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Correction to the article:
A cylindrical reformulation of Heegaard Floer homology

ROBERT LIPSHITZ

This note corrects a serious mistake in the computation of the embedded index in “A
cylindrical reformulation of Heegaard Floer homology.” (The mistake is in a lemma
about representing homology classes by surfaces.) It also corrects several smaller
mistakes. The main results of the original paper are unchanged.

57R17; 57M27, 57R58

This note has two parts. The first part explains a serious gap in the proof of the index
formula in our earlier work [1, Section 4], discovered by John Pardon. We explain the
gap in Section 1.1 and how to correct the proof of the index formula in Section 1.2.
Section 2 acknowledges and corrects four smaller errors, not affecting the main results
of [1].
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out errors in [1], and for helpful conversations about how to correct these errors. I also
thank John Pardon for helpful comments on a draft of this erratum. Finally, I thank the
referee for helpful comments and corrections.

1 The index formula for embedded curves

1.1 The gap

1.1.1 What is correct In the cylindrical formulation, there are two steps to studying
the expected dimensions of the moduli spaces. The first step is to consider the x@–
operator for maps

(1) uW .S; @S/ �! .†� Œ0; 1��R; .˛� f1g �R/[ .ˇ � f0g �R//

for a fixed homeomorphism type of S . It is shown that the index of the x@–operator for
such maps is given by

ind.u/D g��.S/C 2e.A/;

Published: 9 January 2014 DOI: 10.2140/gt.2014.18.17

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R17, 57M27, 57R58
http://dx.doi.org/10.2140/gt.2014.18.17


18 Robert Lipshitz

where g is the genus of the Heegaard surface (or, more importantly, the number of
negative (equivalently positive) ends of u), and e.A/ is the Euler measure of the
domain A in † of the map u. (This formula holds whether or not u is holomorphic.)

The cylindrical formulation of Heegaard Floer homology corresponds to counting
embedded holomorphic curves of the form (1). So, the second step in studying the
index is to show that for embedded curves, �.S/ is determined by the homology
class A. It is shown in [1, Proposition 4.2 and Corollary 4.3] that at an embedded
holomorphic curve, �.S/ is given by

�.S/D g� nEx.A/� n Ey.A/C e.A/;(2)

so

ind.u/D e.A/C nEx.A/C n Ey.A/:(3)

The proofs in [1] of (2) and (3) at an embedded holomorphic curve u, with respect
to any almost complex structure satisfying the conditions [1, (J1)–(J5), page 959])
(including nongeneric almost complex structures of this form), are correct.

Homology classes of curves in †� Œ0; 1��R correspond to homotopy classes of disks
in the symmetric product. If A is represented by an embedded holomorphic curve
with respect to the product complex structure on †� Œ0; 1��R, it follows from the
tautological correspondence that ind.u/ agrees with the Maslov index in the symmetric
product. So, in these cases, Formula (3) computes the Maslov index for disks in
Symg.†/.

1.1.2 What more one wants It is natural to be interested in the index at homology
classes not represented by embedded holomorphic curves, for two reasons.

(1) One wants to know that the right hand side of Formula (3) is additive, so one
can use it to (re)define and compute the relative grading on the Heegaard Floer
complexes.

(2) It is tidier to know that Formula (3) always agrees with the Maslov index in
Symg.†/; the Maslov index is defined whether or not there is a holomorphic
representative.

Note that S Sarkar has given a combinatorial proof that Formula (3) is additive, in the
process of generalizing it to give a formula for the Maslov index of higher holomorphic
polygons [5].
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Correction: A cylindrical reformulation of Heegaard Floer homology 19

1.1.3 What is wrong To generalize Formula (2) to homology classes not admitting
holomorphic representatives, we need some class of maps u which is broader than
holomorphic maps but for which �.S/ is still determined. To show that the right hand
side of Formula (3) agrees with the Maslov index in Symg.†/ for homology classes
without holomorphic representatives, we also want these maps u to correspond to disks
in Symg.†/. Such classes of maps u were proposed in [1, Lemmas 4.1 and 4.9], as
follows.

Lemma 4.1 Suppose A 2 �2.Ex; Ey/ is a positive homology class. Then there is a
Riemann surface with boundary and corners xS and smooth map uW S !†� Œ0; 1��R
(where S denotes the complement in xS of the corners of xS ) in the homology class A

such that

(1) u�1.C˛ [Cˇ/D @S ;

(2) for each i , u�1.˛i � f1g �R/ and u�1.ˇi � f0g �R/ each consists of one arc
in @S ;

(3) the map u is J –holomorphic in a neighborhood of .�† ıu/�1.˛[ˇ/ for some
J satisfying (J1)–(J5) (in fact, for j† � jD );

(4) for each component of S , either

� the component is a disk with two boundary punctures and the map is a
diffeomorphism to fxig� Œ0; 1��R for some xi 2 ˛\ˇ (such a component
is a degenerate disk) or

� the map �† ıu extends to a branched covering map �† ıu, none of whose
branch points map to points in ˛\ˇ ;

(5) all the corners of S are acute;

(6) the map u is an embedding.

Lemma 4.9 Suppose A is a positive homology class. Then we can represent AC Œ†�

by a map uW S !†� Œ0; 1��R satisfying all the conditions of Lemma 4.1 and such
that, additionally,

� the map �D ıu is a g–fold branched covering map with all its branch points of
order 2;

� the map u is holomorphic near the preimages of the branch points of �D ıu.

The proof of Lemma 4.1 has two gaps.
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20 Robert Lipshitz

(1) In the proof, one starts by gluing up the domain of u to produce a surface. One
wants to ensure that the only corners of the resulting surface correspond to the
points in Ex[ Ey . The proof says to start with any maximal gluing and then make
some local changes, but is imprecise or incorrect about how to do so.

(2) The argument for ensuring that the map is an embedding (Property (6)) is
incorrect. First, some map, not necessarily an embedding, is constructed. Then,
the proof says: “Modifying S1 and p†;1 � pD;1 near the double points of
p†;1�pD;1 we can obtain a new map uW S!†� Œ0; 1��R satisfying all of the
stated properties”. Typically, such a modification is not possible while keeping
�† ıu a branched map; see Example 1.

The proof of Lemma 4.9 builds on Lemma 4.1, and has the same gaps.

As we will see, the first point can be resolved by being more careful in the construction,
following Ozsváth and Szabó [3, Lemma 2.17] (see also the author, Ozsváth and
Thurston [2, Lemma 10.3]). The second point is more serious, as the following example
(explained to me by J Pardon) shows.

Example 1 Consider the domain A shown in Figure 1. There is an obvious holomor-
phic representative S ! †� Œ0; 1��R, where S is the disjoint union of two disks
(bigons). This representative has a positive double point. Resolving the double point
gives a map S 0!†� Œ0; 1��R where S 0 is an annulus. Indeed, Formula (2) predicts
the embedded Euler characteristic �D 2� 6=4� 6=4C 1D 0.

But we can also find other, nonholomorphic representatives of this domain. For example,
take S to be a surface of genus 1 with 2 boundary components. Then we can find
branched maps S!† and S!D representing the domain A. It is easy to arrange this
map to satisfy the conditions in Lemma 4.1 except for being an embedding. Resolving
double points decreases the Euler characteristic of S , which is already lower than the
Euler characteristic predicted by Formula (2); so, if we could resolve them (without
losing the other properties in Lemma 4.1), this would contradict Proposition 4.2. The
difference with the previous case is that these double points are negative rather than
positive.

1.2 Revised proofs of the main results

We can salvage the main result by weakening the conditions in Lemmas 4.1 and 4.9 to
allow u to have double points, and extending Proposition 4.2, Corollary 4.3 and the
proofs of Propositions 4.8 and Corollary 4.10 to curves with double points.

The revised Lemma 4.1 reads as follows.
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A

ˇ1 ˇ2 ˛1 ˛2

(a)

(b)

(c)
Figure 1: A domain A so that �† ıu has branch points

Lemma 4.1 0 Suppose A 2 �2.Ex; Ey/ is a positive homology class. Then there is a
Riemann surface with boundary and corners xS and smooth map uW S !†� Œ0; 1��R
(where S denotes the complement in xS of the corners of xS ) in the homology class A

such that

(1) u�1.C˛ [Cˇ/D @S ;

(2) for each i , u�1.˛i � f1g �R/ and u�1.ˇi � f0g �R/ each consists of one arc
in @S ;

(3) the map u is J–holomorphic in a neighborhood of @S for some J satisfying
(J1)–(J5) (in fact, for j† � jD );

(4) for each component of S , either
� the component is a disk with two boundary punctures and the map is a

diffeomorphism to fxig� Œ0; 1��R for some xi 2 ˛\ˇ (such a component
is a degenerate disk) or

� the map �† ıu extends to a branched covering map �† ıu, none of whose
branch points map to points in ˛\ˇ ;

(5) all the corners of S are acute;

(6) the map u has at worst transverse double point singularities.

Geometry & Topology, Volume 18 (2014)



22 Robert Lipshitz

(For convenience, we have also weakened (3); the resulting condition is sufficient for
the other results to go through and requires one fewer step to achieve.)

The statement of Lemma 4.9 does not need any revisions, except that “all the conditions
of Lemma 4.1” now refers to Lemma 4.1 0 , and we should have assumed that g > 1.

Lemma 4.9 0 Assume that g > 1. Suppose A is a positive homology class. Then we
can represent AC Œ†� by a map uW S !†� Œ0; 1��R satisfying all the conditions of
Lemma 4.1 0 and such that, additionally,

� the map �D ıu is a g–fold branched covering map with all its branch points of
order 2;

� the map u is holomorphic near the preimages of the branch points of �D ıu.

Proposition 4.2 now reads as follows.

Proposition 4.2 0 Let uW S ! † � Œ0; 1� � R be a map satisfying the conditions
enumerated in the Lemma 4.1 0 , representing a homology class A. Suppose that u has
dC positive double points and d� negative double points. Then the Euler characteristic
�.S/ is given by

�.S/D g� nEx.A/� n Ey.A/C e.A/C 2.dC� d�/:

With these changes, it is clearer to state Proposition 4.8 as follows.

Proposition 4.8 0 We have that the Maslov index (in the symmetric product) of a
domain A 2 �2.Ex; Ey/ is given by

(4) �.A/D e.A/C nEx.A/C n Ey.A/:

This agrees with the index in the cylindrical setting at any embedded holomorphic curve
(with respect to an almost complex structure satisfying conditions (J1)–(J5)).

Proof of Lemma 4.1 0 This construction is adapted from the proof of [3, Lemma 2.17].
Let fDig denote the components of † n .˛[ˇ/. Write AD

P
niDi ; assume that we

have ordered the Di so that if i < j then ni � nj . Build a surface S0 by taking, for
each i , ni copies of Di ; denote these copies by D.j/i . Glue these together as follows:

� if Di and Dj (i < j ) share a common ˛–arc a then for each k D 1; : : : ; ni

glue D.k/i to D.kCnj�ni /

j along a;

� if Di and Dj (i < j ) share a common ˇ–arc b then for each k D 1; : : : ; ni

glue D.k/i to D.k/j along b .
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The resulting surface S0 comes equipped with a map u†;0W S0!†. The surface S0

is obviously a smooth surface with boundary away from u�1
†;0
.˛\ˇ/. Next, consider

the behavior of S0 near a point p 2 ˛ \ ˇ . Let Di1
; : : : ;Di4

be the four regions
incident to p . (Some of the Dij might be the same.) If p 62 Ex[ Ey or p 2 Ex\ Ey then
the coefficients of the Dij in A have the form a; aC k; aC `; aC k C ` for some
a; k; `� 0. Reordering the ij if necessary, assume that Di1

and Di2
share a common

˛–arc (and D
.1/
i1

and D
.3/
i3

share a common ˇ–arc). Then the following D
.m/
ij

are
glued together:

fD
.1/
i1
;D

.1Ck/
i2

;D
.1/
i3
;D

.1Ck/
i4

g; : : : ; fD
.a/
i1
;D

.aCk/
i2

;D
.a/
i3
;D

.aCk/
i4

g;

fD
.1/
i2
;D

.1/
i4
g; : : : ; fD

.k/
i2
;D

.k/
i4
g;

fD
.aC1/
i3

;D
.aCkC1/
i4

g; : : : ; fD
.aC`/
i3

;D
.aCkC`/
i4

g:

In particular, near each point in u�1
†;0
.p/, S0 is again a smooth surface with boundary

and the map u†;0 is a homeomorphism onto its image.

Now, suppose p 2 Ex n Ey or p 2 Ey n Ex . Then the coefficients of A near p can be written
as fa; aCk; aC `; aCkC `C1g with a; k; `� 0 or fa; aCk; aC `; aCkC `�1g

with a; k; `� 0 and kC `� 1. In the first case, if a� 1, the glued regions are

fD
.aCkC1/
i4

;D
.a/
i3
;D

.a/
i1
;D

.aCk/
i2

;D
.aCk/
i4

;D
.a�1/
i3

;D
.a�1/
i1

; : : :

;D
.2Ck/
i4

;D
.1/
i3
;D

.1/
i1
;D

.1Ck/
i2

;D
.1Ck/
i4

g;

fD
.1/
i2
;D

.1/
i4
g; : : : ; fD

.k/
i2
;D

.k/
i4
g;

fD
.aC1/
i3

;D
.aCkC2/
i4

g; : : : ; fD
.aC`/
i3

;D
.aCkC`C1/
i4

g:

(If a D 0, the first row is replaced with simply fD.kC1/
i4

g.) In particular, the preim-
age of p consists of k C ` preimages which are smooth boundary points, and near
which u†;0 is a homeomorphism onto its image; and one preimage which looks like
a boundary branch point. Call this last preimage a bad point. If we choose a smooth
structure on S0 making the bad point a �=2 corner then the map u†;0 is of the form
z 7! z4aC1 near this point.

The other case — multiplicities fa; aCk; aC`; aCkC`�1g— is similar. If k; `� 1

then the glued regions are

fD
.aC1/
i3

;D
.aCk/
i4

;D
.aCk/
i2

;D
.a/
i1
;D

.a/
i3
;D

.aCk�1/
i4

; : : : ;D
.1/
i3
;D

.k/
i4
;D

.k/
i2
g;

fD
.1/
i2
;D

.1/
i4
g; : : : ; fD

.k�1/
i2

;D
.k�1/
i4

g;

fD
.aC2/
i3

;D
.aCkC1/
i4

g; : : : ; fD
.aC`/
i3

;D
.aCkC`�1/
i4

g:
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If k D 0 then the glued regions are

fD
.aC1/
i3

;D
.a/
i4
;D

.a/
i2
;D

.a/
i1
;D

.a/
i3
;D

.a�1/
i4

; : : : ;D
.2/
i3
;D

.1/
i4
;D

.1/
i2
;D

.1/
i1
;D

.1/
i3
g;

fD
.aC2/
i3

;D
.aC1/
i4

g; : : : ; fD
.aC`/
i3

;D
.aC`�1/
i4

g:

If `D 0 then the glued regions are

fD
.aCk/
i2

;D
.a/
i1
;D

.a/
i3
;D

.aCk�1/
i4

;D
.aCk�1/
i2

; : : : ;D
.1Ck/
i2

;D
.1/
i1
;D

.1/
i3
;D

.k/
i4
;D

.k/
i2
g;

fD
.1/
i2
;D

.1/
i4
g; : : : ; fD

.k�1/
i2

;D
.k�1/
i4

g:

In each case, all but one of the preimages of p lie on the smooth boundary of S , and
near them the map u†;0 is a local homeomorphism; and there is one remaining bad
point. Near the bad point we can add a �=2 corner to S0 and view u†;0 as a branched
map. In particular, for each ˛i , u�1

†;0
.˛i/\@S0 consists of a union of some circles C ˛

i;j

and possibly a single arc A˛i ; and similarly for each ˇi .

The surface S0 has corners, which are in bijective correspondence with .Ex[ Ey/n.Ex\ Ey/.
The map u†;0 may have branch points at some of these corners, say p1; : : : ;pk . If pi

has total angle n�=2, make .n� 1/=2 cuts in S0 at pi , as in Figure 2. Let S1 be the
resulting surface and u†;1 the resulting map to †.

S0 S1

xi

xi

Figure 2: Making cuts at the corners The figure shows a region of S0 (left)
and S1 (right); in S0 there is a branch point at xi . The darker region is
covered with multiplicity 2 . On the right, the two dots are boundary branch
points. We made cuts along the ˇ–arcs; we could equally well have made
cuts along the ˛–arcs.
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Next, we modify .u†;1;S1/ to a new surface whose corners correspond to ExqEy ; that is,
we introduce corners corresponding to points in Ex\ Ey . For each point xi 2 Ex\ Ey , if xi

is disjoint from u†;1.@S1/ then take the disjoint union of S1 with a twice punctured
disk, and define u†2

to map the twice punctured disk by a constant map to xi . If xi is
not disjoint from u†;1.@S1/ then choose an arc in @S1 covering xi and make a small
slit in the arc starting at xi . (This introduces two new corners, both mapping to xi ,
and a boundary branch point.) See Figure 3. After this modification, the surface has
exactly 2g corners, corresponding to Exq Ey . Call the result .S2;u†;2/.

xi

Figure 3: Adding slits at degenerate corners

Figure 4: Splicing a corner and an edge

Next, we modify .S2;u†;2/ to a new pair .S3;u†;3/ so that for each i , u�1
†;3
.˛i/\@S3

(respectively u�1
†;3
.ˇi/\ @S3 ) consists of a single arc (and no circles). In the process,

we will introduce some more boundary branch points. Suppose that C is a boundary
component of S2 which is mapped entirely to ˛i . Let xi 2 Ex be the corner on
˛i \ ǰ (for some j ) and pi the corresponding corner of S2 . Make a small slit in S2

along u�1
†;2
. ǰ / starting at C \u�1

†;2
.xi/, and glue one edge of the resulting surface

to the ˛– or ˇ–arc near pj in such a way that u†;2 induces a branched map from
the result. (There are two cases for the local geometry here; see Figure 4.) This
reduces the number of boundary components of S mapped to ˛i by 1; repeat for the
other ˛–boundary circles of S2 . Modify boundary components mapped entirely to ˇi
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similarly. Call the result .S3;u†;3/; this pair has the property that u�1
†;3
.˛i/\ @S3

(respectively u�1
†;3
.ˇi/\ @S3 ) consists of a single arc (and no circles).

The map u†;3 and the complex structure on † induce a complex structure on S3 . Let U

denote a tubular neighborhood of @S3 . Choose a holomorphic map uD;3W U! Œ0; 1��R
so that:

� uD;3 sends each ˛–arc in @S3 to f1g �R and each ˇ–arc to f0g �R;
� near each corner of S3 corresponding to a point in Ex , uD;3 is asymptotic to �1;
� near each corner of S3 corresponding to a point in Ey , uD;3 is asymptotic to C1;
� the map uD;3 is a local diffeomorphism (ie, has nonvanishing derivative).

Extend u†;3 arbitrarily to the rest of S3 . Then we have that u†;3 �uD;3 is a map to
†� Œ0; 1��R. By construction, this map satisfies Conditions (1), (2), (3) (4) and (5).
Perturbing u†;3 �uD;3 slightly (without changing it near the boundary) gives a map
uW S !†� Œ0; 1��R satisfying (6), as well.

Proof of Proposition 4.2 0 The proof is essentially the same as the original proof of
Proposition 4.2, noting that each double point leads to two intersections of u and u0 .
We spell this out.

First, note that each degenerate disk adds 1 to �.S/, 1 to g , 0 to e.A/ and 0 to
2.dC � d�/ � nEx.A/ � n Ey.A/. Thus, each such disk changes the two sides of the
formula in identical ways, and so we may assume there are no degenerate disks.

Next, by the Riemann–Hurwitz formula,

e.S/D e.A/� br.�D ıu/;

where br.�D ı u/ denotes the ramification degree of �D ı u. (For example, if all
branch points of �D ıu have order 2 then �D ıu is just the number of branch points.)
Moreover, since S has 2g �=2–corners,

�.S/D e.S/Cg=2I

so, we want to compute br.�D ıu/.

Let
�r W †� Œ0; 1��R!†� Œ0; 1��R

be translation by r units in the R–direction, ie, �r .p; s; t/D .p; s; t C r/. Let @=@t
denote the tangent vector field to R. Then, for � sufficiently small, we have

br.�D ıu/D #ftangencies of @=@t and ug

D #.u\ .�� ıu//� 2.dC� d�/;
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where all counts are with multiplicity. (Tangencies along the boundary, boundary
double points, boundary intersection points and boundary branch points each count for
1
2

.) The term 2.dC�d�/ comes from the fact that each positive (respectively negative)
double point of u contributes 2 (respectively �2) intersections between u and �� ıu.

The fact that u is holomorphic near its boundary implies that #.u \ .�� ı u// D

#.u\ .�R ıu// for any R 2R; see [1, page 978]. When R is sufficiently large,

#.u\ .�R ıu//D nEx.A/C n Ey.A/�g=2:

Collecting these equalities,

�.S/D e.S/Cg=2

D e.A/� br.�D ıu/Cg=2

D e.A/� #.u\ .�R ıu//C 2.dC� d�/Cg=2

D e.A/� nEx.A/� n Ey.A/CgC 2.dC� d�/;

as desired.

Proof of Lemma 4.9 0 Let .S3;u†;3/ be as in the proof of Lemma 4.1 0 applied to
the homology class A. Build a pair .S4;u†;4/ representing AC Œ†�, and with S4

connected, as follows. Start with the disjoint union S3q†. Forget each degenerate
disk in S3 and instead make three cuts starting from the corresponding xi 2†, two
along the ˛–circle and one along the ˇ–circle, as in the left of Figure 5. At each
remaining point xi 2 Ex , cut open † in the same way and glue it to the corresponding
corner of S3 , as shown in Figure 5. The result is a connected surface S4 and map
u†;4W S4!† representing the homology class AC Œ†�.

† S3 S4

D1 D2

D3 D4

D1

Figure 5: Cutting † and gluing to S3
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We claim that there is a g–fold branched covering uD;4W S4! Œ0; 1��R sending the
˛–boundary of S4 to f1g �R and the ˇ–boundary of S4 to f0g �R. To see this, let
@S4� Œ0; �/ be a collar neighborhood of @S4 and let C D @S4�f�=2g. Collapsing the
circles in C gives a surface S 0 consisting of a nonempty union of disks D — one for
each boundary component of S — and a closed, connected surface E meeting each disk
in a single point. If Di has 2ni corners (so

P
ni D g ) then we can choose an ni –fold

branched cover vi W Di ! Œ0; 1��R with the specified boundary behavior. Choose a
g–fold branched cover wW E!S2 . (This is where we use the assumption that g> 1.)
Splicing together

`
i vi and w gives a g–fold branched cover uD;4W S4! Œ0; 1��R

with the desired boundary behavior. Perturbing uD;4 slightly, we can ensure that all
branch points of uD;4 are simple.

Consider the map u D u†;4 � uD;4W S4! †� Œ0; 1��R. This satisfies (1), (2) (4)
and (5) of Lemma 4.1 0 , and the projection to Œ0; 1��R is a branched covering. Isotoping
uD;4 we can ensure (3) as well as making uD;4 holomorphic near its branch points.
Finally, deforming u slightly we can ensure that it has only double point singularities,
ensuring (6).

Proof of Proposition 4.8 0 Using the fact that � is unchanged by stabilization (see [3,
Remark 10.5]), as is eC nExC n Ey (obvious), we may assume that g > 1. Since

�.Œ†�/D 2D e.Œ†�/C nEx.Œ†�/C n Ey.Œ†�/;

adding or subtracting copies of Œ†� changes both sides of Formula (4) in the same way.
So, it suffices to prove Formula (4) after replacing A by AC.nC1/Œ†� where ACnŒ†�

is positive. Let u be the map given by Lemma 4.9 0 in the homology class AC.nC1/Œ†�.
Via the tautological correspondence (see, for instance, [1, Section 13]), u corresponds
to a map �W D2 ! Symg.†/ with the same domain as u. Rasmussen showed [4,
Theorem 9.1] that

(5) �.A/D� ��C 2e.A/;

where � denotes the diagonal.

In terms of u, the intersections of � with the � arise in two ways.

� Branch points of �D ıu. Lemma 4.9 0 guaranteed that these be order 2 branch
points, and that u be holomorphic near each of them. It follows that each branch
point corresponds to a positive, transverse intersection of � and �.

� Double points of u. Each positive (respectively negative) double point corre-
sponds to a positive (respectively negative), degree 2 tangency of � and �.
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So, we have

� �� D br.�D ıu/C 2.dC� d�/;(6)

where br denotes the number of branch points. By the Riemann–Hurwitz formula,

�.S/D g�.D2/� br.�D ıu/

so

br.�D ıu/D g��.S/D g� .g� nEx.A/� n Ey.A/C e.A/C 2.dC� d�//

D nEx.A/C n Ey.A/� e.A/� 2.dC� d�/:

Combining this with Equations (5) and (6) gives

�.A/D nEx.A/C n Ey.A/� e.A/� 2.dC� d�/C 2.dC� d�/C 2e.A/

D e.A/C nEx.A/C n Ey.A/;

as desired.

2 Smaller errata
(1) In Section 1, on page 959, Condition (J4) should read “J.@=@s/D @=@t ”, not

“J.@=@t/D @=@s” as currently written. (Thanks to C Taubes for pointing out
this mistake.)

(2) In Section 3, pages 966–972, the paper considers the space

W
p;d

k
..S; @S/; .W;C˛ [Cˇ//:

(See, for instance, Definition 3.5, page 968.) Here, W D †� Œ0; 1��R. It is
important that this space of W

p;d

k
maps be a Banach manifold; this is used, for

instance, in the proof of Proposition 3.7. However, it is not clear that this space
of maps is a Banach manifold, because W has boundary.
The easiest way to fix this is to replace W by †�R�R (but leave the boundary
conditions C˛ and Cˇ unchanged). This larger space has the structure of a
Banach manifold in an obvious way. Since the projection to R�R is holomorphic,
the 0–set of the x@–operator on the larger space of maps is, in fact, contained
in the smaller space of maps, so this has no effect on the space of holomorphic
curves under consideration. (Thanks to J Pardon for pointing out this mistake.)

(3) Also in Section 3, in the definition of the universal moduli space M` , instead of
considering the space of all almost complex structures on S (which is infinite-
dimensional), one should consider the moduli space of complex structures on S

(which is finite-dimensional). (Otherwise, in the proof of Proposition 3.8, the
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fiber M of the projection M! J is the product of the desired moduli space
with an infinite-dimensional space.) (Thanks to J Pardon for pointing out this
mistake.)

(4) In Section 14.2, on page 1071, the form df ^ dgC? df is only closed if the
Morse function f is harmonic. To guarantee the existence of a harmonic Morse
function, puncture the 3–manifold Y at two points, and consider functions which
approach C1 at one of the punctures and �1 at the other puncture. (Thanks
to G Xu for pointing out this mistake.)
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