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The Gromov width of 4–dimensional tori

JANKO LATSCHEV

DUSA MCDUFF

FELIX SCHLENK

Let ! be any linear symplectic form on the 4–torus T 4 . We show that in all cases
.T 4; !/ can be fully filled by one symplectic ball. If .T 4; !/ is not symplectomor-
phic to a product T 2.�/ � T 2.�/ of equal sized factors, then it can also be fully
filled by any finite collection of balls provided only that their total volume is less than
that of .T 4; !/ .

57R17, 57R40; 32J27

1 Introduction

It has been known since Gromov’s paper [16] that symplectic embedding questions lie
at the heart of symplectic geometry. For instance, Gromov’s nonsqueezing theorem
implies that for every natural number k , there is no symplectically embedded ball in
the product S2.k/�S2.1/ of 2–spheres of areas k and 1 that fills more than 1

2k
of

the volume. In this paper we study symplectic embeddings of balls into 4–dimensional
tori with linear symplectic forms. Our main result is that the only obstruction to
symplectically embedding a 4–ball into such a manifold is the total volume.

Consider the open ball of capacity a,

B2n.a/D

�
z 2Cn

ˇ̌̌̌
�

nX
jD1

jzj j
2 < a

�
;

in standard symplectic space
�
R2n; !0

�
, where !0 D

Pn
jD1 dxj ^ dyj . The Gro-

mov width of a 2n–dimensional symplectic manifold .M; !/, introduced in [16], is
defined as

(1-1) cG.M; !/D sup
˚
a
ˇ̌
B2n.a/ symplectically embeds into .M; !/

	
:

Computations and estimates of the Gromov width for various examples can be found
in Biran [4; 5], Biran and Cieliebak [6], Gromov [16], Jiang [19], Karshon and Tolman
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[20], Lalonde and McDuff [22; 23], Lu [29], McDuff [32], McDuff and Polterovich
[33], McDuff and Slimowitz [35] and Schlenk [36].

If the symplectic manifold .M; !/ has finite volume, an invariant equivalent to its
Gromov width is the ball filling number

p.M; !/D sup
Vol

�
B2n.a/

�
Vol .M; !/

;

where the supremum is taken over all balls B2n.a/ that symplectically embed into
.M; !/, and where the volume is defined as 1

n!

R
M !n . Since Vol .B2n.a//D an

n!
,

(1-2) p.M; !/D
.cG.M; !//n

n! Vol .M; !/
:

If p.M; !/ < 1 one says that there is a filling obstruction, while if p.M; !/D 1 one
says that .M; !/ admits a full filling by one ball.1 In this paper our main focus is
the filling number of 4–tori with a linear symplectic form ! , ie, those which can be
identified with the quotient of R4 , with its standard symplectic structure, by a suitable
lattice ƒ. We also study other related filling questions in which the ball is replaced by
a disjoint union of balls.

Filling obstructions usually come from non-constant holomorphic spheres. In tori,
however, there are no such spheres. One can thus believe that for tori there should be
no filling obstructions. For the standard torus T .1; 1/ WDR4=Z4 , there is the obvious
lower bound p.T .1; 1// � 1

2
coming from the inclusion of the ball B4.1/ into the

polydisc B2.1/ � B2.1/; see also Figure 3 below. A better lower bound (namely
p.T .1; 1//� 8

9
) comes from algebraic geometry; see (2-6) in Section 2.2. We give an

explicit realization of this embedding in Example 4.9 below.

Our main result is:

Theorem 1.1 Every 4–dimensional linear symplectic torus admits a full filling by one
ball; in other words, p.T 4; !/D 1 for all linear ! .

The symplectic (resp. Kähler) cone of a smooth oriented manifold X is the set of
cohomology classes ˛ 2 H 2.X IR/ that can be represented by a symplectic (resp.
Kähler) form, where here we consider symplectic forms that are compatible with the
given orientation on X (resp. Kähler forms that are compatible with any complex
structure giving this orientation). The symplectic cone C.T 4/ of T 4 with a given

1Our ball filling number is called first packing number by other authors, and full fillings by one ball
also go under the name of full packings by one ball. We refer to Section 7 for a discussion of full fillings
versus very full fillings.
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orientation is f˛ 2H 2.T 4IR/ j ˛2 > 0g. Each such class has a linear representative.
From Theorem 1.1, we get the following characterization of the symplectic cone of the
1–point blow-up of a given oriented torus T 4 .

Corollary 1.2 Denoting by E 2 H2. zX IZ/ the homology class of the exceptional
divisor (with some orientation) in zX D T 4 ]CP2 , the symplectic cone of zX is

C. zX /D
˚
˛ 2H 2. zX IR/

ˇ̌
˛2 > 0; ˛.E/¤ 0

	
:

While there are many examples of non-Kähler symplectic manifolds, it is much harder
to find Kähler manifolds for which the Kähler and symplectic cones differ. Some
examples are given by Drăghici [12] and Li–Usher [28]. More recently, Cascini–
Panov [9] showed that the Kähler and symplectic cones differ for the one point blow-up
of T 2 �S2 . With the help of Corollary 1.2 we obtain another simple example.

Corollary 1.3 Let zX be the blow-up T 4 ]CP2 of the 4–torus in one point. Then the
symplectic cone of zX is strictly bigger than the Kähler cone.

Outline of the proof of Theorem 1.1 As we will see, for our purposes linear 4–tori
divide into three classes: the standard torus T .1; 1/ (and its rescalings), all other
rational tori (in which Œ!� is a multiple of a rational class), and irrational tori (in which
the image of the homomorphism

R
!W H2.M IZ/!R has rank at least 2 over Q).

It turns out that every rational torus is (up to scaling) symplectomorphic to a product
torus T 2.d1/� T 2.d2/, where d1; d2 2 N denote the areas of the two factors; see
Lemma 2.1. Thus the family of product tori T .1; �/ WD T 2.1/�T 2.�/ with � � 1

contains all rational tori, up to scaling. With this in mind, our proof proceeds as follows.

1 Linear algebra By a simple symplectic linear algebra argument, the tori T .m; n/

and T .1;mn/ are symplectomorphic for relatively prime integers m; n (see Remark 2.2).
Hence:

Lemma 1.4 p
�
T .m

n
; 1/
�
D p

�
T .1;mn/

�
for m; n 2N relatively prime.

2 Algebraic geometry Buchdahl [8] and Lamari [25] found a condition on a co-
homology class ˛ 2 H 1;1.X IR/ on some complex surface X that guarantees the
existence of a Kähler representative of ˛ . We shall verify this condition on blow-ups
of irrational tori to obtain:

Proposition 1.5 p.T 4; !/D 1 for all irrational linear tori .T 4; !/.
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3 Full fillings of T 2.1/�S 2.�/ Denote by S2.�/ the 2–sphere endowed with
an area form of area �. Biran [4] proved that T 2.1/�S2.�/ can be fully packed by
one ball provided that � � 2. We shall show that such an almost filling ball can be
made to lie in the complement of a constant section T 2.1/� pt. Since the open disc
bundle T 2.1/�D2.�/D .T 2.1/�S2.�//X.T 2.1/� pt/ symplectically embeds into
T 2.1/�T 2.�/D T .1; �/, we obtain:

Proposition 1.6 p
�
T .�; 1/

�
D 1 for all �� 2.

Corollary 1.7 p
�
T .�; 1/

�
D 1 for all �¤ 1.

Proof In view of Propositions 1.5 and 1.6 we need only consider � 2 .1; 2/\Q. If
we write � D m

n
with m; n 2 N relatively prime, then m > n � 2, giving mn � 6.

Hence Lemma 1.4 and Proposition 1.6 imply p.T .�; 1//D p.T .1;mn//D 1.

4 A symplectic embedding construction The only case not covered by the above
discussion is the standard product torus T .1; 1/. To prove p.T .1; 1//D 1 we shall
construct for each ball B4.a/ of volume a2=2< 1 an explicit symplectic embedding
into T .1; 1/. Fix a<

p
2. We start with an almost full embedding B4.a/! ˘ ��,

where ˘ � R2.x1;x2/ is a diamond-shaped domain (see Figure 3(I) below), and
�D .0; 1/2 �R2.y1;y2/. The main step is then to construct a symplectic embedding
˘ �� ! R4 with image U such that the projection R4 ! T .1; 1/ D R4=Z4 is
injective on U .

The resulting embedding B4.a/! T .1; 1/ uses all four homological directions of
T .1; 1/. This must be so. Indeed, assume that there exists an embedding B4.a/!

T .1; 1/ that factors, for instance, as

B4.a/
 
�! T 3.x1;y1;x2/� .0; 1/! T .1; 1/

with .0; 1/ � R.y2/. It is easy to see that there exists a symplectic embedding � of
the annulus T 1.x2/ � .0; 1/ into B2.1/ � R2.x2;y2/. Composing  with id � �
we obtain a symplectic embedding of B4.a/ into T 2.x1;y1/�B2.1/, which lifts to
R2.x1;y1/�B2.1/. Hence a� 1 by the nonsqueezing theorem. A similar discussion
applies to all sufficiently large balls in product tori T .�; 1/ with 1� � < 2.

Remark 1.8 Parts of the above construction yield an explicit full filling by one ball
of the 4–torus T .�; 1/ for all � D 2m2=n2 with m; n relatively prime. Since the
set of rational numbers � of this form is dense in R>0 , one is tempted to derive
p
�
T .1; 1/

�
D 1 from p

�
T .�; 1/

�
D 1 for � > 1 by a limiting argument, or to derive
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p
�
T .�; 1/

�
D 1 for all �� 1 from the elementary explicit full fillings of T .�; 1/ for

�D 2m2=n2 . However, without further knowledge about the underlying embeddings,
the function � 7! p

�
T .�; 1/

�
has no obvious continuity properties.

Filling by more than one ball The general ball packing problem for a symplectic
4–manifold .M; !/ is: Given a collection B4.a1/; : : : ;B

4.ak/ of closed balls, does
there exist a symplectic embedding of

`k
jD1 B4.aj / into .M; !/? Since symplectic

embeddings are volume-preserving, a necessary condition is

Vol
� ka

jD1

B4.aj /

�
< Vol .M; !/:

We prove that for all linear tori except possibly T .1; 1/ this is the only condition.

Theorem 1.9 Assume that .T 4; !/ is a linear torus. Let B4.a1/; : : : ;B
4.ak/ be a

collection of balls such that

Vol
� ka

jD1

B4.aj /

�
< Vol .T 4; !/:

(i) If .T 4; !/ is not symplectomorphic to T .�; �/ for some � > 0, there exists a
symplectic embedding of

`k
jD1 B4.aj / into .T 4; !/.

(ii) If .T 4; !/ is symplectomorphic to T .�; �/ for some �> 0, then
`k

jD1 B4.aj /

symplectically embeds into T .�; �/ under the further restriction that aj <� for
all j .

Notice that Theorem 1.9 generalizes Propositions 1.5 and 1.6. The extra condition
in (ii) is presumably not needed, but the only way we can see to prove this would be
by explicitly constructing suitable embeddings.

Other examples of manifolds for which the volume is the only obstruction to a symplectic
embedding of a collection of balls were found by Biran in [4; 5]. Biran also proved in
[5] that T .1; 1/ can be fully packed with k equal balls for any k � 2.2

2In fact, his argument also proves the claim in Theorem 1.9 concerning T .1; 1/ . His proof is much the
same as ours in that he reduces the problem to packing some ruled 4–manifold. However, he considers the
projectivization of a holomorphic line bundle of Chern class 2 over a genus 2 surface, while we use a
trivial bundle over T 2 . In both cases the spherical fibers have area 1 .
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Remarks 1.10 (i) Our results may give the impression that symplectic embeddings
of balls into 4–dimensional tori are as flexible as volume-preserving embeddings. This
is far from true, as the following consideration from [5] shows: By our results above,
the standard product torus T .1; 1/ admits symplectic embeddings of the ball B.a/ and
of the disjoint union of two equal size balls B.b/tB.b/ whenever there is no volume
obstruction. However, as is well known, a symplectic embedding of B.b/tB.b/ into
B.a/ covers at most half of the volume. Therefore, given symplectic embeddings
'W B.a/! T .1; 1/ and  W B.b/tB.b/! T .1; 1/ that cover more than half of the
volume, it cannot be that the image of ' contains the image of  . This “hidden rigidity”
phenomenon for symplectic embeddings of balls into tori clearly does not exist for
volume-preserving embeddings of balls into tori.

(ii) Another important invariant of a symplectic manifold .M; !/ is its Hofer–Zehnder
capacity cHZ.M; !/, which is of dynamical nature. We refer to the books Hofer and
Zehnder [17] and McDuff and Salamon [34] for the definition and elementary properties.
The value of this capacity is unknown for product tori; in fact it is an outstanding
problem to decide whether it is finite or infinite for product tori.

Our computations of the Gromov width cG of tori give lower bounds for cHZ , because
cG.M; !/� cHZ.M; !/ for all symplectic manifolds. These lower bounds are, however,
weaker than the known ones. These come from the elementary inequality

cHZ.M; !/� cHZ.P; !P /C cHZ.Q; !Q/;

holding for all products .M; !/D .P �Q; !P ˚!Q/ of closed symplectic manifolds,
together with the fact that the Hofer–Zehnder capacity of a 2–dimensional connected
symplectic manifold equals its area. To be explicit, our main theorem implies that
cHZ.T .1; 1//� cG.T .1; 1//D

p
2, while it is known that cHZ.T .1; 1//� 1C 1D 2.

The paper is organized as follows. In Section 2 we review the lower bounds for the ball
filling number of 4–dimensional symplectic tori coming from known computations
of Seshadri constants. Section 3.1 contains a proof of Theorem 1.9 in the irrational
case. This proof is based on the construction in Section 3.2 of symplectic tori with no
holomorphic curves. In Section 3.3 we prove Theorem 1.9 for product tori T .1; �/,
�� 1, under the condition that minfaj ; bj g<� for all j . In Section 4 we explain the
embedding construction that we use in Section 5 to prove p

�
T .1; 1/

�
D 1, completing

the proof of Theorem 1.1. In Section 6 we prove Corollaries 1.2 and 1.3, and in
Section 7 we state some open problems related to filling tori.
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2 Relations to algebraic geometry

In this section, we review the implications of some results in algebraic geometry for the
Gromov radius of 4–dimensional symplectic tori, and also of some higher-dimensional
ones.

2.1 Basics

Before discussing the complex geometry of tori, we recall a classical result.

Lemma 2.1 Suppose ! is a linear symplectic form on a torus T D R2n=ƒ with
integral cohomology class. Then .T; !/ is symplectomorphic to a product of 2–
dimensional tori

T 2.d1/� � � � �T 2.dn/

with symplectic areas dj > 0 satisfying dj jdjC1 for all j D 1; : : : ; n� 1. Moreover,
the sequence d1 j d2 j � � � j dn is uniquely determined by ƒ.

Remark 2.2 It follows that a 4–dimensional product torus T .m; n/DT 2.m/�T 2.n/

with integer areas m and n is symplectomorphic to T .g; `/, where g D gcd.m; n/,
`D lcm.m; n/.

Proof of Lemma 2.1 Since ! is linear, it lifts to a linear symplectic form on R2n ,
which we again denote by ! . The fact that it represents an integral cohomology class
on T is equivalent to the fact that it takes integer values when restricted to ƒ�ƒ.
Denote by d1 2Z the positive generator of this image subgroup, and choose e1; f1 2ƒ

with !.e1; f1/D d1 .

Every lattice point � 2ƒ can be written as

�D
!.�; f1/

d1

e1C
!.e1; �/

d1

f1C�
0;

where the coefficients of e1 and f1 are integers by the choice of d1 , and where �0 2ƒ
is !–orthogonal to both e1 and f1 . In other words, ƒD spanZ.e1; f1/˚ƒ

0 for some
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lower-dimensional sublattice ƒ0 �ƒ. Now repeat the argument with ƒ0 in place of ƒ,
noting that the image of ! when restricted to ƒ0�ƒ0 must be a subgroup of d1Z�Z.
This finishes the proof in n steps.

To prove the uniqueness of the sequence d1 j � � � j dn for a given torus T D R2n=ƒ,
note that since ! is non-degenerate and integral, it gives rise to an embedding � Wƒ!
Hom.ƒ;Z/, namely �.�1/.�2/D !.�1; �2/. Now the dj are the torsion coefficients
of the finitely generated abelian group Hom.ƒIZ/=Im� , which are well-known to be
invariants of this group.

Complex tori are often defined as the quotients of Cn by some cocompact lattice
ƒŠ Z2n . In dimension 4, the Enriques–Kodaira classification of compact complex
surfaces implies that every complex manifold diffeomorphic to T 4 is biholomorphic
to such a model. In higher dimensions, this is still true if the complex structure is
compatible with a Kähler form, but false in general (for examples, see eg Catanese,
Oguiso and Peternell [10] and references therein).

Conversely, the standard symplectic form on Cn descends to a Kähler form on any
quotient Cn=ƒ, so every complex torus admits a compatible Kähler structure whose
symplectic form is translation invariant.

2.2 Seshadri constants of tori

Here we review some results described by Lazarsfeld in [27, Chapter 5], which do not
seem to be widely known among symplectic geometers. For an irreducible projective
variety X and a point x 2X we denote by

� W zX !X

the blow-up of X at x , with exceptional divisor †� zX . Recall that a line bundle L

on X is called nef if for every irreducible curve C �X one has
R

C c1.L/� 0.

Definition 2.3 (cf [27, Definition 5.1.1]) Suppose L is a nef line bundle on X . The
Seshadri constant of .X;L/ at x 2X is defined to be the real number

(2-1) ".LIx/ WDmax
�
"� 0

ˇ̌̌̌ Z
zC

��.c1L/� "† � zC � 0 for all curves zC � zX
�
:

It is clear that ".L;x/ is always nonnegative, and in fact one has the alternative
description (cf [27, Proposition 5.1.5])

(2-2) ".LIx/D inf
x2C�X

R
C c1.L/

multx C
;
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where the infimum is taken over all irreducible curves C �X passing through x , and
multx C 2N denotes the multiplicity of C at x . This shows that one can obtain upper
bounds on ".LIx/ from specific curves passing through x 2X .

From the symplectic point of view, we are particularly interested in the case when X

is a smooth projective variety, and L is an ample line bundle. Then one can choose
a Kähler form !L representing c1.L/. Since the space of symplectic forms in a
fixed cohomology class that are compatible with a fixed (almost) complex structure is
contractible, any two such forms are symplectically isotopic.

Now there is a strong relationship between symplectic embeddings of balls and
symplectic blow-up, which was first described by McDuff [30], and McDuff and
Polterovich [33]: An embedding of a closed symplectic ball B.a/ of capacity a into a
given symplectic manifold X gives rise to a symplectic form on the topological blow-up
� W zX !X whose cohomology class is given by ��Œ!�� a PDŒ†�, where †� zX is
the exceptional divisor, and PDŒ†� denotes the Poincaré dual of Œ†�. Conversely, given
a tame symplectic form on the complex blow-up . zX ; zJ / in a class ��˛�a PDŒ†�, one
can find a symplectically embedded ball B.a/ in .X; !/ with Œ!�D ˛ 2H 2.X IR/;
see [33, Corollary 2.1.D].

As pointed out in [27, Theorem 5.1.22], this discussion then leads to the following
result, which is a direct consequence of [33, Corollary 2.1.D]:

Proposition 2.4 For fixed X and L as above, denote by

".X;L/ WD max
x2X

".LIx/:

Then the Gromov width of .X; !L/, defined in (1-1), satisfies

cG.X; !L/� ".X;L/:

By the relation (1-2), this estimate is equivalent to

(2-3) p.X; !L/�
.".X;L//n

n! Vol .X; !L/
:

The proof of Proposition 2.4 is based on the fact that when ".X IL/ > 0, then the
pullback zL of L to the blow-up zX is ample, so that c1. zL/ has a Kähler representative.

Remark 2.5 The same blow-up argument also shows that the capacity of the largest
symplectically and holomorphically embedded ball in the Kähler manifold .X; !L/

bounds the Seshadri constant ".X;L/ from below (for details, see [27, Proposi-
tion 5.3.17]).
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In what follows, we will study the family of symplectic product tori T 2.1/�T 2.d/,
where d 2 Z. By Lemma 2.1, up to rescaling this class contains all symplectic 4–tori
whose symplectic form is linear and has a rational cohomology class. Now suppose
that .T; !/ is such a symplectic torus, and choose a translation-invariant compatible
complex structure J , so that .T;J; !/ is a Kähler manifold. If L is the complex line
bundle on .T;J / with first Chern class Œ!�, then L is ample. Complex tori admitting
such a line bundle are called abelian varieties, and the line bundle or its first Chern
class is called a polarization. Note that, conversely, the first Chern class of any ample
line bundle L on some complex torus can be represented by a translation-invariant
rational symplectic form !L , and so all abelian varieties arise as above.

The sequence of integers .d1; : : : ; dn/ for .T; !L/ appearing in Lemma 2.1 is called
the type of the polarization, and the polarization is called principal and often denoted
by ‚ if it is of type .1; : : : ; 1/, ie, it corresponds to the standard symplectic product
torus.

Since translations act transitively on any abelian variety A, the Seshadri constants for
abelian varieties do not depend on the choice of the point x 2A. One has the general
bounds

(2-4) d1 � ".A
n;L/� .n! d1 � � � dn/

1
n

for an ample line bundle L of type .d1; : : : ; dn/. The upper bound follows from
the estimate (2-3); see also [27, Proposition 5.1.9]. For the lower bound, recall
from Lemma 2.1 that d1jd2j � � � jdn , and consider the ample line bundle L0 of type
.1; d2=d1; : : : ; dn=d1/. By [27, Example 5.3.10], one has ".A;L0/� 1, and therefore
".A;L/� d1 . Similarly, the symplectic embedding of the ball of capacity d1 into the
polydisc B2.d1/� � � � �B2.dn/�A gives the same lower bound d1 for the Gromov
width of .A; !L/.

The best lower bounds on Seshadri constants for abelian varieties of a given type
seem to come from irreducible ones, ie, those which cannot be written as a product
of lower-dimensional complex tori. Here we list the known results, according to [27,
Remark 5.3.12].

First, to get a bound on the ball filling number of T .1; 1/, according to the dis-
cussion above we need to consider principally polarized abelian surfaces .A2; ‚/.
Steffens [37, Propositions 2 and 3] has shown that in this case

(2-5) ".A2; ‚/� 4
3
;
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with equality if A is irreducible. Together with the estimate (2-3) we obtain the lower
bound

(2-6) p.T .1; 1//� 8
9
:

For tori of type .1; d/ one can get lower bounds from non-principal polarizations
of abelian surfaces .A2;L/. Indeed, it is known from the work of Steffens [37,
Proposition 1] that if 2d is a perfect square, then there are abelian surfaces with a
polarization L of type .1; d/ and

(2-7) ".A2;L/D
p

2d ;

which is optimal since it equals the volume bound in (2-4). This immediately implies

(2-8) p.T .1; d//D 1 if 2d is a perfect square:

We will describe explicit examples of such full fillings by one symplectic ball in
Section 4.3. The identities (2-8) and Remark 2.2 imply that p.T .�; 1// D 1 for all
�D 2m2=n2 with m; n relatively prime integers.

On the other hand, when 2d is not a perfect square, then Bauer and Szemberg [1] have
shown that

(2-9) ".A2;L/� 2d
k0

`0

D
p

2d �

vuut 2dk2
0

2dk2
0
C 1

;

where .k0; `0/ is the smallest solution in positive integers of Pell’s equation

`2
� 2dk2

D 1:

(There always exists such a solution, as was first shown by Lagrange [21].) Moreover,
by a result of Bauer [2], equality holds whenever positive multiples of L are the only
ample line bundles on A. Since complex structures J with this property exist for all
symplectic types .1; d/, this gives the best constant for use in Proposition 2.4. For
d � 30, the relevant solutions to Pell’s equation have been tabulated in [2, page 572],
and we give their translation in terms of the lower bound on the ball filling numbers

p.T .1; d//�
"2

2d
D
`2

0
� 1

`2
0

in the following table.
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d k0 `0
"2

2d
d k0 `0

"2

2d
d k0 `0

"2

2d

1 2 3 8
9

11 42 197 38808
38809

21 2 13 168
169

2 1 12 1 5 24
25

22 30 199 39600
39601

3 2 5 24
25

13 10 51 2600
2601

23 3588 24335 592192224
592192225

4 1 3 8
9

14 24 127 16128
16129

24 1 7 48
49

5 6 19 360
361

15 2 11 120
121

25 14 99 9800
9801

6 2 7 48
49

16 3 17 288
289

26 90 649 421200
421201

7 4 15 224
225

17 6 35 1224
1225

27 66 485 235224
235225

8 1 18 1 28 2 15 224
225

9 4 17 288
289

19 6 37 1368
1369

29 2574 19605 384356024
384356025

10 2 9 80
81

20 3 19 360
361

30 4 31 960
961

2.3 Seshadri estimates for higher-dimensional tori

One well-studied class of principally polarized abelian varieties of arbitrary dimension
are the Jacobians of curves (cf eg [7, Chapter 11]). Here we just recall that the Jacobian
of a complex curve C is the complex torus

JC WD Hom.�1;0;C/=H1.C IZ/;

where �1;0 denotes the complex vector space of holomorphic 1–forms, and the em-
bedding H1.C IZ/� Hom.�1;0;C/ is given by integration over cycles. The complex
dimension of JC equals the genus of C , and the principal polarization is derived from
the natural symplectic structure on H1.C IZ/˝R, which is given by the intersection
product.

In complex dimension nD 3, Bauer and Szemberg [3] have shown that a principally
polarized abelian variety .A3; ‚/ has ".‚/D 3

2
if A is the Jacobian of a hyperelliptic

curve of genus 3 and

(2-10) ".A3; ‚/D 12
7

otherwise. (A complex curve is called hyperelliptic if it admits a double branched cover
to CP1 .) Hence p.T .1; 1; 1//� 288

343
.

In complex dimension nD 4, Debarre [11] has shown that for the Jacobian A4 D JC

of a non-hyperelliptic curve of genus 4 one has

(2-11) ".A4; ‚/D 2:
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Hence p.T .1; 1; 1; 1//� 2
3

.

For high dimensions, Jacobians appear to give very poor lower bounds for use in
Proposition 2.4. However, Lazarsfeld [26] combined the work of McDuff and
Polterovich [33] with work of Buser and Sarnak on minimal period lengths to deduce
that there exist principally polarized abelian varieties .An; ‚/ of complex dimension
n with

".An; ‚/� 1
4
.2n!/

1
n :

Bauer has generalized this, showing that there exist polarized abelian varieties .An;L/

of arbitrary type .d1; : : : ; dn/ with

(2-12) ".An;L/� 1
4
.2n! d1 : : : dn/

1
n :

While this is only a factor of less than 4 away from the upper bound of (2-4), the
volume fraction filled by the symplectic ball predicted from this lower bound is 2.1

4
/n ,

and hence tends exponentially to zero as n!1.

3 Proof of Theorem 1.9

3.1 Irrational case

We will use the following result of Buchdahl [8] and Lamari [25]:

Theorem 3.1 [8; 25] Let .X;J / be a compact complex surface. A cohomology
class ˛ 2 H 1;1.X IR/ admits a Kähler representative compatible with the complex
structure J if ˛[˛ > 0, ˛[ Œ�� > 0 for some positive closed .1; 1/–form � on X and
˛ � ŒD� > 0 for every effective divisor D �X .3

In symplectic language, the last condition means that the class ˛ should integrate
positively over every compact holomorphic curve in X .

Our argument is based on the following result, whose proof is deferred until the next
subsection.

Proposition 3.2 Any irrational linear symplectic form ! on T 4 may be identified
with a Kähler form on a torus T DC2=ƒ that has no nonconstant compact holomorphic
curves.

3Notice that the form � is a Kähler form. Therefore, Buchdahl’s condition that the first Betti number
of X is even is automatic.
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Proposition 3.3 Theorem 1.9 holds for irrational tori.

Proof We must show that any disjoint union
`k

jD1 B4.aj / of balls symplectically em-
beds into .T 4; !/ provided only that the volume constraint is satisfied. By Proposition
3.2 there is a symplectomorphism from .T 4; !/ to .T; !J / where .T;J; !J / is the
Kähler torus found in Proposition 3.2. Let .Tk ;Jk/ be the complex blow-up of T at
k generic points xj , and consider the cohomology class

˛ WD ��.Œ!J �/�

kX
jD1

aj PDŒ†j �;

where � W Tk ! T is the blow-down map and the †j are the exceptional divisors.
Since the complex structure J and the symplectic form !J on T have constant
coefficients, we find for each j an "j > 0 and an embedding  j W B4."j /! T with
 j .0/D xj that is holomorphic and symplectic (ie,  j

�Jcan D J and  j
�!can D ! );

see [34, Exercise 2.52(iii)]. Take " > 0 such that " � "j for each j D 1; : : : ; k and
such that Z

T

!J ^!J >

kX
jD1

"aj :

Let � be the Kähler form on Tk corresponding to the blow-up defined by the k

embeddings  j W B4."/! T . Then

Œ��D ��.Œ!J �/�

kX
jD1

"PDŒ†j � ;

whence ˛ [ Œ�� > 0. Furthermore, the volume condition gives ˛2 > 0, and the only
compact holomorphic curves in .Tk ;Jk/ are the †j . The criterion of Buchdahl and
Lamari thus holds for the class ˛ . Therefore there is a Kähler form � on .Tk ;Jk/

in class ˛ . Blowing down the form � we obtain a symplectic form � on T in class
Œ!J �, and disjoint symplectically embedded balls B4.a1/; : : : ;B

4.ak/ in .T; �/. It
remains to show that � is isotopic to !J . Then Moser’s argument shows that .T; �/
and .T; !J / are symplectomorphic. Hence the balls j̀ B4.aj / also symplectically
embed into .T; !J /.

To find an isotopy from � to !J , we consider for each s 2 .0; 1� the cohomology class

˛s WD �
�.Œ!J �/�

kX
jD1

saj PDŒ†j �;
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and repeat the above construction to find Kähler forms �s on .Tk ;Jk/ in class ˛s ,
s 2 .0; 1�. Moreover, choose s0 > 0 such that s0aj < " for all j , and for s 2 .0; s0/ let
�s be the Kähler form on Tk corresponding to the blow-up defined by the k embeddings
 j W B4.s0aj /! T . Denote by �.Jk ; f†j g/ the space of Jk –tame symplectic forms
on Tk that restrict to symplectic forms on the †j . Then each form �s , s 2 .0; 1�,
and each form �s , s 2 .0; s0/, belongs to �.Jk ; f†j g/. Since the space of forms in
�.Jk ; f†j g/ in a given cohomology class is convex, we can alter the collection f�sg

to a smooth family f� 0sg of forms in �.Jk ; f†j g/ such that � 0s is cohomologous to
�s , such that � 0s D �s for s 2 .0; s0=2/, and such that � 0

1
D �1 . Now blow down the

forms � 0s to obtain a smooth family �s of symplectic forms on T in class Œ!J �. By
construction, �1 D � and �s D !J for s 2 .0; s0=2/, as required.

Remark 3.4 The only property of irrational linear symplectic forms on T 4 that we
used here was the existence of a compatible complex structure J such that H 2.T IZ/\
H 1;1.T IC/ vanishes, ie, such that the Picard number of .T;J / vanishes. According to
the Enriques–Kodaira classification, there is exactly one other class of compact Kähler
surfaces with this property, namely K3–surfaces with Picard number 0. Repeating the
above proof, we find that the conclusions of Theorem 1.9 also hold true for all Kähler
forms on K3–surfaces for which a compatible complex structure has vanishing Picard
number.

3.2 Irrational tori with no curves

We now prove Proposition 3.2.

We begin by finding complex tori with no nonconstant compact holomorphic curves.
Consider C2 D Ce1˚Ce2 and denote by e1 , e2 , e3 D

p
�1 e1 , e4 D

p
�1 e2 the

standard real basis. Choose real numbers p; q; r; s such that

p; q; r; s are rationally independent, and ps� qr is irrational:(3-1)

Consider the quotient of C2 by the lattice ƒP spanned by

�1 D e1; �2 D e2; �3 D p e3C q e4; �4 D r e3C s e4:

The following result is extracted from in Elencwajg and Forster [14, Appendix]. We
repeat it here for the sake of completeness.

Lemma 3.5 Under the assumption (3-1), the torus T DC2=ƒP contains no noncon-
stant compact holomorphic curves.
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Proof A nonconstant compact holomorphic curve would represent a nonzero class
in H1;1.T IC/ \H2.T IZ/. By duality it thus suffices to prove that H 2.T IZ/ \
H 1;1.T IC/Df0g. Write the complex coordinates of C2 as zj D xjC

p
�1 yj . Since

every class in H 2.T IC/ can be represented by a form with constant coefficients, every
class in H 1;1.T IC/ has a representative of the form

(3-2) ! D x dx1 ^ dy1Cy dx2 ^ dy2Cu.dx1 ^ dy2C dx2 ^ dy1/

C v.dx1 ^ dx2C dy1 ^ dy2/;

where the coefficients x;y;u; v are complex constants. The class Œ!� will be integral
if and only if the coefficients of the matrix

(3-3) !.�i ; �j /D

0BB@
0 v pxC qu rxC su

�v 0 puC qy ruC sy

�.pxC qu/ �.puC qy/ 0 v.ps� qr/

�.rxC su/ �.ruC sy/ �v.ps� qr/ 0

1CCA
are integers, ie, if

(i) v; v.ps� qr/ 2 Z,

(ii) pxC qu; rxC su; puC qy; ruC sy 2 Z.

Since we have chosen ps� qr irrational, the two conditions (i) imply v D 0. Assume
that x;y;u fulfill the conditions (ii). We then find n1; n2; n3; n4 2 Z with

pxC quD n1; puC qy D n3;

rxC suD n2; ruC sy D n4:

We can eliminate x and y from the above equations and obtain

.ps� qr/uD�n1r C n2p;

.ps� qr/uD n3s� n4q;

which implies �n1r C n2p � n3s C n4q D 0. Since we have chosen p; q; r; s to
be rationally independent, it follows that n1; n2; n3; n4 must vanish. Hence u and
therefore also x and y vanish. We conclude that ! D 0, as we wanted to show.

Now we start with a torus T 4DR4=ƒ with a linear symplectic form ! representing an
irrational cohomology class. Given an integral basis �1; : : : ; �4 for ƒ, the symplectic
form ! can be represented by a matrix B D .bij /, where bij D !.�i ; �j /. We denote
by ��

1
; : : : ; ��

4
the basis dual to �1; : : : ; �4 , and we may assume that the ordering has

been chosen such that ! ^! is a positive multiple of ��
1
^��

3
^��

2
^��

4
.
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Lemma 3.6 In the situation just described, after changing the basis of R4 by an
element of SL.4;Z/, we may represent ! by a matrix B0 , where

(i) the entries b0
12

, b0
34

either both vanish or they are rationally independent and
positive, and

(ii) the vector .b0
13
; b0

14
; b0

23
; b0

24
/ is not a multiple of a rational vector.

Proof Suppose first that there is a permutation i1; : : : ; i4 of f1; : : : ; 4g so that bi1i2
D

bi3i4
D 0. Then we can change basis (preserving orientation) so that b0

12
D b0

34
D 0.

Condition (ii) is then automatic since ! is irrational.

In all other cases we can permute the basis (preserving orientation) so that b12 ¤ 0,
b34¤0, and so that at least two of the elements b12; b34; b1j are rationally independent,
where j D 3 or 4. If condition (i) is not satisfied, we change basis by replacing ��

2
by

��
2
Ck��j and leaving the other elements fixed. Then b12 changes to b0

12
D b12Ckb1j

and b0
34
D b34 , so that for suitable k 2 Z we may assume that b0

12
, b0

34
are rationally

independent and of the same sign. If they are both negative, we can change their signs
by interchanging �1 and �2 and interchanging �3 and �4 . This achieves (i).

If (ii) does not hold, we may assume that the vector ˇ D .b13; b14; b23; b24/ does not
vanish, because otherwise by a permutation we could have arranged the situation with
b0

12
D b0

34
D 0 from the beginning of the proof, and, as observed there, (ii) is automatic

in that case.

So one of the entries of ˇ must be nonzero and hence rationally independent of either
b12 or b34 . We will consider the case that b13 and b12 are rationally independent,
the other cases being treated in a similar fashion. Now we change basis, replacing ��

4

by ��
4
C k��

1
and leaving the other elements fixed. Then b0ij D bij if i; j ¤ 4, while

b0
i4
D bi4� kb1i . In particular,

b012 D b12; b034 D b34� kb13; b013 D b13; b024 D b24� kb12:

Hence (ii) holds if k ¤ 0, since b0
13
; b0

24
are rationally independent. Further (i) will

hold if we choose k so that �kb13 > 0.

The proof in the other cases is similar. In particular if b13 D 0 but b14 ¤ 0 we use a
base change that alters ��

3
instead of ��

4
.

Remark 3.7 Note that

! ^! D .b13b24� b14b23� b12b34/ �
�
1 ^�

�
3 ^�

�
2 ^�

�
4:

Since the base change was orientation-preserving, the coefficient is still positive, and so
in the new basis for ƒ constructed in Lemma 3.6 we necessarily have b0

13
b0

24
�b0

14
b0

23
>

0, since �b0
12

b0
34
� 0 by (i).
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Proof of Proposition 3.2 We are given a torus T 4 D R4=ƒ with a linear irrational
symplectic form. We assume that we have chosen a basis �1; : : : ; �4 for ƒ such
that the matrix B determined from !.�i ; �j /D bij satisfies the conditions stated in
Lemma 3.6. Our goal is to identify ƒ with a suitable period lattice ƒP of the form
discussed in Lemma 3.5, where the coefficients p; q; r; s are still to be determined.
Moreover, we want that under this identification the form ! is as in (3-2) for suitable
constants x;y;u; v 2 R, and is compatible with the standard complex structure J0

on C2 .

With respect to the real standard basis e1; e2; e3 D
p
�1 e1; e4 D

p
�1 e2 of C2 the

symmetric bilinear form g associated to a symplectic form ! as in (3-2) and the
standard complex structure J0 is represented by the matrix:

.gij /D !.ei ;J0ej /D

0BB@
x u 0 �v

u y v 0

0 v x u

�v 0 u y

1CCA
The compatibility of ! with J0 requires this matrix to be positive definite, and this
holds if and only if all leading principal minors are positive. This will be the case if
and only if

(3-4) x > 0 and xy �u2
� v2 > 0;

since the other two conditions xy �u2 > 0 and .xy �u2� v2/2 are then necessarily
also satisfied.

To construct the lattice ƒP and find the coefficients of ! , a comparison with equation
(3-3) of the proof of Lemma 3.5 shows that we want to solve the equations

b12 D v; b13 D pxC qu;

b14 D rxC su; b23 D puC qy;

b24 D ruC sy; b34 D v.ps� qr/:

The middle four equations can be rewritten as:

(3-5)

0BB@
q p 0

s r 0

p 0 q

r 0 s

1CCA
0@u

x

y

1AD
0BB@

b13

b14

b23

b24

1CCA
Here the vector on the right hand side is given and nonzero. For fixed p , q , r , s with
ps� qr ¤ 0 this overdetermined system of equations will have a solution .u;x;y/ if
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the compatibility condition

(3-6) r b13�p b14 D q b24� s b23

is satisfied.

Lemma 3.8 If the vector .b13; b14; b23; b24/ is not a multiple of a rational vector,
there exists a solution .p0; q0; r 0; s0/ 2 R4 of (3-6) in rationally independent real
numbers satisfying s0b13� q0b14 > 0 and D WD p0s0� q0r 0 > 0.

Proof The inequalities sb13� qb14 > 0 and D > 0 define an open set in R4 , which
we denote by O . Similarly, for given bij the equation (3-6) defines a hyperplane H

in R4 . The intersection O\H is not empty, since in view of Remark 3.7 the point
with coordinates p D b13 , q D b23 , r D b14 and s D b24 belongs to it.

On the other hand, a point .p; q; r; s/ has rationally dependent coordinates if and only
if it solves some equation n1pC n2qC n3r C n4s D 0 with integral coefficients ni .
Since its defining vector is not a (multiple of a) rational vector, H is transverse to this
countable set of hyperplanes, and so there is some point in the open subset O\H that
does not lie on any of these hyperplanes. This point has the desired properties.

Given .p0; q0; r 0; s0/ as in the lemma, the solution of the matrix equation (3-5) is

x0 D
1

D
.s0b13� q0b14/; y0 D

1

D
.p0b24� r 0b23/;

u0 D
1

D
.p0b14� r 0b13/D

1

D
.s0b23� q0b24/:

If b12 D b34 D 0, the final two equations

b12 D v; b34 D v.p
0s0� q0r 0/;

have the trivial solution v D 0. In this case choose � > 0 such that �2.p0q0� r 0s0/ is
irrational, and define .p; q; r; s/ WD �.p0; q0; r 0; s0/ and .u;x;y/ WD ��1.u0;x0;y0/.

If b12; b34 are rationally independent, we need to rescale the above solution so that
ps� qr D b34=b12 . Therefore, define .p; q; r; s/ WD �.p0; q0; r 0; s0/ and .u;x;y/ WD
��1.u0;x0;y0/, where � WD

p
b34=.b12D/. Notice that ps � qr D b34=b12 is auto-

matically irrational by part (i) of Lemma 3.6 in this case. Now, choosing v D b12 , all
six equations are satisfied.

With this construction, we have found a lattice ƒP and coefficients x;y;u; v 2 R
such that, after identifying ƒ with ƒP by mapping the basis vectors �j of ƒ to
the basis vectors �j of ƒP , the symplectic form ! is as in (3-2). To check the

Geometry & Topology, Volume 17 (2013)



2832 Janko Latschev, Dusa McDuff and Felix Schlenk

positivity condition (3-4), note that x > 0 by construction, and a computation shows
that xy � u2 � v2 equals a positive multiple of b13b24 � b14b23 � b12b34 , which
was observed to be positive in Remark 3.7. In summary, we have shown that ! is
compatible with the standard complex structure J0 on C2 . Finally, the lattice ƒP

by construction satisfies the assumptions of Lemma 3.5, and so we have proven the
proposition.

3.3 Product tori

In this section, we complete the proof of Theorem 1.9 by treating the case of product
tori T .1; �/. We can assume that � � 1. If � is irrational, Theorem 1.9 has been
proven in Sections 3.1 and 3.2. If �D 1 or �� 2 is rational, Theorem 1.9 follows from
Proposition 3.9 below (notice that for �� 2 the condition on the individual aj and bj

appearing in this proposition are automatic from volume considerations). Finally, if
� 2 .1; 2/ is rational, Theorem 1.9 follows from the case of rational �� 2 as in the
proof of Corollary 1.7.

Proposition 3.9 Let � � 1 be rational and let B.a1/; : : : ;B.ak/ be a collection of
balls such that

Vol
� ka

jD1

B.aj /

�
< �

and such that aj < � for all j . Then there exists a symplectic embedding of`k
jD1 B.aj / into the open disc bundle T 2.1/�D2.�/.

Proof Denote by S2.�/ the 2–sphere endowed with an area form of area �. Biran
has shown in [4, Proof of Corollary 5.C] that

`k
jD1 B.aj / symplectically embeds into

T 2.1/�S2.�/ whenever

Vol
� ka

jD1

B.aj /

�
< �

and aj < � for all j . We will arrange this embedding in such a way that the balls lie
in T 2.1/� .S2.�/Xz0/D T 2.1/�D2.�/, where z0 2 S2 . Such a construction has
been carried out in [5] in a slightly different situation. We shall outline the construction,
pointing out the difference.

A symplectic embedding of
`k

jD1 B.aj / into T 2.1/ � .S2.�/Xz0/ is obtained by
constructing a smooth family of cohomologous forms !s , s 2 Œ0; 1�, on T 2 �S2 with
the following properties:

� !0 is the product form on T 2.1/�S2.�/,
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� each !s is nondegenerate on the torus Z WD T 2 � fz0g,

� for each s 2 Œ0; 1� there exists a symplectic embedding of
`k

jD1 sB.aj / into
..T 2 �S2/XZ; !s/.

For then a standard Moser argument shows that there is a family of diffeomorphisms
 sW .T

2 � S2;Z/! .T 2 � S2;Z/ such that  �
1
!1 D !0 . Therefore

`k
jD1 B.aj /

symplectically embeds into .T 2 � .S2Xz0/; !0/D T 2.1/�D2.�/.

The family !s is constructed in much the same way as in the proof of Theorem 1.9
for irrational tori. In other words, the problem is converted into one of constructing
suitable forms �s on the k –fold blow-up. The only difference is that we can no longer
find the required forms �s on the blow-up via the Buchdahl–Lamari criterion; instead
we must use symplectic inflation as in Lalonde and McDuff [24], McDuff [31], and
Biran [4]. In order for Z to be �s –symplectic, it suffices to work only with almost
complex structures J for which Z is J –holomorphic.

More precisely, let .M; !0/ WDT 2.1/�S2.�/, and choose different points x1; : : : ;xk

in MXZ . Let J0 be the standard product complex structure on M , and choose
neighborhoods U.Z/D T 2 �D.z0/, B".x1/; : : : ;B".xk/ with disjoint closures. At
each point xj , form the Kähler blow-up of size ". Denote the resulting Kähler manifold
by .Mk ;Jk ; �"/. Let †1; : : : ; †k be the exceptional divisors, and let Ej be the
homology class of †j . Note that

� W MkX
S

j †j !MX
S

j xj

is a diffeomorphism, and denote ��1.Z/ and ��1.U.Z// by zZ and U. zZ/. Choose
mutually disjoint neighborhoods U.†j / that are also disjoint from zZ . Let J be the
space of �"–tame almost complex structures on Mk , and denote by J 0 the subspace
of those J in J that restrict to Jk on U. zZ/[U.†1/[ � � � [U.†k/. As in [4; 5],
the class Œ!0� 2H 2.T 2 �S2IR/ is rational by assumption. Choose rational numbers
a0j 2 .aj ; �/ such that Vol

�`k
jD1 B.aj /

�
< �. We then find n 2N such that

(3-7) A WD n

�
PDŒ��!0��

kX
jD1

a0j Ej

�
belongs to H2.Mk IZ/. In order to construct the forms �s we wish to inflate the form
�" along the class A. To this end we need to represent A by a smooth connected
embedded reduced J –holomorphic curve C for some J 2 J 0 . To find such a curve C

one can closely follow the proof of [5, Lemma 2.2.B], where, however, the curve zZ has
negative self-intersection. This causes no problem if one observes that, by the maximum
principle, for every J 0 2 J 0 , every J 0–holomorphic curve that is entirely contained

Geometry & Topology, Volume 17 (2013)



2834 Janko Latschev, Dusa McDuff and Felix Schlenk

in U. zZ/ must be (a multiple cover of) a torus ��1.T 2 � fzg/ with z 2D.z0/. For
B 2H2.Mk IZ/, the maximal number of generic points through which, for generic
J 2 J , a J –holomorphic curve can pass, is k.B/ WD 1

2
.B �BC c1.B//. Let

(3-8) AD
X

j

mj Aj CmŒ zZ�; m� 1;

be an A–cusp configuration with m � 1. Denote by kcusp.A/ the maximal number
of generic points through which, for a generic subset of J 0 in J 0 , a J 0–cusp-curve
with configuration (3-8) can pass. As in [5, pp. 148–151], the last step in the existence
proof for the curve C is to understand that kcusp.A/ < k.A/. To see this, consider
the class xA WDA�mŒ zZ�. In view of (3-7), the class A is not a multiple of Œ zZ�, and
hence the class xA is non-trivial. Biran showed in the proof of Lemma 2.2.B of [5]
that for generic J 0 2 J 0 , no (cusp-)curve in class xA can pass through more than k. xA/

generic points. Since in the definition of kcusp.A/ we may consider points outside
U. zZ/ only, it follows that kcusp.A/� k. xA/. Moreover, using c1. zZ/D 0, Œ zZ� � Œ zZ�D 0

and A � Œ zZ�D n
R

Z !0 > 0, m� 1, we compute

k. xA/D k.A/�m xA � Œ zZ�D k.A/�mA � Œ zZ� < k.A/:

Altogether, kcusp.A/� k. xA/ < k.A/.

4 Basic symplectic mappings

In this section we describe an elementary symplectic embedding construction. It will
be applied in Section 5 to prove that p

�
T .1; 1/

�
D 1. We write R2.x/ WDR2.x1;x2/

and R2.y/ WDR2.y1;y2/.

4.1 Diamonds

Consider the “diamond” of size a

˘.a/ WD
˚
.x1;x2/ 2R2.x/

ˇ̌
jx1jC jx2j<

a
2

	
�R2.x/I

see Figure 3(I).

Lemma 4.1 For each " > 0 the ball B4.a/ symplectically embeds into

˘.aC "/� .0; 1/2 �R2.x/�R2.y/:
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Proof Let D.a/�R2.z/DR2.x;y/ be the open disc of area a. Choose an area and
orientation-preserving embedding

� W D.a/!
�
�

aC"

2
;

aC"

2

�
� .0; 1/

such that

(4-1)
ˇ̌
x.�.z//

ˇ̌
<

1

2
�jzj2C

"

2
for all z 2D.a/:

Figure 1 shows such an embedding. For details we refer to [36, Lemma 3.1.8].

z

x

y

�

�
aC"

2
aC"

2

1

Figure 1: The map �

We claim that the symplectic embedding � � � W D.a/ �D.a/! R4 maps B4.a/

to ˘.aC "/ � .0; 1/2 . Indeed, for .z1; z2/ 2 B4.a/ we have �.jz1j
2 C jz2j

2/ < a.
Together with (4-1) we can estimateˇ̌

x1..� � �/.z1; z2//
ˇ̌
C
ˇ̌
x2..� � �/.z1; z2//

ˇ̌
D
ˇ̌
x1.�.z1//

ˇ̌
C
ˇ̌
x2.�.z2//

ˇ̌
<

1

2

�
�jz1j

2
C�jz2j

2
�
C "

<
a

2
C ";

as claimed.

Corollary 4.2 The open ball B4.a/ is symplectomorphic to

˘.a/� .0; 1/2 �R2.x/�R2.y/:

Proof This follows by combining the above lemma with Lemma 4.3 below.

Lemma 4.3 Let V � R4 be a bounded domain such that for each compact subset
K � V there exists ya < a and a symplectic embedding y'W B4.ya/ ! V such that
Im y' �K . Then V is symplectomorphic to B4.a/.
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Proof Choose a sequence K1 � K2 � � � � of compact subsets of V such thatS
j Kj DV . Using the assumption of the lemma and the result from [30] that the space

of symplectic embeddings of a closed ball into an open ball is connected, we construct
a sequence a0

1
< a1 < a0

2
< a2 < � � � with aj ! a and a sequence of symplectic em-

beddings 'j W B
4.aj /! V such that 'j .B

4.a0j //�Kj and 'jC1jB4.a0
j
/ D 'j jB4.a0

j
/ .

Define 'W B4.a/! V by '.z/ D 'j .z/ if z 2 B4.a0j /. Then ' is a well-defined
symplectic embedding. Also, '.B4.a0j // D 'j .B

4.a0j // � Kj . Hence ' is ontoS
j Kj D V .

4.2 Distorted diamonds

All of our embeddings, besides one, will start from a diamond ˘.a/. For our full
filling of T .1; 1/, however, we shall need to start from a distorted diamond.

Fix a > 0. Let uCW Œ0; a� ! R be a continuous, nondecreasing function that for
convenience we take to be piecewise-linear. Suppose further that

uC.0/D 0 and u0C.�/ 2 Œ0; 1� on the linear pieces:

Define the piecewise-linear function u�W Œ0; a�! R by u�.�/ D uC.�/� � . Then
u�.0/ D 0 and u0�.�/ 2 Œ�1; 0�, so that u� is nonincreasing. Moreover, u0C.�/ �

u0�.�/D 1 on the linear pieces, and uC.a/�u�.a/D a. Let

�uW D.a/!
�
u�.a/�

"

2
; uC.a/C

"

2

�
� .0; 1/

be a symplectic embedding such that

x.�u.z// 2
�
u�.�/�

"

2
; uC.�/C

"

2

�
for all z 2D.a/ with �jzj2 < �:

Figure 2 shows the image of concentric circles of the map �u for aD 3 and for the
function uCW Œ0; 3�!R with slope 1

2
on Œ0; 3

2
� and slope 1

3
on Œ3

2
; 3�.

Let uC and vC be functions as above, and

�uW D.a/!R2.x1;y1/; �vW D.a/!R2.x2;y2/

be symplectic embeddings associated to u and v as above. Then, as in Lemma 4.1, the
product �u � �v induces a symplectic embedding B4.a/!R2.x/� .0; 1/2 . Because
uC; vC are piecewise linear, the image .�u � �v/.B

4.a// of the ball projects to a
("–neighbourhood of a) polygon in R2.x/ whose vertices are determined by the non-
smooth points of u and v . For example, if uC.�/D vC.�/D

�
2

then the image is the
standard diamond ˘.a/ constructed above.
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�
7
4
�
"
2

�
3
4

3
4

5
4
C
"
2

1

x

y

Figure 2: The map �u for a function uC with two pieces

Assume now that a > 1. Define d by 2d D a� 1, and suppose that the functions
uC , vC have only two pieces, where uC is standard (ie, equal to �

2
) on Œ0; 2d � and

vC is standard on Œ0; 1�. Then the distortion occurs when either jx1j> d or jx2j>
1
2

.
Computing as in the proof of Lemma 4.1 (again omitting " > 0), we find that the image
of B4.a/ under �u � �v is contained in ˘ � .0; 1/2 , where ˘ is as in Figure 3(II).

x1

x2

a
2

�
a
2

�
a
2

a
2

d�d

1
2

�
1
2

v�.a/

vC.a/

u�.a/ uC.a/ x1

x2

(I) (II)

Figure 3: The diamond ˘.a/ and a distorted diamond

We call the factor ˘ of such an image ˘ � .0; 1/2 a distorted diamond. A distorted
diamond of size a> 1 therefore consists of:

� A rectangle .�d; d/� .�1
2
; 1

2
/ with 2d D a� 1.

� A top and bottom triangle each with base 2d , the sum of whose heights is
vC.a/� v�.a/� 1D a� 1D 2d .
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� Two flaps each with height 1, the sum of whose widths is uC.a/�u�.a/�2d D

a� .a� 1/D 1.

Corollary 4.2 has the following generalization.

Proposition 4.4 Let ˘ be a distorted diamond of size a. Then the product ˘�.0; 1/2

is symplectomorphic to the open ball B4.a/.

Proof In view of the above construction, for each compact subset K � ˘ � .0; 1/2

there exists ya < a and a symplectic embedding y'W B4.ya/! ˘ � .0; 1/2 such that
Im y' �K . The proposition therefore again follows from Lemma 4.3.

In [40], Traynor used a different construction to prove Proposition 4.4 for the special
case that ˘ is the standard simplex f.x1;x2/ j x1;x2 > 0; x1Cx2 < ag.

4.3 Shears

Let f W R!R be a smooth function. Consider the x1 –shear

'.x1;x2/D .x1Cf .x2/; x2/

of R2 . Then the diffeomorphism

(4-2) y'.x1;x2;y1;y2/D
�
x1Cf .x2/;x2;y1;y2�f

0.x2/y1

�
is a symplectomorphism of R4 . Indeed, this is just the “cotangent map”

.x1;x2;y1;y2/ 7!
�
'.x1;x2/;

�
d'.x1;x2/

T
��1

.y1;y2/
�

of the shear ' . We call a map y' of the form (4-2) also an x1 –shear. Similarly, an
x2 –shear '.x1;x2/D .x1; x2Cg.x1// induces a symplectomorphism

(4-3) .x1;x2;y1;y2/ 7!
�
x1;x2Cg.x1/;y1�g0.x1/y2;y2

�
;

which we again call an x2 –shear.

Let U �R2.x/ be a domain, and consider the image z'.U � .0; 1/2/ of an x1 –shear
in R2.x/ � R2.y/. This image fibers over '.U / � R2.x/, with fiber f.y1;y2 �

f 0.x2/y1/ j .y1;y2/ 2 .0; 1/
2g over '.x1;x2/; see Figure 4.

The projection �yW R2.y/!R2.y/=Z2.1; 1/ is injective on these fibers. Further

T .�; 1/DR2.x/=Z2.�; 1/�R2.y/=Z2.1; 1/:
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y1

y2

1

1

�f 0.x2/

Figure 4: The fiber over '.x1;x2/

It follows that if the projection �xW R2.x/!R2.x/=Z2.�; 1/ is injective on '.U /,
then also

� D �x ��y W z'
�
U � .0; 1/2

�
! T .�; 1/

is injective. The same holds true for x2 –shears.

One can check by direct calculation that an arbitrary composite of shears can map
U �.0; 1/2 to a set that intersects the fibers x�R2.y/ in subsets that no longer project
injectively under �y . The next lemma gives conditions under which shears may be
composed: One essential condition is that the shears must affect disjoint subsets of U .

Lemma 4.5 Suppose that an x1 –shear '1 and an x2 –shear '2 satisfy the following
conditions:

(i) '2 fixes the set '1.fx 2 U j '1.x/¤ xg/ pointwise.

(ii) �x injects '2 ı'1.U / into R2.x/=Z2.�; 1/.

Then � injects y'2 ı y'1

�
U � .0; 1/2

�
into T .�; 1/.

Proof The first condition implies that each 2–plane x�R2.y/ is moved by at most
one of the shears. Hence each x–fiber of the image y'2 ı y'1.U � .0; 1/

2/ projects
injectively under �y W R2.y/!R2.y/=Z.1; 1/. It remains to check that the projection
to R2.x/=Z.�; 1/ is injective, which is guaranteed by (ii).

We next give three examples illustrating the above embedding method.

Example 4.6 A full filling of T.2k2; 1/ for each k2N We start from the diamond
˘.2k/, with vertices .˙k; 0/, .0;˙k/. Using the linear shear '.x1;x2/ D .x1 C

.2k�1/x2;x2/, the diamond is transformed into the parallelogram P .k/ with vertices

.˙k; 0/ and ˙.2k2� k; k/; see Figure 5.
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k

�k

�k k k2
�2k2C k 2k2� k x1

x2

1

Figure 5: The parallelogram P .k/

This shear is chosen so that:

� the vertical distance between the top and bottom edges of P .k/ is 1, and

� each of these edges projects to an interval of length 2k2 on the x1 –axis.

x1

x2

Figure 6: The tiling of R2.x/ by translates of P .k/ (in the picture k D 3).
The darker parallelogram is a translate of the lighter one by 2k2 in the x1 –
direction. The rectangle marks the standard fundamental domain already
depicted in Figure 5.

It follows that the set P .k/ is a fundamental domain for the action of Z2 with generators
2k2@x1

and @x2
; cf Figure 6. Now Proposition 4.4 shows that the ball B4.2k/

symplectically embeds into T .2k2; 1/.

Geometry & Topology, Volume 17 (2013)



The Gromov width of 4–dimensional tori 2841

Remark 4.7 Together with scaling and Remark 2.2, this gives an explicit full filling
by one ball of T .�; 1/ for all �D 2m2=n2 with m; n relatively prime. (Non-explicit
full fillings of these tori follow from the computation of Seshadri constants (2-8), and
from Proposition 1.6, together with Remark 2.2.)

Remark 4.8 By shears as in Example 4.6 one can also construct explicit full fillings
for some special irrational tori, namely for those of the form R4=ƒ, where the lattice
splits as ƒDƒx �ƒy , such that ƒy is the standard Z2 �R2.y/ and such that some
linearly sheared diamond in R2.x/ is a fundamental domain for ƒx .

x1 x1

x2 x2

a
2
D

2
3

B

A A0

C

.1
2
; 1

2
/

�
a
2

1
3

1
3

�
a
2

a
2

(I) (II)

Figure 7: Filling 8
9

of T .1; 1/

Example 4.9 Filling 8
9

of T.1; 1/ Let aD 4
3

. The corners of the maximal inscribed
square in ˘.a/ with sides parallel to the axes have coordinates .˙1

3
;˙1

3
/. Two of

these corners are labelled B and C in Figure 7(I). Choose f with f .x2/ D 0 for
�

1
3
� x2 �

1
3

and f 0.x2/ D 1 for jx2j >
1
3

(with rounding between). In particular,
f .�a

2
/D� 1

3
and f .a

2
/D 1

3
. The x1 –shear induced by f then takes the upper triangle

ABC to the shaded triangle A0BC , and similarly for the bottom triangle, while the
rest of the diamond is untouched. The x2 –shear induced by the function �f then
moves the left and right flaps of ˘.a/ to the flaps shown in Figure 7(II), while the rest
of the image of the x1 –shear is untouched. Therefore, a point in ˘.a/ is affected by
at most one of these two shears, so that we can apply Lemma 4.5.

The composition of these two shears takes (a slight shrinking of) ˘.a/ to the shaded
domain in Figure 7(II). This domain injects into R2.x/=Z2.1; 1/: It wraps up under
the action of Z2 to a set covering all of the square .�1

2
; 1

2
/2 except the four black
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squares of area .1
6
/2 each. For each " > 0 we thus have constructed a symplectic

embedding of a ball into T .1; 1/ filling at least 8
9
� " of the volume of T .1; 1/.

Example 4.10 Filling 49
50

of T.1; 1/ Let a D 7
5

. The idea is to divide the square
representing T .1; 1/ into two rectangles, one the maximum rectangle of height 1 that
lies in the diamond ˘.a/ (and hence has width a� 1 D 2

5
), and the other of width

2� aD 3
5

; see Figure 8(I).

x1 x1

x2 x2
a
2
1
2

�
1
2

�
1
2

2
5

3
5

1
�

1
2

�
1

10
1
2

1

(I) (II)

Figure 8: Filling 49
50

of T .1; 1/ , schematically

We shear the top triangle by a strong x1 –shear to the left, the bottom triangle by a
strong x1 –shear to the right, and then shear the flaps by x2 –shears in a symmetric way
so as to free triangles into which the sheared top and bottom triangles fit, when projected
to the torus. The freed triangles have height 1

5
and width 1

2
, while the triangles fitting

in have the same height, but width 2
5

only. In Figure 8(II), one sees the image of the
dark grey top triangle and its translate by @x1

� @x2
, the image of the black bottom

triangle and its translate by @x2
, as well as the image of the mid-grey left flap and its

translate by @x1
.

To make this construction precise, fix a small " > 0, and decompose the diamond
˘.a�"/ into four triangles and a rectangle of height 1 and width 2

5
from each of whose

four vertices a simplex of width "
2

has been removed. For notational convenience, we
also translate ˘.a� "/ by 1

2
@x2

(see Figure 9).

The x1 –shear, that moves the top triangle to the left and the bottom triangle to the
right, has the following properties:

� It has support in fx2 > 1� "
4
g[ fx2 < 0g.
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x1

x2

a�"
2
C

1
2

�
1
2

2
5

1

1

Figure 9: The decomposition of the diamond ˘.a� "/

� Near the upper triangle, this shear is very strong on f1� "
4
< x2 < 1g, and up to

a minor shear, it is a translation on f1< x2 <
a�"

2
C

1
2
g.

� It fixes the points AD . "
4
; 1� "

4
/ and BD .2

5
�
"
4
; 1� "

4
/, but translates C D . "

2
; 1/

to C 0 D .�2
5
C
"
2
; 1/ and D D .2

5
�
"
2
; 1/ to D0 D .� "

2
; 1/.

� On the bottom triangle, it acts very strongly on f� "
4
< x2 < 0g.

� It fixes the points X D . "
2
; 0/ and Y D .2

5
�
"
2
; 0/, but translates W D .3

4
";� "

4
/

to W 0 D .2
5
C
"
2
;� "

4
/ and Z D .2

5
�

3
4
";� "

4
/ to Z0 D .4

5
� ";� "

4
/.

In Figure 10 we drew the projection of the (dark grey) top triangle f1� "
4
< x2g to

the fundamental domain .0; 1/� .0; 1/ of the usual Z2 –action, but we did not draw
the projection of the bottom triangle fx2 < 0g. In order to see that the image projects
injectively to T .1; 1/, notice that:

– the point C lies strictly above the segment D0B ,

– W 0 lies on the right of B , and

– B lies "
4

below C and W 0 lies "
4

below X .

Therefore, the translate by @x2
of the segment XW 0 lies above the segment D0B .

5 Proof of Theorem 1.1

Since we already proved Theorem 1.9, it only remains to treat the product torus T .1; 1/.
So let aD

p
2. We want to find, for each " > 0, a symplectic embedding of the ball
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x2

a�"
2
C

1
2

C 0 D0 C D
1

A B

2
5

1
2

1
2

X Y

W Z W 0 Z0 1 x1

Figure 10: Filling 49
50

of T .1; 1/

B4.a� "/ into the torus T .1; 1/. We describe the schematic embedding for " D 0.
From this, an actual embedding for " > 0 is obtained exactly as in Example 4.10.

As in that example, given the diamond ˘.a/, we decompose the square .0; 1/�.�1
2
; 1

2
/

into two rectangles, and fill the right rectangle .a�1; 1/�.�1
2
; 1

2
/ with the four triangles;

see Figure 11(I).

The width of this rectangle is

1� .a� 1/D 2�
p

2 DW
1Cb

2
; where b WD 3� 2

p
2 :

We start from a distorted diamond as in Figure 11(II), whose left flap has width
.1C b/=2, and so will just fit into the right rectangle. The right flap of the distorted
diamond then has width .1� b/=2. The height ht of its top triangle will be chosen
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x2 x2

a
2
1
2

1
2

ht

�
1
2

a� 1
1Cb

2
1�b

2
1�b

2

x1 x11 1

1Cb
2

1Cb
2

�
1
2

�
1
2 hb

(I) (II)

Figure 11: The decomposition of ˘.a/ and its distortion

later. The height hb of the bottom triangle is then determined by the fact that the sum
of these two heights must be .1� b/=2.

Figure 12 shows the final position of the flaps in the right rectangle.

The two remaining triangles T˙ both have base of length .1� b/=2, which agrees
with that of the triangles in Figure 11(II). Therefore it remains to check that the heights
ht ; hb of T˙ sum to .1� b/=2. Note that the size of the diamond was chosen so that
the total area of the triangles T˙ left uncovered by the flaps in Figure 12 equals the
sum of the areas of the original (undistorted) top and bottom triangles. Since the base
sides of T˙ already have the correct length .1�b/=2, this equality of area forces their
heights to add up to the correct amount .1� b/=2 as well. In particular, these heights
can be achieved by a suitable distortion.

Alternatively, one can explicitly compute the sum of ht and hb as follows. Figure 13
shows how the flaps are sheared vertically so that they fit into this rectangle. The image
of the shear  1 in Figure 13 (center top) shows that hbC `C 2b=.1C b/D 1, where
`D .1�3b/=.1�b/ is the length of the intersection of the lighter flap with the vertical
line at x1D b . Further, looking at the shear '2 we see that ht D 1� .1�b/=.1Cb/D

2b=.1C b/. Therefore hbCht D 1� `D 2b=.1� b/. Hence hbCht D .1� b/=2 if
2b=.1� b/D .1� b/=2, or equivalently if b2 � 6bC 1D 0. But this holds because
we defined b D 3� 2

p
2 .

In any case, as in Example 4.10, we can therefore use an x1 –shear to bring the top
triangle of the distorted diamond into T� and the bottom triangle into TC .
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x2

1

1�b
2 b

TChb

ht

T�

b 1�b
2

1Cb
2

x1

Figure 12: The final position of the flaps, where we have translated axes so
that the origin lies at the corner of the right rectangle

6 Proofs of Corollaries 1.2 and 1.3

Proof of Corollary 1.2 Consider the 4–torus T 4 and its blow-up zX DT 4]CP2 . Fix
an orientation of zX . Denote by E 2H2. zX IZ/ the homology class of the exceptional
divisor (with some orientation) in zX . We need to show that the symplectic cone of
zX is

(6-1) C. zX /D
˚
˛ 2H 2. zX IR/

ˇ̌
˛2 > 0; ˛.E/¤ 0

	
:

We first prove the inclusion � in (6-1). The condition ˛2 > 0 holds because ˛ is
represented by a symplectic form compatible with the given orientation of zX . The
condition ˛.E/¤ 0 follows from Taubes’ work on the relation between Seiberg–Witten
and Gromov invariants, according to which for any symplectic form ! on zX the class
E is representable by an embedded sphere on which ! is non-degenerate; see [38; 39].

We now prove the inclusion � in (6-1). The projection � W zX ! T 4 induces an
orientation on T 4 . The classes in H 2. zX IR/ can be written as ��ˇ � a e , where
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1 1 1
hb hb

1�b
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` 1  2
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1�b
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'1 '2

2b
1Cb

2b
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1Cb
2

b 1�b
2

1Cb
2

b 1�b
2
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Figure 13: Filling the right rectangle with the distorted triangles. In the
middle figure the darker flap has been moved down to fill half the rectangle
and the lighter flap has been correspondingly sheared up. The right figure
shows the effect of a further vertical shear, leaving two empty triangular
regions T˙ , one at the top and one at the bottom.

ˇ 2H 2.T 4IR/ and a 2R, and where e D PD.E/ is the Poincaré dual of E . Since
e2 D�1, the set on the right hand side of (6-1) becomes˚

��ˇ� ae 2H 2. zX IR/
ˇ̌
ˇ 2H 2.T 4

IR/; ˇ2 > a2 > 0
	
:

Fix ˇ 2 H 2.T 4IR/ and a > 0 with ˇ2 > a2 > 0. Since ˇ2 > 0, we can represent
ˇ by a linear symplectic form on T 4 compatible with the given orientation. Since
ˇ2 > a2 > 0, Theorem 1.1 guarantees a symplectic embedding of B4.a/ into .T 4; !/.
The symplectic form on the corresponding symplectic blow-up of .T 4; !/ represents
the class ��ˇ� a0e , where either a0 D a or a0 D�a.

It is well known (see eg Wall [41, Lemma 2]) that there exists an orientation-preserving
diffeomorphism 'W zX ! zX of the blow-up which acts on H 2. zX IR/ by sending e
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to �e while fixing the orthogonal complement ��.H 2.T 4IR// of e (with respect to
the cup product pairing).4 In particular, '�.��ˇ�a0e/D ��ˇCa0e . Therefore, both
��ˇ� ae and ��ˇC ae belong to the symplectic cone C. zX /.

Proof of Corollary 1.3 We denote by ! a symplectic form on T 4 such that .T 4; !/

is symplectomorphic to T .1; 1/. Let again zX be the blow-up of T 4 , and let E be the
class of the exceptional divisor † (with orientation specified later). By Corollary 1.2,
the class ��Œ!��a PD.E/ admits a symplectic representative for all 0< a<

p
2. We

shall show that for a> 4
3

, this class admits no Kähler representative.

Let ˛ be a Kähler form on zX , and let ��Œ!��a PD.E/ be its class. By the Enriques–
Kodaira classification, the complex manifold . zX ; zJ / underlying the Kähler manifold
. zX ; ˛/ is the complex blow-up of a complex torus .T;J /. Orient † by zJ . The Kähler
form ˛ is positive on all non-constant zJ –holomorphic curves in zX . In particular,
aD

R
† ˛ > 0, and given a non-constant J –holomorphic curve C in T with proper

transform zC , we have E � Œ zC �� 0 and

(6-2) 0<
�
��Œ!�� a PD.E/

��
Œ zC �
�
� Œ!�

�
ŒC �
�
:

The Nakai–Moishezon criterion thus implies that Œ!� is an ample class on T . Hence Œ!�
gives a principal polarization of T . Comparing definition (2-1) with the left inequality
in (6-2) we see that its Seshadri constant is at least a. Together with Steffens’ estimate
(2-5) we thus find a� 4

3
.

7 Remarks and questions

1 Symplectic forms on T 4 We have worked throughout with a linear symplectic
form on T 4 . It is not known whether every symplectic form on T 4 is isotopic to a
linear form, or even whether it is symplectomorphic to such a form.

2 Very full fillings There is a stronger version of full filling: rather than asking
whether one can fill an arbitrarily large fraction of the volume of a manifold M with
a ball, one could ask whether M has a set of full measure that is symplectomorphic
to an open ball. In other words, if a D cG.M; !/ does the open ball B4.a/ embed
symplectically in M ? Let us say that in this case .M; !/ has a very full filling (by

4Such a diffeomorphism ' can be constructed explicitly as follows: The map cW CP2!CP2 given
by c.Œz0 W z1 W z2�/D Œxz0 W xz1 W xz2� is orientation-preserving and reverses the orientation of all complex
lines. By an isotopy supported near the fixed point p0 D Œ1 W 0 W 0� we can deform c to a diffeomorphism
c0 fixing a neighborhood of p0 , and if the connected sum to construct the blow-up is performed in this
neighborhood, then ' is obtained by glueing c0 to the identity map on the torus.
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one ball). (There are similar versions for other filling problems.) When a rational or
ruled manifold has a full filling, it also has a very full filling because one can argue as
in the proof of Lemma 4.3, using the fact that in this case the space of ball embeddings
is connected. However, these general arguments do not apply to tori, and it is unclear
whether T .1; 1/, for example, has a very full filling by one ball. On the other hand,
the explicit fillings in Example 4.6 and Remark 4.7 give very full fillings.

3 The isotopy problem For some symplectic four-manifolds .M; !/, such as the
complex projective plane or a product of 2–spheres, it is known that the space of
symplectic embeddings of a given (closed) ball into .M; !/ is connected; see [30; 31].
For tori, this is a completely open problem. For many balls B4.a/, our embedding
constructions yield various symplectic embeddings into tori T .�; 1/, for which we do
not know whether they are symplectically isotopic.

As a first example, consider, for some fixed small " > 0, the symplectic embeddings of
a ball filling 8

9
� " of T .1; 1/ that are illustrated, for "D 0, in Figure 14. Here, the

embedding .C�/ is the one of Example 3 in Section 4.3, and the other three embeddings
are obtained in the same way. Are these balls symplectically isotopic in T .1; 1/?
Note that, for instance, the (not Hamiltonian) symplectomorphism .x1;y1;x2;y2/ 7!

.�x1;�y1;x2;y2/ of T .1; 1/ maps the ball .CC/ to .��/ and maps .C�/ to .�C/.

x2 x2 x2 x2

x1 x1 x1 x1

.CC/ .��/ .C�/ .�C/

Figure 14: Four embeddings of B4.4
3
/ into T .1; 1/

As a second example, consider the following two full fillings of T .9
8
; 1/: The first

filling is the one obtained from the explicit full filling of T .1; 72/ via Lemma 2.1. The
second filling is similar to the embedding in Example 3 of Section 4.3. We decompose
the diamond ˘.3

2
/ and the rectangle .0; 9

8
/� .0; 1/ as in Figure 15(I), and shear the

triangles as shown in Figure 15(II).5 These two embeddings are clearly different. Are
they symplectically isotopic?

5This is the first in a family of full fillings of T .�k ; 1/ with �k D .2kC 1/2=.2.kC 1/2/ for k � 1 ,
using the diamond ˘..2kC 1/=.kC 1// in which the top triangle x2 �

1
2

is sliced into k horizontal
slices of heights 1=.kC 1/2; 2=.kC 1/2; : : : ; k=.kC 1/2 and then sheared to the right so that the right
edge of the j th piece lies over an x1 –interval of length .2j � 1/=.2.kC 1/2/ , while the bottom triangle
is sheared symmetrically to the left.
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x2 x2
3
4
1
2

�
1
2

1
2

1 9
8

x1 x1�
1
2
�

1
8

1
2

5
8

1 9
8

�
1
2

Figure 15: Another full filling of T .9
8
; 1/

More generally, it is not known whether there is any " 2 .0;
p

2/ such that the space of
symplectic embeddings of B4."/ into T .1; 1/ is connected.

4 Uniqueness of symplectic structures on the blow-up of T 4 Suppose that !1; !2

are two cohomologous symplectic forms on the blow-up of a given symplectic 4–
manifold .M; !/ that are obtained by blow-up from two ball embeddings into M . If
there is a symplectomorphism from one embedding to the other (as with the .CC/; .��/
embeddings mentioned in 3 above) then the two blow-up forms !1; !2 are diffeomor-
phic. However, usually there is no obvious map of this kind. Further, because the
Gromov–Witten invariants of T 4 vanish, we have no tools (such as those in [30; 31])
to prove that the two blow-up forms are isotopic or even just diffeomorphic. Hence the
uniqueness problem for symplectic forms on the blow-up of a 4–torus is open, even if
we restrict consideration to forms on the blow-up that blow down to linear forms.

5 Higher dimensions The filling methods used in Section 3 work only in dimension 4.
Although many of the explicit arguments in Section 4 extend to higher dimensions,
the higher-dimensional analogs of the diamond ˘ (eg, the octahedron) do not tile
Euclidean space. Therefore there seem to be no simple explicit full fillings of tori
by balls in higher dimensions along the lines of Example 4.6. As we explained in
Section 2.3, one can get some (presumably rather weak) lower bounds for the ball
filling number of tori of dimension 2n� 6 from the computations of Seshadri constants
in [3] and [11]. For example, when nD 3; 4 we have:

p.T6/� 288
343

and p.T8/� 2
3
:

It is not clear how to do better than this, or even how to realize these bounds by explicit
embeddings. It is also not clear how to find explicit embeddings in dimension 4 that
do better than some of the sharper Seshadri constants, for example 360

361
for T .1; 5/.
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6 Packings by cubes and polydiscs Instead of looking at symplectic embeddings
of balls, one may study symplectic embeddings of cubes and polydiscs B2.a1/ �

� � � �B2.an/. (In fact, the problem of symplectically packing certain domains in R2n

by equal cubes has been an original motivation to consider symplectic packings; see
Fefferman and Phong [15], and McDuff and Polterovich [33].) This problem has been
much less studied, since (to our knowledge) even in dimension four the problem of em-
bedding a polydisc cannot be reduced to the problem of embedding a collection of balls.
Ekeland–Hofer capacities [13] and the new 4–dimensional invariants from embedded
contact homology (Hutchings [18]) provide obstructions for symplectic embeddings
of polydiscs into certain manifolds. A few symplectic embedding constructions for
polydiscs are described in [36]; eg, the shears in [36, Section 7.1] show that T .1; 1/

can be fully filled by B2.1=k/�B2.k/ for each k 2N . Similarly, the dense set of
product tori T

�
1;m2=n2

�
with m; n 2N relatively prime can be fully filled by a cube.

Indeed, by Remark 2.2, it suffices to fill T .1; k2/ by a cube for each k 2N . For this,
view B2.k/�B2.k/ as .�k

2
; k

2
/2 � .0; 1/2 �R2.x/�R2.y/, and apply (similar to

the map in Example 4.6) the x1 –shear defined by '.x1;x2/D .x1C kx2;x2/.
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