
msp
Geometry & Topology 17 (2013) 2923–2934

Toric LeBrun metrics and Joyce metrics

NOBUHIRO HONDA

JEFF VIACLOVSKY

We show that, on the connected sum of complex projective planes, any toric LeBrun
metric can be identified with a Joyce metric admitting a semi-free circle action
through an explicit conformal equivalence. A crucial ingredient of the proof is an
explicit connection form for toric LeBrun metrics.
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1 Introduction

The subject of self-dual metrics on four-manifolds has rapidly developed since the
discovery by Poon of a 1–parameter family of self-dual conformal classes on CP2#CP2

[8]. We do not attempt to give a complete review of subsequent developments here; in
this short note we are concerned only with two classes of self-dual metrics on

nCP2
WDCP2 # � � � # CP2 (n times):

First, in 1991, Claude LeBrun [6] produced explicit examples with U.1/–symmetry
on nCP2 , using a hyperbolic ansatz inspired by the Gibbons–Hawking ansatz [2].
LeBrun’s construction depends on the choice of n points in hyperbolic 3–space H3 .
For nD 2, the only invariant of the configuration is the distance between the monopole
points, and LeBrun conformal classes are the same as the 1–parameter family found
by Poon. The Poon metrics are toric, that is, they admit a smooth effective action by a
real torus U.1/�U.1/. For n> 2, a LeBrun metric admits a torus action if and only if
the monopole points belong to a common hyperbolic geodesic. These form a sub-class
of LeBrun metrics, which we call toric LeBrun metrics.

The second class of metrics we are concerned with are the metrics on nCP2 discovered
by Dominic Joyce in [4]. Joyce’s construction depends on the choice of nC 2 points
on the boundary of hyperbolic 2–space. These metrics are always toric. It was
subsequently shown by Fujiki that any compact toric self-dual four-manifold with
non-zero Euler characteristic is necessarily diffeomorphic to nCP2 , and furthermore
the self-dual structure is of Joyce-type [1].
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We recall that a semi-free action is a non-trivial action of a group G on a connected
space M such that for every x 2M , the corresponding isotropy subgroup is either
all of G or is trivial. Many of the families of metrics constructed by Joyce are not
of LeBrun-type. However, if the torus action contains a circle subgroup that acts
semi-freely on nCP2 , they are the same (for each n, such a torus action is unique).
This coincidence was stated in [4], but without proof. This fact follows from Fujiki’s
Theorem mentioned above, however we feel it is useful to have a direct proof. Recently,
the authors determined the conformal automorphism groups of LeBrun’s monopole
metrics [3]. In the course of that work an explicit connection for any toric LeBrun
metric was found, which we use in this paper to prove the following:

Theorem 1.1 On nCP2 , the class of toric LeBrun metrics and the class of Joyce
metrics admitting a semi-free circle action are the same, and any metric of the first
class can be identified with a metric of the second class through an explicit conformal
equivalence.
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2 An explicit global connection

First we quickly recall the construction of LeBrun’s self-dual hyperbolic monopole
metrics. Let H3 D f.x;y; z/ j z > 0g be equipped with the usual hyperbolic metric
gH3 WD .dx2Cdy2Cdz2/=z2 . Let n be any non-negative integer and PDfp1; : : : ;png

be distinct points in H3 . Let �p˛
be the fundamental solution for the hyperbolic

Laplacian based at p˛ with normalization ��p˛
D�2�ıp˛

, and define

(2-1) V D 1C

nX
˛D1

�p˛
:

Then �dV is a closed 2–form on H3 n P , and Œ�dV �=2� belongs to an integral
class H 2.H3 n P;Z/. Let � W X0 ! H3 n P be the unique principal U.1/–bundle
determined by this integral class. By Chern–Weil theory, there is a connection form
! 2H 1.X0; iR/ such that d! D i.�dV /. Then LeBrun’s metric is defined by

(2-2) gLB D z2
�
V �gH3 �

1

V
!ˇ!

�
:
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This is anti-self-dual with respect to a Kähler orientation of X0 . By attaching points
zp˛ over each p˛ , we obtain a complete, Kähler scalar-flat (and therefore anti-self-dual)
ALE manifold, which can be conformally compactified by adding a point at infinity,
yielding a self-dual conformal class on nCP2 . The U.1/–action of the principal
U.1/–bundle naturally extends to nCP2 , and the resulting U.1/–action on nCP2 is
semi-free. See [6; 7] for details.

From the construction LeBrun metrics always admit a U.1/–action, and they admit
an effective U.1/�U.1/–action if and only if all the n points belong to a common
geodesic. We call these latter metrics toric LeBrun metrics. By applying a hyperbolic
isometry, without loss of generality we may assume that the geodesic is the z–axis,
and we let p˛ D .0; 0; c˛/ with 0 < c1 < c2 < � � � < cn . We also define c0 D 0 and
cnC1 D1.

For toric LeBrun metrics, we shall explicitly write down the connection form ! on
the U.1/–bundle � W X0 ! H3 . For this, we first let U D H3 n fz–axisg and take
cylindrical coordinates on U as

(2-3) U D f.x;y; z/D .r cos �; r sin �; z/ j z > 0; 0� � < 2�g

(we use � for the angular coordinate here, since � will be used below as the angular
coordinate on the circle bundle). Also on the z–axis we define an interval

(2-4) I˛ WD f.0; 0; z/ j c˛�1 < z < c˛g; 1� ˛ � nC 1;

and we let U˛ WD U [ I˛ for each 1� ˛ � nC 1. Then we obtain an open covering

(2-5) H3
n fp1;p2; : : : ;png D U1[U2[ � � � [UnC1:

Finally, for any positive real number c , we define a function fc by

(2-6) fc.r; z/D
r2C z2� c2

2
p
.c2C r2C z2/2� 4c2z2

�
1

2
:

We note that .c2C r2C z2/2� 4c2z2 � 0 and is zero only at .0; 0; c/. Therefore, fc

is a function defined on all of H3 n f.0; 0; c/g.

Theorem 2.1 Using the above notation, define a function on H3 n fp1;p2; : : : ;png

by f WD fc1
Cfc2

C � � �Cfcn
. Then f satisfies

(2-7) d.f d�/D �dV;

in U . That is, the 1–form if d� is a local connection form in U . Next, for each ˛
with 1� ˛ � nC 1, the 1–form

(2-8) !˛ D i.f C nC 1�˛/ d�;
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is well-defined on U˛ . Together, these 1–forms define a global connection form (with
values in u.1/D iR) on the total space X0!M . That is, there is a global connection
! on X0 , such that ! D !˛C i � d� over U˛ , where � is an angular coordinate on the
fiber.

Proof This was proved in [3, Theorem 3.1] for the case of two monopole points. It is
straightforward to generalize the argument to the case of n monopole points, so we
only provide a brief sketch here. The Green function is given by

(2-9) �.0;0;c/.x;y; z/D�
1

2
C

1

2

�
1�

4c2z2

.r2C z2C c2/2

��1=2

;

where r2 D x2Cy2 ; see [5, Section 2]. In the proof of [3, Theorem 3.1], it is shown
that

(2-10) d.fc˛
d�/D �d.�p˛

/:

It is easy to see that

(2-11) fc˛
.0; z/D

�
�1 z < c˛;

0 z > c˛:

From these it follows that the sum f WD fc1
Cfc2

C � � �Cfcn
then satisfies

d.fd�/D �dV;(2-12)

f .0; z/D ˛� n� 1; z 2 I˛:(2-13)

Consequently, the form

(2-14) !˛ D i.f C nC 1�˛/ d�;

extends smoothly to U˛ . It then follows from basic connection theory that the !˛ are
the local representatives of a globally defined connection.

Although we do not require this in the proof of our main theorem, we remark that one
can use the above local connection forms to write down the transition functions of the
U.1/–bundle explicitly:

Proposition 2.2 With respect to the open covering (2-5), the transition functions of
the U.1/–bundle � W X0!H3 n fp1;p2; : : : ;png are given by g˛ˇ D ei.ˇ�˛/� .
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Proof From above, we have that

(2-15) !ˇ �!˛ D i.f C nC 1�ˇ/ d� � i.f C 1C n�˛/ d� D i.˛�ˇ/ d�:

The formula for the change of connection is given by

(2-16) !ˇ �!˛ D g�1
ˇ˛dgˇ˛;

which implies that gˇ˛ D ei.˛�ˇ/� , or equivalently, g˛ˇ D ei.ˇ�˛/� .

3 Explicit identification with Joyce metrics

In this section, we use the explicit connection forms from Section 2 to prove Theorem 1.1.
As in Section 2, .r; �; z/ denotes cylindrical coordinates on U DH3 n fz–axisg. We
introduce another coordinate system .x1;x2/ by setting

(3-1) x1 D r2
� z2; x2 D 2rz:

The map .r; z/ 7! .x1;x2/ is a diffeomorphism from the quarter plane f.r; z/ j r >0; z>

0g to the upper half-plane f.x1;x2/ j x2 > 0g. (Thus we adapt the upper half-plane
model, rather than the right half-plane model used in [4].) The point .r; z/D .0; c˛/ (on
the boundary of fr > 0; z > 0g) determined from the monopole point p˛ , is mapped
to the point .x1;x2/D .�c2

˛; 0/ (on the boundary of fx2 > 0g). In order to save space,
for each integer ˛ with 3� ˛ � nC 2, we put

(3-2) q˛ WD �c2
˛�2; r˛ WD

q
.x1� q˛/2Cx2

2
; R WD

q
x2

1
Cx2

2

(we adopt this un-natural numbering for a later purpose). Then we have 0> q3 > q4 >

� � �> qnC2 , and also

r2
D

1
2
.RCx1/; z2

D
1
2
.R�x1/:(3-3)

dx2
1 C dx2

2 D 4.r2
C z2/.dr2

C dz2/D 4R .dr2
C dz2/:(3-4)

Under the coordinates .r; z; �; �/, the metric gLB multiplied by a conformal factor
.z2V /�1 can be written as

(3-5)
gLB

z2V
D

dr2C r2 d�2C dz2

z2
C

1

V 2
.d� Cf d�/2

D
dr2C dz2

z2
C

r2

z2
d�2
C

1

V 2
.d� Cf d�/2;
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and noting q˛ < 0 the functions V and f can be computed, in terms of the coordinates
.x1;x2/, as

(3-6) V D 1�
n

2
C

nC2X
˛D3

R� q˛

2r˛
; f .x1;x2/D�

n

2
C

nC2X
˛D3

RC q˛

2r˛
:

Hence, writing gH2 WD .dx2
1
C dx2

2
/=x2

2
, we have:

gLB

z2V
D

dx2
1
Cdx2

2

4R
1
2
.R�x1/

C
RCx1

R�x1

d�2
C
.d� Cf d�/2

V 2
(3-7)

D
x2

2

2R.R�x1/

�
gH2C

2R2

x2
2

��
1C

x1

R

�
d�2
C

�
1�

x1

R

�.d� Cf d�/2

V 2

��
:(3-8)

From (3-6), this expresses a toric LeBrun metric in terms of the coordinates
.x1;x2; �; �/. In the following, for simplicity of notation, we denote by zgLB the
quantity in the brackets Œ � in (3-8); namely we define

(3-9) zgLB WD
2R.R�x1/

x2
2
z2V

gLB:

Next we explain the explicit form of Joyce metrics on nCP2 of arbitrary type, following
[4]. Let k WD nC 2, and q1 > q2 > � � � > qk be the set of elements in R [ f1g
involved in the construction of Joyce metrics ([4, Theorem 3.3.1], where the letter
pi was used instead of q˛ ). For each ˛ with 1 � ˛ � k and q˛ ¤ 0;1, let �˛ WD
f.x1� q˛/

2Cx2
2
g1=2 , and let u.q˛/ be an R2 –valued function defined by

(3-10) u.q˛/.x1;x2/D

 
u
.q˛/
1

.x1;x2/

u
.q˛/
2

.x1;x2/

!
where u

.q˛/
1
D

x2

�˛
; u

.q˛/
2
D

x1� q˛

�˛

(in [4] the notation f .pi / is used instead of u.q˛/ ). When q˛ D1 or q˛ D 0, we let

(3-11) u.1/ D

�
0

�1

�
; u.0/ D

�
x2=R

x1=R

�
:

Let f.m˛; n˛/ j 1 � ˛ � kg be the set of pairs of coprime integers determined from
the U.1/�U.1/–action on nCP2 we are considering (namely, the stabilizer data).
Without loss of generality, we can always suppose that m˛n˛C1�m˛C1n˛ D�1 for
˛ with 1� ˛ < k , .m1; n1/D .0; 1/ and .mk ; nk/D .1; 0/, and also m˛ > 0; n˛ > 0

for any ˛ with 1< ˛ < k . After this normalization, we let

(3-12) � D

k�1X
˛D1

u.q˛/�u.q˛C1/

2
˝ .m˛; n˛/ C

u.qk/Cu.q1/

2
˝ .mk ; nk/:
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If we write this as

� D

�
a1.x1;x2/ b1.x1;x2/

a2.x1;x2/ b2.x1;x2/

�
;

then on the dense open subset H2 �U.1/�U.1/ of nCP2 the Joyce metric with the
given U.1/�U.1/–action is expressed as

(3-13) gJ D gH2 C
.a2

1
C a2

2
/dy2

1
C .b2

1
C b2

2
/dy2

2
� 2.a1b1C a2b2/dy1dy2

.a1b2� a2b1/2
;

where y1;y2 are coordinates with period 2� on U.1/�U.1/.

Proposition 3.1 If a Joyce metric has a U.1/–subgroup of U.1/�U.1/ acting semi-
freely on nCP2 , then the stabilizer data can be supposed to be

(3-14) .m1; n1/D .0; 1/; and .m˛; n˛/D .1; k �˛/ for 2� ˛ � k:

Proof For this, as in Proposition 3.1.1 of [4], by choosing appropriate Z–basis of Z2 ,
we can always normalize the stabilizer data f.m˛; n˛/g in a way that they satisfy
(3-15)
.m1; n1/D .0; 1/; .mk ; nk/D .1; 0/; m˛n˛C1�m˛C1n˛ D�1 for 1� ˛ < k:

The last condition in particular means that .m˛; n˛/ moves in the clockwise direction as
˛ increases. Therefore m˛ > 0 and n˛ > 0 hold for 1< ˛ < k . As in [4] for mutually
coprime integers m and n define a U.1/–subgroup G.m; n/ of U.1/�U.1/ by

G.m; n/D f.e2�i� ; e2� i / j e2�i.m�Cn /
D 1g:

Then in nCP2 for each 1�˛�nC2 there exists a distinguished U.1/�U.1/–invariant
2–sphere whose stabilizer is exactly G.m˛; n˛/. Let S2

˛ be this 2–sphere. (The union
of all these spheres are exactly the complement of H2 �U.1/�U.1/ in nCP2 .) It is
elementary to see from (3-15) that if G.m; n/�U.1/�U.1/ is a U.1/–subgroup that
acts semi-freely on the first sphere S2

1
, then .m; n/D .0; 1/ or otherwise mD 1, up

to simultaneous inversion of the sign. Similarly, if G.m; n/� U.1/�U.1/ is a U.1/–
subgroup that acts semi-freely on the last sphere S2

k
, then .m; n/D .1; 0/ or otherwise

nD 1, up to simultaneous inversion of the sign. Taking the intersection of these, any
U.1/–subgroup acting semi-freely on nCP2 has to be of the form G.1; 1/;G.1; 0/

or G.0; 1/. But again it is elementary to see that the subgroup G.1; 1/ cannot act
semi-freely on S2

˛ , 1< ˛ < k . Therefore the two subgroups G.1; 0/ and G.0; 1/ are
the only subgroups that can act semi-freely on nCP2 . If G.1; 0/ (resp. G.0; 1/) acts
semi-freely on S2

˛ (1 < ˛ < k ), it follows that n˛ D 1 (resp. m˛ D 1). Thus the
stabilizer data must be

(3-16) .m1; n1/D .0; 1/; .mk ; nk/D .1; 0/; .m˛; n˛/D .m˛; 1/ for 1<˛<k;

Geometry & Topology, Volume 17 (2013)



2930 Nobuhiro Honda and Jeff Viaclovsky

for some m˛ > 0, or

(3-17) .m1; n1/D .0; 1/; .mk ; nk/D .1; 0/; .m˛; n˛/D .1; n˛/ for 1<˛<k;

for some n˛ > 0. But of course these represent the same U.1/�U.1/–action on nCP2 ,
so we dispose of the former. Then the final condition in (3-15) means m˛ D k � ˛ ,
and we are done.

Next, by the usual PSL.2;R/–action, we may suppose that q1D1 and q2D 0. From
these normalizations, we compute

(3-18) � D
u.q1/�u.q2/

2
˝ .0; 1/C

k�1X
˛D2

u.q˛/�u.q˛C1/

2
˝ .1; nC 2�˛/

C
u.qk/Cu.q1/

2
˝ .1; 0/

D
1

2

�
u.q1/Cu.q2/; u.q1/C .k � 3/u.q2/�

kX
˛D3

u.q˛/

�

D
1

2

0BBBBB@
x2

R
.k � 3/

x2

R
�

kX
˛D3

x2

�˛

x1

R
� 1 .k � 3/

x1

R
�

kX
˛D3

x1� q˛

�˛
� 1

1CCCCCA
�
D

�
a1 b1

a2 b2

��
:

Substituting these into (3-13), we obtain the explicit form of Joyce metrics that admit
a semi-free U.1/–action.

We next have the following:

Theorem 3.2 With respect to the above coordinates and the identification q˛ D q˛ so
that r˛ D �˛ .3� ˛ � nC 2/, the toric LeBrun metric zgLB (defined in (3-9)) and the
Joyce metric gJ (defined in (3-13) with (3-18)) are isometric under the map

(3-19) .x1;x2; �; �/ 7�! .x1;x2;y1;y2/D .x1;x2; �; �/:

For the proof, we begin with the following:

Lemma 3.3 As functions on H2 D f.x1;x2/ j x2 > 0g, we have the following rela-
tionship

(3-20) a1b2� a2b1 D�
x2

2R
V:
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Remark 3.4 The negativity of a1b2� a2b1 seemingly contradicts [4, Lemma 3.3.3],
but this is not a problem, since the sign comes from the difference of the orientation on
the right half-plane used in Joyce’s paper and that on the upper half-plane used in this
paper.

Proof By (3-18), we have

4.a1b2� a2b1/D
x2

R

�
.k � 3/

x1

R
�

kX
˛D3

x1� q˛

�˛
� 1

�
�

�x1

R
� 1

��
.k � 3/

x2

R
�

kX
˛D3

x2

�˛

�
;

and after several cancellations, this equals

x2

R

�
k � 4�

kX
˛D3

R� q˛

�˛

�
which is exactly �.2x2V /=R, under our assumption q˛ D q˛ . Dividing by 4 gives
the claim of the lemma.

Proof of Theorem 3.2 We write the two metrics as

zgLB D gH2 C zg11 d�2
C 2zg13 d� d� C zg33 d�2;

gJ D gH2 Cg11 dy2
1 C 2g12 dy1 dy2Cg22 dy2

2 :

Then the claim of Theorem 3.2 is equivalent to the three identities

(3-21) g11 D zg11; g12 D zg13; g22 D zg33:

In the following, for simplicity of notation, we write

nC2X
˛D3

DW

X0

and
X

3�˛<ˇ�nC2

DW

X00

First, we readily have

(3-22) zg11 D
2R2

x2
2

1� x1

R

V 2
;

and also, by using Lemma 3.3,

(3-23) g11 D
a2

1
C a2

2

.a1b2� a2b1/2
D

1
2

�
1� x1

R

��
x2

2R
V
�2 D 2R2

x2
2

1� x1

R

V 2
:
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Therefore we obtain g11 D zg11 .

Second, from (3-8), we have

(3-24) zg13 D
2R2

x2
2

�
1�

x1

R

� f
V 2
D

2R2

x2
2

�
1�

x1

R

�� n

2
C

1

2

X0 RC q˛

r˛
V 2

:

On the other hand, from (3-18) we can compute, by using the relation x2
1
Cx2

2
DR2

twice,

(3-25) 4.a1b1C a2b2/

D
x2

R

n
.n� 1/

x2

R
�

X0 x2

�˛

o
C

�x1

R
� 1

�n
.n� 1/

x1

R
�

X0 x1� q˛

�˛
� 1

o
D

�
n�

X0 RC q˛

�˛

��
1�

x1

R

�
:

Hence again by using Lemma 3.3 we obtain

(3-26) g12 D�
a1b1C a2b2

.a1b2� a2b1/2
D�

1

4

�
n�

X0 RC q˛

�˛

��
1�

x1

R

�
� x2

2R
V
�2

:

By comparing (3-24) and (3-26), we obtain g12 D zg13 .

Finally, for the remaining coefficients zg33 and g22 , we have, by (3-8),

(3-27) zg33 D
2R2

x2
2

��
1C

x1

R

�
C

�
1�

x1

R

�f 2

V 2

�
D

2R2

x2
2
V 2

n
.V 2
Cf 2/C

x1

R
.V 2
�f 2/

o
:

Further by (3-6) we compute

V 2
Cf 2

D 1� nC
n2

2
C

X0 R� q˛

r˛
� n

X0 R

r˛
(3-28)

C
1

2

�X0 R2C q2
˛

r2
˛

C 2
X00 R2C q˛qˇ

r˛rˇ

�
;

V 2
�f 2

D 1� nC
X0 R� q˛

r˛
C n

X0 q˛

r˛
�R

�X0 q˛

r2
˛

C

X00 q˛C qˇ

r˛rˇ

�
:(3-29)
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From these we obtain

(3-30) zg33D
2R2

x2
2
V 2

�
1

2

X0 R2C q2
˛ � 2x1q˛

r2
˛

C

X00 R2C q˛qˇ �x1.q˛C qˇ/

r˛rˇ

C

X0 .1� n/R� q˛

r˛
C

x1

R

X0 RC .n� 1/q˛

r˛

C .1� n/
x1

R
C 1� nC

n2

2

�
:

Noting that R2Cq2
˛�2x1q˛ D r2

˛ , the first summation becomes just n, so this equals

(3-31)
2R2

x2
2
V 2

�X00 R2C q˛qˇ �x1.q˛C qˇ/

r˛rˇ
C

X0 .1� n/R� q˛

r˛

C
x1

R

X0 RC .n� 1/q˛

r˛
C .1� n/

x1

R
C 1�

n

2
C

n2

2

�
:

On the other hand, by (3-18), we can compute

(3-32) 4.b2
1 C b2

2/

D .n� 1/2� 2.n� 1/

�
x2

2

R

X0 1

�˛
C

x1

R

X0 x1� q˛

�˛
C

x1

R

�
Cx2

2

�X0 1

�˛

�2

C

�X0 x1� q˛

�˛

�2

C 2
X0 x1� q˛

�˛
C 1

D .n� 1/2� 2.n� 1/

�
1

R

X0 R2�x1q˛

�˛
C

x1

R

�
C

X0 x2
2
C .x1� q˛/

2

�2
˛

C 2
X00 x2

2
C .x1� q˛/.x1� qˇ/

�˛�ˇ
C 2

X0 x1� q˛

�˛
C 1

D 2
X00 R2C q˛qˇ �x1.q˛C qˇ/

�˛�ˇ
C

2x1

R

X0 RC .n� 1/q˛

�˛

C 2
X0 .1� n/R� q˛

�˛
C 2.1� n/

x1

R
C n2

� nC 2:

Under the identification q˛ D q˛ , this is exactly twice the quantity in the braces f g
in (3-31). Consequently,

(3-33) zg33 D
2R2

x2
2
V 2
� 2.b2

1 C b2
2/D

4R2

x2
2
V 2

.b2
1 C b2

2/:
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On the other hand by (3-13) and Lemma 3.3 we have

g22 D
b2

1
C b2

2

.a1b2� a2b1/2
D

b2
1
C b2

2�
x2

2R
V
�2 :

Hence from (3-33) we obtain

(3-34) zg33 D
4R2

x2
2
V 2

� x2

2R
V
�2

g22 D g22;

as required, which completes the proof of Theorem 3.2.
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