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Sweeping out sectional curvature

DMITRI PANOV

ANTON PETRUNIN

We observe that the maximal open set of constant curvature � in a Riemannian
manifold of curvature > � or 6 � has a convexity-type property, which we call
two-convexity. This statement is used to prove a number of rigidity statements in
comparison geometry.

53C24; 53C20

1 Introduction

Denote by MmŒ�� the model m–space with curvature � ; ie, MmŒ�� is the simply
connected m–dimensional Riemannian manifold with constant curvature � . We will
also use shortcuts Sm D MmŒ1� for the unit m–sphere, and Em D MmŒ0� for the
Euclidean m–space.

In this paper we play with applications of the following lemma. Its proof is given
in Section 3. This lemma was first discovered by Buyalo in the case of nonpositive
curvature; see [5, Lemma 5.8].

1.1 Buyalo’s Lemma Let M be a complete Riemannian manifold with sectional
curvature either > � or 6 � . Let � be a tetrahedron in M3Œ�� and ƒ be a union of
three out of four faces of �. Then any immersion f W ƒ# M that is isometric and
geodesic on each face can be extended to an isometric geodesic immersion F W �# M.
Moreover, F is uniquely determined by f .

Here is an immediate corollary:

1.2 Corollary Let g be a complete Riemannian metric on R3 with curvature > 0

(or 6 0) such that all three coordinate planes of R3 are flat geodesic hypersurfaces in
.R3;g/. Then .R3;g/ is isometric to Euclidean space.

We would suggest that reader checks that the last statement does not follow from the
standard theorems; in particular the splitting theorems cannot help here directly.
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Let us now introduce some terminology to state further applications.

� A Riemannian manifold (possibly not complete) of constant curvature � will be
called �–flat.

� A �–flat Riemannian manifold (possibly not complete) that satisfies the conclu-
sion of Buyalo’s Lemma will be called two-convex. This definition is discussed
in more detail in Section 2.

� Given a Riemannian manifold M, its maximal open subset of constant curvature
� will be called �–flat domain of M and it will be denoted as Flat�M.

From Buyalo’s Lemma one easily gets the following; a formal proof is given in
Section 3.

1.3 Observation Let M be a complete Riemannian manifold either with curvature
> � or 6 � . Then Flat�M is two-convex.

Here is an application.

1.4 Theorem Let m > 3 and M be a complete connected m–dimensional manifold
with curvature > 1 or 6 1 that admits a totally geodesic immersion of the closed
unit hemisphere �W S2

C# M and an open neighborhood of �.S2
C/ in M has constant

curvature 1. Then M has constant curvature 1.

Remarks

� Note that diameter-sphere rigidity does not help here directly; in principle, the
diameter of M might be < � .

� Note that CP2 equipped with the canonical metric is an example of a space with
curvature > 1 and 6 4, which admits totally geodesic immersions of 2–spheres
of constant curvature 1 and 4. Ie, the condition in Theorem 1.4 that the curvature
is constant in a neighborhood of �.S2

C/ is necessary.

� In the case of curvature > 1, Theorem 1.4 also holds in dimension 2; this is
proved by Zalgaller in [16]; see Theorem A.2 and the discussion around it.

To prove the theorem, one needs to show that if a neighborhood � of S2
C in Sm

admits an immersion in a two-convex manifold ˆ then ˆ has to be complete. Then
Observation 1.3 implies that Flat1M DM ; ie, M is a spherical space form. In other
words, any neighborhood � of �.S2

C/ in Sm is exhaustive in the sense of the following
definition.
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Sweeping out sectional curvature 619

1.5 Definition Let � be a �–flat manifold. Assume that any connected two-convex
manifold ˆ that appears as the target of an open isometric immersion � # ˆ is
complete. Then we say that � is exhaustive.

Using this definition, we can formulate the following generalization of Theorem 1.4:

1.6 Theorem Let M be a complete connected Riemannian manifold with curvature
> � or 6 � . Assume there is an open isometric immersion �# M from an exhaustive
�–flat manifold �. Then M has constant curvature � .

In order to apply this theorem one only has to find a source of exhaustive manifolds.
In Section 2, we introduce the notion of the two-hull of a �–flat simply connected
manifold �; in some sense this is the minimal simply connected two-convex manifold
that contains an immersed copy of �. It is easy to see that if the two-hull of a manifold
� is isometric to MmŒ�� then � is exhaustive. This permits one to present a number of
examples of exhaustive manifolds. This is done in Section 4; here is a list of examples:

Proposition 4.1 For m > 3, any non-empty open subset of MmŒ�� with convex
complement.

Proposition 4.2 More generally, any open simply connected subset ��MmŒ�� which
satisfies the following property: For any p 2MmŒ�� there is a 3–dimensional subspace
Wp of MmŒ�� containing p (Wp is an isometric copy of M3Œ��) such that Wp\� 6D∅
and each connected component of Wpn� is a convex set.

In particular,

�D
˚
.x1;x2; : : : ;xm/ 2 Em

ˇ̌
1Cx2

1 Cx2
2 > x2

3 Cx2
4 C � � �Cx2

m

	
is exhaustive.

Proposition 4.3 Any open subset of Sm which contains the standard 2–dimensional
hemisphere. This type of manifolds is used in Theorem 1.4.

(This list can be continued.)

Related results

One outcome of Theorem 1.6 is a sufficient condition on the closed set K1 of the model
space MmŒ��, such that one cannot cut K and glue instead a patch with sectional
curvature either 6 � or > � at all points. This condition is non-trivial only for m > 3.

1 K is the complement of � .

Geometry & Topology, Volume 18 (2014)



620 Dmitri Panov and Anton Petrunin

The similar conditions for scalar and Ricci curvature were studied. The case of defor-
mation with nondecreasing curvature turned out to be very different from the one with
nonincreasing curvature.

After rescaling one can only consider three cases � D�1, 0 or 1.

Nondecreasing curvature If � D 0, the case of nondecreasing scalar curvature leads
to the so-called positive mass conjecture, which was proved by Schoen and Yau [14]
and Witten [15]. This implies in particular that the metric of Euclidean space cannot
be perturbed in a bounded region so that the scalar curvature does not decrease.

An analogous statement holds for � D�1; ie, the metric of Lobachevsky space cannot
be perturbed in a bounded region so that the scalar curvature does not decrease. The
later was proved by Min-Oo in [11].

The case � D 1 was considered in [12], where Min-Oo makes an attempt to show that
the standard metric on the m–sphere cannot be perturbed inside of hemisphere so that
the scalar curvature does not decrease. Later, in [4], Brendle, Marques and Neves found
a counterexample. It is true that one cannot perturb the metric in a sufficiently small
domain of sphere, but the optimal bounds for its size seem to be unknown.

The analogous statement for Ricci curvature was proved by Hang and Wang in [8]. They
show that one cannot perturb the metric of the standard sphere inside its hemisphere
with nondecreasing Ricci curvature.

The two-dimensional case of the above statements for � D 0 and �1 follows from
Gauss–Bonnet formula and the case � D 1 was done by Zalgaller (see the appendix).

Nonincreasing curvature In [9], Lohkamp proves that for all m > 3, one can perturb
the metric of MmŒ�� in any open region in such a way that its Ricci curvature does
not increase. Moreover, this can be done without changing the topology and with an
arbitrarily small change to the geometry of the space.

In the two-dimensional case, attaching a handle can be done in an arbitrary small
region in such a way that the curvature decreases. On the other hand, if we fix the
topology, for � D 0 or �1, the Gauss–Bonnet formula prevents any change of metric
in bounded regions with nonincreasing curvature. For � D 1, even if topology is fixed,
the metric can be changed (by inserting a bubble) in an arbitrarily small open subset so
that the curvature in the region decreases. However, it seems that for proper subsets of
hemisphere, there is no continuous deformation of this type.
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Sweeping out sectional curvature 621

2 Two-convexity and two-hull

2.1 Definition Let � be a m–dimensional �–flat manifold. We say that � is two-
convex if the following condition holds: Given a tetrahedron2 � in M3Œ�� with a
choice of a subset ƒ�� formed by 3 out of 4 faces, any immersion f W ƒ# M that
is isometric and geodesic on each face of ƒ can be extended to an isometric geodesic
immersion F W �# M.

2.2 Definition Let � be a simply connected m–dimensional �–flat manifold. A
simply connected �–flat two-convex manifold ˆ is called the two-hull of � (briefly
ˆD�.2/ ) if there is an open immersion 'W �#ˆ such that for any open isometric
immersion  W �#‰ into a simply connected �–flat two-convex manifold ‰ , there is
an isometric immersion # W ˆ#‰ that makes the following diagram commutative:

(�)

�

'

��

 

��
ˆ

# // ‰

In this case the immersion 'W �#ˆ will be called the two-hull immersion.

Our next goal is to prove the existence of the two-hull.

2.3 Proposition For any simply connected �–flat manifold �, its two-hull ˆ is
uniquely defined up to an isometry.

Moreover, if 'W � # ˆ and '0W � # ˆ0 are two-hull immersions then there is an
isometry # W ˆ!ˆ0 such that '0 D # ı' .

To prove the above proposition, we mimic the proof of existence of the ordinary convex
hull obtained by intersecting all convex sets containing the given set.

Proof Assume ‰ is a simply connected �–flat two-convex manifold and  W �#‰

is an isometric immersion.

Since � is simply connected, it admits an isometric immersion �W � # MmŒ��.
Moreover, there is an immersion � W ‰!MmŒ�� that makes the following diagram
commutative:

�

 

��

�

��
‰

� // MmŒ��

2Ie, 3–simplex.
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Fix a point x 2 �. For any  as above, set x D  .x/ 2 ‰ ; in particular, set
x� D �.x/ 2MmŒ��.

Consider the set � of all paths in MŒ�� that start at x� . Let us equip � with C 0 topology.
Given  as above, we say that  2 � lifts to  if there is a path  W Œ0; 1�!‰ that
starts at x and such that  D � ı  . The set of all paths that lift to  will be
denoted by � .

Assume that ‰0 is some other simply connected �–flat two-convex manifold and
 0W � # ‰0 is an isometric immersion. Note that if � � � 0 then there is a
necessarily unique isometric immersion �W ‰!‰0 that makes the following diagram
commutative:

�

 

��

 0

��
‰

� // ‰0

In particular if � D � 0 then � is an isometry.

Denote by „� � the interior of the space
T
 

� , where the intersection is taken for
all  as above.

Denote by ˆ the set of the homotopy classes of paths in „ rel. the ends; ie, we
consider only the homotopies t such that t 2„ for any t . Denote the projection by
� W „!ˆ. The set ˆ comes with a topology and a �–flat metric that makes the maps
# W �. / 7!  .1/ isometric immersions # W ˆ#‰ for all  as above.

Given a point y 2 � consider a path ˇ from x to y in �. Note that for any  as
above, the path  ıˇ is a lift of � ıˇ to  ; the same holds for any path ˇ0 2 � that is
sufficiently close to ˇ . It follows that � ıˇ 2„.

Consider the map 'W �! ˆ, defined as '.y/D �.� ıˇ/. Note that the value '.y/
does not depend on the choice of ˇ since � is simply connected. Moreover ' is an
isometric immersion and it makes the diagram (�) commutative.

Summarizing all the above, 'W �#ˆ is the two-hull immersion.

Finally, assume 'W � # ˆ and '0W � # ˆ0 are two two-hull immersions. Then
the immersions # W ˆ#ˆ0 and # 0W ˆ0#ˆ provided by Definition 2.2 have to be
inverses of each other. The latter implies the last statement of the proposition.
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Sweeping out sectional curvature 623

3 Buyalo’s Lemma and the observation

In this section we prove Buyalo’s Lemma and Observation 1.3. The proof of the
following proposition is left to the reader.

3.1 Proposition Let X and Y be (possibly noncomplete) Riemannian manifolds
and � be an open set of unit speed geodesics in X, covering all points of X. Then
f W X ! Y is an isometric geodesic immersion if and only if for any  2 � , the curve
f ı  is a unit speed geodesic in Y .

Proof of Buyalo’s Lemma Set m D dim M. Note that the statement of Buyalo’s
Lemma trivially holds if m 6 2. Further we assume m > 3.

By choosing an isometric geodesic embedding � ,!MmŒ��, we can consider � as
a subset of MmŒ��. Let us denote by zp the common vertex of the faces in ƒ and let
zx; zy; zz be the remaining vertexes of �. Denote by p;x;y; z the corresponding points
in M ; ie,

p D f . zp/; x D f .zx/; y D f .zy/; z D f .zz/:

Fix R> diam�. Assume first that the injectivity radius at any point in B2�R.p/�M

is at least 2 �R. In this case f is distance-preserving on each face.

3.2 Claim f W ƒ!M is a distance-preserving map.

Proof of the claim On the geodesic Œpx� consider two unit normal fields that go
in the directions of the images of the faces adjacent to Œpx�. Note that both fields
are parallel. Thus the angle between the images of the faces in ƒ is constant along
the common side. Taking a point on the geodesic Œpx� close to p , one can see that
the angles between faces of f .ƒ/ in M coincide with the corresponding angles in
ƒ�MmŒ��.

y z

y0
w z0

v p

x0

x
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624 Dmitri Panov and Anton Petrunin

Consider points

zx0 2 Œ zpzx�; zy0 2 Œ zp zy�; zz0 2 Œ zpzz�;

x0 D f .zx0/; y0 D f .zy0/; z0 D f .zz0/:

From above, we have that corresponding angles in the triangles Œx0y0z0� and Œzx0 zy0zz0�
are equal; ie, the angles in the triangle Œx0y0z0� coincide with its comparison angles.

Let zv and zw be arbitrary points on the sides of the triangle Œzx0 zy0zz0� and v D f .zv/ and
w D f . zw/. In both cases (curvature > � or 6 � ) angle-sidelength monotonicity (see
for example [3]) implies that

jv�wjM D jzv� zwjMmŒ��;

where j���jX denotes the distance function in the metric space X.

Note that for any zv; zw 2ƒ there is a triangle Œzx0 zy0zz0� as above that contains zv and zw
on its sides. Hence the claim follows.

Note that there is a map F W BR. zp/! BR.p/ satisfying the following properties:

(1) F jƒ D f .

(2) F. zp/D p , and the differential of F at zp is an isometry T zp! Tp .

(3) F sends all unit speed geodesics through zp to unit speed geodesics through p .

3.3 Claim The restriction of any such F to � satisfies Buyalo’s Lemma.

This claim is proved separately in the following two cases:

Proof of the claim in the case of curvature > � By Rauch comparison (see for exam-
ple [6, Corollary 1.35]) the diffeomorphism F W BR. zp/!BR.p/ is non-expanding. To-
gether with Claim 3.2, this implies that the restriction of F to � is distance-preserving
on any geodesic in � with ends in ƒ.

Applying Proposition 3.1 we get that the restriction of F to � is isometric and geodesic
in the interior of � and hence the same holds on whole �.

Proof of the claim in the case of curvature 6 � Set ‡ to be the set of all minimizing
geodesics with ends in f .ƒ/ and let x‡ be the subset of M covered by all geodesics
in ‡ .

By the Rauch comparison, the diffeomorphism F W BR. zp/!BR.p/ is non-contracting,
while its inverse F�1 is a non-expanding diffeomorphism. Since f is distance-
preserving, it follows that F�1 is isometric on each of the geodesic in ‡ ; moreover,
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Sweeping out sectional curvature 625

any minimizing geodesic between points in ƒ can be presented as F�1 ı  for some
 2‡ . It follows that F�1.x‡/D�, or equivalently F.�/D x‡ . In particular, F is
distance-preserving on each minimizing geodesic with ends in ƒ.

Applying Proposition 3.1 the same way as above, we conclude that the restriction of F

to � is distance-preserving and geodesic.

The general case To treat the general case, choose " > 0 so that the injectivity radius
at any point in B2�R.p/ is at least 2 � ". Note that one can cover the interior of � by
an infinite sequence of tetrahedra �1; �2; : : : with a choice of three faces ƒi in each
�i such that diam�i < " and

ƒn �ƒ[

�[
i<n

�i

�
:

for each n. Then it remains to apply the above argument sequentially to �1; �2; : : :

and pass to the closure.

Proof of Observation 1.3 Set m D dim M. Choose any point p 2 Flat�M and
zp 2MmŒ��. Choose a map F W MmŒ��! Flat�M such that

(1) F. zp/D p , and the differential of F at p is an isometry T zp! Tp ,

(2) F sends all unit speed geodesics through zp to unit speed geodesics through p .

Let �p �MmŒ�� be the maximal open star-shaped set with respect to zp such that the
map F induces an open isometric immersion of �p . Let ‰p be the set of all tetrahedra
with one vertex at zp and three adjacent faces in �p and let x‰p be the union of all
tetrahedra in ‰p .

Clearly x‰p is open and x‰p � �p . According to Buyalo’s Lemma, the map F is
isometric on each geodesic lying in a tetrahedron from ‰p . Applying Proposition 3.1,
we get that F is an open isometric immersion x‰p # M. Thus, x‰p D �p for any
p 2 Flat�M, hence the result.

4 Exhaustive manifolds

Let � be a simply connected �–flat manifold. Recall that �.2/ denotes the two-hull
of � (see Definition 2.2). From the definition of the two-hull, we have that if �.2/ is
isometric to the model space MmŒ�� then � is exhaustive (see Definition 1.5).

In this section we use the above observation to construct examples of exhaustive
manifolds. The following two propositions follow directly from the discussion above.
(In other words, the proof is left to the reader.)

Geometry & Topology, Volume 18 (2014)
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4.1 Proposition Assume m > 3 and suppose � � MmŒ�� is an nonempty open
set with convex complement. Then �.2/ is isometric to MmŒ��. In particular, � is
exhaustive.

Here is a generalization of the above proposition:

4.2 Proposition Suppose m > 3 and suppose � � MmŒ�� is an nonempty open
set such that through any point p 2 MmŒ�� passes a 3–dimensional subspace Wp

(ie, an isometric copy of M3Œ��) such that each connected component of Wpn� is a
convex set.

Then �.2/ is isometric to MmŒ��. In particular, � is exhaustive.

The proof of the following proposition requires some work. Set Sm def
DDMmŒ1�.

4.3 Proposition Assume m > 3 and suppose that an open set � � Sm admits a
geodesic isometric immersion S2

C ,!�. Then �.2/ is isometric to Sm .

Proof Fix two embeddings S2
C ,!� and � ,! Sm ; denote their composition by �.

Note that for any point x 2 Smn�.@S2
C/ there is the unique embedding �x W S2

C ,! Sm

such that x 2 �x.S2
C/ and �x.z/ D �.z/ for any z 2 @S2

C . It is easy to see that one
can choose a tetrahedron � in Sm such that one face of � belongs to �x.S2

C/ and
contains all points in the set �x.S2

C/n�, while the rest of the faces are arbitrary close
to �.S2

C/; in particular these faces belong to �.

Applying to � the definition of two-convexity, we get an isometric geodesic immersion
F W �#�.2/ . It is easy to see that the map x 7! F.x/ is independent on the choice
of �; moreover, the obtained map Sm!�.2/ is an open isometric immersion. Since
�.2/ is simply connected we have that �.2/ is isometric to Sm .

5 Comments and open problems

k–convexity The definition of two-convexity, Definition 2.1, can be generalized to
“k–convexity”; one has to change the tetrahedron � to a .kC1/–dimensional simplex
and ƒ to the set formed by kC 1 faces out of kC 2 in �. In this case, 1–convexity
is equivalent to the usual convexity of each connected component of �.

In [7, Section 1
2

], Gromov introduced the following closely related notion which we
will call further as Lefschetz k–convexity.3

3We state a slight variation of Gromov’s definition; in particular, we restrict our consideration to
open sets and change the meaning of k ; in Gromov’s notation, Lefschetz k–convexity in Em is called
.m� k/–convexity.
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5.1 Definition An open set � in Em is Lefschetz k–convex if for any k–dimensional
affine subspace A the natural homology homomorphism

(��) Hk�1.�\A/!Hk�1.�/

is injective.

This definition can be generalized to �–flat manifolds; one only has to replace �\A

by k–dimensional manifolds ‚ that admit a proper4 isometric geodesic immersion
‚#�.

It is easy to show that Lefschetz k–convexity in Em implies our k–convexity. We
know that the converse holds in two trivial cases: k D 1 and m 6 k C 1, but in all
other cases we do not know the answer to the following question.

5.2 Open problem Is it true that any k–convex open subset of Em is Lefschetz
k–convex?

Smooth approximation of two-convex sets To get a feeling of the definition of
k–convexity, it is useful to observe the following.

5.3 Proposition If � is an open subset of Em with smooth boundary @�, then it
is k–convex if and only if the hypersurface @� has at most k � 1 negative principle
curvatures at any point.

It is well known that any convex set in Em can be approximated by a convex set with
smooth boundary. It turns out that for k–convex sets (as well as for Lefschetz k–convex
sets) this is no longer true.

To give an explicit example, let ��R4 be the complement to the union of the following
two 3–dimensional halfspaces:

.x1 > ax2; x3 D 0/[ .x1 > �ax2; x4 D 0/; a> 0:

The intersection of the halfspaces lies in the two-plane x3 D x4 D 0 and forms a plane
angle Q in it. Clearly � is connected, 2–convex and simply connected. Let us give
two alternative ways to prove that � is not smoothable.

Way 1 Note that for k–convex sets with smooth boundary the homeomorphism in
(��) is injective for subspaces A of arbitrary dimension. The proof is an exercise in

4An isometric immersion �W ‚#� of Riemannian manifolds ‚ and � is called proper if for any
point p 2� there is " > 0 such that each connected component of ��1. xB".p//�‚ is compact.
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Morse theory; see [7, Section 1
2

]. Thus, any k–convex set which does not satisfy this
condition cannot be approximated.

Let A be the 3–subspace in E4 given by the equation x1 D 0. Note that A\� is
formed by the complement of two half-planes in A intersecting at single point. In
particular H1.A\�/D Z, which can be shown to contradict the above observation.

Way 2 Assume � can be approximated by a k–convex set with smooth boundary.
Equip � with the intrinsic metric induced in E4 and denote by y� its completion.
According to the main result in Alexander, Berg and Bishop [2], y� is CAT.0/. The
later is not the case, say if the angle measure of Q is less than �

2
.

Two-hull in the non simply connected case The following example shows a problem
with extension of the two-hull construction to the non-simply-connected case. Consider
an isometric action Z2 Õ S3 with two fixed points; then take � to be the orbit space
S3=Z2 with singular orbits removed. Note that � admits no open isometric immersion
into a two-convex 1–flat manifold. Hence the two-hull of � cannot be defined in the
class of manifolds.

Note that if a �–flat manifold � does not admit a two-hull then it is automatically
exhaustive. In this case � is not isometric to a �–flat subset in any manifold of curvature
> � or 6 � .

On the other hand, the two-hull is always defined in the class of so-called Riemannian
megafolds (in particular Riemannian orbifolds); these creatures were introduced by
Petrunin and Tuschmann in [13] and under a different name by Lott in [10]; they look a
lot like Riemannian manifolds, but fail to be topological spaces. In the above example,
the two-hull of � is the Riemannian orbifold .S3 W Z2/.

More questions Here is a possible generalization of Proposition 4.3:

5.4 Question Is it true that the two-hull of any open simply connected set �� Sm

that contains a closed geodesic is isometric to Sm ?

The following question of D Burago and B Kleiner has been open for a long time. It is
not directly relevant to all above, but it was one of the initial motivations for our work.

5.5 Question Is it possible to construct a Riemannian metric g on the product of a
torus and an open disc T 2 �D2 such that the torus T 2 � f0g ,! T 2 �D2 is flat and
the curvature is strictly positive outside of T 2 � f0g?

An answer to this question might lead to a better understanding of manifolds with
almost positive curvature (see Ziller [17]).
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We also mention two related questions from MathOverflow:

� Question 55788 about two-convexity and the Lefschetz property.

� Question 50889 about possible generalizations of Buyalo’s Lemma.

Appendix: Zalgaller’s rigidity

Here we briefly repeat the proof of a theorem from [16]. We do this since the result
that interests us (Theorem A.2) was not formulated as a separate statement; it appeared
as an intermediate statement in the proof.

A.1 Theorem Let A D a1a2 � � � an and B D b1b2 � � � bn be two simple spherical
polygons (not necessary convex) with equal corresponding sides. Assume A lies in an
open hemisphere and †ai >†bi for each i . Then A is congruent to B .

At first this result might look unrelated to the content of this article. But the proof
relies on the following 2–dimensional analog of Theorem 1.4. Recall that spherical
polyhedron is a simplicial complex equipped with a metric such that each simplex is
isometric to a simplex in a standard sphere.

A.2 Theorem Let † be a spherical polyhedron that is homeomorphic to S2 and has
curvature > 1 in the sense of Alexandrov. Assume that an open neighborhood of S2

C

in S2 admits a locally isometric immersion in †. Then † is isometric to the standard
sphere.

To deduce Theorem A.1 from Theorem A.2, Zalgaller cuts the polygon A from the
sphere and glues the polygon B there instead. As a result he gets the spherical
polyhedron † as in Theorem A.2. (In fact, if we drop the condition that A lies in a
hemisphere, we can obtain in this way any spherical polyhedral metric on S2 with
curvature > 1.)

Theorem A.2 is proved by induction on the number n of singular points in †. The base
case nD 1 is trivial. To do the induction step, choose two singular points p; q 2†, cut
† along a geodesic Œpq� and patch the hole so that the new polyhedron †0 obtained
has curvature > 1. The patch is obtained by gluing two copies of a spherical triangle
along two sides. For the right choice of the triangle, the points p and q become regular
in †0 and exactly one new singular point appears in the patch. This way, the case with
n singular points is reduced to the case with n� 1 singular points (if n> 1).
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The patch construction above was introduced by Alexandrov in his famous proof of
convex embeddabilty of polyhedrons; the earliest reference we have found is [1, VI,
Section 7].

Applying polyhedral approximation, one can extend Theorem A.2 to any surface with
curvature > 1 in the sense of Alexandrov; in particular, this shows that Theorem 1.4
holds in addition for mD 2 and curvature > 1.
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