Volume 18, issue 1 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Subscriptions
Author Index
To Appear
Contacts
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Burnside's Problem, spanning trees and tilings

Brandon Seward

Geometry & Topology 18 (2014) 179–210
Abstract

In this paper we study geometric versions of Burnside’s Problem and the von Neumann Conjecture. This is done by considering the notion of a translation-like action. Translation-like actions were introduced by Kevin Whyte as a geometric analogue of subgroup containment. Whyte proved a geometric version of the von Neumann Conjecture by showing that a finitely generated group is nonamenable if and only if it admits a translation-like action by any (equivalently every) nonabelian free group. We strengthen Whyte’s result by proving that this translation-like action can be chosen to be transitive when the acting free group is finitely generated. We furthermore prove that the geometric version of Burnside’s Problem holds true. That is, every finitely generated infinite group admits a translation-like action by . This answers a question posed by Whyte. In pursuit of these results we discover an interesting property of Cayley graphs: every finitely generated infinite group G has some locally finite Cayley graph having a regular spanning tree. This regular spanning tree can be chosen to have degree 2 (and hence be a bi-infinite Hamiltonian path) if and only if G has finitely many ends, and it can be chosen to have any degree greater than 2 if and only if G is nonamenable. We use this last result to then study tilings of groups. We define a general notion of polytilings and extend the notion of MT groups and ccc groups to the setting of polytilings. We prove that every countable group is poly-MT and every finitely generated group is poly-ccc.

Keywords
Burnside's Problem, von Neumann conjecture, Hamiltonian path, Lovász conjecture, spanning tree, tile, tiling, MT, ccc, translation-like action
Mathematical Subject Classification 2010
Primary: 20F65
Secondary: 05C25, 05C63
References
Publication
Received: 6 April 2011
Revised: 4 November 2011
Accepted: 25 August 2013
Published: 23 January 2014
Proposed: Martin Bridson
Seconded: Peter Teichner, Walter Neumann
Authors
Brandon Seward
Department of Mathematics
University of Michigan
530 Church Street
Ann Arbor
MI 48109
USA
http://www-personal.umich.edu/~bseward