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Branched projective structures
with Fuchsian holonomy
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We prove that if S is a closed compact surface of genus g � 2 , and if �W �1.S/!

PSL.2;C/ is a quasi-Fuchsian representation, then the space Mk;� of branched
projective structures on S with total branching order k and holonomy � is connected,
for k > 0 . Equivalently, two branched projective structures with the same quasi-
Fuchsian holonomy and the same number of branch points are related by a movement
of branch points. In particular grafting annuli are obtained by moving branch points.
In the appendix we give an explicit atlas for Mk;� for non-elementary representations
� . It is shown to be a smooth complex manifold modeled on Hurwitz spaces.

30F35, 57M20; 53A30, 14H15

1 Introduction

A CP1 –structure on a surface is a geometric structure modeled on the Riemann
sphere and its group of holomorphic automorphisms, identified with PSL.2;C/. A
chart of a CP1 –structure can be developed (ie, continued with the use of charts) to a
map defined on the universal cover of the surface, which is equivariant with respect
to a certain representation of the fundamental group of the surface in PSL.2;C/,
called the holonomy. This developing map is well-defined up to composition by inner
automorphisms of PSL.2;C/. Such a CP1 –structure will be referred to as projective
structure.

Projective structures were introduced by studying second order ODEs with applications
to the uniformization theorem, which states that the universal cover of every Riemann
surface is biholomorphic to either CP1 , C or H2 , corresponding to whether the Euler
characteristic is positive, zero or negative. The composition of the said biholomorphism
with the natural inclusion in CP1 defines a developing map of a projective structure
on the topological surface whose holonomy representation is the identification of the
fundamental group with a subgroup of automorphisms of the uniformized covering
map, which lies in PSL.2;C/ in either case. In particular, hyperbolic structures on
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closed surfaces are examples of CP1 –structures: the developing map takes its values in
the upper-half plane model of H2 – viewed as a subset of CP1 – and the holonomy in
a discrete co-compact subgroup of PSL.2;R/ < PSL.2;C/. In general the holonomy
of a CP1 –structure on a closed surface S is said to be Fuchsian if it is faithful and
its image is conjugated to a discrete co-compact subgroup of PSL.2;R/. For such a
representation we can always consider the corresponding hyperbolic structure on S ,
which is called the uniformizing structure. A representation is called quasi-Fuchsian if
it is topologically conjugated to a Fuchsian representation when acting on the Riemann
sphere.

In the 70s, some exotic CP1 –structures with quasi-Fuchsian holonomy were discovered
(see Hejhal [12], Maskit [23] and Sullivan and Thurston [27]). More precisely, given
a CP1 –structure, there is a surgery called grafting, which enables one to produce
a different projective structure without changing its holonomy. A grafting of the
uniformizing structure along a simple closed curve  is the result of cutting S along
 and gluing back a flat annulus of an appropriate modulus. In [8], Goldman showed
that any projective structure with quasi-Fuchsian holonomy is obtained by grafting the
uniformizing structure along a multi-curve.

In particular, this implies that the set of projective structures with the same quasi-
Fuchsian holonomy is discrete. Baba recently extended Goldman’s result to the case
where the holonomy is a generic representation in Hom.�1;PSL.2;C//; see [2].

In this paper, we are interested in branched projective structures on closed orientable
surfaces. These are given by atlases where local charts are finite branched coverings
and transition maps lie in PSL.2;C/. Such structures arise naturally in many contexts.
For instance in the theories of conical H2 –structures, of branched coverings, of locally
flat projective connections or of transversally projective holomorphic foliations (more
details are given later in this introduction and in Section 2 and the appendix). As in the
unbranched case, a chart can be continued to define a developing map on the universal
cover of the surface, which is equivariant with respect to a holonomy representation of
the fundamental group of the surface in PSL.2;C/. In the spirit of Goldman’s Theorem
we give an explicit construction of any branched projective structure with Fuchsian
holonomy by elementary surgeries that preserve the holonomy. One of them can be
varied continuously and allows us to define a complex manifold structure on the set
Mk;� of branched projective structures with fixed holonomy �W �1.S/! PSL.2;C/
and total branching order k on a marked surface S of genus g . We show that, unlike
in the unbranched case, for quasi-Fuchsian � and k > 0, this space is connected.

Theorem 1.1 (Main result) Let S be a compact oriented closed surface. Every
branched projective structure with Fuchsian holonomy on S having at least one branch
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point is obtained from a uniformizing structure by bubblings and moving branch points.
In particular if �W �1.S/! PSL.2;C/ is a Fuchsian representation and k > 0 is an
even integer then the space Mk;� is connected.

We observe that a topological conjugation between the actions of two representations
�; �0 on CP1 induces a homeomorphism between their spaces Mk;� and Mk;�0 for
any fixed k (see Proposition 11.1). Hence for a quasi-Fuchsian representation � , the
space M�;k is non-empty if and only if k is even and in this case it is connected
provided k is positive.

Let us define the elementary surgeries and the topology on Mk;� properly.

Bubbling a given branched projective structure consists in cutting the surface along an
embedded arc  whose image by the developing map is an embedded arc ��CP1 ,
and gluing the disc CP1n� endowed with the canonical projective structure. Obviously,
the topology of the surface does not change nor does the holonomy representation. At
the endpoints of  the new branched projective structure has two branch points. By
bubbling several arcs we can produce examples of branched projective structures with
any even number of simple branch points.

Moving a branch point is a local surgery that allows one to change the position of a
branch point, collapse two or more branch points or split a non-simple branch point
into several branch points of lower branching order. In either case the holonomy of
the resulting projective structure remains fixed and the total order of the branching
divisor too. This surgery is a particular case of a Schiffer variation and allows one to
understand the local topology of Mk;� .

Gallo, Kapovich and Marden [6, Problem 12.1.2, page 700] asked whether any couple of
branched projective structures with the same holonomy are related by a sequence of ele-
mentary operations: grafting, degrafting, bubbling and debubbling. For quasi-Fuchsian
representations, Theorem 1.1 gives a positive answer by replacing the elementary
operations by: bubbling, debubbling and moving branch points. The connectedness of
Mk;� and a continuity argument shows that the answer to their original question is
positive for k D 2. We believe that the argument generalizes for bigger k .

It is worth pointing out that in full generality the spaces Mk;� are not necessarily
connected. For instance, consider � to be the holonomy of a hyperbolic metric with
two conical points of angle 4� on a compact surface of genus bigger than two. It
can be thought of as a branched projective structure whose developing map has image
in H2 . On the other hand we can construct examples with the same holonomy and
branching order by doing a bubbling to a CP1 –structure with holonomy � – which
exists by applying [6] – and this time the developing map is surjective onto CP1 . Since
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this last property is stable under moving branch points the two projective structures lie
in different connected components of M2;� (see Tan [28] and Mathews [24; 25] for
related arguments).

Another interesting example is the case where � is the trivial representation. The
spaces Mk;� are then the so-called Hurwitz spaces, namely the deformation spaces of
branched coverings over CP1 . By work of Clebsch and Hurwitz, we know that these
spaces are connected (see for instance Harris and Morrison [11] and the more recent
generalizations in Liu and Osserman [18]).

Let us focus on the surgery operations that preserve the holonomy defined so far. Note
that bubbling adds two branch points, moving branch points does not change the total
branching order, and grafting does not involve branch points at all. However, these
surgeries relate to each other in interesting ways. Simple examples of such relations
can be easily produced: a bubbling followed by local movement of branch points can
be still interpreted as a bubbling, k consecutive bubblings are related by moving branch
points independently of the order and arcs where we bubble (see Corollaries 2.10 and
2.11). One of the most striking relations between bubbling and grafting is:

Theorem 1.2 Over a given branched projective structure a bubbling followed by a
debubbling can produce any grafting on a simple closed curve.

It immediately implies one of the key pieces for the proof of Theorem 1.1, namely that
by moving branch points we can produce any grafting annulus. We point out that there
are no restrictions on the holonomy representation in Theorem 1.2.

As will be explained in next subsection, our initial motivation was to study holomorphic
curves of general type in a class of non-Kähler threefolds, and the problem led us to a
question on the existence of rational curves in Mk;� . Tan observed (in [28]) that each
Mk;� admits a complex structure. However, the obvious generalization of the complex
structure defined in the absence of branch points presents some subtleties that we want
to point out.

It is well known that the space of unbranched projective structures on a given compact
oriented surface has a natural complex structure from using the Schwarzian derivative
of developing maps. In fact it is an affine bundle over Teichmüller space whose fibers
are affine spaces over the vector space of holomorphic quadratic differentials. Its direct
generalization to branched projective structures does not have such a regular structure.
For a branched projective structure we can still define its underlying complex structure
and determine a point in Teichmüller space. At a branch point of the developing map
we can calculate the Schwarzian derivative with respect to the uniformizing coordinate
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of the complex structure. It presents a pole of order two regardless of the order of
branching. In fact it is the coefficient of the lowest term in the Laurent series that gives
the order of branching. For functions with this type of development there are even
some extra algebraic conditions on the coefficients to be satisfied to guarantee that the
inversion of the Schwarzian operator produces a holomorphic germ (as opposed to a
pole or logarithmic pole). When we want to allow to collapse two different branch
points we have a discontinuity in the lowest coefficient of the series (see the appendix
for more details). The spaces Mk;� are subspaces of this “singular complex space”
bundle. Nevertheless, in the spirit of the topology defined by moving branch points,
the spaces Mk;� – where � is non-elementary – admit a natural complex manifold
structure of dimension k . The subject is discussed in detail for future reference in the
appendix.

1.1 Additional remarks and open problems

Determining all components of Mk;� seems interesting in general. In some cases we
can identify special components. For instance, when the holonomy representation � is
purely loxodromic, all branched projective structures obtained by bubbling (unbranched)
CP1 –structures with the given holonomy belong to the same connected component.
Indeed, by Baba’s Theorem [2], Theorem 1.2 and Corollary 2.10, we can join any pair
of such structures by a movement of branch points. As was said before, sometimes it
is not the unique connected component.

The next challenging problem is to understand the higher homology/homotopy groups of
the spaces Mk;� when � is quasi-Fuchsian. These spaces are all homeomorphic if we
fix the genus of the underlying surface and k (see Proposition 11.1). The understanding
of the second homotopy group of Mk;� has a strong relation with monodromies of
linear differential equations on curves and more precisely, to the Riemann–Hilbert
problem. Namely, consider a differential equation of the form

(1) dv D ! � v;

where S is a complex algebraic curve, ! is a given 1–form over S with values in the
Lie algebra sl.2;C/, and vW S ! C2 is a holomorphic map. The Riemann–Hilbert
problem consists in characterizing the representations arising as the monodromy of the
solutions of an equation of type (1). For instance, it is not known whether a non-trivial
real monodromy is possible.

If g is the genus of S and � is the monodromy of (1), then the space M2g�2;� has a
non-trivial second homotopy group. This is because for each initial value, the solution
v of (1) defines a branched projective structure on S with monodromy � , whose total
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branching order is easily seen to be 2g � 2. The resulting rational curve in Mk;�

projects to a rational curve in the moduli space of branched projective structures, whose
homological class is non-trivial, since the moduli space is Kähler. Hence, proving that
M2g�2;� has trivial second homotopy group would prove that � does not appear as
the monodromy of an equation of type (1).

This problem is also related to the study of holomorphic curves in the non-algebraic
manifolds �nSL.2;C/, where � is a lattice in SL.2;C/. This space can be thought
of as the space of orthonormal frames on a hyperbolic 3–manifold (see Ghys [7]). If
we have a solution of (1) whose monodromy lies in a lattice � of SL.2;C/, then the
matrix formed by two independent solutions of (1) defines a curve isomorphic to S in
the quotient. We mention here that Huckleberry and Margulis proved that there is no
complex hypersurface in such a complex manifold; see [14].

More generally, one could ask whether Mk;� is a K.�; 1/ when � is quasi-Fuchsian.
This problem can be compared to a problem of Kontsevich and Zorich on the topology of
connected components of the moduli space of translation surfaces (which are particular
branched projective structures); see Kontsevich and Zorich [17] and the list of problems,
Hubert, Masur, Schmidt and Zorich [13].

1.2 Structure of the paper

After introducing the basic concepts and tools for branched projective structures in
Section 2, we analyze some special properties of those having Fuchsian holonomy in
Sections 3 and 4. Then we proceed to prove Theorem 1.2.

After Theorem 1.2 the proof reduces to an induction argument that shows that, after
moving branch points of a given branched projective structure, it coincides with a finite
number of bubblings on a (possibly exotic) CP1 –structure. This argument takes up
most of the paper and we have split it into different steps in Sections 6 to 11. Finally
there is an appendix where we describe the complex structure of the space Mk;� ,
providing an explicit atlas modeled on Hurwitz spaces. Other parametrizations of
Mk;� are also discussed.

Let us comment further on the details of the inductive argument. What we prove is that
given a branched projective structure with Fuchsian holonomy, we can move the branch
points so that the structure can be debubbled. Since debubbling decreases the number
of branch points by 2, after a finite number of debubblings we find an unbranched
projective structure, hence it is a grafting over a multi-curve of the uniformizing
structure by Goldman’s Theorem.

We use the point of view of Faltings [5] and Goldman [8], that is, for a branched
projective structure with Fuchsian holonomy we look at the decomposition of the
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surface obtained as the pull-back of the PSL.2;R/–invariant decomposition of the
Riemann sphere CP1 DHC[RP1[H� , where H˙ are the upper and lower half-
planes. The components of the positive and negative parts inherit a branched hyperbolic
structure, ie, a conical hyperbolic metric. Coarse properties of these metrics are
explained in Section 3, where peripheral geodesics and peripheral annuli are defined.
Most of the work consists of understanding the geometry of these components in detail,
especially that of the peripheral geodesics.

Some topological invariants of the decomposition in positive and negative components
are described by an index formula, which we prove by closely following the ideas of
Goldman’s thesis (see Section 4).

To begin moving branch points, we first need to know how and where one can move
them. Sections 6 and 8 provide sufficient conditions to move branch points. In particular,
in Section 8 we deal with possible degenerations to nodal curves when two branch
points collide.

The next step of the proof is to reduce to the case where all the branch points belong to
the positive part (see Section 9). The index formula then tells us that there exist some
negative discs isomorphic to a hyperbolic plane.

After that we are able to prove that the peripheral geodesic of the juxtaposed component
of some negative disc has a simple topology, namely, it is a bouquet of at most three
circles. This is done by moving the branch points belonging to a positive component to
a single branch point (see Section 10). We then invoke a result proved in Section 7 by
a direct case by case analysis, which says that the structure can be debubbled.

One of the cases we have to deal with is a particular configuration that we called
the “triangles”. They constitute an especially interesting instance and we discuss an
example in detail in Section 3.5.

The main technical tool that is used along the way is the notion of embedded twin paths
for a branched projective structures. These allow us to move in each component of the
spaces of branched projective structures with fixed holonomy and total branching order.
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2 Definitions and preliminaries

2.1 Branched projective structures (BPS)

For g � 2 let �g be a group isomorphic to the fundamental group of a closed surface
of genus g . A marked surface of genus g is an oriented closed surface S of genus g

together with the data of a universal cover � W zS ! S and an identification of �g with
the covering group of � .

Definition 2.1 A branched projective structure (in short BPS) on a marked surface S

is a maximal atlas whose charts are finite-sheeted, orientation-preserving, branched
coverings over open subsets of CP1 , and such that any pair of charts differ by post-
composition with a map in PSL.2;C/ whenever their domains intersect. We identify
two structures if there is a projective (in local charts) diffeomorphism that lifts to a
�g –equivariant diffeomorphism between the universal covers.

A branched projective structure � induces a complex structure and thus angles on
S . Unbranched points are called regular; the total angle around them is 2� . The
cone-angle around a point p whose branching order is np � 2 is 2�np . The branching
divisor of � is the divisor X

p2S

.np � 1/p:

Its degree
P

p2S .np � 1/ will be called the total branching order of � .

Given a BPS on a marked surface S , every local chart can be extended to a projective
map DW zS !CP1 , which is equivariant with respect to a representation �W �1.S/!

PSL.2;C/:
D.x/D �. /D.x/; for all x 2 zS ;  2 �1.S/:

The map D is well-defined up to left-composition by elements of PSL.2;C/. Any
representative of its PSL.2;C/–left class is called a developing map for the structure
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and the representation � is called the holonomy of the developing map. If D1 and
D2 D ' ıD1 are two developing maps for the same structure, then the corresponding
representations are related by

�2 D '�1'
�1:

The conjugacy class of the holonomy representation is called the holonomy of the
structure. Note that if the holonomy has trivial centraliser – for instance if its image
is a non-elementary group – then once a representative in the conjugacy class of the
holonomy has been fixed, there is only one developing map for the structure with that
holonomy.

In the present paper we are interested in studying projective structures having a fixed
holonomy with some prescribed properties. In particular we will treat the Fuchsian
case. In the literature a Fuchsian group is a discrete subgroup of PSL.2;R/.

Definition 2.2 Let S be an oriented closed surface and �W �1.S/! PSL.2;C/ a
representation. We say � is Fuchsian if it is faithful, its image is conjugated to a discrete
subgroup � of PSL.2;R/ with no parabolic nor elliptic elements other than the identity
and there exists a �–equivariant diffeomorphism between zS and H2 preserving the
orientation.

2.2 Examples

The first obvious examples are complete hyperbolic structures: under the natural
inclusion Aut.H2/ ,! Aut.CP1/, any hyperbolic structure on a closed surface can be
considered as a CP1 –structure, having no branch points and Fuchsian holonomy.

Definition 2.3 (Uniformizing structures) Let S be a closed surface of genus at least
two, and �W �1.S/ ! PSL.2;C/ be a Fuchsian representation. The uniformizing
structure on S is the projective structure induced by the hyperbolic metric on S with
holonomy � .

Next, we have branched coverings. Let S be a compact hyperbolic surface and S1!S

be a branched covering. By pulling back the atlas of the uniformizing structure of S

we get a branched projective structure on S1 . In general the holonomy of S1 is not
Fuchsian.

More interesting examples are produced by considering holomorphic singular codi-
mension one transversely projective foliations on complex manifolds. Such folia-
tions satisfy that the changes of coordinates of the foliated charts can be written as
.x; z/ 7! .h.x; z/; '.z// for some ' 2 PSL.2;C/. The foliated charts of a transversely
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projective foliation F on a manifold M induce a branched projective structure on
any Riemann surface S � M that avoids the singular set of F and is generically
transverse to F . It suffices to restrict the local projections .x; z/ 7! z to S . At
the points of tangency between S and F we obtain branch points for the induced
BPS on S . Transversely projective foliations have been extensively studied and some
accounts can be found in Loray and Pereira [19], Scárdua [26] and Touzet [29]. A
particularly interesting and important family of examples are regular holomorphic
foliations on CP1 –bundles B! S over a Riemann surface S that are transverse to
the CP1 –bundle at all points. Each local chart of the foliation can be defined on the
local trivializing coordinates for B . By lifting paths in S starting at x0 2 S to the
leaves of the foliation we can construct a representation �W �1.S;x0/! PSL.2;C/
that actually characterizes the bundle B up to biholomorphisms. In fact, the foliation is
equivalent to the suspension foliation constructed by quotient of the horizontal foliation
on zS �CP1 by the action of �1.S/ defined by  � .x; z/D . �x; �. /.z//.

Now, by the previous construction the foliation induces a BPS on the image of any
holomorphic section DW S!B of the CP1 –bundle that is not invariant by the foliation.
In this case the charts of the BPS can be taken as holonomy germs of the foliation from
the image of D to the CP1 –fibre over a point x0 2 S . This BPS can be pulled back
to S via D to produce a BPS on S whose holonomy is precisely � . By varying the
section (if possible) we can construct families of branched projective structures on S

with the same holonomy representation � .

Remark that any BPS on a Riemann surface S can be realized as the one induced by a
regular holomorphic foliation on a section of a CP1 –bundle over S . As can be readily
seen from the suspension construction, the graph of the developing map DW zS !CP1

of a BPS with holonomy � is invariant by the defined action of �1.S/ on zS �CP1

and hence defines a section of the quotient CP1 –bundle. The quotient foliation induces
the initially given BPS on S via the constructed section.

From a more topological viewpoint, we can glue branched projective structures by cut
and paste. Given a surface S equipped with a BPS and  � S an embedded curve we
consider the surface with boundary obtained by cutting S along  – which topologically
can be thought as removing a disc – and considering its geometric completion GC.S;  /
with respect to some Riemannian metric on S n  . The curve  corresponds to two
curves C and � in the boundary of GC.S;  /, one for each side of the cut. We
will sometimes refer to this surface with boundary as S cut along  . Given two closed
surfaces S0 and S1 equipped with branched projective structures, let 0 � S0 and
1�S1 be embedded segments, containing no branch points and having neighborhoods
U0 and U1 such that there is a projective diffeomorphism f W U0! U1 mapping 0

to 1 . The map f can be defined as a diffeomorphism from GC.S; 0/ to GC.S; 1/
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sending ˙
0

to ˙
1

and preserving orientations. By using this diffeomorphism as a
gluing we get a new closed oriented surface equipped with a BPS. See Figure 1.
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Figure 1: Gluing two surfaces along a segment

The topological result of the entire operation is the connected sum S0 ]S1 . As for the
branched projective structures, two new branch points appeared: the endpoints of 0

now identified with the endpoints of 1 .

The holonomy of the resulting structure can be computed from the two initial holonomies.
In particular we note that the loop corresponding to  0

0
[ 00

0
has trivial holonomy. Thus,

if both surfaces have non-trivial topology (ie, with non-positive Euler characteristic)
then the resulting holonomy is not faithful and in general it is not discrete.

A slightly subtler example is the conical cut and paste, which is a surgery as before that
allows irrational cone-singularities. For instance, suppose S0 and S1 have complete
hyperbolic metrics, each with one cone-singularity with angle respectively ˛0 and ˛1 .
Suppose further that the cone-points are exactly the ends of two geodesic embedded
segments 0 and 1 of the same length, and suppose moreover that

˛0C˛1 D 2�:

Cut S0 and S1 along 0 and 1 and glue the result isometrically along the boundary.
In Figure 1 one has to consider the bottom right picture. In the former example we had
angles 4� at both marked points, whereas now those are 4� at one point and ˛0C˛1

at the other. Therefore, the resulting structure has only one new branch point, as one
of the marked point of the loop  0

0
[  00

0
has total angle 2� , and so it is regular. The

holonomy of the loop  0
0
[  00

0
is an elliptic transformation of PSL.2;C/.

2.3 Grafting, bubbling and moving branch points

Here we describe three ways of producing new structures starting from a given one,
without changing the holonomy. We will need the following definition.
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Definition 2.4 Let S be a surface equipped with a BPS with developing map D . For
any subset K � S contained in some simply connected open set U , the developed
image of K is the projective class of D. zK/, where zK is any lift of K to the universal
cover zS of S . For any continuous map f with values in S that lifts to zS , the developed
of f is the projective class of D ıf .

The first construction is the so-called grafting (of angle 2� ), and it can be described as
follows. Let S be a marked surface equipped with a BPS with holonomy � . Suppose
that there is a simple closed curve in S with loxodromic holonomy, and such that any
of its lifts z in zS develops injectively in CP1 . Hence the path D ı z tends to the fixed
points of the corresponding holonomy map. Cut zS on each z , and glue a copy of the
canonical projective structure on CP1 cut along D ı z by using the developing map.

We obtain in this way a simply connected surface zS 0 , with a free and discontinuous
action of �g , and a �–equivariant map D0W zS 0 ! CP1 , which is a local branched
covering. As the endpoints of the cut are not on zS , we have not added any new branch
points when gluing. Hence, this defines a new BPS on the marked surface S 0 WD�gn

zS 0 ,
which is called the grafting of S along  . The quotient S 0 is obtained from S by
replacing  with a cylinder. A detailed description of the projective structure on the
cylinder can be found in Section 5.

In general it is not easy to find a graftable curve on a BPS, that is, a simple closed
curve in a given BPS with loxodromic holonomy that develops injectively when lifted
to the universal cover. Baba showed in [2] that this is always possible if the projective
structure on S has no branch points. However, we do not know whether it is still true
when there is at least one branch point. Remark that in the case where the original
structure on S is a uniformizing structure, then every simple closed curve on S has
this property, giving rise to a lot of possible graftings.

The second construction is what we denote by bubbling, which is nothing but the cut
and paste with a CP1 along an embedded arc. In this case the number of branch points
changes by two.

Definition 2.5 Let S be a surface endowed with a branched projective structure � .
Let  be an embedded segment in S having embedded developed image D ı  in
CP1 . Let �1 be the branched projective structure obtained by cutting S along  and
gluing a copy of the canonical projective structure on CP1 cut along D ı  via the
developing map. We say that �1 is obtained by bubbling � and that � is obtained by
debubbling �1 .

Bubbling is topologically the connected sum with a sphere, so the fundamental groups
before and after bubbling are canonically isomorphic. Thus the marking is preserved,
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and doing the construction at the level of the fundamental group shows that the holonomy
does not change under bubbling.

Our third way to construct new structures that keep the holonomy fixed is the procedure
of moving branch points. Let S be an oriented closed surface equipped with a BPS
with developing map D .

Definition 2.6 Two distinct paths 0 and 1 on S , both defined on the same interval
Œ0;T �, are twins if they overlap once developed, ie:

� 0.0/D 1.0/ is a branch point of S .

� If ˛W Œ�T;T �! S is given by ˛.t/ D 0.t/ for t � 0 and 1.�t/ for t � 0,
then the developed x̨ of ˛ is even: x̨.t/D x̨.�t/.

If 0 and 1 are embedded and disjoint apart from 0.0/ D 1.0/, they are called
embedded twin paths.

Let x be a branch point of S . Let 0 and 1 be embedded, piecewise smooth, twin
paths starting from x and defined on Œ0;T �. We denote by ˛ and ˇ the two angles
that they form at x , and by �i the angle around i.T /, i D 0; 1 (�i is 2� if i.T / is
a regular point). We cut S along the images of the i . The resulting surface S0 has a
boundary formed by two copies  0

0
and  00

0
of 0 and two copies  0

1
and  00

1
of 1 , all

of them parametrized by Œ0;T �, and so that  0
0
.0/D  0

1
.0/ and  00

0
.0/D  00

1
.0/. (See

Figure 2.)

Now we glue back by identifying, for any t 2 Œ0;T �,  0
0
.t/ with  0

1
.t/ and  00

0
.t/ with

 00
1
.t/.
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Figure 2: Moving a branch point

The result is a surface S1 with three distinguished points:
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� The point y resulting from the identification of 0.T /
0 with  0

1
.T /. The total

angle around that point is �0C �1 .

� The point x0 D  0
0
.0/D  0

1
.0/. The angle around it is ˛ .

� The point x00 D  00
0
.0/D  00

1
.0/. The angle around it is ˇ .

Note that angles ˛ and ˇ are both multiples of 2� . If x was a branch point of order
two, then ˛DˇD 2� . Similarly, the �i may be different from 2� , but they are integer
multiples of 2� . Note also that segments Œy;x0� and Œy;x00� are twin and that, in local
charts, the developed image of Œy;x0� is the same as the one of 0 and 1 .

The surface S1 , which is endowed with a BPS, is clearly diffeomorphic to S , and
an isotopy-class of diffeomorphisms between S1 and S is well-defined, so that the
marking and the holonomy are preserved.

Definition 2.7 We say that a branched projective structure �1 is obtained from � by
moving branch points if it is the resulting structure after a finite number of cut-and-paste
procedures as above. Two structures obtained one from the other by moving branch
points are connected by moving branch points.

The three operations defined so far act on Mk;� , the space of equivalence classes
of BPSs with a fixed given holonomy � and total branching order k � 0. Grafting
� 2Mk;� along a graftable curve will produce an element in Mk;� . Bubbling �
will produce an element in MkC2;� . Moving branch points of � locally describes a
continuous deformation in Mk;� . In the following lemmas we give some relations
between the different operations. They are easy to establish and the proofs are left to
the reader.

Lemma 2.8 Let S and P be surfaces endowed with BPSs �S and �P . Let 0�S and
�0 � P be embedded paths that have neighborhoods VS and VP so that .VS ; 0/ and
.VP ; �0/ are projectively equivalent. Suppose that 0 is isotopic to 1 via an isotopy
ftgt2Œ0;1� that fixes endpoints, and that �0 is isotopic to �1 via f�tgt2Œ0;1� with fixed
endpoints. Suppose moreover .VS ; t / and .VP ; �t / are projectively equivalent for
any t . Let Rt be the surface obtained by cut-and-pasting S and P along t and �t ,
endowed with the BPS �t induced by �S and �P . Then, �t is projectively equivalent
to �� for any t; � 2 Œ0; 1�.

Applied to P D CP1 , Lemma 2.8 says that bubblings do not depend on the local
isotopy class of the segment chosen to do the cut-and-paste procedure.
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Lemma 2.9 Let S be a surface endowed with a BPS � . Let  W Œ0; 1�! S be an
embedded path having embedded developed image. Let � W Œ1; 2� ! S be another
embedded path so that �.1/D �.1/. Suppose that  � � W Œ0; 2�! S is embedded with
embedded developed image. Then the bubbling � along  is obtained by that along
 � � by moving branch points.

Corollary 2.10 (Bubblings commute) Let S be a surface endowed with a BPS � .
Let ˇ1 and ˇ2 be bubblings of � along paths 1 and 2 , respectively. Then ˇ1 is
connected to ˇ2 by moving branch points.

Proof For i D 1; 2, let  0i and  00i be the twin paths in ˇi arising from i , and let
xi ;yi be their common endpoints. By moving xi and yi along initial segments of
 0i [ 

00
i we reduce to the case that 1 and 2 are disjoint.

Since a BPS has an atlas that is a local homeomorphism outside branch points, there is
a finite sequence of embedded paths with embedded developed images, connecting 1

and 2 . That is to say paths �i W Œi; i C 1�! S , i D 0; : : : ; n so that:

� �0 D 1 and �n D 2 .

� �i.i C 1/D �iC1.i C 1/ for all i D 0; : : : ; n� 1.

� �i.t/ 2 S n .fbranch points of � g [ Im.�i�1/[ Im.�iC1// for all t 2 .i; i C 1/

and i D 1; : : : ; n� 1.

� �i�1 � �i W Œi � 1; i C 1�! S is embedded with embedded developed image.

By Lemma 2.9 recursively applied to �i ; �iC1 , we get the desired claim.

Corollary 2.11 (Cut-and-paste and moving commute) Let B and C be two surfaces
equipped with BPSs. Let B � B and C � C be segments with neighborhoods that
are projectively equivalent and with regular endpoints. Let A be the surface obtained
by cut-and-pasting B and C along B and C (see Figure 1), endowed with the BPSs
induced by those of B and C . Let D be a BPS obtained from C by moving branch
points.

Then, A is connected by moving branch points to a cut-and-paste of B and D .

Proof We parametrize B and C in a projectively equivalent way. The cut-and-paste
consists in cutting B along B and C along C , so that each � splits into two copies
 0� and  00� (for � D B;C ), and then in identifying  0

B
.t/ with  0

C
.t/ and  00

B
.t/ with

 00
C
.t/. The two resulting twin paths in A are named  0 and  00 , and their endpoints are
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named  0.0/D x ,  0.1/D y . Also, we name xB D B.0/, yB D B.1/, xC D C .0/,
yC D C .1/.

Let M be the finite sequence of movements on C that produces D . By arguing by
induction on the number of cut-and-paste procedures of M, we reduce to the case of a
single cut-and-paste along twin paths �0; �1 in C .

If the �i do not intersect C the claim is obvious. The �i are piece-wise smooth
by definition of moving. Therefore, by Lemma 2.8 we can perturb C and B via
isotopies, without changing A, so to reduce to the case where C is transverse to
the �i .

Let U be a neighborhood of a point p 2 C so that U \ �0 D U \ �1 D∅. In A, we
move the branch points x and y by using, as twin paths, initial segments of  0 and  00 .
Of course, this affects the structure on A but not those of B and C because xB;yB

are regular points in B , and xC ;yC are regular in C . After such a move, the new
structure xA is the cut-and-paste of B and C along segments xB � B and xC � C .
In particular we can move x;y enough to obtain xC �U . Since xC does not intersect
the �i , the claim is true for xA. Since xA is connected to A by moving branch points,
the claim follows.

In general one can always move branch points locally, but a priori there is no guarantee
that one can do it along any given path. More precisely, if one starts with a germ
of embedded twin paths, it is possible that their analytic continuations cease to be
embedded very soon. In general, there does not exist an a priori lower bound on the
maximal size where twin paths are embedded. In Section 6 we give precise statements
ensuring that all moves needed throughout our proofs are possible under the given
hypotheses.

3 Fuchsian holonomy: Real curve and decomposition into
hyperbolic pieces

In this section S is a closed oriented surface endowed with a BPS � and DW zS!CP1

is a developing map for � with Fuchsian holonomy �W �1.S/ ! PSL.2;R/. All
the results in this section can be extended to the case where the representation is
quasi-Fuchsian, but for simplicity we restrict ourselves to Fuchsian ones.

3.1 Real curve and decomposition

The decomposition CP1DHCtRP1
tH� into the real line and the two hemispheres

HC DH2 D fIm.z/ > 0g and H� D fIm.z/ < 0g can be pulled back via D to zS and
defines a decomposition S D SC tSR tS� .
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Definition 3.1 The real curve is the set SR ; the positive part (resp. negative) is the
set SC (resp. S� ).

Since the holonomy takes values in PSL.2;R/, the real curve is a compact real analytic
sub-manifold of S of dimension 1 – possibly singular if it contains some branch point
– and the lifts fS˙ of S˙ to zS are precisely D�1.H˙/. Each connected component
C of S nSR inherits a branched .H2;PSL.2;R//–structure by restriction of D (in
the case C � SC , or of its complex conjugate D in the case C � S� ) to a lift zC � zS
of C . In a similar way, every connected component l of SR inherits a branched
.RP1;PSL.2;R//–structure. Indeed, it suffices to consider Djzl , where zl is a lift of
l to zS . In the next two subsections we will analyze the properties of the geometric
structures induced by � on the real curve and on its complement in S .

3.2 The real projective structure on SR

On each connected component l of SR we distinguish some special points correspond-
ing to the fixed points by ˛ WD �.Œl �/ 2 Aut.RP1/. If pi 2RP1 is fixed by ˛ the set
Djzl
�1.pi/ is discrete and invariant by the action of Œl � on zS and thus defines a finite

set Pi of points in l . The cardinality Il of Pi is independent of the choice of fixed
point pi and will be defined as the index of the RP1 –structure on l . In the case of
trivial ˛ , the map D descends to a map l ! RP1 and the index coincides with the
degree of this map.

As with complex projective structures, we say that two RP1 –structures on a circle l

are equivalent if there is a diffeomorphism between the two structures that is projective
in the charts of the given projective structures. The following proposition gives the
classification of unbranched RP1 –structures on l having some fixed point in the
holonomy.

Proposition 3.2 Two unbranched RP1 –structures on an oriented circle l whose
respective holonomies ˛ and ˛0 fix at least one point and with indices I; I 0 are
equivalent if and only if I D I 0 and ˛0 D ' ı ˛ ı '�1 for some ' 2 PSL.2;R/. The
only case that cannot occur is ˛ D id and I D 0.

Proof If ˛ and ˛0 are trivial, we just need to prove that two coverings of l!RP1

are equivalent if and only if they have the same degree, which is obviously true. The
degree zero covering is impossible since there are no branch points. The proof of the
proposition is a generalization of the proof of the previous fact. We first construct a
model of a RP1 –structure on the circle S1 with prescribed index I and holonomy
˛ . Let eRP1! RP1 denote a universal covering map and T W eRP1!eRP1 denote
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the action of the positive generator of �1.RP1/ on the universal cover eRP1 (positive
means that T .x/ is on the right of x for every x 2eRP1 ). Lift ˛W RP1

!RP1 to a
map z̨ from eRP1 to itself which has at least one fixed point. Since z̨ and T commute,
the quotient of eRP1 by z̨ ı T I is homeomorphic to a circle S1 equipped with a
RP1 –structure with index I and holonomy ˛ . Of course, if we compose the chosen
universal covering map on the left by an element ' 2 Aut.RP1/ we get an equivalent
RP1 –structure with holonomy ˛0 D ' ı˛ ı'�1 .

Given any RP1 –structure on a circle l with holonomy ˛ , its developing map d W zl!

RP1 satisfies d.Œl � � z/D ˛.d.z// and lifts to the covering eRP1! .eRP1=T /ŠRP1

as a map zd W zl!eRP1 , such that

zd.Œl � � z/D .z̨ ıT I /. zd.z//;

for some integer I . Observe that the integer I is necessary non-negative since T

is positive and zd preserves orientation; this integer is nothing but the index of the
projective structure.

In the case where I D 0, the image of zd is an interval between two consecutive fixed
points of z̨ , hence the structure is the quotient of the (unique) open interval in RP1

between consecutive fixed points of ˛ where ˛ acts as a positive map.

In the case where I > 0, the image of zd is all of eRP1 , since T acts discretely; hence,
zd is a diffeomorphism, which induces a projective diffeomorphism between the given
RP1 –structure on l and the model RP1 –structure on S1 with index I and holonomy
˛ constructed above. Hence the result.

In the Fuchsian case the hypothesis on the holonomy of Proposition 3.2 is always
satisfied, since we have either trivial holonomy or precisely two fixed points p1;p2 2

RP1 for the loxodromic holonomy ˛ . In the latter case we can carry the decomposition
of S induced by the properties of the holonomy representation further. Indeed, after
conjugation we can suppose p1 D 0, p2 D1 and ˛.z/D �z for some � > 0. The
partition RP1

D0tRCt1tR� is thus invariant by ˛ and induces, via the developing
map, a partition of l as l DP1t lCtP2t l� where lC and l� are unions of disjoint
oriented intervals and P1 , P2 correspond to the sets used in the definition of the index
of the RP1 –structure.

3.3 Geometry of the hyperbolic structures on S n SR

The pull-back of the hyperbolic metric on HC by the developing map defines on SC

a metric that is smooth and has curvature �1 away from the branch points. At a point
with branching order n� 1 the metric is singular and it has conical angle 2.nC 1/� .
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Denote by d the induced distance. Completeness of d is tricky in a general setting,
and the matter is settled in Choi and Lee [4]. In our case there is an easy proof that we
include for the reader’s convenience. First, we need a family of nice neighborhoods of
the points of @SC , which we call hyperbolic semi-planes.

Definition 3.3 A hyperbolic semi-plane in SC is a closed set ı � SC , whose closure
in SC is a closed disc and such that, for any lift zı � zS of ı , the restriction of D to zı
is a homeomorphism onto a closed hyperbolic semi-plane of HC , that is, a subset of
HC isometric to fIm.z/ > 0;Re.z/� 0g.

Lemma 3.4 The metric space .SC; d/ is complete.

Proof For every hyperbolic semi-plane ı in SC , and every r > 0, we denote by ır
the set of points of ı that are at distance more than r from @ı with respect to the
hyperbolic metric of SC . Observe that for any fixed r > 0, for ı varying among all
hyperbolic semi-planes of SC , the union of all the sets ır is an open set whose exterior
in SC is a compact set Kr .

Let .pn/ be a Cauchy sequence in SC . Let n0 be such that for m; n� n0 , the distance
between pm and pn is less than 1.

First suppose that there is an m� n0 such that pm belongs Kc
1

, ie, pm 2 ı1 for some
hyperbolic semi-plane ı in SC . Then because the hyperbolic distance in ı is not
bigger than the restriction of the distance d to ı , the points pn belong to ı for every
n � n0 , and form a Cauchy sequence for the hyperbolic distance in ı . Hence, the
sequence pn has a limit in ı .

The remaining case to consider is when for all m� n0 , the point pm belongs to K1 .
Since K1 is compact, the Cauchy sequence .pn/ converges to a point. Thus .SC; d/
is complete.

Geodesics of components are curves that locally minimize distance. In fact, they are
piecewise smooth geodesics (for the hyperbolic metric defined outside the branch
points) with singularities at branch points, where they form angles always bigger or
equal than � .

Lemma 3.5 Let  W Œ0;1/! SC be a geodesic which exits all compact sets of SC .
Then  has a limit  .1/ 2 @SC . If  .1/ is not a branch point, then  analytically
extends to a curve ending in S� . The statement remains true if we exchange the roles
of SC and S� .
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Proof By hypothesis,  eventually exits any Kr (defined as in the proof of Lemma 3.4),
so it enters a hyperbolic semi-plane ı and never exits again. The claim follows because
ı is isometric to a half-plane in the hyperbolic plane, where geodesics have limits on
the boundary.

Lemma 3.6 Let C be a connected component of S nSR . The universal cover zC is a
CAT.�1/–space, whose geometric boundary is an oriented circle so that zC [ @ zC is a
closed disc.

Proof Since the conical singularities at branch points have angles bigger that 2� , and
the metric is hyperbolic elsewhere, the singular metric ds2 of C can be approximated
by smooth metrics of curvature less than �1, hence CAT.�1/ inequalities hold for
triangles and pass to the limit. Thus zC is a CAT.�1/–space. Let ds2

smooth be a smooth
metric of curvature less than �1 on C , which equals ds2 outside some compact
neighborhood of branch points, and let dsmooth be the induced distance. Then the
identity is a quasi-isometry between . zC ; d/ and . zC ; dsmooth/, hence these two spaces
have the same boundaries. On the other hand, complete, simply connected, Riemannian
surfaces of uniformly negative curvature are open discs whose geometric and topological
boundaries are homeomorphic.

Corollary 3.7 Any path in a component C of S nSR is homotopic with fixed end-
points to a unique geodesic. Any closed loop in C that is not null-homotopic is freely
homotopic to a unique closed geodesic. Between any two points in zC there is a unique
geodesic. Geodesics of zC are simple. Two non-disjoint geodesics of zC intersect either
transversally, or in a connected geodesic segment (possibly a point) with endpoints at
branch points.

3.4 Ends of components

Let C be a connected component of S nSR . We identify oriented bi-infinite geodesics
of zC (up to parametrization) with the couples .a; b/ of their endpoints in @ zC . By
Jordan’s Theorem, any .a; b/ divides zC in two discs.

Definition 3.8 Let .a; b/ be an oriented geodesic in zC . We denote by R.a; b/ and
L.a; b/ the components of zC n .a; b/ that are respectively at the right and left side of
.a; b/.

Lemma 3.9 Let a; b; c; d be distinct points. Then R.a; b/ and R.c; d/ are disjoint if
and only if a; b; c; d are disposed in a positive cyclic order.
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Proof Suppose a; b; c; d are cyclically ordered. Then, .c; d/ starts and ends in
L.a; b/. By Corollary 3.7, it cannot enter R.a; b/ and exits again, so it stays always on
its complement. The orientation of .c; d/ tells us that R.c; d/ is contained in L.a; b/.
The converse is immediate.

Definition 3.10 Let l1; : : : ; lk be the boundary components of C (which are com-
ponents of the real curve). The peripheral geodesic i corresponding to li is its
geodesic representative in C , oriented as in @C . The end Ei corresponding to li is
the connected component of C n i having li in its boundary.

Peripheral geodesics can be complicated. However, ends are simple.

Lemma 3.11 (Annular ends) Any end of C is an open annulus.

Proof Let C be a compact surface with boundary whose interior is C . Let l be a
component of @C and consider a neighborhood of l in C homeomorphic to l � Œ0; 1/.
Let lt D l � ftg. The length of lt tends to 1 for t ! 0, so we can choose t0 so that
the peripheral geodesic  corresponding to l belongs to the complement of the annulus
At0
D l � Œ0; t0�.

Any lift zlt has distinct endpoints a; b 2 @ zC , because zlt stays at a finite distance from
the corresponding lift z D .a; b/ of  . For any lift zlt of lt in zC , we denote by R.zlt /

the component of zC n zlt that is on the right of lt . Since it is a topological disc, R.zlt /

is the universal covering of At . Hence, the discs R.zlt / are disjoint for distinct lifts zlt .
Thus, if we denote by ai ; bi the ends of two distinct lifts zi of  , then a1; b1; a2; b2

are in cyclic order, and by Lemma 3.9, we get that the discs R.ai ; bi/ are disjoint.

Hence, the quotient of R.a; b/ by the action of �1.C / is the same as its quotient by
the stabilizer of .a; b/, ant so it is an open annulus. Since it is connected, open and
closed in C n  , and contains At0

, it is the end E corresponding to l .

Any end is therefore an open annulus E embedded in C , but not necessarily properly
embedded. Indeed, there is no reason for the peripheral geodesic  to be embedded (and
in fact in general it is not). However, from the fact that for any two lifts z1 D .a1; b1/

and z2.a2; b2/ of  , the discs R.a1; b1/ and R.a2; b2/ are disjoint, it follows that
the right-side of  in C is well-defined and it is an embedded annulus (which actually
equals E ). In other words:

Lemma 3.12 Let  be a peripheral geodesic of C and E be the corresponding end.
For any " > 0 and for any x 2  , the set Right".;x/D fp 2 C W d.p;x/ < "g\E is
non-empty, and the set Right". /D

S
x2 Right".;x/ is an embedded annulus.
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Lemma 3.13 Ends corresponding to different components of the boundary of C are
disjoint.

Proof Let l and l 0 be two distinct components of @C . The proof goes as in
Lemma 3.11, from which we borrow notation. Choose t; s so that the annuli Alt

and
Al 0s are disjoint. Then, for any two lifts zlt and zl 0s , the right components R.zlt / and R.zl 0s/

do not intersect. By denoting by al ; bl the extremities of zlt , and similarly a0
l
; b0

l
for zl 0s ,

we get that al ; bl ; al 0 ; bl 0 are in cyclic order. Hence Lemma 3.9 shows that R.al ; bl/

and R.al 0 ; bl 0/ are disjoint. This being true for any choice of the lifts, we deduce that
the ends corresponding to l and l 0 are disjoint.

Note that the closures of different ends may possibly touch. Nonetheless, as a direct
corollary of Lemmas 3.12 and 3.13 we get that this happens in a controlled way.

Definition 3.14 The exterior angle at a point x of a peripheral geodesic is the angle
that is seen on the right of the geodesic at x .

Corollary 3.15 Let x be a branch point in C of angle 2�.nC1/. The exterior angles
of all peripheral geodesics passing through the point x are disjoint. In particular, their
sum is not bigger than 2�.nC 1/.

3.5 Example: The triangle

Here we describe the example of a branched projective structure � on a compact
surface S with the following properties: the holonomy is Fuchsian, and there exists a
component l of the real curve, bounding a negative disc D on the right isomorphic
to the lower half plane, and a positive pair of pants C on the left containing a unique
branch point (of angle 6� ), such that the peripheral geodesic corresponding to l in C

is a bouquet of three circles that develops as a geodesic triangle in the upper half plane.
Such an example will be called a “triangle”. This kind of structure shows up in the
proof of the main theorem; see case (2) of Lemma 10.5.

We begin by constructing a branched projective structure �… on a pair of pants …
with a unique branch point (of angle 6� ), whose boundary components are positive
geodesics not containing the branch point and whose decomposition into real, positive
and negative parts is as follows (see Figure 3):

(1) the real part …R is the union of @… and a bouquet B of three circles attached
on a branch point of angle 6� ,

(2) the negative part …� consists of the component on the right of B being isomor-
phic to the lower half plane, and

(3) the positive part consists of the disjoint union of three hyperbolic annuli on the
left of B .
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The structure � will then be obtained from the structure �… by the following operations:
first, moving the branch point in the positive component (as a point of angle 6� ), and
then attaching a pair of pants with geodesic boundary to the boundary of ….

…�

B

Figure 3: The pants for the triangle

Let us start with a Schottky group of a pair of pants. To introduce this group, let ˛
and ˇ be elements of PSL.2;R/ and A˛ , R˛ , Aˇ , Rˇ be disjoint closed intervals in
RP1 , such that ˛.Rc

˛/D Int.A˛/ and ˇ.Rˇ
c/D Int.Aˇ/. The group � generated by

˛ and ˇ is a discrete group. The condition that the quotient �nHC is a pair of pants –
as opposed to a punctured torus – is that the intervals A˛;R˛;Aˇ;Rˇ are in cyclic
ordering. Introduce the transformation  in PSL.2;R/ such that ˇ˛ D id.

Let q be a point in the region delimited by the three axes of ˛; ˇ;  in HC , and T be
the triangle q D ˇ˛.q/; ˛.q/; ˇ˛.q/. The union of the images of T by the elements
of � is a connected part of HC (see Figure 4). The quotient of the 1–skeleton of
T in �nH2 is a bouquet of three circles, and the restriction to T of the quotient
map HC 7! �nHC just consists in identifying the vertices of T . We aim to find our
branched projective structure on �nH� with the image of the interior of T as the
negative component, and the branch point of angle 6� the image of the vertices. To
define this structure we will define its developing map DW HC! CP1 , equivariant
with respect to the identity.

The interior of the triangle T should be negative, and should not contain any branch
point, so that the developing map restricted to Int.T / needs to be a diffeomorphism from
Int.T / to H� (by completeness of the hyperbolic metric in the negative component)
that extends to a diffeomorphism from T to H� . For our purpose, it will be sufficient
to consider any diffeomorphism from T to H� such that the points x DD.q/, ˛.x/
and ˇ˛.x/ are in cyclic order. We claim that a point x that sits short before the
attracting point of ˛ – ie, the fixed point a˛ of ˛ lying in A˛ – is such a point. Indeed,
˛.x/ is between x and a˛ , and then ˇ˛.x/ is between a˛ and the attractive fixed
point of ˇ , ie, the fixed point of ˇ lying in Aˇ .
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q

 ˛

T a˛

˛.x/

x
ˇ˛.q/ ˛.q/

ˇ
ˇ˛.x/

Figure 4: Construction of the triangular real curve

Hence we have chosen the diffeomorphism from T to H� as before; we extend
D to the union of the images of T by the group � using the equivariance relation
D. z/D D.z/. The complement of the union of the images of T by the elements of
� is an infinite set of semi-planes. There are three particular ones that are the semi-
planes P˛ , Pˇ and P at the left of the piecewise geodesic curves defined respectively
by
S

n2ZŒ˛
nq; ˛nC1q�,

S
n2ZŒˇ

n˛q; ˇnC1˛q� and
S

n2ZŒ
nq;  nC1q�. These curves

are mapped by D to the intervals between the repulsive fixed points and the attractive
fixed points of ˛ , ˇ and  respectively. One extends D to a diffeomorphism from
P˛ , Pˇ and P to HC , which is equivariant with respect to ˛ , ˇ and  respectively.
All the other components of the complement of

S
 T is the image of one of the

semi-planes P˛ , Pˇ or P by an element of � . Hence, one can extend D to the whole
upper half plane HC by equivariance. This defines a branched projective structure
�… on the pair of pants …D �nHC . By construction it satisfies conditions (1), (2)
and (3). We denote by p the branch point of angle 6� of this structure, and Ax ,
x D ˛; ˇ;  , the three positive annuli of �… (those are the quotients of P˛ , Pˇ and
P respectively).

To construct an example of a branched projective structure with a “triangle” peripheral
geodesic as described above, we move the branch point p of �… in the positive
component.

This movement is done by cutting and pasting … along three curves going from p and
entering inside the three positive annuli of … (see Figure 5). We denote these curves

Geometry & Topology, Volume 18 (2014)



Branched projective structures with Fuchsian holonomy 403

DA˛
A

˛ 

pq˛ q

qˇ

ˇ

Aˇ

�� ��

Figure 5: Moving the 6� –point to the positive part

by Œp; qy �, y D ˛; ˇ;  , where qy are points in the respective annuli Ay . After the
cut and paste, we get a new structure .…0; �…0/ on a pair of pants, the three points qy

being identified to a single conical positive point q of angle 6� . We may assume that
the segments .p; qy ��… are geodesics. Let y � Ay be the geodesic loop starting
and ending at qy and making a turn around Ay . Observe that, up to shortening the
segments Œp; qy �, we may assume that the angle between the two branches of y at qy

and Œqy ;p� is approximately � , and that y intersects Œqy ;p/ only at qy . This shows
that after the cut and paste, the curves y produce closed curves  0y in …0 passing
through q , and that the concatenation  0˛ � 

0
ˇ
�  0 �…

0 is the peripheral geodesic
associated to the curve @D . This is due to the fact that the exterior angles of this curve
are approximately 2� at q (see Figure 5).

Then, to get an example on a compact surface, it suffices to glue on the other side of
…0 a pair of pants equipped with a non-branched projective structure consisting of a
positive component that is a pair of pants, and three negative annuli attached to it. We
leave the details to the reader.

4 Index formulæ

We provide useful index formulæ à la Goldman (see [8]), for branched projective
structures with Fuchsian holonomy relating properties of the previously defined real
curve decomposition. Again, these formulas extend to the case where the representation
is quasi-Fuchsian, but for simplicity we restrict ourselves to the Fuchsian case.
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In this section S is a compact surface equipped with a branched projective structure �
with Fuchsian holonomy � and developing map D . The assumption that no element
in the holonomy is elliptic will be of particular importance. Moreover, we suppose that
the real curve SR contains no branch points, so that the components of the real curve
are simple closed curves in S . Proposition 3.2 and an analytic continuation argument
shows that the holonomy of any component of the real curve together with its index
(see Section 3.2) completely determine the projective structure in its neighborhood.

Our aim is to describe numerical relations between the topological invariants of the
decomposition, those of the holonomy representation and the indices of the real curves.
In particular, inspired by the techniques used by Goldman in [8] for the case of
unbranched structures, we provide a useful index formula relating the Euler invariant
of � , the Euler characteristic of the components of S˙ , the branching orders in each
component and the index of their boundary components (see Theorem 4.1 below).

Next we will focus on the topological properties of the representation � . Recall that
given an oriented closed surface with boundary C and a Fuchsian representation
�W �1.C /! PSL.2;R/ we can naturally associate a RP1 –bundle F�! C equipped
with a flat connection. Indeed, F� is obtained as the quotient of zC �RP1 by the action
of �1.C / such that for  2 �1.C / and .p; z/ 2 zC �RP1 ,

(2)  � .p; z/D . .p/; �. /.z//:

If the boundary is empty, we can define the Euler number of � as the element eu.�/D
eu.F�/ 2H 2.C;Z/D Z defined by the Euler class of the bundle F� . Otherwise, if
there are no elliptic elements, over each component l � @C , we can define a section of
s�W l! .F�/jl by following a fixed point of the action of �.l/ on RP1 along l with
the use of the connection. If �.l/ is the identity or loxodromic, the homotopy class of
the section is independent of the chosen fixed point. As we will show shortly we can
associate an Euler number eu.�/ 2 Z to the representation by using the pair .F�; s�/.
In the sequel we will prove the following:

Theorem 4.1 (First index formula) Let S be a compact surface equipped with a
BPS � with Fuchsian holonomy. Suppose no branch point belongs to SR . Let C be a
component of S nSR with the orientation induced by that of S and denote by �C the
restriction of � to �1.C /. If l1; : : : ln are the components of @C � SR , then

˙eu.�C /D �.C /C
X
p2C

.np � 1/�

nX
iD1

Ili
;

where the sign is positive if C � SC and negative otherwise and np denotes the order
of branching of � at p .
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Corollary 4.2 (Second index formula) If there are no branch points on the real curve
and k˙ denotes the total branching order in S˙ then

eu.�/D .�.SC/C kC/� .�.S�/C k�/:

For the proof of the theorem it will be convenient to have the theory of Euler classes of
sections of oriented circle bundles at hand.

Let F!C be an oriented RP1 –bundle over a compact oriented surface with boundary
C . For each section sW @C !RP1 we define the Euler number eu.F; s/ as follows.
Consider a triangulation � of C such that over each triangle T of � the bundle is
isomorphic to T �RP1 . By connectedness of RP1 the section s can be extended
continuously to a section s defined on the 1–skeleton of � . The restriction of s to @T
can be thought of as a map sW @T !RP1 that has degree nT 2 Z with respect to the
given orientations. The sum

P
nT can be shown to be independent of the triangulation

and the chosen extension s through basic algebraic topology methods. This allows us
to define

eu.F; s/D
X

nT :

In fact eu.F; s/ depends only on the homotopy class of s .

Remark 4.3 If C D S1 � Œ0; 1� is an annulus and s D fsig is a section of F over
S1 � fig for i D 0; 1 then eu.F; s/D degf , where f W S1!RP1

D S1 is such that
s0 D f � s1 and the degree is computed with respect to the orientation induced by C

on the component where s0 is defined.

The following lemma is immediate.

Lemma 4.4 Let F be an oriented RP1 –bundle over C and f�ig be a finite family of
disjoint simple closed curves in C containing the boundary components of C . Let s

be a continuous section of F defined on
S

i �i . Denote by fCj gj the collection of the
closure of connected components of C n .

S
i �i/. Then

eu.F; sj@C /D
X

j

eu.F jCj
; sj@Cj

/:

To abridge notation, rename �C as � . We define eu.�/ WD eu.F�; s�/ where the pair
.F�; s�/ was defined by the relations in (2), shortly before the statement of Theorem 4.1.
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Remark 4.5 If S is a compact surface and �W �1.S/! PSL.2;C/ is a Fuchsian
representation, by using the uniformizing structure on S it is easy to show that for any
incompressible subsurface C � S we have

eu.�j�1.C //D �.C /:

Let us proceed to the proof of Theorem 4.1. Given the connected component C of
S nSR , we introduce EDPC.T C / the RP1 –bundle over C whose fibre over p 2C

is the set of semi-lines in TpC . For each branch point p 2 C we consider a small
open disc B in C centered at p . We number such discs B1; : : : ;Bk and call �i

their boundary curves. On the other hand, for each boundary component li of @C ,
consider a curve xli in C that is isotopically equivalent to li in C n

S
j Bj . The proof of

Theorem 4.1 consists of using the developing map D to define a bundle isomorphism
DW E!F� over C n

S
j Bj , which allows us to define a section of F� over the family

of curves fxl1; : : : ; xln; �1; : : : ; �kg and apply Lemma 4.4. The conclusion will follow
from the knowledge on the topology of the associated decomposition and the properties
of D .

Consider a lift fC � � zS of C � WDC nfbranch pointsg. The restriction of the developing
map D to fC � or its complex conjugate defines a local diffeomorphism DW fC � !H2

that preserves orientation if C is positive and reverses it otherwise. In either case D

induces a map
PC.T fC � /! fC � �PC.T H2/

defined by .p; Œvp �/ 7! .p; ŒdDp.vp/�/, where the brackets denote equivalence classes
under multiplication by a positive real number. Recall that the complete hyperbolic
metric on H2 induces a map 1W PC.T H2/! RP1 that is equivariant under the
natural actions of PSL.2;R/ on source and target. Indeed, for each point .p; Œvp �/ 2
PC.T H2/ we associate the point 1.p; Œvp �/ 2 @H2 D RP1 obtained by following
the unique geodesic passing through p tangent to vp until infinity in the direction of
vp . This allows us to consider the map

PC.T fC � /! fC � �RP1

defined by .p; Œvp �/ 7! .p;1.p; ŒdDp.vp/�//, which is equivariant with respect to the
actions of �1.C / on PC.T fC � / by deck transformations and on fC � �RP1 by id�� .
Hence it induces an isomorphism of RP1 –bundles over C �

DW PC.T C �/DEjC� ! .F�/jC� :

Next we define a section t of F� over the family of curves

LD fl1; : : : ; ln; xl1; : : : ; xln; �1; : : : ; �kg:
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Over each of the boundary components li , t is the section defined by a fixed point of
�.li/; over any other component c , t is the image by D of the section p 7! .p; c0.p//

of E where the orientation of the parametrization is that of li if c D xli and that of @Bi

if c D �i . The complement of L in C is a disjoint union of annuli A1; : : : ;An each
having exactly one boundary component in @C , discs B1; : : : ;BR and a component
C 0 � C . By Lemma 4.4,

eu.�/D eu.F�; t/

D eu
�
.F�/jC 0 ; t j@C 0

�
C

RX
jD1

eu
�
.F�/jBj

; t j@Bj

�
C

nX
iD1

eu
�
.F�/jAi

; t j@Ai

�
:

Now, since D is a local diffeomorphism when restricted to a lift �C 0 � zC of C 0 , DjC 0
is a bundle isomorphism EjC 0 ! .F�/jC 0 and hence

eu
�
.F�/jC 0 ; t j@C 0

�
D˙�.C 0/;

where the sign is positive if D preserves orientation and negative otherwise. On the
other hand since D has a single branch point on the disc Bj of degree npj

> 1,

eu
�
.F�/jBj

; t j@Bj

�
D deg.t j@Bj

/D˙npj
;

where the sign is positive if D preserves orientation and negative otherwise. Finally
for an annulus Ai denote by �W li!xli the homeomorphism induced by the isotopy
joining li with xli . As noted in Remark 4.3, if we write t jli

D f � .t jxli
ı �/, then by

the definition of the index of li , eu..F j�/Ai
; t j@Ai

/D degf D�Il . Since degf is
measured with respect to the orientation induced on li by that of C , the sign is negative
if D preserves orientation and positive otherwise. By summing up we get

eu.�/D˙
�
�.C 0/C.np1

C� � �Cnpk
/�

nX
iD1

Ili

�
D˙

�
�.C /C

X
p2C

.np�1/�

nX
iD1

Ili

�
;

where the sign is positive if D preserves orientation and negative otherwise. This
finishes the proof of Theorem 4.1.

For the proof of Corollary 4.2, by considering over each li the section of F� associated
to a fixed point of �.li/, and applying Lemma 4.4, we have

eu.�/D eu.�C/C eu.��/;

where eu.�˙/ denotes the Euler number of � restricted to �1.S
˙/. An instance of

Theorem 4.1 on each connected component of S˙ and the fact that each curve li is
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the boundary of exactly one positive and one negative component give

eu.�/D
�
�.SC/C kC�

nX
iD1

Ili

�
�

�
�.S�/C k��

nX
iD1

Ili

�
D .�.SC/C kC/� .�.S�/C k�/:

As another application of Theorem 4.1, we note that if �.S/� 0, one has �.S/D eu.�/
because � is Fuchsian. From �.S/D �.SC/C�.S�/ we therefore obtain

2�.S�/D kC� k�:

Corollary 4.6 If A is an annulus with loxodromic holonomy � then eu.�/D 0.

5 Grafting and bubbling

In this section we will prove that grafting can be obtained by a bubbling followed by a
debubbling, as was stated in Theorem 1.2 in the introduction. We recall that a graftable
curve is a simple closed curve with loxodromic holonomy such that the developing
map is injective on one of its lifts. A more precise restatement of Theorem 1.2 is:

Theorem 5.1 Let � be a BPS on a surface S and  be a graftable simple closed curve
in S that does not pass through the branch points of � . Then the grafting of � along 
can be obtained by a bubbling followed by a debubbling on � .

Proof First, note that a small annular neighborhood U of  has a lift in the universal
cover that develops injectively in CP1 . Everything will take place in that annular
neighborhood. The whole process of bubbling and debubbling is sketched in Figure 6,
and details are described below.

We choose an orientation for  . Consider four points s; q;p; r 2  in cyclic order.
Choose paths ˛ and ˇ joining s to p and q to r , obtained by pushing the segments
Œs;p� and Œq; r � on the left and on the right side of  respectively, as in the upper left
corner of Figure 6. We denote by z a lift of  to the universal cover of S , by zU the
corresponding lift of U , by D the developing map of � and by � the (loxodromic)
holonomy of  . Consider one of the images p0; q0; r0; s0; ˛0; ˇ0�CP1 by D of each
of the corresponding elements in the initial situation and call p1; q1; r1; s1; ˛1; ˇ1 �

CP1 the images of the latter by � (see Figure 7).

Consider the annulus A D .CP1 nD.z //=h�i equipped with its natural projective
structure. Still denote by ˛ and ˇ of the image in A of the ˛i and ˇi . We denote by
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s; q;p; r their respective extremities in @A (therefore q; r lie in a component of @A
and p; s on the other one). In particular we can find a simple arc � in A joining the
points r to s and avoiding the developed images of ˛ and ˇ . In Figure 7 we find a
sketch of two lifts �0 and �1 of � to CP1 . They will be important for the construction
of twin paths.

Next we consider the bubbling bub.�/ of � along the oriented arc Œp; q� of  between
p and q (the one that contains the points r and s ); see Figure 6, right side. This is
obtained by cutting � along Œp; q� and CP1 along Œp0; q1� (see Figure 7) and pasting
together. Two branch points of angle 4� appear at p and q . The oriented segment
Œp; q� in � is separated into twins segments Œp; q�right and Œp; q�left in bub.�/. Observe
that the arcs ˛ and ˇ in S survive after the bubbling. We denote their endpoints in
bub.�/ with the same letters, s;p; q; r as before the bubbling (r lives in Œp; q�right and
s lives in Œp; q�left ).

We proceed now to see that there is another bubble in bub.�/, such that its debubbling
is the grafting Gr .�/ of � along  . To identify a bubble it is sufficient to find a
pair of twin paths that join two simple branch points, bound a disc, and develop to a
segment. Consider the paths in bub.�/ starting at q ,

�1 D ˇ ?�0 ?˛0 and �2 D ˇ1 ? �1 ?˛;

that are drawn with dashed lines on the right part of Figure 6. These paths are twins.
Moreover, we claim that �1 � �

�1
2

bounds a disc. Indeed, the curve Œp0; r0� ? �0 ?˛0

in CP1 n Œp0; q1� bounds a disc Disc0 , and similarly ˇ1 ? �1 ? Œs1; q1� bounds a disc
Disc1 . Clearly ˇ ? Œp; r ��1 ?˛�1 ? Œs; q� bounds a disc in � . These three discs glue
together to a disc bounded by �1 � �

�1
2

.

We are left to prove that the debubbling of these twin paths produces a new branched
projective structure that coincides with Gr .�/. To this end, it suffices to find two
parallel curves whose developed image is precisely D.z /, bounding an annulus with
the projective structure of A, and whose complement has the structure induced by �
on S n  .

We proceed to analyze the preimages of D.z /, using the developing map of bub.�/ to
identify such curves. Denote by 1 the segment Œr; q�� Œp; q�right and 2 the segment
Œp; s�� Œp; q�left as in Figure 6. Remark that the twin path of the segment Œs;p� in 
starting from p is the segment Œp; s0� (in the bubble CP1 n Œp0; q1�) that joins pD p0

and s0 , and that does not enter the second bubble until s0 , as Disc0 is delimited by ˛0 ;
see Figure 7. Similarly, the twin path Œq; r1� of the segment Œq; r � joins q and r1 in the
first bubble without entering the second bubble. These twins correspond to the thick
segments inside the shaded bubble in Figure 6). Thus they appear in the structure after
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the debubbling and will have developed image contained in D.z /. By construction,
after the debubbling, their union with 1 and 2 forms a pair of parallel closed curves
having the same developed image.

The shaded part in Figure 7 is, by construction, a fundamental domain for the action
of � on CP1 n Fix.�/. Moreover, the region bounded by ˛0 ? Œp; s0� is projectively
equivalent to the region delimited by ˛ ? Œs;p��1 . Similarly, the region bounded by
ˇ ? Œr1; q� is projectively equivalent to the one delimited by ˇ ? Œq; r ��1 . This implies
both properties we need: namely, that the projective structure in the region between �1

and �2 after debubbling coincides with A, and that the structure on the complement of
A is the one induced by � on S n  .

6 Finding embedded twin paths

In this section, we give two criteria to ensure that a pair of twin paths is embedded. This
is necessary to perform all the movements of branch points we carry out in Sections 7,
8 and 9.

There are mainly two pathologies that one has to avoid. Suppose that we have a
geodesic ray � emanating from a branch point and want to follow its twin � 0 , which is
locally well-defined. Even if � is embedded it could happen that � 0 is wild (note that a
bubbling introduces a whole copy of the universal cover of the surface!). Secondly, it
could happen that � 0 crosses � very soon, say �."/D � 0."/ at a smooth point (as in
fact happens in a conical cut and paste described at the end of Section 2.2) with no a
priori control on ". In both cases a cut and paste procedure would change the topology
of S .

Here we prove two lemmas. The first one ensures that if we follow the pre-image of a
geodesic under a projective map, the twin paths we obtain are in fact embedded. The
second shows that if the holonomy is Fuchsian, then pathologies like the conical cut
and paste cannot occur. Both lemmas rely on the hypothesis of Fuchsian holonomy
and their falseness in more general settings constitutes one of the main obstructions to
generalize the arguments to other types of representations.

Lemma 6.1 (Twin geodesics are embedded) Suppose S is a surface equipped with a
BPS having Fuchsian holonomy. Let U � S˙ be an open domain in S˙ with smooth
boundary and corners. Let † be a complete hyperbolic surface, and f W U !† be a
local isometry (on the complement of branch points). Let T 2 Œ0;1� and .�1; �2/ be a
pair of twin geodesics �i W Œ0;T /! U starting at a branch point p 2 U such that
� for every i D 1; 2 and t 2 .0;T /, �i.t/ belongs to U and is not a branch point

of S ,
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� f ı �1 D f ı �2 D � is a properly embedded geodesic in †.

Then, .�1; �2/ is a pair of embedded twin paths in S . Moreover, suppose that † does
not have parabolic ends and that T DC1. Then �i.t/ tends to a point ui in SR when
t tends to infinity, for i D 1; 2, with u1 ¤ u2 .

Proof Each of the paths �i are embedded since � is embedded. The first part of
the lemma says that the images of �1 and �2 are disjoint. We argue by contradiction.
Suppose that there are two numbers 0 � s; t < T , not both equal to 0, such that
�1.s/D �2.t/. Because � passes once through the point p , both s and t are positive.
By exchanging the roles of �1 and �2 if necessary, we can suppose that s � t .

At the point q D �1.s/D �2.t/, the geodesics �1 and �2 cannot be transverse, because
the map f is a local diffeomorphism at q . Hence, we necessarily have �1.sCu/D

�2.tCu/ for small values of u, or �1.s�u/D �2.tCu/ for small values of u. In the first
case, we have �1.sCu/D �2.tCu/ for every u��t by analytic continuation. Because
�1 and �2 are different, we have s > t . At u D �t , we find �1.s � t/ D �2.0/ D p .
Hence �.s � t/D p , which contradicts that � is embedded. In the second case, we
get �1.s � u/ D �2.t C u/ for 0 � u � .s � t/=2 by analytic continuation (note that
t C .s � t/=2 � s < T ). In particular we get �1..s C t/=2/ D �2..s C t/=2/. At
uD .sC t/=2> 0, we therefore obtain that f is a branched covering, contradicting the
hypothesis that �1.t/ is not a branch point of S for t > 0. The first claim is proved.

Since � is properly embedded, both �1 and �2 must exit any compact set of S as
t !1; otherwise an accumulation point would exists. By Lemma 3.5 both �i have
limits ui as t !1. Such limits must belong to SR because both �i exit all compact
sets.

If u1 D u2 , then �1 and �2 are exponentially asymptotic at infinity in U for the
hyperbolic distance. However, they have the same image � under f , and † has no
parabolic end, so this is impossible. Hence the limits are distinct, and the lemma is
proved.

Suppose that the holonomy of S is Fuchsian. For a component C � S˙ we denote
by C fuchs the hyperbolic surface �.�1.C //nH

˙ . The following lemma shows that we
can always move branch points at least a distance bounded by the injectivity radius
of C fuchs .

Lemma 6.2 (Local movements) Let S be a closed surface equipped with a BPS with
Fuchsian holonomy. Let C be a component of S˙ and let " > 0 be smaller than the
injectivity radius of C fuchs . Let  be a geodesic segment starting from a branch point
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p of C and shorter than ". Let  0 be a geodesic segment starting from p , of the same
length as  , and forming with  at p an angle 2k� , with 0 < k 2N . Suppose that
both  and  0 do not contain branch points other than p . Then  and  0 form a pair
of embedded twin paths.

Proof A developing map for S induces a map f W C ! C fuchs , which is a local
isometry. The image of  is therefore a geodesic in C fuchs . Since  is shorter than the
injectivity radius of C fuchs , then f . / is properly embedded. As  0 forms an angle
2k� , we have f . /D f . 0/ and Lemma 6.1 concludes.

7 Debubbling adjacent components

In this section, we give a criterion ensuring that a BPS can be debubbled, after possibly
moving the branch points. The main result is the following.

Theorem 7.1 (Debubbling) Let S be a compact surface equipped with a BPS � hav-
ing Fuchsian holonomy. Suppose that there exists a positive and a negative component,
that we denote CC and C� , with a common boundary component l , such that:

(1) The index of l is 1, and its holonomy is loxodromic.

(2) The index of any component of @CC or @C� other than l vanishes.

(3) The components CC and C� each contain a single branch point of angle 4� .

Then, after possibly moving the branch points in the components CC and C� , the
branched projective structure on CC[C� is a bubbling.

Before entering into the details, let us explain the strategy for the proof of this result,
and introduce the notion of half-bubble:

Definition 7.2 (Half-bubble) Given a positive or negative component C of � and
a component l of @C , a half-bubble in the direction of l is a pair of embedded twin
geodesics .�1; �2/ contained in C and tending at different points u1 and u2 of l at
infinity, such that C n .�1 [ �2/ has two connected components, one of them being
isometric via the developing map to H2 minus a semi-infinite geodesic. We require
moreover that the oriented angle ]�1�2 is the 2� –angle of that region.

In other words, the branched H2 –structure on C has been obtained from another
branched H2 –structure C 0 by inserting a hyperbolic plane with a cut and paste proce-
dure along a properly embedded semi-infinite geodesic of C 0 .
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The proof of Theorem 7.1 consists of finding half-bubbles in the direction of l in
each of the components CC and C� , and ensuring that, after possibly moving the
branch points in CC and C� , they glue together to produce a bubble. This is done in
Proposition 7.8.

Recall that a connected subsurface C � S is called incompressible if any loop in C

that is homotopically trivial in S is also homotopically trivial in C .

Lemma 7.3 The components CC and C� are incompressible in S .

Proof A well-known criterion for a connected subsurface of S to be incompressible
is that its boundary components are not homotopically trivial in S . By hypothesis l

has loxodromic holonomy. Since any component l 0 of @CC or @C� different from l

has index 0, its holonomy is non-trivial (see Proposition 3.2). Thus, neither l nor any
l 0 can be homotopically trivial.

Note that Lemma 7.3, Remark 4.5 and the index formula Theorem 4.1 show that
necessarily C� is an annulus. However, CC may have more complicated topology.

It is necessary now to fix some notation. Let � denote the holonomy of a developing
map D for � . The facts we are going to prove hold true for both CC and C� . For
lightening notation we fix C D CC . In order to obtain the proofs for C� one has just
to replace the upper half-plane model for H2 with the lower half-plane model for H� .

Let � W zS!S be the universal covering of S , with covering group �1.S/. We choose a
connected component yC of ��1.C /. The restriction of � to yC is a Galois covering over
C , with Galois group the stabilizer of yC in �1.S/. We set �1.C /D Stab. yC / < �1.S/

(note that using this notation, in general the group �1.C / could be different from the
fundamental group of C , for instance if C were compressible in S ). As above, we
denote by C fuchs the complete hyperbolic surface

C fuchs WD �.�1.C //nH
2:

The restriction of D to yC induces a map DC W C ! C fuchs , which is a local isometry.

The topology of C fuchs may be very different from that of C . For instance, for a BPS
with discrete holonomy in PSL.2;R/, a positive component C may be diffeomorphic
to a pair of pants but C fuchs may be diffeomorphic to a disc (case of a branched covering
over CP1 ) or to a punctured torus.

Example 7.4 Consider a complete hyperbolic metric on a punctured torus †, with a
cusp of infinite area. Let  �† be a properly embedded semi-infinite geodesic. Let ˛
and ˇ be some generators of the fundamental group of †, and let

�˛W †˛ D z†=˛!†; �ˇW †ˇ D z†=ˇ!†
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be the intermediate coverings defined by ˛ and ˇ ; both are isometric to loxodromic
annuli. Let ˛ and ˇ be some lifts of  by �˛ and �ˇ . These semi-infinite paths
are properly embedded as well. Let us cut †˛ and †ˇ and paste these annuli along
these cuts. One obtains a pair of pants … together with a hyperbolic metric with one
conical point of angle 4� . Moreover, the maps �˛ and �ˇ glue together to produce a
map DW …!†, which is a local isometry and a �1 –isomorphism (see [28, Lemma 4,
page 658] for more details).

However, such examples are incompatible with our Fuchsian assumption:

Lemma 7.5 (Identification between C and C fuchs ) Let S be a closed surface
equipped with a BPS with Fuchsian holonomy. If C is an incompressible component
of S˙ , then there is an orientation-preserving diffeomorphism ˆW C fuchs! C such
that the map induced by DC ıˆ on the set of free-homotopy classes of closed loops is
the identity.

Proof Since C is incompressible, any connected component of ��1.C / is simply
connected. If follows that yC is the universal covering of C and the Galois group
�1.C / is indeed isomorphic to the fundamental group of C , via an isomorphism that
is well-defined up to conjugation.

It is classical to see that there exists an orientation-preserving diffeomorphism zF W zS!
yC that is �1.C /–equivariant and �1.C /–equivariantly homotopic to the identity. On
the other hand, since � is Fuchsian and S is closed, there is a �–equivariant orientation-
preserving diffeomorphism zGW zS ! H2 . The map ẑ D zF ı zG�1 descends to a
diffeomorphism ˆW C fuchs! C . Since D is �–equivariant, the map D ı ẑ has the
property that

D. ẑ .h �x//D h �D. ẑ .x//

for all h 2 �.�1.C //. Since �.�1.C // is the Galois group of the universal covering
H2! C fuchs , it follows that D ıˆ fixes free-homotopy classes of loops.

We identify C with C fuchs using the diffeomorphism ˆ of Lemma 7.5 so that now
it makes sense to say that DC fixes free homotopy classes of loops. We still use the
notation C and C fuchs to mean that the structure of C is the branched one while that
of C fuchs is the hyperbolic unbranched one.

Since the holonomy of l is loxodromic, we consider the geodesic representatives 
in C and  fuchs in C fuchs in the respective homotopy classes. Note that DC . / is in
general different from  fuchs (they only belong to the same homotopy class), since DC

is not a global isometry. As above, we denote by El the end of C corresponding to l .
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If C fuchs is an annulus let E fuchs be the end that is on the same side of  fuchs as El of
 . Otherwise E fuchs is just the end of C fuchs corresponding to l . In both cases E fuchs

is an annulus with geodesic boundary  fuchs and a complete hyperbolic metric with
loxodromic holonomy.

In order to prove Theorem 7.1, we begin by moving the branch point p in C so that
its image q DDC .p/ in C fuchs belongs to  fuchs . To this end, let ı be an embedded
geodesic segment starting at q and ending at a point of  fuchs , not containing the image
of branch points other than q . By Lemma 3.4, the geodesic ı can be lifted to a pair of
twin geodesics .ı1; ı2/ in C . Thanks to Lemma 6.1, these twins are in fact embedded.
By cutting and pasting along these twins, we obtain a new BPS on S such that DC .p/

belongs to  fuchs .

Under this condition, the geodesic  passes through p . Indeed, otherwise  would
be a smooth geodesic and since l has index 1, p would belong to the end El . In
this case we could choose � the orthogonal segment from p to  . Since DC fixes
free homotopy classes of curves, we would get DC . /D  fuchs as oriented loops, and
DC .�/ should be a smooth geodesic segment starting from q DDC .p/ 2  fuchs , and
orthogonally ending to  fuchs on the side of E fuchs . But a geodesic segment starting
at a point of  fuchs and entering E fuchs never comes back to  fuchs again (because
E fuchs is a genuine hyperbolic surface); that would be a contradiction. Hence the only
possibility is that p 2  .

The total angle at p is 4� and the exterior angles of  at p are at least � and disjoint
(by Lemma 3.12). Hence  cannot pass through p more than 4 times. Examples of
peripheral geodesics passing four times through a conical point of angle 4� exist in
general.

Example 7.6 Consider an annulus A equipped with a complete hyperbolic metric,
with a loxodromic end, and with a geodesic boundary component  . Cut  in four
segments of equal length I1; I2; I3; I4 arranged in cyclic order. Glue I1 with I3 and
I2 with I4 by reversing the orientation. We obtain a punctured torus P in which the
extremities of the intervals Ik are glued to a same point p of total angle 4� , and in
which the peripheral geodesic is the image of  by the quotient map A! P . This
peripheral geodesic passes through p four times.

However these cases do not arise under our assumptions.

Lemma 7.7 Suppose that DC .p/ 2  fuchs . Then, the peripheral geodesic  passes
through p exactly once if and only if it forms a pair of angles .�; 3�/ at p , and in this
case DC embeds  to  fuchs . Moreover, if  forms no angle � at p , then it passes
through p exactly twice.
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Proof Let B be an embedded metric ball around q D DC .p/. Let E denote the
sector E � B on the side of  fuchs belonging to E fuchs and F the sector on the other
side. Since p is a branch point of total angle 4� , there exists a neighborhood B0 of p

such that DC W B
0!B is a double covering, branched at p . Let Ei and Fi , i D 1; 2,

be the preimages of E and F in B0 ; these are four sectors of angle � at p arranged
in a cyclic order E1;F1;E2;F2 . See Figure 8.

E1

F1

F2



 p


E2

B

DC

E

DC .p/

 fuchs

DC./
F

B0

Figure 8: The map DC restricted to B0

We call an edge of  any embedded sub-loop of  , that is to say, a segment of 
starting and ending at p but not passing through p apart from at its extremities. Any
edge is smooth outside p so its image in C fuchs is a geodesic starting and ending at
q . Note that any semi-geodesic in C fuchs starting at  fuchs and entering the interior
of E fuchs tends to infinity in C fuchs without coming back to  fuchs . It follows that
DC . /\B � C fuchs nE . In particular,  \B0 � F1[F2 (the intersection is possibly
empty if  does not contain p ).

Let us prove that if an exterior angle of  at p is equal to � or 3� , then  passes
through p once. Suppose by contradiction that  has s � 2 edges and that the exterior
angle between two consecutive edges is � or 3� . Then up to cyclic permutation of the
edges, one can write  D 1? � � �?s , where the i are the edges of  , for i D 1; : : : ; s ,
and the exterior angle between 1 and 2 is � or 3� . Set I D 1 ? 2 . Then, the
image of I under DC is a union of geodesic lines contained in C fuchs nE , passing
through q and forming an angle of � at q . Hence DC .I/�  fuchs at the neighborhood
of q . Since the images of the i under DC are geodesic segments, this implies that
the images of 1 and 2 under DC are some powers of  fuchs : DC .1/ D 

n1

fuchs ,
DC .2/D 

n2

fuchs for some integers n1; n2 . Because DC induces the identity on the
set of free homotopy classes of loops, the loops 1 and 2 are homotopic to the loops
ln1 and ln2 . As S is oriented, no simple loop can be a proper power, and since both
1 and 2 are embedded loops, we get n1D n2D 1. But then  is no longer the curve
minimizing the length in the free homotopy class of l , a contradiction.
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On the other hand, if  passes only once through p , then it is a simple loop that is
mapped to a geodesic loop through q and in the same homotopy class as  fuchs . This
shows that DC . /D  fuchs and that .DC /j is in fact an embedding. It follows that
the angles that  forms at p are � on one side and 3� on the other.

It remains to prove the last claim. Since the exterior angles are always in Œ�; 3��, we
proved that if  passes through p at least twice, then the exterior angles of  at p

belong to .�; 3�/. Hence, because  \B0 � F1[F2 , any exterior angle of  must
cover one of the Ei . Because these angles at p are disjoint, their number cannot
exceed 2.

Let yl be a lift of l in the boundary of yC and ˛ 2 �1.C / be the generator of the group
stabilizing yl in �1.C / that acts as a positive translation on yl for the orientation of
yl given by the RP1 –structure of yl . Since l is loxodromic, we can use the upper
half-plane model for H2 , and choose the developing map in such a way that for some
real number � > 1

D ı˛ D �D

on yl . That is to say, �.˛/.z/D �z .

The map D induces a decomposition ylDD�1.0/[D�1.R>0/[D�1.1/[D�1.R<0/

that is ˛–invariant. Since l is of index 1, the parts �.D�1.0// and �.D�1.1// consist
of single points. We denote by l D f0g[ lC[f1g[ l� the decomposition induced
on l (see the left side of Figure 9). Observe that the map D induces a projective
diffeomorphism between lC and R>0 that is well defined up to multiplication by a
power of �. The same is true for l� . Hence the multiplication by � is well defined on
lC[ l� .

Note that because of the choice of the upper half-plane model, we have that E fuchs is
half of �nH2 , and  fuchs lifts to the imaginary axis of the upper half-plane.

Proposition 7.8 (Existence of a half-bubble) If DC .p/ belongs to  fuchs , and 
passes through p exactly once, then for each u 2 lC there exists a half-bubble in the
direction of l whose endpoints in l are .u;u=�/.

Proof By Lemma 7.7,  forms at p angles � and 3� . Since l has index 1 it follows
that the angle G on the side of the end is the one of 3� . Otherwise we would be
able to move the singularity out of the end, which contradicts the index hypothesis
and Corollary 4.6. Hence, the restriction of D to G covers twice the exterior angle of
 fuchs in C fuchs (which is the sector E of Figure 8).
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Figure 9: The curve l oriented counterclockwise, and its lift yl

Let yp be a lift of p in yC . In the upper half-plane model of H2 that we are using, the
point D. yp/ belongs to the positive imaginary axis. Since l has index 1, the segment
from 0 to D. yp/ has two pre-images joining yp to two consecutive elements of D�1.0/

that bound a segment J in yl that is a fundamental domain for the action of ˛ (see
Figure 9).

Let u be a point of lC and yu be its lifts in J . The point D.yu/ belongs to the positive
real line by definition of lC . Let z� be a geodesic in H2 from D. yp/ to D.yu/, and let
� be its projection to E fuchs � �nH2 .

By construction, � is a geodesic in E fuchs starting from q DDC .p/. As the angle of
 at p on the side of the end El is 3� , � lifts to two twin geodesic paths .�1; �2/

in El , with the convention that the angle 2� is the one from �1 to �2 in the positive
direction given by the orientation of S .

By Lemma 6.1 (applied with U DEl , †DE fuchs � �nH2 , and f DDC ) the pair
.�1; �2/ is embedded in El , with distinct limits at infinity u1;u2 . The pair .�1; �2/

lifts to a pair of twin geodesic .y�1; y�2/ starting from yp . The arc �1 ? �2 cuts El –
which is a topological annulus – in two parts, one of which is a disc. Since the angle
from �1 and �2 is 2� and it is contained in El , the disc is the part going from �1 to
�2 in the positive sense.

The disc between �1 and �2 lifts to a disc in yC , bounded by y�1?y�2 and a segment of yl .
Such a disc is homeomorphically mapped to H2 minus z� by construction. Therefore,
.�1; �2/ is a half-bubble.

If we show that .u1;u2/D .u;u=�/ we are done. By construction we have D.y�1/D

D.y�2/D z� . It follows that the endpoint yu1 of y�1 in yl belongs to D�1.D.yu//, and the
same for yu2 . Since the angle between �1 and �2 is 2� in the positive sense, it follows
that yu1 2 J and yu2 2 ˛.J /. In particular, yu1 D yu, hence u1 D u as we needed. Also,
the point yu2 is the successor of yu1 with respect to the ordering of D�1.D.yu// induced
by yl . From the fact that l has index 1 we get that when restricted to Œyu; ˛.yu/� (which
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is a fundamental domain for the action of ˛ on yl ) the map D starts from D.yu/, makes
a whole turn around RP1 and finally covers the fundamental domain ŒD.yu/; �D.yu/�.
(See Figure 9.) It follows that, according to our notation for the multiplication by � on
yl , yu2 D �

�1˛.yu1/. So u2 D u1=�D u=�. This ends the proof of Proposition 7.8.

Lemma 7.9 By moving p in C we can reduce to the case that  passes through p

precisely once, and DC .p/ 2  fuchs .

Proof Suppose that  passes twice through p . Let y be the lift of  to yC correspond-
ing to yl (so that ˛ acts by translations on  ). We look at the developed image D.y /.
It draws a “zig-zag” line in H2 . More precisely, let yp be a lift of p so that zq DD. yp/

belongs to the imaginary axis in our upper half-plane model. Since  consists of two
segments, D.y / starts from a lift zq in the imaginary axis, goes to some point zr , comes
back to �zq and then repeats the same path, multiplied by �; �2; : : : . (See the left side
of Figure 10.)
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@@R�1 �2

Figure 10: The “zig-zag” line D.y / and the local picture near p

If we look at DC . /, we see that the two segments emanating from DC .p/ do not
enter the end E fuchs , by the usual argument that a geodesic cannot enter and exit E fuchs .
Translated to the universal covering, this says that the point zr belongs to the interior of
the left quadrant, ie, its real part is negative. It follows that the angles that we see on
the right side of D.y / are, alternatively, bigger than � (at the points zq; �zq; : : : ) and
smaller than � (at the points zr ; �zr ; : : : ).

Let ys be the point of y such that D.ys/D zr . Denote by ‚ the exterior angle seen on
the right of y at ys , and set � D]zqzr.�zq/ < � . As D is a double branched covering
at ys , either ‚D � or ‚D 2� C � , and since ‚ must exceed � we get ‚D 2� C � .
Moreover, since  passes twice through p , locally at p we see the angular sector
‚, plus the sector � that corresponds to the exterior angle at zq . The right side of
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Figure 10 shows a local picture in which the angles we see on the paper are half of
those around p (so segments forming an angle � represent twin segments). Since ‚
and � are disjoint by Lemma 3.12, there exists a pair of twin geodesic segments �1

and �2 starting from p and pointing into ‚, and both lying in the complement of �
(for instance the paths obtained as preimages of the bisector of � ). Such segments are
in El because the angular sector ‚ is that on the side of El .

For i D 1; 2 let y�i be the lift of �i starting at ys and let z� D D.y�i/. We have that z�
points in the angular sector � because the �i are in ‚. Similarly, if y� 0i is the lift of �i

that starts at yp , then D.y� 0
1
/DD.y� 0

2
/ points left as in the left side of Figure 10 because

the �i are in the complement of �. Therefore we can geodesically extend z� until the
imaginary axis, without intersecting D.y / nor D.y� 0i/.

Since �1 and �2 both enter El , they never exit El . By construction �z�\z� D∅. So, it
projects to a segment � in �nH2 . Now, we consider the map DE W El!�nH2 induced
by the developing map. Lemma 6.1, applied with U the open end El , † D �nH2 ,
and f DDE , tells us that in fact .�1; �2/ are embedded twin paths.

We claim that after moving along such twin paths, we reduce to the case that  passes
only once through p , and DC .p/ 2  fuchs . For that, we have to focus on the “zig-zag”
line. Since any vertex of the “zig-zag” is the image of a lift of p , we see at any vertex
the image of z� via a certain element of �.�1.C //. Namely, at �nzr we see �nz� and at
�nzq we see �nD.y�1/.

Now, we parametrize � with times t 2 Œ0; 1� and perform the cut and paste procedure
continuously on t . With the same notation we are using, we put an index t at the
bottom of every object to mean its evolution at time t . Namely, t is the geodesic
representative of l , and yt ; zrt ; zqt are the corresponding representatives of y ; zr ; zq and
so on. By the uniqueness of the geodesic representative of l we get that t changes
continuously on t . It follows that, as long as the angles that t forms at pt are bigger
than � , the developed image of yt is the “zig-zag” line through zqt ; zrt ; �zqt ; �zrt ; : : :,
which are nothing but the point z�.t/ and its images. Since zrt moves right and zqt

moves left, eventually zq and its images detach from D.yt / (in fact one can easily
check with some elementary hyperbolic trigonometry that ‚t increases on t while �t

decreases, and there is a time t0 where �t becomes � ). From this time on, t passes
through pt only once, and for t D 1 the developed image of y1 is the imaginary axis,
so DC .p1/ 2  fuchs .

We remark that, putting Proposition 7.8 and Lemma 7.9 together, we can directly find
a (non-geodesic) half-bubble in the case where the peripheral geodesic passes twice
through the branch point. This is done by considering a continuation of the path �
defined in the proof of Lemma 7.9 to a point lying in RC .
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Proof of Theorem 7.1 We consider a couple of the form .�u;u/ in lC . Combining
Lemma 7.9 and Proposition 7.8 we show that after moving the branch points in CC

and C� respectively, one can find half-bubbles .�C
1
; �C

2
/ in CC and .��

1
; ��

2
/ in C�

whose extremities are .uC
1
;uC

2
/D .�u;u/ and .u�

1
;u�

2
/D .�u;u/. Since geodesics

in the components meet the real curve SR orthogonally, the union of .�C
1
; �C

2
/ and

.��
1
; ��

2
/ is a pair of smooth twin paths, and the two regions between the half-bubbles

is in fact projectively equivalent to CP1 minus a closed segment, hence a bubble.

8 Degeneration dichotomy

In this section, given a BPS with Fuchsian holonomy, we try to move all the branch
points in a given component of S˙ to a unique branch point of high branching order.
By doing this, the surface may degenerate to a nodal curve. In such a situation, the
degeneration allows us to find a bubble just before degenerating. If the structure does
not degenerate, we succeed in our task.

Proposition 8.1 Let S be a closed surface equipped with a BPS with Fuchsian holo-
nomy. Let C be a component of S˙ , with R branch points of angle 4� . Then, either
we can move branch points so that we find a bubble, or we can move all the branch
points of C to a single branch point of angle 2�.RC 1/.

Proof The proof goes by induction, joining the branch points one by one, the inductive
step being summarized as “either we can join one more branch point or we find a
bubble”.

To begin with, we choose a branch point p0 and a positive constant " smaller than the
injectivity radius of C fuchs .

Lemma 8.2 We can move branch points so that afterward, for every branch point p ,
d.p;p0/ < ".

Proof Let p be one of the branch points that is closest to p0 among those with
d.p;p0/ � " (if any). Let � be a geodesic joining p to p0 , of length d.p;p0/.
If d.p;p0/ D ", we just move p a little so that d.p;p0/ < ". Otherwise, let ı D
d.p;p0/� " > 0. The initial segment of � of length ı does not contain any other
branch point because of the criteria for choosing p .

By Lemma 6.2 we can move p along an initial segment of � of length at least minf"; ıg.
A recursive argument proves the claim.
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We denote by DB a developing map from B.p0; "/ to a disc of radius " in H2 . Up
to little movements, we can assume that distinct branch points have distinct images
and distances from p0 . At the beginning of the our strategy all conical angles are 4� ,
but when we join a branch point to p0 its angle increases. So we consider the general
situation where the angle at p0 is 2k� .

Let p be the branch point (other than p0 ) closest to p0 and � be a path realizing the
distance from p0 to p . The dichotomy is now the following:

(1) There are at least two shortest paths �0 and �1 from p0 to p (and in this case
our claim is that up to moving branch points one finds a bubble).

(2) � is the unique path from p0 to p minimizing the distance (and we claim that
in this case one can join p to p0 ).

Suppose we are in the first case. Paths �0 and �1 are both embedded; otherwise, there
would exist a short-cut from p to p0 . For the same reason, if �0.t/D �1.s/ for some
s; t > 0, then sD t . If �0.t/D �1.t/ for some t > 0, then �0.t/D �1.t/ is not a branch
point because p is the closest to p0 , and also in this case we easily find shortcuts, as
one of the angles between �0 and �1 is smaller than � . Therefore �0 and �1 do not
cross each other.

The images DB.�0/ and DB.�1/ are therefore smooth geodesics in a disc, thus they are
segments. In particular, they both are the only segment between DB.p/ and DB.p0/.
Therefore �0 and �1 are twin. It follows that the loop �0�

�1
1

has trivial holonomy,
hence it is homotopically trivial in S because the holonomy is faithful. Thus it bounds
a disc Q in S . Note that by moving p along �0[ �1 we would disconnect S .

The angle that p0 forms on the side of Q is 2h� with h< k . If h> 1, we move p0

a little using twin paths �0; �1 contained in the interior of Q so that, if �0; �0; �1; �1

are in cyclic order in Q, then the angles ˛a D†.�0; �0/ and ˛1 D†.�1; �1/ satisfy
˛0C ˛1 D 2� . This separates p0 in 2 branch points. One of them, which we still
denote p0 , is the endpoint of �0 and �1 and has an angle 2� on the side of Q, and
the other has a total angle 2.h� 1/� and belongs to the interior of Q. We repeat the
same construction outside Q so to obtain that p0 has a total angle 4� , with 2� in Q,
and 2� outside Q.

We cut S along �0[�1 and glue the boundary of the disc Q along �0[�1 by gluing
�1.t/ to �0.t/. The result is a sphere P with a branched projective structure, a marked
segment � with marked endpoints p0 and p , both being regular. Similarly, on the
other piece of S we get a surface xS with a market segment � with regular endpoints
p0 and p .
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Now, via moving branch points, we split any branch point present in Q in some number
of 4� –points. We obtained a branched covering CP1!CP1 with branch-order at most
two at any point. By moving branch points a little we can assure that they have distinct
images (hence they are “simple”, with the terminology of Hurwitz [15].) The space
of simple branched coverings from CP1 to itself is connected ([15]; see for instance
Harris and Morrison [11, Theorem 1.54, page 34] for a proof). A detailed account on
the topology under consideration can be found in the appendix. By Corollary 4.2 we
know that the number of branch points is even. Thus we can easily construct a BPS
P1 that is branched covering CP1!CP1 , with the same number of branch points as
P , by consecutive bubblings.

By Corollary 2.11, applied with AD S , B D xS , C D P and D D P1 , the structure
on S is connected by moving branch points to a cut-and-paste of xS and P1 , which
clearly contains a bubble.

Suppose now that we are in case .2/. The path � does not contain other branch points
because p is the closest to p0 . If the image DB.�/ contains the image of some other
branch point q , then we move q a little away by using twin paths outside the ball
B.p0; d.p0;p//. This implies that after the moving of q , the unique shortest path
from p to p0 is still � . The path DB.�/ is the straight segment in H2 from DB.p0/

and DB.p/. The segment DB.�/ has two lifts � and � emanating from p . Since p is
the branch point closest to p0 , and since we are not in case .1/, the endpoint of � other
than p is regular (and it is not p0 ). By applying Lemma 6.1 to U DB.p0; "/, †DH2

and f D DB , we deduce that � [ � is embedded. We move p by cut-and-pasting
along � [ � . The result is that p0 and p join together to give a branch point of angle
2.kC1/� (keep in mind Figure 2). Now the induction on the number of branch points
other than p0 concludes the proof.

We remark that we just proved that when we collapse some branch points to a single
point, then the limit structure is a nodal curve (possibly with no nodal point if the limit
is non-degenerate) consisting of a BPS on S with some branched coverings of CP1

attached to the nodal points.

9 Moving branch points to the positive part

In this section we prove the following result.

Theorem 9.1 Let S be a closed surface equipped with a BPS with Fuchsian holonomy.
Then one can move branch points so that either a bubble appears or all branch points
belong to SC .
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Proof The idea is to move branch points one by one from the negative to the positive
part. During the process bubbles could possibly appear.

Proposition 9.2 Let � be a BPS with Fuchsian holonomy on a closed surface S . If p

is a branch point contained in a negative component whose complement is not a union
of discs, then p can be moved to SC .

Proof Let C� be a the component of S� containing p . We claim that there are two
embedded twin paths 1; 2 in S starting at p , disjoint apart from p , which end in
the positive part. Hence, by moving p along the i , we get the desired result.

Let Cfill be the union of C� and the components of S nC� that are homeomorphic to
discs; this is a proper subsurface of S . As Cfill is not the whole S , its fundamental
group is a free group. Elementary considerations show that the map �1.Cfill/! �1.S/

induced by the inclusion Cfill ! S is injective. So the image of the inclusion map
�1.Cfill/! �1.S/ is a free subgroup of �1.S/. Consequently, the surface C�fuchs D

�.�1.Cfill//nH2 is not compact and of infinite area.

The developing map induces a projective (hence a local isometry) map DW C�!C�fuchs .
Let  W Œ0;1/! C�fuchs be an injective semi-infinite geodesic path starting at D.p/

that goes to infinity in C�fuchs . We can suppose that  does not contain any point of
the form D.q/ where q is a branch point of C� , other than D.p/, to ensure that we
can change p to a branch point q so that D.q/ is the last point of this form that 
encounters.

The geodesic  can be lifted to twin paths i W Œ0;1/!C� starting at p , with iD1; 2,
such that D.i/D  . By Lemma 6.1 the images of 1 and 2 are disjoint apart from
p and they have distinct endpoints on SR . So, we can move p by cut and pasting
along such twin paths and bring p to SC .

It remains to deal with the case that S nC� is a union of discs. By Proposition 8.1
either we find a bubble or we can join together all the branch points belonging to the
same components.

Proposition 9.3 Let C be a negative (resp. positive) component with a single branch
point p of angle 2�.RC1/. Suppose that @C has a component l that is homotopically
trivial in S . Then there exist two embedded twin paths starting at p with extremities in
the positive (resp. negative) component having l in its boundary.

Proof We begin with some easy preliminaries on convex subsets of H2 . Suppose that
C is a compact convex set in the upper half-plane, with piecewise geodesic boundary.
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A vertex of C is a point v of @C such that the boundary makes an exterior angle bigger
than � at v . We denote such an exterior angular domain by Œ�; � 0��R=2�Z, and we
introduce the angular domain B D Œ� C �

2
; � 0� �

2
� at v .

Lemma 9.4 Let 1 and 2 be distinct semi-infinite geodesic rays starting at some
vertices v1 and v2 of C in the angular domains B1 and B2 . Then 1 and 2 are
disjoint, and their limits at infinity are different. Moreover, each i does not intersect C
apart from at vi .

Proof By convexity of C , it is clear that 1 and 2 do not intersect C apart from at
v1 and v2 . If v1 D v2 , the first statement of the lemma is clear. Suppose now that
v1 ¤ v2 . If 1 and 2 intersect in a point p (even if this point is at infinity), then the
triangle v1v2p has two angles not smaller than �=2, which violates the fact that the
sum of the angles of a triangle in the hyperbolic plane is strictly less than � if the
points are not on a same line.

Lemma 9.5 The sum of the angles of Bv over all vertices v of C equals 2�CArea.C/.

Proof By the Gauss–Bonnet formula, the sum of the interior angles of C is equal to
.k � 2/� �Area.C/, where k is the number of vertices of C . Because the angle of Bv
of a vertex v equals � minus the interior angle at v , we deduce the formula.

We are now able to finish the proof of Proposition 9.3. We suppose C � S� . The case
C � SC has the same proof with the roles of SC and S� switched. Let  be the
peripheral geodesic associated to l , and let E be the end corresponding to  . Recall
(see Lemma 3.12) that E is an open annulus bounded by  that may be not embedded
as it may self-intersect at p . The universal covering zE of E is a half-plane delimited
by a lift z of  . Since l has trivial holonomy, a developing map D for the BPS of S

induces a well-defined projective map from E to H2 that is a local isometry. Also, this
map lifts to a map, still called D , from zE to H2 , which extends to @ zE . The image of
@ zE is a closed polygonal D.z / that agrees with the developed image of a lift of  .
The vertices of such a polygon are images of lifts of p . In particular, since there are at
least two vertices,  is not embedded.

Let A1; : : : ;Ak be the exterior (ie, contained in E ) angular domains of  at p . Each
Ai is mapped to an angular domain of H2 at some vertex of D.z / delimited by two
half-geodesics. Such geodesics cut H2 into two angular domains, a large one Li and
a small one Si . Since the angle of Ai is at least � , the image of Ai under D is Li .

Let C be the convex hull of D.z /. Suppose first that C has non-empty interior. For
each vertex v of C , denote by Bv the domain constructed just before Lemma 9.4.
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Each vertex v of C is a point of the form D.pi/ for some lift pi of p . Moreover, by
the preceding observation, the image of Ai contains the angular domain Bv . Let us
consider pre-images Cv �Av so that D.Cv/D Bv . Hence Cv is an angular domain
contained in the exterior angle Ai of  at p .

By Lemma 9.5, the sum of the angles of the domains Bv is larger than 2� . Hence,
because the angle Cv is equal to the angle Bv , their sum exceeds 2� . Thus a developing
map at p must overlap some of the Cv because of the pigeonhole principle. This shows
that there exist two geodesic rays 1 and 2 starting at p that are contained in the
union of the domains Cv , and differ by a multiple of 2� . Hence 1 and 2 are twin.
Moreover, they cannot be contained in the same Cv because twin geodesics make an
angle of at least 2� and any Bv is strictly less than � . Hence we can suppose that 1

starts in A1 and 2 in A2 .

We claim that these half-geodesic rays stay in E , do not intersect, and tend to different
points of l at infinity. The images D.1/ and D.2/ are two half-geodesic rays in H2

that do not intersect by Lemma 9.4, even at infinity, and never intersect C apart from
their starting point. Lemma 6.1 concludes.

Hence, the paths 1 and 2 can be analytically extended across c , ending in the positive
disc, and the proposition is proved in the case C has non-empty interior.

In the case where C has empty interior, it is a geodesic segment with distinct endpoints
q1 and q2 . Sectors B1 and B2 measure exactly � . Therefore there exists sectors B0

1

and B0
2

each strictly larger than � so that the conclusion of Lemma 9.4 holds, and the
proof goes now as in the general case. This ends the proof of Proposition 9.3.

An induction based on Propositions 9.2 and 9.3 proves Theorem 9.1.

10 Debubbling BPS with all branch points in the positive
part

In this section, we consider a BPS � with Fuchsian holonomy on a closed compact
surface S having branch points only in the positive part, and we show that such a
structure can always be debubbled provided it has some branch point.

Theorem 10.1 Let S be a closed surface equipped with a BPS with Fuchsian holo-
nomy. Suppose that all branch points of S belong to SC . Then, if there is at least one
branch point, we can move branch points so that the resulting BPS is a bubbling of
another BPS.
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Proof Fix a positive component C , let k be the total branching order of the BPS in
C , and n be the number of negative discs D1; : : : ;Dn adjacent to C . Let li D @Di ,
with the orientation induced by C .

Lemma 10.2 The index of any li is 1, while the index of any other component of @C
is 0.

Proof The closed disc Di D Di [ li does not contain branch points, hence the
developing map is a diffeomorphism from Di to H� , hence the index of the curve li
is 1.

On the other hand, any negative component C� adjacent to C has the structure of a
complete hyperbolic surface with no cusps and, if it is different from a disc, its boundary
has loxodromic holonomy. The claim follows from the index formula Theorem 4.1
applied to C� .

Lemma 10.3 k D 2n

Proof By Lemma 10.2, the index formula applied to C gives

eu.�C /D �.C /C k � n:

To compute eu.�C /, introduce the subsurface C 0 D C [D1[ : : :[Dn , oriented with
the orientation of S . By the above considerations C 0 is an incompressible subsurface
of S . Thus by Remark 4.5 eu.�C 0/ D �.C

0/. Since the twisted bundle C 0 �� RP1

is trivial on the discs Di , eu.�C 0/D eu.�C /. On the other hand, �.C 0/D �.C /C n.
We deduce that eu.�C /D �.C /C n, and the lemma follows.

Let us suppose that k is strictly positive. By Proposition 8.1, either we can find a bubble
in � after moving branch points, or we can join all the branch points to a single branch
point p of angle 2�.kC 1/. For every i D 1; : : : ; n, let i be the peripheral geodesic
in C corresponding to li . Since li is homotopically trivial in S , the developed image
of i is a closed piecewise geodesic of H2 , which has at least two vertices since it is
closed. Thus i passes at least twice through p . Denote by mi Dm0i C 2 the number
of times i passes through p , with m0i � 0, and by ˛i

1
; : : : ; ˛i

mi
the exterior angles of

i at p .

Lemma 10.4 The developed image of i is the oriented boundary of a convex polygon
Ci of H2 whose exterior angles are ˛i

1
; : : : ; ˛i

mi
.
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Proof Let y be a generic point of the developed image of i in H2 (viewed as the
upper hemisphere of CP1 ). We consider the extremity at infinity x1.y/ 2 RP1 of
the geodesic ray starting from y in the direction normal to i , on the right side.

We follow x1 as y varies in the developed image of i . When y passes through a
vertex (a developed image of p ), we stop y and let the normal vector describe the
angular domain ˛i

j � � . As y sweeps the whole developed image of i , the point
x1.t/ describes a closed curve in RP1 whose degree is the index of li . Hence, the
degree of this map is 1. Because all the angles ˛i

j are at least � , the map x1.y/ turns
always counterclockwise, and this implies that � � ˛i

j � 2� for every j D 1; : : : ;mi .
This means that the developed image of i always turns counterclockwise, with angles
˛i

j on its right. Because the turning number of the developed image of i is 1, this
implies that it bounds a convex domain of H2 on its left, and the lemma is proved.

The following result shows that there is always at least a peripheral geodesic which is
not too complicated.

Lemma 10.5 There are two possibilities:
(1) Either there exists a peripheral geodesic which passes through the point p

exactly twice,

(2) or nD 1 – equivalently, k D 2 – and the peripheral geodesic 1 passes through
p exactly three times.

Observe that case (1) occurs in a classical bubbling, and an example of case (2) is
described in Section 3.5.

Proof The proof is based on the following Gauss–Bonnet formula: The sum of the
exterior angles of a convex hyperbolic polygon with m vertices equals its area plus
.mC2/� . Because the union of all the exterior angles of the i in the angular domain
at p are disjoint, we getX

1�i�n

.mi C 2/� CArea.Ci/� 2�.kC 1/:

Dividing by � , by Lemma 10.3 and the relations mi Dm0i C 2, we get

(3)
X

1�i�n

m0i C
1

�

X
1�i�n

Area.Ci/� 2:

If there exists i such that Area.Ci/ > 0, then
P

1�i�n m0i � 1 and we infer that either
one of the m0i vanishes, and we are in case (1), or all are positive, and we are in case
(2). Suppose for a contradiction that Int.Ci/D∅ for all i ,

P
1�i�n m0i � 2 and .1/

or .2/ holds. Then we are necessarily in one of the following cases:
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(a) nD 1 (and k D 2) and m0
1
D 2.

(b) nD 2 (and k D 4) and m0
1
Dm0

2
D 1.

Since all the Ci have empty interior, the developed images of the i are segments.
Therefore they must have at least two exterior angles of 2� . Since exterior angles are at
least � , in both cases we see that the sum of the ˛j

i equals the total angle around p . In
case (a) we have angles ˛1

1
; ˛1

2
; ˛1

3
; ˛1

4
equal to 2�; 2�; �; � , and therefore they sum

up to 6� D 2.kC 1/� ; in case (b) we must have angles ˛i
1
; ˛i

2
; ˛i

3
equal to 2�; 2�; �

for i D 1; 2, and they sum up to 10� D 2.kC 1/� . Therefore the ends corresponding
to li fill the whole of C . In particular in case (a) the four petals of 1 are identified in
pairs, whereas in case (b) the petals of 1 and 2 , which are each homeomorphic to a
bouquet of 3 circles, are identified in pairs of circles, so that in fact the union 1[ 2

is a bouquet of three circles. If we denote by Ei the annular end corresponding to i ,
we deduce that S DE1[D1[1 in case (a), and S DE1[E2[D1[D2[1[2

in case (b). In both cases the characteristic of S is zero, hence S is a torus, which
does not admit Fuchsian representations. Hence we get the desired contradiction.

Lemma 10.6 Suppose that there is a peripheral geodesic  2 f1; : : : ; ng that passes
only twice through the point p . Then, by moving p , one finds a bubble.

Proof In this case  is a bouquet of two circles. Moreover, since the developed image
of  is a segment, this bouquet is formed by two pairs of twin geodesics emanating
from p . Let .�1

1
; �2

1
/ and .�1

2
; �2

2
/ be their germs at p , around the two angles ˛1 and

˛2 . Let us move the multiple branch point p along both twin paths. If the angle around
p is 2.kC1/� , the structure resulting from these movements has three distinct branch
points p0;p1;p2 . The point p0 has angle 2.k � 1/� (since k D 2n, we always have
.k�1/� 1, and p0 is a smooth point if kD 2); the points p1 and p2 are both of angle
4� and correspond to the extremities of the �i

1
and �i

2
, respectively. The peripheral

geodesic corresponding to l for this new structure is formed by two geodesic segments
going from p1 to p2 . The exterior angles are 2� at each point pi . Hence, since l

bounds a disc in S� , we are in the situation of a bubbling.

Lemma 10.7 Suppose that nD 1 and that 1 passes through p three times. Then one
can move branch points so that a bubble appears.

Proof Let D1 be the negative disc bounded by l1 . By Proposition 9.3, we can find
two embedded twin geodesics �1 and �2 starting from p and going in D1 , in such
a way that they stay in the end corresponding to l1 until they cross l1 . We move p

along these two geodesics.
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The resulting branched projective structure has the following properties. The disc D1

gives rise to a negative annulus A� , with a single branch point of angle 4� . The
component C gives rise to one or two components whose union CC contains a single
branch point of angle 4� and so that @A� @CC . Lemma 10.2 and Theorem 4.1 assure
that Theorem 7.1 apply in the present case and the proof is complete.

The proof of Theorem 10.1 is now complete.

11 Proof of Theorem 1.1

Let S be a connected closed oriented surface, and � be a branched projective structure
on S with at least one branch point whose holonomy is a Fuchsian representation � .

By Corollary 4.2 we know that the total branching order k is even. Let † be the
uniformizing structure on S with holonomy � . Let �k

0
be the BPS obtained by applying

k=2 bubblings to †. By Corollary 2.10 this does not depend on where we perform
bubblings.

We are going to prove by induction on k that � is connected to �k
0

by moving branch
points, and this clearly implies Theorem 1.1. The base for induction is k D 2 as we
suppose k > 0 (for k D 0 the claim of the theorem is false).

First, by moving a little branch points we reduce to the case that no branch point
belongs to the real line SR .

By Theorem 9.1 we can move branch points so that either we find a bubble, or all
branch points belong to the positive part SC . Now, by Theorem 10.1 we find a bubble.
In any case, there is a finite sequence of movements of branch points that connects �
to a BPS � 0

1
that is a bubbling on a BPS �1 .

If k > 2, by induction �1 is connected to �k�1
0

by moving branch points. From
Corollary 2.11 applied to A D � 0

1
, B D CP1 , C D �1 and D D �k�1

0
, we know

that � 0
1

is connected to a bubbling of �k�1
0

and by Corollary 2.10 such a bubbling is
connected to �k

0
. In conclusion, � is connected to �k

0
.

If k D 2, then �1 has no branch points. By a celebrated theorem of W Goldman
in [8], �1 is obtained by grafting † along a disjoint union of simple closed curves
1; : : : ; n . By moving branch points to the position of the bottom left part of Figure 6,
where we put  D n , we get a BPS � .2/

1
. By Theorem 5.1 it is precisely † grafted

along 1; : : : ; n�1 and bubbled once. We can repeat this process n times to get, after
appropriately moving the branch points, a BPS � .n/

1
that is † grafted along ∅ and

bubbled once, ie, �2
0

.
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The following proposition allows to prove the connectedness of the spaces Mk;� when
the representation � is quasi-Fuchsian and k > 0.

Proposition 11.1 Suppose that � and �0 are two representations whose actions on the
Riemann sphere are topologically conjugated. Then for every k � 0, the spaces Mk;�

and Mk;�0 are homeomorphic.

Proof Let ˆ be a homeomorphism of CP1 such that �0. � / ıˆDˆ ı �. � /. Then, if
.S; �/ 2Mk;� , there is a unique developing map DW zS !CP1 that is �–equivariant.
Observe that the map ˆıD is �0–equivariant, and define a BPS .S; � 0/ with holonomy
�0 and k branch points. The correspondence .S; �/ 2Mk;� 7! .S; � 0/ 2Mk;�0 is the
desired homeomorphism.

Appendix: Deformation spaces of branched projective
structures

Let S be a compact orientable surface of genus g � 2, equipped with a marking
(ie, an identification with the group of covering transformations of � W zS ! S with
a fixed group �g ). Let k be non-negative integer, and �W �g ! PSL.2;C/ be a
non-elementary representation. In this section, we endow the set Mk;� of equivalence
classes of BPS on S with total branching order k and holonomy conjugated to � ,
with the structure of a non-singular complex manifold of dimension k . In fact, we
explicitly construct a complex atlas modeled on Hurwitz spaces (which inherit the
complex structure from a particular space of polynomials).

We will state our main result in terms of deformations of branched projective structures,
in the spirit of Kodaira and Spencer’s theory of deformations of complex manifolds;
see eg [16].

Definition A.1 Let S be a marked compact surface of genus g � 2. A holomorphic
family of BPS on S is a quadruple .X;B; �;W/ where:

(1) X and B are complex manifolds, � W X !B is a holomorphic submersion with
compact fibers Sb D �

�1.b/ diffeomorphic to S for all b 2 B .

(2) W D f.Ui ; wi/g is a maximal set of holomorphic functions wi W Ui ! CP1

such that fUig is an open cover of X , the restriction of wi to each fibre Sb is
non-constant and on each connected component V of Ui \Uj the functions wi

and wj are related by
wi D �ij .b/.wj /;

where �ij W �.V /! PSL.2;C/ is a holomorphic map.

Geometry & Topology, Volume 18 (2014)



Branched projective structures with Fuchsian holonomy 433

(3) There is a holomorphic covering zX !X whose covering group is �g and such
that over each fiber Sb , it is the universal covering of Sb .

The restriction of W to any fibre Sb defines a BPS �b DWjSb
on S whose holonomy

representation (up to conjugation) will be denoted by �W.b/W �g! PSL.2;C/.

When .X;B; �;W/ is a holomorphic family of BPS, we also say that X is a holomor-
phic family of BPS over B , with atlas W .

Theorem A.2 Given a non-elementary representation �W �g ! PSL.2;C/, there
exists a smooth complex manifold structure on Mk;� such that, for any holomorphic
family .X;B; �;W/ of BPS on S with k branch points counted with multiplicity and
holonomy �W D � , the map

b 2 B 7! �b DWjSb
2Mk;�

is holomorphic.

It would be interesting to endow the set Mk D
S
�Mk;� of BPS with k branch

points counted with multiplicity with a structure of a complex analytic space, by gluing
the complex structures on Mk;� together. This can be done over the set of non-
elementary representations, but we don’t know how to manage this over the elementary
representations. Some preliminaries are in order.

Let Tg be the Teichmüller space consisting of equivalence classes of marked Riemann
surfaces of genus g , up to biholomorphism lifting to the universal cover as a �g –
equivariant diffeomorphism. Bers equipped the set Tg with the structure of a complex
manifold of dimension 3g� 3, and constructed the tautological bundle …W Tg! Tg

over it: a holomorphic family of marked Riemann surfaces where the fiber over a
point t 2 Tg is biholomorphic to t . He showed that this family of Riemann surfaces
is universal in the sense of Kodaira and Spencer’s deformation theory; see Bers [3],
Grothendieck [9, Théorème 1.2] and Arbarello, Cornalba and Griffiths [1, page 446].
Namely, if � W X ! B is any holomorphic family of marked Riemann surfaces, then
there is a holomorphic map f W B! Tg such that .X;B; �/D f �.Tg; Tg;…/.

To prove this result Bers introduced a holomorphic family of (unbranched) CP1 –
structures on Tg , usually called Bers simultaneous uniformization. This is the data of
a holomorphic family of quasi-Fuchsian representations

t 2 Tg 7! �t 2 Hom.�g;PSL.2;C//

and of an open set U � Tg � CP1 such that for every t 2 Tg , the intersection
U \ ftg �CP1 is of the form ftg �Ut , where Ut is a component of the domain of
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discontinuity of �t . The set Tg is then constructed as the quotient of U by the action
 .t; z/D .t; �.t/. /.z// of �g on U . The projection onto the first coordinate gives a
map …W Tg! Tg whose fiber over a point t 2 Tg is the Riemann surface structure t

on S .

Let us comment on the relationship between the two natural projections defined so far on
the space of branched projective structures with total branching order k : the holonomy
projection to the PSL.2;C/–character variety and the projection to Teichmüller space.
The first one provides, together with the order of branching, the stratification by the sets
Mk;� . When k D 0, that is, on strata of unbranched projective structures, the fibres
of both projections intersect transversally (in fact by Goldman’s Theorem and Baba’s
generalization the holonomy fibers are discrete). In this case, the holonomy and the un-
derlying conformal structure determine the projective structure (see Mandelbaum [21]).
In the case of 0 < k < 2g � 2, where g is the genus of the surface, it is still true
that the triple of holonomy, conformal structure and branching divisor determine the
branched projective structure (see [21]). Moreover, for 0< k < 2g�2, the fibers of the
Teichmüller and holonomy projections are transverse: for a fixed holonomy, moving
branch points changes the conformal structure. However, when k � 2g� 2, there exist
movements of branch points that preserve the holonomy and the conformal structure.
As suggested by G Mondello, they can be calculated directly by using the Beltrami
differentials associated to moving branch points and the Riemann–Roch formula. A
consequence is that the fibres of the two projections are not transverse in this case
(note that the complex dimension of the Teichmüller space of S is 3g� 3 while the
dimension of M�;k is k ).

Coming back to the question of existence of rational curves in Mk;� stated in Section
1.1, by considering the tautological bundle associated to a rational curve, we get a
holomorphic family of branched projective structures parametrized by CP1 whence
the projection on Teichmüller space provides a rational curve, which must be constant,
as Teichmüller space does not contain rational curves. So the rational curve must be
contained on the fiber of the projection. In particular this implies k � 2g � 2. The
same holds true for a non-trivial holomorphic family of BPS over a compact base B .

A.1 The deformation spaces Mk1;:::;kr ;�

Let k1 � � � � � kr be positive integers such that k1C � � � C kr D k , and Mk1;:::;kr

be the set of BPS on S whose branch divisor is of the form
Pr

iD1 kipi for some
set of distinct points fp1; : : : ;pr g. The set Mk1;:::;kr

has a structure of an analytic
space that can be defined by using the usual Schwarzian derivative parametrization.
We recall this construction for the convenience of the reader; see [6, 12.2, page 679]
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in the case where ki D 1 for all i . For any BPS in Mk1;:::;kr
, one can consider its

underlying Riemann surface structure t and, introducing the Bers coordinate z 2 Ut

and a developing map D for the given BPS, construct the meromorphic quadratic
differential on Ut defined by

(1) q.z/ WD fD.z/; zg dz2;

where fD; zg denotes the Schwarzian derivative. This meromorphic quadratic differen-
tial on Ut does not depend on the choice of the developing map and is invariant by
�t , hence defines a meromorphic quadratic differential on t that has pole set at the
branch points fp1; : : : ;pr g of the BPS. Its Laurent series expansion around pi in a
coordinate z where pi D zi is

(2) q.z/D
1� .ki C 1/2

2.z� zi/2
C

X
n��1

a.i/n .z� zi/
n:

A necessary and sufficient condition on the coefficients an , n � �1, ensuring that a
meromorphic quadratic differential of type (2) is the quadratic meromorphic differential
associated to a BPS of Mk1;:::;kr

as in (1), is that some polynomial equation on the
coefficients a

.i/
n is satisfied, called the indicial equation. This equation takes the form

(3) Aki
.a
.i/
�1
; : : : ; a

.i/

ki�1
/D 0;

where Aki
is a polynomial in ki variables with coefficients in C (see Mandelbaum

[20, page 268]).

Introduce the tautological fiber bundle T .r/g over Teichmüller space Tg , where the
fibre over a point t 2 Tg is biholomorphic to the set tr n�.t/, where �.t/ is the
set of r –tuples .p1; : : :pr / 2 tr such that pi D pj for some distinct indices. Let
Q.r/g be the vector bundle over T .r/g whose fiber over a point t .r/ 2 T r

g consists of
those meromorphic quadratic differentials on tr whose poles are precisely at the pi

corresponding to tr and that satisfy Equation (2). Following the preceding discussion,
the set Mk1;:::;kr

can be identified with the subset of Q.r/g consisting of meromorphic
quadratic differentials verifying the indicial equations (3). This set has the structure
of a complex analytic space. Moreover, the subset of Mk1;:::;kr ;� consisting of those
BPS in Mk1;:::;kr

whose holonomy is conjugated to � is an analytic subset. Indeed,
since � is non-elementary, Mk1;:::;kr ;� is a fibre of the analytic map that associates to
each � in Mk1;:::;kr

the character ƒ� W �g!C defined by ƒ� .Œ �/D Tr2.�� .Œ �//.

The structure of the complex space structure on Mk1;:::;kr ;� constructed in Section A.1
cannot be extended in an obvious manner to provide a complex analytic structure on
Mk;� . The reason is that the map that assigns to a BPS its number of branch points is
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only semi-continuous, and in fact discontinuous around points where some of the ki

are at least 2. This is reflected in the Schwarzian coordinates. For instance, given a
continuous family �b of elements in Mk;� where at �0 there is a branch point p0 of
multiplicity k0 � 2 and for all b¤ b0 all the branch points of �b are simple, there is a
discontinuity in the family of meromorphic quadratic differentials qb at the point b0 :
its number of poles is not constant (note that the poles of the Schwarzian are always of
order two, and the information about the branching-index of a BPS is encoded in the
principal coefficient of the Schwarzian; see (2)). To overcome this difficulty, we will
adopt a different approach and use Hurwitz spaces to endow Mk;� with the structure
of a complex manifold.

A.2 The smooth topology on Mk

Given a point � 2Mk we consider its underlying complex structure on S and name it
t.�/ 2 Tg . Since Ut.�/ is the complex analytic universal covering associated to t , we
can consider a developing map D� for � . It is tautologically a holomorphic map from
U� to CP1 . The smooth topology on Mk is the topology induced by the injective
map � 7! .�t.�/;D� / using the topology of the Bers slice on one component and the
uniform convergence on compact sets for developing maps. As we let PSL.2;C/ act
on the space of the developing maps, it is not completely obvious that this topology
on Mk (or even its restriction to Mk;� ) is Hausdorff, so we are led to introduce the
topological structure differently.

A.3 Cut and paste topology on Mk;�

We begin by introducing a topology on Mk;� as follows. The Riemann surface
associated to a BPS in Mk;� is equipped with its Poincaré metric coming from
uniformization. Given " > 0 and � 2Mk;� define V."; �/ �Mk;� as the set of
elements � 0 2Mk;� such that there exists a diffeomorphism ˆW S ! S satisfying:

(1) ˆ is .1C "/–bi-Lipschitz with respect to the Poincaré metrics on S given by �
and � 0 respectively.

(2) ˆ is projective outside the "–neighborhoods of the branched set of � .

(3) ˆ is isotopic to the identity.

The topology on Mk;� is defined as the one generated by the neighbourhoods V."; �/.

Lemma A.3 The cut and paste topology on Mk;� is separated.
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Proof Suppose that �i , for iD1; 2 are two elements of Mk;� that cannot be separated.
This means that for every " > 0, there exists an element �" in V."; �1/\V."; �2/. By
definition, for every "> 0, and every i D 1; 2, we have a diffeomorphism ˆ";i W S!S

such that properties (1), (2) and (3) above are satisfied with respect to �" and �i .
The diffeomorphism ‰" D ˆ

�1
";2
ıˆ";1 is .1C "/2 –bi-Lipschitz with respect to the

metrics given by �1 and �2 , is projective apart from the ".1C "/2 –neighborhood of
the branched set of �1 , and isotopic to the identity. By the theorem of Arzelà and
Ascoli, one can find a sequence "n tending to 0 when n tends to infinity such that ‰"
converges to an isometry ‰ with respect to the metrics given by �1 and �2 , which is
projective apart from the branched set of �1 . Then ‰ is projective everywhere, and it
is isotopic to the identity. Hence �1 D �2 in Mk;� .

Lemma A.4 Given any holomorphic family .X;B; �;W/ of BPS on S with k branch
points and holonomy conjugated to � , the induced map from B to Mk;� (endowed
with the cut-and-paste topology) is continuous.

Proof We have to prove that given b0 2 B and " > 0, there is a neighborhood of b0

in B such that for every b in this neighborhood, the BPS �b DWjSb
on S belongs to

V."; �b0
/.

Since the holonomy of �b is always conjugated to the non-elementary representation � ,
there is a unique developing map DbW

�Sb!CP1 that is �–equivariant. The family of
functions fDbg defines a holomorphic function DW zX!CP1 . By �–equivariance, the
foliation defined by D D cst is invariant by the �g –action on zX , and defines a regular
holomorphic foliation F on X that is transversally projective. By construction, the BPS
on the curves Sb is the restriction of the transversal projective structure of this foliation,
(see Section 2.2). The foliation F is tangent to the curves Sb precisely at the set Bb of
branch points of �b . Hence, if we denote by B"

b
the set of points of Sb within distance

" from Bb , and if b is sufficiently close to b0 , there is a family of diffeomorphisms
ˆbW Sb0

nB"
b0
! Sb depending differentiably on the parameter b that preserves each

leaf of F , and such that ˆb0
is equal to the identity. By elementary topological

arguments, this family can be extended differentiably to a family of diffeomorphisms
ˆb between Sb0

and Sb such that ˆb0
D id. Because the Poincaré metric on the

fibers Sb varies continuously with the parameter b , for b close enough to b0 , this
family of diffeomorphisms verifies the conditions (1), (2) and (3) of the definition of
V."; �b0

/.

Corollary A.5 The cut-and-paste and the smooth topologies coincide on each stratum
Mk1;:::;kr ;� .
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Proof Let …W Tg! Tg , T .r/g ! Tg and Q.r/g ! T .r/g ! Tg be as before (namely,
they are respectively the tautological bundle over the Teichmüller space of S , its r th

symmetric product, and a vector bundle of meromorphic quadratic differentials) so that
Mk1;:::;kr ;� is identified with the sub-set of Q.r/g of Schwarzian-integrable differentials
with holonomy conjugated to � . Now we build a holomorphic family of BPS as follows.
The base B is just Mk1;:::;kr ;� endowed with its smooth topology induced by Q.r/q .
Then, we let X be the pull-back of the tautological bundle �t W Tg! Tg via the map
Q.r/g ! Tg . The set of maps W is given by the integral of the Schwarzian differentials.
By Lemma A.4, the identity between Mk1;:::;kr ;� with the smooth topology and itself
with the cut-and-paste topology is continuous. Since Mk1;:::;kr ;� with the smooth
topology is locally compact with countable basis, the identity is a homeomorphism
between the two topologies.

At this point it is worth mentioning that there is yet another viewpoint for studying
branched projective structures: that of flat holomorphic connections. Namely, let d � 0

and g � 2 be integers. Consider the set of all quadruples .C;E;r; s/, where C is
a compact marked Riemann surface of genus g E is a CP1 –bundles over C , r is
a flat holomorphic connection on E (equivalently a horizontal foliation F which is
transverse to the fibers) with irreducible monodromy, and s is a section which has d

points of tangencies with F . This provides a BPS on the surface C (as in Section 2.2),
and the space of connections provides analytic coordinates (on each stratum with a
fixed number of tangencies). For details about this viewpoint we refer the reader to
Gunning [10] and Mandelbaum [20; 21; 22].

A.4 Hurwitz spaces

Our goal now is to prove that Mk;� is locally modeled on a product of Hurwitz spaces,
ie, moduli spaces of coverings of the disc.

Definition A.6 (Hurwitz spaces) Let U be a smooth closed disc,  W U ! D be
a branched covering of degree d with no critical values on the boundary, and let
f W S1 ! @U be a diffeomorphism so that  ı f .z/ D zd on S1 . We consider the
set of smooth branched coverings  0W U 0 ! D of degree d from a smooth closed
disc U 0 to D , with no critical value on the boundary, together with an identification
f 0W @U ! @U 0 such that  D 0ıf 0 on @U (equivalently, so that  0ıf 0ıf .z/D zd

on S1 ). Two such coverings  i W Ui!D , i D 1; 2, are identified if the diffeomorphism
' D f2 ıf

�1
1

from @U1 to @U2 extends to a diffeomorphism �W U1! U2 such that
 1 D  2 ı� .

The set of equivalence classes under this equivalence relation is denoted by H. /, and
will be called a Hurwitz space of degree d coverings.
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Observe that the pull-back via  of the projective structure of D given by its inclusion in
CP1 induces a BPS on U . Moreover, if  i , i D 1; 2, are two elements of H. /, then
the diffeomorphism 'D f2ıf

�1
1
W @U1! @U2 extends to a projective diffeomorphism

from a neighborhood of @U1 to a neighborhood of @U2 . The identifications of the
boundaries of the discs with S1 define a marked point 1. Namely, we set 1 WD f .1/ in
@U and 1 WD f 0.1/ in any @U 0 .

We now prove that Hurwitz spaces are nicely parametrized by open sets of complex
vector spaces, and this will define a natural topology on H. /.

Lemma A.7 Any Hurwitz space H. / of degree d coverings is a smooth complex
manifold of dimension d � 1. More precisely, H. / is in bijection with the set of
complex polynomials of the form

P .z/D zd
C ad�1zd�1

C � � �C a0

with ad�1C � � �C a0 D 0 and with all critical values in the interior of the unit disc.

Proof For every class  0 in H. /, the disc U 0 is equipped with a unique Riemann
surface structure such that  0W U 0!D is holomorphic. Let Dc be the exterior of the
unit disc in CP1 . We glue U 0 and Dc by using the identification of their boundaries
given by f 0ıf . We obtain a Riemann surface of genus 0 that we denote by PŒ 0� . The
covering  0W U 0!D can be glued together with the covering z2Dc 7!zd 2Dc to give
rise to a holomorphic branched covering  0W PŒ 0�!CP1 . Since the set of Möbius
transformations acts freely and transitively on triples .x;y; v/ where x ¤ y 2 CP1

and 0¤ v 2 Tx.CP1/, there is a unique biholomorphism �W CP1! PŒ 0� such that:
� �.1/D12Dc

� �.1/D 1 2 S1 D @Dc

�  0 ı �.w/D wd CO.wd�1/

We denote by P the polynomial  0 ı�.w/. By construction it satisfies the assumptions
of the lemma. Reciprocally, if P satisfies the assumptions of the lemma, denote by
VP WD P�1.D/D fz W P .z/ � 1g and let  0 be the restriction of P to VP . Because
there is no critical value of modulus at least 1 apart from the point at infinity, VP is a
disc and the covering  0W @VP ! @D is cyclic. Observe that P .1/D 1, so that there
is a unique diffeomorphism fP W @U ! @VP such that P .fP .f .z///D zd .

Remark A.8 From the fact that P .fP .f .z///D zd we get that

P .z/D .f �1
ıf �1

P .z//d ;

hence f �1 ıf �1
P
.z/D d

p
P .z/. It follows that fP depends holomorphically on the

variable P .
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A.5 A holomorphic atlas on Mk;� modeled on Hurwitz spaces

We begin with the following local description near a branch point p of a BPS � on
a surface S . Let U be a disk-neighbourhood of p , with local complex coordinate
� so that the map  .�/! �d belongs to the atlas of � . Choose f W S1! @U as in
Definition A.6. We identify H. / with the set of polynomials given by Lemma A.7.
For any P 2H. /, let VP D P�1.D/ and define the set X �C �H. / by

X D f.z;P / 2C �H. / W z 2 VP g:

Let � W X!H. / be the natural projection, which is clearly a holomorphic submersion
with fibres ��1.P / D VP . Moreover, the function wW X ! CP1 given by w.z/ D
P .z/ 2D �CP1 defines a maximal atlas W so that w 2W . Thus, X can be viewed
as a holomorphic family of BPS over H. /. (In our Definition A.1 the fibres are
diffeomorphic to S , but a similar definition can be given for families of BPS on a disk.)

The boundary @X is a fibre bundle

@VP ,! @X
�
�!H. /:

The identification from @U � H. / D @.U � H. // to @X given by .z;P / !

.fP .z/;P / is holomorphic and extends holomorphically from a collar of @U �H. /
in U �H. / to a collar of @X in X by Remark A.8.

It follows that by gluing S nU �H. / with X along their common boundaries using
the above identification we get a complex manifold X and a holomorphic submersion
X !H. / so that the fibre over P is the BPS obtained from � by replacing U with
VP . Note that, after the identification of the collars of @U �H. / and of @X , the
changes of charts near @U are the identity by Remark A.8. The developing maps
given by the atlas of � on S nU and by .z;P /! P .z/ on X provide an atlas W
as requested by Definition A.1, and since U is a disk, such a construction lifts to the
universal covering of S . Therefore, X is a holomorphic family of BPS over H. /.

We are now ready to describe a complex atlas of Mk;� modeled on a product of
Hurwitz spaces by repeating the above construction around every branch point of � .

Let � be a BPS on a surface S . For every branch point p of S , there exists a
disc neighbourhood Up with a complex coordinate �p and an integer kp such that
the branched covering  p.�/ D �

kp
p belongs to the atlas of � . By restricting Up if

necessary and composing  p on the left by an affine transformation, we may assume
that the Up are disjoint and that the image of any  p is the unit disc D �CP1 .

We denote ‰ WD . p/p , H.‰/ WD
Q

p H. p/ and kD
P

p kp , where the index p runs
over all branch points of � . Given any element ‰0 WD .Pp/p 2H.‰/, we construct a
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new branched projective structure belonging to Mk;� by cutting off Up and gluing
back VPp

via the identifications of the boundaries for every branch point p . This
defines a subset of Mk;� that will be denoted by V.‰/. This procedure defines a map
c.‰/W H.‰/! V.‰/.

Lemma A.9 For every ‰ as above, the set V.‰/ is a neighborhood of � in the
topology of Mk;� .

Proof Since every element of V."; �/ is obtained from � by changing the projective
structure only in the "–neighborhood of the branch-set of � , for a sufficiently small
" > 0, V."; �/� V.‰/.

Lemma A.10 The map c.‰/ is a bijection.

Proof To obtain this claim it is sufficient to prove that if ‰0D .Pp/p 2H.‰/ produces
a branched projective structure � 0 equivalent to � , then ‰0 D‰ . If � 0 is equivalent to
� , then there is a diffeomorphism ˆW S ! S isotopic to the identity that is projective
with respect to � 0 and � respectively. Let U 0p Dˆ.VPp

/ and consider the inclusion
i W S n fUpg ,! S n fVPp

g, which is projective by definition. The map hDˆ ı i is a
projective diffeomorphism from S n fUpg to S n fU 0pg that is isotopic to the identity.
It lifts to the universal covers

zhW zS n f �Upg !
zS n f �U 0pg

as a �g –equivariant diffeomorphism. Let D be a developing map for � . Since zh
is locally a projective map, and since zS n f �Upg is connected, there exists a Möbius
transformation A such that

D ı zhDA ıD:

By �–equivariance of D it follows that A commutes with the image of � , hence
AD id as � is irreducible.

Now we choose local coordinates �p near a branch point p such that D.�p/D �
kp

p . We
get .zh.�p//kp D �kp

p , which implies that zh can be analytically extended to the whole
zS . So h extends to a biholomorphism of S . Since h is isotopic to the identity and S

admits only a finite number of automorphisms, we get hD id. It follows that VPp
DUp

and that Pp.�p/D �
kp
p , so ‰0 D‰ .

Using the complex coordinates for Hurwitz spaces given by Lemma A.7, let us now
prove the following result.
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Lemma A.11 There is a holomorphic family � W X !H.‰/ of BPS on S so that the
structure over a point b 2H.‰/ is c.‰/.b/.

Proof For each branch point p of � , let Xp be as before,

Xp D f.z;Pp/ 2C �H. p/ W z 2 VPp
g;

and define
Yp DXp �…q¤pH. q/:

We have @Yp D @Xp �…q¤pH. q/, which, as before, is identified with @Up �H.‰/
by using the maps fPp

W @Up ! @VPp
. Let Z D .S n

S
p Up/�H.‰/. Since @Z DS

p @Up �H.‰/, we can glue Z with
S

p Yp along their common boundaries getting
a complex manifold X . The natural projection � W X !H.‰/ is holomorphic. The
maximal atlas W is defined as follows. On Z we use the atlas of � . On each Yp the
maps are defined by

.z;Pp; .Pq/q¤p/ 7! Pp.z/

and then we extend this set of maps to a maximal one. After the identifications via the
maps fPp

, the changes of charts between the atlas of � and the maps on the Yp are
projective (because in the local charts with coordinate �p the change of chart is the
identity by Remark A.8).

Since the disks Up are disjoint, the whole construction lifts to the universal cover and
so the quadruple .X ;H.‰/; �;W/ is a holomorphic family of BPS on S .

Finally, by the construction of W , it follows that on the fibre over a point bD .Pp/p 2

H.‰/ we have the structure �b D c.‰/.b/.

Corollary A.12 The map c.‰/ is a homeomorphism.

Proof By Lemmas A.11 and A.4, we deduce that c.‰/ is a continuous map from
H.‰/ to the neighborhood V.‰/ of � . Because of Lemma A.10 c.‰/ is bijective,
and since H.‰/ is locally compact, we conclude that it is a homeomorphism.

This already proves that Mk;� is locally homeomorphic to R2k .

A.6 Proof of Theorem A.2

We begin by the following holomorphic version of Lemma A.4.
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Lemma A.13 Let .X;B; �;W/ be a holomorphic family of BPS with k branch
points and holonomy conjugated to � . Let U be an open set in B so that the induced
map U !Mk;� is contained in a neighborhood modeled on a Hurwitz space H.‰/.
Then the induced map b 7! �b DWjSb

is holomorphic with respect to the complex
structure given by the polynomial parametrization of H.‰/ (that is to say, the map
c.‰/�1.��/W B!H.‰/ is holomorphic).

Proof Let k1; : : : ; kr be integers such that the generic element defined by the holo-
morphic family .X;B; �;W/ belongs to the stratum Mk1;:::;kr ;� . Since we already
have the continuity of the map by Lemma A.4, it suffices, by Riemann’s extension
theorem, to show that it is holomorphic on the complement of some proper analytic set
to deduce that it is holomorphic everywhere. The map defined on B that associates
to a point b the unordered set of branch points of Sb (that is to say a point in the
symmetric product of Sb ) is holomorphic. Let b0 be a point such that �b0

belongs
to Mk1;:::;kr ;� . Let p1; : : : ;pr be the branch points of �b0

and U1; : : : ;Ur be some
disk neighbourhoods of the pi used to define the Hurwitz neighbourhood of �b0

. The
genericity of b0 implies that the polynomials that arises near b0 have all a single
critical value in D of multiplicity ki and so they are completely determined by that
(because of condition P .1/D 1 of Lemma A.7). We therefore have to show that the
unique critical point of each such polynomial depends holomorphically on b .

Fix i 2 fi; : : : ; rg and set U b0 D Ui . We use notation as in Lemma A.4 to define the
foliation F and diffeomorphisms ˆb . In particular, we may suppose (up possibly to
rescaling U b0 ) that ˆb is defined from a collar of @U b0 to a collar of @U b .

By construction, the developing map on U b0 is  .z/D zki , and the developing map
on a collar of @U b is given by  ıˆ�1

b
(because ˆb is constructed via the F –flow).

The holomorphic map  ıˆ�1
b

extends to a unique holomorphic map  b on U b ,
which is a fortiori the developing map for �b on U b . So, the covering  bW U

b!D
together with the identification ˆbW @U

b0 ! @U b gives the element in H. /.

Following the construction of Lemma A.7, let �W CP1 ! P b
be the change of

coordinates that give the requested polynomial P . Thus, we have P D  b ı � on
��1.U b/. It follows that the unique critical value of P does not depend on �, but
only on b and it is in fact the unique critical value of  b , which is in turn the image
�.b/ of the tangency point between F and the curve Sb under the map in W that
extends  . This shows that �.b/ depends holomorphically on b in a neighbourhood
of any point of B� WD fb0 2B W �b0

2Mk1;:::;kr ;�g. If non-empty, the set B nB� is a
proper analytic set in B . In either case, the holomorphic map B�!H.‰/ extends
continuously to B and hence holomorphically by Riemann’s extension theorem.

Geometry & Topology, Volume 18 (2014)
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Corollary A.14 Let � be a BPS on S with k branch points counted with multiplicity,
and holonomy � . Let ‰ D . p/p and ‰0 D . 0p/p be some systems of projective
coordinates around each of the branch point of � , as in Lemma A.9. Then the map

c.‰0/�1
ı c.‰/ W c.‰/�1.V.‰/\V.‰0//! c.‰0/�1.V.‰/\V.‰0//

is holomorphic.

Proof By Lemma A.11, there is a holomorphic family of BPS on X ! H.‰/ so
that the map b 7! �b (where b 2 H.‰/) is c.‰/. Thus, by Lemma A.13, c.‰/ is
holomorphic with respect to the complex structure of H.‰0/ on c.‰/�1.V.‰/[V.‰0//.
That is to say, c.‰0/�1 ı c.‰/ is holomorphic.

We now finish the proof of Theorem A.2. For any � there exists a system ‰ of
projective coordinates as in Lemma A.9 defining a neighbourhood V.‰/ of � . The
homeomorphism c.‰/�1W V.‰/! H.‰/ provides local complex coordinates, and
Corollary A.14 tells us that the changes of charts are in fact holomorphic. Thus Mk;�

is a complex manifold, and Lemma A.13 completes the proof.
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