0, so contracting

with � we obtain

a^FA ^ .�y!/^!Œn�2�
D a.�/^ƒFA!

Œn�
� a^ .�yFA/^!

Œn�1�;

using the identity FA ^ !
Œn�1� D ƒFA!

Œn� . Combined with (1.38), we thus obtain
(1.24):

dh�; �i.a/D

Z
X

a^ .�yFA/^!
n�1
�

Z
X

a.�/^ .ƒFA� z/!Œn�

D
�
Y�?

A
�y!A

�
.a/� h�G ; hd�.a/; �ii:

2 The coupled equations

In this section we give a moment map interpretation of the coupled equations (0.2)
for the action of the extended gauge group, introduced in Section 1. We also define
a purely Riemannian functional, the Calabi–Yang–Mills functional, whose absolute
minima over the phase space are precisely the solutions of the coupled equations, that
we interpret in terms of the Kaluza–Klein theory for G –invariant metrics on the total
space of the bundle. With this purpose we first recall the moment map interpretation of
the cscK equation given by Fujiki and Donaldson.
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2.1 The Hermitian scalar curvature

The moment map interpretation of the scalar curvature was first given by Fujiki [21] for
the Riemannian scalar curvature of Kähler manifolds and generalized independently by
Donaldson [17] for the Hermitian scalar curvature of almost Kähler manifolds. Here
we follow closely Donaldson’s approach.

First we recall the notion of Hermitian scalar curvature of an almost Kähler manifold.
Fix a compact symplectic manifold X of dimension 2n, with symplectic form ! . An
almost complex structure J on X is called compatible with ! if the bilinear form
gJ . � ; � / WD!. � ;J � / is a Riemannian metric on X . Any almost complex structure J on
X that is compatible with ! defines a Hermitian metric on T �X and there is a unique
unitary connection on T �X whose (0,1) component is the operator x@J W �

1;0
J
!�

1;1
J

induced by J . The real 2–form �J is defined as � i times the curvature of the induced
connection on the canonical line bundle KX Dƒ

n
CT �X , where i is the imaginary unit

p
�1. The Hermitian scalar curvature SJ is the real function on X defined by

(2.39) SJ!
Œn�
D 2�J ^!

Œn�1�:

The normalization is chosen so that SJ coincides with the Riemannian scalar curvature
when J is integrable. The space J of almost complex structures J on X that are
compatible with ! is an infinite-dimensional Kähler manifold, with complex structure
JW TJ J ! TJ J and Kähler form !J given by

(2.40) Jˆ WD Jˆ and !J .‰;ˆ/ WD
1

2

Z
X

tr.J‰ˆ/!Œn�;

for ˆ, ‰2TJ J , respectively. Here we identify TJ J with the space of endomorphisms
ˆW TX ! TX such that ˆ is symmetric with respect to the induced metric !. � ;J � /
and satisfies ˆJ D�Jˆ.

The group H of Hamiltonian symplectomorphisms hW X ! X acts on J by push-
forward, ie, h �J WD h� ıJ ıh

�1
� , preserving the Kähler form. As proved by Donaldson

[17, Proposition 9], the H–action on J is Hamiltonian with equivariant moment map
�HW J ! .LieH/� given by

(2.41) h�H.J /; ��i D �

Z
X

�SJ!
Œn�;

for � 2 C1
0
.X /, identified with an element �� in LieH by (1.34) and (1.35). The

H–invariant subspace J i � J of integrable almost complex structures is a complex
submanifold (away from its singularities), and therefore inherits a Kähler structure.
Over J i , the Hermitian scalar curvature SJ is the Riemannian scalar curvature of the
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Kähler metric determined by J and ! . Hence the quotient

(2.42) ��1
H .0/=H;

where �H is now the restriction of the moment map to J i , is the moduli space of
Kähler metrics with fixed Kähler form ! and constant scalar curvature. Away from
singularities, this moduli space can thus be constructed as a Kähler reduction (see [21]
and references therein for details).

2.2 The coupled equations as a moment map condition

Fix a compact symplectic manifold X of dimension 2n with symplectic form ! , a
compact Lie group G and a smooth principal G –bundle E on X . Let J be the space
of almost complex structures compatible with ! and A the space of connections on
E . Using the symplectic forms on A and J induced by ! (see (1.13) and (2.40)), we
define a symplectic form on the product J �A, for each pair of non-zero real constants
˛ D .˛0; ˛1/, as the weighted sum

(2.43) !˛ D ˛0!J C 4˛1!A

(we omit pullbacks to J �A). The extended gauge group zG has a canonical action on
J �A and this action is symplectic for any !˛ . Following the notation of Section 1.3,
this action is given by

g � .J;A/D .p.g/ �J;g �A/;

for g 2 zG and .J;A/ 2 J �A, with p as in (1.26). Using the moment maps �H and
� zG given by (2.41) and Proposition 1.6, we obtain the following.

Proposition 2.1 The zG–action on J �A is Hamiltonian with respect to !˛ , with
equivariant moment map �˛W J �A! .Lie zG/� given by

(2.44) h�˛.J;A/; �i D 4˛1

Z
X

�A� ^ .ƒFA� z/!Œn�

�

Z
X

�.˛0SJ C˛1ƒ
2.FA ^FA/� 4˛1ƒFA ^ z/!Œn�;

for all .J;A/ 2 J �A, � 2 Lie zG , and p.�/D �� with � 2 C1
0
.X /.

The zG–action also preserves the almost complex structure I on J �A given by

(2.45) I. PJ ; a/D .J PJ ;�a.J � //;

for all . PJ ; a/ 2 TJ J � TAA. Using the complex structure J on J given by (2.40),
the canonical projection J �A! J becomes now a holomorphic submersion. It is
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easy to see that, for ˛0; ˛1 positive, the complex structure I is compatible with the
family of symplectic structures (2.43). The formal integrability of the almost complex
structure I is not obvious a priori, so we now provide a proof of this fact. By “formal
integrability” here, we mean, as in [18], that the associated Nijenhuis tensor vanishes.

Proposition 2.2 The almost complex structure I is formally integrable.

Proof Since the complex structure J on the base J and the one on each fibre are
integrable, the integrability condition for I reduces to the vanishing condition for the
value of the Nijenhuis tensor NI on each pair of vectors PJ 2 TJ J , a 2 TAA, for
.J;A/ 2 J �A. Now, a and PJ extend to vector fields on A and J , respectively, and
hence to J �A (a extends to a constant vector field on the affine space A and PJ
extends to a vector field on J given by PJjJ 0 D .1=2/.J PJJ 0�J 0J PJ /). Furthermore,

NI. PJ ; a/D ŒI PJ ; Ia�� IŒI PJ ; a�� IŒ PJ ; Ia�� Œ PJ ; a�D ŒI PJ ; Ia�� IŒ PJ ; Ia�;

where the brackets denote the Lie brackets between vector fields on J �A and we
have used the fact that ŒI PJ ; a�D Œ PJ ; a�D 0 because the flow of a covers the identity
on J . To compute the remaining terms, we denote by Jt . PJ / the flow of any vector
field PJ on J , viewed as a vector field on J �A. Then Jt . PJ / induces the identity on
A, and hence

NI. PJ ; a/D
d

dt jtD0
Ia
jJt .I PJ /

� IjJ
d

dt jtD0
Ia
jJt . PJ /

D�
d

dt jtD0
a.Jt .I PJ / � /C IjJ

d

dt jtD0
a.Jt . PJ / � /

D�a.J PJ � /� a. PJJ � /D�a.J PJ C PJJ � /D 0;

where a is now viewed as an element of �1.ad E/.

Note that the vanishing of NI. PJ ; a/ does not require any compatibility condition
between J and ! .

Remark 2.3 There is another zG–invariant almost complex structure on J �A, which
is given by I0. PJ ; a/D .J PJ ; a.J � //. This is compatible with !˛ for ˛0 > 0> ˛1 , and
the projection J �A! J is pseudoholomorphic for this I0 , but one can modify the
proof of Proposition 2.2 to show that I0 is not formally integrable.

Suppose now that X has Kähler structures with Kähler form ! . In the notation
of Section 2.1, this means that the subspace J i � J of integrable almost complex
structures compatible with ! is not empty. Define

(2.46) P � J �A
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as the space of pairs .J;A/ with J 2 J i and A 2A1;1
J

, where A1;1
J
�A is the space

of connections defined in (1.16). Then P �J �A is a zG–invariant complex and hence
Kähler subspace by construction (see also Lemma 3.1).

We say that a pair .J;A/ 2 P satisfies the coupled Kähler–Yang–Mills equations if

(2.47)
ƒFA D z;

˛0SJ C˛1ƒ
2.FA ^FA/D c;

�
where SJ is the scalar curvature of the metric gJ D !. � ;J � / on X and c 2R. These
equations are the central subject of this paper. The set of solutions to the coupled
equations is invariant under the action of zG and we define the moduli space of solutions
as the set of all solutions modulo the action of zG . We have the following.

Proposition 2.4 The subset ��1
˛ .0/ � P coincides with the set of pairs .J;A/ 2 P

satisfying equations (2.47).

Proof Suppose that .J;A/ 2 ��1
˛ .0/. First, evaluating �˛.J;A/ on elements of the

form �?
A
� with � 2 LieH , we see that there exists a c0 2R such that

(2.48)
c0�˛0SJ

˛1

Dƒ2.FA ^FA/� 4ƒFA ^ z

D 2jƒFAj
2
� 2jFAj

2
C 8jF

0;2
A
j
2
� 4ƒFA ^ z;

where the last equality follows from a pointwise computation (cf Mundet i Riera
[49, proof of Lemma 7.9]). Here, the pointwise norms are defined using the metric
gJ D !. � ;J � / and the inner product . � ; � / on g and F

0;2
A

denotes the .0; 2/ part
of FA with respect to J . Second, as h�˛.J;A/; �i D 0 for all � 2 LieG , we have
ƒFA D z and hence it is straightforward to see from (2.48) that

˛0SJ C˛1ƒ
2.FA ^FA/D c0C 4˛1jzj

2
2R:

The converse follows also from (2.48).

Note that we have not used the fact that .J;A/2P . Observe also that c is a “topological
constant”, ie, it only depends on the cohomology class � WD Œ!�2H 2.X /, the topology
of the bundle E and the coupling constants ˛0; ˛1 (cf Remark 1.2). This follows by
integrating the second equation in (2.47) over X , obtaining

(2.49) c D ˛0
yS C 2˛1yc;

where yS is the average of the Hermitian scalar curvature,

(2.50) yS WD

R
X SJ!

Œn�R
X !Œn�

D 2�

˝
c1.X /[�

Œn�1�; ŒX �
˛

Vol�
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which only depends on the cohomology class � 2H 2.X /, and

(2.51) yc WD

R
X FA ^FA ^!

Œn�2�R
X !Œn�

D

˝
c.E/[�Œn�2�; ŒX �

˛
Vol�

;

where c.E/ WD ŒFA ^ FA� 2 H 4.X / is the Chern–Weil class associated to the G–
invariant symmetric bilinear form . � ; � / on g, and so yc only depends on � and the
topology of E (see [36, Ch XII, Section 1]).

From Proposition 2.4, we can identify the moduli space of solutions to the coupled
equations with the quotient

(2.52) ��1
˛ .0/= zG;

where �˛ denotes now the restriction of the moment map to P . Away from singularities,
this is a Kähler quotient for the action of zG on the smooth part of P �J �A equipped
with the Kähler form obtained by the restriction of !˛ .

Remark 2.5 The coupled equations (2.47) can also be written as:

(2.53)
ƒFA D z;

˛0Sg � 2˛1jFAj
2
g D c � 2˛1jzj

2:

�
Here Sg is the scalar curvature of the metric g D !. � ;J � /, jFAj

2
g is the pointwise

norm of FA defined using g and the inner product . � ; � / on g, and z 2 z, c 2R are
as in (2.47). The purely Riemannian nature of the second (scalar) equation in (2.53)
will be used in Section 2.3. The equivalence of (2.47) and (2.53) follows from (2.48)
using that A 2A1;1

J
(ie, F

0;2
A
D 0).

2.3 The Calabi–Yang–Mills functional

Kähler metrics of constant scalar curvature arise as the absolute minima of the Calabi
functional [8], which is defined as the L2 –norm of the scalar curvature for Kähler
metrics running over a fixed Kähler class on a compact complex manifold. Alterna-
tively, we can see the cscK metrics as the absolute minima of the L2 –norm of the
scalar curvature defined over the space J i of complex structures compatible with a
fixed symplectic form ! (see eg Futaki and Ono [24]). As a further step in Calabi’s
programme, in this section we define the Calabi–Yang–Mills (CYM) functional CYM˛ .
This is a purely Riemannian functional that intertwines the Yang–Mills functional
for connections with the L2 –norm of the scalar curvature of invariant metrics in the
total space of the principal bundle E . Interpreting the elements of J �A as invariant
Riemannian metrics g˛ on E , we prove that the absolute minima of CYM˛ over
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J i �A are precisely the solutions .J;A/ 2 P of (2.47). We will also see that the
coupled equations (2.47) can be formulated in terms of the Ricci tensor and the scalar
curvature of g˛ , when it is defined by an element of a suitable subspace P� � P .

We start with a principal G–bundle E over a compact manifold X and a fixed G–
invariant inner product . � ; � / on g. Consider the G –invariant metric gV on the vertical
bundle VE�TE induced by . � ; � / via the identification of VE with the trivial bundle
E � g. Using a connection A on E and a scaling constant ˛ > 0, each Riemannian
metric g on X lifts to a G –invariant Riemannian metric g˛ on E , given by

(2.54) g˛ D �
�gC˛gV .�A � ; �A � /;

where � W E!X is the canonical projection and �AW TE! VE is the vertical pro-
jection determined by A. Given positive constants ˛0; ˛1 2R, we denote respectively
by Sg˛ , vol˛ and Vol˛.E/ the scalar curvature and the volume form of the metric g˛
and the volume of E with respect to g˛ , where ˛ D 2˛1=˛0 . We also denote by volg
and Volg.X / the volume form of the metric g and the corresponding volume of X ,
respectively. We define the Calabi–Yang–Mills functional by the formula

(2.55) CYM˛.g;A/ WD
1

Vol˛.E/

Z
E

S2
g˛

vol˛C
˛1

Volg.X /

Z
X

jFAj
2
g volg

for pairs .g;A/, where g is a Riemannian metric on X , A is a connection on E and
jFAj

2
g is as in (2.53). Note that (2.55) is a weighted sum of the Calabi functional [8] for

metrics on E and the Yang–Mills functional for E (see eg Donaldson and Kronheimer
[20, Section 2.1.4]).

Fix now a symplectic form ! on X so that volgJ
D !Œn� for all J 2 J , where

gJ D !. � ;J � / and dim X D 2n. Although the functional (2.55) is well defined
for arbitrary Riemannian metrics on X and connections on E , the solutions of the
coupled equations (2.47) are the absolute minima of CYM˛ only when this functional
is restricted to metrics of the form g D gJ , where J is in the space J i of integrable
almost complex structures on X which are compatible with ! . In other words, we
consider the functional

(2.56)
J i
�A �!R;

.J;A/ 7�! CYM˛.gJ ;A/:

Proposition 2.6 If .J;A/ 2 P satisfies the coupled equations (2.47), then the pair
.J;A/ is an absolute minimum of the functional (2.56), provided that ˛0 and ˛1 are
positive and

(2.57) ˛1 > 2˛ yS C˛2.yc � jzj2/C 2s;
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where ˛D 2˛1=˛0 , s is the (constant) scalar curvature of the biinvariant metric induced
by . � ; � / on G , z is given by (1.18) and yS , yc are as in (2.49), with �D Œ!�.

Proof Note first that for any metric as in (2.54), � W .E;g˛/! .X;g/ is a Riemannian
submersion with totally geodesic fibres (see Besse [6, Theorem 9.59], where the G–
Riemannian manifold playing the role of the typical fibre is G itself with its biinvariant
metric). Then g˛ has scalar curvature Sg˛ D S˛ ı� , where

(2.58) S˛ D Sg �˛jFAj
2
gC s=˛ 2 C1.X /;

Sg being the scalar curvature of g (see [6, Proposition 9.70]). Here, the group is
identified with the fibre Ex over x 2X . Since the volume of Ex is independent of x ,
we have

1

Vol˛.E/

Z
E

S2
g˛

vol˛ D
1

Volg.X /

Z
X

S2
˛ volg :

In particular, for g D gJ , with J 2 J i , and c00 D ˛0
yS C 2˛1.yc � jzj

2/, we obtain

CYM˛.g;A/D
˛�2

0

Vol�

˛0Sg � 2˛1jFAj
2
g � c00

2

L2
C

˛1

Vol�
kFAk

2
L2

C
2.c00=˛0C s=˛/

Vol�

Z
X

.Sg �˛jFAj
2
g � c00=˛0/ volg

C .c00=˛0C s=˛/2

D
˛�2

0

Vol�

˛0Sg � 2˛1jFAj
2
g � c00

2

L2

C
˛1� 2˛ yS �˛2.yc � jzj2/� 2s

Vol�
kFAk

2
L2

C . yS C˛.yc � jzj2/C s=˛/. yS �˛.yc � jzj2C s=˛/;

where the L2 –norms are defined using g , !Œn� and the inner product on g. Note that
the last summand in the right-hand side of the last equation only depends on ˛ , s , the
cohomology class � WD Œ!� and the topology of the bundle E . The inequality (2.57)
implies that the factor multiplying the Yang–Mills functional is positive, and the result
follows from the alternative formulation (2.53) of the coupled equations combined with
(2.48), which gives

kFAk
2
L2 D kƒFAk

2
L2 C 4kF

0;2
A
k

2
L2 � yc Vol�

D kƒFA� zk2
L2 C 4kF

0;2
A
k

2
L2 C 2hz.E/[�Œn�1�; ŒX �i � .jzj2Cyc /Vol� :

Here, z.E/ WD Œz^FA�2H 2.X / is the Chern–Weil class associated to the G –invariant
linear form .z; � / on g, with z given by (1.18), so the last line in the previous equation
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only depends on � 2 H 2.X / and the topology of the bundle E (see [36, Ch. XII,
Section 1]).

Remark 2.7 The inequality (2.57) imposes no restrictions on the solutions .J;A/ of
(2.47), because any solution .J;A/ of (2.47) for some .˛0; ˛1/ is also a solution for
the constants .t˛0; t˛1/, for all t 2 R. The claim follows from the fact the RHS on
(2.57) is invariant by this scaling procedure.

Remark 2.8 Fixing a complex structure on X , we can view CYM˛ as a functional
on the pairs .!;A/, with ! as in the second part of Remark 2.5. Exactly as in
Proposition 2.6, in this case a solution of the coupled equations is always an absolute
minimum of this functional.

The coupled equations (2.47) can also be interpreted in purely Riemannian terms,
considering the G –invariant metrics g˛ on E defined by (2.54). To explain this, note
that given such a metric its Ricci tensor Rg˛ decomposes as

Rg˛ D .Rg˛ /hhC .Rg˛ /vvC .Rg˛ /hv;

where the indices “h” and “v” denote the horizontal and vertical directions in TE

defined by the connection A, respectively. Let P� � P be the open subset of pairs
.J;A/ with A 2A� ; the open subset of A consisting of irreducible connections. By
irreducible connection A2A, we mean, as in [20, Section 4.2.2], that its isotropy group
GA inside the gauge group of E is minimal; the centre of G . Then a pair .J;A/ 2 P�
satisfies (2.47) if and only if the associated metric g˛ satisfies the following equations.

(2.59)
.Rg˛ /hv D 0;

Sg˛ D const.

�
We thus have an interpretation of the Kähler quotient (2.52) (with �˛ restricted to the
open subset P� � P ) as a moduli space of G –invariant metrics on the total space of
E satisfying (2.59). An interesting fact here is that the condition ˛1=˛0 > 0 is needed
both to have a Kähler form !˛ on P given by (2.43) (see the explanation before (2.52))
and G –invariant Riemannian metrics g˛ on E , as given in (2.54).

To prove the equivalence of (2.47) and (2.59) for a pair .J;A/ 2 P� , note that J

defines a structure of Kähler manifold on .X; !/. The Hermitian–Yang–Mills equation
ƒFA D 0 for an irreducible A 2A1;1

J
is equivalent to the a priori weaker Yang–Mills

equation d�
A

FA D 0 (see [15, Proposition 3]). This follows because if A 2A1;1
J

is an
irreducible Yang–Mills connection, then, by the Kähler identities,

dAƒFA D 0 H) ƒFA 2 LieGA D z:
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Therefore the first equations in (2.53) and (2.59) are equivalent because the Yang–Mills
equation is equivalent to the equation .Rgt

/hv D 0 (see [6, Proposition 9.61]). Finally,
the second equations in (2.53) and (2.59) are equivalent by (2.58).

Note that the system (2.59) is halfway between the Einstein equation and the constant
scalar curvature equation, in the sense that

(2.60) g˛ is an Einstein metric D) g˛ satisfies (2.59) D) Sg˛ D const.,

for all .J;A/ 2 P� , as any metric g˛ satisfying the Einstein equation Rg˛ D �g˛
(with � 2R) has constant scalar curvature.

3 The ˛–Futaki character and the ˛–K–energy

In Section 3 we construct obstructions to the existence of solution of the coupled
equations, generalizing the Futaki character [22], the Mabuchi K–energy [41; 42]
and the notion of geodesic stability [11; 18] used in the cscK Theory. For this, in
Sections 3.1, 3.2, 3.3, we develop an abstract framework that we apply in Section 3.4
to the study of the coupled equations.

Throughout Section 3, we fix a compact real manifold X , a cohomology class � 2
H 2.X;R/, a reductive complex Lie group Gc with Lie algebra gc , a maximal compact
Lie subgroup G �Gc with Lie algebra g and a smooth principal Gc–bundle � W Ec!

X . We also fix z 2 z as in (1.18). We assume that the space of Kähler forms in � is
non-empty.

3.1 Invariant Hamiltonian Kähler fibrations

In Section 3.1, we will associate to the data .X; �;Ec/ a canonical infinite-dimensional
double fibration

B
�B
 � C

�Z
�! Z;

equivariant for the action of an infinite-dimensional Lie group � , and show that the
fibres of �B are (formally) Kähler manifolds with Hamiltonian group actions. The
fibres of �Z will be studied in Section 3.2.

Let Diff0 X be the identity component of the diffeomorphism group of X and Aut Ec

the group of automorphisms of Ec , that is, the Gc–equivariant diffeomorphisms
gW Ec!Ec . Any such g determines a unique diffeomorphism LgW X !X such that
� ıg D Lg ı� . Define the real Lie group

� WD fg 2 Aut Ec
j Lg 2 Diff0 X g:
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Note that the Lie bracket in the Lie algebra Lie� of � is

(3.61) Œy;y0�� D�Œy;y
0�

for y;y0 2 Lie� ��0.TEc/, where Œ � ; � � is the Lie bracket of vector fields on Ec

(cf [45, Remark 3.3]).

Let Z be the space of holomorphic structures on the principal Gc–bundle Ec , ie, the
integrable Gc–equivariant almost complex structures I on the total space of Ec that
preserve the vertical bundle VEc and whose restriction to VEc equals multiplication by
p
�1, via its identification with Ec �gc . By Gc–equivariance, any such I determines

a unique integrable almost complex structure LI on X such that LI ı d� D d� ı I .
The group � has a left action on Z by push-forward, preserving the canonical almost
complex structure I on Z given by

(3.62) I PI D I PI for all I 2 Z , PI 2 TIZ

(cf (2.40)), where PI is viewed as a Gc–equivariant endomorphism of TEc .

Recall that the space RD�0.Ec=G/ of smooth sections H of the bundle Ec=G!X

is in bijection with the set of reductions of Ec to principal G –bundles EH �Ec , via
the map H 7!EH WD p�1

G
.H.X //, where pG is the projection Ec!Ec=G . Let B

be the space of pairs .!;H /, where ! 2 � is a symplectic form and H 2 R. The
group � has a left action on B given by

g � .!;H /D . Lg�!;g �H /;

where .g �H /.x/ WD g.x/ �H. Lg�1.x// for x 2 X and Lg�! 2 � by the homotopy
invariance of the de Rham cohomology, as Lg 2 Diff0 X .

We define the space of compatible pairs as

C WD f..!;H /; I/ j .X; LI ; !/ is a Kähler manifoldg � B�Z:

Note that this space is invariant under the diagonal �–action on B�Z . The canonical
maps

(3.63)

C
�B

��

�Z

��
B Z

will be viewed as two fibrations with total space C , whose fibres are

Zb WD �
�1
B .b/ and BI WD �

�1
Z .I/ for all b 2 B; I 2 Z:
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Since C � B�Z is �–invariant, the fibres BI and Zb are invariant under the actions
of the isotropy groups �I � � and �b � � , respectively.

In more concrete terms, for any I 2Z , the isotropy group �I is the group of automor-
phisms g of the holomorphic principal Gc–bundle .Ec ; I/ such that Lg 2 Diff0 X is
an automorphism of the complex manifold .X; LI/. Similarly, for any b D .!;H / 2 B ,
the isotropy group �b is the group of automorphisms g of the principal G–bundle
EH such that Lg 2 Diff0 X is a symplectomorphism of .X; !/. Hence the extended
gauge group zGb of EH on .X; !/ (defined in Section 1.3) is a subgroup of �b , which
is normal because the group of Hamiltonian symplectomorphisms is a normal subgroup
of the symplectomorphism group (see eg [45, Proposition 10.2]). Note also that the
fibre BI is a contractible space, as it is

(3.64) BI DK LI �R;

where K LI is the space of Kähler forms in � on the complex manifold .X; LI/. The
fibre Zb has a gauge-theoretic description. Let J! be the space of almost complex
structures on X compatible with ! and AH the space of connections on EH . Given
b D .!;H / 2 B , define

(3.65) Pb � J! �AH

as in (2.46), ie, as the space of pairs .J;A/ such that J is integrable and FA 2

�
1;1
J
.ad EH /. This subspace is clearly �b –invariant and has an almost complex

structure I given by (2.45), which is formally integrable by Proposition 2.2. Note also
that for all H 2R, each connection A 2AH induces canonically a connection on Ec ,
given by Gc–equivariant maps

(3.66) �AW TEc
! VEc ; �?A W �

�TX ! TEc ;

where � W Ec!X is the canonical projection (cf (1.27)), via the canonical isomorphism

(3.67) Ec
ŠEH �G Gc

of principal Gc–bundles (with G acting on Gc by left multiplication).

Lemma 3.1 The map �BW C! B is a “�–invariant almost-complex fibration”, that is,
its fibres Zb � Z are preserved by I and their induced almost complex structures are
exchanged by the �–action. Furthermore, the map

(3.68)
IW Pb �! Z;

.J;A/ 7�! i �AC �?A ı�
�J ı d�;
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is a well-defined �b –equivariant holomorphic embedding whose image is Zb , for all
b D .!;H / 2 B .

Proof The first assertion follows immediately from (3.62). For the second, note that
(3.68) is well defined by direct computation of the Nijenhuis tensor of I.J;A/. Using
the classical construction [52] of the Chern connection �H ;I of I 2Zb on EH , we
see that the map (3.68) is injective with image Zb , as

(3.69) I D I. LI ; �H ;I /

for all I 2Zb . Furthermore, (3.68) is clearly �b –equivariant. Another direct compu-
tation shows now that (3.68) is a holomorphic embedding, ie, its differential is also
injective and exchanges the almost complex structures on Pb and Z .

As an immediate consequence, Zb Š Pb equipped with the restriction of I is a
formally integrable complex manifold, by Proposition 2.2. Using Lemma 3.1, we can
now transfer the constructions of Section 2.2 to the fibres

(3.70) Zb D I.Pb/;

obtaining the following theorem, where the Lie groups �b � � and their normal
subgroups Gb � �b , parametrised by b 2 B , are viewed as the fibres of two Lie group
subbundles

(3.71) zGB � �B � B��

over B . Their associated Lie algebra bundles are denoted Lie zGB �Lie�B �B�Lie� .

Theorem 3.2 Each pair of positive real numbers ˛0; ˛1 determines a structure of
“�–invariant Hamiltonian Kähler fibration” on �BW C! B , that is, a smooth family !C
of Kähler forms !b on the fibres Zb , parametrised by b 2 B , which are exchanged by
the �–action, and a morphism

(3.72) �C W C �! .Lie zGB/
�

of fibrations over B , whose fibre �bW Zb ! .Lie zGb/
� is a moment map for the zGb –

action on Zb , and such that

(3.73) h�g�b.g � I/; �i D h�b.I/;Ad.g�1/�i

for all .b; I/ 2 C , g 2 � , � 2 Lie zGg�b .
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Proof As in Section 2, we fix a G–invariant positive definite inner product on g.
Suppose that it extends to a Gc–invariant symmetric bilinear form . � ; � /W gc˝gc!C
(eg, we can use . � ; � / WD � tr.�. � / ı �. � // for a faithful representation �W Gc !

GL.r;C/ such that �.G/ � U.r/). This form induces another one on the adjoint
bundle ad Ec DEc �Gc gc , which extends to a C–bilinear map

(3.74)
�p.ad Ec/��q.ad Ec/ �!�pCq

˝C;

.ap; aq/ 7�! ap ^ aq;

(cf (1.11)), which clearly is equivariant under the action of Aut Ec given by pull-back.

Fix ˛0; ˛1 > 0. By the results of Section 2, for each bD .!;H / 2B we have a Kähler
manifold

(3.75) .Zb; I; !b/;

where I is the restriction of (3.62) and !b corresponds to (2.43) via the isomorphism
Zb Š Pb of Lemma 3.1. Furthermore, the zGb –action on .Zb; !b/ is Hamiltonian,
with moment map

(3.76) �bW Zb �! .Lie zGb/
�

which corresponds to the moment map in Proposition 2.1 via the isomorphism ZbŠPb

of Lemma 3.1. Using now the .Aut Ec/–equivariance of (3.74), it is easy to see that
!b and �b are the fibres of a family !C defining a �–invariant Kähler fibration and a
morphism of bundles as in (3.72), respectively.

To prove (3.73), note that the actions of Aut Ec on the Chern connection �H ;I of H 2R
and I 2Zb , regarded as a connection on Ec , and on its curvature FH ;I 2�

2.ad Ec/,
satisfy

(3.77) g � �H ;I D �g�H ;g�I ; g �FH ;I D Fg�H ;g�I ;

for all g 2 Aut Ec ;H 2R; I 2 Z (cf [15, Section 1.1]). Given .b; I/ 2 C , we define

(3.78) S˛.b; I/ WD �˛0S
!; LI
�˛1ƒ

2
!.FH ;I ^FH ;I /C 4˛1ƒ!FH ;I ^ z 2 C1.X /;

where b D .!;H / and S
!; LI

is the scalar curvature of .X; LI ; !/. By the equivariance
of (3.74) and the second identity in (3.77),

(3.79) S˛.gb;gI/D S˛.b; I/ ı Lg
�1;

for all g 2 Aut Ec . Combining now (3.69), (3.77) and (3.79), and making a change of
variable in (2.44), we obtain (3.73), as required.
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Remark 3.3 The two fibrations (3.63) can be compared with those in Gromov [28,
Section 2.C], used to see that the spaces of tamed and compatible complex structures
on a symplectic vector space are contractible (cf [45, Proposition 2.51]).

3.2 Invariant fibration by symmetric spaces

Throughout Section 3.2, we will use the framework introduced in Section 3.1 and in
particular the first part of Lemma 3.1 (however, the isomorphism PbŠZb of Lemma 3.1
and the families !C and �C of Theorem 3.2 will not be used until Section 3.3). Our
task now is to construct a canonical structure of “�–invariant symmetric space fibration”
on �Z W C!Z , that is, symmetric space structures on the fibres BI that are exchanged
by the �–action. As in Section 1.2, the Lie groups and manifolds considered here
are infinite-dimensional, so one has to be careful with many standard results in finite
dimensions. In particular, the Newlander–Nirenberg theorem fails in general, so we
use the notion of formally integrable complex structure, as in Proposition 2.2.

Let W be the space of complex structures on the real vector space underlying the
Lie algebra Lie� (ie, linear maps whose square is � Id). Consider the tautological
�–equivariant map

(3.80) Z �!W

which assigns to each I the endomorphism Lie�! Lie�W y 7! Iy . Then, since any
I 2 Z is integrable, (3.80) satisfies the conditions

(3.81) YIyjI D IYyjI ; Œy;y0�� C I Œy; Iy0�� C I ŒIy;y0�� � ŒIy; Iy0�� D 0;

for all y;y0 2 Lie� (with Œ � ; � �� as in (3.61)), where

(3.82) YyjI 2 TIZ

is the infinitesimal action of y 2 Lie� on I 2 Z , given by the Lie derivative �LyI .

To construct the symmetric space fibration, we first prove that Z parametrises right-
invariant formally integrable complex structures on the group � . Given g 2 � , define

(3.83)
LgW � �! �; RgW � �! �;

h 7�! gh; h 7�! hg;

as the left and right multiplication by g , respectively. To each I 2 Z , we associate a
right-invariant almost complex structure I on � , defined for v 2 Tg� , g 2 � by

(3.84) Iv D .Rg/�I.Rg/
�1
� v:

Proposition 3.4 The almost complex structure I is formally integrable, for all I 2 Z .
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Proof The statement follows from the second equation in (3.81), evaluating the
Nijenhuis tensor NI of I on right invariant vector fields.

The next step in the construction of our symmetric space fibration relies on the following
condition for all I 2 Z such that BI is non-empty (this property will be proved in
Proposition 3.16):

.?/ There exists a well-defined isomorphism of vector bundles

(3.85) Lie zGBjBI

Š
�! TBI W .b; �/ 7�! YI�jb

provided by the infinitesimal action of I Lie zGb � Lie� on BI .

In the sequel, the inverse of (3.85) is denoted

(3.86) �I W TBI �! Lie zGBjBI
:

Given a compatible pair .b; I/ 2 C , we define a space

(3.87) Y D Yb;I WD fg 2 � j g � b 2 BI g;

a map � D �b;I W Y! BI given by �.g/D g � b and a right �b –action on Y given
by right multiplication in � .

Proposition 3.5 For any .b; I/ 2 C , the following properties hold:

(1) Y is principal �b –bundle over BI .

(2) There exists a canonical connection A on Y , with horizontal lift

(3.88)
�?A W �

�TBI �! TY;
.g; v/ 7�! .Rg/�I�I .v/;

and curvature given by

(3.89) FA.v0; v1/D .Rg/�Œ�I .v0/; �I .v1/�� ;

for all g 2 Y and v0; v1 2 Tg�bBI .

Proof The �b –action on Y is clearly free, so leaving aside global topological ques-
tions, to prove part (1), it suffices to show that � is surjective and induces Y=�b ŠBI ,
that is, for all b0 2BI , there exists g 2 � such that b0D g �b . Since BI is contractible
(see (3.64)), there exists a smooth curve bt on BI with b0 D b , b1 D b0 . Let

(3.90) yt D I�I . Pbt / 2 Lie�;

Geometry & Topology, Volume 17 (2013)



2762 Luis Álvarez-Cónsul, Mario García-Fernández and Oscar García-Prada

with �I given by (3.86). Let gt 2 � be the flow of yt , defined by

(3.91) Pgt �g
�1
t D yt ;

with initial condition g0 D 1. Note that the flow gt exists for all t because yt is
Gc–invariant, so it covers a vector field Lyt on X , whose flow Lgt 2 Diff0 X exists for
all t because X is compact (cf (1.26) and Remark 1.4). Now, by the Leibniz rule,

d

dt
.g�1

t � bt /D g�1
t � .�Yyt jbt

C Pbt /D 0;

because �I inverts the infinitesimal action of I Lie zGb �Lie� on BI (cf [18, page 17]).
Thus g�1

t � bt is independent of t , so b0 D g1 � b , as required.

For (2), note that the horizontal lift of curves on BI to Y determined by the flow of
(3.90) defines a canonical connection A on Y . To obtain (3.88), let bt be a curve on
BI with Pb0 D v and g 2 � such that g � b D b0 . By definition, the horizontal lift gt

of bt through g is the flow of (3.90) with g0 D g (recall that it exists because yt is
Gc–invariant). Hence

�?A .g; v/D
d

dt jtD0
gtg
�1g D .Rg/�.I�I .v//:

To check (3.89), given y 2 Lie� we denote by Xy the associated left-invariant vector
field on � , given by

(3.92) Xyjg WD .Lg/�y:

Since I is right invariant, ŒXy ; I � �D IŒXy ; � � for any y 2 Lie� , which implies that

ŒIXy0
; IXy1

�j1 D�Œy0;y1��

for any y0;y1 2 Lie� , by Proposition 3.4. Note also that

�?A .g; v/D I.Lg/�.Ad.g�1/�I .v//D IXAd.g�1/�I .v/jg
D ..Rg/�.IX�I .v//jg;

for any g 2 Y and v 2 TgbBI . Hence given v0; v1 2 TgbBI ,

FA.v0; v1/D��A.Rg/�ŒIX�I .v0/; IX�I .v1/�j1

D �A.Rg/�Œ�I .v0/; �I .v1/�� D .Rg/�Œ�I .v0/; �I .v1/�� ;

where the first equality follows from (1.31) and the third because

.Rg/�Œ�I .v0/; �I .v1/�� D .Lg/�Ad.g�1/Œ�I .v0/; �I .v1/��

is a vertical vector field on Y .
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Given b; b0 2BI , b0 D g � b for any g in the fibre of Yb;I over b0 , by Proposition 3.5.
Then we have an isomorphism of principal bundles

(3.93)
Yb;I

Š
�! Yb0;I ;

g0 7�! g0g�1;

with corresponding isomorphism �b
Š
�! �b0 W g

0 7�! Ad.g/g0 between their structure
groups. It follows from the definition of the canonical connection in terms of (3.90),
or from (3.88), that this isomorphism exchanges the canonical connections on these
principal bundles.

We are now in a position to construct the promised canonical structure of “�–invariant
symmetric space fibration” on �Z W C! Z . Observe first that the connection (3.88)
induces a canonical affine connection

(3.94) rW �0
B.TB/ �!�1

B.TB/

on BI , obtained using the canonical isomorphism

(3.95) TBI Š Y ��b
Lie zGb � adY;

which follows from the canonical isomorphism TBI Š ��TBI=�b and the �b –
equivariant isomorphism of vector bundles

(3.96)
Y �Lie zGb

Š
�! ��TBI ;

.g; �/ 7�! .g;YI Ad.g/�jg�b/:

Note also that the parallel transport �t .v/ of a tangent vector v 2 Tb0
BI along a curve

bt on BI , and hence the affine connection r , do not depend on the choice of the base
point b 2 BI used implicitly in the right-hand side of (3.95). In fact, it is given by the
curve on TBI defined as

(3.97) �t .v/D YI�t jbt
; where �t WD Ad.gt /�I .v/:

Here, gt is the flow of (3.90) with g0 D 1. This follows from (3.95), (3.96) and
standard properties about horizontal lifts (Kobayashi and Nomizu [35, page 114]).

Note that the canonical connections (3.88) and (3.94) are constructed exactly as for any
finite-dimensional symmetric space (cf eg [36, Ch. XI, Section 3]) and that they are
exchanged by the �–actions. In fact, our next result shows that .BI ;r/ is a symmetric
space, in a similar sense to [18, Section 4, Proposition 2].

Theorem 3.6 Let I 2 Z be such that BI is non-empty. Then BI is a symmetric
space, ie, it has a torsion-free affine connection r , with holonomy group contained in
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zGb and covariantly constant curvature Rr , given by

(3.98) �I .Rr.v0; v1/v2/D Œ Œ�I .v0/; �I .v1/�� ; �I .v2/�� ;

for any b 2 BI and v0; v1; v2 2 TbBI .

Proof To prove this, we relate the torsion Tr of r with the Nijenhuis tensor NI of
.�; I/ and its curvature Rr with the curvature FA of A.

Let V1 and V2 be two vector fields on BI . Then

Tr.V1;V2/ WD rV1
V2�rV2

V2� ŒV1;V2�:

Consider the principal �b –bundle � W Y!BI associated to a fixed b 2BI . By (3.95),
TBI is a subbundle of adY , so Vj induces a �b –invariant vertical vector fields yVj

on Y , given by
yVj .g/D .Rg/��I .Vj .gb//;

for g 2 Y , j D 0; 1. We claim that

(3.99) Tr.V1;V2/D�d�.NI. yV1; yV2//;

and so Tr D 0 by Proposition 3.4. To see this, note first that

I yVj D �
?
A Vj and FA.V1;V2/D�Œ yV1; yV2�;

by (3.88) and (3.89). Moreover, by the construction of r and the definition of the
covariant derivative dA induced by A on adY (see (1.31)),

brVj D dA
yVj WD Œ�

?
A .�/;

yVj �D ŒI y.�/; yVj �:

It follows then that

NI. yV1; yV2/ WD ŒI yV1; I yV2�� IŒI yV1; yV2�� IŒ yV1; I yV2�� Œ yV1; yV2�

D Œ�?A V1; �
?
A V2�� I 1rV1

V2C I 1rV2
V1CFA.V1;V2/

D �?A .ŒV1;V2��rV1
V2CrV2

V1/

D��?A Tr.V1;V2/;

and so (3.99) holds.

Since the curvature Rr is induced by FA via the adjoint representation, it follows
from (3.89), (3.95) and the fact that Lie zGb � Lie� is a Lie subalgebra, that

(3.100) Rr.v0; v1/v2 D YI ŒŒ�I .v0/;�I .v1/�� ;�I .v2/�� jb;

for v0; v1; v2 2 TbBI , which implies (3.98), by condition .?/. Hence, since the group
zGb is normal in �b and BI is contractible, it follows from (3.100) that the holonomy
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group of r is contained in zGb (see [35, Theorem 8.1]). Using (3.100) and the formula
(3.97) for the parallel transport �t of a curve on BI , it is now straightforward that
��t Rr DRr , so rRr D 0.

Remark 3.7 When H 1.X;R/D 0, so Lie zGb D Lie�b , it follows from Proposition
3.5(1) that the bundle Y , endowed with the restriction of the formally integrable almost
complex structure of Proposition 3.4, is an infinitesimal complexification of �b in
the sense of Donaldson [18, Section 4]. If in addition �I is trivial, then there is an
alternative proof of Theorem 3.6 that does not use Proposition 3.4. In this case, the
almost complex structure on Yb;I can be defined as the pull-back of the formally
integrable almost complex structure on Zb by the holomorphic map

(3.101)
Yb;I �!Zb;

g 7�! g�1I:

3.3 The uniqueness and existence problem for the coupled equations

We apply now the framework of Section 3.1, 3.2 to construct obstructions to the
existence of solutions to the coupled equations (2.47).

Fix coupling constants ˛0; ˛1 > 0. It follows from Proposition 2.4, Lemma 3.1 and
the construction of �b in Theorem 3.2 for each b D .!;H / 2 B , that the existence of
a solution .J;A/ 2 Pb of the coupled equations (2.47) (for the symplectic manifold
.X; !/ and the principal G –bundle EH ) is equivalent to the condition �b.I/D 0 for
some I 2Zb . By the equivariance (3.73) of �C , this is equivalent to the condition

(3.102) ��1
Z .� � I/\��1

C .0/¤∅;

where � � I � Z is the orbit of I . Given such an orbit, in Section 3.3 we construct
a complex character FI of the complex Lie algebra Lie�I , which vanishes when
(3.102) is satisfied, and an “integral of the moment map” MI W BI ! R, which is
bounded from below when (3.102) is satisfied, provided that the symmetric space BI

is geodesically convex. Furthermore, we motivate a definition of “geodesic stability”
of the orbit � � I and conjecture a link with (3.102) when �I is finite.

We first reformulate condition (3.102) in terms of a �–invariant family � of 1–forms
�I on the fibres BI of �Z W C! Z , defined by the formula

(3.103) �I .v/ WD �h�b.I/; �I .v/i;

for all .b; I/ 2 C , v 2 TbBI , with �I defined as in (3.86). Here, the �–invariance of
� means

(3.104) �g�I .gv/D �I .v/
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for all .b; I/ 2 C , v 2 TbBI , g 2 � . Note that (3.104) follows from (3.73) and the
fact that

Ad.g/�I .v/D �gI .v/

for all g 2 � , which is immediate from the definition of �I . Observe also that

(3.105) ��1
Z .� � I/\��1

C .0/¤∅ ” �I 2�
1.BI / has a zero.

Now, since BI is contractible (see (3.64)), it suffices to study �I along curves on
BI . Let Vt be a vector field on BI along a curve bt on BI , ie, a curve on TBI

with Vt 2 Tbt
BI for all t . We use the standard notation r Pbt

Vt for the covariant
derivative of Vt in the direction of Pbt on the symmetric space .BI ;r/ (see (3.94) and
Theorem 3.6).

Proposition 3.8

(1) d
dt
�I .Vt /D !bt

.Y�I .Vt /jI ; IY�I . Pbt /jI
/C �I .r Pbt

Vt /.

(2) �I is closed.

Proof To prove (1), let gt the horizontal lift of bt to Yb0;I prescribed by the connec-
tion (3.88), with g0 D 1. Then bt D gt � b (see Proposition 3.5), so (3.73) implies

(3.106) �I .Vt /D�h�b.It /; �t i;

where It WD g�1
t � I and �t WD Ad.gt /

�1�I .Vt /. Using (3.81), we obtain

PIt D�g�1
t Pgtg

�1
t I D�g�1

t Y
I�I . Pbt /jI

D�g�1
t IY

�I . Pbt /jI

so using formula (3.97) for the parallel transport �t;sW Tbt
BI ! Tbs

BI and the defini-
tion of covariant derivative (see eg [35, page 114]):

r Pbt
Vt WD

d

ds jsDt
��1

t;s .Vt /D
d

ds jsDt
YI Ad.gsg�1

t /�1�I .Vt /jbt

D Y
I Ad.gt / P�t jbt

D gtYIt
P�t jb

Formula (1) follows now from this equation and the �–invariance of �I , as they imply
�It
.Y

It
P�t jb
/D �I .r Pbt

Vt /, which combined with (3.106) implies

d

dt
�I .Vt /D�hd�b. PIt /; �t /i � h�b.It /; P�t i

D !b.g
�1
t Y�I .Vt /jI ;g

�1
t IY

�I . Pbt /jI
/C �It

.Y
It
P�t jb
/

D !bt
.Y�I .Vt /jI ; IY�I . Pbt /jI

/C �I .r Pbt
Vt /;

since �b is a moment map and !C is �–invariant.
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To prove (2), let V1 and V2 be two vector fields on BI . Then

(3.107) d�I .V1;V2/D V1.�I .V2//�V2.�I .V1//� �I .ŒV1;V2�/;

so, using (1) and the fact that !B. � ; I � / is a family of symmetric bilinear forms, we
see that

d�I .V1;V2/D �I .Tr.V1;V2//;

which vanishes because r is torsion-free, by Theorem 3.6.

To define our first obstruction to (3.102), note that Lie�I is a complex Lie algebra
for all I 2 Z , by (3.81) and the equivariance of (3.80). Given I 2 Z and b 2 BI ,
combining the 1–form �I and (3.80), we obtain a C–linear map

(3.108)
FI W Lie�I �!C;

� 7�! hFI ; �i WD i �I .Y�jb/C �I .YI�jb/:

By the �–invariance of � (see (3.104)), this map is also �–invariant, ie,

(3.109) hFg�I ;Ad.g/�i D hFI ; �i;

for all � 2 Lie�I , g 2 � .

Theorem 3.9 The map (3.108) is independent of b 2 BI . It defines a character

FI W Lie�I �!C

of Lie�I that vanishes if �I has a zero.

Proof The proof essentially follows a previous one by Bourguignon [7]. For the
first part, it is enough to prove that �I .Y�/ is a constant function on BI , for all
� 2 Lie�I . Now, �I 2�

1.BI / is closed (by Proposition 3.8) and �I –invariant (since
� is �–invariant), so

d.�I .Y�//D�Y�yd�I CLY��I D 0;

and hence �I .Y�/ is constant, because BI is contractible. The second part follows
because FI is C–linear and �I –invariant, by (3.109).

To obtain the second obstruction, note that, by Proposition 3.8 and the contractibility
of BI , �I is exact and so there exists a functional

(3.110) MI W BI �BI !R
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such that dMI . � ; b/D �I and MI .b; b/D 0 for all b 2BI . Along a curve bt on BI ,

(3.111) MI .bt ; b/DMI .b0; b/C

Z t

0

�I . Pbs/ ds:

Moreover, the �–invariance of � implies that

(3.112) MI .gb0; b/DMg�1I .b
0; b/CMI .b

0; b/;

for all g 2 � such that gb0 2 BI (ie, g 2 Yb0;I ).

Proposition 3.10 The functional MI . � ; b/W BI ! R is convex along geodesics on
.BI ;r/. If BI is geodesically convex and �I has a zero, then MI . � ; b/ is bounded
from below, for all b 2 BI .

Proof The first part follows because (3.111) and Proposition 3.8(1) imply

(3.113) d2

dt2
MI .bt ; b/D

d

dt
�I . Pbt /D

Y
�I . Pbt /jI

2
� 0;

for any geodesic bt on .BI ;r/, where k � k is the L2 –norm with respect to the metric
on Zbt

.

For the second part, suppose b0 2BI is a zero of �I . We can suppose b0 D b , because
using (3.111) along a curve joining b and b0 , we see that

MI . � ; b
0/DMI .b; b

0/CMI . � ; b/:

Now, given b00 2BI , by hypothesis there exists a geodesic bt with b0D b and b1D b00 .
Hence

MI .b
00; b/D

Z 1

0

Z t

0

Y
�I . Pbs/jI

2
ds ^ dt � 0;

and so MI . � ; b/ is bounded from below by 0 2R.

Corollary 3.11 If BI is geodesically convex, then �I has at most one zero on BI

modulo the action of �I .

Proof Given zeros b; b0 2 BI of �I , let bt a geodesic joining them. ThenY
�I . Pbt /jI

2
D 0

for all t , because (3.113) implies that

(3.114)
R �!R;

t 7�! �. Pbt /
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is an increasing function which vanishes for t D 0 and t D 1. Hence the flow gt of
I�I . Pbt / lies in �I for all t and gtb D bt . In particular, g1b D b0 .

Remark 3.12 Proposition 3.8 and Theorem 3.9 hold even when ˛0; ˛1 are not posi-
tive (their proofs depend only on the condition that !b is of type (1,1) with respect
to I). In Section 4, we will use these facts about �I and FI for arbitrary ˛0; ˛1 .
However, Proposition 3.10, Corollary 3.11 and the remainder of Section 3.3 depend on
the assumption that ˛0; ˛1 are positive, although Proposition 3.14 also holds in the
degenerate case ˛0˛1 D 0.

If Zb and �b are finite-dimensional manifolds and zGbD�b is compact, there is a well-
known numerical condition, called the Hilbert–Mumford criterion, which characterises
(3.102) (see the example at the end of Section 3.3). In this case, the principal bundle Y
of Proposition 3.5 is the complexification of �b (by the observations about infinitesimal
complexifications at the end of Section 3.2, as formally integrable almost complex
structures are integrable in finite dimensions), and the criterion is formulated in terms
of 1–parameter subgroups of Y . In the generality of Section 3, the Lie group �b may
have no complexification, but the geodesics of the symmetric space .BI ;r/ are a
substitute for the 1–parameter subgroups, and we have the following generalization of
this condition (cf [11; 18, Section 8]).

Definition 3.13 A point I 2 Z is geodesically semistable if

(3.115) lim
t!1

�I . Pbt /� 0

for any infinite geodesic ray bt , t 2 Œ0;1Œ , in .BI ;r/. It is geodesically stable if the
inequality (3.115) is strict whenever bt is non-constant.

Observe that the limit (3.115) always exists, because (3.114) is an increasing function
for geodesic rays, by (3.113). Note also that the geodesic stability and semistability
conditions only depend on the �–orbit of I 2 Z , because � is �–invariant and the
connections on the fibres of �Z are exchanged by the �–action and hence so are their
geodesic rays.

In the finite-dimensional case, by the Kempf–Ness Theorem [33], an orbit � � I 2 Z
is geodesically stable if and only if (3.102) holds and �I is finite (see the example at
the end of Section 3.3). The following result provides some evidence that a sensible
question is whether this equivalence also holds in the generality of Section 3, at least
when BI is geodesically convex.
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Proposition 3.14 Let .b; I/ 2 C . Then:

(1) If �b;I WD �b \�I is not finite, then � � I is not geodesically stable.

(2) Suppose that BI is geodesically convex. If (3.102) is satisfied, then � � I is
geodesically semistable.

Proof For part (1), let � 2 Lie�I be non-zero. Let gt the flow of I� . Then bt D gtb

is an infinite geodesic ray starting at b , because:

Pbt D gtYI�jb D YAd.gt /I�jbt
D YI Ad.gt /�jbt

D �t
Pb0:

Furthermore, if � 2 Lie�b;I , then Pb0 D YI�jb ¤ 0, by (3.85), so bt is non-constant.
Then

�I . Pbt /D �I .gt
Pb0/D �g�1

t
. Pb0/D �I . Pb0/

and so
lim

t!1
�I . Pbt /D �I . Pb0/D �I .YI�jb/D hFI ; �i:

There are three possibilities. If hFI ; �i < 0, then part (1) is obvious. The case
hFI ; �i>0 reduces to the previous one by taking the non-trivial geodesic corresponding
to �I� . Finally, if hFI ; �i D 0, since bt is non-trivial, then by definition I is not
geodesically stable.

For part (2), suppose that BI is geodesically convex and � � I is not geodesically
semistable. Then there exists an infinite geodesic ray bt such that

C WD lim
t!1

�I . Pbt / < 0;

where �I . P�t /� C for all t , as (3.114) is an increasing function, so MI .bt ; b0/� C t ,
by (3.111). Therefore MI . � ; b0/ is not bounded from below, so (3.102) cannot be
satisfied, by Proposition 3.10.

We would like to point out that the framework developed in Section 3.2, 3.3 is rather
general, as it relies only on formal properties of the double fibration (3.63), and may be
applied to other situations (in particular, to equations with a further coupling with Higgs
fields). The basic ingredients are a real Lie group � , a �–equivariant double fibration
(3.63), where .Z; I/ is an almost complex manifold, and a �–equivariant map (3.80)
satisfying (3.81). It is crucial that �Z satisfies condition .?/ of Section 3.2, all its
fibres are contractible and �B satisfies the properties of Theorem 3.2 for a fibration of
normal subgroups as in (3.71) (note that the formal integrability of the almost complex
structures on the fibres of �B was never used).
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To see how this general framework works, we conclude Section 3.3 by explaining how
it applies to the standard theory of finite-dimensional Kähler quotients (as presented eg
in [49, Section 5]) and its relation with geometric invariant theory (GIT). Suppose that
Z is a finite-dimensional Kähler manifold with a left action of a complex reductive
Lie group Gc preserving its complex structure. Suppose also that this action restricts
to a Hamiltonian action of a maximal compact subgroup G �Gc , with G –equivariant
moment map

�W Z �! g�;

where g is the Lie algebra of G . To compare with Section 3.2, 3.3, we define:

� � is the real Lie group underlying Gc .

� B DGc=G is the orbit space for the action by right multiplication of G on Gc .

� The map Z!W of (3.80) is the constant map given by the complex structure
on the Lie algebra gc of Gc .

� C D B�Z and zGB D �B .

Then the isotropy group of any G –orbit b D Œg� WD gG 2 B is

zGb D �b D Ad.g/G

and the fibre of the morphism (3.85) over a point b D Œg� is

(3.116)
Ad.g/g Š�! TgGc=Tg.gG/;

� 7�! Œ.Rg/�.i �/�:

Therefore (3.85) is an isomorphism and condition .?/ of Section 3.2 is satisfied, and
hence so are the conclusions of Section 3.2 and Section 3.3. In this finite-dimensional
case, the construction of the connections (3.88) and (3.94) reduce to the classical
constructions of the canonical connections on finite-dimensional symmetric spaces
(see eg [36, Ch. XI, Section 3]). Hence, by [36, Ch. XI, Theorem 3.2(3)], the infinite
geodesic rays on Gc=G starting at Œg� are the curves

(3.117)
Œ0;1Œ �!Gc=G;

t 7�! Œet i �g�;

with � 2 Ad.g/g. Note that the canonical projection

�BW G
c=G �Z �!Gc=G

is a “trivial” Gc–invariant complex fibration. However, since Gc does not necessarily
preserve !Z , to view �B as a Gc–invariant Hamiltonian fibration, we endow this
map with the non-trivial family !C of symplectic 2–forms !b WD g�!Z on the fibres
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Zb D Z , for b D Œg� 2Gc=G . Indeed, the isotropy group Ad.g/G preserves !b and
has moment map given by

(3.118) h�b.I/; �i WD h�.g
�1I/;Ad.g�1/�i;

for bD Œg�2Gc=G , and (3.118) defines the morphism (3.72) of fibrations over Gc=G .
Using the isomorphism (3.116), we obtain the formula

hFI ; �i D �h�.I/; �0i � ih�.I/; �1i;

for all I 2 Z , � D �0C i �1 2 gc
I

, where �0; �1 2 gc . Hence Theorem 3.9 reduces to
Wang [59, Proposition 6 and Corollary 8].

Suppose now that Z is a Gc–linearised projective manifold, ie, there is a Gc–equivariant
closed embedding Z � CPN and !Z is the restriction of the Fubini–Study Kähler
form. Then geodesic stability/semistability coincide with GIT stability/semistability,
by the Hilbert–Mumford criterion. This essentially follows because any 1–parameter
subgroup

�W C�!Gc

restricts to a group homomorphism �W S1!Ad.g/G for some g 2Gc , which induces
an infinite geodesic ray (3.117) starting at Œg� and because the Hilbert–Mumford weight
for � at a point I 2 Z is precisely the left-hand side of (3.115). Furthermore, the
functional (3.110) is the Kempf–Ness functional [33], which provides the key tool to
prove the Kempf–Ness theorem relating the symplectic and GIT quotients:

��1.0/=G Š Z==Gc :

Finally, we should remark that this theorem has been extended to non-projective
manifolds (see eg [49, Section 5; 54]). In this case, the functional (3.110) is the integral
of the moment map in [49, Section 5] and geodesic stability coincides with analytic
stability (by [49, Corollary 5.3]).

3.4 The ˛–Futaki character, the ˛–K–energy and the geodesic equation

We now prove that condition .?/ of Section 3.2 is satisfied and give explicit formulae
for the character FI , the functional MI and the geodesic equation on BI introduced
in Section 3.3.

Fix a complex structure on X for which �2H 2.X;R/ is a Kähler class (ie, it contains
a Kähler form) and a holomorphic structure on the principal Gc–bundle � W Ec!X .
These data determine a point I 2Z . As explained in Section 3.3, condition (3.102) for
the orbit � � I is equivalent to the existence of a pair b D .!;H / 2 BI such that the
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point .J;A/ 2 Pb corresponding to I via Lemma 3.1 satisfies the coupled equations
(2.47). In other words, condition (3.102) for the orbit � �I is equivalent to the existence
of a solution b D .!;H / 2 BI to the following coupled equations, where S! is the
scalar curvature of the Riemannian metric g LI D !. � ;

LI � / and FH is the curvature of
the Chern connection of H and I :

(3.119)
ƒ!FH D z;

˛0S! C˛1ƒ
2
!.FH ^FH /D c:

�
By (3.105), these equations are satisfied if and only if the 1–form �I on BI has a zero.
Now, the definition of �I in (3.103), and in fact the whole of Section 3.2, 3.3, depend
on condition .?/ of Section 3.2. To prove this condition, note first that by (3.64), there
is a canonical isomorphism

(3.120) TbBI Š ddcC1.X /˚ i�0.ad EH /;

for all b D .!;H / 2 BI , obtained from the ddc–lemma and from the pointwise
isomorphism i Lie G Š Gc=G induced by the exponential. Define now LieGc D

�0.ad Ec/ and LieGH D�
0.ad EH / as the Lie algebras of the gauge group Gc of

Ec and the gauge group GH of EH , respectively. Consider the projection maps onto
the real and imaginary parts associated to H 2R,

(3.121) ReH ; ImH W LieGc
�! LieGH ;

defined by y D ReH yC i ImH y for all y 2 LieGc , where we are using the canonical
isomorphism

LieGc
Š LieGH ˚ i LieGH

induced by (3.67) and gc D g˚ i g.

Lemma 3.15 The infinitesimal action of y 2 Lie.Aut Ec/ on H 2R is

YyjH D i ImH .�Ay/;

where �AW TEc ! VEc is the vertical projection induced by any connection A on
EH .

Proof Using the maps �A; �?A in (3.66), any y 2 Lie.Aut Ec/ can be decomposed as

y D i ImH .�Ay/CReH .�Ay/C �?A Ly;

where Ly is the vector field on X covered by y . Hence the flow g�t of �y can be
written as

g�t D f�t ı st ;
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where ft 2 Aut EH is the flow of ReH .�Ay/C �? Ly and st is the flow of the time-
dependent vector field �ft�.i ImH .�Ay//. Therefore, using the isomorphism THRŠ
i�0.ad EH / (also used in (3.120)) and the fact that f �1

t preserves H , we see that
the flow gt of y satisfies

YyjH D
d

dt jtD0
gt �H D

d

dt jtD0
s�1

t �H D ft�.i ImH .�Ay//jtD0 D i ImH .�Ay/:

Proposition 3.16 Condition .?/ is satisfied. The inverse of (3.85) is given by

(3.122) �I .v/D� i PH � �?H �� 2 Lie zGb;

where v 2TbBI corresponds to .ddc�; PH /2 ddcC1.X /˚ i�0.ad EH / via (3.120).

Proof Fix b D .!;H / 2 BI . Given � 2 Lie� covering a vector field L� on X , we
have

(3.123) YI�jb D .�d. LI L�y!/; i ReH .�H �//

by Lemma 3.15, as I� covers LI L� and �H ı I D i �H , where �H W TEc! VEc is the
vertical projection in (3.66) induced by the Chern connection of I on EH . In particular,
when � 2 Lie zGb , L� D �� is the Hamiltonian vector field of some � 2 C1.X / and
(3.123) becomes

(3.124) YI�jb D .�ddc�; i �H �/:

Hence, by (3.120) the infinitesimal action (3.124) is in TbBI and so the morphism
(3.85) is well defined. Furthermore, (3.124) easily implies that (3.85) has an inverse
given by (3.122).

Using the formula (3.122), the 1–form �I on BI is given by

(3.125) �I .v/D 4˛1

Z
X

i PH ^ .ƒ!FH � z/!Œn�C

Z
X

�S˛.b; I/!
Œn�;

for all v D .ddc�; PH / 2 TbBI , where �!Œn� has zero integral on X and S˛.b; I/ is
given by (3.78).

The complex character FI W Lie�I!C defined by (3.108) provides our first obstruction
to the existence of solutions to (3.119). To give an explicit expression for FI , note
first that

Lie�I D Lie Aut.Ec ; I/
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is the Lie algebra of the automorphism group of the holomorphic bundle .Ec ; I/, so
each � 2 Lie�I covers a real holomorphic vector field L� on .X; LI/. Now, we can write

L� D ��1
C LI��2

Cˇ;

for any given Kähler form ! 2 K LI , where ��j is the Hamiltonian vector field of
�j 2C1

0
.X / on .X; !/, for j D 1; 2, and ˇ is the dual of a 1–form which is harmonic

with respect to the Kähler metric !. � ; LI � / (see eg [39]). Using this decomposition in
(3.123), we see that the infinitesimal action of �2Lie Aut.Ec ; I/ on bD .!;H /2BI is

Y�jb D .�ddc�2; i ImH �H �/;

hence defining the complex-valued function � WD �1C i�2 ,

(3.126) hFI ; �i D �4˛1

Z
X

�H � ^ .ƒ!FH � z/!Œn��

Z
X

�S˛.b; I/!
Œn�;

which must vanish if (3.119) has a solution, by Theorem 3.9.

It is now clear from formula (3.126) that for trivial Gc , FI is the Futaki invariant
[22] of the Kähler class � on .X; LI/, up to a multiplicative factor. For non-trivial Gc

and ˛0 D 0, the character FI , restricted to the Lie subalgebra of Lie�I consisting
of vector fields covering holomorphic complex Hamiltonian vector fields (ie, vector
fields that vanish somewhere on X ), has already been constructed by Futaki (see [23,
Theorem 1.1]).

Using now (3.111), the ˛–K–energy can be written explicitly along a curve bt D

.!t ;Ht / on BI , with !t D !0C ddc�t and P�t!
Œn�
t with zero integral on X , as

(3.127) MI .bt ; b/DMI .b0; b/C 4˛1

Z t

0

Z
X

i PHs ^ .ƒ!s
FHs
� z/!Œn�s ^ ds

C

Z t

0

Z
X

P�sS˛.bs; I/!
Œn�
^ ds:

By Proposition 3.10, MI . � ; b/ is convex along geodesics on the symmetric space
.BI ;r/. The explicit expression of the affine connection r and its geodesic equation
in the coordinates provided by the canonical isomorphism (3.120) are the content of
the following proposition.

For the next result, given b D .!;H / 2BI , we denote by . � ; � /! the metric on T �X

associated to !. � ; LI � / and by dH the covariant derivative associated to the Chern
connection of H and I .
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Proposition 3.17

(1) The Christoffel symbol �W TbBI �TbBI ! TbBI is

�. Pb1; Pb2/D .�ddc.d�1; d�2/! ;� LI��1
ydH

PH2�
LI��2

ydH
PH1C i FH .��1

; LI��2
//;

for all Pbj D .ddc�j ; PHj / 2 TbBI , with j D 1; 2.

(2) A curve bt D .!t ;Ht / on BI , with !t D !C ddc�t , is a geodesic if and only if

(3.128)
ddc. R�t � .d P�t ; d P�t /!t

/D 0;

RHt � 2 LI� P�t
ydHt

PHt C i FHt
.� P�t

; LI� P�t
/D 0;

)

where � P�t
is the Hamiltonian vector field of P�t over .X; !t /.

Proof The proof of part (1) is a computation of the covariant derivative of a vector
field vt D .ddc t ; i �t / along a curve bt D .!t ;Ht / on BI , ie, a curve vt on TBI

with vt 2 Tbt
BI for all t . Recall that the covariant derivative of vt along bt is (see

eg [35, page 114])

(3.129) r Pbt
vt WD

d

ds jsDt
��1

t;s .vs/D Pvt C�. Pbt ; vt /;

where Pvt D .ddc P t ; i P�t / and �t;sW Tbt
BI ! Tbs

BI is the parallel transport along bt .
To calculate (3.129) we compute the parallel transport �0;t .v/ of any vD .ddc�; PH /2

TbBI along bt using (3.97). Let �t D Ad.gt /�I .v/, where gt is the horizontal lift of
bt to Yb0;I (ie, the flow of I�I . Pbt /) with g0 D 1 (see (3.87) and Proposition 3.5). By
(3.122),

�t D .gt /�.� i PH��?H ;I��/D� i.gt /� PH��
?
Ht ;It

.. Lgt /���/D� i.gt /� PH��
?
Ht ;It

�t ;

where �t is the Hamiltonian vector field of � ı Lg�1
t over .X; !t /, so by (3.97) and

(3.123),

(3.130) �0;t . Pb/D YI�t jbt
D .ddc.� ı Lg�1

t /; i ReHt
�Ht ;I .� i.gt /� PH � �

?
Ht ;It

�t //

D .ddc.� ı Lg�1
t /; ImHt

..gt /� PH /C �ty i.�Ht ;It
� �Ht ;I //:

Hence we obtain

��1
t;s .vs/D .ddc. s ı Lgs/; ImHt

.i.gt;s/
��s/C �t;sy i.�Ht ;Is

� �Ht ;I //;

where vs D .ddc s; i �s/ 2 Tbs
BI , gt;s is the flow of I�I . Pbs/ with gt;t D 1, �t;s is

the Hamiltonian vector field of  s ı Lgt;s over .X; !t / and Is D g�1
t;s �I . Thus denoting
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r Pbt
vt D .w

1
t ; w

2
t /, we conclude that

w1
t D ddc. P t � d t . LI� P�t ;!t

//D ddc P t � ddc.d t ; d P�t /!t
;

w2
t D ImHt

.i P�t C ŒI�I . Pbt /; i �t �/� i �Ht ;I ŒI�I .
Pbt /; �

?
Ht ;I

� t
�

D i P�t C ImHt
ŒI�I . Pbt /; i �t �C i �Ht ;I Œ�I .

Pbt /; �
?
Ht ;I

. LI� t
/�

D Pv2
t C ImHt

Œ PHt ; i �t �� Œ�
?
Ht ;I

. LI� P�t
/; i �t �� Œ�

?
Ht ;I

. LI� t
/; PHt �

� i �Ht ;I Œ�
?
Ht ;I

� P�t
; �?Ht ;I

. LI� t
/�

D i P�t �
LI� P�t

ydHt
.i �t /� LI� t

ydHt
PHt C i FHt

.� P�t
; LI� t

/:

This proves (1). Note that FH and ! are of type .1; 1/, so the torsion is Tr D 0 (cf
Theorem 3.6) and the geodesic equation is (3.128). This proves (2).

Remark 3.18 When Gc is the trivial group, so EcDX , Theorem 3.6 and Proposition
3.17 reduce to the corresponding results for the space of Kähler metrics K LI already
studied by Mabuchi [41; 42] and Donaldson [18]. More precisely, we recover the
Levi-Civita connection of the Mabuchi metric on the Riemannian symmetric space
K LI , the functional MI . � ; b/ is the Mabuchi K–energy [41; 42] on the space of Kähler
metrics, by formula (3.127), and (3.128) reduces to the geodesic equation on the space
of Kähler metrics [42]

(3.131) R�t � .d P�t ; d P�t /!t
D 0:

It seems plausible that the methods used by Chen [10], and Chen and Tian [13] in
their study of (3.131) could be adapted to equation (3.128) and to the existence and
uniqueness problem for the coupled equations. As in the case of (3.131), this would
require a reformulation of (3.128) as a complex Monge–Ampère equation.

Note that the explicit formula for the Christoffel symbols in Proposition 3.17 provides
a direct proof of the vanishing of the torsion Tr (cf Theorem 3.6). Observe also that
the two factors of BI D K LI �R are Riemannian symmetric spaces with holonomy
groups contained in H! (see [42; 18, Section 4]) and GH , and that the holonomy
group of BI is contained in their group extension zGb (see (1.26)). Here, the structure
of Riemannian symmetric space on R depends on the choice of an element ! 2K LI .
However, Proposition 3.17 implies that the symmetric space structure of BI is not
the product structure. In fact, it is an open question whether BI carries a Riemannian
metric compatible with r (see Remark 4.4 for details).
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4 Extremal pairs and deformation of solutions

Following the approach of LeBrun and Simanca [38; 39], in this section we define an
extremality condition for pairs .!;H / and also an extremality condition in the weak
coupling limit (see (4.132) and (4.183)). We establish existence results for extremal
pairs .!;H / near solutions to the coupled equations under deformations of the coupling
constants and the Kähler class (Theorems 4.10 and 4.17) and find sufficient conditions
for the existence of solutions to the coupled equations (Theorems 4.11 and 4.18).

In Section 4 we fix a complex reductive Lie group Gc , an n–dimensional compact
complex manifold .X;J /, with underlying real manifold X and complex structure
J , and a holomorphic principal Gc–bundle .Ec ; I/ over .X;J / with underlying
real principal Gc–bundle Ec and complex structure I (so LI D J in the notation of
Section 3.1). We also fix a maximal compact Lie subgroup G �Gc . The Lie algebras
of G �Gc are denoted g� gc , respectively. As in Theorem 3.2, we fix a Gc–invariant
symmetric bilinear form . � ; � /W gc˝gc!C , which restricts to a G –invariant positive
definite inner product on g. Finally, z D gG and zc D .gc/G

c

denote the subsets
of elements of g and gc that are invariant under the adjoint actions of G and Gc ,
respectively (cf (1.15)).

4.1 Extremal pairs

We start studying an extremality condition which will be useful to prove Theorem 4.11.
Throughout Section 4.1, we fix ˛ D .˛0; ˛1/ 2 R2 such that ˛1 ¤ 0, and a Kähler
class � on .X;J /. Note that we will not assume ˛0; ˛1 > 0, but that we can still
apply Proposition 3.8 and Theorem 3.9 (see Remark 3.12). We define

B� WDK� �R;

where K� is the space of Kähler forms in � compatible with the complex structure J

and RD�0.Ec=G/ (cf (3.64)).

The following definition is closely related to the vanishing condition for the linearisation
at a solution of the coupled equations (see Proposition 4.7 and Lemma 4.8).

Definition 4.1 A pair b D .!;H / 2 B� is extremal if it satisfies the equations

(4.132)
4˛1dHƒ!FH C �˛.b/yFH D 0;

L�˛.b/J D 0;

�
where �˛.b/ is the Hamiltonian vector field on .X; !/ of the function

(4.133) S˛.b/ WD �˛0S! �˛1ƒ
2
!.FH ^FH /C 4˛1ƒ!FH ^ z� 2 C1.X /;
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(cf (3.78)). Here S! is the scalar curvature of the metric !. � ;J � / and z� is the
element of z� g given by (1.18).

Extremal Kähler metrics in �, introduced by Calabi in [8, Section 1], can be charac-
terised as those ! 2K� such that the Hamiltonian vector field of S! over .X; !/ is in
LieHJ [8, Section 2]. In particular, all cscK metrics are extremal. Similarly, extremal
pairs admit a description in terms of real-holomorphic vector fields on the total space
of Ec . To see this, recall that each H 2R induces a reduction of Ec to a principal
G –bundle EH �Ec (see Section 3.1) and each b D .!;H / 2B� determines a short
exact sequence of Lie groups (see Section 1.2)

(4.134) 1 �! G �! zG
p
�!H �! 1;

given from left to right by the gauge group of EH , the extended gauge group of EH

over .X; !/ and the group of Hamiltonian symplectomorphisms of .X; !/. This exact
sequence induces another one

(4.135) 1 �! GI �!
zGI

p
�!HJ ;

where GI D G \Aut.Ec ; I/, zGI D
zG \Aut.Ec ; I/ and HJ D H \Aut.X;J / are

finite-dimensional complex Lie groups (see eg [6, Section 2.120]). Note that the Lie
algebra Lie zGI is given by Gc–invariant real-holomorphic vector fields on the total
space of .Ec ; I/ covering Hamiltonian (real-holomorphic) vector fields on .X;J; !/.

Using the horizontal lift �?
H
W LieH! Lie zGb of the Chern connection associated to

H and I (cf (3.66)), we define

(4.136) �˛.b/ WD �4˛1.ƒ!FH � z�/� �
?
H �˛.b/ 2 Lie zGb;

for each b D .H; !/ 2 B� . Then it follows from (1.30) and (3.70) that

(4.137) b 2 B� is extremal ” �˛.b/ 2 Lie zGI .

The following link between extremal pairs and the coupled equations is a generalization
of the corresponding link for Kähler metrics (see eg [39, Lemma 1]). To establish
this, note that each ! 2K� induces L2 –inner products on C1.X / and �0.ad EH /,
given by

h�0; �1i! WD

Z
X

�0�1!
Œn�;(4.138a)

h�0; �1i! WD

Z
X

.�0 ^ �1/!
Œn�;(4.138b)

for �j 2 C1.X /, �j 2 �0.ad EH / (j D 0; 1). Their associated L2 –norms are
denoted k � k! .
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Proposition 4.2 A pair b 2 B� is a solution to the coupled equations (3.119) if and
only if it is an extremal pair and F˛;� D 0.

Proof If there exists a solution bD .!;H /2B� to the coupled equations (3.119), then
F˛;� D 0, by (3.105) (or (3.126)) and Theorem 3.9, and furthermore, b is obviously
an extremal pair, since dHƒ!FH D 0 and �˛.b/D 0. Conversely, if b D .!;H / is
extremal, ie, �˛.b/ 2 Lie zGI , then

F˛;�.�˛.b//D kS˛.b/� yS˛k2! C 16˛2
1kƒ!FH � z�k

2
! � 0;

by (3.126), where yS˛ D
R
X S˛.b/!

Œn�=Vol� , so F˛;� D 0 implies that b satisfies
(3.119).

Extremal pairs enjoy good regularity properties, similar to those of extremal Kähler
metrics [38, Proposition 4]:

Lemma 4.3 Let .!;H / be an extremal pair such that ! is a Kähler form of class C 2

on .X;J / and H is a section of Ec=G of class C 4 . Then both ! and H are smooth.

Proof We will show by induction on l 2N that ! and H are Hölder of class C 2l�1;ˇ

and C 2lC1;ˇ respectively, for all ˇ 2 .0; 1/ and l 2N . By assumption, ! and H are
of class C 1;ˇ and C 3;ˇ , respectively. Suppose now that ! and H are of class C 2l�1;ˇ

and C 2lC1;ˇ , respectively. As �˛.b/ is a real holomorphic vector field by (4.137), it is
real analytic, so dS˛.b/ is of class C 2l�1;ˇ , ie, S˛.b/ 2 C 2l;ˇ , and hence it follows
from (4.133) that the scalar curvature S! is of class C 2l�1;ˇ , because

ƒ2
!.FH ^FH /� 4ƒ!FH ^ z�

is of class C 2l�1;ˇ . Arguing as in [38, Proposition 4], it follows from the regularity
theory for the Laplacian and for the Monge–Ampère equation that ! is of class
C 2lC1;ˇ (recall that the scalar curvature can be written in holomorphic coordinates
as �! log det.!/). Since �˛.b/, defined by (4.136), is a real-holomorphic vector field
on .Ec ; I/ by assumption (see (4.137)), it is real analytic and so ƒ!FH is of class
C 2l;ˇ , because ˛1 ¤ 0. Identifying H locally with a function on the base with values
in exp.i g/�Gc and using holomorphic coordinates for the bundle Ec , we can write

(4.139) �x@H DH.ƒ!FH �ƒ!.x@.H
�1/^ @H //;

where the right-hand side is of class C 2l;ˇ and �x@ is elliptic with C 2lC1;ˇ coefficients.
By the regularity theory of linear elliptic differential operators, H is of class C 2lC2;ˇ

(see eg Aubin [5, Theorem 3.55]). Applying this argument again to (4.136), we see
that the right-hand side of (4.139) is of class C 2lC1;ˇ and so H is of class C 2lC3;ˇ ,
as required.
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Remark 4.4 Note that B� DK� �R has a Riemannian metric g� , given by

(4.140) g�.v0; v1/D

Z
X

�0�1!
Œn�
C

Z
X

.�0 ^ �1/!
Œn�

for b D .!;H /, vj D .�j ; �j / 2 TbB� Š C1
0
.X /��0.ad EH / (cf (4.141)), with

PH D i � in the notation of Section 3.4. Although this metric is rather canonical, it
does not endow the symmetric space .B�;r/ of Theorem 3.6 with a structure of
Riemannian symmetric space, since g� is not preserved in general by the canonical
affine connection r on B� constructed in Section 3.2. In fact, by a straightforward
calculation using formula (3.130) for the parallel transport,

.rv0
g�/.v1; v2/

D�

Z
X

�
P�1 ^ .�H Œ�I .v0/; �

?
H J��2

�/C .�H Œ�I .v0/; �
?
H J��1

�/^ P�2

�
!Œn�:

However, if the group Gc is trivial, so B� DK� , then g� is precisely the Mabuchi
metric and rg�D0, by the previous formula, so we recover the known fact [18; 42] that
K� is a Riemannian symmetric space with Levi-Civita connection r , by Theorem 3.6.

4.2 Holomorphic vector fields on the principal bundle

Given b D .!;H / 2 B� , we now relate the Lie algebra Lie zGI (see (4.135)) to
the space of solutions to a fourth-order elliptic differential equation that is closely
related to the linearization of our coupled equations. We will use the inner product on
C1.X /��0.ad EH / induced by (4.138), ie, given by

(4.141) hv0; v1i! WD h�0; �1i! Ch�0; �1i! ;

for vj D .�j ; �j / 2 C1.X /��0.ad EH / (j D 0; 1).

We define an operator:

(4.142)
PD P! W C1.X / �!�0.End TX /;

� 7�! �L��J:

In other words, P is induced by the infinitesimal action of LieH on J! . Let P� be the
formal adjoint of P with respect to the L2 –inner products on C1.X / and �0.End TX /

induced by !. � ;J � /, with the L2 –inner product on �0.End TX / multiplied by a factor
of 1

2
, so that its restriction to TJ J coincides with !J . � ; J � / (defined by (2.40)). Then

P� P is, up to a multiplicative constant factor, the Lichnerowicz operator of the compact
Kähler manifold .X;J; !/. This is an elliptic self-adjoint semipositive differential
operator of order 4, whose kernel is the set of functions � such that �� 2 LieHJ , and
which may be interpreted as the linearization of the cscK equation at ! (see eg [38]).
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We define now an operator that is closely related to the linearization of the coupled
equations (see Proposition 4.7) and that will play the role of the Lichnerowicz operator
in our study. The operator is

(4.143) L˛;b D .L0
˛;b;L

1
˛;b/W C

1.X /��0.ad EH / �! C1.X /��0.ad EH /;

where L0
˛;b

and L1
˛;b

are defined by

(4.144)

L0
˛;b.�; �/D ˛0 P� P� � 2˛1ƒ

2
!.FH ^ dH J.dH �C ��yFH //

CL1
˛;b.�; �/^ z�;

L1
˛;b.�; �/D 4˛1ƒ!dH J.dH �C ��yFH /D 4˛1d�H .dH �C ��yFH /:

Here, J is the endomorphism of �1.ad EH / induced by the complex structure J (see
[6, (2.8)]), dH W �

0.ad EH /! �1.ad EH / is the covariant derivative of the Chern
connection of H and I and, by the Kähler identities, d�

H
D ƒ!dH J is its formal

adjoint.

Recall that the Chern connection associated to any H 2 R and I induces a vector
space isomorphism (see Section 1.3):

(4.145) C1.X /=R��0.ad EH /
Š
�! Lie zGbW .Œ��; �/ 7�! �C �?H ��

Let .Zb; Ib; !b/ be the Kähler manifold constructed in Lemma 3.1 and Theorem 3.2.

Lemma 4.5 Let vj D .�j ; �j / 2 C1.X /��0.ad EH /, for j D 0; 1. Then

(4.146) hv0;L˛;bv1i! D !b.Y�0jI ; IY�1jI /

C4˛1hJ��0
y.dH �1C ��1

yFH /;ƒ!FH � z�i! ;

where Y�j is the infinitesimal action of �j D �j C�?H ��j 2 Lie zGb on Zb , for j D 0; 1.

Proof By the moment map interpretation of scalar curvature of the Kähler metric
!. � ;J � /, its derivative ıJ S! W TJ J!! C1.X / with respect to J 2 J! satisfies

(4.147) ıJ S! ı J ıPD� P� P

(see Section 2.1 and Donaldson [19, Equation (26)]). By (3.81) and Lemma 3.1, IY�0jI

is identified with the infinitesimal action of I�0 on .J;A/ 2Pb , where A is the Chern
connection of H and I , so

(4.148) IY�1jI D�LI�1
I D .�JL��1

J;J.dH �1C ��1
yFH //;

by Lemma 1.5. Hence (4.146) follows from formula (2.44) for the moment map �b .
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Given a pair b D .!;H / 2 B� , an element � 2 Lie zGb is in Lie zGI if and only
if Y�jI D 0. Using (4.148), we see that Lie zGI � Lie zGb is the subset of elements
� D �C �?

H
�� such that

(4.149) P� D 0; dH �C ��yFH D 0:

Hence if .�; �/ 2 C1.X / ��0.ad EH / satisfies � C �?
H
�� 2 Lie zGI , then it is in

ker L˛;b (see (4.144)). We provide now sufficient conditions to obtain the converse
implication.

Given a pair b D .!;H / 2 B� , H is a Hermitian–Yang–Mills reduction (HYM) on
.Ec ; I/ with respect to ! if it satisfies

(4.150) ƒ!FH D z�:

Note that if H is HYM on .Ec ; I/ with respect to ! , then (4.146) becomes simply

(4.151) hv0;L˛;bv1i! D !b.Y�0jI ; IY�1jI /:

Proposition 4.6 The operator L˛;b is elliptic. If H is HYM with respect to ! , then
L˛;b is also self-adjoint. If furthermore ˛0˛1 > 0, then

(4.152) ker L˛;b D f.�; �/ 2 C1.X /��0.ad EH / j �C �
?
H �� 2 Lie zGI g:

Proof The operator L˛;b is elliptic because so are P� P and d�
H

dH . If H is HYM,
then we can apply (4.151), where !b. � ; I � / is symmetric, so L˛;b is self-adjoint. We
have already seen that the right-hand side of (4.152) is contained in ker L˛;b . If in
addition ˛0˛1 > 0, then !b is compatible with either I or �I (see Section 2.2), so if
v D .�; �/ satisfies � WD �C �?

H
�� … Lie zGI , then hv;L˛;bvi! D !b.Y�jI ; IY�jI /¤ 0

by (4.151), and hence v … ker L˛;b . This implies (4.152).

Observe that, although L˛;b is an analogue in our context of the Lichnerowicz operator,
there is an important difference between these two operators, since by Proposition 4.6,
we can ensure that L˛;b is self-adjoint and its kernel corresponds to Lie zGI via (4.145)
only when b D .!;H / satisfies the Hermitian–Yang–Mills equation (4.150) and
˛0˛1 > 0.

4.3 The linearised coupled equations

Throughout Section 4.3, we fix a coupling constant ˛ 2R2 , a holomorphic structure
I on Ec over .X;J /, a Kähler class � on .X;J / and b D .!;H / 2 B� . Let
H 1;1.X;R/ � H 2.X;R/ be the vector subspace of those de Rham classes which
are representable by real closed .1; 1/–forms on .X;J /. Recall that H 1;1.X;R/ is
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identified by Hodge theory with the space H1;1.X / of real harmonic .1; 1/–forms on
.X;J; !/.

In Section 4.3, we will compute the first-order deformations of the moment map �b

constructed in Theorem 3.2 under deformations given by a new Kähler form z! and a
new holomorphic structure zI on the principal bundle Ec over .X;J /, given by

z! WD !C  C ddc�;(4.153a)

zI WD ei �
� I;(4.153b)

parametrised by a triple

.; �; �/ 2H1;1.X /�C1.X /��0.ad EH /:

We will also consider the deformed pair

(4.154) zb D .z!; zH / 2 Bz! with zH WD e� i �
�H 2R;

where z! is the cohomology class of z! . Note that (3.77) implies

(4.155) F
H ;zI
D ei �

�F zH ;I
;

where FH ;I is the curvature of the Chern connection �H D �H ;I associated to H

and I .

In fact, to prove Theorems 4.11 and 4.18, we will need to apply the implicit function
theorem, so we will work in Sobolev spaces. Let L2

k
.X / and L2

k
.ad EH / be the

Sobolev spaces of real-valued functions on X and sections of the bundle ad EH ,
respectively, whose distributional derivatives up to order k are square integrable. These
are real Hilbert spaces that, by the Sobolev embedding theorem, have natural bounded
inclusion maps L2

k
.X /�C l.X / and L2

k
.ad EH /�C l.ad EH / into the Banach spaces

of l –times continuously differentiable functions and sections of ad EH , respectively,
provided k > nC l . Moreover, if k > n, then L2

k
.X / is a Banach algebra. Fix k > n.

Let

(4.156) U D yU �L2
kC4.ad EH /�H1;1.X /�L2

kC4.X /�L2
kC4.ad EH /;

where yU � H1;1.X /�L2
kC4

.X / is the open neighbourhood of .0; 0/ consisting of
pairs .; �/ such that z!. � ;J � / is a Kähler metric of class C 2 , with z! defined by
(4.153a). Define the moment map operator

(4.157)
T˛ D .T0

˛;T
1
˛/W U �!L2

k.X /�L2
kC2.ad EH /;

.; �; �/ 7�! .S˛.zb; I/; 4˛1.ƒz!F
H ;zI
� zz!//;
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where z!; zI and zb are defined by (4.153) and (4.154), while S˛.zb; I/ and zz! are given
by the formulae (4.133) and (4.150), using the Kähler class

z! WD Œz!� 2H 1;1.X;R/:

Observe that T˛ is a variant for Sobolev spaces of the families of moment maps �b .

The following proposition can be compared with [39, Proposition 5].

Proposition 4.7 For k > n, T˛ is a well-defined C 1 map whose Fréchet derivative
ı T˛ at the origin .0; 0; 0/ is given by

(4.158) ı T˛. P ; P�; P�/

D L˛;b. P�; P�/C ..d.S˛.b; I//; d P�/! ; 4˛1J� P�ydHƒ!FH /C ı P T˛;

for all . P ; P�; P�/ 2H1;1.X /�L2
kC4

.X /�L2
k
.ad EH /, where

L˛;bW L2
kC4.X /�L2

kC4.ad EH / �!L2
k.X /�L2

kC2.ad EH /

is given by (4.144), . � ; � /! is the inner product on T �X induced by !. � ;J � /, � P� is
the Hamiltonian vector field of P� on .X; !/ and ı P T˛ is the directional derivative of
T˛ at the origin in the direction . P ; 0; 0/.

Proof The operator T˛ is well-defined because L2
k
.X / is a Banach algebra for k > n,

T0
˛ is a non-linear differential operator of order 4 in � and order 2 in  and � , while

T1
˛ is a non-linear differential operator of order 2 in � and � and order 0 in  .

To prove that T˛ is C 1 , we will calculate its directional derivatives

ı
. P�; P�/

T˛.; �; �/

and ı P T˛.; �; �/ at .; �; �/ in the directions .0; P�; P�/ and . P ; 0; 0/, respectively,
for .; �; �/ 2 U , . P ; P�; P�/ 2H1;1.X /�L2

kC4
.X /�L2

k
.ad EH /.

To compute ı. P�; P�/ T˛.; �; �/, we define a curve (on an appropriate Sobolev completion
of B� and for jt j small), given by

bt D .z!t ; zHt / WD .z!C tddc P�; e� i.�Ct P�/
�H /:

Let �t be the Hamiltonian vector field of P� over .X; z!t / and gt the flow of

(4.159) yt WD I�I . Pbt /D�I. P�C �?Ht
�t /;
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ie, the curve of Gc–equivariant automorphisms of Ec satisfying Pgt �g
�1
t D yt , with

initial condition g0 D Id. Since the Kähler class z! of z!t is constant along the curve
bt , we can apply the constructions in the proof of Proposition 3.5(1), so the flow gt

exists and satisfies

(4.160) bt D gt �
zb

(as b0 D
zb ). Note that the identity (4.160) holds in a strong sense, as k > n, so the

Kähler metrics z!t are of class C 2 and the G –reductions zHt are of class C 4 . Define
another curve

It WD g�1
t � I

in (an appropriate Sobolev completion of) the space Zzb of holomorphic structures
on the principal Gc–bundle Ec that are compatible with zb (see Section 3.1). Using
the dependence of S˛.bt ; I/ on the holomorphic structure I on Ec , we obtain

T0
t WD T0

˛.; �C t P�; �C t P�/D S˛.bt ; I/D S˛.zb; It / ı Lg
�1
t

by (3.79) and (4.160). Since d
dt jtD0

It DLy0
I , this implies

(4.161) ı
. P�; P�/

T0
˛.; �; �/D

d

dt jtD0
T0

t D .ıI S˛/j.zb;I /.Ly0
I/CJ� P�yd.S˛.zb; I//

D .ıI S˛/j.zb;I /.Ly0
I/C .d.S˛.zb; I//; d P�/z! ;

where ıI S˛W TI Zzb ! C1.X / is the derivative of S˛ with respect to I . Now, by
(4.148)

Ly0
I D .�JL� P�J;J.d zH

P�C � P�yF zH //;

and from this formula, (4.147) and (4.144), we obtain

.ıI S˛/j.zb;I /.IY� Pb /

D ˛0 P� P P� � 2˛1ƒ
2
z!.F zH ^ d zH J.d zH

P�C � P�yF zH /CL1

˛;zb
. P�; P�/^ zz!

D L0

˛;zb
. P�; P�/;

where zz! is defined as in (4.133) using the Kähler class z! , so the right hand side of
(4.161) is

(4.162) ı.;�;�/ T0
˛.0;
P�; P�/D L0

˛;zb
. P�; P�/C .d.S˛.zb; I//; d P�/z! :

By (3.77), we also have

T1
t WD T1

˛.; �C
P�t ; �C t P�/D 4˛1.e

i.�Ct P�/gt / � .ƒz!t
FH ;It

� zz!/;
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and a straightforward calculation shows that

(4.163) ı
. P�; P�/

T1
˛.; �; �/

D
d

dt jtD0
T1

t D 4˛1ƒz!d zH J.d zH
P�C � P�yF zH /C 4˛1J� P�yd zHƒz!F zH

D L1
˛;b.
P�; P�/C 4˛1J� P�yd zHƒz!F zH :

To compute ı P T˛.; �; �/, for .; �; �/ 2 U and P 2H1;1.X /, we define a curve

bt D .!t ; zH /D .z!C t P ; zH /

(for t 2R small). Let

T0
t WD T0

˛. C t P ; �; �/D S˛.bt ; I/

D�˛0S!t
�˛1ƒ

2
!t
.F zH ^F zH /C 4˛1ƒ!t

F zH ^ z�t
;

T1
t WD T1

˛. C t P ; �; �/D 4˛1.ƒ!t
F

H ;zI
� z�t

/;

where �t D Œ!t � 2H 1;1.X;R/. As shown by LeBrun and Simanca (see [39, Proposi-
tion 5] and [38, Proposition 6]), the derivative of the first term of T0

t is given by

ı PSz! WD
d

dt jtD0
S!t
D�z!.z!; P /z! � 2.�z! ; P /z! ;

where �z! and �z! are the Laplacian and the Ricci curvature of z!. � ;J � /, respectively.
To calculate the derivatives of T1

t and of the second term of T0
t , we use the equality

d

dt jtD0
!
Œn�
t D P ^ z!

Œn�1�
D .ƒz! P /z!

Œn�

and the following computations:

d

dt jtD0
.ƒ!t

F
H ;zI

!
Œn�
t /D

d

dt jtD0
.F

H ;zI
^!

Œn�1�
t /D F

H ;zI
^ P ^ z!Œn�2�;

d

dt jtD0
..ƒ2

!t
.F zH ^F zH /� 4ƒ!t

F zH ^ z�t
/!
Œn�
t /

D
d

dt jtD0
.2F zH ^F zH ^!

Œn�2�
t � 4F zH ^ z�t

!
Œn�1�
t /

D 2F zH ^F zH ^ P ^ z!
Œn�3�
�4F zH ^ .zz! P C

ı P zz! z!

n� 1
/^ z!Œn�2�:

Here, (4.150) implies

(4.164) ı P zz! WD
d

dt jtD0
z�t
D

X
j

ǰ zj
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for an orthonormal basis fzj g of z, with:

ǰ WD
d

dt jtD0

hzj .E/[�
Œn�1�
t ; ŒX �i

Vol�t

D
hzj .E/[ Œ P �[ z!

Œn�2�; ŒX �i

Volz!
�
hzj .E/[ z!

Œn�1�; ŒX �ihŒ P �[ z!Œn�1�; ŒX �i

Vol2
z!

:

From these equalities, we obtain the directional derivatives:

ı P T0
˛.; �; �/D

d

dt jtD0
T0

t D ˛0.2.�z! ; P /z! ��z!.z!; P /z!/(4.165a)

�
˛1

3
ƒ3
z!.FH ;zI

^F
H ;zI
^ P /C 2˛1ƒ

2
z!

�
F

H ;zI
^

�
zz! P C

ı P zz! z!

n� 1

��
C˛1.ƒ

2
z!.FH ;zI

^F
H ;zI

/� 4ƒz!F zH ^ zz!/.ƒz! P /;

ı P T1
˛.; �; �/D

d

dt jtD0
T1

t D 4˛1..FH ;zI
; P /z! � ı P zz!/:(4.165b)

It now follows from (4.161), (4.163), (4.165) and the formula (4.164) for ı P zz! that the
directional derivatives are continuous. Therefore, T˛ is C 1 and its Fréchet derivative
given by (4.158) (by (4.161) and (4.163)).

Note that an explicit formula for the directional derivative ı P T˛ has been calculated in
(4.165), although it has not been recorded in (4.158), as it is not needed in this paper.

4.4 Deformation of solutions

As in Section 4.3, we now fix a holomorphic structure I on Ec over .X;J /, a Kähler
class � on .X;J / and b D .!;H / 2 B� . Note that HJ acts trivially on the space
H1;1.X /��2.X / of real harmonic .1; 1/–forms for the metric !. � ;J � /. Let

(4.166) L2
k.X /

HJ �L2
k.X / and L2

k.ad EH /
zGI �L2

k.ad EH /

be the closed subspaces of HJ –invariant functions and zGI –invariant sections, respec-
tively. Let yV D yU \ .H1;1.X /�L2

k
.X /HJ / and

(4.167) V D yV�L2
k.ad EH /

zGI DU\.H1;1.X /�L2
kC4.X /

HJ �L2
kC4.ad EH /

zGI /:

Given coupling constants ˛ 2 R2 , by restriction of the maps of Proposition 4.7, for
k > n, we obtain well-defined maps

yT˛WV �!L2
k.X /

HJ �L2
kC2.ad EH /

zGI ;(4.168a)

yL˛;bWL2
kC4.X /

HJ �L2
kC4.ad EH /

zGI �!L2
k.X /

HJ �L2
kC2.ad EH /

zGI ;(4.168b)
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(cf [38, (5.1)]), where yT˛ is C 1 with Fréchet derivative given by (4.158), and yL˛;b is
a linear elliptic operator.

Let d� and G be the formal adjoint of the de Rham differential and the Green operator
of the Laplacian for the fixed metric !. � ;J � /, respectively. Then for any symplectic
form z! and any z� in the Lie algebra LieHz! of Hamiltonian vector fields over .X; z!/
we have

(4.169) d.Gd�.z�y z!//D z�y z!:

As the image of the Green operator is perpendicular to the constants, the Hamil-
tonian function f D Gd�.z�y z!/ is “normalized” for the volume form !Œn� , that is,R
X f!Œn� D 0.

For each .; �; �/ 2 V , we define a linear map

(4.170)
P.;�;�/ D .P0

.;�/;P
1
� /W R� z.Lie zGI / �!L2

k.X /
HJ �L2

kC2.ad EH /
zGI

.t; v/ 7�! .Gd�.p.v/y z!/C t; �
H ;zI

v/;

where
z.Lie zGI / WD .Lie zGI /

zGI

is the centre of Lie zGI (cf (1.15)) and pW zGI ! HJ is the map in (4.135), while z!
and zH are defined by (4.153a) and (4.154). The map P.;�;�/ attaches to a vector field
v 2 z.Lie zGI / its vertical part �H ;zI v , calculates the normalized Hamiltonian function
of the vector field p.v/ over .X; z!/, and adds an extra parameter t , which accounts
for the fact that Hamiltonian functions are only determined up to a constant (cf (4.145),
[38, Section 5; 39, Proposition 2]).

Here is the key link between extremal pairs and the linearization of the coupled
equations.

Lemma 4.8 Let .; �; �/ 2 V .

(1) P.;�;�/ is injective.

(2) If yT˛.; �; �/ 2 Im P.;�;�/ , then zb D .z!; zH / is an extremal pair.

(3) Im P0 � ker yL˛;b , with equality if ˛0˛1 > 0 and H is HYM with respect to ! .

Proof We first prove that, given .t; v/ 2 R� z.Lie zGI / and .f; �/ WD P.;�;�/.t; v/,
we have

(4.171) t D

Z
X

f!Œn�=Vol�; v D �C �?
H ;zI
z�f ;
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where z�f is the Hamiltonian vector field associated to f 2 C1.X / and z! . To see
this, note that, since p.v/ is holomorphic and preserves z! , it can be written as

p.v/D z� Cˇ;

where z� is the real-holomorphic Hamiltonian vector field associated to  2 C1.X /

and z! , and ˇ is a parallel vector field with respect to z! (see [39, Section 2]). Then,
since p.v/ and z� vanish somewhere on X , we have that ˇ D 0 and therefore

d D p.v/y z! D df:

Formula (4.171) follows from the decomposition of v into its vertical and horizontal
parts with respect to �

H ;zI
.

Now, (1) follows from (4.171). To prove (2), suppose yT˛.; �; �/ 2 Im P.;�;�/ , ie,

(4.172) f D S˛.zb/; �D �
h;zI
v D 4˛1.ƒz!F

H ;zI
� zz!/:

From (4.171), it follows that

(4.173) 4˛1d zHƒz!F zH D�z�f yF zH ; Pz! f D�Lz�f J D 0;

where we have used (3.77) to obtain the first equation, while the other identity follows
because z� D z�f is real-holomorphic. Therefore zb D .z!; zH / is an extremal pair.

To prove (3), note first that the inclusion Im P0 � ker yL˛;b is a straightforward con-
sequence of (4.171). Suppose now that ˛0˛1 > 0 and H is HYM with respect to
! . Let .f; �/ 2 ker yL˛;b . By Proposition 4.6, v WD �C �?

H ;I
�f is in Lie zGI . In

fact, v 2 z.Lie zGI /, as f is HJ –invariant and � is zGI –invariant by assumption (see
(4.168b)). Therefore P0.v; t/D .f; �/, where t WD

R
X f!Œn�=Vol� .

Let h � ; � i! be the L2 –inner product on L2
k
.X /HJ�L2

kC2
.ad EH /

zGI given by (4.141).
We claim that the orthogonal projectors onto Im P.;�;�/ , denoted

….;�;�/W L
2
k.X /

HJ �L2
kC2.ad EH /

zGI �!L2
k.X /

HJ �L2
kC2.ad EH /

zGI

vary smoothly with .; �; �/ 2 V . To prove this, note that the map

PW V �R� z.Lie zGI / �!L2
k.X /

HJ �L2
kC2.ad EH /

zGI ;

.; �; �; t; v/ 7�! P.;�;�/.t; v/;

is C 1 , as P0
.;�/.t; v/ is linear in .; �; t; v/ and P1

�
.v/ depends linearly on v and

smoothly on � . Moreover, P.;�;�/ is an isomorphism onto its image for all .; �; �/ 2
V , by Lemma 4.8. Let fwj g be a basis of the vector space R ˚ z.Lie zGI / and
f�j .; �; �/g be the orthonormal basis of Im P.;�;�/ extracted from fP.;�;�/wj g by
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the Gram–Schmidt orthogonalization process. Then the claim follows by the above
observations and the fact that

(4.174) ….;�;�/ D
X

j

h�j .; �; �/; � i!�j :

Furthermore, since h�j ; �ki! are continuous functions on V , the origin has an open
neighbourhood V0 � V such that for all .; �; �/ 2 V0 , the following holds (cf [39,
(5.3)]):

(4.175) ker.Id�….;�;�//D ker.Id�…0/ ı .Id�….;�;�//:

For any pair of non-negative integers .l;m/, let Il;m �L2
l
.X /HJ �L2

m.ad EH /
zGI be

the orthogonal complement of Im P0 . Define

W D V0\ .H1;1.X /� IkC4;kC4/:

Note that, under the assumptions in the last part of Lemma 4.8, the subspace W
is perpendicular to ker L˛;b . We will use this fact to obtain existence results about
deformations of extremal pairs. Define a LeBrun–Simanca map [38, Section 5]:

(4.176)
T˛W W �! Ik;kC2;

.; �; �/ 7�! .Id�…0/ ı .Id�….;�;�// ı yT˛.; �; �/:

Then T˛ is C 1 , because it is the composition of C 1 maps.

Given . P�; P�/ 2 IkC4;kC4 , to calculate the directional derivative ı. P�; P�/T˛ of T˛ at the
origin in the direction .0; P�; P�/, we define the curve

bt D .0; t P�; t P�/:

Using (4.158), we obtain:

ı
. P�; P�/

T˛D
d

dt
T˛.bt /jtD0

D .Id�…0/L˛;b. P�; P�/

C .Id�…0/
�
.d.S˛.b//; d P�/! ; 4˛1J� P�ydH .ƒ!FH /

�
� .Id�…0/

d

dt
.…bt

T˛.0//jtD0

Now, if b D .!;H / is a solution to the coupled equations (3.119), then the second
summand of the right-hand side vanishes and …bt

T˛.0/D T˛.0/ for all t , so the third
summand of the right-hand side vanishes too and hence, under this assumption, we
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conclude that

(4.177) ı
. P�; P�/

T˛ D .Id�…0/ ı yL˛;b. P�; P�/:

Remark 4.9 It is at this point that one runs into technical difficulties if one attempts to
apply the approach of LeBrun and Simanca [38] to obtain deformations of an extremal
pair which is not a solution of the coupled equations. The problem is that for an
arbitrary extremal pair b D .!;H /, if one proceeds as in [38, Lemma 1], then one
obtains

ı
. P�; P�/

T˛ D .Id�…0/.yL˛;b. P�; P�/C .0;�J�˛.b; I/y.dH
P�C � P�yFH ///;

and to construct deformations of b which are also extremal pairs using the approach
of [38], we need know that (4.177) is satisfied. A natural condition which implies
that (4.177) holds is that S˛.!;H / is constant. Furthermore, in the approach of
[38], we need to know that yL˛;b is self-adjoint, with kernel Im P0 , so another natural
condition is that the Hermitian–Yang–Mills equation is satisfied, by Proposition 4.6
and Lemma 4.8(2). In other words, to get a direct generalization of the method of [38],
it is natural to impose the condition that b is a solution of the coupled equations, as we
will do below.

We can now prove the two main results of Section 4.4. For this, given ˛ 2R2 , we call
b 2 B� an extremal pair with coupling constants ˛ if it satisfies (4.132).

Theorem 4.10 Suppose .!;H / is a solution to the coupled equations (3.119) with
coupling constant ˛ and Œ!�D�, where ˛ D .˛0; ˛1/ 2R2 satisfies ˛0˛1 > 0. Then
.˛;�/ has an open neighbourhood U �R2�H 1;1.X;R/ such that for all .z̨; z!/ 2U

there exists an extremal pair .z!; zH / with coupling constants z̨ and such that Œz!�D z! .

Proof Note that �˛.b/ D 0, as b D .!;H / is a solution of the coupled equations
(3.119). Since the map T˛ depends linearly on ˛D .˛0; ˛1/, it can be viewed as a C 1

map TW R2�W! Ik;kC2 , whose the Fréchet derivative at the origin with respect to �
and � is ı T˛ D .Id�…0/ı yL˛;b , by (4.177). Since H is HYM with respect to ! and
˛0˛1 > 0, Lemma 4.8 applies and .Id�…0/ ı yL˛;b is an isomorphism. Therefore, by
the implicit function theorem, there exists an open neighbourhood U �R2�H1;1.X /

of .˛;�/ such that for all .z̨;  / 2 U there exists a pair .�; �/ 2 IkC4;kC4 such that

Tz̨.; �; �/ 2 ker..Id�…0/.Id�…;�;�//;

so Tz̨.; �; �/2 Im P.;�;�/ by (4.175). Hence the pair .z!; zH / determined by .; �; �/
is extremal with coupling constant z̨ , by Lemma 4.8(1), and smooth by Lemma 4.3.
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Let H 1;1.X;R/C � H 1;1.X;R/ denote the “Kähler cone” of .X;J /, ie, the open
subset of elements � 2 H 1;1.X;R/ such that K� is non-empty. Given .˛;�/ 2
R2
>0
�H 1;1.X;R/C , consider the ˛–Futaki character F˛;�W Lie�I !C defined in

(3.108) (or (3.126)). Denote

V .F/ WD f.˛;�/ j F˛;� D 0g �R2
>0 �H 1;1.X;R/C:

Theorem 4.11 Let S be the set of pairs .˛;�/ 2 R2
>0
�H 1;1.X;R/C for which

there exists a solution .!;H / 2 B� to the coupled equations (3.119).

(1) Then S \V .F/ is open in V .F/.

(2) If Aut.Ec ; I/ is finite, then S �R2 �H 1;1.X;R/ is open.

Proof The proof is immediate from Theorem 4.10, together with Proposition 4.2 for
part (1) and (4.137) for part (2).

4.5 Deformations of solutions in the weak coupling limit

We will now obtain solutions to the coupled equations (3.119) in “weak coupling
limit” 0< j˛1=˛0j � 1 by deforming solutions .!;H / 2B� with coupling constants
˛0 ¤ 0; ˛1 D 0. Since we will study these equations for coupling constants in a small
open neighbourhood of a pair .˛0; ˛1/ 2R2 satisfying ˛0 ¤ 0; ˛1 D 0, we can divide
the second equation in (3.119) by ˛0 . Hence in the sequel we will normalize to ˛0D 1

and ˛ WD ˛1 will be called the coupling constant.

Note that for ˛ D 0, the coupled equations (3.119) are the condition that ! is a cscK
metric on .X;J / and H is a Hermitian–Yang–Mills reduction of .Ec ; I/ with respect
to ! , so in particular the pair .!;H / satisfies the following equations:

(4.178)
d�

H
FH D 0;

L�S!
J D 0:

�
Here, d�

H
FH D 0 is the Yang–Mills equation, which is equivalent to

(4.179) dHƒ!FH D 0

by the Kähler identities (see eg [15, Proposition 3]), and �S! is the Hamiltonian vector
field of the scalar curvature S! over .X; !/, so L�S!

J D 0 is the condition that ! is
an extremal metric on .X;J /.

If one attempts to generalize Theorem 4.10 to the weak coupling limit, one observes
that Proposition 4.2 cannot be used for ˛ D 0, but the system of equations (4.178)
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can be viewed as an adiabatic limit of equation (4.132). In fact, a pair b� WD .�!;H /

satisfies (4.132) with coupling constant ˛ , for a real number � > 0, if and only if

(4.180) 4˛dHƒ!FH C�
�1��yFH D 0; L��J D 0;

where �� is the Hamiltonian vector field of S˛=�.!;H / over .X; !/, and (4.178) is
the formal limit of (4.180) when �!1. Hence a strategy to obtain a solution to the
coupled equations (3.119) for 0 < j˛1=˛0j � 1 (equivalently, for �� 0) could be
to deform a solution to (3.119) for ˛ D 0 (which is therefore a solution to (4.178))
to obtain a solution of (4.180). The problem is that the kernel of the operator L˛;b�
determined by a solution b� to the coupled equations (3.119) has a discontinuity in
the limit �!1. More precisely, this kernel for finite � > 0 can be identified with
Lie zGI (see Proposition 4.6), whereas the kernel of L˛;b in the limit �!1 is

(4.181) f.�; �/ 2 C1.X /��0.ad EH / j �� 2 LieHJ ; d�H .dH �C ��yFH /D 0g

(this follows directly from (4.144)). This discontinuity causes serious technical prob-
lems when one attempts to use this strategy within the approach of LeBrun and Simanca.

The source of this difficulty is related to the vanishing of the factor 4˛1 multiplying
the HYM term in the moment maps �b when ˛1 D 0 (see (2.44)). One way to get
around this problem is to apply the approach of LeBrun and Simanca to the operator
obtained by dropping this factor in the moment map operator T˛ . Fix an integer k > n

and keep the notation of Section 4.3, 4.4. Then the resulting modified moment map
operator is

(4.182)
B˛W U �!L2

k.X /�L2
kC2.ad EH /;

.; �; �/ 7�!
�
S˛.zb/;ƒz!F

H ;zI
� zz!

�
;

where U is the open set in (4.156) and z!; zI and zb are given by (4.153) and (4.154).

As we will see below, this modification on the moment map operator within the approach
of LeBrun and Simanca produces the following modified extremality condition (cf
(4.132)).

Definition 4.12 A pair bD .!;H / 2B� is called extremal with coupling constant ˛
in the weak coupling limit if it satisfies the equations

(4.183)
d�

H
FH D 0;

L�˛.b/J D 0;

�
where �˛.b/ is the Hamiltonian vector field of S˛.b/ over .X; !/.
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Note that the system of equations (4.183) becomes (4.178) when ˛ D 0, while for
arbitrary ˛ any solution to the coupled equations (3.119) is an extremal pair in the
weak coupling limit (see (4.179)). To obtain a partial converse, define the characters

(4.184) F0;�; F1;�W Lie Aut.Ec ; I/ �!C

as the ˛–Futaki characters of the Kähler class � for .˛0; ˛1/ equal to .1; 0/ and
.0; 1/ in (3.126), respectively. By (3.126), up to a multiplicative factor, hF0;�; �i is
the Futaki character [22] of the Kähler class � on .X;J / evaluated at p.�/, where p

is the map in (4.135). It is also clear from (3.126) that the existence of a solution to the
coupled equations (3.119) does not necessarily imply the vanishing of F0;� or F1;� .

Proposition 4.13 A solution b 2 B� of (4.183) is a solution to the coupled equations
(3.119) if F0;� D F1;� D 0 and the vector field �˛.b/ over X can be lifted to a
holomorphic vector field over the total space of .Ec ; I/.

Proof By (4.179), ƒ!FH is a vertical holomorphic vector field on the total space of
.Ec ; I/, ie, ƒ!FH 2 LieGI . Now, if F1;� D 0, then H is HYM with respect to ! ,
because in this case, by (3.126) we obtain

kƒ!FH � z�k
2
! D�hF1;�; ƒ!FH � z�i D 0:

Moreover, if F0;� D F1;� D 0 and �˛.b/D p.�/ for a holomorphic vector field �
on .Ec ; I/, then by a straightforward computation using (3.126), we obtain

kS˛.b/� yS˛k
2
! D hF0;�; �˛.b/iC˛hF1;�; �iC˛h�H �;ƒ!FH � z�i D 0;

where yS˛ D
R
X S˛.b/!

Œn�=Vol� , so b is a solution to the coupled equations (3.119).

Extremal pairs in the weak coupling limit enjoy the same good regularity properties:

Lemma 4.14 Let .!;H / be a solution of (4.183) such that ! is a Kähler form of
class C 2 on .X;J / and H is a section of Ec=G of class C 4 . Then both ! and H

are smooth.

Proof This follows exactly as Lemma 4.3.

We define now a linear differential operator that is closely related to the linearization of
B˛ (see (4.182)) when ˛ D 0 and which will play the role in the weak coupling limit
of the Lichnerowicz operator (4.142) in the study of the cscK equation or the operator
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L˛;b defined in Section 4.4 away from the weak coupling limit. This linear differential
operator is

(4.185)
CW L2

kC4.X /�L2
kC4.ad EH / �!L2

k.X /�L2
kC2.ad EH /;

.�; �/ 7�! .P� P�; d�H .dH �C ��yFH //;

where P is defined as in (4.142). It is easy to see (cf Proposition 4.6) that the operator
C is elliptic and self-adjoint with respect to the L2 –inner product h � ; � i! given by
(4.141).

It can be shown as in the proof of Proposition 4.7 that B˛ is well-defined and C 1 and
that its Fréchet derivative at the origin .0; 0; 0/ when ˛ D 0 is given by

(4.186) ı B0. P ; P�; P�/D C. P�; P�/C ..dS! ; d P�/! ; 0/C ı P B0;

where ı P B0 is the directional derivative of B0 at the origin in the direction . P ; 0; 0/
(cf (4.158)).

To proceed as in Section 4.5 following the approach of LeBrun and Simanca, we need
to consider the restriction of B˛ and C to suitable subspaces of the Sobolev spaces. Let

L2
k.X /

HJ �L2
k.X / and L2

k.ad EH /
GI �L2

k.ad EH /

be the closed subspaces consisting of HJ –invariant functions and GI –invariant sections,
respectively (cf (4.166)) and

V 0 D U \ .H1;1.X /�L2
kC4.X /

HJ �L2
kC4.ad EH /

GI /

(cf (4.167)). By restriction of (4.182) and (4.185), we obtain well-defined maps

yB˛W V 0 �!L2
k.X /

HJ �L2
kC2.ad EH /

GI ;(4.187a)

yCW L2
kC4.X /

HJ �L2
kC4.ad EH /

GI �!L2
k.X /

HJ �L2
kC2.ad EH /

GI ;(4.187b)

where yB˛ is C 1 and yC is a linear elliptic operator (cf (4.168)).

Note that in the constructions (4.187) we have used the subspace L2
k
.ad EH /

GI �

L2
k
.ad EH / rather than the possibly smaller subspace L2

k
.ad EH /

zGI , which appeared
in (4.168). In practice, we could say that the exact sequence (4.135) in Section 4.4
degenerates to the trivial extension

(4.188) 1 �! GI �!HJ �GI �!HJ �! 1

in the weak coupling limit ˛! 0. In particular, the centre z.Lie zGI / of Lie zGI (see
(4.170)) is now replaced by the centre z.LieHJ /˚ z.LieGI / of the Lie algebra of
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HJ �GI and P.;�;�/ (see (4.170)) is replaced by

(4.189)
Q.;�;�/W R� z.LieHJ /˚ z.LieGI / �!L2

kC3.X /
HJ �L2

kC2.ad EH /
GI ;

.t; w; v/ 7�! .Gd�.wy z!/C t; v/;

with .; �; �/ 2 V 0 .

Lemma 4.15 Let .; �; �/ 2 V 0 . If yB˛.; �; �/ 2 Im Q.;�;�/ , then zb D .z!; zH / is a
solution of (4.183).

Proof This follows exactly as part (2) of Lemma 4.8.

Since C has kernel (4.181) by elliptic regularity, part (3) of Lemma 4.8 has no direct
analogue in the weak coupling limit. Lemma 4.16 will provide a suitable replacement
of this part of the lemma. Let h � ; � i! be the L2 –inner product on L2

k
.X /HJ �

L2
kC2

.ad EH /
GI given by (4.141). One can prove as in Section 4.4 that the orthogonal

projector

…0.;�;�/W L
2
k.X /

HJ �L2
kC2.ad EH /

GI �!L2
k.X /

HJ �L2
kC2.ad EH /

GI

onto Im Q.;�;�/ varies smoothly with .; �; �/ 2 V 0 and, by continuity, there exists
an open neighbourhood V 0

0
� V 0 of the origin such that

ker.Id�…0.;�;�//D ker.Id�…0/ ı .Id�…0.;�;�//

for any .; �; �/ 2 V 0
0

(cf (4.175)).

For any pair of non-negative integers .l;m/, let I 0
l;m
�L2

l
.X /HJ �L2

m.ad EH /
GI be

the orthogonal complement of Im Q0 . Define

W 0 D V 00\ .H
1;1.X /� I 0kC4;kC4/:

Lemma 4.16 The induced map yCW I 0
kC4;kC4

�! I 0
k;kC2

is an isomorphism.

Proof This map is well-defined because Im Q0 � ker.P˚dH /. If yC.�; �/ D 0

for some .�; �/ 2 I 0kC4;kC4 , then P� P� D 0, so P� D 0, which implies � D 0,
and yC.�; �/D 0 means d�

H
dH � D 0, so dH � D 0, which implies � D 0. Thus yC is

injective. Finally, yC is surjective because so is P� P˚d�
H

dH .

Define now a LeBrun–Simanca map [38, Section 5]

(4.190)
B˛W W 0 �! I 0k;kC2;

.; �; �/ 7�! .Id�…00/ ı .Id�…
0
.;�;�// ı

yB˛.; �; �/:

Geometry & Topology, Volume 17 (2013)



2798 Luis Álvarez-Cónsul, Mario García-Fernández and Oscar García-Prada

As B˛ is the composition of C 1 –maps, it is C 1 . Using Lemma 4.16 and [38, Lemma 1],
we can see that its directional derivative at the origin in the direction .0; P�; P�/ for ˛D0 is

(4.191) ı
. P�; P�/

B0 D .Id�…00/yC. P�; P�/D yC. P�; P�/;

for all . P�; P�/ 2 I 0
kC4;kC4

.

We can now prove the two main results of Section 4.5.

Theorem 4.17 Suppose that ! is an extremal Kähler metric on .X;J / with �D Œ!�
and H is a Yang–Mills reduction of .Ec ; I/ with respect to ! . Then .0; �/ has an
open neighbourhood U �R�H 1;1.X;R/ such that for all .z̨; z!/ 2 U there exists an
extremal pair .z!; zH / with coupling constant z̨ in the weak coupling limit such that
Œz!�D z! .

Proof This follows as Theorem 4.10, combining (4.191) with Lemma 4.16 and the
implicit function theorem, and then using Lemmas 4.15 and 4.14.

In the following theorem, we say that a reduction H 2R is irreducible if its Chern
connection is irreducible, that is, if its isotropy group inside the gauge group GH of
EH is minimal; the centre of G (see Section 2.3 and also [20, Section 4.2.2]).

Theorem 4.18 Assume that there is a cscK metric ! on .X;J / with cohomology
class � and there are no non-zero Hamiltonian Killing vector fields on X . Then:

(1) If .Ec ; I/ admits an irreducible HYM reduction H with respect to ! , then
.0; �/ has an open neighbourhood U � R � H 1;1.X;R/ such that for all
.z̨1; z!/ 2 U , there exists a solution .z!; zH / to the coupled equations (3.119)
with coupling constant z̨ D .1; z̨1/ and z! 2 z! .

(2) If .Ec ; I/ admits a HYM reduction H with respect to ! , then there exists � > 0

such that for all z̨1 2R with �� < z̨1 < � , there exists a solution .z!; zH / to the
coupled equations (3.119) with coupling constants .1; z̨1/ and z! 2 z! .

Proof Since HYM reductions are Yang–Mills, Theorem 4.17 implies that for all
.z̨; z!/ in a neighbourhood U �R�H 1;1.X;R/ of .0; �/, there exists an extremal
pair .z!; zH / with coupling constant z̨ in the weak coupling limit with Œz!�D z! and zH
irreducible.

Part (1) follows now since the function S˛.z!; zH / defined by (4.133) is constant on
X for any extremal pair .z!; zH /, as LieHJ D 0 and, furthermore, the vertical real-
holomorphic vector field on .Ec ; I/ defined by ƒz!F zH is in z, as zH is irreducible.

Part (2) follows from Theorem 4.17 and Proposition 4.13, because F0;� D F1;� D 0

by (3.126), as LieHJ D 0 and .Ec ; I/ admits a HYM reduction H with respect
to ! .

Geometry & Topology, Volume 17 (2013)



Coupled equations for Kähler metrics and Yang–Mills connections 2799

5 Examples and cscK metrics on ruled manifolds

This section contains some examples of solutions to the coupled equations (0.2). In
Section 5.4 we also discuss how the existence of solutions in the limit case ˛0 D 0 can
be applied, using results of Y J Hong in [30], to obtain cscK metrics on ruled manifolds.

5.1 Projectively flat bundles

Let .Ec ; I/ be a holomorphic principal Gc–bundle over a compact complex manifold
X . We fix a maximal compact subgroup G �Gc and a G –invariant metric . � ; � / on
g. Suppose that there exists a G–reduction H on Ec and a Kähler metric ! on X

satisfying

(5.192)
FH D z !;

S! D yS ;

�
where FH is the curvature of the Chern connection of H , z is the element of z (see
(1.15)) given by (1.18) and yS 2 R. It is then straightforward that the pair .!;H /

provides a solution of the coupled equations (0.2). Note that the first equation in
(5.192) implies that the G–bundle EH corresponding to H is projectively flat, ie, it
is given by a representation �1.X /! G=Z.G/, where Z.G/ denotes the centre of
G . Moreover, it implies the following topological constraint

(5.193) Œz ^FH �D jzj
2Œ!� 2H 2.X;R/;

where ŒFH ^ z� is the Chern–Weil class associated to the G–invariant linear form
. � ; z/ on g. We discuss now some examples of solutions of (5.192). We apply
Theorem 4.18(1) to perturb the Kähler class of the given solution in order to obtain
new solutions that do not satisfy the topological constraint (5.193).

Example 5.1 Let X be a compact Riemann surface. Then the coupled equations (0.2),
for a G–reduction H on Ec and a Kähler metric ! on X , split into the system in
separated variables (5.192), since dimC X D1 and the term .FH ^FH / vanishes. Then
the solutions of the coupled equations (0.2) are given by pairs .!;H /, where ! is a
cscK metric and H is a G –reduction such that its Chern connection is Hermitian–Yang–
Mills (1.17). Due to the Narasimhan and Seshadri theorem [14], and Ramanathan’s
generalization [47], examples of solutions of the coupled equations (0.2) are given by
polystable Gc–bundles over X .

Remark 5.2 In [46], Pandharipande used geometric invariant theory to compactify
the moduli space of pairs .X;F / consisting of a smooth algebraic curve X of genus
g > 1, polarised by a multiple of its canonical bundle, and a semistable vector bundle
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F over the curve. By [46, Proposition 8.2.1], such a pair is GIT stable if and only if
E is Mumford stable. An interesting issue is that this decoupling phenomenon for
the stability condition of a pair .X;F / is reflected in the decoupling of the equations
(0.2), as already observed in Example 5.1. In fact, combining the Narasimhan–Seshadri
theorem with the uniformization theorem on Riemann surfaces, it follows that any
GIT stable pair .X;F / in Pandharipande’s construction, with X smooth, admits one
and only one (irreducible) solution of (0.2) with Kähler class equal to the class of
the polarisation. This gives some evidence to the claim that a Hitchin–Kobayashi
correspondence for equations (0.2) exists in arbitrary dimensions, as conjectured by
the authors [25]. An important difference with the curve case is that of course in
higher dimensions one expects that the stability condition equivalent to the existence
of solutions will involve conditions on the base manifold as well. In [25], a new notion
of stability for degree zero bundles and polarised varieties has been defined. We hope
to address the relation of this stability condition and the existence of solutions of (0.2)
in future work.

Let .X;L/ be a compact polarised manifold of complex dimension n. Suppose that
there exists a cscK metric

! D
i

2�
FH 2 c1.L/;

where FH is the curvature of a Hermitian metric H on L. Then .!;H / is a solution
of (5.192), and hence a solution of (0.2). Since H is trivially an irreducible HYM
metric with respect to ! , if there are no non-zero Hamiltonian holomorphic vector
fields on X , we can apply Theorem 4.18(1) obtaining solutions of (0.2) with non-zero
ratio of the coupling constants and Kähler class close to Œ!� in H 1;1.X;R/.

Example 5.3 Let X be a degree four hypersurface of P3 and set LDOX .1/. Then
X is a K3 surface and, by Yau’s solution [61] of the Calabi conjecture (see eg [6]),
there exists a unique Kähler Ricci flat metric ! 2 c1.L/. Since .X; !/ is Kähler Ricci
flat, any holomorphic vector field on X is !–parallel and so Lie.Aut X / contains no
non-zero Hamiltonian holomorphic vector fields. Therefore, applying Theorem 4.18(1),
we obtain solutions of (0.2) with non-zero ratio of the coupling constants ˛1=˛0 and
Kähler class z! close to �D Œ!� in H 1;1.X;R/. As the dimension of H 1;1.X;R/ is
20, we can assume that z! is not contained in the real line spanned by �, and so it is
not obvious a priori that such a Kähler class contains a solution of (0.2) for our choice
of manifold X and bundle L.

When .X; !/ is a flat Kähler torus, we can relax condition (5.192) and assume that E

is an arbitrary projectively flat Hermitian bundle over X .
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Example 5.4 Let X Š Cn=ƒX be a complex torus given by a lattice ƒX in Z2n

and endowed with a flat Kähler metric ! . Examples of holomorphic vector bundles E

over X admitting a projectively flat Hermitian metric H are given by representations
of a central extension of ƒX into U.r/� GL.r;C/. Suppose that E is given by an
irreducible representation of ƒX and take a projectively flat Hermitian metric H on E ,
with curvature � Id. By a conformal change on H , we can assume that � is harmonic,
and hence it is constant with respect to the natural coordinates in the torus. Then
.!;H / is a solution to the coupled equations (0.2) for arbitrary value of the coupling
constants ˛0 and ˛1 .

Remark 5.5 In [50], Schumacher and Toma constructed a moduli space of (non-
uniruled) polarised Kähler manifolds equipped with stable vector bundles, using versal
deformations. This moduli space is endowed with a Kähler metric, provided that the
cohomological constraint (5.193) is satisfied, the base manifold X is Kähler–Einstein
and the bundle is projectively flat. The gauge-theoretic equations corresponding to
this moduli construction are therefore equivalent to (5.192), whose solutions are in
particular solutions to the coupled equations (0.2). Note here that the cscK equation
and the Kähler–Einstein equation are equivalent, by Hodge theory, if the class of the
polarisation is a multiple of c1.X /.

In the examples of Section 5.1, the coupled equations (0.2) admit decoupled solutions
arising from the system in separated variables (5.192). There is a geometric interpreta-
tion for this in terms of the extended gauge group zG in (1.20) associated to a solution
.!;H / to FH D z! and the moment map interpretation of (0.2) in Section 2. Namely,
the Chern connection A of H determines a Lie algebra splitting of the short exact
sequence

0 �! LieG �! Lie zG �! LieH �! 0

(see (1.32)). The splitting is given by the Lie algebra homomorphism

(5.194)
ˆW LieHŠ C10 .X / �! Lie zG;

� 7�! �?A �� ��z;

(see (1.34)), where ��y! D d� and �?
A

is the horizontal lift with respect to the
connection A. To see this, note that

Œˆ.�1/; ˆ.�2/�D Œ�
?
A ��1

��1z; �?A ��2
��2z�

D �?A Œ��1
; ��2

��f�1; �2gzC .FA� z!/.��1
; ��2

/

Dˆ.f�1; �2g/C .FA�!z/.��1
; ��2

/;
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where f�1; �2g is the Poisson bracket in C1
0
.X / given by ! . Note that this homomor-

phism does not extend in general to the Lie algebra of the group of diffeomorphisms of
X . Therefore, when dimC X D 1 or E is projectively flat, the coupled system (0.2)
may have “decoupled” solutions due to the fact that Lie zG is a semidirect product of
LieG and LieH .

5.2 Homogeneous bundles over homogeneous Kähler manifolds

For the basic material on this topic we refer to Besse [6] and Kobayashi [34]. Let
X be a compact homogeneous Kählerian manifold (ie, admitting a Kähler metric) of
a compact group G . In other words, X D G=Go , for a closed subgroup Go � G ,
equipped with the canonical G–invariant complex structure (see [6, Remark 8.99]).
Then homogeneous holomorphic vector bundles E of rank r over X are in one-to-one
correspondence with representations of Go in GL.r;C/. For any invariant Kähler
metric ! on X , there exists a unique G–invariant Hermitian–Yang–Mills unitary
connection A, provided that the representation inducing E is irreducible (see [34,
Proposition 6.1]). Moreover, for any such choice of invariant metric and connection,
the scalar curvature S! and the function ƒ2

! tr.FA ^FA/ on X are G –invariant and
hence constant. It hence turns out that A satisfies the system of equations

(5.195)
ƒ!FA D i� Id;

ƒ2
! tr.FA ^FA/D�

4yc

.n� 1/!
;

9=;
where yc 2R is as in (2.51) and � 2R is determined by the first Chern class of E and
Œ!�. Equations (5.195) corresponds to the limit

˛0! 0

in (0.2). Fix a pair of arbitrary coupling constants ˛0; ˛1 > 0 and a homogeneous
holomorphic vector bundle E over X associated to an irreducible representation. Then
any Kähler class on X determines a unique G –invariant solution .!;A/ to the coupled
equations with coupling constants ˛0 and ˛1 . To see this, note that each de Rham class
on X (in particular, each Kähler class) contains a unique G –invariant representative,
obtained from an arbitrary representative by averaging. Trivially, the scalar curvature
of any G–invariant Kähler metric is constant. Therefore, the unique G–invariant
solution of (0.2) arises as a simultaneous solution of the cscK equation and (5.195),
corresponding to the limit cases ˛0 D 0, and ˛1 D 0.

Example 5.6 Let .X; !/ be a compact homogeneous Kähler–Einstein surface G=G0 .
By [6, Corollary 8.98], this means that X is a complex torus or it is simply connected.
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Let E be a homogeneous vector bundle on X induced by an irreducible representation
of Go in SU.r/, with induced G–invariant Hermitian metric H and G–invariant
unitary connection A. Then the pair .!;A/ satisfies the system of equations

(5.196)
FC

A
D 0;

˛0.�! � c0!/D ˛1.2.ƒ!FA/^FA�ƒ!.FA ^FA/� c00!/;

�
for real numbers c0; c00 , where �! is the Ricci form of ! and FC

A
D 0 is the Anti-

Self-Duality equation for the connection A. To prove this, note that A is HYM
and

2.ƒ!FA/^FA�ƒ!.FA ^FA/D�ƒ!.FA ^FA/

Dƒ!.jFAj
2!2/

D jFAj
2!;

(see (2.48)), where j � j is the pointwise norm with respect to ! . Hence .!;A/ satisfies
(5.196) because the function jFAj

2 is constant over X by invariance. Observe that
the system (5.196) is stronger than (0.2). Indeed, it can be readily checked from
[6, Proposition 9.61] that if .!;A/ satisfies (5.196), then the associated invariant
Riemannian metric on the total space of the frame U.r/–bundle of .E;H / over X ,
constructed as in Section 2.3, is Einstein, and therefore .!;A/ satisfies (0.2), by (2.60).

5.3 Stable bundles and cscK manifolds

We supply now some cases where Theorem 4.18 can be applied, obtaining examples of
solutions with non-zero ratio of the coupling constants and fixed Kähler class. Starting
with a cscK metric, we check that the new Kähler metrics that we obtain are not cscK.
Using the contents of Section 3.4, we also give an explicit Example 5.9 in which there
cannot exist solutions to the coupled equations.

Example 5.7 Let X be a high degree hypersurface of P3 . By theorems of Aubin and
Yau (see eg [6, Theorem 11.7]), there exists a unique Kähler–Einstein metric ! 2 c1.X /

with negative (constant) scalar curvature. Moreover, c1.X / < 0 implies that the group
of automorphisms of the complex manifold X is discrete (see [6, Proposition 2.138]).
Let E be a smooth SU.2/–principal bundle over X with second Chern number

k D
1

8�2

Z
X

tr.FA ^FA/ 2 Z;

where A is a connection on E . When k is sufficiently large, the moduli space Mk of
anti-self-dual (ASD) connections A on E with respect to ! is non-empty (see [20,
Section 10.1.14]). Moreover, if k is large enough, Mk is non-compact but admits a
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compactification. Let A be a connection that determines a point in Mk . Then A is
irreducible and so we can apply Theorem 4.18(1), obtaining solutions .!˛;A˛/ of
(0.2) with Œ!˛ �D Œ!�, nonzero values of the coupling constants ˛0 , ˛1 , and small ratio

˛ D
˛1

˛0

:

We claim that if the pointwise norm

(5.197) jFA0
j
2
!0
W X �!R

of the initial HYM connection A0 D A with respect to the Kähler–Einstein metric
!0 D ! is not constant, then !˛ is not cscK for 0 < ˛� 1. To see this, note that
.!˛;A˛/ approaches uniformly to .!0;A0/ as ˛! 0 (see Theorem 4.17) and so

lim
˛!0

ˇ̌
jFA˛ j

2
!˛
� jFA0

j
2
!0

ˇ̌
L1
D 0:

Hence if (5.197) is not constant, then jFA˛ j
2
!˛

is not constant for small ˛ , so the claim
follows from

S!˛ D
c

˛0
�˛ƒ2

!˛
.FA˛ ^FA˛ /D

c

˛0
C˛jFA˛ j

2
!˛
;

where c 2R. This last equation is satisfied because .!˛;A˛/ is a solution to (0.2). To
choose an ASD connection for which (5.197) is not a constant, we consider a sequence
of ASD connections fAlg1

lD0
defining points of Mk and approaching a point on the

boundary of the compactification. When l � 0, the connections Al start bubbling.
This bubbling is reflected in the fact that the function (5.197) becomes more and more
concentrated in a finite number of points of the manifold. Therefore, eventually, we
obtain an ASD irreducible connection for which (5.197) is not a constant.

To be more precise, recall that any point on the boundary of the compactification
of Mk is given by an ideal connection (see [20, Definition 4.4.1]), ie, an unordered
d –tuple .p1; : : : ;pd / of points on X and a connection A1 on Mk�d , the moduli
space of ASD connections on a suitable smooth SU.2/–bundle Ek�d with second
Chern number k � d . If ŒAl �! ŒA1� as l!1, then for any continuous function f
on X (see [20, Theorem 4.4.4]),

(5.198) lim
l!1

Z
X

f tr.FAl
^FAl

/D

Z
X

f tr.FA1 ^FA1/C 8�2
dX

mD1

f .pm/:

Take A1 in Mk�d with d > 0. If jFAl
j2! is constant for all l , using (5.198) and the

equality
jFAl
j
2
!!

2
D tr.FAl

^FAl
/;
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we obtain that d D 0 and hence a contradiction (eg, in (5.198), take a sequence ffj g
1
jD1

of test functions approaching the delta function of a point pi on X ).

The hypothesis of Theorem 4.18 hold in much more generality. By the Donaldson–
Uhlenbeck–Yau Theorem (Donaldson [16], and Uhlenbeck and Yau [58]), which admits
a generalization to principal bundles (see [3; 48]), a family of examples generalizing
Example 5.7 is provided by polystable holomorphic principal bundles over cscK mani-
folds with no non-zero Hamiltonian Killing vector fields. Recall that this theorem states
that if a holomorphic principal Gc–bundle .Ec ; I/ is (Mumford–Takemoto) polystable
with respect to a Kähler class � on a compact complex manifold X , then for any
Kähler form ! 2 � there exists a reduction H of .Ec ; I/ to G that is HYM with
respect to ! .

Let .X;L/ be a compact polarised manifold whose first Chern class c1.X / satisfies

c1.X /D �c1.L/

for some � 2 Z. When � < 0 (eg if X is a high degree hypersurface of Pm ), X has
finite group of automorphisms and by the above result of Aubin and Yau, there exists
a unique Kähler–Einstein metric ! 2 c1.L/. If � D 0, then by Yau’s a solution to
Calabi’s conjecture (see eg [6, Theorem 11.7]), there exists a unique Ricci flat metric
on c1.L/. As the dimension of the group of automorphisms of such manifolds is equal
to its first Betti number (see [6, Remark 11.22]), the simply connected ones (eg K3
surfaces) are complex Ricci flat manifolds with finite group of automorphisms. If
� > 0, it has been recently proved (Chen, Donaldson and Sun [12], and Tian [55])
that c1.L/ admits a Kähler–Einstein metric if and only if .X;L/ is K–stable. Let us
restrict to the case

X D P2 ]mP2;

the complex surface obtained by blowing up P2 at m generic points (see Tian and Yau
[57]). If we take m such that 3<m< 8 then c1.X / > 0, X has finite automorphism
group (see Tian [56, Remark 3.12]) and it was proved in [57] that X admits a Kähler–
Einstein metric.

On the other hand, given a polarised projective manifold .X;L/ (without any as-
sumption on c1.X /), an asymptotic result of Maruyama [44] states that there exist
c1.L/–stable vector bundles E over X of rank r , provided that r > dim X > 2 and

(5.199) c2.E/ � c1.L/
n�2
� 0:

If X has finite group of automorphisms and it is endowed with a Kähler–Einstein
metric ! 2 c1.L/ as before, then we can apply Theorem 4.18.
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Example 5.8 Let .X; !/ be a Kähler–Einstein manifold. Then ! is a cscK metric,
which determines a Hermitian–Yang–Mills metric H on the tangent bundle Ec D TX .
The pair .!;H / is a solution to (3.119) with ˛1 D 0, but it is not a solution with
˛1 ¤ 0 unless the Chern connection of H is flat. If c1.X / � 0, then there are no
non-zero Hamiltonian holomorphic vector fields over X , so F0;� D F1;� D 0 and
as in Theorem 4.18, .0; �/ has an open neighbourhood U � R�H 1;1.X;R/ such
that for all .z̨; z!/ 2 U , there exists a solution .z!; zH / to the coupled equations (3.119)
with coupling constants satisfying ˛1=˛0 D z̨ and Œz!�D z! .

We will now construct an example where the ˛–Futaki character FI obstructs the
existence of solutions to the coupled equations for small ratio of the coupling constants.

Example 5.9 Let .X; !/ be a Kähler manifold such that ! is not a cscK metric but
it is extremal (eg CP2 blown up at one point [8]). Recall from Section 4.1 that the
extremality condition is equivalent to the condition that S! is the Hamiltonian function
of a real holomorphic Killing vector field �. Since ! is not a cscK metric, it follows
from (3.126) and (4.184) that the classical Futaki character of the Kähler class �D Œ!�
evaluated at � is

hF0;�; �i D

Z
X

.S! � yS/
2!Œn� > 0:

Note that � lifts to a holomorphic vector field � 2 Lie Aut.TX / on the holomorphic
tangent bundle Ec D TX of X . It follows from (3.126) that the ˛–Futaki character
FI evaluated at � is positive for sufficiently small values of ˛1=˛0 > 0. Hence the pair
.X;TX / does not admit a solution .!;H / to (3.119) with ! 2� and these values of
the coupling constants.

Given an arbitrary holomorphic principal Gc–bundle Ec over X , the obstruction to
lift a holomorphic vector field on X to a Gc–invariant holomorphic vector field on Ec

lies in H 1.X; ad Ec/ (cf (1.30)). Note that when Gc D C� , the previous argument
always applies.

Let Ec be a stable holomorphic principal Gc–bundle over a polarised manifold .X;L/.
In this situation, the Donaldson–Uhlenbeck–Yau theorem allows us to think of the
coupled equations as a generalization of the constant scalar curvature equation for a
Kähler metric ! 2 c1.L/. More precisely, given such ! there exists a unique HYM
reduction H on Ec with respect to ! and therefore (3.119) can be interpreted as a
single scalar equation for the Kähler metric. Although this approach may not be very
useful in general, it becomes very explicit for the case of a line bundle Ec . In this
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case, a solution of the coupled equations is equivalent to a pair .!; ˇ/, where ˇ is a
harmonic .1; 1/–form with Œˇ�=

p
2D 2�c1.E

c/ and satisfying

(5.200) S! �˛jˇj
2
! D c0

for a real constant c0 2 R, where ˛ D ˛1=˛0 . As for this, we simply note that H is
a HYM Hermitian metric on Ec with respect to ! if and only if iFH is harmonic.
Therefore, for line bundles, the coupled equations provide a deformation of the constant
scalar curvature equation by a harmonic .1; 1/–form (cf [53]). This point of view has
been recently used by Keller and Tønnesen-Friedman to find solutions of the coupled
equations on polarised complex 3–folds that do not admit any cscK metric [32]. We
should stress that in general equation (5.200) is as difficult as the cscK equation, which
has been completely solved only in the Kähler–Einstein case [12; 55]. It would be
interesting to study these deformations in terms of K–stability.

5.4 cscK metrics on ruled manifolds

We now briefly discuss the relation between equation (5.195), given by the limit

˛0! 0

in (0.2), and the existence of solutions to the cscK equation on ruled manifolds. We
will use existence results of Y J Hong [29; 30].

Let .X;J; !/ be a compact Kähler manifold with constant scalar curvature and E a
holomorphic stable vector bundle of degree zero over X (examples of this type were
already provided in Section 5.3). Let H be a Hermitian metric on E whose Chern
connection A is HYM (it exists by the Donaldson–Uhlenbeck–Yau theorem [16; 58]).
Let L be the tautological bundle over the projectivised bundle P .E/ of E and FAL�

the curvature of the connection induced by A on L� . Then the 2–form

i

2�
FAL�

is non-degenerate on the fibres and in fact it induces the Fubini–Study metric, so

y!k D
i

2�
FAL�

C k��!

is a Kähler metric on P .E/ for k large enough. When the automorphism group
of .X;J / is finite, Y J Hong [29] used a deformation argument to prove that the
cohomology class Œy!k � contains a cscK metric for k� 0. Let zG be the extended gauge
group of the frame PU.r/–bundle of the Hermitian vector bundle .E;H / and zGI �

zG

Geometry & Topology, Volume 17 (2013)



2808 Luis Álvarez-Cónsul, Mario García-Fernández and Oscar García-Prada

the stabilizer of the connection A. The assumption on Aut X was removed in [30]
(see [30, Definition I.A]), under the additional conditions that the subgroup

zGI � Aut P .E/

is finite and:

(5.201) ƒ2
!.tr FA ^ tr FAC tr FA ^ �! CFA ^FA/D const.

Since c1.E/D 0, this second condition reduces to

ƒ2
! tr.FA ^FA/D�

4yc

.n� 1/!
2R:

The condition (5.201) appears when one splits the linearization of the cscK equation
on P .E/ into vertical and horizontal parts with respect to the connection A.

Hence we conclude that when c1.E/D 0 and GI is finite, the existence of a solution
to (5.195) is a sufficient condition for the existence of a cscK metric in the cohomology
class Œy!k � for k� 0 (see [30, Theorem III.A]). It would be interesting to study further
this relation, trying to prove that the existence of solutions to the coupled equations for
small ˛1=˛0 > 0 implies the existence of constant scalar curvature Kähler metrics on
P .E/ with Kähler class kc1.L/ for large k . This would provide a generalization of
Hong’s results in [30].
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