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The gerby Gopakumar–Mariño–Vafa formula

DUSTIN ROSS

ZHENGYU ZONG

We prove a formula for certain cubic Zn –Hodge integrals in terms of loop Schur
functions. We use this identity to prove the Gromov–Witten/Donaldson–Thomas
correspondence for local Zn –gerbes over P 1 .
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1 Introduction

1.1 Statement of results

The Gopakumar–Mariño–Vafa formula, proven independently by Liu, Liu and Zhou [20]
and Okounkov and Pandharipande [26], evaluates certain generating functions of cubic
Hodge integrals on moduli spaces of curves in terms of Schur functions, a special basis
of the ring of symmetric functions. The formula can be interpreted as one instance of the
Gromov–Witten/Donaldson–Thomas correspondence for Calabi–Yau (CY) 3–folds. In
this paper, we generalize the Gopakumar–Mariño–Vafa formula to Zn –Hodge integrals
and we show that this formula can be viewed as one instance of the orbifold GW/DT
correspondence.

In particular, we define generating functions zV �� .a/ of cubic Zn –Hodge integrals
on moduli spaces of stable maps to the classifying space BZn . These generating
functions are indexed by conjugacy classes � of the generalized symmetric group
Zn oSd and are closely related to the GW orbifold vertex developed by the first author
[30]. In place of the Schur functions in the usual Gopakumar–Mariño–Vafa formula,
we introduce generating functions zP�.a/, which are specializations of loop Schur
functions, developed by Lam and Pylyavskyy [17] and further investigated by the first
author [31]. These generating functions are indexed by irreducible representations � of
Zn oSd and are closely related to the DT orbifold vertex developed by Bryan, Cadman
and Young [5]. The main result is the following correspondence via the character values
��.�/ of Zn oSd .
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Theorem 1 After an explicit change of variables:

zV ��.a/D
X
�

zP�.a/
��.�/

z�

There are n distinct Zn –gerbes Gk (0 � k < n) over P1 classified by H 2.P1;Zn/.
We define X to be a local Zn –gerbe over P1 if X is isomorphic to the total space of
a rank two Calabi–Yau orbifold bundle over some Gk . Applying the gluing rules of
[30] and [5], Theorem 1 leads to a proof of the orbifold GW/DT correspondence for
local Zn –gerbes over P1 .

Theorem 2 After an explicit change of variables, the GW potential of any local
Zn –gerbe over P1 is equal to the reduced, multi-regular DT potential.

This is the first example of the GW/DT correspondence for orbifold targets with
nontrivial curve classes contained in the singular locus.

1.2 Context and motivation

Atiyah–Bott localization [4] has proven to be an extremely powerful tool in both GW
and DT theory of toric CY 3–folds. In particular, it has led to the development of
the (orbifold) topological vertex (Aganagic, Klemm, Mariño and Vafa [3], Okounkov,
Reshetikhin and Vafa [28], Li, Liu, Liu and Zhou [18], Bryan, Cadman and Young [5],
and Ross [30]), a basic building block for the GW or DT theory of all toric CY 3–folds.
In the GW case the vertex can be computed as a generating function of (abelian) Hodge
integrals, whereas in the DT case the vertex can be computed as a generating function
of (colored) 3d partitions.

The topological vertex formalism provides us with an algorithm for proving conjectural
correspondences related to GW and DT theory: first prove that the correspondence
holds locally for the vertex, then show that it is consistent with the gluing laws. In the
smooth case, this approach was used to prove the GW/DT correspondence for toric
3–folds, initiated by Li, Liu, Liu and Zhou [20; 21; 18] and concluding with the work
of Maulik, Oblomkov, Okounkov, and Pandharipande [23].

In orbifold Gromov–Witten theory, the first example of this local-to-global approach
appeared in work of the first author and Cavalieri [8] where it was used to prove an
example of the crepant resolution conjecture. It was further developed in [30], where a
correspondence between the An�1 GW and DT vertex theories was suggested. In [32],
the second author proved this correspondence for the effective one-leg An�1 vertex.
One consequence of the results in [32] is the orbifold GW/DT correspondence for local
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footballs (orbifolds with coarse space P1 and smooth away from 0 and 1). The main
focus of this paper is the ineffective one-leg An�1 vertex.

In the ineffective case, several new challenges arise. On the GW side one can no longer
use the Zn –Mumford relation which was the key tool in [32]. Moreover, the orbifold
structure at the nodes of the source curve is no longer determined by the degree of
the corresponding map, barring us from using the standard tools in the representation
theory of the symmetric group. In order to overcome the first challenge, instead of
evaluating the abelian Hodge integrals explicitly, we develop a deterministic set of
bilinear relations by localizing relative maps into cyclic gerbes over P1. The difficulties
lie in developing an efficient set of useful relations and then showing that these relations
are invertible. As suggested in [30], the latter obstacle is overcome by encoding the
twisted partitions as conjugacy classes in the generalized symmetric group Zn oSd .
Many of the combinatorial tools from the study of the representation theory of Sd can
then be generalized to Zn oSd , and these tools are crucial in proving our main results.

On the DT side, the effective case can be interpreted in terms of Schur functions, but we
lose this interpretation when we pass to the ineffective case. However, we observe that
the DT vertex can naturally be interpreted as specializations of loop Schur functions.
The combinatorial structure of the loop Schur functions provides us in turn with useful
properties of the DT vertex, which are pivotal in the arguments of this paper.

Many interesting questions arise from this work. First, the results of this paper give
the first example of the orbifold GW/DT correspondence for a target that contains
nontrivial curve classes that lie entirely in the singular locus. In this case, it is necessary
to discard a significant amount of information on the DT side by restricting to the
multi-regular contributions. It would be interesting to generalize orbifold GW theory
to account for this extra data and one possible approach seems to lie in the very twisted
stable maps developed by Chen, Marcus and Úlfarsson [9]. Secondly, since the current
work completes the one-leg An�1 GW/DT correspondence, another natural extension
of this work is to extend the results herein to the two, and ultimately the three-leg
An�1 vertex. Finally, the An�1 vertex is by far the easiest geometry in both GW
and DT theory. It would be extremely interesting to study if/how the GW/DT vertex
correspondence extends to noncyclic and/or non hard-Lefschetz orbifolds.
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1.3 Plan of the paper

After setting up notation and giving a precise statement of Theorems 1 and 2 in Section 2,
we study the geometry of the framed GW vertex zV �� .a/ in Section 3. In particular, we
develop a set of bilinear equations relating the GW vertex to generating functions of
certain rubber integrals. In Section 3.5, we interpret these rubber integrals in terms of
wreath Hurwitz numbers and apply the Burnside formula to write the bilinear relations
in terms of the characters of the generalized symmetric group Zn oSd . We then show
in Section 3.6 and Section 4 that these relations uniquely determine the GW vertex.
Sections 5, 6 and 7 are devoted to proving that the DT vertex also satisfies these bilinear
relations. In Section 5, we recall the definition of loop Schur functions and the main
results from [31]. We also recall a hook-length formula from Eğecioğlu and Remmel
[11], and Nakada [24] that relates the loop Schur functions to the framed DT vertex
zP�.a/. In Section 6, we study the representation theory of Zn oSd where the main

tool is the wreath Fock space. Finally, in Section 7 we put everything together to prove
Theorem 1. In Section 8 we use gluing rules developed in [30; 5] to show how the
GW/DT correspondence for local Zn –gerbes over P1 follows from Theorem 1.

2 Background and notation

In this section we set up notation which will be used throughout the paper and we give
a precise statement of the main results.

2.1 Partitions

For each positive integer n we fix a generator of the cyclic group:

Zn D
˝
�n WD e2�

p
�1=n

˛
When no confusion arises, we write the generator simply as � . It is well known
that n–tuples of partitions naturally correspond to conjugacy classes and irreducible
representations of Zn oSd ; see eg Macdonald [22]. We will use � and � to denote
n–tuples of partitions corresponding to conjugacy classes and reserve � and � to refer

Geometry & Topology, Volume 17 (2013)



The gerby Gopakumar–Mariño–Vafa formula 2939

to irreducible representations. We let ��.�/ denote the value of the character of the
irreducible representation � on the conjugacy class �.

Consider the n–tuple of partitions

�D
��

d0
1 ; : : : ; d

0
l0

�
; : : : ;

�
dn�1

1 ; : : : ; dn�1
ln�1

��
with d i

j 2 N (we assume when using this notation that d i
1
� d i

2
� � � � ). Let �i D

.d i
1
; : : : ; d i

li
/ denote the partition indexed by i and let �tw correspond to the n–tuple

of twisted partitions .∅; �1; : : : ; �n�1/. At times it will be convenient to write � as
a multiset f�id i

j g where the power of � keeps track of which �i the d i
j came from.

Let l.�/ WD
P

li denote the length of �. Set j�i j WD
P

j d i
j and j�j WD

P
j�i j. Let

� denote the underlying partition of � that forgets the Zn decorations. We define
�� WD f��id i

j g, ie, it is the n–tuple of partitions with opposite twistings. We also
define

z� WD jAut.�/j
Y

nd i
j

to be the order of the centralizer of any element in the conjugacy class �.

Suppose �D .�0; : : : ; �n�1/. Via n–quotients (described explicitly in Section 6.2) �
can be identified with a partition of nd where d D j�j. We denote this corresponding
partition by x�. We write x� D f.i; j /g where i indexes the rows and j indexes the
columns of the Young diagram corresponding to x�. We will often think of x� as a
colored Young diagram where the box .i; j / has color j � i mod n. We denote the
boxes with color k by x�Œk�. For � 2 x�, we let hk.�/ denote the number of color k

boxes in the hook defined by � and we define:

nk.x�/ WD
X

i

.i � 1/.# of color k boxes in the i th row/

We let 
 denote a tuple of nontrivial elements in Zn . We define mi.
 / to be the
number of occurrences of �i 2 Zn in 
 .

2.2 Gromov–Witten theory

Given � and 
 as above, let Mg;
C�.BZn/ denote the moduli stack of stable maps
to the classifying space with mi.
 /C li.�/ marked points twisted by �i . We recall
the definitions of some natural classes on this moduli stack.

By the definition of BZn , Mg;
C�.BZn/ parametrizes degree n covers of the source
curve, ramified over the twisted points, with an action of Zn that exhibits the source
curve as a quotient of the cover. Let

pW Uh �!Mg;
C�.BZn/
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be the universal covering curve of genus h where h is computed via the Riemann–
Hurwitz formula. The Hodge bundle on Mg;
C�.BZn/ is the rank h bundle defined by

E WD p�!p;

where !p is the relative dualizing sheaf of p . Zn naturally acts on E and its dual
E_ . For any � 2 Zn , we define E� and E_� to be the �–eigenbundles of E and E_ ,
respectively. They are related by the formula .E�/_DE_��1 . We also have the formula

E_��1 DR1��f
�O� ;

where � is the map from the universal curve, f is the universal map, and O� is the
line bundle with isotropy acting by multiplication by � . The lambda classes are defined
as the Chern classes of these bundles:

�
�
j WD cj .E�/:

By forgetting the orbifold structure of the curve, there is a universal coarse curve

qW Ug;j
 jCj�j �!Mg;
C�.BZn/

along with a section sp for each marked point p . We define the cotangent line
bundles by

Lp WD s�p!q;

where !q is the relative dualizing sheaf of q . The psi classes on Mg;
C�.BZn/ are
defined by

 p WD c1.Lp/:

The marked points in � are indexed by f.i; j / W 0� i < n; 1� j � lig and we denote
the corresponding psi classes by  i;j .

For any a 2 1
n
Z, the special cubic Hodge integrals we are interested in are

(2-1) Vg;
 .�I a/ WD
.aC 1/l0

jAut.�/j

n�1Y
iD0

liY
jD1

Qd i
j
�1

kD0
.ad i

j C
i
n
C k/

.�1/d
i
j d i

j � d
i
j !

�

Z
Mg;
C�.BZn/

ƒ0.1/ƒ1.a/ƒ�1.�a� 1/

ı.a/
Qn�1

iD0

Qli

jD1

�
1

d i
j

� i;j

� ;
where

ƒi.t/ WD .�1/rk
rkX

jD0

.�t/rk�j�
�i

j
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with rk WD rk.E�i / and ı.a/ the function which takes value �a2�a on the connected
component of the moduli space that parametrizes trivial covers of the source and takes
value 1 on all other components.

Remark 2.1 The parameter a is often referred to as the framing.

Introduce formal variables u and xi to track genus and marks. Also introduce the
variables p� with formal multiplication defined by concatenating the indexing partitions.
Then we define

V ��.x;uI a/ WD exp
�X

g;
;�

Vg;
 .�I a/u
2g�2Cl.�/ x



 !
p�

�
Œp��;

where

x



 !
WD

n�1Y
iD1

x
mi .
 /
i

mi.
 /!

and Œp�� denotes “the coefficient of p�”. By definition, V ��.x;uI a/ is the one-leg
An�1 orbifold GW vertex defined in [30].

Definition 2.2 The framed GW vertex is defined by

(2-2) zV ��.a/ WD

nY
iD1

�p
�1 �i

2n

�li V ��.x;uI a/;

where ln WD l0 .

2.3 Donaldson–Thomas theory

Let q0; : : : ; qn�1 be formal variables (always assume that the index of qk is computed
modulo n) and define q WD q0 � � � qn�1 . For x� as above, define:

(2-3) P�.q0; : : : ; qn�1/ WD
1Q

�2x�

�
1�

Q
i

q
hi .�/
i

�
By [5, Theorem 12], P�.�q0; : : : ; qn�1/ is the reduced, multi-regular one-leg An�1

orbifold DT vertex.

Remark 2.3 Notice the sign discrepancy between (2-3) and the DT vertex.
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Definition 2.4 The framed DT vertex is defined by

(2-4) zP�.a/ WD

��
.��2n/

j�j
Y

�lj�l j
n

�n Y
.i;j/2x�

q
j�i
j�i

��a

�
�x�.n

d /

dim.�/
q

d
2 .�1/d

Y
i

q
ni .x�/
i P�.q0; : : : ; qn�1/:

Remark 2.5 �x� is a character of Sdn whereas dim.�/ is the dimension of an ir-
reducible representation of Zn o Sd . As we will see in Section 6.4, the quotient
�x�.n

d /=dim.�/ is simply a compact way of keeping track of a sign.

Remark 2.6 In Corollary 5.4, we relate zP�.0/ to loop Schur functions.

2.4 The correspondence

We will prove the following formula.

Theorem 3 After the change of variables,

q! e
p
�1u; qk ! ��1

n e�
P

i .�
�ik
n =n/.�i

2n
���i

2n /xi .k > 0/;

zV ��.a/D
X
�

zP�.a/
��.�/

z�
:

In Section 8, we use Theorem 1 to deduce the Gromov–Witten/Donaldson–Thomas
correspondence for local Zn –gerbes over P1 .

Theorem 4 Let X be a local Zn –gerbe over P1 and let GW .X / and DT 0mr .X /
denote the GW potential and the reduced, multi-regular DT potential of X , respectively.
After the change of variables

q!�e
p
�1u; qk ! ��1

n e�
P

i .�
�ik
n =n/.�i

2n
���i

2n /xi .k > 0/;

GW.X /D DT 0mr.X /:

Remark 2.7 Notice the sign difference in the change of variables of Theorems 1
and 2; this difference is an artifact of Remark 2.3.

Remark 2.8 The change of variables in Theorems 1 and 2 is predicted by Iritani’s
stacky Mukai vector [14] and previously appeared in [32]. We thank Jim Bryan for
explaining this change of variables to us.
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3 Geometry

In this section we set up auxiliary integrals on moduli spaces of relative maps into
P1 –gerbes in order to obtain bilinear relations between the vertex zV ��.a/ and certain
rubber integrals zH ��;�.a/. The rubber integrals in zH ��;�.a/ can be interpreted as
wreath Hurwitz numbers and can be computed via Burnside’s formula in terms of the
representation theory of the wreath product Zn o Sd . We use this interpretation in
Sections 3.6 and 4 to show that the localization relations uniquely determine zV ��.a/
from zH ��;�.a/. The method of localizing maps into gerbes in order to obtain useful
relations of Hodge integrals first appeared in work of Cadman and Cavalieri [7] where
it was used to compute the GW invariants of ŒC3=Z3�.

3.1 Cyclic gerbes over P 1

Cyclic P1 gerbes will be important both for the localization computations in Section 3.4
and in the GW/DT comparisons in Section 8. We briefly collect the necessary details
here. For each line bundle O.�k/ with 0� k < n, we can define a P1 –gerbe Gk with
isotropy group Zn and an orbifold line bundle Lk as follows.

Definition 3.1 The gerbe Gk is defined by pullback

Gk
//

��

BC�

�!�nV

��
P1

O.�k/// BC�

and Lk is defined to be the line bundle parametrized by the top map.

Note that the numerical degree of Lk is �k=n and the action of Zn on the fibers is
given by multiplication by �n (see eg Section 2.3 of [30]).

The Gk are only distinct if we choose an isomorphism of each isotropy group with Zn .
In other words, for each � 2 Aut.Zn/, we obtain an equivalence

z�k W Gk
Š
�! G�.k/

for each k . However, it is not true in general that z��
k

�
L�.k/

�
DLk . This fact will be

important in our discussion of 3–fold targets in Section 8.

One of the most useful aspects of localizing maps of curves into P1 gerbes is that it
allows us to control the orbifold structure over 0 and 1. To make this precise, let
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C be an orbifold with coarse space P1 and orbifold structure only at 0 and 1. Let
f W C! Gk be a C� fixed degree d map with twisting k0 at 0 and k1 at 1. Then

k1 D�dk � k0 mod n:

A more general characterization of this property was given in Johnson’s thesis [16,
Lemmas II.12 and II.13]. To keep track of this twisting compatibility, we make the
following definition.

Definition 3.2 For a decorated partition �Df�id i
j g, we define the involution gk.�/ by

gk.�/ WD f�
d i
j

k�id i
j g:

If f is a C� fixed map from a disjoint union of copies of orbifold P1 with degree
and twisting over 0 given by �, then the degree and twisting over 1 is determined by
�gk.��/ (the conventions with signs seems cumbersome at the moment but it will be
natural in later formulas).

3.2 Auxiliary integrals

Here we set up integrals on the moduli spaces Mg;
 .Gk ; �Œ1�/ that parametrize
maps with fixed ramification and isotropy profile over 1. These moduli spaces were
developed by Abramovich and Fantechi [1]. The integrals we will investigate are the
following:

(I-1)
1

jAut.�/j

Z
Mg;
 .G0;�Œ1�/

e.R1��.. yf
�L0/.�D/˚ yf �L_0 .�1///;

where D is the locus of relative points on the universal curve with trivial isotropy and
yf contracts the degenerated target and maps all the way to G0 , and for 1� k � n�1,

(I-2)
1

jAut.�/j

Z
Mg;
 .Gk ;�Œ1�/

e.R1��. yf
�Lk ˚

yf �L_k .�1///:

3.3 Partial evaluations

In certain cases, we can evaluate the integrals (I-1) and (I-2) explicitly. We collect
these computations here.

We begin with the first integral. As we will see in Section 3.4, (I-1) is equal to
Vg;
 .�I 0/. Therefore, we consider special choices of � for which we can evaluate
Vg;
 .�I 0/. Recall that fdg denotes the n–tuple of partitions with one untwisted part.
The following evaluation will be extremely useful.
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Lemma 3.3 Vg;
 .fdgI 0/D ıj
 j;0
.�1/d�1

n

Z
Mg;1

�g.d /
2g�2

Proof By (2-1), Vg;
 .fdgI 0/ vanishes away from the locus of maps which parametrize
trivial covers. In particular, since 
 consists of nontrivial elements in Zn , the cover
can only be trivial if 
 D∅. On the locus of maps which parametrize trivial covers,
E� Š E��1 ŠE1 . Therefore we can apply the Mumford relation to the integrand in the
definition of Vg;∅..d/I 0/. The lemma follows by pushing forward to Mg;1 , which is
a degree 1

n
map.

Corollary 3.4 V ��.0/D

 
1

z�0

l0Y
jD1

.�1/d
0
j
�1

2
csc

 
d0

j u

2

!!
V ��tw .0/

Proof By (2-1), the only nonzero vertex terms Vg;
 .�; 0/ with �0¤∅ are those with
l0 D 1 – these invariants were computed in Lemma 3.3. The evaluations of Lemma 3.3
can be packaged using the Faber–Pandharipande identity [12]:X

g

�Z
Mg;1

�g 
2g�2

�
t2g
D

t

2
csc
�

t

2

�
:

The result then follows by passing from the connected invariants to the disconnected
ones by exponentiating.

From these evaluations, we see that the aD 0 vertex is completely determined once
we know the contributions coming from partitions � with �0 D∅.

For the integral (I-2), we obtain the following vanishing result.

Lemma 3.5 The integral (I-2) vanishes if any of the parts of � are untwisted.

Proof The integral vanishes by dimensional reasons. The dimension of the moduli
space is j�jC2g�2Cj
 jC l.�/. The degree of the integrand is j�jC2g�2Cj
 jC

l.�tw/, which can be computed by the orbifold Riemann–Roch formula (Abramovich,
Graber and Vistoli [2, Theorem 7.2.1]).

3.4 Bilinear relations

We now compute the integrals (I-1) and (I-2) via localization. Beginning with (I-1), we
give the target the standard C�–action with weight 1 (�1) on the fibers of the tangent
bundle over 0 (1). This defines a C�–action on the moduli space by postcomposing
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the map with the action. In order to choose an equivariant lift of the integrand, we lift
the action from the target to the bundles T .�1/, L_

0
and L0.�1/ so that C� acts on

the fibers over 0 and 1 with weights summarized in the following table.

T .�1/ L0 L_
0
.�1/

0 1 a �a� 1

1 0 a �a

Each fixed locus of the torus action on the moduli space can be encoded by a bipartite
graph � with white (black) vertices corresponding to the connected components of
yf �1.0/ ( yf �1.1/). The vertices and edges are decorated with the following data:

� Each vertex v is labeled with a tuple 
v of nontrivial elements in Zn correspond-
ing to the twisted marks on that component and an integer gv corresponding to
the genus.

� Each edge e is labeled with a complex number .�ke de/ that induces a n–tuple
of partitions �v 2Conj.Zn oSdv / at each white vertex and ��v 2Conj.Zn oSdv /

at each black vertex.

� In addition, each black vertex is labeled with a n–tuple of partitions �v such
that j�vj D j�vj and the union of all �v is �.

To a white vertex, we associate the contribution

Cont.v/D Vgv;
v .�vI a/

and to a black vertex we associate the contribution

Cont.v/

D
.�1/l0.�v/Cg�1C

P
i¤0.n�i=n/.mi .
v/Cli .�v/Cln�i .�v//.a/2gv�2Cj
v jCl.�v/Cl.�v/

jAut.�v/j

�

� l.�v/Y
iD1

ndi

�Z
Mgv;
v .G0I��vŒ0�;�vŒ1�/==C�

�.� 0/
2gv�3Cj
v jCl.�v/Cl.�v/;

where  0 is the target psi class. By the localization formula for orbifold stable maps
(see for example Cadman and Cavalieri [7], Liu [19], Ross [30] and Zong [32]) we
compute the integral

(I-1)D
1

jAut.�/j

X
�

1

jAut.�/j

Y
v

Cont.v/:
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Remark 3.6 In the simplification of the black vertex contribution, we used the Zn –
Mumford relation proved by Bryan, Graber and Pandharipande [6], namely

ƒ1.a/ƒ�1.�a/D .a/rk.E�/.�a/
rk.E

��1 /;

where the ranks can be computed by the orbifold Riemann–Roch formula.

Setting aD 0, we observe that the contributions from black vertices vanish and the
integral is equal to Vg;
 .�I 0/, justifying the statement made at the beginning of
Section 3.3.

Define the rubber integral generating function

H�;�.x;u/ WD
1

jAut.�/jjAut.�/j

X
g;


Z
M
 

rCj
 j�1
0

ur x



 !
;

where r WD 2g � 2C l.�/C l.�/, M is the space of relative maps into the rubber
target: Mg;
 .G0I �Œ0�; �Œ1�/==C

� .

For notational convenience, we define

zH ��;�.a/ WD exp
�
H�;�

�
a��1

2n x1; : : : ; a�
1�n
2n xn�1;

p
�1 au

��
:

The above localization computations amount to the following bilinear relations between
V and H :

(R-1) zV ��.0/D
X
j�jDj�j

zV �� .a/z�
zH ���;�.a/:

Remark 3.7 Notice that the �� appearing in the rubber integrals is equal to g0.�/

from Definition 3.2.

We also compute (I-2) via localization. Again we equip the moduli space with a C�–
action via the standard C�–action on the target. We lift the integrand with the choice
of linearizations summarized in the following table.

T .�1/ Lk L_
k
.�1/

0 1 0 �1

1 0 k=n �k=n

The localization computation of (I-2) is nearly identical to that of (I-1) and leads to the
relations

(R-2) 0D
X
j�jDj�j

zV �� .0/z�
zH �gk.�/;�

�
k

n

�
;

where � is any partition with at least one untwisted part.
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3.5 Wreath Hurwitz numbers

In the non-orbifold case, it was shown by Liu, Liu and Zhou [20; 21] that certain rubber
integrals can be interpreted in terms of double Hurwitz numbers. In this section, we
generalize their result to the orbifold case.

Hurwitz numbers classically count degree d ramified covers of Riemann surfaces with
monodromy around the branch points prescribed by conjugacy classes in Sd . Cyclic
wreath Hurwitz numbers are defined to be analogous counts of degree dn ramified
covers where the monodromy is prescribed by conjugacy classes � in Zn oSd . Since
Zn is in the center of Zn oSd , such covers have a natural Zn action and the quotient
is a classical Hurwitz cover with monodromy given by the underlying partitions �.

We define now the particular wreath Hurwitz numbers that arise in our context.

Definition 3.8 Let H
g;

�;� be the automorphism-weighted count of wreath Hurwitz

covers f W C ! P1 where the branch locus consists of a set of j
 jC rC2 fixed points
(we fix the last two points at 0 and 1) and the maps satisfy the following conditions:

� The quotient C=Zn is a connected genus g curve.

� The monodromy around 0 and 1 is given by � and �.

� The monodromy around the branch point corresponding to 
i 2 
 is given by
the conjugacy class f
i ; 1; : : : ; 1g.

� The monodromy around the r additional branch points is given by the conjugacy
class f2; 1; : : : ; 1g.

Remark 3.9 Here we use the multiset notation for n–tuples of partitions introduced
in Section 2.1.

The next theorem relates the rubber integrals that arose in the localization computations
to the wreath Hurwitz numbers H

g;

�;� .

Theorem 3.10 H g;

�;� D

r !

jAut.�/jjAut.�/j

Z
Mg;
 .G0I�Œ0�;�Œ1�/==C�

 
r�1Cj
 j
0

Proof Via the forgetful map F WMg;
 .G0I �Œ0�; �Œ1�/!Mg;n.P1I �Œ0�; �Œ1�/, we
obtain a branch morphism

BrWMg;
 .G0I �Œ0�; �Œ1�/ �! Symr P1
Š P r
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by postcomposing F with the usual branch morphism. For each of the n (twisted)
marked points, we also obtain maps �evi WMg;
 .G0I �Œ0�; �Œ1�/! P1 by postcompos-
ing the usual evaluation map with the natural map to P1 . Then the wreath Hurwitz
numbers can be expressed as

(3-1) H g;

�;� D

1

jAut.�/jjAut.�/j

Z
Mg;
 .G0I�Œ0�;�Œ1�/

Br�.pt/ �
Y�ev�i .pt/:

It is left to show thatZ
Mg;
 .G0I�Œ0�;�Œ1�/

Br�.pt/ �
Y�ev�i .pt/D r !

Z
Mg;
 .G0I�Œ0�;�Œ1�/==C�

 
r�1Cj
 j
0

and we accomplish this via localization.

We equip the moduli space with a torus action by fixing the C�–action on the target
t �Œz0 W z1�D Œz0 W tz1� so that the tangent bundle is linearized with weights 1 at 0D Œ0 W 1�

and �1 and1D Œ1 W0�. The isomorphism P rDP .H 0.P1;O.r///!Symr P1 is given
by s! Div.s/ where the basis hzr

0
; zr�1

0
z1; : : : ; z

r
1
i for H 0.P1;O.r// corresponds

to the homogeneous coordinates .y0 W y1 W � � � W yr /. We equip P r with the torus action
t � .y0 W y1 W � � � W yr / D .y0 W ty1 W � � � W t

r yr /, which makes Br an equivariant map.
We lift Œpt� 2 H 2r .P r / to

Qr�1
iD0.H C i„/ 2 H 2r

C�.P
r /, where „ is the equivariant

parameter. The preimage of this lift is the locus of maps where the simple ramification
points map to 1. Likewise we lift

�ev�i .pt/D c1.�ev�i O.1//

by linearizing O.1/ with weights 0 at 0 and �1 at 1.

With these choices of linearizations, we see that the integrand vanishes on all fixed
loci where any of the nC r points with nontrivial monodromy map to 0. This leaves
exactly one fixed locus where the target expands over 1 and everything interesting
happens over the expansion. On this locus, the integrand specializes to .�„/rCnr ! and
the inverse of the equivariant Euler class of the normal bundle is

1

�„� 0

:

Therefore the contribution, and hence the integral in (3-1), is equal to

r !

Z
Mg;
 .G0I�Œ0�;�Œ1�/==C�

 rCn�1
0

:

Corollary 3.11 H ��;�.x;u/D exp
�X

g;


H g;

�;�

ur

r !

x



 !

�
D

X
g;


H
� ;
�
�;�

ur

r !

x



 !
;

where H
� ;
�
�;� is the wreath Hurwitz number with possibly disconnected covers.
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By the Burnside formula (see Dijkgraaf [10] for a proof), we compute

H
� ;
�
�;� D

X
j�jDd

.fT .�//
r
Y
.fi.�//

mi .
 /
��.�/

z�

��.�/

z�
;

where fT .�/ and fi.�/ are the central characters defined by

fT .�/ WD
nd.d � 1/��.f2; 1; : : : ; 1g/

2 � dim�
and fi.�/ WD

d��.f�
i ; 1; : : : ; 1g/

dim�
:

Therefore we obtain the following form for the generating function of wreath Hurwitz
numbers:

(3-2) H ��;�.x;u/D
X
j�jDd

��.�/

z�

��.�/

z�
efT .�/uC

P
fi .�/xi :

Using the fact that ��.��/D ��.�/, orthogonality of characters gives us the following
relations:

H ��;�.xCy;uC v/D
X
�

H ��;� .x;u/z�H ���;�.y; v/;(3-3)

H ��;��.0; 0/D
1

z�
ı�;�:(3-4)

The relations (3-3) and (3-4) also have a geometric meaning – (3-3) is the degeneration
formula for the target P1 where x and y keep track of whether the corresponding
point of ramification maps to one side of the node or the other, and (3-4) counts covers
with ramification only over 0 and 1.

3.6 Invertibility

In this section we show that the relations (R-1) can be inverted explicitly. We also state
the main result concerning the relations (R-2) but we defer the proof to the next section.

The next lemma follows immediately from Equations (3-3) and (3-4).

Lemma 3.12 The framing dependence in the conjugacy basis is

zV ��.a/D
X
j�jDj�j

zV �� .0/z�
zH ���;�.�a/:

In particular, Lemma 3.12 determines the general framed vertex from the aD 0 vertex
and characters of Zn oSd .
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Define
yP�.a/ WD

X
�

zV ��.a/��.��/

or equivalently
zV ��.a/D

X
�

yP�.a/
��.�/

z�
:

Then Lemma 3.12 is equivalent to the following.

Lemma 3.13 The framing dependence in the representation basis is

yP�.a/D e�
p
�1 afT .�/u�a

P
��i

2n
fi .�/xi yP�.0/:

Therefore, once we know that zP�.a/ and zP�.0/ are related by the exponential factor
of Lemma 3.13, we only need to prove Theorem 1 for the case aD 0.

The relations (R-2) are significantly more difficult to work with and do not admit a
convenient inverse as far as we know. Nonetheless, we prove that they are invertible.

Theorem 3.14 Relations (R-2) uniquely determine V�.0/ from the partial evaluations
of Corollary 3.4 and characters of Zn oSd .

The proof of Theorem 3.14 is rather involved and we defer it to the next section. In the
meantime, we gather formally the reductions which we have made while the formulas
are fresh in our minds.

Reduction 3.15 To prove Theorem 1, it suffices to check that the following properties
hold after the prescribed change of variables.

(I) The framing factors are consistent:��
.��2n/

j�j
Y

�lj�l j
n

�n Y
.i;j/2x�

q
j�i
j�i

�a

D e
p
�1 afT .�/uCa

P
��i

2n
fi .�/xi

(II) zP�.0/ satisfy the partial evaluations of Corollary 3.4:

X
j�jDj�j

zP�.0/
��.�/

z�
D

 
1

z�0

l0Y
jD1

p
�1.�1/d

0
j

2
csc

 
d0

j u

2

!! X
j� jDj�tw j

zP� .0/
�� .�

tw/

z�tw

!

(III) zP�.0/ satisfy the relations (R-2) for all � with at least one untwisted part:X
�

�X
�

zP�.0/
��.�/

z�

�
z�

�X
�

�� .gk.�//

zgk.�/

�� .�/

z�
e

k
n
.
p
�1fT .�/uC

P
��i

2n
fi .�/xi /

�
D 0
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Proof If zP�.0/ satisfies (II) and (III), then Corollary 3.4 and Theorem 3.14 imply
that Theorem 1 is true in the case a D 0. The general framed correspondence then
follows from the definition of the framed DT vertex and Lemma 3.13.

The proofs of identities (I)–(III) are given in Section 7 after developing the necessary
combinatorial and representation theoretic identities in Sections 5 and 6.

4 Linear algebra

This section is devoted to the proof of Theorem 3.14. By Corollary 3.4, the only vertices
left to be determined are those V �� .0/ with �tw D � . So let us rewrite (R-2) as

(R-20) 0D
X
j�jDj�j

zV ��tw .0/ zV
�

�0.0/z� zH
�
gk.�/;�

�
k

n

�
:

Let us begin by reinterpreting relations (R-2 0 ) in terms of matrix equations. Define the
vector

˛d D . zV
�
� .0//

with indexing set f� W j�j � d; � D �twg and the vector

ˇd D

�
�

X
j� jDj�j;�D�0

zV �� .0/z�
zH �gk.�/;�

�
k

n

��

with indexing set f.�; k/ W j�j � d; �¤ �tw; k ¤ 0g. We introduce a matrix

ˆd .uIx/D
�
ˆ
.�;k/;�

d
.uIx/

�
.�;k/;�

with the same indexing sets defined by

ˆ
.�;k/;�

d
.uIx/D

8̂<̂
:

0 if j�j> j�j;
z� zH

�
gk.�/;�

�
k
n

�
if j�j D j�j;P

j� jDj�j�j�j;�0D�
zV �� .0/z.�t�/

zH �
gk.�t�/;�

�
k
n

�
if j�j< j�j:

Then the collection of relations (R-2 0 ) is equivalent to the collection of matrix equations

ˆd .uIx/˛d D ˇd :

Our task is to show that ˆd .uIx/ has full (column) rank for all d .
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4.1 Matrix reductions

We begin by making a sequence of reductions. First note that

ˆd D

0BBBB@
ˆ0

d
� � � � �

0 ˆ0
d�1

: : :
:::

:::
: : :

: : : �

0 � � � 0 ˆ0
1

1CCCCA
where ˆ0

d
is defined by restricting the indexing sets to partitions of size d . Therefore,

it suffices to prove that ˆ0
d

has full rank and to do this we need only prove that the
specialization ẑd WDˆ

0
d
jx2D���Dxn�1DuD0 has full rank.

Remark 4.1 By setting u D 0, notice that ẑd is a generating function of wreath
Hurwitz numbers counting covers for which the Zn quotient is a disjoint union of copies
of P1 , each one fully ramified over 0 and1. Moreover, by setting x2D� � �Dxn�1D0,
the only nontrivial monodromy away from 0 and 1 is given by conjugacy classes
f�; 1; : : : ; 1g.

By the first part of Remark 4.1, if �¤ � , then the entry ẑ .�;k/;�
d

D 0. This implies

ẑ
d D

0BBBBB@
ẑ
�1 0 � � � 0

0 ẑ
�2

: : :
:::

:::
: : :

: : : 0

0 � � � 0
: : :

1CCCCCA
where ẑ � is defined by restricting the indexing sets to a single underlying partition
� D�D � of size d . Therefore, we have reduced our task to showing that ẑ � has full
rank for a fixed partition � .

To this end, fix � once and for all and write � D .�1; : : : ; �l/ with nonincreasing parts.
We henceforth suppress � from the notation and write ẑ for ẑ � . We also write x for
x1 when no confusion arises.

In order to prove that ẑ has full rank, we will restrict the row index to a suitable subset
and show that the resulting submatrix is invertible. In order to do this, we must first
introduce some subtle notation.
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4.2 Ordering convention

We introduce an order on the parts of each � with � D � . Begin by defining
ci WD gcd.�i ; n/. If � D � , we can write � as the multiset � D f� ti �ig where
ti 2 f0; : : : ; n� 1g. We define xti WD ti .mod c/i and we set .�i ; ti/ > .�j ; tj / if one of
the following is true:

(1) �i > �j , or

(2) �i D �j and xti < xtj , or

(3) �i D �j and xti Dxtj and ti < tj .

Then � can be written uniquely as

�D ..�1;m1/; : : : ; .�l ;ml//;

where the pairs are nonincreasing. This ordering convention will be important in
defining the square submatrix ŷ in Section 4.3 and in proving its invertibility in
Section 4.4. At present, we use the ordering convention to define

z� WD � n .�1;m1/

and we define the twisting partition of � to be

t.�/ WD .m1; : : : ;ml/:

4.3 A square submatrix

We now explain a particular way to reduce the row index of ẑ to a suitable subset
so that the resulting submatrix ŷ is square. We will show in Section 4.4 that ŷ is
invertible, which proves that ẑ has full rank.

For d �1 and h2f1; : : : ; n�1g, let c WDgcd.n; d/ and xhDh .mod c/2f0; : : : ; n�1g.
We define

†d;h WD fk 2 f1; : : : ; n� 1gj � hC dk D�xh .mod n/g:

Remark 4.2 xh has the following interpretation: For each k 2 f1; : : : ; n� 1g consider
the unique C� fixed map from an effective orbifold P1 with orbifold ramification
.d; h/ at 0. Then the twisting over 1 is fixed (cf Section 3.1) and xh is the smallest
possible twisting at 1 as we vary k . Moreover, †d;h is exactly the set of k for which
the minimal twisting is obtained.
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Notice that

j†d;hj D

�
c � 1 if h 2 f1; : : : ; c � 1g;

c else.

The set †d;h has a natural order as a subset of f1; : : : ; n � 1g, so we can write
†d;h D fk1; : : : ; kj†d;hj

g. We define

kd .h/ WD

�
kxh 2†d;h if h 2 f1; : : : ; c � 1g;

kxhC1
2†d;h else.

Lemma 4.3 kd .�/ defines a bijection on the set f1; : : : ; n� 1g.

Proof We show that the map is injective. Suppose kd .h/D kd .h
0/. This implies that

there is some k 2 †d;h \†d;h0 . Chasing the definitions, this implies that h� xh D

h0� xh0.mod n/. In particular, if we define the sets

(4-1) Di
d WD fj 2 f1; : : : ; n� 1g W .i � 1/c � j < icg;

then h and h0 belong to the same Di
d and it follows that †d;hD†d;h0 . But for a fixed i ,

each element in Di
d has different reduction mod c . Since kxh D kxh0 2†d;h D†d;h0 ,

then we must have xhD xh0 implying that hD h0 .

We saw in the proof of Lemma 4.3 that h; h0 2Di
d if and only if †d;h D†d;h0 . For

this reason, we adopt the notation †i
d .

We are now ready to cut down the rows in the matrix ẑ . Using the above ordering
convention, for any � with �tw D � and � D � , we can write

� D ..�1; h1/; : : : ; .�l ; hl/:

We define ŷ to be the matrix obtained from ẑ by restricting the row index to the set

f.�; k/ Wm1 D 0; k D k�1
.h1/; z�D�gk.z�/ for some � D �tw

g:

The fact that ŷ is square follows from Lemma 4.3.

4.4 Invertibility of the matrix

To prove that ŷ is invertible over C..x//, we proceed in two steps. We first define
certain blocks ŷ i

h
in ŷ with the following properties:

(1) Each ŷ i
h

is invertible over C..x//.

(2) Each row and column of ŷ intersects exactly one ŷ i
h

.

(3) If f .x/ is an entry in some ŷ i
h

and g.x/ is an entry of ŷ in the same column,
then ordxf .x/� ordxg.x/.
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If the inequality in (3) were strict, we would be done because the least degree term
of the determinant of ŷ would be a signed product of the least degree terms in the
determinants of the ŷ i

h
(by (2)), which are nonzero (by (1)). However, the inequality

is not always strict as we will see below. The second step is to use elementary matrix
operations to take care of terms where the inequality is not strict.

We now define the blocks ŷ i
h

. For h 2 f1; : : : ; n� 1gl�1 and for 1� i � n=c1 define

Bi
h D fh1 2Di

�1
; t.z�/D hg;

C i
h D fk 2†

i
�1
; t.gk.�z�//D hg:

Then we define the sub-matrix ŷ i
h

by intersecting the indexing sets of ŷ with Bi
h

and C i
h

.

Remark 4.4 The above definitions might seem a bit obscure, a priori, but the motiva-
tion is simple. From Remark 4.1, we know that the wreath Hurwitz numbers encoded
by ŷ are rather simple. In particular, the Zn quotient of the cover is a disjoint union
of copies of P1 and the only allowable monodromy over C� � P1 are x1 points. For
a fixed � 2 Bi

h
, the pairs .�; k/ 2 C i

h
were chosen to be exactly those pairs such that

there exists a wreath cover with the following three properties:

(1) The Zn monodromy over 0 and 1 for the i th P1 is identified with �hi C �ik

and mi , respectively.

(2) The Zn monodromy over the first C� � P1 has the minimal possible number
of x1 points as we vary over all choices .�; k/ (this minimal number is xh1 ).

(3) The Zn monodromy over the other copies of C� is trivial.

If we vary � 2 Bi
h

, the set of .�; k/ with these properties remains constant and they
define the matrix ŷ i

h
.

Remark 4.5 That each column and each row of ŷ intersects exactly one ŷ i
h

follows
from the fact that Di

�1
and †i

�1
both partition the set f1; : : : ; n� 1g.

Lemma 4.6 Let ŷ i
h

denote the matrix of leading terms in ŷ i
h

. Then ŷ i
h

is invertible.
In particular, ŷ i

h
is invertible over C..x//.
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Proof By Remark 4.4, the lowest degree term of the ..�; k/; �/ entry of ŷ i
h

has
coefficient

(4-2) z�
.��1

2n
k
n
/
xh1

xh1!
H

2l;
 .h1/�

�;gk.�/
;

where xh1 is independent of .�; k/ 2 C i
h

and 
 .h1/ is a xh1 –tuple of copies of � . The
wreath Hurwitz numbers appearing in (4-2) are easy to compute; explicitly, we have:

z�
.��1

2n
k
n
/
xh1

xh1!
H

2l;
 .h1/�

�;gk.�/
D z�

.��1
2n

k
n
/
xh1

xh1!

1

jAut.�/j
�
xh1

1

lY
iD1

1

n�i

D
jAut.�/j
jAut.�/j

.��1
2n

k
n
�1/
xh1

xh1!

Therefore det
�
ŷ i

h

�
is equal to:� Y

.�;k/2C i
h

1

jAut.�/j

�� Y
�2Bi

h

jAut.�/j.��1
2n
�1x/

xh1

xh1!

�
det
��

k

n

�xh1

�
.�;k/2C i

h
;�2Bi

h

This is nonzero because det
��

k
n

�xh1
�

is the determinant of a Vandermonde matrix with
different k in different rows.

Theorem 3.14 now follows from the next result.

Lemma 4.7 ŷ is invertible over C..x//.

Proof For any fixed column ˛� of ŷ , there is a unique sub-matrix ŷ i
h

that intersects
with this column. The degrees of the entries that lie in the intersection of ˛� and ŷ i

h

are xh1 . By the ordering convention introduced above, the degrees of the other entries
of ˛� are greater than or equal to xh1 (note that m1 is always trivial). The equality
holds for an entry in the row indexed by .�; k/ … C i

h
only if the following conditions

are satisfied:

(1) There exists a j > 1 such that �j D �1 , xh1 D
xhj , and h1 < hj .

(2) �hj C �j k D�xhj .mod n/.

(3) gk.�z�/D y� where y� D � n f.�j ; hj /g.

If these conditions are met for some .�; k/…C i
h

, then there is a unique sub-matrix ŷ i0

h0

that intersects this row. By definition, h0 D t.y�/ and i 0 is determined by the property
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k 2†i0

�1
. It is not hard to see that every other entry that lies in the intersection of ˛�

and a row of ŷ i0

h0
also has minimal degree xh1 .0BBBBBBBBBBB@

� � � � � � � � � �

ŷ i
h

� � � � � � � � � �

� � � � � � � � � �

� � �
: : : � � �

� � x
xh1 �

:::
:::

::: � ŷ i0

h0

� � x
xh1 �

1CCCCCCCCCCCA
For every column ˛�0 that intersects ŷ i0

h0 , we know z�0 D y� . In particular, xh02 D xh1

implying that xh01 � xh1 by the ordering convention. If xh01 D xh1 , then xh01 D xhj (by
(1)) and h01; hj 2Di0

�1
(the latter inclusion follows from (2)). This would imply that

h01 D h0j , ie, � D �0 ; a contradiction. Therefore we conclude that xh01 < xh1 D
xh02 . In

other words, condition (1) can never be satisfied by �0 . In particular, the degrees of the
entries in ˛�0 that are not contained in ŷ i0

h0 are strictly greater than xh01 .

By Lemma 4.6, we can transform the matrix ŷ i0

h0
to a matrix ‰i0

h0
such that ‰i0

h0
jxD0

is the identity matrix. More specifically, we first multiply each column by x�
xh0

1 , where
�0 is the index of the column, then we apply elementary column operations (over C ) to
reduce the matrix of (constant) leading terms to the identity. Extending these column
operations to the columns of ŷ , we can replace the sub-matrix ŷ i0

h0
by ‰i0

h0
in such a

way that the following two properties are satisfied:

(a) For each column intersecting ‰i0

h0
, the entries that do not lie in ‰i0

h0
have vanishing

constant terms.

(b) The transformed matrix is invertible over C..x// if and only if the original matrix
is invertible over C..x//.

0BBBBBBBBBBB@

�

ŷ i
h

� O.x/

�

� � �
: : : � � �

� � x
xh1 �

:::
:::

::: � ‰i0

h0
D I CO.x/

� � x
xh1 �

1CCCCCCCCCCCA
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We can now use the columns intersecting ‰i0

h0 to cancel the degree xh1 terms of the
entries that lie in the intersection of ˛� and rows of ‰i0

h0 . By property (a), this does not
affect the degree xh1 terms in the entries of ˛� that do not lie in rows that intersect ‰i0

h0 .
In particular, the smallest degree term in det. ŷ i

h/ is not affected. We can repeat this
process until the least degree terms in each column are contained in the sub-matrix ŷ i

h

(or ‰i
h if it has been transformed). Call the resulting matrix ‰ . Then the least degree

term of det.‰/ is the product of least degree terms of determinants of matrices of
the form ŷ i

h or ‰i
h , all of which are nonzero. Therefore ‰ is invertible over C..x//.

By property (b), ŷ is invertible over C..x//.

5 Combinatorics

In this section, we investigate the framed Donaldson–Thomas vertex zP�.a/ and relate
it to loop Schur functions.

5.1 Loop Schur functions

For a positive integer n and partition � , the colored Young diagram .�; n/ is obtained
by coloring the boxes of the Young diagram by their content modulo n. In other words
if � is in the i th row and the j th column, we color it with c.�/ WD j � i mod n. For
example, if �D .4; 3; 3; 1/ and nD 3, the colored Young diagram is given by:

with
0$ , 1$ and 2$

We let �Œi � denote the collection of boxes with color i . A semi-standard Young tableau
(SSYT) of � is a numbering of the boxes so that numbers are weakly increasing left
to right and strictly increasing top to bottom. For each SSYT T and � 2 � , we
define the weight w.�;T / to be the number appearing in that box. To each � , n,
and T 2 SSYT.�; n/, we associate a monomial qT in n infinite sets of variables
fqi;j j i 2 Zn; j 2Ng:

qT
WD

n�1Y
iD0

Y
�2�Œi�

qi;w.�;T /
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For example, to the SSYT

T D
1 1 2 4

2 3 3

4 4 6

7

we associate the monomial

qT
D q0;1q0;3q0;4q0;6q0;7q1;1q1;3q1;4q2

2;2q2;4:

Definition 5.1 The loop Schur function associated to .�; n/ is defined by

s�Œn� WD
X

T2SSYT.�;n/

qT :

In the current setting, we are only concerned with the case where �D x� arises from
an n–tuple of partitions � via n–quotients (cf Section 6.2). This is equivalent to the
following condition.

Definition 5.2 We call the colored Young diagram � balanced if j�Œi �j D j�Œj �j for
all i; j .

Denote by S� the function in n variables obtained by making the substitution qi;j D q
j
i

in sx�Œn�. The following result is due to Eğecioğlu and Remmel [11] and also appears
in a more recent paper of Nakada [24].

Lemma 5.3 [11; 24] S� D

Q
i q

ni .x�/
iQ

�2x�

�
1�

Q
i q

hi .�/
i

�
As a consequence, we have the following identity:

Corollary 5.4 zP�.0/D
�x�.n

d /

dim.�/
qd=2.�1/dS�

We also recall the definition of the series sk
� Œn� from [31]. For 0� k < n, define the

shifted weight

wk.�;T / WD w.�;T /C k � c.�/
n
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and the corresponding monomial

qT;k
WD

n�1Y
iD0

Y
�2�Œi�

qi;wk.�;T /;

where the second index belongs to 1
n
Z.

Definition 5.5 The k –shifted Schur function1 associated to .�; n/ is

sk
� Œn� WD

X
T2SSYT.�;n/

qT;k :

We denote by Sk
�

the series in n variables obtained from sk
x�
Œn� by specializing qi;j Dq

j
i .

Remark 5.6 Notice the specialization s0
� Œn�D s�Œn�, and hence similarly with S .

Since Sk
�

differs from S� only by a monomial factor, we have the following natural
generalization of Corollary 5.4.

Lemma 5.7 zP�.0/D
�x�.n

d /

dim.�/
qd=2.�1/dSk

�

� Y
.i;j/2x�

q
j�i
j�i

��k=n

5.2 Combinatorial identities

Before stating the necessary combinatorial identities, we provide the following defini-
tion.

Definition 5.8 The set theoretic difference � n � of two Young diagrams � � � is a
border strip of � if it is connected and does not contain any 2� 2 block. The length of
a border strip is the number of boxes it contains. The height (denoted ht ) of a border
strip is the number of rows it occupies, minus 1.

The following are specializations of results proved by the first author [31].

1The k –shifted Schur functions here should not be confused with the shifted Schur functions defined
by Okounkov and Olshanski [25]. We shift the index of the variables whereas they shift the variables
themselves. Moreover, they sum over reverse tableaux.
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Theorem 5.9 [31, Theorem 1]

1

1� .q0 � � � qn�1/l
S� D

X
.�1/ht.x�nx�/S� ;

where the sum is over all ways of adding a length ln border strip to x�.

Theorem 5.10 [31, Theorem 2] For a fixed x� and k ¤ 0,X
.�1/ht.x�nx�/Sk

� D 0;

where the sum is over all ways of adding a length ln border strip to x�.

6 Representation theory

In this section we investigate certain characters of the generalized symmetric group,
which arose in Section 3.5. Our main tool is the wreath Fock space. We begin by
recalling the basic definitions and results concerning the usual Fock space.

6.1 The infinite wedge

The infinite wedge provides a convenient setting for studying the representation theory
of the symmetric group in terms of combinatorial manipulations of partitions and
Maya diagrams. For a more thorough treatment of the infinite wedge and some of
its applications in Gromov–Witten theory, see for example the work of Okounkov
and Pandharipande [26; 27], or for an application in double Hurwitz numbers, see
Johnson [15].

Let V be the infinite vector space with spanning set indexed by half integers:

V WD
M
i2Z

˝
i C 1

2

˛
C

Definition 6.1 The infinite wedge
V1

2 V is the vector spaceV1
2 V WD

M
.ik/

˝
i1 ^ i2 ^ � � �

˛
;

where .ik/ is a decreasing sequence of half integers such that

ik C k � 1
2
D c

for some constant c and k� 0. We call c the charge of the vector.

We will only be concerned with the subvector space spanned by vectors of charge 0.
We denote this space by

V1
2

0
V .
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6.1.1 Maya diagrams The primary combinatorial tool for us will be Maya diagrams.
A Maya diagram is a collection of stones placed at the half integers such that the
half integers without stones are bounded below and the half integers with stones are
bounded above. A Maya diagram has charge zero if the number of stones at positive
half integers is equal to the number of negative half integers without stones.

The basis vectors of
V1

2

0
V can be identified with charge zero Maya diagrams canoni-

cally as follows. Let S D fikg where .ik/ corresponds to a charge 0 vector. Then we
obtain a charge zero Maya diagram by placing a stone in the i th place if and only if
i 2 S .

6.1.2 Partitions The charge zero basis vectors can also be canonically identified
with partitions. If we let ˛ be the increasing sequence of half integers in S \Q>0

and ˇ the increasing sequence of half integers in �.Sc \Q<0/, then .˛ j ˇ/ is the
modified Frobenius coordinate of a partition � . In other words, representing � as a
Young diagram, ˛i is the number of boxes (half-boxes included) in the i th row to the
right of the main diagonal and ˇi is the number of boxes in the i th column below the
main diagonal.

Equivalently, the partition �D .�1; �2; : : : / is determined by writing the vector vS in
the following form:

vS D �1�
1
2
^ �2�

3
2
^ � � �

To relate partitions to Maya diagrams, rotate the corresponding Young diagram coun-
terclockwise by 135 and place 0 directly below the vertex. The stones in the Maya
diagram lie directly below outer edges of the Young diagram which have slope 1. This
correspondence is illustrated in Figure 1.

� � �

9
2

7
2

5
2

3
2

1
2

j
�1
2
�3
2
�5
2
�7
2
�9
2

� � �

Figure 1: Correspondence between the different combinatorial bases of
V1

2

0
V
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6.1.3 One basis With the above correspondences, we will think of
V1

2

0
V simultane-

ously as the vector space spanned by:
� Sequences S of the half integers with charge 0.
� Maya diagrams with charge 0.
� Partitions.

For simplicity, we will denote the basis elements by v� keeping in mind that the
partition � corresponds canonically to a Maya diagram m� and a set of half integers
S� . We denote by v∅ the vacuum vector, which is the vector corresponding to the
trivial partition.

6.1.4 Operators In order to relate the infinite wedge to the representation theory of
Sd , we define several operators on

V1
2

0
V via their action on basis elements v� .

For any half integer k and basis element v� , the operator Ek;k acts on v� as follows:

Ek;kv� D

8<:
v� k > 0; k 2 S�;

�v� k < 0; k … S�;

0 else.

For k a positive integer, the creation operator ˛�k acts on v� as follows:

˛�kv� D
X
�

.�1/ht.�n�/v� ;

where the sum is over all ways of adding length k border strips to � . In terms of Maya
diagrams, the sum is over all ways of moving a stone k places to the left and the sign
corresponds to the number of stones jumped during such a move.

Recall that each partition � corresponds to an irreducible representation of Sd with
character �� . Given a partition � D .d1; : : : ; dl/ corresponding to a conjugacy class
in Sd , we define the operator

˛�� WD

lY
iD1

˛�di
:

The following identity follows from the Murnaghan–Nakayama formula:

(6-1) ˛��v∅ D
X
�

��.�/v�:

We also define the operator

FT WD

X
k

k2

2
Ek;k :

Geometry & Topology, Volume 17 (2013)



The gerby Gopakumar–Mariño–Vafa formula 2965

If T is the conjugacy class of transpositions and fT .�/ WD jT j��.T /=dim.�/, then
each v� is an eigenvector of FT with eigenvalue fT .�/:

(6-2) FT � v� D fT .�/v�:

6.2 Wreath Fock space

The wreath product generalization of the Fock space gives a combinatorial tool for
manipulating the representation theory of the groups G oSd . These spaces and their
corresponding operators have been developed in eg Frenkel and Wang [13], Qin and
Wang [29], and Johnson [16]. We merely focus on the cyclic case, which is all we
require. To that end, the wreath Fock space can be defined as

Zn WD

O
f0;:::;n�1g

V1
2

0
V:

Basis vectors correspond to n–tuples of partitions �D .�0; : : : ; �n�1/, or, equivalently,
n–tuples of Maya diagrams.

In the wreath Fock space, there is an additional way by which we will distinguish a
basis element. Given an n–tuple of Maya diagrams, we can interlace them to get a
single Maya diagram by sending a stone in the k th place of the i th Maya diagram to
position n.k� 1

2
/C.iC 1

2
/ in the new Maya diagram. An example of this identification

is shown in Figure 2. This new Maya diagram corresponds to a partition of nd , which
we denote x�. Reversing this process is usually referred to as an n–quotient. It is well
known that taking n–quotients gives a bijection between balanced Young diagrams x�
(cf Definition 5.2) and n–tuples of partitions �.

� � � j � � �

� � � j � � �

� � � j � � �

 ! � � � j � � �

Figure 2: An example of a 3–quotient

For any operator M on
V1

2

0
V and any integer 0� k � n� 1, we define the operator

M k to act on Zn by acting as M on the k th factor and trivially on the other factors.

Given �, we can canonically identify it with an irreducible representation of Zn oSd

with character �� . Similarly, given an n–tuple of partitions �D .�0; : : : ; �n�1/ with
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�k D .dk
1
; : : : ; dk

lk
/, we can be canonically identify it with a conjugacy class. We have

the following important generalizations of (6-1) and (6-2):

n�1Y
kD0

lkY
iD0

�n�1X
jD0

��kj˛
j

�dk
i

�
v∅ D

X
�

��.�/v�;(6-3)

�
n

n�1X
iD0

F i
T

�
� v� D fT .�/v�:(6-4)

6.3 Central characters

We now use the combinatorics of colored partitions and Maya diagrams to study the
central characters fi.�/ and fT .�/, which arose in Section 3.5.

Lemma 6.2 Let �D .�0; : : : ; �n�1/ with j�i j D di . Then:

(i) fi.�/D
X

j

��ij
n dj

(ii) fT .�/D
X

.i;j/2x�Œ0�

j � i

Proof To prove identity (i), recall that

fi.�/D
d��.f�

i ; 1d�1g/

dim.�/
D

d��.f�
i ; 1d�1g/

��.f1
dg/

;

where the exponent of 1 in the multiset denotes repetition. For �Df1dg, the coefficient
of v� in (6-3) can be interpreted as the number of ways to build the n–tuple of Young
diagrams �D .�0; : : : ; �n�1/ one box at a time. Equivalently, this can be interpreted
as the number of standard Young tableaux of �, ie, the number of ways to fill the boxes
of the �i with the numbers 1; : : : ; d with the property that numbers always increase
along rows and down columns. This is easily computed:

(6-5) ��.f1
d
g/D

� d

d0; : : : ; dn�1

�Y
dim.�i/;

where we use the fact that dim.�i/ is the number of standard tableaux of �i .

On the other hand, for �D f�i ; 1d�1g, the coefficient of v� in (6-3) can be interpreted
as a weighted count of ways to build � one box at a time, where the weight is ��ij if
the first box is a part of �j . This is also easily computed:

(6-6) ��.f�
i ; 1d�1

g/D

n�1X
jD0

��ij
n

�
d � 1

d0; : : : ; dj � 1; : : : ; dn�1

�Y
dim.�i/:
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Identity (i) follows by dividing (6-6) by (6-5) and multiplying by d .

To prove identity (ii), begin by writing x�D .˛ j ˇ/ in modified Frobenius notation (cf
Section 6.1). Then the number of boxes in x�Œ0� to the right (below) the i th diagonal
element is given by b˛i=nc (bˇi=nc). If we compute the sum in (ii) over these b˛i=nc

(bˇi=nc) terms, we get a contribution of:

nC 2nC � � �C n
j˛i

n

k �
�n� 2n� � � � � n

jˇi

n

k�
:

Therefore, the right side of (ii) can be written as:

(6-7)
X

.i;j/2x�Œ0�

j � i D n

1X
iD1

 
b˛i=nc2Cb˛i=nc

2
�
bˇi=nc2Cbˇi=nc

2

!

To compute the left side of (ii), we consider equation (6-4). Via the n–quotient
correspondence described above, we can interpret v� as a vector vx� 2

V1
2

0
. Under this

correspondence, the operator n
Pn�1

iD0 F i
T

becomes

n
X

k

1

2

�j
k

n

k
C

1

2

�2
Ekk :

Each summand acts simply by multiplying vx� by an appropriate scalar. This scalar is
zero unless k D ˛i > 0 or k D�ˇi < 0 for some i . In these cases, the scalars are

n
1

2

�j˛i

n

k
C

1

2

�2
and � n

1

2

��
ˇi

n

�
C

1

2

�2

:

We obtain (6-7) by summing over all such i .

Lemma 6.3 After the change of variables prescribed by Theorem 1,

(6-8)
� Y
.i;j/2x�

q
j�i
j�i

�1=n

D .��2n/
�d
�
�
�
P

kdk
n

�
e

1
n

�p
�1fT .�/uC

P
��k

2n
fk.�/xk

�
:

Proof If � D .�0; : : : ; �n�1/ with j�k j D dk , then in terms of Maya diagrams we
can interpret the di as follows: dk is the number of moves it takes to build the Maya
diagram of �k from the empty Maya diagram by only moving stones one place at a time.
Moreover, each such move has the effect of adding a length n border strip to x�, the
northeast-most box in the strip having color k . The quantity j � i decreases uniformly
by 1 as we move south and west along the strip so each such move contributes toQ
.i;j/2x�

q
j�i
j�i a factor of

(6-9) ql
kql�1

k�1 � � � q
l�kC1
1

ql�k
0 ql�k�1

n�1 � � � ql�nC1
kC1
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for some l . In order to apply the change of variables, we need to collect the q0 ’s into
q ’s. Borrowing the necessary qi ’s from the other squares in the border strip, (6-9)
becomes

ql�k
�
qk

k qk�1
k�1 � � � q

1
1q�1

n�1 � � � q
k�nC1
kC1

�
:

Combining these factors for all k , we find

(6-10)
Y

.i;j/2x�

q
j�i
j�i D qM

n�1Y
kD0

�
qk

k qk�1
k�1 � � � q

1
1q�1

n�1 � � � q
k�nC1
kC1

�dk ;

where M D
P
.i;j/2x�Œ0�

.j � i/ is the total power of q0 , which we know is equal to
fT .�/ from Lemma 6.2.

It is left to investigate what happens to the factors in (6-10) after the change of variables.
Since q! e

p
�1u and M D fT .�/, then we see immediately that the u factors on

either side of (6-8) agree.

We now compute the coefficient of dixj in the exponent of (6-10) after the change of
variables. To do this, we must compute the coefficient of xj in the factor

qi
i q

i�1
i�1 � � � q

1
1q�1

n�1 � � � q
i�nC1
iC1

:

Applying the change of variables, this coefficient is

(6-11) �

iX
rD1

r�
�jr
n

n

�
�

j
2n
� �
�j
2n

�
�

n�1X
sDiC1

.s� n/�
�js
n

n

�
�

j
2n
� �
�j
2n

�
:

Setting y WD �
�j
n , (6-11) can be written as:

(6-12)
�y�

1
2

n

� iX
rD1

.ryr
� ryrC1/C

n�1X
sDiC1

�
.s� n/ys

� .s� n/ysC1
��

D
�y�

1
2

n

�
�nyiC1

C

nX
rD1

yr

�
Using the fact that

Pn
rD1 yr D 0, (6-12) is equal to �j.�2i�1/

2n
. Therefore, the coeffi-

cient of xj is
�
�j
2n

X
��ij

n di D �
�j
2n
fj .�/;

where the equality follows from the first identity of Lemma 6.2.

Finally, notice that the root of unity which factors out of the term�
qi

i q
i�1
i�1 � � � q

1
1q�1

n�1 � � � q
i�nC1
iC1

�1=n
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after the change of variables is ���1
2n
��i

n . Putting all of this together proves the result.

6.4 Signs

If x� is obtained from x� by adding a length kn border strip, then the Maya diagrams
corresponding to � are obtained from those corresponding to � by moving a stone k

places in the i th Maya diagram. Notice that k and i are both determined by x� and x�.
For notational convenience, we make the following definition.

Definition 6.4 If x� is obtained from x� by adding a length kn border strip, let ˇ.� n�/
denote the number of stones in the i th Maya diagram that are skipped over.

Notice that .�1/ˇ.�n�/ is the coefficient of v� in ˛i
�k
.v�/.

The next lemma allows us to deal with the sign �x�.n
d /=dim.�/ appearing in Theorem 1.

Lemma 6.5 If x� is obtained from x� by adding a length kn border strip, then

�x� .n
dCk/

dim.�/
D .�1/ˇ.�n�/Cht.x�nx�/�1

�x�.n
d /

dim.�/
:

Proof By (6-1), �x�.n
d / is the weighted sum of ways to create the Maya diagram of

x� from the vacuum diagram by moving stones n places at a time; the weight is ˙1

depending on whether the total number of stones jumped over is even or odd. It is not
hard to see that the weight of any such sequence is equal to the weight of any other.
Since dim.�/ is the total number of such sequences, we see that �x�.n

d /=dim.�/ is
equal to the weight of any one of them.

Now suppose x� is obtained from x� by adding a length kn border strip. We can think
of x� as being obtained from x� by moving a single stone kn places to the left in the
Maya diagram of x�, ht.x� nx�/�1 is the total number of stones jumped while ˇ.� n�/
counts the number of jumped stones which are n; 2n; 3n; : : : positions to the left of
where the stone sat originally.

On the other hand, the Maya diagram of x� can be obtained from that of x� by choosing
a sequence of length n jumps. As above,

�x� .n
dCk/

dim.�/
D .�1/�

�x�.n
d /

dim.�/
;

where � is equal to the total number of stones jumped during the sequence of moves.
With the above interpretations for ht.x� n x�/� 1 and ˇ.� n�/, we see that the number
of stones jumped in this process is .ht.x� n x�/� 1/�ˇ.� n�/.
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The final lemma of this section allows us to compare ��.�/ with ��.gk.�//.

Lemma 6.6 If �D .�0; : : : ; �n�1/ with j�j j D dj , then

��.gk.�//D �
�k

P
jdj

n ��.��/:

Proof Write �D .�0; : : : ; �n�1/ with �s D .d s
1
; : : : ; d s

ls
/ and define . � ; � / to be the

inner product for which fv�g is an orthonormal basis. By (6-3), we have:

��.gk.�//D

�n�1Y
sD0

lsY
iD0

�n�1X
jD0

�
�ds

i
kjCsj

n ˛
j

�ds
i

�
v∅; v�

�

D �
�k

P
jdj

n

�n�1Y
sD0

lsY
iD0

�n�1X
jD0

�sj
n ˛

j

�ds
i

�
v∅; v�

�
D �
�k

P
jdj

n ��.��/:

7 Proof of Theorem 1

We now check identities (I)–(III) of Reduction 3.15.

Identity (I) This follows immediately from Lemma 6.3.

Identity (II) Since z� D z�0z�tw , we must show that

X
j�jDj�j

zP�.0/��.�/D

� l0Y
jD1

p
�1.�1/d

0
j

2
csc
�

d0
j u

2

��� X
j� jDj�tw j

zP� .0/�� .�
tw/

�
after the change of variables. To do this, it is equivalent to show:

X
j�jDj�jCk

zP�.0/��.�[fkg//D

p
�1 .�1/k

2
csc
�

ku

2

�� X
j� jDj�j

zP� .0/�� .�/

�
;

which is equivalent (before the change of variables) to:

(7-1)
X

j�jDj�jCk

zP�.0/��.�[fkg/D
.�1/kqk=2

1� qk

X
j� jDj�j

zP� .0/�� .�/:
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Fix � . Then

(7-2)
.�1/kqk=2

1� qk
zP� .0/�� .�/

D
.�1/kCj�jqk=2

1� qk
�� .�/

�x� .n
j�j/

dim.�/
qj�j=2S�

D .�1/kCj�jq.j�jCk/=2�� .�/
�x� .n

j�j/

dim.�/

X
x��x�

.�1/ht.x�nx�/�1S�

D �� .�/
X
x��x�

.�1/ˇ.�n�/
�x�.n

j�jCk/

dim.�/
qj�j=2.�1/j�jS�

D �� .�/
X
x��x�

.�1/ˇ.�n�/ zP�.0/;

where the sum is over all x� obtained from x� by adding a length kn border strip. The
first equality follows from Corollary 5.4, the second from Theorem 5.9, the third from
Lemma 6.5, and the fourth is another application of Corollary 5.4.

From (6-3), we know

(7-3) ��.�[fkg/D
X
�

�� .�/.�1/ˇ.�n�/;

where the sum is over all � such that x� is obtained from x� by removing a kn strip.
Summing (7-2) over all � proves identity (7-1) and thus (II).

Identity (III) Applying Lemma 6.6, (III) is equivalent to:X
�

�X
�

zP�.0/
��.�/

z�

�

� z�

�X
�

�
�k

P
j j�j j

n

�� .��/

z�

�� .�/

z�
ek=n.

p
�1fT .�/uC

P
��i

2n
fi .�/xi /

�
D 0

Summing over all � and using orthogonality of characters, the left side becomes:X
�

zP�.0/
��.�/

z�
�
�k

P
j j�j j

n e
k
n
.
p
�1fT .�/uC

P
��i

2n
fi .�/xi /

Applying Lemma 6.3, we then see that (III) is equivalent toX
�

zP�.0/��.�/

� Y
.i;j/2x�

q
j�i
j�i

�k=n

D 0
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for any � with at least one untwisted part. This is equivalent to

(7-4)
X
�

zP�.0/��.� [fkg/

� Y
.i;j/2x�

q
j�i
j�i

�k=n

D 0

for any � . Fix � with j� j D j�j. Then

0D
X
x��x�

.�1/ht.x�nx�/�1Sk
�

D

X
x��x�

�x� .n
j� j/

dim.�/
�� .�/.�1/ht.x�nx�/�1Sk

�

D

X
x��x�

.�1/ˇ.�n�/�� .�/q
�j�j=2.�1/j�j zP�.0/

� Y
.i;j/2x�

q
j�i
j�i

�k=n

;

where the first equality is Theorem 5.10, the second holds because � is fixed, and the
third follows from Lemmas 5.7 and 6.5. Since j�j is constant over the sum, it follows
that:

0D �� .�/
X
x��x�

.�1/ˇ.�n�/ zP�.0/

� Y
.i;j/2x�

q
j�i
j�i

�k=n

Summing over all � (using equation (7-3)) proves (7-4) and thus finishes the proof of
Theorem 1.

8 GW/DT for local Zn–gerbes over P 1

We conclude by giving an application of the gerby Gopakumar–Mariño–Vafa formula.
In particular, we prove that the Gromov–Witten potential of any local Zn –gerbe over
P1 is equal to the reduced, multi-regular Donaldson–Thomas potential after an explicit
change of variables.

Definition 8.1 A local Zn –gerbe over P1 is the total space of a rank two Calabi–Yau
bundle L1˚L2 over some Gk with trivial generic isotropy.

The CY condition implies that deg.L1/C deg.L2/D�2. Because of the generically
trivial isotropy, we know that the Zn isotropy acts on the fibers of L1 by a generator
� 2Zn and on the fibers of L2 by its inverse ��1 . The automorphism of Zn that maps
�! � induces an isomorphism of the total space, which allows us to assume that the
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isotropy always acts on the fibers of L1 and L2 with weights � and ��1 , respectively
(cf discussion after Definition 3.1).

Fix k 2 f0; : : : ; n� 1g and set e WD gcd.k; n/. Then Pic.Gk/D
e
n
Z˚Ze . For each

b 2 e
n
Z˚Ze we let Lb denote the corresponding orbifold line bundle. The subset

of Pic.Gk/ where Zn acts on fibers as multiplication by � is given by .Z� k
n
/˚f1g.

Every local Zn –gerbe over P1 is isomorphic to Xk;b WD Tot.Lb˚L�b�2/ for some
k 2 f0; : : : ; n� 1g and b 2 Z� k

n
.

By the gluing formula of [30], the degree d Gromov–Witten potential of Xk;b is
given by:

(8-1) GWd .Xk;b/D
X
�

V ��.b/z�V �gk.�/
.0/

�

Y
i;j

.�1/
d i
j

bC1Cı0;iCı0;.�di
j

k�i/modn
C.i=n/C..d i

j
k�i/ mod n/=n

where the sign is the gluing term in [30].

Analyzing the modification in (2-2), we see that (8-1) is equivalent to

(8-2) GWd .Xk;b/D .�1/db
X
�

zV �� .b/ z� zV
�

gk.�/
.0/:

Applying the change of variables in Theorem 1, then using Lemma 6.6 and orthogonality
of characters, we find that:

GWd .Xk;b/D .�1/db
X
�

�X
�

zP�.b/
��.�/

z�

�
z�

�X
�

zP� .0/
�� .gk.�//

zgk.�/

�
D .�1/db

X
�

�
�k

P
ij�i j

n
zP�.b/ zP�.0/

From equation (2-4), we see that this last expression is

(8-3)
X
�

P�.q0; q1; : : : ; qn�1/E�P�0.q0; qn�1; : : : ; q1/;

where
E� WD

Y
.i;j/2x�

q
.bC2/i�bj�1
j�i .�1/dnb:

By the main result of [5], (8-3) is equal to the reduced, multi-regular, degree d

Donaldson–Thomas potential DT 0mr;d .Xk;b/ after the substitution q0 ! �q0 . This
proves Theorem 2.
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