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Solvable groups, free divisors and nonisolated
matrix singularities II: Vanishing topology

JAMES DAMON

BRIAN PIKE

In this paper we use the results from the first part to compute the vanishing topology
for matrix singularities based on certain spaces of matrices. We place the variety
of singular matrices in a geometric configuration of free divisors which are the
“exceptional orbit varieties” for representations of solvable groups. Because there
are towers of representations for towers of solvable groups, the free divisors actually
form a tower of free divisors En , and we give an inductive procedure for computing
the vanishing topology of the matrix singularities. The inductive procedure we use is
an extension of that introduced by Lê–Greuel for computing the Milnor number of
an ICIS. Instead of linear subspaces, we use free divisors arising from the geometric
configuration and which correspond to subgroups of the solvable groups.

Here the vanishing topology involves a singular version of the Milnor fiber; however,
it still has the good connectivity properties and is homotopy equivalent to a bouquet
of spheres, whose number is called the singular Milnor number. We give formulas
for this singular Milnor number in terms of singular Milnor numbers of various free
divisors on smooth subspaces, which can be computed as lengths of determinantal
modules. In addition to being applied to symmetric, general and skew-symmetric
matrix singularities, the results are also applied to Cohen–Macaulay singularities
defined as 2� 3 matrix singularities. We compute the Milnor number of isolated
Cohen–Macaulay surface singularities of this type in C4 and the difference of Betti
numbers of Milnor fibers for isolated Cohen–Macaulay 3–fold singularities of this
type in C5 .

32S30; 17B66, 14M05, 14M12

Introduction

In this paper we make use of the results from the first part of the paper [10] to
introduce a method for computing the “vanishing topology” of nonisolated complex
matrix singularities. A complex matrix singularity arises from a holomorphic germ
f0W C

n; 0!M; 0, where M denotes the space of m�m complex matrices, which
may be either symmetric or skew-symmetric (and then m is even), or more general
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m�p complex matrices. If V denotes the “determinantal variety” of singular matrices,
then V0 D f

�1
0
.V/ is the corresponding matrix singularity. We shall also refer to the

mapping f0 as defining a matrix singularity; it can also be viewed as a “nonlinear
section of V ” (although we also allow n � dim.M /). In part I, we indicated many
examples of matrix singularities for the classification of various types of singularities.

For m�m matrices, if n� codim.sing.V// and f0 is transverse to V off the origin,
then V0 has an isolated singularity, defined by H ı f0 , where H W M ! C denotes
the determinant, or the Pfaffian in the skew-symmetric case (m even). Using algebraic
resolutions, Goryunov–Mond [15] showed that for isolated matrix singularities in
all three cases, the Milnor number equaled � , which is a KH–deformation-theoretic
codimension, with a correction term given by a two term Euler characteristic for an
appropriate Tor complex;

�.H ıf0/D � C .ˇ0�ˇ1/:

This explained an observed result of Bruce [1] for simple symmetric matrix singularities
for nD 2D codim.sing.V//� 1.

Although the Milnor number in the isolated case can be computed from Milnor’s
formula, the relation between it and the deformation-theoretic codimension suggests
there may exist such a relation in the nonisolated case, where there are no known general
results about the topology of the Milnor fiber. However, the difficulty in determining
the vanishing topology of matrix singularities in general is due to their highly singular
structure. Hence, by the Kato–Matsumoto theorem, its Milnor fiber will have very low
connectivity and can have homology in many dimensions.

We overcome this problem by viewing f0W C
n; 0!M; 0 as a nonlinear section of V

and consider instead the “singular Milnor fiber”. It is obtained as a “stabilization of
f0 ” and is homotopy equivalent to a bouquet of spheres of real dimension n� 1. The
number of such spheres �V.f0/ is called the “singular Milnor number” of f0 , and it can
be computed for free divisors V (in the sense of Saito [32]) by a Milnor-type formula
as the length of of a determinantal module; Damon and Mond [9] and Damon [7].

In the case when n < dim.sing.V//, then V0 is an isolated singularity and these are
the usual Milnor fiber and Milnor number. That matrix singularities V are essentially
never free divisors explains the need for a correction term in [15] for the isolated case.

Instead we shall introduce an inductive method which extends that introduced by
Lê–Greuel [19] for computing the Milnor number of an ICIS. Their method uses a
geometric configuration formed from a flag of linear subspaces transverse to the map
germ which we replace with a tower of linear free divisors constructed in [10, Part 1].
These arise from a tower of (modified) Cholesky-type representations of solvable linear
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algebraic groups. This allows us to adjoin a linear free divisor to the determinantal
variety V to obtain another linear free divisor, providing a “free completion” of V .

The general form of the formula which we give expresses �V.f0/ as a linear combina-
tion with integer coefficients

(0-1) �V.f0/D
X

i

ai�Wi
.f0/;

where the Wi are free divisors on linear subspaces of M. Thus, we can express �V.f0/

as a linear combination of singular Milnor numbers, each of which can be computed
using results from [7] as lengths of determinantal modules.

If we view these singular Milnor numbers as functions on the space of germs f0

transverse to the varieties off 0, then (0-1) can be written more simply as

(0-2) �V D

X
i

ai�Wi
:

Furthermore, the method allows us to compute more generally the singular Milnor
numbers for nonisolated matrix singularities on an ICIS X. There is a metatheorem
which states that if X is defined by 'W Cn; 0!Cp; 0, and the formula (0-2) for �V

is obtained by the inductive process then the process also yields the formula

(0-3) �';V D
X

i

ai�';Wi
;

where �';V.f0/, respectively �';Wi
.f0/, are the singular Milnor numbers for f0jX

as nonlinear sections of V , resp. Wi , and can again be computed in terms of lengths of
determinantal modules using a generalization of the Lê–Greuel theorem given in [7].

These formulas are applied in Section 6, 7, and 9 to obtain explicit formulas for
symmetric and general 2� 2 and 3� 3 matrices, and 4� 4 skew-symmetric matrices.

Furthermore, general 2� 3 matrix singularities are not complete intersection singulari-
ties; however they are Cohen–Macaulay singularities by the Hilbert–Burch theorem;
see Hilbert [22] and Burch [3]. We next apply these methods in Section 8 to obtain
the singular vanishing Euler characteristic z�V as a linear combination as in (0-2).
We then deduce a formula for the Milnor number of isolated 2� 3 Cohen–Macaulay
surface singularities in C4 as an alternating sum of lengths of determinantal modules
(Theorem 8.3). Furthermore, for isolated 3–fold 2� 3 Cohen–Macaulay singularities,
we give an analogous formula for the difference between the second and third Betti
numbers b3�b2 of the Milnor fiber (Theorem 8.4). This formula is also valid for 2�3

Cohen–Macaulay singularities defined as matrix singularities defined on an ICIS.
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This formula has been programmed in Macaulay2 by the second author [30] and has
been used to compute for the simple isolated Cohen–Macaulay singularities, classified
by Frühbis-Krüger and Neumer [12], the Milnor numbers for those in C4 and the
difference of Betti numbers for the Milnor fiber for the 3–fold singularities in C5 . In
Section 11, these computer calculations are applied to verify a conjecture relating �
and � for the surface case, and discover unexpected behavior of b3� b2 and � for the
3–fold singularities.

Besides obtaining general formulas as in (0-2) for the various cases, we also introduce
two methods of reduction. In the case of 2� 2 symmetric matrices, the terms in the
linear combination represent the lengths of determinantal modules and the algebraic
relations between these modules then allow us to combine them into a “Jacobian
formula”. This is a first step to finding more general reduction formulas to simplify
(0-2).

The second method of “generic reduction” can be applied to all cases and uses the
“defining codimensions” of the Wi in M. We may rewrite (0-2) in the form

(0-4) �V D �0C�1C � � �C�N�1 .N D dim.M //;

where �j denotes the sum of the terms in (0-2) for which the defining codimension of
Wi is j . If codim.Im.df0.0///D k and we may apply a generic matrix transformation
to f0 so that Im.df0.0// projects submersively onto all of the defining linear subspaces
of codimension � k associated to the Wi , then �i.f0/D 0 for i � k , and the formula
(0-4) can be reduced to

(0-5) �V.f0/D �0.f0/C�1.f0/C � � �C�k�1.f0/:

In essence the remaining terms are “higher order terms” which do not contribute in the
generic case. We deduce a number of consequences of this reduction for the different
types of matrices, and obtain .� D �/–type results for generic corank-1 mappings
defining matrix singularities of the various types (Theorem 11.3).

In this paper we have only derived the specific formulas for small matrices of various
types. These required an understanding of the roles of certain subgroups and block
representations on subspaces and their relation with the intersection of orbits of the
subgroups with the spaces of singular matrices. To continue the analysis to more
general matrices requires a more thorough analysis of such subgroups and their block
representations on subspaces. This work is ongoing. Because the method applies
quite generally to the exceptional orbit varieties for representations of solvable linear
algebraic groups which form “block representations” having associated “H–holonomic”
free divisors, these results will then as well extend to many other representations of
solvable linear algebraic groups.
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1 Outline of the method

We begin by outlining how we extend the Lê–Greuel method to apply to matrix
singularities, and then illustrate the calculation for the simplest case of 2�2 symmetric
matrices.

Let M be the space of m � m complex matrices which are symmetric or skew-
symmetric, or m�p general matrices. We also let V denote the subvariety of singular
matrices in M (by which we mean more singular than the generic matrix in M ).

Definition 1.1 A matrix singularity is defined by a holomorphic germ

(1-1) f0W C
n; 0 �!M; 0

(or more generally, f0W X; 0!M; 0 for an analytic germ X; 0). The pull-back variety
V0 D f

�1
0
.V/ is the matrix singularity defined by f0 .

(1-2)

Cn; 0
f0 // M; 0

f �1
0
.V/ V0; 0

OO

// V; 0

OO

For these singularities we require that f0 is transverse to V off 0 2 Cn (ie to the
canonical Whitney stratification of V ). The determinantal varieties V are highly
singular. The singular set of the determinantal varieties has codimension in M equal
to 3 (symmetric case), 4 general m�m case, or 6 for the skew-symmetric case (m
even); and by the Kato–Matsumoto theorem [25], the Milnor fiber of V0 will only
be guaranteed to be 1–connected (symmetric case), 2–connected (general case), or
4–connected (skew-symmetric case).

To describe their vanishing topology, we initially replace the Milnor fiber by the
“singular Milnor fiber”. As f0W C

n; 0!M; 0 is transverse to V off 0, we may use
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instead a stabilization ft W B"!M of f0 . This means that for t ¤ 0, ft is transverse
to V on B" . The singular Milnor fiber is then the fiber V t D f

�1
t .V/. By results in

[9] and [7] (using a result of Lê), which are valid for any hypersurface V , the singular
Milnor fiber V t is homotopy equivalent to a bouquet of spheres of real dimension
n� 1, whose number we denote by �V.f0/ and which we call the “singular Milnor
number”. If V is instead a complete intersection, or if f0W X; 0!M; 0 for an ICIS
X; 0, the singular Milnor fiber continues to be homotopy equivalent to a bouquet of
spheres [7]. If V is not a complete intersection, the singular Milnor fiber need not
be homotopy equivalent to a bouquet of spheres, so we consider instead the singular
vanishing Euler characteristic z�V.f0/ D �.V t /� 1. The singular Milnor numbers
�V.f0/ have Milnor-type formulas if V is a free divisor or a free divisor on a smooth
subspace (see Section 3).

However, in general the determinantal varieties consisting of singular matrices are not
free divisors. Consequently, we will proceed by modifying the method of Lê–Greuel
to compute them inductively using free divisors. We recall how the Lê–Greuel formula
is used to compute the Milnor number of an ICIS.

1.1 Computing Milnor numbers of ICIS via geometric configurations

For an isolated hypersurface singularity defined by f W Cn; 0 ! C; 0, the Milnor
number is computed by Milnor’s algebraic formula

�.f /D dimC
�
OCn;0=Jac.f /

�
;

where Jac.f / is the ideal generated by the partials @f=@xi , i D 1; : : : ; n. By contrast,
except in the weighted homogeneous case, there is no analogous Milnor-type formula
for computing the Milnor number of an ICIS f W Cn; 0!Cp; 0. Instead, for a general
ICIS, the Lê–Greuel formula provides an inductive method as follows.

We choose a geometric configuration which consists of a complete flag of subspaces
0 � C � C2 � � � � � Cp transverse to f off 0. If .y1; : : : ;yp/ denote coordinates
defining these subspaces, we let �y1;:::;yk

.f /D�.�kıf /, where �k denote projection
onto the subspace Ck � f0g. Then, the Milnor number �.f / can be computed as an
alternating sum

(1-3) �.f /D
�
�y1;:::;yp

.f /C�y1;:::;yp�1
.f /

�
�
�
�y1;:::;yp�1

.f /C�y1;:::;yp�2
.f /

�
C � � �˙

��
�y1;y2

.f /C�y1
.f /

�
��y1

.f /
�
;
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where each 2–term sum in parentheses represents the Milnor number of an isolated
singularity on an ICIS and can be computed using the Lê–Greuel theorem (with �y1

.f /

computed by Milnor’s formula).

Theorem 1.2 (Lê–Greuel) For an ICIS f D .f1; f2/W C
n; 0 ! CkC1; 0, with

f2W C
n; 0!Ck ; 0 also an ICIS,

�.f /C�.f2/D dimC
�
On=.f

�
2 mk C Jac.f //

�
;

where Jac.f / now denotes the ideal generated by the .kC 1/� .kC 1/ minors of df .

Thus, �.f / is not computed directly, but rather as an alternating sum of lengths of
algebras which are defined using a configuration of subspaces in Cp .

1.2 Inductive procedure for computing singular milnor numbers via free
completions

We will use an analogous approach for computing the singular Milnor number of a
matrix singularity. We give an inductive approach, for which the geometric configuration
is given by a free divisor Em appearing in one of the towers of free divisors from [10,
Part I] (see Table 2). This provides a “free completion” of the determinantal variety
Dm of singular matrices, Em D �

�Em�1[Dm .

Quite generally we define:

Definition 1.3 A hypersurface singularity W; 0 � CN ; 0 has a free completion if
there is a free divisor V; 0�CN ; 0 such that V [W; 0 is again a free divisor.

Then, we may apply (3-4) of Lemma 3.7 to obtain

(1-4) �Dm
.f0/D �Em

.f0/����Em�1
.f0/C .�1/n�1

z���Em�1\Dm
.f0/:

In our situations, all of the ��Em are H–holonomic (see beginning of Section 3
and Section 4). Thus, the ���Em

can be computed as lengths of determinantal
modules by Theorem 3.1. This reduces the calculation of �Dm

.f0/ to computing
z���Em�1\Dm

.f0/.

We proceed inductively to decompose ��Em�1\Dm into a union of components each
of which can be represented as divisors on ICIS. We then use either free completions for
these divisors or completions by divisors which themselves have free completions. We
may again inductively apply Lemma 3.7 to further reduce to computing the vanishing
Euler characteristics for divisors on ICIS, where we repeat the inductive process.
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918 James Damon and Brian Pike

Eventually we are reduced to computing the singular Milnor numbers of almost free
divisors on ICIS, which we can compute using either Theorem 3.1 or Theorem 3.3.

In analogy with the notation used to explain the case of ICIS, to represent the singular
Milnor number of f0 for a variety defined by .g1; : : : ;gr /, we use the notation
�g1;:::;gr

.f0/. The final form the formula will take is that of (0-2), where each �Wi
is

given in the form just described.

If instead we consider matrix singularities f0W X; 0!M; 0 on an ICIS X; 0 defined
by 'W Cn; 0!Cp; 0, then the same arguments may be repeated to obtain a formula
of the form (0-3).

1.3 2� 2 symmetric matrix singularities

As an initial example to illustrate these ideas, we consider 2�2 symmetric matrices de-
noted Sym2 and use coordinates

�
a
b

b
c

�
. The variety of singular matrices Dsy

2
is defined

by ac � b2 D 0. By [10, Theorem 6.2], it has a free completion Esy
2
D ��Esy

1
[Dsy

2
,

where Esy
2

is defined by a.ac � b2/D 0 and ��Esy
1

is defined by aD 0.

By the preceding, it is sufficient to determine z���Esy

1
\Dsy

2
.f0/. Set-theoretically,

��Esy
1
\Dsy

2
D V

�
a; ac � b2

�
D V .a; b/

hence,
z���Esy

1
\Dsy

2
D .�1/n�2�a;b:

By substituting ���Esy

1
.f0/D �a.f0/ into (1-4) we obtain

(1-5) �Dsy

2
.f0/D �Esy

2
.f0/�

�
�a.f0/C�a;b.f0/

�
;

where �Esy

2
.f0/ can be computed via Theorem 3.1 as the length of a determinantal mod-

ule and �a.f0/C�a;b.f0/ can be computed by the Lê–Greuel formula (Theorem 1.2).
A complete statement is given in Theorem 6.1.

This example is especially simple as ��Esy
1
\ Dsy

2
is set-theoretically a complete

intersection. In general it will require a number of inductive steps to decompose
��Em�1\Dm and use auxiliary solvable group representations to construct additional
free completions for the components.

Remark 1.4 To apply the inductive method, we must have the germ f0W C
n; 0!M; 0

transverse off 0 to each of the free divisors on the subspaces and their intersections.
We use the terminology that f0 is transverse to the associated varieties to indicate that
it is transverse to all of these associated free divisors and their intersections.
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For matrix singularities, we only assume initially that f0 is transverse off 0 to the
determinantal variety D . To ensure that f0 is also transverse to the associated varieties,
we may apply to f0 an element of the larger groups GLm or GLm�GLp which preserve
the determinantal variety of singular matrices. The actions of the groups GLm or GLm�

GLp are transitive on the strata of the determinantal variety D (by the classification of
complex bilinear forms and echelon form for linear transformations). The complement
of D consists of matrices of maximal rank, and again by the classification, they belong
to a single orbit of these groups. Hence, by the parametrized transversality theorem,
for almost all elements g of the appropriate group, the composition of the action of
g with f0 , denoted g � f0 , is transverse to the associated varieties. Hence, these will
preserve D and move f0 into general position off 0 relative to the associated varieties.

There are three essential ingredients which allow the general computations to be carried
out for the various matrix types in the later sections:

� First, the singular Milnor numbers are computed in terms of a certain deformation-
theoretic codimension for KH–equivalence. In Section 2 we relate this to the
equivalence KM for matrix singularities and a related equivalence KV for
viewing germs as nonlinear sections of the variety V of singular matrices. We
also recall the formulas for codimensions as lengths of modules.

� Second, we recall in Section 3 the formulas for computing the singular Milnor
numbers and formulas involving them and singular vanishing Euler characteris-
tics.

� Third, in Section 4 we summarize the results from part I which construct the
towers of free divisors and certain auxiliary free divisors needed for the various
types of matrix singularities.

2 Equivalence groups for matrix singularities

There are several different equivalences that we shall consider for matrix singularities
f0W C

n; 0!M; 0 with V denoting the subvariety of singular matrices in M. The one
used in classifications is KM–equivalence: We suppose that we are given an action
of a group of matrices G on M. For symmetric or skew-symmetric matrices, it is the
action of GLm.C/ by B �AD BABT . For general m�p matrices, it is the action of
GLm.C/�GLp.C/ by .B;C / �AD BAC�1 . Given such an action, then the group
KM consists of pairs .';B/, with ' a germ of a diffeomorphism of Cn; 0 and B a
holomorphic germ Cn; 0!G; I . The action is given by

f0.x/ 7! f1.x/D B.x/ �
�
f0 ı'

�1.x/
�
:

Geometry & Topology, Volume 18 (2014)
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For one space M and group G, we use the generic notation KM for any of these
groups of equivalence (Gervais [13; 14] had earlier considered this type of equivalence,
referring to it as G–equivalence).

In addition to KM , there are two other commonly used groups.

2.1 KV and KH–equivalence for matrix singularities

If we view f0 as a “nonlinear section of V ” (even for a more general germ V; 0), KV –
equivalence is defined by the actions of pairs of diffeomorphisms .ˆ; '/, preserving
Cn �V (see Damon [5]).

(2-1)

Cn �CN ; 0
ˆ //

�

��

Cn �CN ; 0

�

��

Cn �V; 0ioo

Cn; 0
' // Cn; 0

For V0 D f
�1

0
.V/, it gives an ambient equivalence of V0; 0�Cn; 0.

There is a third equivalence, KH–equivalence, introduced in [9], which requires more-
over that ˆ given above preserves all of the level sets of H. Here H is chosen to be a
“good defining equation” for V , which means there is an “Euler-like vector field” �
such that �.H /D H. In the weighted homogeneous case such as for determinantal
varieties, we use the Euler vector field (for general V we may always replace V by
V �C and @=@t is such a vector field for the defining equation et �H ).

All of these equivalence groups have corresponding unfolding groups and belong to
the class of geometric subgroups of A or K , so all of the basic theorems of singularity
theory in the Thom–Mather sense are valid for them (see Damon [5; 8; 4]). In particular,
germs which have finite codimension for one of these groups have versal unfoldings,
and the deformation-theoretic spaces for these groups play an important role.

We let �N denote the module of germs of vector fields on CN ; 0, and I.V/ the ideal
of germs vanishing on V , and define, after Saito [32] the module of logarithmic vector
fields

Derlog.V/D f� 2 �N W �.I.V//� I.V/g:

For good defining equation H, we also define

Derlog.H /D f� 2 �N W �.H /D 0g:

If H is a good defining equation,

Derlog.V/D Derlog.H /˚OCN ;0f�g:

Geometry & Topology, Volume 18 (2014)
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These modules both appear in infinitesimal calculations for the groups.

If Derlog.V/ is generated by �0; : : : ; �r , then the extended tangent space is given by

(2-2) TKV;e �f0 DOCn;0

�
@f0

@x1

; : : : ;
@f0

@xn
; �0 ıf0; : : : ; �r ıf0

�
:

The analog of the deformation tangent space T 1 is the extended KV normal space

NKV;e �f0 D �.f0/=TKV;e �f0 'O.p/Cn;0
=TKV;e �f0;

where as usual �.f0/, the module of germs of holomorphic vector fields along f0 ,
is the free OCn;0 module generated by f@=@xig, 1 � i � n. Likewise, if �0 denotes
the Euler-like vector field with the remaining �i generating Derlog.H /, then TKH ;e

is obtained by deleting �0 ı f0 in (2-2), with NKH ;e denoting the corresponding
quotient. As usual, the dimensions of these extended normal spaces are the extended
codimensions KV;e–codim.f0/, resp. KH ;e–codim.f0/.

There is a direct relation between these groups and KM . The extended tangent space for
KM is obtained by an analogous formula to (2-2) except the generators of Derlog.V/
are replaced by vector fields for the matrix equivalence group G acting on M 'CN .
They are of the form �vi

.x/ D @=@t.exp.tvi/ � x/jtD0 , for fvig a basis for the Lie
algebra g of G. In the terminology of part I, we refer to these as the “representation
vector fields”.

The reason these are so closely related for matrix singularities is due to a collection
of results due to Józefiak [23], Józefiak–Pragacz [24] and Gulliksen–Negård [21].
Goryunov–Mond [15] recognized that these results prove that for the three types of
m�m matrices (symmetric, skew-symmetric (with m even), or general matrices) that
the modules of vector fields generated by the representation vector fields are exactly
Derlog.V/, for V the determinantal variety of singular matrices. It then follows that
KM and KV have the same tangent spaces; and when using the standard methods for
studying equivalence of singularities, they give the same equivalence.

In addition, as noted in [9], if f0 is weighted homogeneous for the same set of weights
as V , then the extended tangent spaces of f0 for KV and KH are the same. Hence,

(2-3) KM;e–codim.f0/DKV;e–codim.f0/DKH ;e–codim.f0/:

Thus, the observed result of Bruce [1] about simple symmetric matrix singularities
and the result of Goryunov–Mond [15] both concern the relation between the Milnor
number �.H ı f0/ and KH ;e–codim.f0/. We next consider how this relates to the
case of nonisolated matrix singularities.
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3 Singular Milnor fibers and singular Milnor numbers

The singular Milnor numbers can be explicitly computed in the case V is a free
divisor. This term was introduced by Saito [32] for hypersurface germs V; 0�CN ; 0

for which Derlog.V/ is a free OCN–module, necessarily of rank N. In this case, if
f0W C

n ! M; 0 is transverse to V off 0 (2 Cn ), we refer to V0 D f
�1

0
.V/ as an

almost free divisor (AFD).

A free divisor V is called holonomic by Saito if at any point z 2 V the generators of
Derlog.V / evaluated at z span the tangent space of the stratum containing z of the
canonical Whitney stratification of V . If this still holds true using Derlog.H / instead
then we say it is H–holonomic [7].

Then, the results in [9, Theorem 5] (for locally weighted homogeneous free divisors)
and [7, Theorem 4.1] (extended to H–holonomic free divisors) combine to give the
following formula for the singular Milnor number.

Theorem 3.1 If V �CN is an H–holonomic free divisor, and f0W C
n; 0!CN ; 0 is

transverse to V off 0, then

(3-1) �V.f0/DKH ;e–codim.f0/;

where the RHS is computed as the length of a determinantal module.

Remark 3.2 We note by [7, Lemma 2.10] that as V is H–holonomic, f0 is transverse
to V off 0 if and only if f0 has finite KH ;e–codimension.

3.1 Almost free divisor (AFD) on an ICIS

This formula further extends to the case f0W X; 0! CN ; 0 where X; 0 � Cn; 0 is
an ICIS defined by 'W Cn; 0! Cp; 0. In our situation, we consider the case where
f0jX is transverse to a H–holonomic free divisor V off 0. Then, as in Section 1, we
consider a stabilization ft W B"!M of f0 , for which ft jX \B" is transverse to V
for t ¤ 0. For V t D f

�1
t .V/, V t \X \B" is homotopy equivalent to a bouquet of

spheres of real dimension n�p�1 [7, Section 7]. We denote by �';V.f0/ the number
of such spheres and refer to this number as the singular Milnor number of f0jX. Then,
the singular Milnor number can be computed by the following generalization of the
Lê–Greuel formula, see [7, Section 9] or [8, Section 4].
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Theorem 3.3 (AFD on an ICIS) Let V; 0�CN ; 0 be an H–holonomic free divisor
as above. Suppose X; 0 � Cn; 0 is an ICIS defined by 'W Cn; 0! Cp; 0, and that
f0jX is transverse to V off 0. Let F D .'; f0/W C

n; 0!CpCN ; 0. Then,

(3-2) �';V.f0/C�.'/

D dimC

�
OpCN

X ;0

�
OX ;0

�
@F

@x1

; : : : ;
@F

@xn
; �1 ıf0; : : : ; �N�1 ıf0

��
;

where Derlog.H / is generated by �i , i D 1; : : : ;N � 1.

With �.'/ computed by the Lê–Greuel formula, (3-2) then yields the singular Milnor
number �';V.f0/. We also note that if V D f0g then (3-2) yields a module version of
the Lê–Greuel formula. We next see that (3-2) can also be viewed as computing the
singular Milnor number of F for a free divisor on a smooth subspace CN �CpCN .
This is the form that many terms on the RHS of (0-2) will take in the formulas we
obtain.

Proposition 3.4 Let V; 0�CN ; 0 be an H–holonomic free divisor.

(1) Let V 0DV�Cp; 0�CNCp; 0, and suppose f0W C
n; 0!CNCp; 0 is transverse

to V 0 off 0. Then for � denoting the projection CNCp!CN ,

�V0.f0/D �V.� ıf0/:

(2) Let V 00; 0 D V � f0g � CNCp; 0 be the image of V; 0 via the inclusion
CN ; 0�CNCp; 0 (so that V 00 is a free divisor in a linear subspace of CNCp ).
Suppose f0W C

n; 0! CNCp; 0 is transverse to V 00 off 0 and for � 0 denoting
the projection CNCp!Cp , ' D � 0 ıf0W C

n; 0!Cp; 0 is an ICIS. Then

�V00.f0/D �';V.� ıf0/:

Proof of Proposition 3.4 For (1), we first note that V 0 is also H–holonomic. If fSig

are the strata of the canonical Whitney stratification of V , then fSi�Cpg are the strata
for V 0 D V �Cp . Also, if Derlog.V/ has the set of free generators �1; : : : �N�1 and
we use coordinates .w1; : : : ; wp/ for Cp , then we can trivially extend the �i to CNCp

and adjoin f@=@w1; : : : @=@wpg to obtain a set of free generators for Derlog.V 0/. Thus,
V 0 is also H–holonomic.

By a calculation similar to that for KV;e in Damon [8], it follows that for any germ
f0W C

n; 0 ! CNCp , with � W CNCp!CN the projection, V defined by H, and V 0
defined by H 0 DH ı� , we have an isomorphism of normal spaces

NKH 0;e �f0 'NKH ;e �� ıf0:
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Then, by Theorem 3.1 we have (1).

For (2), we observe that if we choose a stabilization f 0t of � ıf0 so that 0 … f 0�1
t .V/

for t ¤ 0, then Ft D .'; f
0
t / is a stabilization of f0 for V 00 . Thus, the singular Milnor

fiber of � ı f0jX for V , where X D '�1.0/, is also the singular Milnor fiber of f0

for V 00 . This yields (2).

Remark 3.5 In the formula (0-1), if Wi � CN has codimension k , then if n < k ,
the corresponding singular Milnor fiber of f0W C

n; 0!CN ; 0 for Wi will be empty
and hence have Euler characteristic 0. Likewise, if n�p < k then for X; 0�Cn; 0

an ICIS defined by 'W Cn; 0!Cp; 0, the singular Milnor fiber of f0W X; 0!CN ; 0

will be empty and hence have Euler characteristic 0. Thus, to make all of the formulas
correct, we adopt the following convention:

Convention If n < k D codim.Wi/, then �Wi
.f0/

def
D .�1/n�kC1 . Likewise if

n�p < k D codim.Wi/, then �';Wi
.f0/

def
D.�1/n�p�kC1 .

Remark 3.6 The terms on the LHS of (3-2) can be viewed as computing the “relative
singular Milnor number”, which is given by rank.H n�p�1.Xt\B";V t\Xt\B"IZ//,
where Xt is the Milnor fiber of ' and V t D f

�1
t .V/. This follows because V t \Xt \

B" ' V t \X \B" . Since each fiber is homotopy equivalent to a bouquet of spheres,
the exact sequence for a pair yields the sum on the LHS of (3-2).

3.2 Singular vanishing Euler characteristic

In the case that V is not a complete intersection, we can still introduce a version of the
vanishing Euler characteristic for the singular Milnor fiber (which may no longer be
homotopy equivalent to a bouquet of spheres). We suppose again that f0W C

n; 0!M; 0

is transverse to V off 0, and consider a stabilization ft W B"!M of f0 . We let the
singular vanishing Euler characteristic be defined by

z�V.f0/
def
D z�

�
f �1

t .V/
�
D �

�
f �1

t .V/
�
� 1:

As earlier, z�V.f0/ is independent of stabilization.

Similarly, if X; 0 is an ICIS defined by 'W Cn; 0 ! Cp and f0W X; 0 ! CN is
transverse to V off 0, we define

z�';V.f0/
def
D z�

�
f �1

t .V/\X
�
D �

�
f �1

t .V/\X
�
� 1:
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This can be viewed as the singular vanishing Euler characteristic for the mapping
F0 D .'; f0/W C

n; 0!Cp �CN ; 0 since if ft jX W X \B"!CN is transverse to V ,
then Ft D .'; ft /W B" ! Cp � CN is transverse to f0g � V . Thus,

z�';V.f0/ D z�f0g�V.F0/:

We will compute singular Milnor numbers for nonlinear sections of hypersurface and
complete intersection singularities. However, we will do so by using simple Euler
characteristic arguments for the singular vanishing Euler characteristics combined with
their calculation in terms of singular Milnor numbers. These, in turn, can be calculated
algebraically using (3-1) and Theorem 3.3. The simplest version is for the case of
subvarieties V;W �CN .

Lemma 3.7 Suppose f0W C
n; 0 ! CN ; 0 is transverse to V , W and V \W off

0 2Cn . Then

(3-3) z�W[V.f0/D z�W.f0/C z�V.f0/� z�W\V.f0/:

In the case that V and W are both hypersurface singularities we obtain from (3-3)

(3-4) �W.f0/D �W[V.f0/��V.f0/C .�1/n�1
z�W\V.f0/:

If instead X; 0 is an ICIS defined by 'W Cn; 0 ! Cp; 0 and f0W X; 0 ! CN ; 0 is
transverse to V and W off 0, then the analogs of (3-3) and (3-4) are

z�';W[V.f0/D z�';W.f0/C z�';V.f0/� z�';W\V.f0/;(3-5)

�';W.f0/D �';W[V.f0/��';V.f0/C .�1/n�p�1
z�';W\V.f0/:(3-6)

Notation To simplify formulas, we will view singular Milnor numbers and singular
vanishing Euler characteristics as numerical functions on the space of germs transverse
to the appropriate set of subvarieties off 0. Hence, a formula such as (3-4) will be
written with evaluation on f0 understood so it will take the form

(3-7) �W D �W[V ��V C .�1/n�1
z�W\V :

Also, we may apply Proposition 3.4 to obtain ���E.f0/D �E.� ı f0/, so with this
understanding, in all future formulas we will abbreviate ���E to just �E .

Proof of Lemma 3.7 The addition-deletion type argument for reduced Euler charac-
teristics ( z�D �� 1) for subvarieties applied to the hypersurfaces W and V give (3-3).
Then, for a hypersurface W , we have z�W.f0/D .�1/n�1�W.f0/. Substituting for z�
for all of the hypersurfaces in (3-3) and rearranging yields (3-4).
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The same Euler characteristic argument used in verifying (3-3) also applies instead
to f0g � Y � CpCN for hypersurfaces Y and the map F D .'; f0/ yielding (3-5).
Substituting z�';W.f0/ D .�1/n�p�1�';W.f0/ for all of the hypersurfaces in (3-5)
yields after rearranging (3-6).

3.3 Intersections of multiple hypersurfaces

To compute z�V\W we will use an inductive procedure which requires computing
z�T

i Wi
for a collection of hypersurfaces Wi . We will use the following formula for k

hypersurfaces Wi :

(3-8) z�T
i Wi
D

X
j

.�1/jj jC1
z�S

j Wji

for nonempty j D fj1; : : : ; jr g � f1; : : : ; kg with jj j D r (for a formula involving �
see [7, Lemma 8.1], but an analogous addition-deletion argument works for z� using
reduced homology).

Then, for mappings f0W C
n; 0!CN ; 0, substituting z�S

j Wji
D .�1/n�1�S

j Wji
we

obtain the following proposition.

Proposition 3.8 For mappings f0W C
n; 0!CN ; 0 and a collection of hypersurfaces

Wi ; 0�CN ; 0, i D 1; : : : ; k , with
T

i Wi not necessarily a complete intersection,

(3-9) z�T
i Wi
D .�1/n�k

�X
j

.�1/jj jCk�[j Wji

�
:

Remark 3.9 In the case that
T

i Wi is a complete intersection, this formula reduces
to [7, Theorem 2, Section 8].

4 Exceptional orbit varieties as free divisors

We recall the results from part I [10] which allow us to embed the varieties of singular
matrices in a geometric configuration of divisors which form free divisors.

We use the notation from part I and let Mm;p denote the space of m� p complex
matrices, and Symm , respectively Skm , the subspaces of Mm;m of symmetric, respec-
tively skew-symmetric, complex matrices. Next, we let Bm denote the Borel subgroup
of GLm.C/ consisting of lower triangular matrices and the group

Cm D

�
1 0

0 BT
m�1

�
;
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where BT
m�1

denote the group of upper triangular matrices of GLm�1.C/. Then, the
(modified) Cholesky-type representations are given in Table 1, which is [10, Table 1].
These representations give rise to exceptional orbit varieties which are the union of
the positive codimension orbits of the representations. We denote these by: Esy

m (for
Symm ); Em (for Mm;m ); Em�1;m (for Mm�1;m ); and Esk

m (for Skm ). Then, by [16]
for the symmetric case and for all cases by [10, Theorems 6.2, 7.1 and 8.1], the
first three families are linear free divisors, and the last Esk

m are free divisors. These
are families of representations which, via natural inclusions of groups and spaces,
together form towers of representations. Furthermore, the exceptional orbit varieties
contain as components the corresponding “generalized determinant varieties”, which
we denote by: Dsy

m , Dm , Dm�1;m and Dsk
m respectively. The defining equations for

the corresponding exceptional orbit varieties and generalized determinant varieties
are given in Table 2. Because of the tower structure for the representations we have
the inductive representation for the mth exceptional orbit variety Em and generalized
determinant variety Dm

(4-1) Em DDm[�
�Em�1;

where � denotes a projection from the mth representation Vm , � W Vm! Vm�1 . Then,
by (4-1), in each case Dm has a free completion to Em by ��Em�1 .

(Modified) Cholesky-type representations yielding free divisors

(Modified) Cholesky- Matrix Solvable Representation
type factorization space group

Symmetric matrices Symm Bm B �AD B A BT

General m�m Mm;m Bm �Cm .B;C / �AD BAC�1

General .m� 1/�m Mm�1;m Bm�1 �Cm .B;C / �AD BAC�1

Nonlinear representation Matrix Solvable Representation
space Lie algebra

Skew-symmetric matrices Skm
zDm Diff.Esk

m ; 0/

Table 1: Solvable group and solvable Lie algebra block representations for
(modified) Cholesky-type factorizations, yielding the free divisors in Table 2

Remark 4.1 For Skm , in place of a solvable group, we have an infinite-dimensional
solvable Lie algebra zDm which is an extension of the Lie algebra of the solvable Lie
group

Gm D

�
T2 02;m�2

0m�2;2 Bm�2

�
;

where T2 is the group of 2�2 diagonal matrices. This extension is by a set of Pfaffian
vector fields �k for 2�k�m�2, see [10, Section 8] and [31, Chapter 5]. The resulting
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infinite-dimensional Lie group Diff.Esk
m ; 0/ is the group of germs of diffeomorphisms

preserving Esk
m .

E Defining equation for E D Defining equation for D

Esy
m

mY
kD1

det
�
A.k/

�
Dsy

m det.A/

Em

mY
kD1

det
�
A.k/

�
�

m�1Y
kD1

det
�
yA.k/

�
Dm det

�
yA.m�1/

�
�det.A/

Em�1;m

m�1Y
kD1

det
�
A.k/

�
�

m�1Y
kD1

det
�
yA.k/

�
Dm�1;m det

�
A.m�1/

�
� det

�
yA.m�1/

�
Esk

m

m�2Y
kD1

det
� yyA.k/�� mY

kD2

Pff�.k/;:::;kg.A/ Dsk
m Pff�.m/;:::;mg.A/�det

� yyA.m�2/�
Table 2: Defining equations for the exceptional orbit varieties E and deter-
minantal varieties D for the solvable group and solvable Lie algebra block
representations in Table 1. If A D .aij / denotes a general matrix, then yA

denotes the matrix obtained by deleting the first column of A and yyA , that
obtained by deleting the first two columns of A . Then, A.k/ denotes the k�k

upper left-hand submatrix of a matrix A . Also, Pff�.k/;:::;kg.A/ denotes the
Pfaffian of the skew-symmetric submatrix of A consisting of the consecutive
rows and columns �.k/; : : : ; k , where �.k/D1; 2 with �.k/�kC1 mod 2 .

Remark 4.2 We may interleave the towers of general matrices so that Mm�1;m�1 �

Mm�1;m�Mm;m . Then, the successive generalized determinantal varieties are defined
by det. yA.m�1// and then det.A/.

4.1 Free divisors arising from restrictions of block representations

In addition to the free divisors arising from the representations in Table 1, we shall also
use certain auxiliary free divisors arising from the restriction of representations. These
are given in [10, Section 9].

For Sym3 we use coordinates given by

AD

0@a b c

b d e

c e f

1A :
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We define Qf D det.Af / and Qa D det.Aa/ where Af and Aa are obtained from A

by setting f D 0, respectively, aD 0. Interchanging the first and third coordinates in
C3 will interchange Qf and Qa so any result for Qf will have an analogous result
for Qa . We let Va denote the subspace where aD 0 and Vf , where f D 0. Then, we
can summarize the appropriate results from [10, Propositions 9.1 and 9.5].

Proposition 4.3 The subvarieties of Va defined by b � d �Qa D 0 and of Vf defined
by .ad � b2/ �Qf D 0 are linear free divisors.

Hence, by Proposition 4.3, V .Qa/ has a free completion using the free divisor V .bd/,
and we may complete V .Qf / to a free divisor using Dsy

2
D V .ad � b2/. Although

Dsy
2

is not a free divisor, it has a free completion Esy
2

.

4.2 A quiver linear free divisor

A third special case of linear free divisors needed for our calculations occurs for
the special case of 2� 3 matrices. Buchweitz and Mond [2] proved that quivers of
finite type give rise to free divisors. The quiver consisting of 3 arrows from vertices
(representing C ) to a central vertex (representing C2 ) corresponds to the representation
of .GL2.C/� .C

�/3/=C� on M2;3 . If we use coordinates on M2;3 given by
�

a
d

b
e

c
f

�
,

then the corresponding free divisor is defined by .ae� bd/.af � cd/.bf � ce/D 0.

4.3 Linear free divisors which are H–holonomic

Theorem 3.1 allows us to compute �V.f0/ provided V is an H–holonomic free divisor.
In this section we give two results establishing that free divisors are H–holonomic;
one applies to towers of linear free divisors, and the other, to arbitrary low-dimensional
linear free divisors.

H–holonomic free divisors which appear in towers Let E be a free divisor arising
as the exceptional orbit variety of a representation G! GL.W /, which itself is one
step of a tower of representations as defined in Part I [10]. For example, E could be
any of the hypersurfaces in the following theorem, which is proven in detail in [31,
Section 6.3] using the technique we will describe.

Theorem 4.4 [31, Theorem 6.2.2] The linear free divisors Esy
m , Em and Em�1;m

listed in Table 2 are H–holonomic.
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Outline of Proof We outline what is a fairly lengthy argument which is proven in
detail in [31, Section 6.3]. Readers are encouraged to refer there for the full details.

First, it is proven that there are only a finite number of orbits of G in W by classifying
them, giving normal forms for representatives of each orbit. The tower structure makes
this step significantly easier, because the classification at a lower level of the tower
can be combined with the inclusion of the group action and vector spaces to put an
arbitrary w 2W into a “partial normal form” g1 �w (for example, a certain submatrix
of g1 �w contains only zeros and ones in a certain pattern). Then, another element of
G is applied to put g1 �w into a normal form. As the resulting list of normal forms is
finite, there are a finite number of G–orbits in W (and thus in the exceptional orbit
variety E ), and so E is holonomic.

Second, we let GH � G be the connected codimension-1 Lie subgroup whose Lie
algebra of vector fields generates Derlog.H /. To show E is H–holonomic, it is
sufficient to prove that GH acts transitively on all nonopen G–orbits (or, the G–orbits
in E are the GH–orbits in E ). Thus we consider each normal form n (representing
a nonopen orbit) with an arbitrary g 2G, and show that there exists an h 2G in the
isotropy subgroup of n with hg 2GH . Thus, if nDg �v then nDhg �v with hg 2GH .
It follows that G � nDGH � n.

H–holonomic free divisors in small dimensions Since we use other linear free
divisors described above, we also provide the following sufficient condition for a
hypersurface to be H–holonomic. In low dimensions, the criterion can be checked by
a computer using a computer algebra system such as Macaulay2 or Singular.

Let V; 0�Cn; 0 be a reduced hypersurface with good defining equation H. Let M

be an OCn;0 –module of vector fields on Cn; 0. We let for z 2Cn ,

hM i.z/ D f�.z/ j � 2M g

be the linear subspace of TzCn . The logarithmic and H–logarithmic tangent spaces
are defined to be

TlogVz D hDerlog.V /i.z/ and TlogHz D hDerlog.H /i.z/:

For 0� k � n, define the varieties Dk D fz 2 V j dim.TlogVz/� kg and Hk D fz 2

V j dim.TlogHz/� kg.

Proposition 4.5 With the preceding notation, if, for all 0� k < n,
(1) all irreducible components of .Dk ; 0/ have dimension � k at 0 and

(2) .Dk ; 0/D .Hk ; 0/ as germs

then .V; 0/ is H–holonomic.
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Proof For z 2 V , let Sz denote the stratum of the canonical Whitney stratification
of V containing z . Then, V is holonomic if and only if TlogVz D TzSz for all z 2 V ,
and it is H–holonomic if and only if TlogHz D TzSz for all z 2 V .

First, we observe that the conditions imply V is holonomic for if not, then there is a
stratum S of highest dimension, say k , on which it fails. Then, there is a Zariski open
set U of S consisting of those z 2 S with TlogVz ¨ TzSz . Then, U � Dk�1 , and
dim Dk�1 � k , contradicting (1). A similar argument using TlogHz shows if V is not
H–holonomic, then dim Dk�1 � k , contradicting (2) given that (1) holds.

Computer algebra systems such as Macaulay2 and Singular have built-in functions to
perform each of the steps necessary to use Proposition 4.5 to show that a hypersurface is
H–holonomic, including: finding generators of Derlog.V / and Derlog.H / (as certain
syzygies), determining the ideals defining each Dk and Hk , computing the radicals and
primary decompositions of these ideals, computing the dimensions of the irreducible
components of Dk and testing pairs of ideals for equality.

Remark 4.6 In particular, the linear free divisors in Proposition 4.3 and the quiver
linear free divisor in M2;3 are H–holonomic.

When we assert that a hypersurface is an H–holonomic free divisor and give no refer-
ence, it will be understood that we have used an implementation [30] of this approach
in Macaulay2 [17] to check Saito’s criterion and the conditions of Proposition 4.5.

5 A metatheorem and generic reduction

In this section we introduce two ideas which both extend and simplify the formulas for
singular Milnor numbers which we will obtain.

5.1 Metatheorem

The results on matrix singularities for f0W C
n; 0!M; 0 can be extended to the case of

matrix singularities on an ICIS X. In fact given a formula (0-2) for �V , the following
metatheorem asserts that there is a corresponding formula for the singular Milnor
number of f0jX; 0!M; 0.

Metatheorem 5.1 If X is an ICIS defined by 'W Cn; 0! Cp; 0, and the formula
(0-2) for �V is obtained by the inductive procedure, then the same procedure also yields
the formula (with the same coefficients ai )

(5-1) �';V D
X

i

ai�';Wi
;
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where �';V.f0/, respectively �';Wi
.f0/, are the singular Milnor numbers for f0jX

as nonlinear sections of V , resp. Wi , and can be computed as lengths of determinantal
modules.

Likewise, if instead we have a formula for the vanishing Euler characteristic z�V having
the same form as in (0-2)

(5-2) z�V D

X
i

bi�Wi

and obtained by the inductive process, then there is an analogous formula

(5-3) z�';V D .�1/p
�X

i

bi�';Wi

�
:

Proof This result follows because at each inductive step, the decomposition into the
associated varieties will be the same. Then, in place of using the formulas in Lemma 3.7
and Theorem 3.1 for germs f0 on Cn , we use the versions of Lemma 3.7 for f0jX

on an ICIS X and Theorem 3.3. Also, for a variety in M defined by .g1; : : : ;gr /, in
place of �g1;:::;gr

.f0/ we use �.g1;:::;gr /ı�..'; f0//, with � W CrCp!Cr denoting
the projection. This we denote by �';g1;:::;gr

.f0/. This can be seen by observing
that in terms of singular vanishing Euler characteristics, we repeatedly use (3-3) from
Lemma 3.7. However, for f0jX we repeatedly use instead (3-5). Thus, the formulas
in terms of singular vanishing Euler characteristics will have the same form. However,
in writing the formulas in terms of singular Milnor numbers, z�Wi

D .�1/n�k�Wi
,

where k is the codimension of Wi ; while z�';Wi
D .�1/n�p�k�';Wi

. Since the extra
factor of .�1/p will occur for every term on each side, it will cancel yielding (5-1).
However, for z�';V versus z�V , there is an extra factor of .�1/p for each term on the
RHS, resulting in the desired formula (5-3).

5.2 Generic reduction

Given a matrix singularity defined by f0 , we may apply an element g of the group G

which acts on the space of matrices M to obtain f1 D g �f0 which is KM–equivalent
to f0 and has the same singular Milnor number. By Remark 1.4 we can apply g so
that f1 is transverse to the associated varieties, allowing us to compute �D.f0/ using
formulas of the form (0-2). However, we can do more and this leads to the idea of
generic reduction.

We can simplify the form which the formulas take if we can choose f1 so as many of
the terms in (0-2) vanish. We can achieve this by considering df0.0/ and the effect of
applying g to it to obtain df1.0/.
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Given Wi ; 0, we choose Mi � M as the linear subspace of minimal dimension
containing Wi . We also represent Wi ; 0 as the pullback of a divisor by the projection
�i W Mi!Cmi , for minimal mi . Then, the defining dimension of Wi is codimMiCmi ,
and the defining codimension of Wi is dim Mi �mi . We then let �` denote the sum
of the terms in (0-2) for the Wi of defining codimension `. Then, by generic reduction
we mean that an element g of G is applied so that df1.0/ projects submersively onto
each M= ker.�i/ for those Wi of defining codimension � codim.Im.df1.0///. Then,
all of the terms �`.f1/ will be 0 for `� codim.Im.df1.0///.

In certain cases, the classification of linear matrix singularities may prevent us from
obtaining an f1 with the full generic reduction; however, we will still apply g to
obtain as many terms vanishing as possible. The results obtained in the later sections
will indicate how generic reduction simplifies the formulas. In Section 11 we deduce
specific consequences of generic reduction for all of the matrix types for generic
corank-1 matrix mappings and for the computations for Cohen–Macaulay singularities.

6 Symmetric matrix singularities

By the results of [10] summarized in Section 4, the exceptional orbit variety Esy
m of the

representation of Bm on Symm is a linear free divisor and the determinantal variety
Dsy

m has a free completion given by

(6-1) Esy
m D �

�Esy
m�1
[Dsy

m

for the projection � W Symm! Symm�1 .

Furthermore, by Theorem 4.4, Esy
m is H–holonomic; hence by Theorem 3.1, for a

nonlinear section f0W C
n; 0! Symm , transverse to Esy

m off 0, the singular Milnor
number �Esy

m
is the length of the determinantal module

NKH ;e .f0/'NK zBm;e
.f0/;

where zBm is the subgroup of Bm which preserves the defining equation H of Esy
m .

The corresponding Lie algebra of representation vector fields is Derlog.H /.

Hence, by Lemma 3.7 and (6-1), we have quite generally

(6-2) �Dsy
m
D �Esy

m
��Esy

m�1
C .�1/n�1

z���Esy

m�1
\Dsy

m
:

Thus, we are reduced to inductively computing z���Esy

m�1
\Dsy

m
. We note that the simplest

case of Dsy
1
D f0g � Sym1 ' C just yields isolated hypersurface singularities and

�Dsy

1
D � when applied to f0W C

n; 0! Sym1; 0'C; 0. We have already carried out
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the calculation for 2� 2 symmetric matrices in Section 1 which leads to the following
theorem.

Theorem 6.1 For the space of germs transverse to the associated varieties for Esy
2

off 0,

(6-3) �Dsy

2
D �Esy

2
� .�aC�a;b/;

where �Esy

2
D K zB2;e

–codim and �aC�a;b is the length of a determinantal module
by the Lê–Greuel formula (Theorem 1.2).

By Metatheorem 5.1 there is an analog of (6-3) for the Milnor number �';Dsy

2
on the

ICIS X D '�1.0/ defined by 'W Cn; 0!Cp; 0.

Proof We have already obtained (6-3), and the metaversion follows from the metathe-
orem.

We observe that for germs f0W C
2; 0 ! Sym2; 0 transverse to Dsy

2
off 0, det ıf0

defines an isolated hypersurface singularity with Milnor number

�.det ıf0/D dimOC2;0=Jac.det ıf0/:

The Milnor fiber of det ıf0 equals the singular Milnor fiber of f0 , and hence the
Milnor number and singular Milnor number agree. For n> 3 and f0W C

n; 0!Sym2; 0

(transverse to Dsy
2

off 0), det ıf0 no longer has an isolated singularity; however, the
singular Milnor number is still defined.

We consider the case where f0 has rank � 1. We may apply a matrix transformation
on Sym2 so that df0.0/ has nonzero upper-left entry. Furthermore, we may assume
that under the transformation, f0 is transverse off zero to the line aD b D 0, so the
composition of f0 with projection onto the .a; b/–subspace has an isolated singularity
at 0. Thus, after applying the transformation, we may apply a change of coordinates in
Cn; 0 so that for y D .y1; : : : ;yn�1/, f0 has the form

(6-4) f0.x;y/D

�
x g.x;y/

g.x;y/ h.x;y/

�
:

In the case that g is weighted homogeneous we can collapse (6-3) to yield a Jacobian-
type formula for the singular Milnor number. We let g be weighted homogeneous
of weighted degree ` for the weights wt.x;y1; : : : ;yn�1/D .a0; a1; : : : ; an�1/ and
Euler vector field e D a0x@=@xC

P
aiyi@=@yi .
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Corollary 6.2 (Jacobian formula) If n� 2 and f0W C
n; 0! Sym2; 0 has the form

(6-4) with g weighted homogeneous (and is transverse to the associated varieties off 0),
then

(6-5) �Dsy

2
.f0/D dimC

�
OCn;0=.eJac.det ıf0/C Jac.f0//

�
;

where Jac.f0/ is the ideal generated by the 3� 3 minors of df0 and eJac.det ıf0/ is a
modified Jacobian ideal where @.det ıf0/=@x is replaced by .2`Ca0/@.det ıf0/=@xC

ı.h/ for ı.h/D .2`� a0/h� e.h/. If det ıf0 is weighted homogeneous (for the same
weights as g ), then (ı.h/D 0 and) eJac.det ıf0/D Jac.det ıf0/.

Remark 6.3 In the previous corollary, if nD 2 then there are no 3� 3 minors, so the
formula reduces to dimC.OCn;0=.eJac.det ıf0///. If det ıf0 is weighted homogeneous
then this formula becomes Milnor’s formula. However, in general it differs from
Milnor’s formula by the addition of the term ı.h/ to .2`Ca0/@.det ıf0/=@x , although
the dimension does not change.

In fact, since we are only computing dimensions, we suspect that the formula should
be correct with Jac.det ıf0/ in place of eJac.det ıf0/, without requiring weighted
homogeneity, but the proof we have so far found does not permit it.

Proof of Corollary 6.2 By assumption .x;y/ 7! .x;g.x;y// has an isolated singu-
larity at 0. Hence, if g0.y/ D g.0;y/, then g0 has an isolated singularity at 0 and
�a.f0/C �a;b.f0/ D �.g0/. By Theorem 3.1, �Esy

2
.f0/ D dimC NKH ;ef0 . We

will show that there is a surjective projection NKH ;ef0 ! OCn�1;0=Jac.g0/ with
kernel the vector space in the RHS of (6-5). Then, by Theorem 6.1 and the above
remark, the result follows.

For H the defining equation for Esy
2

, Derlog.H / is generated by

�1 D a
@

@b
C 2b

@

@c
and �2 D 2a

@

@a
� b

@

@b
� 4c

@

@c
:

Then, if instead we write f0.x;y/D .x;g.x;y/; h.x;y//, we obtain these generators
for TKH ;ef0 as an OCn;0 –module:

@f0

@x
D .1;gx; hx/;

@f0

@yi
D .0;gyi

; hyi
/;

�1 ıf0 D .0;x; 2g/; �2 ıf0 D .2x;�g;�4h/:

We may choose generators for �.f0/: "01D .1;gx; hx/, "2D .0; 1; 0/ and "3D .0; 0; 1/.
By the above, "0

1
2 TKH ;ef0 ; hence the projection of �.f0/ to OCn;0f"2; "3g maps
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TKH ;ef0 onto LDOCn;0f�1; �2; �i ; 1� i � n� 1g with kernel OCn;0f"
0
1
g, where

�1 D .x; 2g/; �2 D .�g� 2xgx;�4h� 2xhx/ and �i D .gyi
; hyi

/:

Thus, NKH ;ef0 is mapped isomorphically to OCn;0f"2; "3g=L.

Next, we want to further project OCn;0f"2; "3g onto OCn;0f"2g. First, by the weighted
homogeneity of g , we replace �2 by

�02 D `�2C 2`gx�1C a0gx�1C

N�1X
iD1

aiyi�i

D

�
0;�.2`C a0/

@.xh�g2/

@x
�

�
.2`� a0/h� a0x

@h

@x
�

N�1X
iD1

aiyi
@h

@yi

��
D

�
0;�.2`C a0/

@.xh�g2/

@x
� ı.h/

�
;

where the last two equalities hold by expanding and rearranging terms using the
Euler relation for g . Under the projection onto OCn;0f"2g, �02 7! 0, so L maps to
OCn;0fx;gyi

; i D 1; : : : ; n� 1g. Thus

OCn;0f"2; "3g=L!OCn;0=.x;gyi
; i D 1; : : : ; n� 1/'OCn�1;0=Jac.g0/

is a surjective homomorphism onto the Jacobian algebra of g0 , which has length
�.g0/.

Hence, it is enough to show that the kernel of this projection has the required form.
Since fx;gyi

; i D 1; : : : ; n�1g is a regular sequence, the only relations between these
elements are the trivial ones. Thus, the kernel of the projection is generated by

(6-6)

�
0; .2`C a0/

@.xh�g2/

@x
C ı.h/

�
;

�
0;xhyi

� 2ggyi

�
1� i � n� 1;�

0;gyi
hyj
�gyj

hyi

�
1� i; j � n� 1:

Then, det ıf0 D xh�g2 and, provided n� 3, the 3� 3 minors of df0 are the 2� 2

determinants gyi
hyj
�gyj

hyi
. Thus, under the isomorphism OCn;0f"3g 'OCn;0 , the

generators in (6-6) are mapped to the the generators of eJac.det ıf0/C Jac.df0/. Thus,
the kernel of the projection is isomorphic to the RHS of (6-5).

Lastly, we note that if det ıf0 is weighted homogeneous for the same weights as g ,
then wt.h/D 2`� a0 . Thus, by Euler’s formula ı.h/D 0.

As a second application of Theorem 6.1, in Section 11 we will obtain a “�D � ”–type
formula for generic corank-1 maps defining 2� 2 symmetric matrix singularities.
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6.1 3� 3 symmetric matrices

Next, we consider �Dsy

3
and use coordinates for Sym3 given by

AD

0@a b c

b d e

c e f

1A :
By our earlier discussion, Dsy

3
�Sym3 has a free completion Esy

3
D��Esy

2
[Dsy

3
, with

Esy
3

defined by a .ad � b2/ � det.A/D 0. Then, by (6-2), it is sufficient to determine
z���Esy

2
\Dsy

3
. To apply the inductive procedure, we will use the auxiliary linear free

divisors given by Proposition 4.3 (which arise from subgroups of B3 ). We obtain the
following formulas for singular Milnor numbers.

Proposition 6.4 On the space of germs transverse off 0 to the associated varieties for
V .Qa/,

(6-7) �Qa
D �bd �Qa

� .�d;bc.bf�2ce/C�d /C .�d;c;bf C�d;c/� .�b;cd C�b/:

There is an analogous formula for �Qf
obtained from (6-7) by composing f0 with the

permutation .a; b; c; d; e; f / 7! .f; e; c; d; b; a/.

By Metatheorem 5.1, there is an analog of (6-7) for the Milnor number �';Qa
on the

ICIS X D '�1.0/ defined by 'W Cn; 0!Cp; 0.

Remark 6.5 The RHS of (6-7) is computed as the alternating sum of lengths of four
determinantal modules using Theorems 3.1 and 3.3. By Proposition 4.3 and Remark 4.6,
V .b �d �Qa/ is an H–holonomic linear free divisor and V .bc.bf �2ce//, after changing
coordinates ED 2e , is an H–holonomic linear free divisor for the 2�2 general matrix�

b c
E f

�
.

Proof of Proposition 6.4 As V .b � d �Qa/ is an H–holonomic linear free divisor,
V .Qa/ has a free completion, so we may apply Lemma 3.7 to obtain

(6-8) �Qa
D �bd �Qa

��bd C .�1/n�1
z�bd;Qa

:

Then, it is sufficient to compute z�bd;Qa
. Then,

V .bd;Qa/D V .b;Qa/[V .d;Qa/D V .b; cd/[V .d; b.bf � 2ce//:

Also, V .b; cd/\V .d; b.bf �2ce//DV .b; d/. Hence, applying Lemma 3.7, we obtain

(6-9) z�bd;Qa
D .�1/n�2

�
�b;cd C�d;b.bf�2ce/��b;d

�
:
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Now, V .bc.bf �2ce// is a linear free divisor for the 2�2 general matrices. Thus, by
the metaversion of Lemma 3.7

(6-10) �d;b.bf�2ce/ D �d;bc.bf�2ce/��d;c ��d;c;bf :

Substituting (6-10) and (6-9) into (6-8) and replacing

�bd ��b;d D �bC�d

yields (6-7).

Then, Esy
3

and Dsy
2
[V .Qf / are H–holonomic free divisors by Theorem 4.4, respec-

tively Proposition 4.3 and Remark 4.6. Thus, using the formula given in Proposition 6.4,
we may compute the singular Milnor number �Dsy

3
using the following theorem.

Theorem 6.6 For the space of germs transverse to the associated varieties for Esy
3

off
0, the singular Milnor number can be computed by

(6-11) �Dsy

3
D �Esy

3
��Dsy

2
[Qf
C�Qf

�
�
.�a;Qa

C�a/C .�a;b;c�d C�a;b/
�
;

where �Esy

3
DK zB3;e–codim, where zB3 is the subgroup of B3 preserving the defining

equation for Esy
3

.

By Metatheorem 5.1, there is an analog of (6-11) for the Milnor number �';Dsy

3
on the

ICIS X D '�1.0/ defined by 'W Cn; 0!Cp; 0.

Remark 6.7 In the RHS of (6-11), the first two terms are lengths of determinantal
modules, �Qf

is computed by Proposition 6.4, and of the last two groups of pairs of
terms, the first pair is computed using the metaversion of (6-7) and Theorem 3.3, and
the second is the length of a determinantal module by Theorem 3.3.

Proof of Theorem 6.6 We may apply Lemma 3.7 to (6-1) to obtain

(6-12) �Dsy

3
D �Esy

3
��Esy

2
C .�1/n�1

z���Esy

2
\Dsy

3

provided we can compute z���Esy

2
\Dsy

3
. Then, as Esy

2
is defined by a.ad � b2/D 0,

(6-13) ��Esy
2
\Dsy

3
D .V .a/\Dsy

3
/[ .V .ad � b2/\Dsy

3
/

D V .a;Qa/[V .ad � b2;Qf /:

Also, V .a;Qa/\ V .ad � b2;Qf / D V .a; b; c � d/. Thus, applying Lemma 3.7, we
obtain

(6-14) z���Esy

2
\Dsy

3
D z�a;Qa

C z�ad�b2;Qf
� z�a;b;c�d :
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Also, by Lemma 3.7

(6-15) �Qf
D �.ad�b2/�Qf

��ad�b2 C .�1/n�1
z�ad�b2;Qf

:

Then, for (6-12), we can use (6-15) to substitute for z�ad�b2;Qf
in (6-14). Next we evalu-

ate the vanishing singular Euler characteristics in terms of singular Milnor numbers; for
example, z�a;Qa

D .�1/n�2�a;Qa
, z�a;b;c�d D .�1/n�3�a;b;c�d and V .ad�b2/DDsy

2

so V ..ad � b2/ �Qf /DDsy
2
[V .Qf /. Lastly, by Theorem 6.1 we replace

(6-16) �Esy

2
��ad�b2 D �aC�a;b :

This yields (6-11).

In Section 11 we will also obtain a “�D � ”–type formula for generic corank-1 maps
defining 3� 3 symmetric matrix singularities.

7 General matrix singularities

By the results [10, Theorem 7.1] for general matrices, summarized in Section 4, together
with Theorem 4.4, both Em in Mm;m and Em�1;m in Mm�1;m are H–holonomic linear
free divisors. Moreover, the determinant variety Dm in Mm;m and the generalized de-
terminant variety Dm�1;m in Mm�1;m , which has defining equation det. yA.m�1//D 0,
have free completions given by

(7-1)
Em D �

�Em�1;m[Dm;

Em�1;m D �
0 �Em�1[Dm�1;m

for the projections � W Mm;m!Mm�1;m and � 0W Mm�1;m!Mm�1;m�1 .

We first use these free completions to compute the singular Milnor number �D2
for

D2 �M2;2 .

7.1 2� 2 matrices

We use coordinates
�

a
c

b
d

�
on M2;2 and consider the modified Cholesky-type repre-

sentation. Then, by [10, Theorem 7.1], the exceptional orbit variety E2 is defined by
a b � .ad � bc/D 0. We then have the following:

Theorem 7.1 On the space of germs transverse off 0 to the associated varieties for E2 ,

(7-2) �D2
D �E2

�
�
.�aC�a;cb/C .�bC�b;ad /

�
:
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Here �E2
DK zG2;e

–codim where zG2 is the subgroup of B2�C2 preserving the defining
equation a b � .ad � bc/ D 0. By Metatheorem 5.1, there is an analog of (7-2) for
singular Milnor number �';D2

on an ICIS X D '�1.0/ defined by 'W Cn; 0!Cp; 0.

Remark 7.2 Each pair �aC�a;cb and �b C�b;ad is computed as the length of a
determinantal module by Theorem 3.3.

As a corollary of the proof we obtain the following which will be used in the calculations
for the skew-symmetric case.

Corollary 7.3 With the assumptions of Theorem 7.1,

�a.ad�bc/ D �E2
� .�bC�b;ad /;(7-3)

�ad .ad�bc/ D �E2
C
�
.�d C�d;abc/� .�bC�b;ad /

�
:(7-4)

There are also corresponding metaversions of these formulas.

Proof of Theorem 7.1 and Corollary 7.3 First, D2 has the H–holonomic free com-
pletion E2 defined by ab � .ad � bc/. Thus,

(7-5) �D2
D �E2

��abC .�1/n�1
z�ab;.ad�bc/:

Since V .ab; ad �bc/D V .a; bc/[V .b; ad/ with V .a; bc/\V .b; ad/D V .a; b/, by
Lemma 3.7

(7-6) z�ab;.ad�bc/ D .�1/n�2.�a;bc C�b;ad ��a;b/:

Then, substituting (7-6) into (7-5) and replacing

�ab ��a;b D �aC�b

yields (7-2).

For Corollary 7.3, the argument for (7-3) is similar using instead that E2 is a free
completion of V .a.ad � bc//. While for (7-4) we use

V .ad.ad�bc//DV .a.ad�bc//[V .d/ with V .a.ad�bc//\V .d/DV .d; abc/:

By Lemma 3.7

(7-7) �ad.ad�bc/ D �a.ad�bc/C�d C�d;abc

and then we substitute (7-3) for �a.ad�bc/ .

As for symmetric matrices, we deduce in Section 11 a “� D � ”–type formula for
generic corank-1 germs for 2� 2 general matrices.
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7.2 2� 3 matrices

We use coordinates
�

a
d

b
e

c
f

�
on M2;3 and consider the modified Cholesky-type rep-

resentation. Again by [10, Theorem 7.1], the exceptional orbit variety E2;3 is a free
divisor and is defined by ab � .ae� bd/ � .bf � ce/D 0.

We use this free divisor to compute �V where V D V ..ae � bd/ � .bf � ce//. To
simplify notation, we let Vj denote the subvariety of M2;3 defined by the determinant
of the submatrix obtained by deleting the j th column. Also, we denote the union
Vi [Vj by Vi j . Then, V ..ae�bd/ � .bf � ce//D V1 3 . Once we have computed �V

for V D V1 3 , then we may compute �V for V D Vi j by permuting the coordinates
corresponding to the permutation of the columns sending .1; 3/ to .i; j /.

Theorem 7.4 For the space of germs transverse to the associated varieties for E2;3

off 0,

(7-8) �V1 3
D �E2;3

� .�a;bde.bf�ce/C�a/C .�a;e;bdf C�a;e/� .�b;aceC�b/:

Here �E2;3
DK zG3;e

–codim where zG3 is the subgroup of B2�C3 which preserves the
defining equation ab � .ae� bd/ � .bf � ce/D 0.

By Metatheorem 5.1, there is an analog of (7-8) for singular Milnor number �';V1 3
on

the ICIS X D '�1.0/ defined by 'W Cn; 0!Cp; 0.

Remark 7.5 The first term on the RHS of (7-8) can be computed using Theorem 3.1,
while the grouped terms can be computed using Theorem 3.3 for AFDs on an ICIS.
Thus, the RHS of (7-8) is computed as the alternating sum of the lengths of four
determinantal modules.

We can obtain the corresponding formulas for �V1 2
, resp. �V2 3

by applying (7-8)
after first composing f0 with the permutation .a; b; c; d; e; f / 7! .a; c; b; d; f; e/,
respectively, .a; b; c; d; e; f / 7! .b; a; c; e; d; f /.

Proof of Theorem 7.4 Consider first that V ..ae � bd/.bf � ce// has as a free
completion E2;3 D V .ab.ae� bd/.bf � ce//. By Lemma 3.7,

(7-9) �V1 3
D �E2;3

��abC .�1/n�1
z�ab;.ae�bd/.bf�ce/:

Since

V .ab; .ae� bd/.bf � ce//D V .a; bd.bf � ce//[V .b; ace/;

V .a; bd.bf � ce//\V .b; ace/D V .a; b/
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we have by Lemma 3.7 (by evaluating the z� as singular Milnor numbers),

(7-10) z�ab;.ae�bd/.bf�ce/ D .�1/n�2
�
�a;bd.bf�ce/C�b;ace ��a;b

�
:

Then, V .bd.bf � ce// has a free completion V .ebd.bf � ce//. Thus by the metaver-
sion of Lemma 3.7,

(7-11) �a;bd.bf�ce/ D �a;bde.bf�ce/��a;e ��a;e;bdf :

Then, by substituting (7-11) for �a;bd.bf�ce/ into (7-10), then substituting the resulting
expression into (7-9), and lastly replacing

�ab ��a;b D �aC�b

we obtain the result.

Remark 7.6 We have also obtained a formula for 3� 3 general matrix singularities;
however, we are not including it in this paper.

8 Vanishing topology for 2�3 Cohen–Macaulay singularities
in Cn

In this section we apply the preceding results in reverse to obtain a formula for the
singular vanishing Euler characteristic for Cohen–Macaulay singularities in Cn defined
by 2�3 matrices. These are given as V0D f

�1
0
.V/, where V is the variety of singular

matrices of rank � 1 in M2;3 and f0W C
n; 0 ! M2;3; 0 is transverse to V off 0.

We then apply this formula in several different ways. First, if n D 4; 5 or 6, then
V0 will be an isolated surface, resp. 3–fold, resp. 4–fold, singularity. In the case of
nD 4, we obtain a formula for the Milnor number for isolated 2� 3 Cohen–Macaulay
surface singularities as the sum of lengths of determinantal modules. Furthermore in
the case of the 2� 3 Cohen–Macaulay 3–fold singularities, we obtain a formula for
the difference of the second and third Betti numbers b3� b2 of the Milnor fiber. We
furthermore deduce bounds on these Betti numbers. In Section 11, we shall implement
these formulas using the results of Section 7, with a software package developed for
Macaulay2, to compute the Milnor number for simple 2� 3 Cohen–Macaulay surface
singularities and b3� b2 for 3–fold singularities.

In addition, if we consider instead 2� 3 Cohen–Macaulay singularities on an ICIS X

defined by ' , then we obtain analogous results in each case using the corresponding
metaversions of the results. Finally, we also use these results to obtain formulas for
the Milnor numbers of functions defining ICIS on isolated 2� 3 Cohen–Macaulay
singularities.
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8.1 Singular vanishing Euler characteristic for nonisolated 2� 3 Cohen–
Macaulay singularities in Cn

Let M2;3 denote the space of 2�3 matrices with V the variety of singular matrices of
rank � 1. Consider f0W C

n; 0!M2;3; 0. Because V is not a complete intersection, f0

does not have a singular Milnor number �V.f0/. However, we can use Proposition 3.8
to compute z�V.f0/.

Theorem 8.1 For a germ f0W C
n; 0!M2;3; 0 which is transverse to the associated

varieties off 0, let V0Df
�1

0
.V/ be the nonisolated Cohen–Macaulay singularity. Then,

the singular vanishing Euler characteristic is computed by

(8-1) z�V.f0/D .�1/n�1

�
�V1 2 3

.f0/�
X

�Vi j
.f0/C

3X
iD1

�Vi
.f0/

�
;

where the first sum is over fi; j g D f1; 2g; f1; 3g; f2; 3g and V1 2 3 D V1[V2[V3 .

By Metatheorem 5.1 there is an analog of (8-1) for vanishing Euler characteristic z�';D2

on the ICIS X D '�1.0/ defined by 'W Cn; 0!Cp; 0.

Remark 8.2 Here we are using the notation of Section 7. The �Vi j
are computed

by Theorem 7.4, and the �Vi
are computed by Theorem 7.1. Also, as explained in

Section 4, the variety V1 2 3 is an H–holonomic linear free divisor corresponding to a
quiver representation by Buchweitz–Mond [2]. Hence, �V1 2 3

can be computed as the
length of a determinantal module by Theorem 3.1.

As we will see in Section 11, we can frequently apply generic reduction by applying an
element of GL2.C/�GL3.C/ to f0 so that, depending on rank of df0.0/, the terms
in (8-1) either vanish or their computation considerably simplifies.

8.2 Milnor numbers for isolated 2�3 Cohen–Macaulay surface singular-
ities in C4

We now consider the special case of f0W C
4; 0!M2;3; 0 which is transverse to V

off 0. By the Hilbert–Burch theorem, V0 D f
�1

0
.V/ is an isolated Cohen–Macaulay

surface singularity. By results of Wahl [36] (in the weighted homogeneous case) and
Greuel–Steenbrink [20], its Milnor fiber has first Betti number b1 D 0. By convention,
the second Betti number is referred to as the Milnor number �.V0/.

In this case, the versal unfolding of V0 in the sense of algebraic geometry is obtained
by a deformation of the mapping f0 ; see Schaps [33]. Thus, what we call the singular
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Milnor fiber is actually the Milnor fiber of V0 since a stabilization of f0 will only
(transversely) intersect the smooth part of V . Hence, we may compute �.V0/D z�V.f0/.
By applying an element of GL2.C/ � GL3.C/ to f0 we may assume that f0 is
transverse to all of the associated varieties for each Vi and Vi j . Then, the preceding
results yield the following formula for �.V0/.

Theorem 8.3 For a germ f0W C
4; 0!M2;3; 0 which is transverse to the associated

varieties off 0, let V0 D f
�1

0
.V/ be the isolated Cohen–Macaulay surface singularity.

Then, the Milnor number is computed by

(8-2) �.V0/D
X

�Vi j
.f0/�

3X
iD1

�Vi
.f0/��V1 2 3

.f0/;

where the first sum is over fi; j g D f1; 2g; f1; 3g; f2; 3g. By Metatheorem 5.1, there is
an analog of (8-2) for the Milnor number �.V0/ on the ICIS X D '�1.0/ defined by
'W Cn; 0!Cn�4; 0.

All of Remark 8.2 applies equally well to Theorem 8.3.

8.3 Betti numbers of Milnor Fibers for isolated 2 � 3 Cohen–Macaulay
3–fold singularities in C5

We consider the case f0W C
5; 0 ! M2;3; 0 which is transverse to V off 0. Now

V0 D f
�1

0
.V/ is an isolated Cohen–Macaulay 3–fold singularity. A stabilization of f0

will miss the isolated singular point 0 2 V ; hence the singular Milnor fiber for f0 is
the Milnor fiber of V0 . Thus, the singular vanishing Euler characteristic of f0 is the
vanishing Euler characteristic of V0 . The results of Greuel–Steenbrink still apply; and
so the first Betti number b1.V0/D 0 (in fact, they show that the Milnor fiber of V0

is simply connected). Thus, z�V.f0/D b2.V0/� b3.V0/. Then, we may compute this
difference:

Theorem 8.4 For a germ f0W C
5; 0!M2;3; 0 which is transverse to the associated

varieties off 0, let V0 D f
�1

0
.V/ be the isolated Cohen–Macaulay 3–fold singularity.

Then,

(8-3) b3.V0/� b2.V0/D
X

�Vi j
.f0/�

3X
iD1

�Vi
.f0/��V1 2 3

.f0/;

where the first sum is over fi; j g D f1; 2g; f1; 3g; f2; 3g. By Metatheorem 5.1, there is
an analog of (8-3) for the difference b2.V0\X /�b3.V0\X / on the ICIS X D'�1.0/

defined by 'W Cn; 0!Cn�5; 0.
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There are analogous remarks as earlier regarding the computation of the RHS of (8-3).
Depending on the sign of the RHS of (8-3), it gives either a crude lower bound on
b2.V0/ if the RHS is positive, or on b3.V0/ if the RHS is negative.

8.4 Milnor numbers for isolated ICIS singularities on isolated 2� 3

Cohen–Macaulay singularities

As a final consequence of the metaversions of the preceding results, we consider V0 an
isolated Cohen–Macaulay surface or 3–fold singularity defined by f0W C

n; 0!M2;3; 0

for nD 4; 5. Also, let 'W Cn; 0!Cp; 0 be an ICIS germ defining X; 0�Cn; 0, with
p�dimV0 , and so that 'jV0 has an isolated singularity. We let X0D'

�1.0/\V0 and
consider the Milnor fiber Xt of 'jV0 . Then, X0 is again an isolated Cohen–Macaulay
(point, curve or surface) singularity. We can use the preceding results to compute the
Milnor number.

Corollary 8.5 In the preceding situation, the Milnor number of the restriction �.X0/

equals �';V.f0/, which can be computed using the meta-version of (8-1).

Proof We may construct stabilizations of f D .'; f0/W C
n; 0!Cp �M2;3 in two

different ways: either by stabilizing ' by 't so the Milnor fiber '�1
t .0/ intersects V0

transversely; or by stabilizing f0 (as a nonlinear section of V ) by ft so V t D f
�1
t .V/

intersects X transversely. As both of these are stabilizations of the same germ f as a
nonlinear section of f0g�V �Cp�M2;3 , the singular Milnor fibers are diffeomorphic,
and hence, they have the same Euler characteristic. Thus, for the first, we obtain the
Milnor number �.X0/. For the second, we have �';V.f0/, and the metaversion of
(8-1) allows us to compute it. This becomes the metaversion of either (8-2) or (8-3).

9 Skew-symmetric matrix singularities

We use the coordinates for Sk4 given by

A D

0BB@
0 a b c

�a 0 d e

�b �d 0 f

�c �e �f 0

1CCA :
The determinantal variety Dsk

4
has reduced defining equation the Pfaffian Pf.A/, which

we shall denote simply as Pf. Then, by [10, Theorem 8.1] and also [31, Theorem 5.2.21],
the nonlinear solvable Lie algebra L4 determines a free divisor Esk

4
, which is defined

by abd.be� dc/ � Pf.A/D 0. Also abd.be� dc/D 0 defines a free divisor E 0
2

(the
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product union of f0g � C defined by aD 0 with E2 for the 2� 2 upper right-hand
submatrix of A). Hence, the Pfaffian hypersurface Dsk

4
has a free completion by this

free divisor

Esk
4 D �

�E 02[Dsk
4 :

We denote ��E 0
2

simply by E 0
2

. We can also use this to give a free completion of
V ..be�dc/ �Pf.A//. We next use this free completion to compute the singular Milnor
number �Dsk

4
via the following theorem.

Theorem 9.1 For the space of germs transverse to the associated varieties for Esk
4

off
0, the singular Milnor number can be computed by

(9-1) �Dsk
4
D �Esk

4
��a;f;.be�cd/C�1C�2C�3;

where each �k is a sum of terms of defining codimension k and is given by

�1 D�
�
�b;cd .afCcd/C�d;be .af�be/C 2�a;.be�cd/C�f;.be�cd/

�
;

�2 D�
�
�be�cd C�a;b;c�d C�a;d;b�e

�
;

�3 D .�a;b;d C�b;d /��abd :

(9-2)

Here �Esk
4
D K zL4;e–codim, where zL4 , is the Lie subalgebra of L4 , preserving the

defining equation for Esk
4

.

By Metatheorem 5.1, there is an analog of (9-1) (and (9-2)) for the Milnor number
�';Dsk

4
on the ICIS X D '�1.0/ defined by 'W Cn; 0!Cp; 0.

Also, the terms in the �i can be computed using the metaversions of Theorem 7.1 and
Corollary 7.3.

Proof We first consider V ..be� cd/ �Pf/. By Lemma 3.7

(9-3) �Pf D �.be�cd/�Pf��be�cd C .�1/n�1
z�be�cd;Pf:

As Esk
4

as a free completion of V ..be� cd/ �Pf/, by Lemma 3.7

(9-4) �.be�cd/�Pf D �Esk
4
��abd C .�1/n�1

z�abd;.be�cd/�Pf:

Next, to compute z�be�cd;Pf we observe

V .be� cd;Pf/D V .be� cd; af /D V .a; be� cd/[V .f; be� cd/
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and V .a; be� cd/\V .f; be� cd/D V .a; f; be� cd/. Hence, by Lemma 3.7

z�be�cd;Pf D z�a;be�cd C z�f;be�cd � z�a;f;be�cd(9-5)

D .�1/n�2
�
�a;be�cd C�f;be�cd C�a;f;be�cd

�
:

Lastly, we consider z�abd;.be�cd/�Pf . Observe that

V .abd; .be� cd/ �Pf/D V .a; .be� cd//[V .b; cd.af C cd//[V .d; be.af � be//:

In addition,

V .a; .be� cd//\V .b; cd.af C cd//D V .a; b; cd/;

V .a; .be� cd//\V .d; be.af � be//D V .a; d; be/;

V .b; cd.af C cd//\V .d; be.af � be//D V .b; d/

(9-6)

and

(9-7) V .a; .be� cd//\V .b; cd.af C cd//\V .d; be.af � be//D V .a; b; d/:

Thus, since all of the terms on the RHS of (9-6) and (9-7) will define AFDs on ICIS,
we may apply (3-8) and evaluate each z� as a singular Milnor number to obtain

(9-8) z�abd;.be�cd/�Pf D .�1/n�2
�
�a;be�cd C�b;cd.afCcd/C�d;be.af�be/

�
� .�1/n�3

�
�a;b;cd C�a;d;be ��b;d

�
C .�1/n�3�a;b;d :

Finally, we substitute (9-8) into (9-4), and substitute the resulting (9-4) and (9-5) into
(9-3). After rearranging terms and simplifying coefficients we obtain (9-1).

Remark 9.2 Because there are several ways to give a free completion for Dsk
4

, there
are several variations on the formulas given in Theorem 9.1; see eg [31, Theorem 6.2.11].
We have given a version which is conceptually shortest in terms of having to compute
the fewest number of singular Milnor numbers in (9-1).

For generic corank-1 skew-symmetric matrix singularities, it will follow by generic
reduction that all of the �i for i > 0 in (9-1) vanish. In Section 11 we further compute
the two remaining terms and will obtain a “�D � ”–type result.

10 Higher multiplicities of linear free divisors

We will begin computing the general formulas in the special cases of mappings f0

within restricted classes with a goal of relating �D.f0/ for D a determinantal variety
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and � D KM;e–codim.f0/. For this we must first compute �E.f0/ for various H–
holonomic free divisors E and then apply the results of the previous sections.

We begin with the simplest case where f0 is a generic linear section. Then, we are
really computing the higher multiplicities for (H–holonomic) linear free divisors. We
recall that for a hypersurface (or more generally a complete intersection) V; 0�CN ; 0

we may define for 0 < k < N the k th higher multiplicity, denoted �k.V/, as the
singular Milnor number �V.i/ for a generic linear section iW Ck ; 0!CN ; 0. This is
analogous to the definition of Teissier’s [34] �� sequence for isolated hypersurface
singularities; also see Lê and Teissier [26]. To be consistent with our earlier notation,
if k < ` D codimV , then we let �k.V/

def
D.�1/k�`C1 . If V is a hypersurface then

�0.V/D 1.

Very surprisingly, in the case of H–holonomic linear free divisors, these higher multi-
plicities can be computed independent of the specific linear free divisor V .

Proposition 10.1 If V; 0�CN ; 0 is an H–holonomic linear free divisor, then

(10-1) �k.V/D
�

N � 1

k

�
; 0< k <N:

Hence, for any H–holonomic linear free divisor in CN , there is the duality relation

�k.V/D �N�1�k.V/; 0� k �N � 1:

Before proving the proposition, we point out as a consequence that any two H–
holonomic linear free divisors in CN will always have the same higher multiplicities.
Hence, it follows they all have a complex link which is a real homotopy .N �1/–sphere.

Example 10.2 There are three exceptional orbit varieties in M2;3 : that for the action
of the solvable group B2 �C3 given by modified Cholesky factorization; the “quiver
discriminant” arising from the reductive group .GL3 � .C

�/3/=C� for the quiver
representation just mentioned; and that for .C�/6 given by the coordinate hyperplane
arrangement. These are quite distinct H–holonomic linear free divisors in M2;3 .
However, by Proposition 10.1, the k th higher multiplicities for them all equal

�
5
k

�
.

We thus obtain the higher multiplicities for the linear free divisors listed in Table 2.

Proposition 10.3 For the free divisors in Table 2, the corresponding higher multiplici-
ties �k are given by Table 3.
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Free divisor Esy
m Em Em�1;m Esk

m

�k

�.mC1
2 /�1

k

� �
m2�1

k

� �
m2�m�1

k

�
�k

�
1.

m
2 /�.m�2/; 2; 2; : : : ; Œ .mC1/

2
�
�

Table 3: Higher multiplicities for the exceptional orbit varieties E for the
solvable group and solvable Lie algebra block representations in Table 1. See
Table 2.

In the table, �k denotes the k th elementary symmetric function, and 1` denotes 1 being
repeated ` times and 2; 2; : : : ; Œ.mC 1/=2� denotes the sequence of m� 3 integers
2; 2; 3; 3; : : : , truncated at Œ.mC 1/=2�.

Remark 10.4 We note that in the table Esy
3

, E2;3 and Esk
4

are linear free divisors
in C6 ; but Esk

4
will have different higher multiplicities because it is not a linear free

divisor. In fact the values �k.1
4; 2/ D 6; 14; 16; 9; 2 for k D 1; : : : ; 5 also do not

satisfy the duality property in Proposition 10.1. Surprisingly, the higher multiplicities
�k.D

sy
2
/, �k.D

sy
3
/, �k.D2/, and �k.Dsk

4
/ do satisfy the duality property. This

follows by the calculations in sections 6, 7 and 9. For Dsy
2

, D2 and Dsk
4

it also follows
because their defining equations have Morse singularities at 0, and the restrictions to
a generic section are again Morse singularities and their Milnor fiber is the singular
Milnor fiber of the generic section. Thus, all of the nonzero higher multiplicities equal
1. By contrast the higher multiplicities �k.D

sy
3
/D 1, 2, 4, 4, 2, 1 for k D 0; 1; : : : ; 5

still satisfy the duality property. This leads to:

Conjecture The higher multiplicities for the determinantal varieties Dsy
n and Dn

satisfy the duality property.

Because duality does not hold for Esk
4

, it suggests that the result for Dsk
4

may only be
a low dimension phenomenon.

Proof of Propositions 10.1 and 10.3 Both propositions are a consequence of the fact
that for all such free divisors V , the module NKV;e � i is (weighted) homogeneous in
the sense of [6]; hence by [6, Theorem 1] its length is given by a formula in terms of
its weights. This will yield the result.

The weighted homogeneous case for NKV;e �f0 , concerns f0W C
n; 0!CN ; 0 with

V a free divisor such that we can choose weights for Cn and CN so that: (i) both
f0 and V are weighted homogeneous for the same weights and (ii) the generators of
Derlog.H / may also be chosen to be weighted homogeneous for these weights. In
our cases, we use weights 0 for the coordinates of CN and 1 for the weights of the
coordinates xj for Cn . Then, as the section i is linear, @i=@xj has weight 0 and for
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linear free divisors, �j ıi has weight 1, while for Esk
m the last m�3 generators will have

weights 2; 2; 3; 3; : : : as in the statement. Then, by [6, Theorem 1], �k.E/D �E.i/
will equal �k.1; : : : ; 1/ with .N � 1/ 1’s (D

�
N�1

k

�
) for a linear free divisor E , or

�k.1; : : : ; 1; 2; 2; : : : ; Œ.mC 1/=2�/ with .
�
m
2

�
� .m� 2// 1’s in the case of E D Esk

m

(and N D
�
m
2

�
).

We use the preceding propositions in conjunction with two other properties of higher
multiplicities which follow from Proposition 3.4.

Proposition 10.5 Let V; 0�CN ; 0 be an H–holonomic free divisor.

(1) If V 0 D V �Cp; 0�CNCp; 0, then

�k.V 0/D �k.V/ for 0� k <N:

(2) If V 00; 0D V � f0g � CNCp; 0 is the image of V; 0 via the inclusion CN ; 0�

CNCp; 0 (so that V 00 is a free divisor in a linear subspace of CNCp), then

�k.V 00/D
�
�k�p.V/ if k � p;

.�1/p�k if k < p:

Proof For (1), we can choose a generic linear section iW Ck ; 0! CNCp of V 0 so
that � ı i is also a generic linear section of V and the result follows from (1) of
Proposition 3.4.

For (2), provided k � p , we may choose a generic linear section iW Ck ; 0!CNCp so
that i is transverse to Cp and if W D i�1.0/�CN then � ı i jW is a generic linear
section of V . Then, (2) follows by applying (2) of Proposition 3.4.

11 .�D � �/–type results for matrix singularities

In this section we consider the relation between � and � for singularities defined by f0 .
Here � will denote a singular Milnor number �V.f0/ or possibly the Milnor number
of a Cohen–Macaulay isolated surface singularity, and � will denote an appropriate
KH ;e–codimension of f0 . We will be concerned with how much � differs from
� or equivalently consider the difference  D � � �. We recall the results for an
ICIS X; 0 with � the usual Milnor number and � the Tjurina number (which is
also the Ke–codimension). Greuel [18] showed that � D � when X is weighted
homogeneous (also see Looijenga [27, Chapter 9]); and Looijenga–Steenbrink [28]
showed that �� � in general. Thus, for ICIS,  � 0. An analogous result was shown
to hold for the “discriminant Milnor number” in [9]. For matrix singularities, we
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consider what form such a result takes. We will show for matrix singularities which are
hypersurfaces defined by corank-1 mappings that  D 0. However, when we consider
Cohen–Macaulay singularities defined from 2�3 matrices there are some fundamental
changes which occur and  becomes positive.

11.1 Corank-1 mappings and .�D �/–type results

We begin by considering matrix singularities that are defined by corank-1 mappings
f0W C

n; 0!M; 0 of finite KM–codimension for various spaces of matrices M (with
dim M DN ). Here corank refers to the corank of df0.0/ and not that of the specific
matrices f0.x/.

As a prelude, we first consider germs f0W C
n; 0!CN ; 0 with n�N and V �CN

an H–holonomic linear free divisor. We consider such corank-1 mappings which are
generic, in the sense that W D df0.0/.C

n/ is a generic linear section of V . We choose
w0 …W . Then, by the inverse function theorem, we may change coordinates in Cn; 0

so that f0 has the form

f0.x;y/D

N�1X
iD1

xiwi Cg.x;y/w0;

where .x;y/D .x1; : : : ;xN�1;y1; : : : ;yn�NC1/, fw1; : : : wN�1g is a basis for W ,
and dg.0/D 0.

Then, W being generic means that f1.x/D
PN�1

iD1 xiwi is a generic linear section.
Hence, by Proposition 10.1 �V.f1/D �N�1.V/D 1. Then, let �1; : : : ; �N�1 be the
generators for Derlog.H / for H a good defining equation for V . In terms of the basis
fwig, we write �jDa.j/

0
w0C�

0
j . Then, the projection of OCN�1;0fw0; w1; : : : ; wN�1g

onto OCN�1;0fw0g 'OCN�1;0 along OCN�1;0fw1; : : : ; wN�1g induces an isomor-
phism

(11-1) NKH ;e �f1 'OCN�1;0=.a
.1/
0
ıf1; : : : ; a

.N�1/
0

ıf1/:

However, by Theorem 3.1 and the above, this has dimension 1. Hence, .a.1/
0
ı f1;

: : : ; a
.N�1/
0

ıf1/ provides a system of local coordinates for CN�1; 0.

For a H–holonomic linear free divisor V , germs which are transverse to V off 0 have
finite KH–codimension by Remark 3.2. Then, we may further apply a coordinate
change and using Mather’s Lemma to a homotopy from f0 to conclude that the generic
corank-1 germs of finite KH–codimension are KH–equivalent to a germ of the form

(11-2) f0.x;y/D

N�1X
iD1

xiwi Cg.y/w0
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with g.y/ defining an isolated singularity on Cn�NC1; 0. We can then compute the
singular Milnor number for generic corank-1 germs as follows.

Proposition 11.1 Let V�CN ; 0 be an H–holonomic linear free divisor, and f0.x;y/

be a generic corank-1 mapping of finite KH–codimension for V , given by (11-2). Then

�V.f0/D �.g/:

Proof We note that @f0=@xj Dwj , and @f0=@yi D @g=@yi . In addition, by the above
discussion,

.a
.1/
0
ıf0; : : : ; a

.N�1/
0

ıf0/� .a
.1/
0
ıf1; : : : ; a

.N�1/
0

ıf1/ mod .y1; : : :yn�NC1/;

so .a.1/
0
ıf1; : : : ; a

.N�1/
0

ıf1;y1; : : :yn�NC1/ form a system of local coordinates for
CN . So as earlier, projecting OCn;0fw0; w1; : : : ; wN�1g onto OCn;0fw0g 'OCn;0

along OCn;0fw1; : : : ; wN�1g induces an isomorphism

(11-3) NKH ;e �f0 ' OCn;0

��
a
.1/
0
ıf0; : : : ; a

.N�1/
0

ıf0;
@g

@y1

; : : : ;
@g

@yn�NC1

�
' OCn�NC1;0

��
@g

@y1

; : : : ;
@g

@yn�NC1

�
:

Then, by Theorem 3.1 and (11-3),

�V.f0/D dimC NKH ;e �f0 D �.g/:

Remark 11.2 The above proof can be modified to apply to any H–holonomic free
divisor V �CN ; 0, and then �.g/ will be multiplied by �N�1.V/.

11.2 A .�D �/–type formula for matrix singularities

We now consider a generic corank-1 germ f0W C
nCN�1; 0!M; 0, where M is any of

the spaces of m�m matrices with (dim M DN ). In the case M D Symm , Bruce [1]
shows that f0 is KM–equivalent to germs of one of two types. The first of which is
generic in our sense

f0.x1; : : : ;xN�1;y1; : : : ;yn/D

0BB@
g0.x;y/ x1 x2 � � � xm�1

x1 xm xmC1 � � � x2m�3

� � � � � � � � � � � � � � �

xm�1 x2m�3 � � � � � � xN�1

1CCA ;
where g0.x;y/D

P
"ixi Cg.y1; : : : ;yn/ for generic tuples ."1; : : : ; "N�1/, and g

defines an isolated hypersurface singularity on Cn . In fact, further normalization allows
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many "i D 0 (see [1]). We will change coordinates so that the term g0.x;y/ is in the
lower right-hand corner to make use of the specific form of (6-11) in Theorem 6.6 and
the vector fields used to obtain the defining equation for Esy

3
.

For general and skew-symmetric cases there are analogous normal forms. For example,
for 2� 2 general and 4� 4 skew-symmetric cases they take the form

�
x1 x2

x3 g0.x;y/

�
and

0BB@
0 x1 x2 x3

�x1 0 x4 x5

�x2 �x4 0 g0.x;y/

�x3 �x5 �g0.x;y/ 0

1CCA
with g0.x;y/ of the same form as above.

Then, for this class of germs for any of the matrix types we obtain a .� D �/–type
result.

Theorem 11.3 (�D � for generic corank-1 germs) We let .D; E/ denote any of the
pairs .Dsy

2
; Esy

2
/, .Dsy

3
; Esy

3
/, .D2; E2/, or .Dsk

4
; Esk

4
/ and f0 any of the corresponding

generic corank-1 germs as above. Then,

�D.f0/D �.g/DKH ;e–codim.f0/;

where H is the defining equation for the free divisor E .

If moreover g is weighted homogeneous, then

�D.f0/DKH 0;e–codim.f0/DKM;e–codim.f0/;

where H 0 is the defining equation for D .

Proof We first consider 2�2 symmetric matrices. By Theorem 6.1, Theorem 3.1 and
generic reduction,

�Dsy

2
.f0/D �Esy

2
.f0/DKH ;e–codim.f0/;

where H is the defining equation for Esy
2

. Then a direct calculation analogous to that
in the proof of Corollary 6.2 shows NKH ;e.f0/ ' OCn;0=Jac.g/, yielding the first
equality. Lastly, if g is weighted homogeneous, with H 0 the defining equation for
Dsy

2
, then Derlog.H 0/ has linear generators. Hence, for � 2 Derlog.H 0/,

� ıf0 2 .x1;x2;g/ � �.f0/� TKH ;e.f0/:

Thus KH 0;e–codim.f0/DKH ;e–codim.f0/ and by (2-3) these equal KM;e–codim.f0/,
completing the proof.
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The proof for 2� 2 general matrices is virtually identical to that for 2� 2 symmetric
matrices using instead Theorem 7.1.

Next, for 3� 3 symmetric matrices the argument is similar to that for the 2� 2 case
except for the first step. Instead, we first apply Theorem 6.6 and generic reduction.
Since df0.0/.C

nC5/ projects submersively onto all subspaces of dimension � 5, all
terms of defining codimension � 1 are zero so we obtain

�Dsy

3
.f0/D �Esy

3
.f0/��a;Qa.f0/:

Then, by the metaversion of Proposition 6.4 and generic reduction,

�a;Qa.f0/D �a;bd �Qa.f0/��a;d;bc.bf�2ce/.f0/:

However, both V .bd �Qa/ and V .bc.bf �2ce// are H–holonomic linear free divisors
(by Theorem 4.4 and Proposition 4.3). By a change of coordinates in the source, we
may assume that both a and d are coordinates for Cn . Thus, by Proposition 11.1
applied to the restrictions of f0 to the linear subspaces V .a/ and V .a; d/,

�a;bdQa.f0/D �a;d;bc.bf�2ce/.f0/D �.g/:

Thus, �a;Qa.f0/D 0 and �Dsy

3
.f0/D �Esy

3
.f0/. The remainder of the proof follows

as for the 2� 2 symmetric case.

Lastly, the proof for the 4� 4 skew-symmetric case follows the proof for the 3� 3

symmetric matrices, but with just one difference. By Theorem 9.1 and generic reduction,
(9-1) simplifies to

(11-4) �Dsk
4
.f0/D �Esk

4
.f0/��a;f;.be�cd/.f0/:

The homogeneous generators �i for Derlog.H /, with H the defining equation for
Esk

4
, consist of four linear vector fields and a quadratic vector field obtained from the

Pfaffian vector field. Thus, the @=@x1;2 –components a
.j/
0

of the �j ıf0 have degrees
1; 1; 1; 1; 2 in the xi . The first four give independent local coordinates, which we
assume are xi for i D 1; : : : ; 4. The fifth term is obtained from the Pfaffian vector field;
and modulo the ideal .x1; : : : ;x4/, it is quadratic in x5 , q.x5;y/, with coefficients
in y . Also, the @f0=@yi D @g=@yiw0 give the generators of Jac.g/fw0g. Thus, by
a calculation similar to the above one for 3 � 3 symmetric matrices together with
Theorem 3.1 (also see Remark 11.2)

�Esk
4
.f0/DKH ;e–codim.f0/D 2�.g/:
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However, by Theorem 7.1, generic reduction and Proposition 11.1 applied to the
restriction of f0 to V .a; f /,

�a;f;.be�cd/.f0/D �a;f;bc.be�cd/.f0/D �.g/:

Hence, we obtain from (9-7) and (11-4)

�Dsk
4
.f0/D �.g/:

The remainder of the proof is analogous to that for 3� 3 symmetric matrices.

Remark 11.4 What is surprising in all of these cases is that the number of singular
vanishing cycles for the matrix singularities equals the number of vanishing cycles for
the isolated singularity g , although there is at this point no known geometric reason
for this agreement. This leads to:

Conjecture For all generic corank-1 matrix singularities for m�m symmetric, general,
or skew-symmetric (for m even) matrices, there is a �D � result, where �D �D and
� D KH ;e–codim, for H the defining equation for the appropriate E . If moreover g

is weighted homogeneous, both of these equal KM;e–codimDKH 0;e–codimD �.g/,
where H 0 is the defining equation for D .

This result contrasts with the situation for generic corank-1 germs f0W C
n; 0!M2;3; 0

for the varieties Vi;j in the space of 2� 3 general matrices. Now by Theorem 7.4 and
generic reduction the singular Milnor number is zero. Then, using generic reduction
and Theorem 8.1 together with Proposition 11.1, we obtain the following for the variety
of singular matrices V in M2;3 .

Corollary 11.5 If f0W C
n; 0!M2;3 is a generic corank-1 germ as above with n� 6,

then
z�V.f0/D .�1/n�1�V123

.f0/D .�1/n�1�.g/:

If g is weighted homogeneous, these equal the KM;e–codimension of f0 .

Corollary 11.5 substitutes for the �D � formula in this case. A simple example of
this can be seen in the list in [12, Theorem 3.6] for codimension-2 Cohen–Macaulay
singularities in C6 . Example �k in the list, has g.u/D uk , an Ak�1 singularity and
the � , which is the KM;e–codimension, equals k � 1. Calculations of the singular
vanishing Euler characteristic using the Macaulay2 package [30] for computing the
formula in Theorem 8.1 yields �.k � 1/ as claimed above.
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11.3 .� D � � 1/–type results for 2� 3 Cohen–Macaulay surface singu-
larities

Having obtained above a number of �D � results for hypersurfaces, we ask what form
results take for Cohen–Macaulay singularities defined as 2� 3 matrix singularities. If
f0W C

4; 0!M2;3; 0 is a germ transverse off 0 to the variety V of singular matrices,
then V0 D f

�1
0
.V/ is an isolated Cohen–Macaulay surface singularity. We use the

KM;e–codimension of f0 for � , and the Milnor number �.V0/ for �.

Specifically, the simple isolated Cohen–Macaulay surface singularities arise in this way
and were classified by Frühbis-Krüger and Neumer [12, Theorem 3.3]. These turn out
to be precisely the rational triple points; cf Tjurina [35]. They include both a number
of infinite families and discrete cases. As well in [12] are identified the singularities
just outside the simple range.

Until recently the only method to compute the Milnor number involved using a partial
resolution of V0 . There are now two new ways to compute the Milnor number. In
her recent thesis, Pereira [29] applies a Lê–Greuel type method to a generic linear
function on the surface. This method requires that the number of critical points of the
linear function on the Milnor fiber be computed directly by hand. Also, Theorem 8.3
provides an effective formula for computing �.V0/, and this has been implemented by
the second author as a package [30] in Macaulay2. Taken together, these computations
include all of the simple isolated Cohen–Macaulay surface singularities, as well as
certain nonsimple cases.

Summary of the results for isolated 2� 3 Cohen–Macaulay surface singularities

(1) Pereira computes the Milnor number for many discrete cases and the entirety
of many of the infinite families of simple singularities. Based on her results,
Pereira has conjectured [29, 6.3.1] and verified for her cases that for V0 quasi-
homogeneous,

(11-5) �.V0/D �.V0/� 1:

(2) Using the Macaulay2 package [30], we have verified (11-5) for all of the discrete
examples, for the first few examples of each infinite family, and for a number of
cases just outside the simple region (eg Table 4 in the appendix).

With further work, Theorem 8.3 should provide a method to prove (11-5) for large
classes of singularities. One immediate consequence is that while for ICIS  D����0,
now for non-ICIS  D � �� becomes positive. The relation (11-5) would be a striking
complement to a similar pattern found in listings of certain space curve singularities;
see Frühbis-Krüger [11, Tables 1, 2a, 2b].
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11.4 �D � � for 2� 3 Cohen–Macaulay 3–fold singularities in C5

We next consider isolated Cohen–Macaulay 3–fold singularities V0; 0 � C5; 0 de-
fined by f0W C

5; 0!M2;3; 0, with V0 D f
�1

0
.V/. Again by the results of Greuel–

Steenbrink [20], the first (vanishing) Betti number of the Milnor fiber of V0 , b1.V0/D0.
As there are two possibly nonvanishing Betti numbers for the Milnor fiber, we re-
place the Milnor number by b3.V0/� b2.V0/. We can use Theorem 8.4 to compute
b3.V0/� b2.V0/ and investigate whether an analog of (11-5) holds.

We apply Theorem 8.4 to the classification of simple isolated Cohen–Macaulay 3–fold
singularities in C5 [12, Theorem 3.5]. We compute (8-3) using the Macaulay2 package
[30], and summarize the results in Table 5 in the appendix.

We summarize the main observed conclusions from the calculations. These conclusions
concern the values and behavior of  D � � .b3� b2/ (where � DKM;e–codim), and
the behavior of  and b3� b2 in simple infinite families. We emphasize that although
we state the expected form of these for infinite families, we have so far only verified
them for a small range of values in each infinite family.

Summary of the results for isolated 2� 3 Cohen–Macaulay 3–fold singularities
(a)  � 2 and increases in value as we move higher in the classification.

(b) b3�b2 ��1, with equality for the generic linear section and one infinite family.

(c) b3� b2 is constant for certain infinite families with values �1 (one family), 0

(two families) and 1 (two families).

(d)  is constant in all other considered infinite families in Table 5 with only one
exception where both b3� b2 and  increase with � .

(e) For singularities of the form
�

x
w

y
v

z
g.x;y/

�
with g a simple hypersurface singu-

larity (cases 2–6 in Table 5),  D 3 and b3� b2 D �.g/� 1.

As each bi � 0, knowing b3�b2 gives lower bounds on b3 when b3�b2 > 0, and on
b2 when b3� b2 < 0. In particular, the generic Cohen–Macaulay 3–fold singularity as
well as one infinite family must have b2 > 0. In fact, we expect that both b2 and b3

will increase with � in families with b3� b2 constant.

Remark 11.6 These results reveal that there are (at least) two quite different (and
mutually exclusive) types of behavior occurring for infinite families of isolated Cohen–
Macaulay 3–fold singularities: one where b3� b2 is constant in the family and one
where  is constant. A basic question is what different geometric properties are
responsible for the two different types of behavior? Second, as  increases within the
classification, how can it be computed independently via other geometric properties of
the singularities?
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Appendix: Computations for 2�3 Cohen–Macaulay singular-
ities

Table 4: Some nonsimple isolated 2� 3 Cohen–Macaulay surface singulari-
ties in C4 , from the proof of [12, Theorem 3.3]

Presentation matrix � ��
z y x

x w z2Cy4

�
11 10�

z y x

x w y3C z3

�
10 9�

z y x2Cy2

x w w2CxwC z2

�
13 12�

x y z

w zxCx2 wCyz

�
9 8�

z y x2

w2 x yCw2

�
8 7�

z y x2C z2

w2 x yCw2

�
8 7

Table 5: The simple isolated 2� 3 Cohen–Macaulay 3–fold singularities
in C5, from [12, Theorem 3.5]

Presentation matrix Parameters computed � b3� b2�
x y z

w v x

�
1 �1�

x y z

w v xkC1Cy2

�
1� k � 4 kC 2 k � 1�

x y z

w v xy2Cxk�1

�
4� k � 6 kC 2 k � 1�

x y z

w v x3Cy4

�
8 5�

x y z

w v x3Cxy3

�
9 6�

x y z

w v x3Cy5

�
10 7�

w y x

z w yC vk

�
2� k � 5 2k � 1 �1
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Presentation matrix Parameters computed � b3� b2�
w y x

z w yk C v2

�
2� k � 5 kC 2 k � 2�

w y x

z w yvC vk

�
2� k � 5 2k 0�

wC vk y x

z w yv

�
2� k � 5 2kC 1 0�

wC v2 y x

z w y2C vk

�
2� k � 5 2k k � 2�

w y x

z w y2C v3

�
7 1�

v2Cwk y x

z w v2Cyl

�
2� k � l � 6 kC l C 1 kC l � 3�

v2Cwk y x

z w yv

�
2� k � 5 kC 4 k � 1�

v2Cwk y x

z w y2C vl

�
2� k � 3I 3� l � 7 kC l C 2 kC l � 3�

wvC vk y x

z w yvC vk

�
3� k � 6 2kC 1 1�

wvC vk y x

z w yv

�
3� k � 6 2kC 2 1�

wvC v3 y x

z w y2C v3

�
8 2�

wv y x

z w y2C v3

�
9 2�

w2C v3 y x

z w y2C v3

�
9 3�

z y x

x w v2Cy2C zk

�
2� k � 5 kC 4 k�

z y x

x w v2CyzCykw

�
1� k � 4 2kC 5 2kC 1�

z y x

x w v2CyzCykC1

�
2� k � 5 2kC 4 2k�

z y x

x w v2CywC z2

�
8 4�

z y x

x w v2Cy3C z2

�
9 5
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Presentation matrix Parameters computed � b3� b2�
z y xC v2

x w vyC z2

�
7 2�

z y xC v2

x w vzCy2

�
8 3�

z y xC v2

x w y2C z2

�
9 4
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