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Uniform hyperbolicity of the graphs of curves

TARIK AOUGAB

Let C.Sg;p/ denote the curve complex of the closed orientable surface of genus g

with p punctures. Masur and Minksy and subsequently Bowditch showed that
C.Sg;p/ is ı–hyperbolic for some ı D ı.g;p/ . In this paper, we show that there
exists some ı > 0 independent of g;p such that the curve graph C1.Sg;p/ is ı–
hyperbolic. Furthermore, we use the main tool in the proof of this theorem to show
uniform boundedness of two other quantities which a priori grow with g and p : the
curve complex distance between two vertex cycles of the same train track, and the
Lipschitz constants of the map from Teichmüller space to C.S/ sending a Riemann
surface to the curve(s) of shortest extremal length.

05C12, 20F65, 57M07, 57M15, 57M20

1 Introduction

Let Sg;p denote the orientable surface of genus g with p punctures. The curve complex
of Sg;p , denoted C.Sg;p/, is the simplicial complex whose vertices are in one-to-one
correspondence with isotopy classes of nonperipheral simple closed curves on Sg;p ,
and such that kC 1 vertices span a k–simplex if and only if the corresponding kC 1

isotopy classes can be realized disjointly on Sg;p . We make C.S/ into a metric space
by identifying each k–simplex with the standard simplex in Rk with unit length edges
(see Masur and Minsky [13] for more details).

Masur and Minsky showed [13] that there is some ı D ı.Sg;p/ such that C.Sg;p/

is ı–hyperbolic, meaning that geodesic triangles in C.S/ are ı–thin: any edge is
contained in the ı–neighborhood of the union of the other two edges. Bowditch
reproved this result in [2], showing that the hyperbolicity constant ı grows no faster
than logarithmically in g and p . Let Cn.S/ denote the n–skeleton of C.S/. The
main result of this paper is that for C1.S/, the curve graph, one may take ı to be
independent of g and p .

Theorem 1.1 There exists k > 0 so that for any admissible choice of g;p , C1.Sg;p/

is k–hyperbolic.
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Note that C.S/ is quasi-isometric to C1.S/, however the quasi-isometry constants
depend on the underlying surface. Therefore Theorem 1.1 does not imply the uniform
hyperbolicity of C.S/. We also note that it has recently come to the author’s attention
that Bowditch has independently obtained the same result [1], as have Clay, Rafi and
Schleimer using different methods [4], and Hensel, Przytycki and Webb [9], who have
subsequently shown that it suffices to choose ı D 17.

Let dC.Sg;p/. � ; � / denote distance in C1.Sg;p/; when there is no ambiguity, the ref-
erence to Sg;p will be omitted in this notation. Let �.Sg;p/D 3gCp � 4; �.S/ is
called the complexity of S . In the case that S is a disconnected surface, define �.S/ to
be the sum of the complexities of its connected components. If �.S/� 0, S is called
sporadic and each component of S possesses one of finitely many well understood
topological types. In truth, the definition of C.S/ needs to be modified when S is
sporadic and connected (see [13] for details), because it is exactly these surfaces for
which no two simple closed curves are disjoint.

In what follows, i.˛; ˇ/ is the geometric intersection number of ˛ and ˇ , defined to
be the minimum value of jx\yj, where x and y are representatives of the homotopy
classes of ˛ and ˇ , respectively. The main tool in the proof of Theorem 1.1 is the
following theorem.

Theorem 1.2 For each � 2 .0; 1/, there is some N D N.�/ 2 N such that if
˛; ˇ 2 C0.Sg;p/, whenever �.Sg;p/ >N and dC.˛; ˇ/� k ,

i.˛; ˇ/�
� �.S/�

f .�.S//

�k�2
;

where f .�/DO.log2.�//.

In order to emphasize how Theorem 1.2 is used in the proof of Theorem 1.1, we define
the numbers qk;g;p as follows:

qk;g;p WDminfi.˛; ˇ/ j ˛; ˇ 2 C0.Sg;p/ with dC.˛; ˇ/D kg:

Irrespective of � , curve complex distance is bounded above by a logarithmic function
of intersection number, and therefore if we fix g and p , qk;g;p grows exponentially
as a function of k . But one may also study qk;g;p as a function of g or p .

Question 1 How does qk;g;p grow as a function of � ?

The content of Theorem 1.2 is that qk;g;p eventually grows faster than ��.k�2/ as a
function of � for any � 2 .0; 1/.
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We conclude the paper with two further applications of Theorem 1.2, the first being the
resolution of a question posed by Masur and Minsky in [13] regarding vertex cycles of
train tracks on surfaces (see Section 5 for relevant definitions). Specifically they ask
the following.

Question 2 As a consequence of the fact that there are only finitely many train tracks
on a surface S up to combinatorial equivalence, there is a bound BDB.S/ depending
only on the topology of S such that

dC.S/.˛; ˇ/ < B

if ˛; ˇ 2 C0.S/ are two vertex cycles of the same train track � . Can B be made
independent of S ? That is, is there some B > 0 such that, for any choice of S , the
curve complex distance between two vertex cycles of the same train track on S is no
more than B ?

In Section 5, we show the following.

Theorem 1.3 Let � � Sg;p be a train track, and let ˛; ˇ be vertex cycles of � . Then
if �.Sg;p/ is sufficiently large,

dC.S/.˛; ˇ/� 3:

In what follows, let Teich.S/ denote the Teichmüller space of S , the space of marked
Riemann surfaces homeomorphic to S , modulo conformal equivalence isotopic to
the identity. We will assume that Teich.S/ is equipped with the metric topology
coming from the Teichmüller metric, denoted by dTeich. � ; � /. In this metric, the distance
between two marked Riemann surfaces x and y is determined by the minimal dilatation
constant associated to a quasiconformal map isotopic to the identity between x and y

(see Farb and Margalit [6] for more details).

In the final section, we consider the map ˆW Teich.S/! C.S/ introduced by Masur
and Minsky in [13]; here ˆ.x/ is the set of isotopy classes of simple closed curves
minimizing the extremal length in the conformal class of x . Note that ˆ is technically
a map into P.C0.S// (the power set of C0 ), but diamC.ˆ.x// is uniformly bounded,
and furthermore, there exists some c D c.S/ so that if x;y are Riemann surfaces
within one of each other in Teich.S/, then

diamC.ˆ.x/[ˆ.y//� c:

A map F from Teich.S/ to C.S/ is then constructed by defining F.x/ to be any
element of ˆ.x/; an immediate consequence of the existence of c is that F is coarsely
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Lipschitz: for any x;y 2 Teich.S/,

dC.F.x/;F.y//� c.s/ � dTeich.x;y/C c.s/:

In the final section, we show that c can be taken to be independent of S .

Theorem 1.4 There exists c > 0 so that for any choice of g;p ,

dC.Sg;p/.F.x/;F.y//� c � dTeich.Sg;p/.x;y/C c

for any x;y 2 Teich.Sg;p/. In other words, the map sending a Riemann surface to
any curve in C.S/ with minimal extremal length is coarsely Lipschitz, with Lipschitz
constants independent of the choice of S .

How uniform hyperbolicity follows from Theorem 1.2 In both proofs of hyperbol-
icity of C by Masur and Minsky and Bowditch, the method of proof is to construct a
family of quasigeodesics satisfying certain properties.

In [13], Masur and Minsky show the existence of a coarsely transitive family of
quasigeodesics fgigi2I (images of Teichmüller geodesics under the above-mentioned
map) equipped with projection maps �i W C.S/! gi , essentially having the property
that the diameter of �i.C.S/ nN�.gi// is bounded, with the bound depending only on
S and � > 0. Here N�. � / denotes the tubular neighborhood of radius � . It is then
demonstrated that this is a sufficient condition for ı–hyperbolicity. In [2], Bowditch
constructs a similar family of uniform quasigeodesics and uses them to show that C.S/
satisfies a subquadratic isoperimetric inequality, also implying ı–hyperbolicity.

Both Bowditch and Masur and Minsky rely on a key lemma, that every unit area
singular Euclidean surface homeomorphic to S contains an annulus of definite width
W DW .S/. Masur and Minsky prove this lemma using a limiting argument, while
Bowditch’s proof is more effective and yields some quantitative control on the growth
of W as a function of S . Uniform hyperbolicity of C1 follows if one plugs the result
of Theorem 1.2 into Bowditch’s more effective setup, as is demonstrated in Section 4.

We note that, while the conclusion of Theorem 1.2 suffices to prove Theorem 1.1, we
conjecture that this lower bound can be improved.

Conjecture 1.5 Let k; ˛; ˇ be as in the statement of Theorem 1.1. Then there exists a
polynomial fk W N!N of degree k � 2 such that

dC.˛; ˇ/� k) i.˛; ˇ/� fk.�.S//:
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Organization of the paper In Section 2, we establish Theorem 1.2 for k D 3 which
is used in Section 3 as the base case of an induction argument on the curve graph
distance. In Section 3, we complete the proof of Theorem 1.2, and in Section 4 we
show how Theorem 1.1 immediately follows from Theorem 1.2, together with the
extensive quantitative control that Bowditch obtains on the growth of the hyperbolicity
constant in his original proof. In Section 5, we use Theorem 1.2 to prove Theorem 1.3,
and in Section 6, we show how to derive Theorem 1.4 as a corollary of Theorem 1.2.

Acknowledgements The author would primarily like to thank his adviser, Yair Minsky,
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control on the hyperbolicity of C as a function of complexity. The author would also
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paper and offering many helpful comments and suggestions. Finally, the author thanks
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2 Lower bounds on intersection numbers for filling pairs

Let � D f
igi2I be a collection of curves on Sg;p in pairwise minimal position,
meaning that for each k ¤ j ,

j
j \ 
k j D i.
j ; 
k/:

We say that such a collection fills the surface if the complement Sg;p n� is a union of
topological disks and once-punctured disks. Equivalently, � fills if every homotopically
nontrivial, nonperipheral (ie, not homotopic into a neighborhood of a puncture) simple
isotopy class has a nonzero geometric intersection number with at least one member
of � . Henceforth, we will use the word essential to refer to any curve which is
nonperipheral and homotopically nontrivial. We begin the study of Question 1 with the
following simpler question.

Question 3 On Sg;p , how many times does a pair of simple closed curves need to
intersect in order to fill?

Note that two simple closed curves ˛ and ˇ fill if and only if dC.˛; ˇ/� 3, for this
precisely means that there is no essential simple closed curve which is simultaneously
disjoint from both ˛ and ˇ . In light of the notation used in the introduction, Question 3
can therefore be restated as a question about q3;g;p .

Lemma 2.1 q3;g;p � 2gCp� 2
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Proof Suppose ˛ and ˇ fill Sg;p . Then ˛[ˇ can be considered as the 1–skeleton
of a decomposition of Sg;p into disks and once-punctured disks. Letting D denote the
number of disks in this decomposition, we obtain

�.Sg;p/D 2� 2g�p D�i.˛; ˇ/CD:

The right hand side comes from the fact that there are twice as many edges as there are
vertices in this decomposition, and the vertices are precisely the intersections between ˛
and ˇ . Then since D � 0; q3;g;p � 2gCp� 2.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Theorem 1.2 For each � 2 .0; 1/, there is some N D N.�/ 2 N such that if
˛; ˇ 2 C0.Sg;p/, whenever �.Sg;p/ >N and dC.˛; ˇ/� k ,

i.˛; ˇ/�
� �.S/�

f .�.S//

�k�2
;

where f .�/DO.log2.�//.

We will show that if � >N.�/, then

i.˛; ˇ/ <
� ��

f .�/

�k�2
) dC.˛; ˇ/ < k:

We induct on the curve graph distance k ; the base case k D 3 was established in
Section 2. Both N.�/ and f .�/ will be established in the course of the proof.

Thus we begin by assuming that ˛; ˇ 2 C0.Sg;p/ are such that

i.˛; ˇ/ <
� ��

f .�/

�k�2
:

Assume that ˛ and ˇ are in minimal position. Cutting along ˛ yields S 0 WD S n ˛ ,
which is topologically either a genus g � 1 surface with p C 2 punctures, or S 0

has two connected components. After cutting, ˇ becomes a set B of disjoint arcs
fb1; : : : ; bng with endpoints at the two punctures corresponding to ˛ . Consider a
maximal subcollection

B0 D fbi1
; : : : ; biq

g � B

of pairwise nonisotopic arcs; note that B0 must fill S 0 and therefore there is some
linear function g.�/ which bounds q D jB0j from below. Furthermore, we have
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q D jB0j � 6gC 3.pC 2/� 4 (see Korkmaz and Papadopoulos [11, Lemma 2.1]).
Choose h.�/DO.�/, and h.�/� 6gC3.pC2/�4, (h.�/D 50� , for instance). Note
that the number of complementary regions of the arcs in B0 is also no larger than h.�/.
The main point is that q D jB0j is bounded above and below by linear functions of � :

g.�/� jB0j � 50�:

Case 1: The original surface S is closed, so that p D 0 In this case, since B0

fills S 0 , the collection of complementary components of B0 in S 0 consists of a disjoint
union of polygons, each having at least 3 sides. The collection of complementary
regions defines a dual graph GS 0 D .V .GS 0/;E.GS 0//, whose vertices V .GS 0/ corre-
spond to complementary regions, and such that two vertices are connected by an edge if
and only if they represent adjacent (across an arc in B0 ) complementary regions in S 0 .
For v 2 V .GS 0/, let d.v/ denote the degree of v , and let xd.G/ denote the average
degree of G . Note that

xd.GS 0/� 3:

For each j ; 1� j � k , define the mass of bij , denoted m.j /, to be the number of arcs
in the original collection B that were isotopic to bij . If j is such that

m.j / >
i.˛; ˇ/

��
;

bij is said to have large mass; otherwise bij has small mass. Note thatX
1�j�q

m.j /D i.˛; ˇ/;

and therefore there can be no more than �� arcs of large mass. Assume � is sufficiently
large so that

�� ��:

(This will be made more precise below.) Then for all such surfaces, cutting along
all large mass arcs yields a possibly disconnected, nonsimply connected (indeed,
nonsporadic) surface S 00 . This is because cutting along any arc bij in B0 decreases
the complexity by at most 3; to see this, it suffices to analyze the three possible cases:

(1) bij starts and ends at the same puncture and is nonseparating.
(2) bij starts and ends at the same puncture and is separating.
(3) The terminal punctures of bij are distinct.

The complexity of the surface obtained by cutting along bij depends only on which of
the three cases we are in; the details of this are left to the reader, because the nonsimply
connectedness of S 00 is implied by the conclusion of the following lemma.
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Proposition 3.1 There exists N1 2N such that if � >N1 , there exists a homotopically
nontrivial simple closed curve 
 � S 00 intersecting no more than f .�/ arcs of B0 .

In the statement of Proposition 3.1, f .�/ is the same function f from the statement of
Theorem 1.2, and it will be determined in the course of the proof. As will be proven
below, Proposition 3.1 asserts that 
 is essential when viewed as a simple closed curve
on the original surface S , not just as a curve on S 00 .

Proof of Proposition 3.1 The arcs in B00 must fill S 00 and therefore, as was the case
with B0 , these arcs cut the surface into finitely many simply connected regions. Denote
by GS 00 the corresponding dual graph. Then

jV .GS 00/j D jV .GS 0/j;

jE.GS 00/j � jE.GS 0/j � �� � g.�/� ��:

Note that some of the arcs in B00 may be isotopic on S 00 ; indeed, if T is a triangular
complementary region in S 0 , and exactly one of the arcs of @T has large mass, then
the remaining two arcs will form a bigon in S 00 . It is also possible for all but one arc
on the boundary of a complementary region in S 0 to have large mass; if this happens,
the remaining arc will bound a disk in S 00 .

Choose N1 large enough so that for all � >N1 ,

xd.GS 00/�
2.g.�/� ��/

jV .GS 0/j
> 2:02:

We will need the following fact (see Fiorini, Joret, Theis and Wood [7, Lemma 3.2];
see also Diestel [5] for more details).

Lemma 3.2 Let � > 0. There exists a decreasing function gW .0; 1/! RC so that
if G D .V;E/ is any graph with xd.G/ > 2C � , then G has girth no larger than
g.�/ � log2.jV j/.

We recall that the girth of a graph G is the length of the shortest cycle on G .

Thus assuming �.S/ >N1 , by Lemma 3.2, GS 00 has a simple cycle z
 no longer than

g. 1
50
/ � log2.2h.�// WD f .�/:

(Recall that h.�/D 50� , and was chosen to be linear in � , and to bound the number of
nonisotopic arcs in the collection B0 from above.)
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By construction, z
 corresponds to a simple closed loop 
 intersecting no more
than f .�/ small mass arcs; it remains to show that 
 is homotopically nontrivial
in S .

By construction, 
 intersects at least one arc of B00 , and if 
 intersects b 2 B00 , it
only does so once since z
 is a simple cycle. We will show that all such intersections
between 
 and ˇ are essential, which immediately implies that 
 is essential.

Arguing by contradiction, assume that 
 and ˇ are not in minimal position. Then a
closed arc j
 of 
 forms a bigon with a closed arc jˇ of ˇ . Since 
 only intersects each
arc in B00 once, it follows that jˇ must contain pieces of two distinct arcs ex; ey of B00

as subarcs, each of which contains one of the two points of the set fx;yg D j
 \ jˇ .
Therefore, jˇ must contain an element of ˇ\˛ .

Let ž represent the curve obtained from ˇ by replacing jˇ with j
 . Then ž is isotopic
to ˇ but intersects ˛ fewer times than ˇ does, which contradicts the initial assumption
that ˛ and ˇ began in minimal position.

This concludes the proof of Proposition 3.1.

Hence 
 is an essential, simple closed curve on S , which only intersects small mass
arcs of ˇ , and only at most f .�/ of them. Therefore,

i.
; ˇ/� f .�/ �
i.˛; ˇ/

��
<
f .�/

��
�

� ��

f .�/

�k�2
D

� ��

f .�/

�k�3
;

where the strict inequality is due to our initial assumption. Then by the induction
hypothesis,

dC.
; ˇ/ < k � 1;

and thus by the triangle inequality,

dC.˛; ˇ/� dC.˛; 
 /C dC.ˇ; 
 / < 1C .k � 1/D k:

This concludes the proof of Theorem 1.2 in the case that S is closed.

Case 2: p > 0 When p > 0, the complementary regions of B0 in S 0 may now be
once-punctured, and could have a single arc of B0 in its boundary. In this case, we
modify the definition of GS 0 D .V .GS 0/;E.GS 0// as follows. There are two edges in
the edge set E.GS 0/ for every arc in B0 . The vertex set V .GS 0/ of GS 0 consists of
two vertices for every nonpunctured complementary region, and one vertex for each
punctured complementary region.

Note that this does not completely determine the graph GS 0 . Given a nonpunctured
complementary region, there are choices to be made as to which edges of GS 0 connect
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to which of the two vertices corresponding to that region. However, the conclusion
we are seeking will not depend on any of these choices, and therefore we assume they
have been made arbitrarily.

The abstract graph GS 0 comes equipped with a preferred immersion into S 0 , (whose
image we also refer to as GS 0 ), satisfying the following property:

Let e1; e2 be two edges corresponding to the same arc e 2 B0 on the boundary of a
punctured region R in S 0 . Then the region bounded e1[ e2[ e contains the puncture
of R (see Figure 1).

Figure 1: A possible portion of the graph GS 0 in the punctured case, im-
mersed in S 0 . Punctures are represented by white circles, vertices of GS 0 by
black circles.

The goal, as in the case that p D 0, will be to show the existence of a simple closed
curve 
 , intersecting no more than f .�/ small mass arcs of ˇ , counting multiplicity.

Denote by P D fR1; : : : ;Rsg the components of S 0 nB0 . As above, let jRi j denote
the number of sides in the boundary of Ri . Let U1�P be the set of punctured regions,
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U2 � P the set of nonpunctured regions. Then by the Gauss–Bonnet Theorem,

2�j�.S 0/j D �

� X
Ri2U1

jRi jC

X
Rj2U2

.jRj j � 2/

�
;

) 2.2gCp� 2/D
X

Ri2U1

jRi jC

X
Rj2U2

.jRj j � 2/;

) 2.2gCjU1j � 2/D
X

Ri2U1[U2

jRi j � 2jU2j:

Note also that

jV .GS 0/j D jU1jC 2jU2j; jE.GS 0/j D
X

Ri2U1[U2

jRi j:

Since
xd.GS 0/D

2jE.GS 0/j

jV .GS 0/j
;

we have

xd.GS 0/D
2
P

i jRi j

jU1jC 2jU2j
D

2.2.2gCjU1j � 2/C 2jU2j/

jU1jC 2jU2j

D 2 �
4g� 4C 2jU1jC 2jU2j

jU1jC 2jU2j
� 2 �

�.S/CpC 2jU2j

pC 2jU2j
:

Note that the number p C jU2j of complementary regions Ri is at most twice the
number of the arcs in B0 , since every such region is bounded by at least one arc, and
each arc is adjacent to two regions. Therefore,

pC 2jU2j � 2.pCjU2j/� 4.6gC 3.pC 2/� 4/ < h.�/;

and hence

2 �
�.S/CpC 2jU2j

pC 2jU2j
D 2

�
1C

�

pC 2jU2j

�
> 2

�
1C

�

h.�/

�
D 2:04:

We obtain GS 00 from GS 0 as in the closed case; any edge in E.GS 0/ corresponding to
a large mass arc of ˇ is deleted, and jV .GS 00/j D jV .GS 0/j. Thus there exists some
N2 2N so that for �.S/ >N2 ,

xd.GS 00/ > 2:02;
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and therefore assuming � >N2 , GS 00 has a simple cycle z
 of length no more than

g. 1
50
/ log2.jV .GS 00/j/� f .�/:

Unlike in the closed case, z
 does not automatically correspond to a simple closed
curve on S 00 , because GS 00 is only immersed and not embedded. Keeping this in mind,
let 
 be a curve in the homotopy class of z
 ; we will first show that 
 is essential in S .
We will again show this by proving that 
 is in minimal position with ˇ ; as above,
assume that an arc j
 of 
 and an arc jˇ of ˇ bound a bigon in S . We claim that this
bigon cannot be completely contained in S 00 , and therefore jˇ intersects ˛ . Then as in
the closed case, homotoping jˇ across the bigon reduces the number of intersections
between ˛ and ˇ , contradicting the assumption that ˛ and ˇ were chosen to be in
minimal position.

Thus we must show that the bigon is not completely contained in S 00 . Note that, unlike
in the closed case, it is now possible for 
 to cross a single arc of ˇ in S 00 more than
once. However, out of all of the arcs of ˇ entering the bigon, there must be some
innermost one, characterized by the property that together with a piece of j
 , it bounds
a bigon containing no arc of ˇ in its interior. This piece of j
 must then correspond to
a segment of z
 contained in one complementary region of S 00 , and whose endpoints
lie on the same arc on the boundary of this region. Thus this complementary region
is punctured, and its puncture is contained in the interior of the bigon in question, a
contradiction. Thus 
 is essential.

Now, suppose 
 intersects itself once. Let 
1 be one of the two simple closed curves
obtained from 
 by starting and ending at the self-intersection point x . If 
1 is
nonperipheral in S , replace 
 with 
1 . Otherwise, let 
2 be the other side of 
 , so
that 
2 D .
 n 
1/[fxg.

If 
2 is nonperipheral in S , replace 
 with 
2 and stop. We have reduced to the case
where both 
1 and 
2 are peripheral, and therefore there exists punctures y1 , y2 of S

so that 
j is homotopic into a neighborhood of yj ; j D 1; 2. Note that since 
 is
nonperipheral, y1 ¤ y2 . Let N.
 / be a small regular neighborhood of 
 . Then the
component r of @N.
 / encompassing both y1 and y2 is a simple curve, intersecting
no more arcs of ˇ than does z
 . It remains to show that r is homotopically nontrivial
and nonperipheral.

To see that this is the case, note that there must be an arc of ˇ separating y1 from y2

that 
 crosses, and therefore r crosses as well (see Figure 2). By the same argument
applied to 
 above, this intersection must be essential, and therefore r is essential.
Thus replace 
 with r .
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Now suppose 
 has k > 1 self-intersections, and let 
1 be a simple closed curve
obtained from 
 by starting and ending at some intersection point x as above, and
let 
2 be the other side of 
 . Then if 
i is nonperipheral for either i D 1; 2, replace 

with 
i . This reduces the number of self intersections that 
 possesses, so we are
done by induction. If 
1 and 
2 are both peripheral, then we can homotope 
 into
a neighborhood of the type pictured in Figure 2, and as above, one of the boundary
components of this neighborhood will be simple and essential, by the same argument
used above.

Figure 2: A schematic picture of 
 in the case of one self-intersection when

1; 
2 are both peripheral. White circles represent punctures, and r is the
simple curve encompassing 
 . The transverse arc belongs to ˇ , and it must
intersect r essentially.

Thus choose N.�/DmaxfN1;N2g. This completes the proof of Theorem 1.2.

4 Independence of the hyperbolicity constant on �

We briefly summarize Bowditch’s proof of hyperbolicity of C.S/ as seen in [2], and
then demonstrate how Theorem 1.1 follows from his setup, with the use of Theorem 1.2.
To avoid confusion, when possible we will use the same notation he introduces in his
original article.

Define WX to be the set of weighted curves; an element of WX is a pair

.�; ˛/; ˛ 2 C0.Sg;p/; � 2RC:
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Then WMX , the set of weighted multicurves is the set of all finite formal sums of
elements of WX with pairwise disjoint summands. Note that any element of C0.Sg;p/

is naturally considered as an element of either WX or WMX by assigning unit weight.
Given .p; �1/; .q; �2/2WX , we can extend the notion of geometric intersection number
for elements of C0 to WX linearly

i.�1p; �2q/D �1�2i.p; q/;

and we can again extend linearly to WMX . Then for ˛; ˇ; ı 2WMX with i.˛; ˇ/D 1,
define

l˛ˇ.ı/ WDmaxŒi.˛; ı/; i.ˇ; ı/�;

m˛ˇ.ı/ WD sup
h
fl˛ˇ.ı/g[

n i.
; ı/

l.
 /
j 
 2 C0

oi
:

Then for any r � 0, we define

L.˛; ˇ; r/D fı 2 C0 j l˛ˇ.ı/� rg;

M.˛; ˇ; r/D fı 2 C0 jm˛ˇ.ı/� rg:

Note that M.˛; ˇ; r/�L.˛; ˇ; r/. In Section 5, Bowditch shows that there exists an
essential annulus of width at least �D �.�/ in any unit area singular Euclidean surface
of complexity � , and uses this to show the following.

Lemma 4.1 There exists R D R.�/ such that M.˛; ˇ;R/ ¤ ∅. Furthermore, one
can choose R so that RDO.�5=2/.

As a consequence of this, we obtain the following.

Lemma 4.2 There exists D DD.�/ so that for any ˛; ˇ 2 C0.Sg;p/,

diam.L.˛; ˇ;R// <D:

Indeed, Lemma 4.1 follows immediately from the definitions and Lemma 4.2.

There is some ı 2M.˛; ˇ;R/ since it is nonempty. Then for any 
 2L.˛; ˇ;R/, we
have

d.
; ı/� i.
; ı/C 1� l˛ˇ.
 /m˛ˇ.ı/C 1�R2
C 1:

Here, the first inequality is always true, independent of � or the choice of 
 and ı . The
important inequalities in the chain above are the second and third ones, which in partic-
ular imply the existence of some ı 2L.˛; ˇ;R/ so that for any other 
 2L.˛; ˇ;R/,
i.
; ı/�R2C 1 and R2C 1DO.�5/.
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Thus letting f .�/ be as in the statement of Theorem 1.2, there is some � 2 N such
that for � > �,

R2.�/C 1<
�6

.f .�//7
D

� �6=7

f .�/

�.9�2/
:

Therefore, for N.6=7/ the natural number in the statement of Theorem 1.2, for all
� >max.�;N.6=7//, one has

dC.S/.
; ı/ < 9:

Thus, for all such values of � we can use DD 18 as the diameter bound for L.˛; ˇ;R/.

Bowditch considers a metric space X having the property that to each pair of points
˛; ˇ 2 X , there is a subset ƒ˛ˇ , together with a coarse ordering �˛ˇ on ƒ˛ˇ . By
a coarse ordering, we mean a transitive relation satisfying the property that for any
x;y 2ƒ˛ˇ , either x �˛ˇ y or y �˛ˇ x .

Moreover, associated to X is a function �W X � X � X ! X ; given three points
x;y; z 2X , �.x;y; z/ plays the role of the center of a triangle with vertices x;y; z .
We require � to satisfy the relations

�.x;y; z/D �.y; z;x/D �.y;x; z/; �.x;x;y/D x;

and define ƒ˛ˇ Œxy�� �˛ˇ by

ƒ˛ˇ Œxy�D fz 2ƒ˛ˇ j x �˛ˇ z �˛ˇ yg:

He then shows the following.

Theorem 4.3 [2] Suppose that .X; f.ƒ˛ˇ/g.˛;ˇ/2X�X ; �/ satisfies �.˛; ˇ; 
 / 2
ƒ˛ˇ \ƒˇ
 \ƒ
˛ , and suppose there exists K � 0 satisfying

(1) dH.ƒ˛ˇ Œ˛; �.˛; ˇ; 
 /�; ƒ˛
 Œ˛; �.˛; ˇ; 
 /�/�K ,

(2) given x;y 2X with d.x;y/� 1, diam.�˛ˇ Œ�.˛; ˇ;x/; �.˛; ˇ;y/�/�K ,

(3) for c 2ƒ˛ˇ , diam.ƒ˛ˇ Œ
; �.˛; ˇ; 
 /�/�K .

Then X is ı–hyperbolic, with hyperbolicity constant depending only on K .

In Theorem 4.3, dH. � ; � / denotes the Hausdorff distance.

Bowditch then goes on to define the sets ƒ˛ˇ to essentially be the curve obtained
by choosing an element of L.� � ˛;� � ˇ;R/ for each pair �;� 2 RC satisfying
i.� � ˛;� � ˇ/ D 1. Hyperbolicity is proved by showing that for this choice of ƒ˛ˇ
(together with the choice of centers �.˛; ˇ; 
 / whose definition is not summarized
here; see [2]), the conditions of Lemma 4.1 are satisfied, with K depending only on D .
This proves Theorem 1.1.
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5 Bounded diameter of vertex cycle sets of birecurrent train
tracks

In this section, we prove Theorem 1.3, but before doing so we recall some of the
basic terminology of train tracks on surfaces (refer to [13], Penner and Harer [17] and
Papadopoulos [16] for more details). Recall that a train track � � S is an embedded
1–complex; edges are called branches and vertices switches. Each edge is a smooth
parameterized path with well-defined tangent vectors at the endpoints. Furthermore,
at each switch v , there is a single line L � TvS such that the tangent vector of any
branch incident at v lies on L. For each switch v , we choose a preferred direction
of L; a branch b incident at v is called incoming if its tangent vector at v is aligned
with the chosen direction, and outgoing otherwise. We require that the valence of each
switch be at least 3, unless � has a simple closed curve component c ; in this case we
have a single bivalent switch on c .

Any component Q of S n � is a surface with boundary consisting of smooth arcs
running between cusps. We define the generalized Euler characteristic of Q to be

�.Q/� 1
2
V .Q/;

where V .Q/ is the number of cusps on @Q. We require that the generalized Euler
characteristic of each component of S n � be negative.

A train path is a smooth subpath of � which traverses a switch only by entering via
an incoming branch and exiting via an outgoing branch. Given a train track � , let B
denote the set of branches. A nonnegative, real-valued function �W B!R is called a
transverse measure on � if for each switch v , it satisfiesX

b2i.v/

�.b/D
X

b02o.v/

�.b0/;

where i.v/ is the set of incoming branches at v , o.v/ the set of outgoing branches.
These are called the switch conditions.

We call � recurrent if it admits a transverse measure with all positive weights, and
transversely recurrent if, for each branch b , there exists a simple closed curve cD c.b/

intersecting b , which intersects � transversely and is such that S n .� [ c/ has no
bigons. � is called birecurrent if it is both recurrent and transversely recurrent, and
generic if all switches are at most trivalent.

The set of transverse measures is invariant under scaling, thus it follows that the set of all
transverse measures, viewed as a subset of RjBj , is a cone over a compact polyhedron
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in projective space. Let P .�/ denote the projective polyhedron of transverse measures;
the class Œ�� 2 P .�/ is called a vertex cycle of � if it is an extreme point of P .�/.

A geodesic lamination � is carried by � if there is a C 1 map �W �! � which is
isotopic to the identity, and such that the restriction of the differential d� to any
tangent line of � is nonsingular; this amounts to saying that F.�/ is a train path on � .
Suppose c is a simple closed curve carried by � . Then c induces a transverse measure
called the counting measure: each branch b of � is assigned the integer corresponding
to the number of times c traverses b .

In general, if Œv� is a vertex cycle of � , Œv� has a unique representative that is the
counting measure on a simple closed curve c carried by � (see [13]). Thus if Œv1�; Œv2�

are two vertex cycles of a train track � , we can define dC.Œv1�; Œv2�/ to be the curve
graph distance between their simple closed curve representatives.

As a consequence of the fact that there are only finitely many train tracks on S up to
homeomorphism, there is a bound B D B.S/ such that any two vertex cycles of the
same train track are a distance of at most B from one another. However, Masur and
Minsky [13] conjecture that B can be made independent of S , and conjecture further
that B D 3 suffices.

Using Theorem 1.2, we will show the following.

Theorem 1.3 Let � � Sg;p be a train track, and let ˛; ˇ be vertex cycles of � . Then
if C.Sg;p/ is sufficiently large,

dC.S/.˛; ˇ/� 3:

We note that this constant B also occurs in the proof of the quasiconvexity of the disk
set by Masur and Minsky in [14].

Proof We can assume that � is generic and birecurrent since for any train track � ,
there exists a generic birecurrent track � 0 such that P .�/D P .� 0/ (see [17]). Assume
dC.˛; ˇ/D 4, and assume further that �.Sg;p/ >N.3=4/. Then by Theorem 1.2,

i.˛; ˇ/�
� �3=4

f .�/

�2
D

�3=2

.f .�//2
:

We will need the following fact about vertex cycles (see Hamenstädt [8] for a proof).

Lemma 5.1 If ˛ is a simple closed curve representative of a vertex cycle Œv� of � ,
then if �W ˛! � is the associated carrying map, �.˛/ traverses each branch of � at
most twice, and never twice in the same direction.
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Since � is birecurrent, for any � > 0, there exists a hyperbolic metric � on S so that �
has geodesic curvature less than � with respect to � [17]. Let ˛� (resp. ˇ� ) denote
the unique geodesic representative of ˛ (resp. ˇ ) in the metric � . By choosing �
sufficiently small, we can assume ˛� and ˇ� both lie within a small embedded tubular
neighborhood N�0.�/ foliated by transverse ties. Collapsing these ties to points yields
a train track isotopic to � within some small bounded distance of � .

Let Br.�/ denote the number of branches of � . We show the following.

Lemma 5.2 If ˛ and ˇ are two vertex cycles of � , then

i.˛; ˇ/� 4 Br.�/:

Proof Let b be any branch of � , and let N�0.b/ denote the restriction of �0 tie-
neighborhood of � in the metric � to b . By Lemma 5.1, ˛� and ˇ� can each
enter N�0.b/ at most twice. Since ˛� and ˇ� are both geodesics, they are in minimal
position and therefore any arc of ˛� can intersect a given arc of ˇ� at most once
within N�0.b/.

For any train track ! � S , one has the bound [17]

Br.!/� �9�.S/� 3p D 18gC 6p� 18:

Thus there is some k 2N so that for all � > k ,

�3=2

.f .�//2
D i.˛; ˇ/� 4 �Br.�/;

contradicting Lemma 5.2. Thus for all surfaces S satisfying �.S/ >max.k;N.3=4//,
˛ and ˇ can not both be vertex cycles of the same train track on S , given that their
curve graph distance is at least 4.

6 Uniformity of the Lipschitz constants for the Teichmüller
projection map

In this final section, we prove Theorem 1.4.

Theorem 1.4 There exists c > 0 so that for any choice of g;p ,

dC.Sg;p/.F.x/;F.y//� c � dTeich.Sg;p/.x;y/C c

for any x;y 2 Teich.Sg;p/. In other words, the map sending a Riemann surface to
any curve in C.S/ with minimal extremal length is coarsely Lipschitz, with Lipschitz
constants independent of the choice of S .
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Proof We follow Masur and Minsky’s proof of the complexity-dependent version of
this statement, as seen in [13, Section 2]. Recall that

ˆW Teich.S/! P.C0.S//

is the map that associates to each Riemann surface x the set of isotopy classes of
curves with smallest extremal length. By subdividing the Teichmüller geodesic segment
connecting x to y into unit length subsegments, It suffices to show that there exists some
constant c such that for any choice of S , given x;y 2 Teich.S/ with dTeich.x;y/� 1,

diamC.S/.ˆ.x/[ˆ.y//� c:

For each complete, finite volume hyperbolic metric on S , there is an essential simple
closed curve with hyperbolic length less than some constant b D b.S/, the Bers
constant; it is known that b.S/DO.log.�.S// (see Buser [3]).

Furthermore, the extremal length is bounded above by an exponential function of
hyperbolic length (see Maskit [12]): concretely, fixing a Riemann surface x and an
essential simple closed curve 
 , let extx.
 / denote extremal length, and hypx.
 /

the length of the geodesic representative of 
 in the unique complete finite volume
hyperbolic metric in the conformal class of x . Then

extx.
 /�
hypx.
 /

2
ehypx.
 /=2:

Therefore, there is some constant EDE.S/ such that any Riemann surface in Teich.S/
has a curve with extremal length no more than E.S/, and E.S/DO.� log.�//.

Recall also Kerckhoff’s characterization of dTeich in terms of extremal lengths (see
Kerckhoff [10]):

dTeich.x;y/D
1

2
log

�
sup


2C0.S/

exty.
 /
extx.
 /

�
:

Now, let ˛ 2ˆ.x/; since ˛ minimizes extremal length in x , extx.˛/�E.S/. Since
dTeich.x;y/ � 1, by Kerckhoff’s formula for the Teichmüller distance, given any
ˇ 2ˆ.y/, it follows that extx.ˇ/� e2E.S/. As seen in both [13] and Minsky [15],

extx.˛/ extx.ˇ/� i.˛; ˇ/2

and therefore
i.˛; ˇ/� eE.S/D o.�.S/2/:

Thus Theorem 1.2 implies that there is some k 2N so that for �.S/ > k ,

dC.S/.˛; ˇ/� 4:
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Independent of the choice of complexity, curve complex distance is bounded above by
a logarithmic function of intersection number (see [2]):

dC.˛; ˇ/� f .i.˛; ˇ//; f W N!N; f DO.log.n//:

Therefore it suffices to choose

c Dmax
�
4; max
�.S/<k

f .deE.S/e/
�
:

Here, dxe denotes the smallest integer larger than x . This completes the proof of
Theorem 1.4.
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