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Rational smoothness,
cellular decompositions and GKM theory

RICHARD GONZALES

We introduce the notion of Q–filtrable varieties: projective varieties with a torus
action and a finite number of fixed points, such that the cells of the associated
Białynicki-Birula decomposition are all rationally smooth. Our main results develop
GKM theory in this setting. We also supply a method for building nice combinatorial
bases on the equivariant cohomology of any Q–filtrable GKM variety. Applications
to the theory of group embeddings are provided.

14F43, 14L30; 55N91, 14M15

Introduction and statement of the main results

Let X be a smooth complex projective algebraic variety with a C�–action and finitely
many fixed points x1; : : : ;xm . The method of Białynicki-Birula [5] gives rise to a
decomposition of X into locally closed subvarieties

Wi D

n
x 2X

ˇ̌̌
lim
t!0

tx D xi

o
:

Clearly, X D
F

i Wi . The subvarieties Wi are called cells of the decomposition. [5,
Theorem 4.3] asserts that all cells are isomorphic to affine spaces, that is, Wi 'Cni for
all i . From this, one concludes that X has no cohomology in odd degrees. This method
for breaking down a projective variety into pieces, also known as BB–decomposition,
allows the computation of important topological invariants, eg Betti numbers. In this
context, there is also an important connection between the BB–decomposition and
Morse theory: Let S1 be the maximal compact subgroup of C� and consider the
induced action of S1 on X. By averaging if necessary, we may assume that the
Fubini–Study form ! is a S1 –invariant Kähler form on X. With this assumption, the
S1 –action preserves the symplectic structure on X defined by ! . Then there exists
a moment map f W X ! .Lie.S1//� D R for this action, and f is a non-degenerate
Morse function whose critical set is precisely the set of fixed points of the C�–action on
X (see Kirwan [26], and Chriss and Ginzburg [17, Proposition 2.4.22]). Additionally,
the BB–decomposition coincides with the cell decomposition of X associated to f by
means of Morse theory [26; 17, Corollary 2.4.24].
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It is worth emphasizing that many of the ideas of [5] extend to the singular case. In
fact, the BB–decomposition makes sense even if X is singular, though, this time, the
cells need not be so well-behaved.

Goresky, Kottwitz and MacPherson, in their seminal paper [21], developed a theory,
nowadays called GKM theory, that makes it possible to describe the equivariant co-
homology of certain T–skeletal varieties: projective algebraic varieties upon which
an algebraic torus T acts with a finite number of fixed points and invariant curves.
Cohomology, in this article, is considered with rational coefficients. Let X be a T–
skeletal variety and denote by X T the fixed point set. The main purpose of GKM
theory is to identify the image of the functorial map

i�W H�T .X /!H�T .X
T /;

assuming X has no cohomology in odd degrees (equivariantly formal). GKM theory
asserts that if X is a GKM variety, ie T–skeletal and equivariantly formal, then the
equivariant cohomology ring H�

T
.X / can be identified with certain ring of piecewise

polynomial functions PP�T .X / (Theorem 2.5).

Mostly, GKM theory has been applied to smooth projective T–skeletal varieties, because
they all have trivial cohomology in odd degrees (BB–decomposition). Furthermore,
the GKM data consisting of the fixed points and invariant curves has been explicitly
described for some interesting subclasses: flag varieties (Carrell [15] and Brion [9]),
toric varieties (Brion [11], Vezzosi and Vistoli [41] and Uma [40]) and regular embed-
dings of reductive groups (Brion [10] and Uma [40]). Additionally, GKM theory has
been applied to Schubert varieties (Carrell [15] and Brion [13; 9]). The latter ones,
even though singular, are GKM varieties and their BB–cells (relative to an appropriate
action of C� ) are exactly the Bruhat cells.

Now let X be a complex algebraic variety of dimension n and x 2 X. We say that
X is rationally smooth at x if there exists a neighborhood U of x (in the complex
topology) such that, for all y 2 U , we have

H m.X;X �fyg/D .0/ if m¤ 2n;

H 2n.X;X �fyg/DQ:

If X is rationally smooth at every x 2X, then X is called rationally smooth. Observe
that this is precisely the requirement that X is a rational cohomology manifold. Such
varieties satisfy Poincaré duality with rational coefficients McCrory [27]. See Brion [12]
for an up-to-date discussion of rationally smooth singularities on complex algebraic
varieties with torus action.

Geometry & Topology, Volume 18 (2014)



Rational smoothness, cellular decompositions and GKM theory 293

Let G be a connected reductive group. Recall that a normal irreducible projective
variety X is called an embedding of G , or a group embedding, if X is a G�G –variety
containing an open orbit isomorphic to G . Let M be a reductive monoid with zero
and unit group G . Then there exists a central one-parameter subgroup �W C�! G ,
with image Z contained in the center of G , such that lim

t!0
�.t/D 0. Moreover, the

quotient space
P�.M / WD .M n f0g/=Z

is a normal projective embedding of the quotient group G=Z . Embeddings of the form
P�.M / are called standard group embeddings. It is known that all normal projective
embeddings of a connected reductive group are standard (Alexeev and Brion [1]). Using
methods from the theory of algebraic monoids, Renner [34; 35] investigated those
standard embeddings that are rationally smooth.

The purpose of this article is to establish GKM theory in the setting of Q–filtrable
varieties: projective varieties with a torus action having finitely many fixed points, such
that the cells of an associated BB–decomposition are all rationally smooth, ie they are
rational cells. In general, Q–filtrable varieties have singularities. As an application
of our theory, we show that rationally smooth standard embeddings are Q–filtrable.
Our results lay down the topological foundations for the study of rationally smooth
standard embeddings via GKM theory.

This article is organized as follows. The first two sections briefly review GKM theory.
In Section 3, we devote ourselves to the study of rational cells and state their main
topological features (Theorem 3.10, Proposition 3.12 and Theorem 3.16). We also
show that the singularities of rational cells are more general than those of orbifolds
(Example 3.7). In Section 4 we introduce the notion Q–filtrable varieties. Our main
result in this section is given below.

Theorem 4.7 Let X be a normal projective T–variety. Suppose that X is Q–filtrable.
Then:

(a) X admits a filtration into T–stable closed subvarieties Xi , i D 0; : : : ;m, such
that

∅DX0 �X1 � � � � �Xm�1 �Xm DX:

(b) Each cell Ci DXi nXi�1 is a rational cell, for i D 1; : : : ;m.

(c) For each i D 1; : : : ;m, the singular rational cohomology of Xi vanishes in odd
degrees. In other words, each Xi is equivariantly formal.

(d) If, in addition, the T–action on X is T–skeletal, then each Xi is a GKM–variety.
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It is worth noting that Q–filtrable spaces need not be rationally smooth. For instance,
Schubert varieties admit a decomposition into affine cells but they are not always
rationally smooth. In particular, the Schubert variety of codimension one in the
Grassmannian of 2–planes in C4 does not satisfy Poincaré duality, and hence is
not rationally smooth. References Arabia [2] and Brion [11] supply some criteria
for rational smoothness of Schubert varieties. What is remarkable about Q–filtrable
varieties is that they are equivariantly formal.

In Section 6, after recalling Arabia’s notion of equivariant Euler classes (Section 5),
we construct free module generators on the equivariant cohomology of any Q–filtrable
GKM variety. Our findings extend the earlier works of Arabia [2], and Guillemin and
Kogan [22]. The main result of Section 6 is the following.

Theorem 6.9 Let X be a Q–filtrable GKM–variety. Let x1 < x2 < � � �< xm be the
order relation on X T compatible with the filtration of X given in Theorem 4.7. Then
there exist unique classes �i 2H�

T
.X /, i D 1; : : : ;m, with the following properties:

(i) Ii.�i/D 1.

(ii) Ij .�i/D 0 for all j ¤ i .

(iii) The restriction of �i to xj 2X T is zero for all j < i .

(iv) �i.xi/D EuT .i;Ci/.

Moreover, the �i generate H�
T
.X / freely as a module over H�

T
.pt/.

Here Ii W H
�
T
.X /!H�

T
.pt/ is the H�

T
–linear map obtained by integrating, along Xi ,

the pullback of a class in X to Xi , and EuT .i;Ci/ stands for the equivariant Euler
class. We should also point out that the filtration of X, together with the compatible
total order of the fixed points, appearing in Theorem 4.7 and Theorem 6.9 respectively,
depend on a particular choice of generic one-parameter subgroup (see Definition 4.6
and Section 6).

Although the class of Q–filtrable varieties includes smooth projective T–skeletal
varieties and Schubert varieties, its crucial attribute is that it also includes a large and
interesting family of singular group embeddings, namely, rationally smooth standard
embeddings. Indeed, in the last section of this article, we show that the notion of
Q–filtrable variety is well suited to the study of group embeddings and, in doing so,
we provide our theory with its major set of fundamental examples. Our main result in
this direction can be stated as follows.

Theorem 7.4 Let X D P�.M / be a standard group embedding. If X is rationally
smooth, then X is Q–filtrable and so it has no cohomology in odd degrees.
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1 Equivariant cohomology and localization

Throughout this article, we work with complex algebraic varieties. Cohomology is
always considered with rational coefficients.

1.1 The Borel construction

Let T D .C�/r be an algebraic torus and let X be a T–variety, that is, a complex
algebraic variety with an algebraic action of T . Let ET !BT be a universal principal
bundle for T . The equivariant cohomology of X (with rational coefficients) is defined
to be

H�T .X / WDH�.XT /;

where XT D .X �ET /=T is the total space associated to the fibration

X ,!XT

pX
��! BT:

This construction was introduced by Borel [7]. Here, BT is simply connected, the map
pX is induced by the canonical projection ET �X ! ET , and T acts diagonally
on ET �X. Notice that H�

T
.X / is, via p�

X
, an algebra over H�

T
.pt/. To simplify

notation, we sometimes write H�
T

instead of H�
T
.pt/.

It can be shown that H�
T
.X / is independent of the choice of universal T–bundle. See

Borel [7] and Quillen [30] for more details.

Example 1.1 Let T D .C�/r be an algebraic torus. In this case, we have BT D

.CP1/r , and consequently H�
T
.pt/DH�.BT /DQŒx1; : : : ;xr �, where deg.xi/D 2.

A more intrinsic description of H�
T
.pt/ is given as follows. Denote by „.T / the

character group of T . Any �2„.T / defines a one-dimensional complex representation
of T with space C� . Here T acts on C� via t � z WD �.t/z . Consider the associated
complex line bundle

L.�/ WD .ET �T C�! BT /
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and its first Chern class c.�/ 2H 2.BT /. Let S be the symmetric algebra over Q of
the group „.T /. Then S is a polynomial ring on r generators of degree 1, and the
map �! c.�/ extends to a ring isomorphism

cW S !H�T .pt/

which doubles degrees: the characteristic homomorphism [7].

1.2 Localization theorem for torus actions

Let S �H�
T

be the multiplicative system H�
T
n f0g. For a given T–variety X, denote

by X T the fixed point set. The following is a classical theorem due to Borel [7]. See
also Hsiang [25, Theorem III.1].

Theorem 1.2 Let X be a T–variety. Suppose H�
T
.X / is a finite H�

T
–module. Then

the localized restriction homomorphism

S�1H�T .X /! S�1H�T .X
T /DH�.X T /˝Q .S

�1H�T /

is an isomorphism.

2 GKM theory

GKM theory is a relatively recent tool that owes its name to the work of Goresky,
Kottwitz and MacPherson [21]. This theory encompasses techniques that date back to
the early works of Atiyah [3; 4], Segal [37], Borel [7] and Chang and Skjelbred [16].

2.1 Equivariant formality

Definition 2.1 Suppose an algebraic torus T acts on a (possibly singular) space X.
Let pX W XT ! BT be the fibration associated to the Borel construction. We say that
X is equivariantly formal if the Serre spectral sequence

E
p;q
2
DH p.BT IH q.X //)H

pCq
T

.X /

for this fibration degenerates at E2 .

In the literature on topological transformation groups, there are several definitions of
equivariant formality for torus actions. Definition 2.1 is modelled after [7] and [21]. It
states the only meaning of equivariant formality used throughout this article, and in
most of the literature related to GKM theory. It is equivalent to the classical condition:
X is totally non-homologous to zero in XT (condition (b) of Theorem 2.2 below). For
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a comparison between Definition 2.1 and the other meanings of equivariant formality
coming from equivariant rational homotopy theory, the interested reader could consult
Scull [36], where these definitions are compared, and many of their discrepancies are
underlined.

The following theorem characterizes equivariant formality in our setting. For a proof,
see [21, Theorem 1.6.2], or [13, Lemma 1.2].

Theorem 2.2 For a T–variety X, the following are equivalent.

(a) X is equivariantly formal.

(b) The edge homomorphism H�
T
.X /!H�.X / is surjective; that is, the ordinary

rational cohomology is given by extension of scalars,

H�.X /'H�T .X /˝H �
T

Q:

(c) H�
T
.X;Q/ is a free H�

T
.pt/–module.

Each of them is implied by the following condition.

(d) The singular rational cohomology of X vanishes in odd degrees.

If X T is finite, then (d) is equivalent to (a), (b) and (c).

It follows that X is equivariantly formal if and only if there is an isomorphism of H�
T

–
modules between H�

T
.X / and H�.X /˝Q H�

T
. Every smooth projective T–variety is

equivariantly formal [21, Theorem 14.1 (7)].

A joint application of Theorem 1.2 and Theorem 2.2 leads to the following.

Corollary 2.3 Let X be a T–variety with a finite number of fixed points. Then X

is equivariantly formal if and only if H�
T
.X / is a free H�

T
–module of rank jX T j, the

number of fixed points.

2.2 T–skeletal actions

Definition 2.4 Let X be a projective T–variety. Let �W T �X ! X be the action
map. We say that � is a T–skeletal action if

(1) X T is finite, and

(2) the number of one-dimensional orbits of T on X is finite.

In this context, X is called a T–skeletal variety. If a T–skeletal variety X is also
equivariantly formal, then we say that X is a GKM variety.
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Let X be a normal projective T–skeletal variety. Then X has an equivariant embedding
into a projective space with a linear action of T (Sumihiro [39, Theorem 1]), and
so the closure of any orbit of dimension one in X contains exactly two fixed points.
Accordingly, it is possible to define a ring PP�T .X / of piecewise polynomial functions.
Indeed, let RD

L
x2X T Rx , where Rx is a copy of the polynomial algebra H�

T
. We

then define PP�T .X / as the subalgebra of R defined by

PP�T .X /D
�
.f1; : : : ; fn/ 2

M
x2X T

Rx

ˇ̌̌̌
fi � fj mod �i;j

�
;

where xi and xj are the two distinct fixed points in the closure of the one-dimensional
T–orbit Ci;j , and �i;j is the character of T associated with Ci;j . The character �i;j

is uniquely determined up to sign (permuting the two fixed points changes �i;j to its
opposite).

Theorem 2.5 [16; 21] Let X be a normal projective T–skeletal variety. Suppose
that X is a GKM variety. Then the restriction mapping

H�T .X /!H�T .X
T /D

M
xi2X T

H�T

is injective, and its image is the subalgebra PP�T .X /.

Theorem 2.2 characterizes normal projective GKM–varieties among all T–skeletal
varieties.

Theorem 2.6 Let X be a normal projective variety with a T–skeletal action

�W T �X !X:

Then X is a GKM–variety if and only if X has no (rational) cohomology in odd
degrees.

We will show that the class of equivariantly formal spaces incorporates certain subclass
of singular varieties, namely, Q–filtrable varieties (Theorems 4.7 and 6.9). This
subclass encompasses all rationally smooth standard embeddings of a reductive group
(Theorem 7.4). As such, it is much larger than the subclass of smooth varieties.

3 Rational cells

This section is devoted to the study of our most important topological tool: rational
cells.
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Definition 3.1 Let X be an algebraic variety with an action of a torus T and a fixed
point x . We say that x is an attractive fixed point if there exists a one-parameter
subgroup �W C�! T and a neighborhood U of x , such that limt!0 �.t/ �y D x for
all points y in U .

There is an important characterization of attractive fixed points. A proof of the following
result can be found in [12, Proposition A2].

Proposition 3.2 For a torus T acting on a variety X with a fixed point x , the follow-
ing conditions are equivalent:

(i) The weights of T in the Zariski tangent space Tx.X / are contained in an open
half-space.

(ii) There exists a one-parameter subgroup �W C� ! T such that, for all y in a
neighborhood of x , we have limt!0 �.t/y D x .

If (ii) holds, then the set

Xx WD

n
y 2X

ˇ̌̌
lim
t!0

�.t/y D x
o

is the unique affine T–invariant open neighborhood of x in X. Moreover, Xx admits a
closed T–equivariant embedding into TxX.

Lemma 3.3 Let X be an irreducible affine variety with a T–action and an attractive
fixed point x0 2 X. Then X is rationally smooth at x0 if and only if X is rationally
smooth everywhere.

Proof If X is rationally smooth everywhere, then it is rationally smooth at x0 . For the
converse, we use Proposition 3.2(ii) and the affineness of X to guarantee the existence
of a one-parameter subgroup �W C�! T such that

X D
n
y 2X

ˇ̌̌
lim
t!0

�.t/y D x0

o
:

In symbols, x0 2 C� �y , for any y 2 X. Now consider the classical topology on
X. We claim that any non-empty open T–stable subset of X containing x0 is all of
X. In effect, let U be a T–stable neighborhood of x0 . Then, for any y 2 X, there
exists sy 2 C� , such that sy � y 2 U . Indeed, because x0 is attractive, one can find
a sequence ftng � C� such that tn � y converges to x0 . That is, there exists N with
the property that tN � y belongs to U . Setting sy D tN yields sy � y 2 U . However,
U is T–stable, and therefore it contains the entire orbit C� � y . In short, y 2 U or,
equivalently, U DX.

Hence, the non-empty open T–stable subset of rationally smooth points of X is, a
fortiori, equal to X.
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Definition 3.4 Let X be an irreducible affine variety with a T–action and an attractive
fixed point x0 2X. If X is rationally smooth at x0 (and thus everywhere), we refer to
.X;x0/ as a rational cell.

It follows from Definition 3.4 and Proposition 3.2 that if .X;x0/ is a rational cell, then

X D
n
y 2X

ˇ̌̌
lim
t!0

�.t/y D x0

o
;

for a suitable one-parameter subgroup �. Notably, fx0g is the unique closed T–orbit
in X.

Example 3.5 Certainly Cn is a rational cell with the usual C�–action by scalar
multiplication. Here the origin is the unique attractive fixed point.

Example 3.6 Let V D fxy D z2g � C3 . The standard C�–action by scalar mul-
tiplication makes V a rational cell with .0; 0; 0/ as its attractive fixed point. This
is clear once we observe that V is the quotient of C2 by the finite group with two
elements, where the non-trivial element acts on .s; t/ 2C2 via .s; t/ 7! .�s;�t/. So
[12, Proposition A1(iii)] implies that V is rationally smooth.

We should remark that not all rational cells are orbifolds, ie, the singularities of a
rational cell need not always be of quotient type. We illustrate this fact with the
following example.

Example 3.7 Let V D V .p; q; r/ � C3 be the Brieskorn–Pham complex algebraic
surface

z
p
1
C z

q
2
C zr

3 D 0;

where p; q and r are integers � 2. It is well known that V has a normal isolated
singularity at the origin. Now let L be the topological link of V at .0; 0; 0/, that
is, L is the smooth, compact 3–manifold obtained by intersecting V with the unit
sphere jz1j

2 C jz2j
2 C jz3j

2 D 1. Notably, by work of Milnor [28], the singularity
type of V at .0; 0; 0/ can be completely determined from the topology of L. Milnor
shows that L is diffeomorphic to a coset space of the form G=� , where G is a simply
connected 3–dimensional Lie group and � is a discrete subgroup. In particular, the
fundamental group �1.L/ is isomorphic to this discrete subgroup � �G . There are
three possibilities for G , according as the rational number

1

p
C

1

q
C

1

r
� 1
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is positive, negative or zero. Furthermore, V has a quotient singularity at .0; 0; 0/ if
and only if �1.L/' � is finite or, equivalently, if and only if 1

p
C

1
q
C

1
r
�1> 0 [28].

Keeping this in mind, we now proceed to construct examples of rational cells that are
not orbifolds. First, observe that V admits a natural C�–action defined by

t � .z1; z2; z3/ WD .t
qr z1; t

pr z2; t
pqz3/:

Clearly the origin is the unique attractive fixed point of V . It turns out that V is
a rational cell if and only if L is a rational homology sphere (eg Theorem 3.10(c)).
Secondly, the work of Brieskorn provides useful criteria for determining when L is an
integer or, more generally, a rational homology sphere (Dimca [19, Theorem 3.4.10]).
For instance, in view of such criteria, L is an integer homology sphere whenever p , q

and r are relatively prime. Therefore, choosing p; q and r relatively prime such that

1

p
C

1

q
C

1

r
� 1� 0;

and considering the C�–action given above, yields a Brieskorn–Pham surface that is a
rational cell with a non-quotient singularity at the origin. A classical example is the
surface V .2; 3; 7/. Higher-dimensional analogues can also be constructed, by work of
Brieskorn, Milnor and others (see [19] and the references therein).

Example 3.8 A normal variety is not necessarily rationally smooth. For instance,
consider the hypersurface H � C4 defined by fxy D uvg. Because the singular
locus of H , namely f.0; 0; 0; 0/g, has codimension three, it follows that H is normal
(Shafarevich [38, page 128, comments after Theorem II.5.1.3]). Nevertheless, H

is not rationally smooth at the origin. To see this, let T D .C�/2 act on H via
.t; s/ �.x;y;u; v/D .tx; ts2y; su; st2v/. Then H has the origin as its unique attractive
fixed point. Moreover, H contains four T–invariant curves (the four coordinate axes)
passing through .0; 0; 0; 0/. If H were rationally smooth at the origin, then, by a result
of Brion Theorem 3.16, the dimension of H would equal the number of its T–invariant
curves. This is a contradiction, since H is only three-dimensional.

Definition 3.9 Let Z be a rationally smooth complex projective variety. Let n be
the (complex) dimension of Z . We say that Z is a rational cohomology complex
projective space if there is a ring isomorphism

H�.Z/'QŒt �=.tnC1/;

where deg.t/D 2.

Let .X;x/ be a rational cell. Then, by Proposition 3.2, X admits a closed T–equivariant
embedding into TxX. Set PX to be X � fxg. Choose an injective one-parameter
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subgroup �W C�! T as in Definition 3.4. Then all weights of the C�–action on TxX

via � are positive. Thus, the quotient

P .X / WD PX=C�

exists and is a projective variety [12]. Indeed, it is a closed subvariety of P .TxX /, a
weighted projective space. The variety P .X / can be viewed as an algebraic version of
the link of X at x .

Parts (a) and (d) of the following Theorem are due to Brion [12], and the idea of the
proof of part (b) is due to Renner (personal communication).

Theorem 3.10 Let .X;x0/ be a rational cell of dimension n. Then:

(a) X is contractible.

(b) X �fx0g is homeomorphic to S.X /�RC , where S.X / WDX �fx0g=R
C is a

compact topological space.

(c) X �fx0g deformation retracts to S.X /. In addition, X is rationally smooth at
x0 if and only if X �fx0g, and thus S.X /, is a rational cohomology sphere.

(d) The space P .X / D X � fx0g=C
� is a rationally smooth complex projective

variety of dimension n� 1. Furthermore, X is rationally smooth if and only if
P .X / is a rational cohomology complex projective space.

Proof For part (a) simply notice that the action of C� on X extends to a map
C �X ! X sending 0�X to x0 and restricting to the identity 1�X ! X. Since
the proof of (d) can be found in [12, Lemma 1.3], it suffices to prove parts (b) and (c).

(b) From Proposition 3.2, we know that X admits a closed T–equivariant embedding
into Tx0

X ' Cd , which identifies x0 with 0. Choosing a one-parameter subgroup
�W C�! T as in Definition 3.4 yields a C�–action on Cd with only positive weights
m1; : : : ;md . Specifically, � 2C� acts on Cd via

� � .z1; : : : ; zd /D .�
m1z1; : : : ; �

md zd /:

Next, define an RC–equivariant map N W Cd !R by

N.z1; : : : ; zd /D

qPd
iD1.zizi/

1=mi :

Clearly, for � 2C and z 2Cd , the definition satisfies N.� � z/D j�jN.z/ (here � � z
means .�m1z1; : : : ; �

md zd /).

Since RC acts freely on X �f0g �Cd �f0g, the quotient map

X �f0g ! S.X /
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is a principal RC–fibration. We claim that this fibration is trivial, ie,

X �f0g ' S.X /�RC:

To prove the claim, we just need to provide a global section s . In fact, we can do so
canonically. Let sW S.X /!X �f0g be the map defined by

s.Œx�/D
1

N.x/
�x:

This map is well defined (given that we are using the C�–action mentioned above)
and not only defines a global section, but also a homeomorphism between S.X / and
X \N�1.1/, where N�1.1/ is the “unit” sphere. Thus, S.X / is compact.

(c) The first claim follows immediately from part (b). As for the second assertion,
remember that X is contractible. Thus, the long exact sequence of cohomology groups
associated to the pair .X;X �fx0g/ splits into the short exact sequences

0 �!H i.X �fx0g/ �!H iC1.X;X �fx0g/ �! 0;

whenever i > 0, and

0 �!H 0.X / �!H 0.X �fx0g/ �!H 1.X;X �fx0g/ �! 0:

Therefore, X is rationally smooth if and only if X � fx0g is a rational cohomology
sphere of dimension 2n� 1.

Corollary 3.11 Keeping the same notation as in Theorem 3.10, the rational cell X is
homeomorphic to the open cone over S.X /. Moreover, P .X / is equivariantly formal.

Proof The first assertion follows from Theorem 3.10(c). As for the second, by
Theorem 3.10 again, P .X / is a rational cohomology complex projective space and
thus has no cohomology in odd degrees. We now apply Theorem 2.2 to conclude the
proof.

Proposition 3.12 Let .X;x0/ be a rational cell of dimension n. Denote by XC

its one point compactification. Then XC is simply connected and has the rational
homotopy type of S2n , the Euclidean 2n–sphere.

Proof First, observe that XC is path-connected. As a consequence of Theorem 3.10,
we can write XC as a union of two open cones D0 and D1 ; namely, D0 D

S � Œ0; 1/=S � f0g and D1 D S � .�;1�=S � f1g, where S stands for S.X / D
.X n fx0g/=RC , and � is a positive number less than 1. Given that X � fx0g is
path-connected, the intersection D0\D1 D S � .�; 1/ is path-connected as well. In
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summary, XC can be written as the union of two contractible open subsets with path-
connected intersection. Thus, by van Kampen’s theorem, XC itself is simply connected.
To finish the proof, we need to show that XC is a rational cohomology 2n–sphere. This
is a simple exercise, using the Mayer–Vietoris sequence of the cover fD0;D1g.

Lemma 3.13 (One-dimensional rational cells) Let .X;x/ be a rational cell of dimen-
sion one. Then:

(1) X is a cone over a topological circle.

(2) X is homeomorphic to C .

(3) If, additionally, X is normal, then X is isomorphic to C as an algebraic variety.

Proof Without loss of generality, we can assume that T acts faithfully on X. Thus,
T is isomorphic to C� . Now assertions (1) and (2) can be proved as follows. Since X

is one-dimensional, the singular locus is an invariant discrete set. Nonetheless, x0 is
the unique attractive fixed point, and C� is connected, so the singular locus is either
empty or consists of only one point, namely, x0 . As a result, X nfx0g is smooth. Next
notice that X has two C�–orbits: the attractive fixed point x0 , and a dense open orbit
of the form C� . Hence, X is homeomorphic to C and it is a cone over the circle S1 .

Finally, if we also assume that X is normal and one-dimensional, then a fortiori X is
smooth (Hartshorne [24]). This proves (3).

Lemma 3.14 Let .X;x/ be a rational cell. Suppose x is a smooth point. Then X is
isomorphic to its tangent space at x .

Proof By Proposition 3.2, we know that X admits an equivariant closed embedding
into TxX. If x is a smooth point, then both X and TxX have the same dimension.
For affine varieties this can only happen if X D TxX.

We are now ready to state what we call the equivariant normalization theorem for
rational cells. It is due to Brion [11, Proof of Theorem 18, implication .i/) .ii/] and
Arabia [2, Section 3.2.1].

Theorem 3.15 Let .X;x/ be a rational cell. Then there exists a T–module V and an
equivariant finite surjective map � W X ! V such that �.x/D 0 and V T D f0g.

We now specialize a result of Brion [12, Section 1.4, Corollary 2] to rational cells.

Theorem 3.16 Let .X;x/ be a rational cell. Suppose that the number of closed
irreducible T–stable curves on X is finite. Let n.X;x/ be this number. Then n.X;x/D

dim.X /.
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4 Homology and Betti numbers of Q–filtrable spaces

We define Q–filtrable varieties, spaces that come equipped with a paving by rational
cells, and show that they are equivariantly formal (Theorem 4.7).

4.1 The Białynicki-Birula decomposition

Let X be a projective algebraic variety with a C�–action and a finite number of fixed
points x1; : : : ;xm . Consider the associated BB–decomposition X D

F
i Wi , where

each cell is defined as follows:

Wi D

n
x 2X

ˇ̌̌
lim
t!0

t �x D xi

o
:

In the present section, we show that rational cells are a good substitute for the notion
of affine space in the topological study of singular varieties.

Remark 4.1 In general, the BB–decomposition of a projective variety is not a stratifi-
cation; that is, it may happen that the closure of a cell is not the union of cells, even if we
assume our variety to be smooth. For a justification of this claim, see Białynicki-Birula
[6, Example 1].

Definition 4.2 Let X be a complex algebraic variety endowed with a C�–action and
a finite number of fixed points. A BB–decomposition fWig is said to be filtrable if
there exists a finite increasing sequence X0 �X1 � � � � �Xm of closed subvarieties of
X such that:

(a) X0 D∅, Xm DX.

(b) For each j D 1; : : : ;m, the “stratum” Xj nXj�1 is a cell of the decomposi-
tion fWig.

The following result is due to Białynicki-Birula [6].

Theorem 4.3 Let X be a normal projective variety with a torus action and a finite
number of fixed points. Then the BB–decomposition is filtrable.

4.2 Q–filtrable spaces

To begin with, let us introduce a few technical results.
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Lemma 4.4 Let X be a complex projective algebraic variety with a C�–action.
Suppose X can be decomposed as the disjoint union

X D Y tC;

where Y is a closed stable subvariety and C is an open rational cell containing a fixed
point of X, say c0 , as its unique attractive fixed point. Denote by n the (complex)
dimension of C. Then

H k.X;Y /D

�
0 if k ¤ 2n;

Q if k D 2n:

Consequently,
H k.X /'H k.Y /

for all k¤ 2n�1; 2n; that is, attaching a complex n–dimensional rational cell produces
no changes in cohomology, except in degrees 2n� 1 and 2n.

Furthermore, if Y has no cohomology in odd degrees, then X has no odd cohomology
either, and there is a short exact sequence of the form

0 �!H 2n
c .C / �!H 2n.X / �!H 2n.Y / �! 0:

Proof Let H�c .�/ denote cohomology with compact supports. It is well known that
H�.X /DH�c .X / and H�.Y /DH�c .Y /, because X and Y are complex projective
varieties. Moreover, by Peters and Steenbrink [29, Corollary B.14], one has

H�.X;Y /'H�c .X �Y /DH�c .C /:

Given that C is a rational cell, and a cone over a rational cohomology sphere of
dimension 2n� 1 (Corollary 3.11), it follows easily that

H k
c .C /DH k.C;C �fc0g/D

�
0 if k ¤ 2n;

Q if k D 2n:

So the first claim is proved.

As for the second assertion, consider the long exact sequence of the pair .X;Y /,
namely,

� � � !H��1.Y /!H�.X;Y /!H�.X /!H�.Y /!H�C1.X;Y /! � � � :

By our previous remarks, this long exact sequence can be rewritten as

� � � !H��1.Y /!H�c .C /!H�.X /!H�.Y /!H�C1
c .C /! � � � :

This gives
H k.X /'H k.Y /
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for k ¤ 2n� 1; 2n, as well as the exact sequence

0!H 2n�1.X /!H 2n�1.Y /!H 2n
c .C /DQ!H 2n.X /!H 2n.Y /! 0:

In other words, the passage from Y to X, by attaching C , only affects cohomology in
degrees 2n� 1 and 2n.

Finally, if Y has no cohomology in odd degrees, then the latter sequence splits further,
yielding the identifications H i.X / D H i.Y /, whenever i ¤ 2n, and a “lifting of
generators” sequence:

0 �!H 2n
c .C / �!H 2n.X / �!H 2n.Y / �! 0:

The proof is now complete.

Corollary 4.5 Let X be a normal complex projective variety endowed with a C�–
action and a finite number of fixed points. Suppose that each BB–cell is a rational
cell. Then X has vanishing odd cohomology over the rationals, and the dimension
of its cohomology group in degree 2k equals the number of rational cells of complex
dimension k . Furthermore, X is equivariantly formal and �.X /D jX T j.

Proof Since the BB–decomposition on X is filtrable, the result follows from the
previous lemma as we move up in the filtration by attaching one rational cell at a time.
This process is systematic and preserves cohomology in lower and higher degrees at
each step.

Let T be an algebraic torus acting on a variety X. A one-parameter subgroup �W C�!
T is called generic if X C�

DX T , where C� acts on X via �. Generic one-parameter
subgroups always exist. Note that the BB–cells of X, obtained using �, are T–invariant.

Our results in this section suggest the following definition.

Definition 4.6 Let X be a projective variety equipped with a T–action. We say that
X is Q–filtrable if

(1) X is normal,

(2) the fixed point set X T is finite, and

(3) there exists a generic one-parameter subgroup �W C�! T for which the associ-
ated BB–decomposition of X consists of rational cells.
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Theorem 4.7 Let X be a normal projective T–variety. Suppose that X is Q–filtrable.
Then:

(a) X admits a filtration into closed subvarieties Xi , i D 0; : : : ;m, such that

∅DX0 �X1 � � � � �Xm�1 �Xm DX:

(b) Each cell Ci DXi nXi�1 is a rational cell, for i D 1; : : : ;m.

(c) For each i D 1; : : : ;m, the singular rational cohomology of Xi vanishes in odd
degrees. In other words, each Xi is equivariantly formal.

(d) If, in addition, the T–action on X is T–skeletal, then each Xi is a GKM–variety.

Proof Assertions (a) and (b) are a direct consequence of Definition 4.6 and Theorem
4.3. Applying Corollary 4.5 and Theorem 2.2 at each step of the filtration yields claim
(c). For statement (d), we argue as follows. Notice that all the Xi have vanishing odd
cohomology, as it is guaranteed by (c). Moreover, since the Xi are T–invariant and the
T–action on X is T–skeletal, each Xi contains only a finite number of fixed points
and T–invariant curves. In consequence, Theorem 2.6 applied to each Xi gives (d).

Thus, we obtain the applicability of GKM theory at each step of the filtration, even
though the various Xi are not necessarily rationally smooth. This approach is more
flexible than the general approach (by comparing singular cohomology with intersection
cohomology) used, for instance, in Renner [35, Theorem 3.7] or in Weber [42]. Such
flexibility will become apparent from our results in Section 6, where we supply a
method for constructing free module generators on the equivariant cohomology of
Q–filtrable GKM–varieties (Theorem 6.9). This method is based on the notion of
equivariant Euler classes.

5 Equivariant Euler classes

We quickly review the theory of equivariant Euler classes. For a complete treatment of
the subject, the reader is invited to consult [25; 2].

Let X be a T–variety with an isolated fixed point x . Let us first assume that .X;x/ is
a rational cell of complex dimension n. Recall that S.X /D ŒX �fxg�=RC is a rational
cohomology sphere S2n�1 and that X is homeomorphic to the (open) cone over S.X /
(Theorem 3.10 and Corollary 3.11). The Borel construction yields the fibration

S.X / ,! S.X /T ! BT:
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Observe that the E2 –term of the corresponding Serre spectral sequence consists of
only two rows, namely,

E
p;q
2
DH p.BT /˝H q.S.X //¤ 0 only when q D 0 and q D 2n� 1:

Let EuT .x;X / 2 H 2n.BT / be the transgression of a generator of H 2n�1.S.X //.
We call EuT .x;X / the equivariant Euler class of X at x . It follows from [25,
Theorem IV.6] that EuT .x;X / splits into a product of linear polynomials, namely

EuT .x;X /D !
k1

1
� � �!ks

s ;

where !i 2H 2.BT /'„.T /˝Q. Here „.T / stands for the character group of T ,
and the isomorphism is provided in Example 1.1.

Since X is a cone over S.X /, H�c .X /'H�.X;X�fxg/'Q, where H�c .�/ denotes
cohomology with compact supports. Using the Serre spectral sequence, one notices
that these isomorphisms are also valid in equivariant cohomology:

H�T;c.X /'H�T .X;X �fxg/'H�T

Let TX be the canonical module generator of H�
T
.X;X �fxg/. This generator can be

described by the commutative diagram

H�
T
.X;X �fxg/

i�
//

R
ŒX �

��

H�
T
.X /

res
��

H�
T
.x/

ˆ�
X

OO

�.EuT .x;X // // H�
T
.x/;

where ˆ�
X

is an equivariant Thom isomorphism (recall that ˆ�
X

is multiplication by
TX ). In other words, TX is the unique class in H�

T
.X;X � fxg/ whose restriction

to H�
T
.pt/ coincides with EuT .x;X /. The class TX is commonly called the Thom

class of X . Let us bear in mind that the map ˆ�
X

raises degree by 2n. Clearly,
H�

T
.X;X � fxg/'H�c .X /˝H�

T
.pt/ and so, H

j
T;c
.X /D 0 for j < 2n. As for the

integral appearing here, it corresponds to the inverse of ˆ�
X

. The reason for this is
that .ˆ�

X
/�1 can be interpreted geometrically as a pushforward or as a morphism of

“integration along the fibres” [2, Section 2].

Let QT be the quotient field of H�
T

. If � 2H�
T;c
.X /, then

EuT .x;X /^

Z
ŒX �

�D �x;
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where �x denotes restriction of the class � to x . Hence, the identity

1

EuT .x;X /
D

1

�x

Z
ŒX �

�;

holds in QT , for every non-zero � in H�
T
.X;X �fxg/.

More generally, let X be a T–variety with an isolated fixed point x . Suppose that
X is rationally smooth at x . As pointed out in [2], we can replace X by a conical
neighborhood Ux of x and define EuT .x;X / WD EuT .x;Ux/. For instance, if x is
also an attractive fixed point, we can let Ux be a rational cell (Proposition 3.2).

In case the isolated fixed point x 2 X is not necessarily a rationally smooth point,
Arabia [2] has shown that we can still define an Euler class EuT .x;X /. The key
ingredient here is that, by Theorem 1.2, the map

i�W H�T .X;X �fxg/!H�T .x/

is an isomorphism modulo H�
T

–torsion. Therefore, the function that assigns to a
non-torsion element � 2H�

T
.X;X �fxg/ the fraction 1

�x

R
X � 2QT is constant.

Definition 5.1 Let X be a T–variety. Suppose that x 2X T is an isolated fixed point.
The fraction

1

EuT .x;X /
WD

1

�x

Z
X

� 2QT ;

where � is any non-torsion element of H�
T
.X;X �fxg/, is called the inverse of the

equivariant Euler class of X at x . When this fraction is non-zero, we denote its inverse
by EuT .x;X / and call it the equivariant Euler class of X at x .

If x is a rationally smooth isolated fixed point of a T–variety X, then the classical
equivariant Euler class, given at the beginning of this section, agrees with the one
presented in Definition 5.1, up to a non-zero rational number [2, Section 2]. Moreover,
in this case, EuT .x;X / is a non-zero polynomial, and splits into a product of linear
factors [2, Remark 2.3-2(b)].

The technical advantage of the modern approach to equivariant Euler classes (Definition
5.1) is that it allows to compute EuT .x;X / quite easily in case X has only finitely
many T–invariant curves passing through the fixed point x ; see eg [2, Section 3] and
Corollary 5.6 below. From now on, equivariant Euler classes will be understood in the
sense of Definition 5.1.
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Example 5.2 When X DCn , x D 0, and the algebraic torus T acts linearly on Cn ,
one proves

EuT .0;C
n/D

Y
˛2A

˛;

where A is the collection of weights. Furthermore, if the weights in A are pairwise
linearly independent, then the associated complex projective space P .Cn

A/ has exactly
n T–fixed points: the lines C˛i

. One also verifies that

EuT .ŒC˛i
�;P .Cn

A//D
Y
j¤i

. j̨ �˛i/:

See [2, Remark 2.4.1-1].

Remark 5.3 The inverse of the equivariant Euler class coincides with the equivariant
multiplicity at a nondegenerate fixed point [9, Section 4].

Proposition 5.4 (Atiyah–Bott localization formula [2]) Let X be a complex projec-
tive variety. Suppose that a torus T acts on X with only a finite number of fixed points.
Then Z

X

�D
X

x2X T

�jx

EuT .x;X /
;

for any � 2H�
T
.X /.

Let .X;x/ be a rational cell. Then, by Proposition 3.2, X admits a closed T–equivariant
embedding into its tangent space TxX. Notice that there are only a finite number of
codimension-one subtori T1; : : : ;Tm of T for which X Tj ¤X T , since each one of
them is contained in the kernel of a weight of T in TxX.

Theorem 5.5 [2; 11] Let .X;x/ be a rational cell of dimension n. Let � W X !Cn

be the equivariant finite surjective map from Theorem 3.15. Then:

(a) The induced morphism in cohomology

��W H 2n
c .Cn/ �!H 2n

c .X /

is an isomorphism and satisfies
R

Y �
�.�/ D deg.�/

R
Cn �, where deg.�/ is

the cardinality of a general fibre of � . This formula also holds in equivariant
cohomology, in particular

EuT .0;C
n/D deg.�/ �EuT .x0;X /:

(b) EuT .X;x/ D c
Q

Ti
EuT .X

Ti ;x/, where c is a positive rational number, and
the product runs over the finite number of codimension-one subtori Ti of T for
which X Ti ¤X T .
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Proof We refer the reader to [2, Proposition 3.2.1-1] for the proof of part (a). Finally,
part (b) follows from Remark 5.3 and [11, Theorem 18 (iii)].

Let .X;x/ be a rational cell. At the beginning of this section it was shown that
EuT .x;X / splits into a product of characters. The following result provides a geometric
interpretation of this factorization.

Corollary 5.6 Let .X;x/ be a rational cell of dimension n. Suppose that X contains
only a finite number of closed irreducible T–invariant curves Ci , i D 1; : : : ; n. Let �i

be the character associated with the action of T on Ci . Then

EuT .x;X /D c ��1 � � ��n;

where c is a positive rational number.

Proof There is only a finite number of codimension-one subtori Ti such that X Ti ¤

X T . Notice that T acts on each X Ti through its quotient T=Ti 'C� . Because x is
an attractive fixed point of X, we can assume, without loss of generality, that x is an
attractive fixed point of each X Ti , for the induced action of C� ' T=Ti . It follows
from [12, Section 1.4, Corollary 2] that X Ti D Ci . Moreover, by [12, Theorem 1.1],
each X Ti is rationally smooth at x . Hence, each X Ti is a one-dimensional rational
cell with attractive fixed point x (see Lemma 3.13 for a characterization of these cells).
The result can now be deduced from Theorem 5.5 and Example 5.2.

6 Local indices and module generators for the equivariant
cohomology of Q–filtrable GKM varieties

We supply a method for building canonical free module generators on the equivariant
cohomology of any Q–filtrable GKM–variety. Our findings here extend the work of
Guillemin and Kogan [22] on the equivariant K–theory of orbifolds to the equivariant
cohomology of a much larger class of singular varieties.

Let X be a Q–filtrable GKM–variety. In other words, X is a normal projective T–
variety with only a finite number of fixed points and T–invariant curves. Moreover, after
choosing, once and for all, a generic one-parameter subgroup �W C�! T satisfying
condition (c) of Definition 4.6, there exists a BB–decomposition of X as a disjoint
union of rational cells, say .C1;x1/; : : : ; .Cm;xm/, each one containing xi 2X T as
its unique attractive fixed point. (Observe that the fixed points need not be attractive
in X, but they are so in their particular rational cells.) This decomposition induces a
filtration of X,

∅DX0 �X1 �X2 � � � �Xm DX;
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by closed invariant subvarieties Xi , so that each difference Xi nXi�1 equals Ci , for
i D 1; : : : ;m. The key observation here is provided by Theorem 4.7. It states that every
Xi is equivariantly formal and is made up of rational cells. In consequence, GKM
theory can be applied to each Xi . We will refer to Xi as the i th filtered piece of X ,
and m will be called the length of the filtration.

Denote by x1; : : : ;xm the fixed points of X. The filtration induces a total ordering of
the fixed points, namely,

x1 < x2 < � � �< xm:

In the sequel, we refer to this ordering as the order relation on X T compatible with the
filtration of X . Keep in mind that both the filtration of X, as well as the compatible
total order of the fixed points, depend on our fixed choice of � given above.

Let .Ci ;xi/ be a rational cell of X. From the previous section, we know that

H�T;c.Ci/'H�T .Ci ;Ci �fxig/'H�T .xi/;

where the second isomorphism is provided by the Thom class Ti , a well-known element
of H�

T
.Ci ;Ci � fxig/. When restricted to H�

T
.xi/, the Thom class Ti becomes a

product of linear polynomials: the Euler class EuT .ci ;Ci/.

In Section 4 we built non-equivariant short exact sequences of the form

0 �!H 2k
c .Ci/ �!H 2k.Xi/ �!H 2k.Xi�1/ �! 0;

for every i . Since the spaces involved have zero cohomology in odd degrees, then
these short exact sequences naturally generalize to the equivariant case, so we also
have equivariant short exact sequences

0 �!H 2k
T;c.Ci/ �!H 2k

T .Xi/ �!H 2k
T .Xi�1/ �! 0;

for each i . On the other hand, by equivariant formality, the singular equivariant
cohomology of each Xi injects into H�

T
.X T

i /D
L
j�i

H�
T
.xj /.

In summary, for each i , we have the commutative diagram

(1)

0 // H�
T;c
.CiC1/ //

��

H�
T
.XiC1/ //

��

H�
T
.Xi/ //

��

0

0 // H�
T
.xiC1/ //

L
j�iC1

H�
T
.xj / //

L
j�i

H�
T
.xj / // 0

where the vertical maps are all injective. Indeed, such maps correspond to the various
restrictions to fixed point sets. We will use this diagram to build cohomology generators.
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The next two lemmas are inspired by [23, Theorem 2.3 and Proposition 4.1], where
Kac–Moody flag varieties are studied.

Lemma 6.1 Let X be a Q–filtrable variety. Then there exists a non-canonical isomor-
phism of H�

T
–modules

H�T .X /'
M

xi2X T

EuT .Ci ;xi/H
�
T .pt/;

which is compatible with restriction to the various i th filtered pieces Xi �X.

Proof We argue by induction on the length of the filtration. The case mD 1 is simple,
because it corresponds to X D fx1g, a singleton. Assuming that we have proved the
assertion for m, let us prove the case mC 1. Substitute i D m in the commutative
diagram above. Then

H�T .XmC1/DH�T .X /'H�T;c.CmC1/˚H�T .Xm/:

By induction, H�
T
.Xm/'

Q
i�m EuT .Ci ;xi/H

�
T
.pt/. So the claim for mC1 follows

directly from the isomorphism H�
T;c
.CmC1/' EuT .CmC1;xmC1/H

�
T
.pt/.

The isomorphism of the previous lemma is not canonical because the cellular decompo-
sition of X depends on our particular choice of generic one-parameter subgroup and a
compatible ordering of the fixed points.

Convention From now on, given a class � 2H�
T
.X /, we will denote by �.xi/ its

restriction to the fixed point xi .

Lemma 6.2 Let X be a projective T–variety. Assume that X is Q–filtrable and let
x1 < x2 < � � � < xm be the order relation on X T compatible with the filtration of X.
For each i , let 'i 2H�

T
.X / be a class such that

'i.xj /D 0 for j < i , and 'i.xi/ is a scalar multiple of EuT .i;Ci/:

Then the classes f'ig generate H�
T
.X / freely as a module over H�

T
.pt/.

Proof Since X is equivariantly formal, we know that H�
T
.X / injects into H�

T
.X T /

and is a free H�
T

–module of rank mD jX T j. First, we show that the 'i are linearly
independent. Arguing by contradiction, suppose there is a linear combination

mX
iD0

fi'i D 0;
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with fi 2 H�
T

, not all of them zero. Let k be the minimum of the set fi j fi ¤ 0g.
Then we have

fk'k CfkC1'kC1C � � �Cfm'm D 0;

where fk ¤ 0. Let us restrict this linear combination to xk . Then

fk'k.xk/CfkC1'kC1.xk/C � � �Cfm'm.xk/D 0:

But '`.xk/D 0 for all ` > k . Thus we obtain

fk'.xk/D 0:

However, '.xk/ is a non-zero multiple of the Euler class EuT .xk ;Ck/ and, as such, it
is non-zero. We conclude that fk must be zero. This is a contradiction.

To conclude the proof, we need to show that the 'i generate H�
T
.X / as a module. But

this is a routine exercise, using induction on the length of the filtration of X (the base
case being trivial). The commutative diagram (1) then disposes of the inductive step.

As for the existence of classes satisfying Lemma 6.2, we will show that they can always
be constructed on GKM–varieties. First, we need two technical lemmas.

Lemma 6.3 Let X be a normal projective T–variety with finitely many fixed points.
Choose a generic one-parameter subgroup and write X as X D C tY , where

C D
n
z 2X

ˇ̌̌
lim
t!0

tz D x
o

is the stable cell of x 2X T , and Y is closed and T–stable. Then any closed irreducible
T–stable curve that passes through x is contained in the Zariski closure of C .

Proof Let ` be a closed irreducible T–stable curve passing through x . Recall that `
is the closure of a one-dimensional orbit T z . Moreover, `D T z has two distinct fixed
points, namely, x and a fixed point yi.`/ contained necessarily in Y . We claim that
z 2 C . For otherwise, limt!0 tz D yi.`/ , which implies that z belongs to the stable
subvariety of yi.`/ . Since Y is T–invariant and closed, `D T z � Y . That is, x 2 @`

would belong to Y , which contradicts our original hypothesis. Thus z 2 C .

The fact that C is also T–stable gives the inclusion T z � C . We conclude that
`D T z � C .
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Lemma 6.4 Let X be a normal projective variety on which a torus acts with a finite
number of fixed points and one-dimensional orbits. Suppose X is equivariantly formal
and there is a generic one-parameter subgroup such that X can be written as a disjoint
union X D C tY , where

C D fz 2X j lim
t!0

tz D xg

is a rational cell with unique attractive fixed point x 2 X T , and Y is closed and
T–stable. Then the cohomology class � 2

L
w2X T H�

T
.w/, defined by

�.x/D EuT .x;C / and �.y/D 0 for all y 2 Y T;

belongs to the image of H�
T
.X / in H�

T
.X T /.

Proof The hypotheses imply that X is a GKM–variety. As a result, the equivariant
cohomology of X can be described by the GKM-relations of Theorem 2.5. So, to
prove the lemma, it is enough to verify that � satisfies such relations.

Because � restricts to zero at every fixed point except x , we need only show that

�.x/D �.x/� �.yi/D EuT .x;C /

is divisible by �i whenever the fixed points x 2 C and yi 2 Y T are joined by a
T–curve `i in X, and T acts on `i through �i . Let p be the total number of `i .

By Lemma 6.3, the curve `i is contained in the Zariski closure C of C . In fact,
`i n fyig � C . Also, it follows from Theorem 3.16 that p D dim.C /. Thus, using
Corollary 5.6, we conclude that EuT .x;C / is a non-zero multiple of the �i . In short,
� belongs to H�

T
.X /.

It is noticeable that, in the previous lemmas, no assumption on the irreducibility of X

has been made. Surely we allow for some flexibility in this matter, since the various
filtered pieces Xi of a Q–filtrable space X need not be irreducible.

Theorem 6.5 Let X be a Q–filtrable GKM–variety. Then cohomology generators
f'ig of H�

T
.X / with the properties described in Lemma 6.2 exist.

Proof We proceed by induction on m, the length of the filtration of X. If mD 1, then
X is just a point, and the statement is clear, because we can simply choose '1 D 1.
Now, assuming the statement holds for Q–filtrable varieties X with a filtration of
length m, let us prove it for those X with a filtration of length mC 1. First, notice
that we have a filtration

∅DX0 �X1 �X2 � � � �Xm ¨ XmC1 DX:
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By the inductive hypothesis, there are classes '1; : : : ; 'm 2H�
T
.Xm/, which satisfy

the properties of Lemma 6.2 in H�
T
.Xm/. Now using the commutative diagram (1),

we can lift them to classes z'1; : : : ; z'm , which lie in H�
T
.XmC1/DH�

T
.X /. A simple

check shows that these lifted classes satisfy the conditions of Lemma 6.2 on X. In
consequence, we just need to construct one extra class in H�

T
.X /, namely 'mC1 , with

the sought-after qualities. Set 'mC1.xmC1/D EuT .xmC1;CmC1/ and 'mC1.xj /D 0

for all j �m. Lemma 6.4 guarantees that this class in fact belongs to H�
T
.X /. The

inductive step is thus proved, concluding the argument.

Definition 6.6 Let X be a Q–filtrable T–variety. Fix an ordering of the fixed points,
say x1 < x2 < � � �< xm . Given � 2H�

T
.X /, we define its local index at xi , denoted

Ii.�/, by the following formula:

Ii.�/D

Z
Xi

p�i .�/;

where pi W Xi ! X denotes the inclusion of the i th filtered piece into X. It follows
from the definition that assigning local indices yields H�

T
–linear morphisms

Ii W H
�
T .X /!H�T .pt/:

Using the localization formula (Proposition 5.4), one can easily prove the following:

Lemma 6.7 The local index of � at xi satisfies

Ii.�/D
X
j�i

�.xj /

EuT .xj ;Xi/
;

where �.xj / denotes the restriction of � to xj .

Corollary 6.8 Let xi 2X T be a fixed point. Suppose that � 2H�
T
.X / is a cohomol-

ogy class that satisfies �.xj /D 0 for all j < i . Then

�.xi/D Ii.�/EuT .xi ;Xi/:

Our most important result in this section is the following generalization of the work of
Guillemin and Kogan [22, Theorems 1.1 and 1.6] to Q–filtrable GKM–varieties.

Theorem 6.9 Let X be a Q–filtrable GKM–variety. Let x1 < x2 < � � �< xm be the
order relation on X T compatible with the filtration of X. Then, for each i D 1; : : : ;m,
there exists a unique class �i 2H�

T
.X / with the following properties:

Geometry & Topology, Volume 18 (2014)



318 Richard Gonzales

(i) Ii.�i/D 1.

(ii) Ij .�i/D 0 for all j ¤ i .

(iii) The restriction of �i to xj 2X T is zero for all j < i .

(iv) �i.xi/D EuT .i;Ci/.

Moreover, the �i generate H�
T
.X / freely as a module over H�

T
.pt/.

Proof By Theorem 6.5, choose a set of free generators f'ig which satisfy the properties
described in Lemma 6.2, together with the additional condition 'i.xi/D EuT .i;Ci/.

Given i , notice that Ij .'i/D 0, for all j < i , and Ii.'i/D 1. We will show that we can
modify these 'i accordingly to obtain the generators �i . In fact, given i 2 f1; : : : ;mg,
the only obstruction to setting �i D 'i is that Ij .'i/ can be non-zero for some j > i .

Let i 2 f1; : : : ;mg. If Ij .'i/D 0 for all j > i , then let �i D 'i . Otherwise, proceed
as follows. Let k0 be the minimum of all k > i such that Ik.'i/ ¤ 0. Define
‰i D 'i � Ik0

.'i/'k0
. Let us compute the local indices of ‰i . Clearly, if j < i , we

have Ij .‰i/D 0. Also, if j D i , then Ii.‰i/D 1. It is worth noticing that ‰i restricts
to 0 at each xj with j < i . Now if j satisfies i < j � k0 , then Ij .‰i/ D 0. So,
arguing by induction, we can provide a class �‰i such that Ij .�‰i/D 0 for all j ¤ i ,
and Ii.�‰i/D 1. Thus, set �i D

�‰i . Proceeding systematically from i D 1 to i Dm,
we construct the family of classes �i satisfying the desired properties (i)–(iv).

Let us now prove uniqueness. Suppose there are classes f�ig and f� 0ig satisfying all
the properties of the theorem. Fix i and let � D �i � �

0
i . It is clear that � is an element

of H�
T
.X / whose local index Ij .�/ is zero for all j . Suppose that � is not zero. Then,

since H�
T
.X / injects into H�

T
.X T /, there should be a k such that �.xk/¤ 0. Take

the minimum of all k ’s for which �.xk/¤ 0. Denote this minimum by s . Then, by
Corollary 6.8, one would have �.xs/D Is.�/EuT .xs;Xs/D 0. But this contradicts the
fact that �.xs/¤ 0. Therefore � D 0. Since i can be chosen arbitrarily, we conclude
that �i D �

0
i for all i .

Finally, notice that properties (iii) and (iv) together with Lemma 6.2 imply that the �i

freely generate H�
T
.X /. We are done.

7 Rational cells and standard group embeddings

Thus far, we have developed the theory of Q–filtrable varieties. In this last section, we
provide the theory with a large class of examples, namely, rationally smooth standard
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embeddings. We show that these varieties admit BB–decompositions into rational cells
(Theorem 7.4). Thus, they are Q–filtrable and satisfy Theorems 4.7 and 6.9.

First, let us set the stage. An affine algebraic monoid M is called reductive if it is
irreducible, normal, and its unit group is a reductive algebraic group. See Renner [31]
for many of the details. A reductive monoid is called semisimple if it has a zero element,
and its unit group has a one-dimensional center.

Let M be a reductive monoid with zero. Denote by G its unit group and by T a
maximal torus of G . Associated to M , there is a torus embedding T �M defined as
follows

T D fx 2M j xt D tx; for all t 2 T g:

Certainly, T � T . Let E.T / be the idempotent set of T ; that is,

E.T /D fe 2 T j e2
D eg:

The Renner monoid, R, is defined to be R WDNG.T /=T . It is a finite monoid whose
group of units is W (the Weyl group) and contains E.T / as idempotent set. In fact,
any x 2R can be written as x D f u, where f 2E.T / and u 2W . Recall that W is
generated by reflections fs˛g˛2ˆ , where ˆ is the set of roots of G with respect to T .

Denote by Rk the set of elements of rank k in R, that is,

Rk D fx 2R j dim T x D kg:

Definition 7.1 Let M be a reductive monoid with unit group G and zero element
0 2M. There exists a central one-parameter subgroup �W C� ! G with image Z

contained in the center of G , that converges to 0 Brion [14, Lemma 1.1.1]. Then C�

acts attractively on M via � , and hence the quotient

P�.M /D ŒM n f0g�=C�

is a normal projective variety. Notice also that G �G acts on P�.M / via

G �G �P�.M /! P�.M /; .g; h; Œx�/ 7! Œgxh�1�:

Furthermore, P�.M / is a normal projective embedding of the reductive group G=Z .
In the sequel, X D P�.M / will be called a standard group embedding.

When M is semisimple (in which case � is essentially unique), we write P .M / for
P�.M /. Indeed, for such a monoid, Z 'C� is the connected center of the unit group
G of M . Thus, a semisimple monoid with unit group G can be thought of as an affine
cone over some projective embedding P .M / of the semisimple group G0 D G=Z .
For an up-to-date description of these and other embeddings, see [1].
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Example 7.2 Let G0 be a semisimple algebraic group over the complex numbers and
let �W G0! End.V / be a representation of G0 . Define Y� to be the Zariski closure
of G D Œ�.G0/� in P .End.V //, the projective space associated with End.V /. Finally,
let X� be the normalization of Y� . By definition, X� is an standard group embedding
of G . Notice that M� , the Zariski closure of C��.G0/ in End.V /, is a semisimple
monoid whose group of units is C��.G0/. Rationally smooth standard embeddings of
the form X� , with � irreducible, have been classified combinatorially in [34].

Remark 7.3 Let P�.M / be a standard group embedding. Associated to P�.M /, there
is a standard torus embedding of T=Z , namely,

P�.T /D ŒT n f0g�=C
�:

By construction, P�.T / is a normal projective torus embedding contained in P�.M /.
Notably, by a result of Renner [34, Theorems 2.4 and 2.5], P�.M / is rationally smooth
if and only if P�.T / is rationally smooth.

We now come to the main result of this section. It states that rationally smooth standard
embeddings are equivariantly formal for the induced T �T–action.

Theorem 7.4 Let X D P�.M / be a standard group embedding. If X is rationally
smooth, then X is Q–filtrable.

Proof Renner has shown that X comes equipped with the following BB–decomposi-
tion:

X D
G

r2R1

Cr ;

where R1 DX T�T . See Renner [32, Theorem 3.4; 35, Theorem 4.3] for more details.
Our strategy is to show that if X is rationally smooth, then each cell Cr is rationally
smooth.

With this purpose in mind, we call the reader’s attention to the fact that, in the terminol-
ogy of [32], M is quasismooth [32, Definition 2.2] if and only if M n f0g is rationally
smooth. The equivalence between these two notions follows from [32, Theorem 2.1]
and [34, Theorems 2.1, 2.3, 2.4 and 2.5].

Next, by [32, Lemma 4.6 and Theorem 4.7], each Cr equals

U1 �C �r �U2;

where the Ui are affine spaces. Moreover, if we write r 2 R1 as r D ew , with
e 2E1.T / and w 2W , then C �r DC �e w . So it is enough to show that C �e is rationally
smooth, for e 2E1.T /.
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By [32, Theorem 5.1], it follows that, if X D P�.M / is rationally smooth, then

C �e D ŒfeM.e/�=Z;

for some unique fe 2E.T /, where M.e/DMeZ and Me is rationally smooth [34,
Theorem 2.5]. Furthermore, the proof of [32, Theorem 5.1] also implies that Œe� is the
zero element of the rationally smooth, reductive, affine monoid M.e/=Z . Additionally,

C �e D
n
x 2M.e/=Z

ˇ̌̌
lim
s!0

sx D Œe�
o
;

for some generic one-parameter subgroup. Using Lemma 7.5 below, one concludes
that C �e is rationally smooth.

Finally, since X is normal, projective and admits a BB–decomposition into rational
cells, we have compiled all the necessary data to conclude that X is Q–filtrable.

Lemma 7.5 Let M be a reductive monoid with zero. Suppose that zero 0 is a
rationally smooth point of M . Let f 2E.M / be an idempotent of M . Then 0 2 fM

is a rationally smooth point of the closed subvariety fM .

Proof By [14, Lemma 1.1.1], one can find a one-parameter subgroup �W C�! T ,
with image S , such that �.0/D f . Notice that

fM D fx 2M j �.t/x D x; for all t 2C�g;

that is, fM is the fixed point set of the subtorus S of T . Thus, by [12, Theorem 1.1],
one concludes that 0 is also a rationally smooth point of fM .

Next we provide a partial converse to Theorem 7.4.

Theorem 7.6 Let X D P�.M / be a standard embedding. Suppose that X contains a
unique closed G �G –orbit. If X is Q–filtrable, then X is rationally smooth.

Proof Since X contains a unique closed G�G –orbit, it follows from [31, Chapter 7]
that W �W acts transitively on R1 , the set of representatives of the T �T –fixed points
of X. Because X is irreducible, there exists a unique cell, say C� , with � 2R1 , such
that X D C� . By assumption, C� is rationally smooth at � , and so, X is rationally
smooth at � . We claim that X is rationally smooth at every r 2R1 DX T�T . Indeed,
by the previous remarks, rDw �� �v , for some .w; v/2W �W and rational smoothness
is a local property invariant under homeomorphisms. Now Lemma 7.7 below concludes
the proof.
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Lemma 7.7 Let X be a projective T–variety with a finite number of fixed points
x1; : : : ;xm . Then X is rationally smooth at every x 2X if and only if X is rationally
smooth at every fixed point xi .

Proof One direction is clear. For the converse, pick a generic one-parameter subgroup
�W C�! T such that X T DX C�

. Let x 2X. Then, there exists xk 2X T such that
xk D limt!0 tx (BB–decomposition). Moreover, since X is rationally smooth at xk ,
there exists a neighborhood Vk of xk with the property that X is rationally smooth at
every y 2 Vk . By construction, there exists s 2 C� satisfying sx 2 Vk . To see this,
simply notice that we can find a sequence fsng � C� for which sn � x converges to
xk , ie, there is N such that sn �x belongs to Vk , for all n�N . Now setting s D sN

yields s �x 2 Vk . In other words, sx is a rationally smooth point of X. But the set of
rationally smooth points is T–invariant. Hence, x is a rationally smooth point of X.
Inasmuch as the point x was chosen arbitrarily, the argument is complete.

In the author’s thesis it was shown that all standard embeddings are T �T–skeletal.
Consequently, rationally smooth standard embeddings are also GKM–varieties. In a
forthcoming paper [20], we find explicitly all the GKM–data (ie, fixed points, invariant
curves and associated characters) of any rationally smooth standard embedding P�.M /,
and describe H�

T�T
.P�.M // as a complete combinatorial invariant of M . The results

will appear elsewhere.

We conclude by mentioning a few concrete examples to which our theory applies.

Example 7.8 Rationally smooth torus embeddings are exactly the simplicial toric
varieties (Danilov [18]). Among them, those that are projective are also Q–filtrable (by
Theorem 7.4). In particular, the coarse moduli space of a toric Deligne–Mumford stack
(Borisov, Chen and Smith [8]), when projective, is Q–filtrable (cf [8, Proposition 3.7]).

Example 7.9 Let M be a semisimple monoid with zero and unit group G of the
form C��G0 , where G0 is a simple algebraic group of type A2 , C2 or G2 . Then the
associated standard embedding P .M / is always rationally smooth. This follows from
Remark 7.3, since, in this context, the associated torus embedding P .T / is a simplicial
toric surface.

Example 7.10 Let G be a semisimple algebraic group with Borel subgroup B and
maximal torus T � B . An embedding of G is called simple if it contains a unique
closed G �G–orbit. Let X be such an embedding. Then, using the notation from
Example 7.2, X is of the form P .M��/, for some irreducible representation �� of
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G , with highest weight � [34]. Moreover, the unique closed G �G –orbit of X is the
partial flag variety G=PJ �G=P�

J
, where

J D fs 2 S j s.�/D �g:

Here S is the set of simple involutions of W , the Weyl group of .G;T /. Also, PJ is the
standard parabolic subgroup associated to J , and P�

J
is the opposite parabolic subgroup.

Renner has classified all rationally smooth simple embeddings combinatorially in terms
of J and the Dynkin diagram for G . See [33, Corollary 3.5] for an exhaustive list of
all possible J ’s that give rise to rationally smooth simple embeddings.

According to this list, if G is a semisimple group of adjoint type, then the choice
J D∅ yields the wonderful compactification of G .

In contrast, when G is a semisimple group of type An , with n� 2, the possibilities
for J are as follows. Let S D fs1; : : : ; sng. The following subsets J of S produce
rationally smooth embeddings of G :

(i) J D∅
(ii) J D fs1; : : : ; sig, 1� i < n

(iii) J D fsj ; : : : ; sng, 1< j � n

(iv) J D fs1; : : : ; si ; sj ; : : : ; sng, 1� i , i � j � 3 and j � n
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